
A note on “a multi-instance cancelable fingerprint biometric based

secure session key agreement protocol employing elliptic curve

cryptography and a double hash function”

Zhengjun Cao1, Lihua Liu2

Abstract. We show that the key agreement scheme [Multim. Tools Appl. 80:799-829,
2021] is flawed. (1) The scheme is a hybrid which piles up various tools such as public
key encryption, signature, symmetric key encryption, hash function, cancelable templates
from thumb fingerprints, and elliptic curve cryptography. These tools are excessively used
because key agreement is just a simple cryptographic primitive in contrast to public key
encryption. (2) The involved reliance is very intricate. Especially, the requirement for a
secure channel between two parties is generally unavailable.
Keywords: Public key encryption; Key agreement; Key transfer; Mutual authentication;
Digital signature; Symmetric key encryption.

1 Introduction

Identification schemes in which a claimed identity is either corroborated or rejected immediately, are
simpler than digital signature schemes, which involve a variable message and typically provide a non-
repudiation feature. Entity authentication techniques can be divided into three categories, depending
on which of the following the security is based [4]: something known (password, personal identification
number, private key, etc), something possessed (chipcard, hand-held customized calculator, etc), and
something inherent (handwritten signature, fingerprint, voice, etc).

A key agreement protocol is a key establishment technique in which a shared secret is derived by
two (or more) parties as a function of information contributed by each of these, such that no party
can predetermine the resulting value. Many key agreement protocols involve a trusted party, which
is referred to trusted third party, trusted server, authentication server, key distribution center, or
certification authority.

Recently, Sarkar and Singh [6] have presented a multi-instance cancelable fingerprint biometric-
based key agreement scheme without saving the primary biometric data in the database. The scheme
combines various tools such as public key encryption, signature, symmetric key encryption, hash
function, cancelable templates from thumb fingerprints, and elliptic curve cryptography. But we find
they have misused the reliance of Public Key Infrastructure (PKI) and secure channels. The hybrid
scheme can be greatly simplified if such reliance is available. We also notice that the scheme has
some notations/descriptions, incompatible with general conventions.

1Department of Mathematics, Shanghai University, Shanghai, 200444, China
2Department of Mathematics, Shanghai Maritime University, Shanghai, 201306, China.
Email: liulh@shmtu.edu.cn

1



2 Preliminary

Key agreement, key distribution, key exchange, and key transfer, are often confused but their common
target is to establish a shared key between users. The resulting key in a key agreement scheme is
not preexisting. However, the resulting key in a key transfer scheme is preexisting, which should be
recovered intactly. The difference between key agreement and key transfer seems unfamiliar to some
researchers. To illustrate the difference, we now review Diffie-Hellman key exchange [1] and RSA
public key encryption [5](see Table 1).

Table 1: Diffie-Hellman key exchange versus RSA
Diffie-Hellman key exchange RSA public key encryption

Setup. A prime p, a generator g ∈ F∗p. Setup. Alice picks two big primes p, q,

computes n = pq. Pick e and compute d
such that ed ≡ 1 mod φ(n). Set the
public key as (n, e), the private key as d.

A −→ B. Alice picks an integer xA to
compute yA ≡ gxA mod p.
Send yA to Bob.

A←− B. Bob picks an integer xB to A←− B. For m ∈ Z∗n, Bob checks the certification of
compute the key k ≡ yxBA mod p, public key (n, e), and computes c ≡ me mod n.
and yB ≡ gxB mod p. Send c to Alice.
Send yB to Alice.

A ↓. Alice computes the session key A ↓. Alice computes m ≡ cd mod n.
k ≡ yxAB mod p. (Usually, m is a session key, not a concrete message)

Note that RSA requires a complex system setup, which relies on PKI to enable Bob to invoke
Alice’s true public key (n, e). Its authentication originates directly from the reliance on PKI. If such
moderate reliance is unavailable, a lightweight key agreement scheme could be chosen.

