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Abstract. Non-Interactive Verifiable Secret Sharing (NI-VSS) is a tech-
nique for distributing a secret among a group of individuals in a verifiable
manner, such that shareholders can verify the validity of their received
share and only a specific number of them can access the secret. VSS
is a fundamental tool in cryptography and distributed computing. In
this paper, we present an extremely efficient NI-VSS scheme using Zero-
Knowledge (ZK) proofs on secret shared data. While prior VSS schemes
have implicitly used ZK proofs on secret shared data, we specifically use
their formal definition recently provided by Boneh et al. in CRYPTO
2019. The proposed NI-VSS scheme uses a quantum random oracle and
a quantum computationally hiding commitment scheme in a black-box
manner, which ensures its ease of use, especially in post-quantum thresh-
old protocols. Implementation results further solidify its practicality and
superiority over current constructions. With the new VSS scheme, for
parameter sets (n, t) = (128, 63) and (2048, 1023), a dealer can share a
secret in less than 0.02 and 2.0 seconds, respectively, and shareholders
can verify their shares in less than 0.4 and 5.0 milliseconds. Compared
to the well-established Pedersen VSS scheme, for the same parameter
sets, at the cost of slightly higher communication, the new scheme is
respectively 22.5× and 3.25× faster in the sharing phase, and notably
needs 271× and 479× less time in the verification. Leveraging the new
NI-VSS scheme, we revisit several classic and PQ-secure threshold pro-
tocols and improve their efficiency. Our revisions led to more efficient
versions of both the Pedersen DKG protocol and the GJKR threshold
signature scheme. We show similar efficiency enhancements and improved
resilience to malicious parties in isogeny-based DKG and threshold sig-
nature schemes. We think, due to its remarkable efficiency and ease of
use, the new NI-VSS scheme can be a valuable tool for a wide range of
threshold protocols.

Keywords: Verifiable Secret Sharing · ZK Proofs on Secret Shared Data
· Shamir Secret Sharing · DKG · Threshold Signatures · Isogenies.

1 Introduction

Secret sharing schemes are fundamental tools in the field of threshold cryptog-
raphy and secure multi-party computation. Such schemes consist of a sharing
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phase, where a dealer shares a secret among the shareholders, followed by a re-
construction phase where qualified shareholders collaborate to reconstruct the
original secret. Standard secret sharing schemes, such as Shmair’s protocol [32],
assume the presence of honest parties but do not provide security against ma-
licious participants. Verifiable Secret Sharing (VSS) schemes [14, 19] have been
developed to address the challenges posed by malicious players. These schemes
aim to withstand various attacks, including incorrect share distribution by the
dealer and malicious behavior by the shareholders (e.g., using incorrect shares)
during the reconstruction phase. Depending on the communication model, to
incorporate verifiability, typically interaction among the dealer and shareholders
is required. It can however be shown that, assuming the dealer has a broadcast
channel, a single message from the dealer to the shareholders can be sufficient.
This is known as a Non-Interactive VSS (NI-VSS).

Most existing constructions of VSS schemes are based on regular secret-
sharing schemes, often starting with Shamir’s scheme [32], and then adding ver-
ifiability features on top [4, 14, 19, 22–24, 28, 31]. The known discrete-logarithm
(DL) based VSS schemes such as those by Feldman [19], Pedersen [28], Schoen-
makers [31], and their variants, utilize Shamir secret sharing and achieve verifi-
ability by having the dealer publish the shares and coefficients of the underlying
secret polynomial in the group. Then, they leverage the homomorphic property
of the group to convince the shareholders [19, 28], or an external verifier [31],
that the secret sharing is performed correctly. DL-based VSS schemes are typi-
cally non-interactive and support public verifiability, allowing both shareholders
and external verifiers to verify the validity of the shares without interaction.
However, due to the threat posed by Shor’s algorithm [33], discrete logarithm
based VSS schemes are not suitable for cryptographic protocols (e.g., distributed
key generation schemes, threshold signatures, etc.), that require post-quantum
security. Gentry, Halevi, and Lyubashevsky [23] recently proposed a practical
non-interactive publicly VSS scheme that relies on lattice-based and DL-based
problems at the same time, unfortunately making it unsuitable for use in post-
quantum secure threshold protocols. Given the limitations and vulnerabilities
of existing NI-VSS schemes, it becomes imperative to develop an efficient post-
quantum secure VSS scheme that can also address challenges of scalability and
computational overhead. Such VSS schemes can pave the way for the realization
of more efficient post-quantum threshold protocols.

In the VSS scheme proposed by Ben-or, Goldwasser, andWigderson (BGW) [4],
a dealer employs a distributed Zero-Knowledge (ZK) proof scheme based on bi-
variate polynomials to add (designated) verifiability to the Shamir secret sharing
scheme. The BGW VSS scheme achieves Information-Theoretical (IT) security
and can be employed in both classical and post-quantum secure threshold pro-
tocols. However, in their (non-interactive) ZK proof scheme the verifiers need to
interact two-by-two for share validation and to achieve (perfect) soundness their
scheme requires at least two-thirds of the designated verifiers to be honest.

In Crypto 2019, Boneh et al. [10] provided a formal definition for ZK proofs
over secret shared data and presented several feasibility and infeasibility results.
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In a ZK proof scheme over secret shared data, there is a single prover P and
n (designated) verifiers {Vi}ni=1, and each verifier Vi holds a piece (share) xi of
an input (statement) x, which is distributed among n participants. The prover’s
task is to convince the (designated) verifiers that the main input x belongs to
a specific language L. Essentially, the prover P possesses full knowledge of x,
while each verifier Vi possesses a secret share denoted as xi. In their best feasi-
bility (and positive) result, Boneh et al. [10] demonstrated that, in the majority
honest setting, using a robust encoding scheme, any multi-round public-coin
linear Interactive Oracle Proof (IOP) for a non-distributed relation RL can be
compiled into a secure ZK proof scheme over secret shared data. The result-
ing distributed ZK proof scheme satisfies (computational) soundness against the
prover and t < n/2 malicious verifiers. Moreover, it guarantees ZK even if t of
the verifiers collude [10, Section 6.3], where t represents a threshold parameter
in the underlying encoding scheme. Boneh et al. [10] coined the term “Strong
zero-knowledge” to describe this variant of ZK, which ensures that even if up
to t verifiers collude, they learn nothing about the witness. We will refer to this
notion as “threshold zero-knowledge” (TZK) in this paper.3 Based on the for-
mal definitions, we can restate that the BGW VSS scheme [4] has been proven
to achieve TZK and (perfect) soundness against the prover, given that at least
two-thirds of the (designated) verifiers are honest.

Consequently, a generic approach for constructing a ZK proof scheme over
secret shared data for n-distributed relations Ri involves first developing a multi-
round public-coin IOP for the non-distributed relation R. Subsequently, Boneh
et al.’s compiler can be utilized to transform it into a distributed ZK proof
scheme, featuring a single prover P and n designated verifiers {Vi}ni=1. However,
it is worth noting that generic approaches are typically less efficient compared to
ad-hoc constructions tailored for specific purposes in practical implementations.

Our Contributions. We summarize the contributions of this paper as follows:

An Efficient Post-Quantum Secure NI-TZK for the Shamir Relation. Consider-
ing the feasibility result of Boneh et al. [10], we directly (without using their com-
piler [10]) construct an efficient Non-Interactive TZK (NI-TZK) proof scheme
for the n-distributed relations R1, . . . , Rn, where

Ri = {(xi, f(X))|f(i) = xi}. (1)

Here f(X) ∈ ZN [X]t is a secret polynomial in X of degree (at most) t and
with coefficients defined over the ring ZN . The proposed construction is built
in the majority honest setting (i.e., the majority of the verifiers are honest) and
utilizes a quantum computationally hiding commitment scheme. We prove (in
Theorem 1) that in the Quantum Random Oracle Model (QROM), the proposed

3 This choice is done for two main reasons. First, strong ZK might lead to misunder-
standings, as the majority of verifiers is actually honest in our cases. Second, we
risk confusion by using the abbreviation SZK, which usually stands for statistical
zero-knowledge.
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NI-TZK proof scheme satisfies completeness, TZK, and soundness against the
prover and t malicious verifiers, as formally defined in [10].

NI-VSS Schemes from NI-TZK Proofs and a Quantum Secure Scheme. We fur-
ther show how one can use a secure NI-TZK proof scheme for the n-distributed
relations given in equation (1), and build a computationally secure NI-VSS
scheme based on Shamir secret sharing in the majority honest setting. Building
upon that, we use the proposed NI-TZK proof scheme and present an extremely
efficient computationally secure NI-VSS scheme that works over general rings,
and is proven to be secure in the QROM. One notable factor contributing to the
efficiency of new VSS scheme is using lightweight cryptographic operations such
as hashing and polynomial evaluation, in the underlying NI-TZK proof scheme.
Within the new VSS scheme, we introduce a novel reconstruction approach that,
in scenarios where the dealer is one of the parties (e.g., as in the DKG proto-
cols and threshold signatures), can lead to the development of more efficient
threshold protocols.

Our resulting NI-VSS scheme serves as a post-quantum secure alternative to
the classical Pedersen VSS scheme [28] (or Feldman’s VSS scheme [19]) when
public verifiability is unnecessary. We later show that this scenario often occurs
in various threshold protocols. It can also be considered an alternative to the
Information-Theoretically (IT) secure BGW VSS [4] in cases where quantum
computational security suffices and there is a desire to reduce communication
between parties, or when assuming two-thirds of the parties are honest among
the shareholders is challenging. Table 1 provides a comprehensive summary of
the key features of our proposed NI-VSS scheme, comparing it to the well-known
Pedersen [28] and BGW [4] VSS schemes from various perspectives.

To assess the empirical performance of new VSS scheme, we implemented
a prototype of it alongside the Pedersen scheme [28] using SageMath. Imple-
mentation results show that using the new NI-VSS scheme a dealer can share a
secret with 2048 parties in 2 seconds, and shareholders can verify the validity
of their shares in less than 5 milliseconds. When considering the same num-
ber of parties and aiming for 128-bit quantum security, the dealer broadcasts a

Table 1. A comparison among BGW [4], Pedersen [28] and the new NI-VSS schemes.

BGW VSS [4] Pedersen VSS [28] This Work

uses bivariate polynomials
(lightweight operations)

based on discrete logarithm
(heavy operations)

based on hash functions
(lightweight operations)

achieves Information
Theoretical (IT) security

achieves IT and classic
(computational) security

achieves post-quantum
(computational) security

needs ≥ 2
3
honest parties needs ≥ 1

2
honest parties needs ≥ 1

2
honest parties

verification is designated
and to verify the shares the
verifiers need to interact
two-by-two, which induces

O(n) communication
for each shareholder

verification is designated
(but can also be made
public) and to verify the
shares the verifiers do not
need to interact two-by-two

verification is designated
and to verify the shares
the verifiers do not need
to interact two-by-two
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proof of approximately 130KB and privately sends less than 32B to each share-
holder. Our empirical analysis affirm the superiority of our NI-VSS scheme over
the well-known Pedersen scheme in both sharing and verification steps, in addi-
tion to post-quantum security. The new NI-VSS scheme demonstrates significant
efficiency improvements in the verification phase, achieving speedups of approxi-
mately 271×, 437×, and 498× compared to the Pedersen scheme for (n, t) values
of (128, 63), (512, 255), and (8194, 4095), respectively. In the sharing phase un-
der the same settings, our scheme is about 22.6×, 9.3×, and 1.57× faster than
the Pedersen scheme. In terms of communication costs, when compared to the
Pedersen scheme, our VSS scheme results in a slight increase in broadcast com-
munication for the dealer. On the positive side, it reduces the dealer’s private
communication.

We believe, the simplicity and efficiency of our new NI-VSS scheme can make
it an attractive choice for various large-scale threshold protocols, especially those
that require post-quantum security.