3 Review of the Sarkar-Singh scheme

In the considered scenario, there are two parties A and B. Let IDA, IDB be the registered IDs,
KprivA, KpubA, KprivB, KpubB be the private keys and public keys, CTA, CTB be the cancelable
templates generated from the right thumb impressions, HTPartyA, HTPartyB be the hash values
generated from the left thumb impressions, CTAXOR, CTBXOR be the XOR values of cancelable
template, of user A and B, respectively. The scheme consists of three phases: pre-computation,
session key generation, and secure communication. It can be described as follows (see Table 2).

4 Intricate requirements for reliance

As we know, any cryptographic protocol requires a certain reliance. For example, in the Diffie-
Hellman scheme the system parameters p and g must be credible. While, in RSA the invoked public
key (n, e) must be authentic. In the Sarkar-Singh scheme, the required reliance is very intricate (see
Table 3). It requires a secure channel between party A and party B for Pre-computation. The secure
channel must be private and authentic so as to ensure the confidentiality of the transferred parameters
p, x, and the integrities of signatures (p‖IDB)KprivA, (x‖IDA)KprivB and public key certificates

2



Table 2: The Sarkar-Singh key agreement scheme
Party A Pre-computation Party B

Make a cancelable template CTA from
his right thumb fingerprint template.
Calculate a hash table HTPartyA
from his left thumb fingerprint. Verify the signature. If true,
Generate the secret value of p. make a cancelable template CTB

Generate the signature (p‖IDB)KprivA.
(p‖IDB)KprivA, p, CertiA

===================⇒
[secure channel]

from his fingerprint template.

where CertiA is his public key certificate. Calculate a hash table HTPartyB
from his left thumb fingerprint.
Pick a value x (0 < x < (p− 1).

Verify the signature. If true,
(x‖IDA)KprivB , x, CertiB⇐==================== Generate the signature (x‖IDA)KprivB.

compute y such that Compute y such that
y2 = x3 + x+ 1 mod p. y2 = x3 + x+ 1 mod p.
Store the point Q(x, y). Store the point Q(x, y).

Party A Session key generation Party B

Compute a XOR operation on every
points of his cancelable template CTA, i.e.,
CTAXOR = (x′1 ⊕ y′1 ⊕ x′2 ⊕ y′2 · · ·x′n ⊕ y′n).
Pick a number n1, compute
x1 = n1 + CTAXOR mod p,
y21 = x31 + x1 + 1 mod p.
Get a point P1(x1, y1).
Compute R1 = P1 +Q.
Generate the signature
(Hash− valueof −R1)PrivatekeyA.

Compute the ciphertext C1 =
C1−−−−−−−−−−−−−→

[insecure channel]
Decrypt C1 to get R1.

[R1, (Hash− valueof −R1)PrivatekeyA]publickeyB Verify the signature to accept R1.
Compute a XOR operation on every
points of his cancelable template, i.e.,
CTBXOR = (x′′1 ⊕ y′′1 ⊕ x′′2 ⊕ y′′2 · · ·x′′n ⊕ y′′n).
Pick a number n2, compute
x3 = n2 + CTBXOR mod p,
y23 = x33 + x3 + 1 mod p.
Get a point P2(x3, y3).
Compute R2 = P2 +Q.
Generate the signature
(Hash− valueof −R2)PrivatekeyB.
Compute the ciphertext C2 =
[R2, (Hash− valueof −R2)PrivatekeyB]publickeyA.
Compute S(x5, y5) = P2 +R1.
Generate the signature σ1 for IDA‖R1‖R2

Decrypt C2 to get R2. with the private key KprivB.
Verify the signature to accept R2. Encrypt the signature with secret value S

Compute S(x5, y5) = P1 +R2.
C2,C3←−−−−−− to get the ciphertext C3.