A Concurrent Work in the Asynchronous Setting. In concurrent work, Shoup
and Smart [34] also introduced a novel VSS scheme that employs lightweight
cryptographic operations, such as polynomial evaluation and hashing (for a ran-
dom oracle/beacon). Shoup and Smart’s scheme supports batched secret sharing,
is tailored for the asynchronous setting, and requires the participation of at least
2/3 of the parties to be honest. Batched secret sharing, allows the dealer to save
on computational and communication costs in case of sharing multiple secrets
with the same parties. In this study, our focus is on the case where the dealer
shares a single secret with the parties. When comparing our scheme to BGW [4]
and the Shoup-Smart scheme [34], there are certain trade-offs that can be sum-
marized as follows:

- Ben-Or, Goldwasser, and Wigderson (BGW) [4]:
(i) Utilizes lightweight operations, specifically polynomial evaluations.
(ii) Designed for the synchronous communication model.
(iii) Achieves Information-Theoretic (IT) Security.
(iv) Requires at least 2/3 honest parties.
(v) To verify the shares, verifiers need to interact pairwise, which induces

O(n) communication for each shareholder.
- This Work (Section 3.2):
(i) Utilizes lightweight operations, i.e., polynomial evaluations and hashing.
(ii) Designed for the synchronous communication model.
(iii) Achieves Post-Quantum (PQ) Computational Security.
(iv) Requires 1/2 honest parties
(v) Verifiers do not need to interact pairwise to verify the shares, leading to

shorter communication compared to BGW.
- Shoup-Smart [34]:
(i) Utilizes lightweight operations, i.e., polynomial evaluations and hashing.
(ii) Designed for the asynchronous communication model.
(iii) Achieves Post-Quantum (PQ) Computational Security.
(iv) Requires at least 2/3 honest parties.
(v) Verifiers do not need to interact pairwise to verify the shares, resulting

in shorter communication compared to BGW.
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Application Examples of New NI-VSS Scheme. As our next major contribution,
we leverage the new NI-VSS scheme and revisit several threshold protocols based
on discrete logarithm and isogenies, and improve their efficiency, and in some
cases also decrease the lower bound on the number of honest parties.

More Efficient Threshold Protocols in the DL Setting. As mentioned previously,
the new VSS scheme serves as a more efficient alternative to the well-established
Pedersen VSS scheme [28] when public verifiability is not required. Our observa-
tions indicate that this scenario commonly arises in Distributed Key Generation
(DKG) protocols and threshold signatures. In light of this insight, we revisit
Pedersen’s DKG protocol [27] in conjunction with the robust threshold signa-
ture scheme proposed by Gennaro, Jarecki, Krawczyk, and Rabin (GJKR) [21],
which employs Schnorr’s signature for signing and Pedersen’s DKG protocol for
the generation of (secret, public, and ephemeral) keys. To this end, we first build
an NI-TZK proof scheme for the following set of n-distributed relations,

Ri = (y, xi, f(X))|y = gf(0) ∧ f(i) = xi, i = 1, . . . , n (2)

where f(X) ∈ Zq[X]t is a secret polynomial in X of degree (at most) t with
coefficients defined over the field Zq. This NI-TZK proof scheme serves as the
main component for our revisions and holds potential interest in other DL-based
threshold protocols that utilize Shamir secret sharing. Subsequently, we present
a new DKG protocol and a Schnorr-based threshold signature scheme, which
can be considered as more efficient alternatives to Pedersen’s DKG protocol [27]
and the GJKR threshold signature [21].

When comparing our resulting variants to the original schemes, there are cer-
tain trade-offs. While our variants slightly increase communication costs, they
improve computational efficiency in both schemes. In summary, in our proposed
DKG protocol, each party needs to perform approximately 2n exponentiations in
the group, 5n (short) hashes, and 3n degree-t polynomial evaluations in the field.
This represents a factor of t ≈ n/2 improvement compared to the secure version
of Pedersen DKG protocol [21], which demands roughly 2tn+2n exponentiations
in the group and 2n degree-t polynomial evaluations in the field. While incur-
ring slightly higher communication costs, our new threshold signature scheme
offers similar improvements over the GJKR threshold signature scheme [21]. The
detailed comparisons are provided in Sec. 4 (and Table 4).

More Efficient Threshold Protocols from Isogenies. As previously discussed, the
new NI-VSS scheme can also be integrated into various post-quantum secure
threshold protocols. Notably, it can serve as an alternative to the BGW VSS [4]
in certain scenarios. By adopting the new VSS scheme in place of BGW, it
becomes possible to reduce communication costs and improve tolerance for ma-
licious parties, albeit at the expense of transitioning from information-theoretic
(IT) security to quantum computational security. Taking this into considera-
tion, we revisit the isogeny-based DKG protocol developed by Atapoor, Bagh-
ery, Cozzo, and Pedersen [2], alongside the CSI-FiSh-based threshold signature
scheme introduced by Campos and Muth [12].
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Currently, their DKG protocol [2] stands as the most efficient scheme in terms
of isogeny computations within the CSIDH (Commutative Supersingular Isogeny
Diffie-Hellman) setting [13]. We show that by integrating the new NI-VSS scheme
into the VSS step of their DKG protocol, we can address two bottlenecks present
in their scheme. Specifically, we reduce the requirement from needing at least
2/3 honest shareholders to a more practical threshold of just 1/2. Additionally,
we eliminate the need for pairwise interactive verification, which was a primary
reason to the high communication overhead in the VSS step of their DKG pro-
tocol. While these enhancements do come at the cost of sacrificing IT security
in the VSS step in favor of quantum computational security, it’s worth noting
that the DKG protocols proposed in [2] rely on quantum computational secu-
rity from the outset. These improvements can make the revisited DKG protocol
highly appealing for use in CSIDH-based threshold settings. The resulting DKG
protocol retains the same efficiency in terms of isogeny computations.

The threshold signature scheme proposed by Campos and Muth [12] is based
on the basic version of the CSI-FiSh signature [8], which features shorter public
keys but longer signature sizes, as well as slower signing and verification algo-
rithms. To enhance the efficiency of their threshold signature, we introduce two
key modifications. First, we adapt their scheme to work with the CSI-SharK sig-
nature [1], which has been demonstrated to outperform CSI-FiSh in the thresh-
old setting. This modification enables us to leverage our revisited DKG protocol,
resulting in more efficient key generation for the resulting robust threshold signa-
ture scheme. Furthermore, we apply a similar strategy used in the construction
of the revisited DKG protocol to improve the efficiency of ephemeral key gener-
ation in the resulting threshold signature. This further enhances the efficiency of
the distributed signing protocol, leading to the development of a new and more
efficient isogeny-based threshold robust signature scheme.

Outline. In Sec. 2, we provide an overview of some preliminary concepts. In
Sec. 3, we first present our NI-VSS scheme, and then evaluate its performance
through a prototype implementation. Leveraging the proposed NI-VSS scheme,
in Sec. 4, we revisit the well-known Pedersen DKG protocol [28] and the GJKR
threshold signature scheme [21], introducing new variants that offer improved
efficiency. Similarly, in Sec. 5, we revisit two isogeny-based DKG protocols [2]
and a threshold signature scheme [12], and present two new versions that offer
improved efficiency. Finally, in Sec. 6, we conclude the paper.

2 Preliminaries

Notation. We let λ denote a security parameter. A function is called negligible
in X, written negl(X), if for any constant c, there exists some X0, such that
f(X) < X−c for X > X0. A function that is negligible in the security param-
eter λ is simply called negligible. We use the assignment operator ← to denote
uniform sampling from a set Ξ, e.g. x← Ξ. We write ZN := Z/NZ and ZN [X]t
for polynomials of degree t in the variable X and with coefficients in ZN . For
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n ∈ N, we write [n] = {1, . . . , n}. Finally all logarithms are in base 2.

We also introduce the notion of exceptional sets, which occur naturally when
working over rings ZN .

Definition 1 (Exceptional set [3, 9, 15]). An exceptional set (modulo N)
is a set Ξk = {c1, . . . , ck} ⊆ ZN , where the pairwise difference of all distinct
elements is invertible modulo N . If further the pairwise sum of all elements is
invertible modulo N , Ξk is called a superexceptional set (modulo N).

2.1 Zero-Knowledge Proofs on Secret Shared Data

In typical NIZK (non-interactive zero-knowledge) arguments for NP languages,
there is a single prover P and a single verifier V , where P knows both a statement
x and witness for the statement w, while V only knows the statement x. In
CRYPTO 2019, Boneh et al. [10], presented formal definitions for distributed
ZK proofs which a prover interacts with several verifiers {Vi}ni=1 over a network
that includes secure point-to-point channels. In such a model, each verifier Vj

holds a piece (share) x(j) ∈ Flj of an input (statement) x, and the prover’s task
is to convince the verifiers that the main input x is in some language L ⊆ Fl.

Similar to the typical cases, such proof systems must be complete, meaning
that if x ∈ L, an honest prover will be able to convince honest verifiers. Similarly,
they should satisfy soundness, meaning that if x ̸∈ L, then all verifiers will
reject the verification except for a negligible probability. However, in certain
settings, including ours, a limited number of verifiers may be malicious and
collude with the adversarial prover. In such cases, the malicious verifiers might
accept a fake proof. Finally, the proof system must satisfy a variant of ZK, so
called threshold ZK, as introduced (as strong ZK) by Boneh et al. [10]. TZK
implies that any subset of the verifiers up to a certain bound should learn no
additional information about statement x, beyond their own shares and the fact
that x ∈ L. Note that in standard ZK, the verifier learns the statement x and
the fact that x ∈ L, but in threshold ZK, a single verifier only learns his share
of x and the fact that x ∈ L. In other words, a set of verifiers only learn that
they are jointly holding pieces (shares) of x ∈ L.

Definition 2 (Distributed Inputs, Languages, and Relations [10]). Let
n be a number of parties, F be a finite field, and l, l1, l2, · · · , ln ∈ N be length
parameters, where l = l1 + l2 + · · · + ln. An n-distributed input over F (or just
distributed input) is a vector x = x(1) ∥ x(2) ∥ · · · ∥ x(n) ∈ Fl where x(i) ∈ Fli ,
and it refers to a piece (or share) of x. An n-distributed language L is a set of
n-distributed inputs. A distributed NP relation with witness length h is a binary
relation R(x,w) where x is an n-distributed input and w ∈ Fh. We assume that
all x in L and (x,w) ∈ R share the same length parameters. Finally, we let
LR = {x : ∃w(x,w) ∈ R}.

Next, we recall the formal definition provided by Boneh et al. [10] for ZK
proofs over shared data which originally are defined over a field. In some cases,
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we employ an extended version of their definitions that naturally encompasses
rings. In this model, parties can have synchronous communication over secure
point-to-point channels.

Definition 3 (n-Verifier Interactive Proofs [10]). An n-Verifier Interactive
Proof protocol over F is an interactive protocol Π = (P, V1, V2, · · · , Vn) involving
a prover P and n verifiers {Vi}ni=1. The protocol proceeds as follows.

- In the beginning of the protocol the prover P holds an n-distributed input
x = x(1) ∥ x(2) ∥ · · · ∥ x(n) ∈ Fl, a witness w ∈ Fh, and each verifier Vj holds
an input piece (or share) x(j).

- The protocol allows the parties to communicate in synchronous rounds over
secure point-to-point channels. While honest parties send messages according
to Π, malicious parties (i.e., adversary) can send arbitrary messages.

- At the end, each verifier outputs either 1 (accept) or 0 (reject) based on its
view, where the view of Vj consists of its input piece x(j), random input r(j),
and messages it received during the protocol execution.

In the rest, Π(x,w) denotes running Π on shared input x and witness w, and
says that Π(x,w) accepts (respectively, rejects) if at the end all verifiers output
1 (resp., 0). V iewΠ,T (x,w) denotes the (joint distribution of) views of verifiers
{Vj}j∈T in the execution of Π on the distributed input x and witness w.

Let R(x,w) be a k-distributed relation over finite field F. We say that an n-
verifier interactive proof protocol Π = (P, V1, · · · , Vn) is a distributed threshold
ZK proof protocol for R with t-security against malicious prover and malicious
verifiers, and with soundness error ϵ, if Π satisfies the following properties [10]:

Definition 4 (Completeness). For every n-distributed input x = x(1) ∥ x(2) ∥
· · · ∥ x(n) ∈ Fl, and witness w ∈ Fh, such that (x,w) ∈ R, the execution of
Π(x(1) ∥ x(2) ∥ · · · ∥ x(n), w) accepts with probability 1.

Definition 5 (Soundness Against Prover and t Verifiers.). For every
T ⊆ [n] of size |T | ≤ t, an A controlling the prover P and verifiers {Vj}j∈T ,
n-distributed input x = x(1) ∥ x(2) ∥ · · · ∥ x(n) ∈ Fl, and witness w ∈ Fh the fol-
lowing holds. If there is no n-distributed input x′ ∈ LR such that x′

H = xH , where
H = [n]/T , the execution of Π⋆(x,w) rejects except with at most ϵ probability,
where here Π⋆ denotes the interaction of A with the honest verifiers.