Decrypt C3 with the value S
to get the signature σ1.
Verify the signature. If true,
generate the signature σ2 for
IDB‖R1‖R2 with the key KprivA.
Encrypt the signature with value S

to get the ciphertext C4.
C4−−−−→ Decrypt C4 to get σ2.

Verify the signature. If true,

Decrypt C5 to get HTPartyB.
C5←−−−− encrypt HTPartyB to get the ciphertext C5.

Encrypt HTPartyA to get the ciphertext C6.
C6−−−−→ Decrypt C6 to get HTPartyA.

Set the key K = (x5‖y5‖HTPartyA‖HTPartyB). Set the key K = (x5‖y5‖HTPartyA‖HTPartyB).

Remarks: The notations C1, · · · , C6, σ1, σ2 are not used in the original description. Instead, it is vaguely described such as the sentences
“Party B now sends the signature to party A. This signature is encrypted with secret value S”.
“Party A now sends the signature to party B. This signature is encrypted with secret value S(x5, y5)”. (see page 813-814, [6])

3



CertiA, CertiB. Otherwise, the parameters p, x can be eavesdropped, and CertiA, (p‖IDB)KprivA

could be falsified by an adversary, which results in the failure of signature verification.

Table 3: Different reliance required in three key agreement/transfer schemes
Diffie-Hellman RSA Sarkar-Singh

À system parameters p and g À PKI to authenticate À a secure channel for Pre-computation
— weak reliance the public key (n, e) — strong reliance

— moderate reliance Á PKI to authenticate
the public keys publickeyB
and publickeyA.
— moderate reliance

Â public verification algorithms
for verifying the signatures σ1, σ2
— moderate reliance

Ã a system’s hash function h(·) for
computing (Hash− valueof −R1)
and (Hash− valueof −R2).
— weak reliance

Ä a symmetric key encryption algorithm
for transferring the signatures σ1, σ2,
and the hash tables HTPartyA, HTPartyB.
— weak reliance

Table 4: A simplification
Party A Pre-computation Party B

Pick a 256-bit nonce α.
α, IDA============⇒

[secure channel]

Store {α, β, IDB}.
β, IDB⇐======= Pick a 256-bit nonce β.

Store {α, β, IDA}.
Party A session key agreement Party B

Compute γ1 = h(α‖IDA‖IDB), Invoke the stored data to

where h(·) is a 256-bit hash function.
γ1−−−−−−−−−−−−→

[insecure channel]
compute γ′1 = h(α‖IDA‖IDB).

Check that γ1 = γ′1. If true,

Invoke the stored data to
γ2←−−− compute γ2 = h(β‖IDA‖IDB), and

compute γ′2 = h(β‖IDA‖IDB). set the session key K = h(α‖β‖IDA‖IDB).
Check that γ2 = γ′2. If true,
set the session key K = h(α‖β‖IDA‖IDB).
Pick a 256-bit nonce αnew, compute
λ1 = K ⊕ αnew ⊕ h(α‖IDA), Compute α′new = λ1 ⊕K ⊕ h(α‖IDA)

ψ1 = h(αnew‖IDA).
λ1,ψ1−−−−−−→ Check that ψ1 = h(α′new‖IDA). If true,

pick a 256-bit nonce βnew, compute

Compute β′new = λ2 ⊕K ⊕ h(β‖IDB).
λ2,ψ2←−−−−−− λ2 = K ⊕ βnew ⊕ h(β‖IDB),

Check that ψ2 = h(β′new‖IDB). If true, ψ2 = h(βnew‖IDB), and
update α← αnew, β ← β′new. update α← α′new, β ← βnew.

4



We want to stress that the scheme can be greatly simplified if such strong reliance for a secure
channel is available. Here is a simplification (see Table 4).