Definition 6 (Threshold ZK). For every T ⊆ [n] of size |T | ≤ t and an A
controlling {Vj}j∈T , there exists a simulator S such that for every n-distributed
input x = x(1) ∥ x(2) ∥ · · · ∥ x(n) ∈ Fl, and witness w ∈ Fh such that (x,w) ∈ R,
we have S((x(j))j∈T ) ≡ V iewΠ⋆,T (x,w). Here, Π⋆ denotes the interaction of
adversary A with the honest prover P and the honest verifiers {Vj}j∈T .

Remark 1 (Threshold Honest-Verifier ZK). In the context of Threshold ZK, one
may consider a relaxed definition, Threshold Honest-Verifier ZK, that retains
the same properties as the original definition, with the added requirement that
the subset of verifiers, {Vj}j∈T , is stipulated to follow the protocol honestly.
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2.2 Verifiable Secret Sharing

Secret sharing is a technique for securely distributing a secret among a group of
parties, where no single party can learn the secret individually. However, when a
sufficient number of parties come together and combine their ‘shares’, the original
secret can be reconstructed. Throughout the paper, our studied protocols use
Shamir Secret Sharing [32] for securely sharing a secret, which we review below.

Shamir Secret Sharing. A (t+1, n)-Shamir secret sharing scheme [32] allows
n parties to individually hold a share xi of a common secret x0, such that any
subset of t parties or less are not able to learn any information about the secret
x0, while any subset of at least t+1 parties are able to efficiently reconstruct the
common secret x0. In more detail, this is achieved via polynomial interpolation
over the ring ZN . A common polynomial f(x) ∈ ZN [x]t is chosen, such that
the secret x0 is set to be its constant term, namely x0 = f(0). Each party
Pi for i ∈ {1, · · · , n} is assigned the secret share xi = f(i). Then any subset
Q ⊆ {1, . . . , n} of at least t parties can reconstruct the secret x0 via Lagrange

interpolation by computing x0 = f(0) =
∑

i∈Q xi · LQ
0,i, where

LQ
0,i :=

∏
j∈Q\{i}

j
j−i (mod N).

are the Lagrange basis polynomials evaluated at 0. Any subset of less than t
parties are not able to find x0 = f(0), as this is information theoretically hidden
from the other shares. In the case where ZN is a ring, the difference of any
elements in {1, . . . , n} must be invertible modulo N , thus {1, . . . , n} must be
an exceptional set. This is only the case if n is smaller than the smallest prime
divisor q of N . In the case where more than q parties want to participate in the
protocol, we would have to work in a subgroup ZN ′ ⊂ ZN such that the smallest
divisor of N ′ is larger than q.

Verifiable Secret Sharing (VSS). A standard secret sharing scheme is de-
signed to be resilient against passive attacks. In many applications, a secret
sharing scheme needs to be secure against the malicious dealer or parties with
active attacks. This is achieved through VSS schemes, which were first intro-
duced in 1985 [14]. Shamir secret sharing scheme by default does not qualify as
a VSS scheme, as it does not provide protection against malicious participants
(i.e., the dealer and shareholders).

2.3 Threshold Signatures

A threshold signature scheme enables a group of authorized parties to collectively
sign a message m, generating a signature σ that can be verified using a single
public key pk. Specifically, a threshold signature scheme, in terms of an (t+1, n)-
threshold access structure, is defined as follows:

Definition 7. A threshold digital signature scheme consists of three probabilis-
tic algorithms: KeyGen, Sign, and Verify.
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- KeyGen
(
1λ
)
: Given the security parameter as input and returns the public

key pk along with a set of secret keys ski - one secret key per party. (For
simplicity, we limit ourselves to the case where each party has a single share
of the secret, focusing on Shamir and full-threshold secret sharing.)

- Sign ({ski}i∈Q,m): Given as input a qualified set of private keys and a mes-
sage and returns a signature on the message.

- Verify (pk, (σ,m)): Given pk and a signature σ on a message m, and outputs
a bit that is equal to one if and only if the signature on m is valid.

In essence, security for a threshold signature scheme means that an unquali-
fied group of parties cannot forge a signature on a new message. In addition, for
distributed signatures, we require that a valid output signature is indistinguish-
able from the signature produced by the signing algorithm of the underlying
non-thresholdized scheme with the same public key.

3 VSS from ZK Proofs Over Shared Data

In this section, we propose a novel Non-Interactive Verifiable Secret Sharing (NI-
VSS) scheme that utilizes ZK proofs over secret shared data [7,10] to prove the
validity and consistency of the individual shares. The proposed scheme does not
rely on a concrete cryptographic hard problem, rather than a random oracle and
a collapsing (quantum) computationally hiding commitment scheme.

To build the NI-VSS scheme, we first construct a non-interactive proof scheme
which allows a single prover to convince a set of verifiers that they have each
received a distinct evaluation of a polynomial f(X) ∈ ZN [X]t.

4 It is worth noting
that to achieve soundness, the number of honest verifiers is supposed to exceed
t. On the other hand, to achieve threshold zero-knowledge, we assume that an
adversarial prover can corrupt at most t verifiers. Thus, we assume the number
of verifiers to be greater than or equal to 2t+ 1. We then demonstrate that our
proposed scheme satisfies completeness (Def. 4), soundness against the prover
and tmalicious verifiers (Def. 5), and threshold ZK (Def. 6). We subsequently use
the resulting Non-Interactive Threshold ZK (NI-TZK) proof scheme and build
an efficient NI-VSS scheme based on Shamir secret sharing.

3.1 A NI-TZK Proof Protocol for Shamir Secret Sharing

As the key building block for our novel NI-VSS scheme, in this section, we
present an efficient NI-TZK proof scheme that can be used to build a NI-VSS
based on Shamir secret sharing. The new NI-TZK proof scheme is built for
a collection of relations R1, . . . , Rn with the same witness space, where each
statement can be verified independently by individual verifiers. Given the shared
input x = x1 ∥ x2 ∥ ... ∥ xn, the prover proves the existence of a witness w that
satisfies (xi, w) ∈ Ri for every i ∈ 1, . . . , n. The proof includes proof pieces

4 In general ZN will constitute a ring. In later applications, we sometimes choose N
to be a prime, so that ZN becomes a field.
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Prover: Given, a witness polynomial f(X) ∈ ZN [X]t, an input x = (x1, · · · , xn),
proceed as follows and output a proof π of the relations in eq. (3).

1. Sample b(X)← ZN [X]t uniformly at random;
2. For i = 1, . . . , n: Sample yi, y

′
i ← {0, 1}λ uniformly at random;

Set Ci ← C(b(i), yi) and C′
i ← C(xi, y

′
i);

3. Set d← H(C,C′), where C = (C1, . . . ,Cn),C
′ = (C′

1, . . . ,C
′
n);

4. Set r(X)← b(X)− d · f(X) mod N ;
5. Set π := (C,C′, r(X), {πi}ni=1), where πi = (yi, y

′
i);

6. Publish (C,C′, r(X)); Send individual proof {πi = (yi, y
′
i)}ni=1 to verifier Vi.

Verification: For i = 1, · · · , n, each verifier (shareholder) i has a statement xi ∈
ZN , and a proof ((C,C′, r(X)), (yi, y

′
i)). Given the set of statements and proofs

for i ∈ 1, . . . , n the verifiers (i.e., shareholders) proceed as follows:
1. Verifier i acts as below and outputs true or false.

(a) If C′
i ̸= C(xi, y

′
i) return false;

(b) Set d← H(C,C′);
(c) If Ci == C(r(i) + d · xi, yi) return true; otherwise false;

2. Return true if all the verifiers return true; otherwise returns false.

Fig. 1. A NI-TZK Proof Scheme for Shamir Secret Sharing.

{πi}i∈1,...,n, where πi allows the verifier Vi to check the validity of xi in relation
to Ri. The prover has a secret polynomial f(X) ∈ ZN [X]t, and wants to prove
the following n-distributed relations,

Ri = {(xi, f(X))|f(i) = xi}, (3)

where i = 1, . . . , n. For the sake of convenience, we will refer to the relation
mentioned above as the Shamir relation throughout the rest of the paper.

Fig. 1 describes the proof generation and verification of the new NI-TZK
proof scheme for the Shamir relation given in equation (3), where H : {0, 1}∗ →
Ξk is a random oracle with Ξk an exceptional set of size k,5 and C : {0, 1}∗ ×
{0, 1}λ → {0, 1}2λ is a commitment scheme that is collapsing [37, Def. 12] and
quantum computationally hiding. Next, we show the proposed NI-TZK proof
scheme (given in Fig. 1) satisfies the key security requirements of a ZK proof
protocol over shared data, as defined in Sec. 2.1.

Remark 2. The challenge space of the protocol in Fig. 1 is |Ξk| = k. When ZN

is a cryptographically sized field, we can easily choose Ξk = ZN to achieve a
negligible soundness error, i.e. below 2−λ. In the case where ZN is a ring, we
might have the case that the largest exceptional set has size k < 2λ. In that
case the protocol from Fig. 1 would have to be repeated in the standard fashion:
defining S = ⌈λ/ log k⌉, we would have to sample S different bj(X) and construct
S responses rj(X) = bj(X) − djf(X), sampling the dj using the hash function
H : {0, 1}∗ → (Ξk)

S .

5 Such a hash function can easily be implemented by hashing into a set {1, . . . , k} and
then using the output value i ∈ {1, . . . , k} as an index in Ξk, i.e. ci ∈ Ξk.
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Theorem 1 (NI-TZK Proof Scheme for Shamir Secret Shares). Let L
be an n-distributed language for the list of relations given in equation (3), t ≥ 0
be a security threshold such that n ≥ 2t + 1, and h = n − t. Assuming that the
commitment scheme C is collapsing and quantum computationally hiding, for
any potential set I ⊆ [n] of size |I| ≥ h, the protocol given in Fig. 1 is a non-
interactive distributed proof scheme for L that satisfies completeness, threshold
ZK, and soundness against the prover and t malicious verifiers in the QROM.

Completeness. If the protocol is followed honestly and if the input was a valid
statement-witness pair (x,w) ∈ R, where each verifier Vi, 1 ≤ i ≤ n, has an
input piece (share) xi, then the verification will always accept the proof. Note
that, the prover commits to the evaluations of f(i) and b(i) for i = 1, · · · , n, and
given xi and r(X) = b(X)−d ·f(X), the verifier Vi computes r(i)+dxi = b(i)−
df(i) + dxi = b(i), if xi = f(i). So if the witness is valid, then the commitments
Ci and C′

i match and the verification (i.e., all the shareholders) will return true

and accept the proof.

Soundness Against the Prover and t Malicious Verifiers. The NI-TZK scheme
presented in Fig. 1 is made non-interactive using a variant of Fiat-Shamir trans-
form which is proposed by Boneh et al. [10] for proofs on distributed data, and
its security is also proven formally in [7] for a particular protocol. The commonly
used transform of Fiat-Shamir [20], which is analysed in the (Quantum) Random
Oracle model [18,38], is applied on a public coin interactive proof systems. Such
that, instead of getting the challenge from the verifier, in the non-interactive
protocol the prover applies a random oracle H to the concatenation of the input
(i.e., the statement), and the communication transcript up to that point. In the
case of sigma protocols the communication transcript is the commitment made
in the first round. But in this variant of the Fiat-Shamir transform, the challenge
is public, but the input (i.e., the statement) is shared among the verifiers and
cannot be revealed to any single verifier. To deal with this concern, the idea is
to generate the random challenge using the joint view of the verifiers in previous
rounds [10]. Namely, the prover obtains the random challenge value as the hash
of concatenation of n public commitments to the individual shares (i.e., shares
of statement), and n public commitments produced in the initial round of the
sigma protocol. Note that in this variant, each individual secret share is linked
to a public commitment which satisfies (perfect) binding and (computational)
hiding and can be verified by the corresponding shareholder.

The following Lemma is proven in [7], which proves the soundness of a NI-
TZK argument that is built using the above variant of Fiat-Shamir transform.

Lemma 1. Suppose Σ = (P1, V1, P2, V2) is a sigma protocol for the relation R
with super-polynomially sized challenge space Ch, special soundness, and quan-
tum computationally unique responses. Let Σ′ = (P ′

1, V
′
1 , P

′
2, V

′
2) be the following

sigma protocol:

P ′
1(x,w) : y ← {0, 1}λ, Cx ← C(x, y),
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com← P1(x,w), com′ = (Cx, com)

V ′
1(com

′) : ch← Ch
P ′
2(ch) : rsp← P2(ch), rsp

′ ← (x, y, rsp)

V ′
2(x, com

′, ch, rsp′) : accept if Cx = C(x, y) and V2(x, com, ch, rsp) = 1

Then the non-interactive version of Σ′, transformed by the mentioned variant of
Fiat-Shamir transform is a non-interactive quantum proof of knowledge for the
same relation R, assuming that C is a collapsing commitment.