Notice that party B authenticates party A by checking γ1 = γ′1. Likewise, party A authenticates
party B by checking γ2 = γ′2. After the mutual authentication is completed, they use the session
key K to securely transfer αnew, βnew and update α← αnew, β ← βnew, in order to provide forward
secrecy. An adversary who captures γ1 which equals to h(α‖IDA‖IDB), and γ2 which equals to
h(β‖IDA‖IDB), cannot derive the session key K = h(α‖β‖IDA‖IDB) due to the one-way and
collision-free properties of h(·). As for its security proof, we refer to Ref.[3], in which the proposed
scheme was very similar to the above simplification.

5 Other flaws

The scheme is not explicitly described, because there are many unwonted notations, descriptions,
and reiterations of general knowledge. It takes almost 4 pages (see page 807-810, Ref.[6]) to reiterate
the points addition on an elliptic curve, which is common knowledge in any textbook on elliptic
curve theory, like Ref.[2]. The reiterations distract attention heavily. Some notations are tedious and
incompatible with general conventions. Here are some unwonted notations/descriptions (see Table
5).

Table 5: Unwonted notations/descriptions
Sarkar-Singh notation/description Conventional notation/description

Party A concatenates party B’s identity IDB and calculated p value, Let Sig(·, ·) be the signing algorithm.
signs the result with his private key KprivA, Party A generates the signature
and conveys the value of p, the signature, and σ = Sig(KprivA, p‖IDB). Send
his individual public key certificate to party B. {p, σ, CertiA} to party B.

(Hash− valueof −R1) Let h(·) be the hash function. Compute h(R1).

(Hash− valueof −R1)PrivatekeyA Let skA be the party A’s secret key.
Compute the signature σ′ = Sig(skA, h(R1)).

[R1, (Hash− valueof −R1)PrivatekeyA]publickeyB Let pkB be the party B’s public key,
Enc(·, ·) be the encrypting algorithm.
Compute ν = Enc(pkB, R1‖Sig(skA, h(R1))).

By the way, the final key is simply set as K = (x5‖y5‖HTPartyA‖HTPartyB). But the randomness
of the concatenated string is generally insufficient for practical applications. It is better to set the
key as a hash value, i.e., K = h(x5‖y5‖HTPartyA‖HTPartyB).

6 Further discussions

The step 6 (see page 814, Ref.[6]) is described as:

Party A now sends the signature to party B. This signature is encrypted with secret
value S(x5, y5).

Actually, the point S(x5, y5) is used as the key for a symmetric key encryption, though which has not
been explicitly specified. Note that the final key K = (x5‖y5‖HTPartyA‖HTPartyB) is also used as
a symmetric key for the later data transfer process. So, it makes use of the intermediate symmetric

5



key S(x5, y5) to negotiate another symmetric key (x5‖y5‖HTPartyA‖HTPartyB). But there is no any
virtual difference between the two keys when their hash values are used for symmetric key encryption.
It seems that Sarkar and Singh have neglected the vicious circle hidden in their presentation.

7 Conclusion

We show that the Sarkar-Singh key agreement scheme is flawed because of the excessively used tools,
intricate reliance, and cumbersome notations. We hope this note could be helpful for the future work
on designing such schemes.

References

[1] Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644-654
(1976)

[2] Hankerson D., Vanstone S., Menezes A.: Guide to Elliptic Curve Cryptography. Springer New
York, USA (2006)

[3] Khan H., Dowling B., Martin K.: Pragmatic authenticated key agreement for IEEE Std 802.15.6.
Int. J. Inf. Sec. 21(3): 577-595 (2022)

[4] Menezes, A., Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, USA
(1996)

[5] Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM 21(2), 120-126 (1978)

[6] Sarkar A., Singh B.: A multi-instance cancelable fingerprint biometric based secure session key
agreement protocol employing elliptic curve cryptography and a double hash function. Multim.
Tools Appl. 80(1): 799-829 (2021)

6


	Introduction
	Preliminary
	Review of the Sarkar-Singh scheme
	Intricate requirements for reliance
	Other flaws
	Further discussions
	Conclusion