In the rest, we prove the protocol (given in Fig. 1) satisfies soundness against
an adversarial prover and t malicious verifiers. Note that we structure our proof
along the lines of [7, Theorem 2], but do this for a different relation, which has
very different implications.

Lemma 2. The proof system given in Fig. 1 constitutes a NI-TZK argument in
the QROM for the list of relations of equation (3) if the deployed commitment
scheme is collapsing.

Proof. The results from Boneh et al. [10] show that in a NI-TZK proof scheme
over secret shared data, the best combination of soundness and ZK that we can
achieve is threshold zero-knowledge combined with soundness against prover
and t malicious verifiers. To achieve this, we require to have at least t+1 honest
parties among n ≥ 2t+1 verifiers, i.e. be in the honest majority setting. Achieving
these combinations means that in the target NI-TZK proof scheme, the prover
can collude with t malicious verifiers to break the soundness, and at most t
verifiers are allowed to collude to break the ZK and learn about the witness.

As a result, we need to prove that for any set I ⊂ {1, · · · , n} of honest
parties where |I| > t and any poly-time quantum adversary ARO, the following
advantage is negligible:6

AdvsoundA,I (λ) = Pr

[
∀i ∈ I : V RO(i, xi, π̃, πi) = 1

∄w∀i : (xi, w) ∈ Ri

∣∣∣∣{(xi, πi)}i∈I ← ARO(1λ)

]
.

For compactness, we use the index I to denote the set of elements with index
i ∈ I, e.g. xI = {xi}i∈I . We further define the function F , which on the input
of the data available to the set I, outputs the commitments as follows.

F : Ξk × Z|I|
N × {0, 1}

λ|I| × ZN [X]≤t → {0, 1}2λ

(d, xI , yI , r(X)) 7→ {C(r(i) + dxi, yi)}i∈I ,

Let us define the following protocol Σ′ = (P ′
1, V

′
1 , P

′
2, V

′
2).

P ′
1(xI , w) : ∀i ∈ I : yi, y

′
i ← {0, 1}λ, C′

i ← Ξ(xi, y
′
i)

b(X)← ZN [X]≤t, CI = F (0, xI , yI , b(X))

V ′
1(CI ,C

′
I) : d← Ξk

6 For |I| ≤ t, there always exists a witness that satisfies the relation.
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P ′
2(c) : r(X) = b(X)− dw, rsp′ = (yI , y

′
I , r(X))

V ′
2(rsp) : accept if C

′
I = C(xI , yI) and CI = F (d, xI , yI , r(X)).

It is clear that, if F (RO(C,C′), xI , yI , r(X)) = CI and C′
I = C(xI , y

′
I), then

V RO(I, xI , π̃, πI) = 1.7 This implies that AdvsoundA,I (λ) is indeed negligible if the
previously discussed variant of the Fiat-Shamir transform of Σ′ is a (quantum)
computationally sound proof of RI as per [18, Definition 9]. This, in turn, is
implied by proving that the transformed protocol is a quantum proof of knowl-
edge as per [18, Definition 14]. We prove this last step by using Lemma 1, which
implies the soundness of our protocol from Figure 1, when the following pro-
tocol has super-polynomially sized challenge space Ξk, special soundness, and
quantum computationally unique responses.

P1(xI , w) : ∀i ∈ I : yi ← {0, 1}λ,
b(X)← ZN [X]≤t,CI = F (0, xI , yI , b(X))

V1(CI) : d← Ξk

P2(c) : r(X) = b(X)− dw, rsp′ ← (yI , r(X))

V2(rsp) : accept if CI = F (d, xI , yI , r(X))

We end this proof by discussing that these three properties are satisfied.

- Challenge space: In the case where ZN is a field, the exceptional set Ξk

is simply the field itself, which by definition has size superpolynomial in λ.
Otherwise, the maximal size of Ξk is limited by the smallest divisor of N .
In that case, as mentioned in Remark 2 we can amplify the challenge space
size to above 2λ by repeating the protocol ⌈λ/ log k⌉ times.

- Special Soundness: Let (xI , CI , d, r(X)) and (xI , CI , d
′, r′(X)) with d ̸= d′

be two accepting transcripts. Now, if for some i ∈ I, we have r(i) + dxi ̸=
r′(i) + d′xi, then we have found a collision in C. Otherwise, we can compute

a witness for xI via r(X)−r′(X)
d′−d . Note that d′ − d is invertible because they

are distinct elements from an exceptional set Ξk.
- Unique responses: Using the results from [7, Section A.2], this property
is guaranteed in case C is collapsing and that r(X) are unique. The latter
follows from the fact that the function (r, d, x) 7→ r + dx is injective if d is
an element from an exceptional set. ⊓⊔

Threshold zero-knowledge. We begin this section by stating the following Lemma.

Lemma 3. The protocol in Fig. 1 satisfies the TZK property in the QROM for
the list of relations of (3) if the used commitment scheme is quantum computa-
tionally hiding and collapsing, and if the underlying sigma protocol has honest-
verifier zero-knowledge, completeness, and unpredictable commitments.

We skip the proof of Lemma, as it immediately follows from the discussion in [7,
Section A.3]. There, the authors show that it suffices to show zero-knowledge for

7 Read component-wise, e.g. ∀i ∈ I : C′
i = C(xi, y

′
i).
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any I ⊂ {0, . . . , n}.8 The case i = 0 is not relevant in this work and for the cases
i = 1, . . . , n, we can readily apply the results of their Lemmas 4 and 5 to our
protocol. By definition, our commitment is quantum computationally hiding and
collapsing. We can therefore finish the proof by showing that the sigma protocol
underlying Fig. 1 is complete, HVZK, and has unpredictable commitments.

- Completeness: It follows from the completeness of our protocol.
- HVZK: We can define a simulator that samples yI , y

′
I ← {0, 1}λ, r(X) ←

ZN [X]t and d← Ξk uniformly at random, then sets CI = F (d, xI , yi, r(X))
and C ′

I = C(xI , y
′
I). Since these sampled elements are also uniformly random

in the real execution of the protocol, the transcripts are indistinguishable.
- Unpredictable commitments: By [38, Definition 4], unpredictable com-
mitments imply that for every (xI , w) ∈ RI , finding two different commit-

ments (C
(1)
I , C

′(1)
I ) and (C

(2)
I , C

′(2)
I ) that satisfy the probability

Pr

[
(C

(1)
I , C

′(1)
I ) = (C

(2)
I , C

′(2)
I )

∣∣∣∣(C(1)
I , C

′(1)
I )← P1(xI , w)

(C
(2)
I , C

′(2)
I )← P1(xI , w)

]

is negligible in the security parameter λ. There are two options to get such
a collision, either the inputs to C are equal, or we find a collision in C.
The former happens with negligible probability, since the inputs to C are
uniformly distributed in ZN ×{0, 1}λ and the latter is prevented by the fact
that C is collapsing. ⊓⊔

This completes the proof of Theorem 1.

3.2 A NI-VSS Scheme from NI-TZK Proofs

Next, we use the NI-TZK proof scheme proposed in the last subsection and con-
struct a NI-VSS scheme based on Shamir secret sharing. Our scheme operates on
the assumption that each shareholder has a secure communication channel with
the dealer, which can be achieved through a public key infrastructure. Therefore,
the shares will only be hidden computationally. The proposed scheme works in
the majority honest setting, and the validity of secret shares cannot be publicly
verified (as in [4,31]), and it requires (non-interactive) collaboration among the
shareholders to verify them. We demonstrate later that this is sufficient in many
Shamir-based threshold protocols (e.g. DKGs, threshold signatures, etc.) that
also work in the majority-honest setting.

Our Definitions. Before going through the proposed construction to build a
NI-VSS scheme, we review our formal definitions of VSS schemes which are a
minimally modified version of the ones from previous works [28,31].

Definition 8. An (n, t, x0) non-interactive VSS consists of four PPT Algo-
rithms of (Initialization, Share, Verification, Reconstruction) as follows:

8 Actually, the authors implicitly prove TZK, but do not call it as such.
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1. Initialization: In this phase, the system parameters are generated and shared
with the parties.

2. Share(n, t, x0) → (x1, · · · , xn, π): Given the number of parties n, threshold
t, and the secret x0, the algorithm secret shares x0 and outputs the shares
{x1, · · · , xn} and a proof π to prove that it has done the sharing correctly.

3. Verification(n, t, x1, · · · , xn, π) → true/false: Given the number of parties
n, threshold t, and the shares x1, · · · , xn (or encryption of them), and the
proof π, generated by Share, the algorithm outputs either true or false.

4. Reconstruction(n, t, x1, · · · , xt+1) → x0/{true/false}: Given any t + 1 of the
shares, e.g., {x1, · · · , xt+1}, it reconstructs and returns x0. Alternatively,
given a candidate value for x0 (or in general a function of it) and t (or
in general t + 1) of the shares, the algorithm confirms the validity of the
candidate secret x0 (or the function of it), and returns either {true/false}.

A verifiable secret sharing scheme further has two requirements as follows [31].

- Verifiability constraint: A shareholder must be able to determine whether
a share of the secret is valid or not. If it is valid, then Reconstruction should
produce a unique secret x0 when run on any t + 1 distinct valid shares.
Alternatively any t (or in general t+1) shareholders should be able to check
the validity of a potential value of x0 (or in general a function of it).

- Unpredictability: The protocol must be unpredictable, meaning that there
is no strategy for selecting t shares of the secret that would enable someone
to predict the secret x0 with a significant advantage.

We highlight that our definition of VSS differs slightly from current ones [28,
31]. Our definitions utilize a ZK proof scheme over secret shared data for proving
the validity of the shares, ensures the existence of a polynomial-time verification
algorithm that can validate the shares, and also introduces a novel approach for
reconstruction of the main secret. The first two features already are implicitly
built in any VSS scheme, however the third one is new in our framework. In our
Reconstruction algorithm, in addition to enabling the reconstruction of the secret
x0 using Largange interpolation by any t + 1 shareholders, we also consider a
scenario where the dealer disclose a candidate value for x0 (or in general a
function of it) and t (or in general t + 1) of the shareholders can validate the
validity of the disclosed secret (or the correctness of a computation performed on
x0). Later, we demonstrate that the new reconstruction approach is commonly
used in practice, and shareholders typically do not reconstruct the plain value
of x0. Instead, each shareholder acts as a dealer once and subsequently employs
their shared secret to perform certain computations. They then provide a ZK
proof to prove the correctness of their actions. In some cases, these proofs may
only be verifiable by the shareholders themselves.

Our Construction. In a VSS scheme, a dealer aims to distribute shares of a secret
x0 among n parties P1, . . . , Pn. Such that depending on the underlying access
structure, a subset of shareholders are qualified to recover the secret x0. In our
case, which is based on Shamir secret sharing, the secret can be recovered by any
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subset of more than t shareholders, where t < n. On the other hand, any subset of
size ≤ t will not gain any information about x0, unless the security of underlying
NI-TZK proof scheme is broken. The complexity of our VSS scheme is linear
in the security parameter and also linear in the number of shareholders which
is essentially optimal, but notably our scheme only uses lightweight operations
(such as hashing and polynomial evaluations). It achieves computational security,
which is proven in the (Q)ROM, using a secure commitment scheme. We present
our protocol in Fig. 2.

It is important to note that in the Reconstruction with the new approach,
unlike the Lagrange interpolation based approaches, the parties do not perform
any decryption or proof generation to show the correctness of their actions.
Instead, the dealer calculates and publishes the reconstructed secret value f(0) =
x0 (or a function thereof) along with a NI-TZK proof for the distributed relation
Ri = {(xi, f(X))|f(i) = xi}, for i = 0, 1, . . . , n. Then, any t (or in general t+ 1
if a function of x0 is reconstructed) shareholders use their secret shares to verify
the validity of the disclosed secret value x0 (or a function of it). If the verification
process returns true, this confirms that the disclosed value x0 (or a function of
it) represents the main secret f(0) (or a function thereof). Note that as in other
schemes, if we have t+1 shares, we only can achieve a reconstruction with abort,
while with n shares we can have a robust reconstruction phase.

It’s important to highlight that, similar to the first reconstruction approach,
where any subset of qualified sets can recover the secret f(0) and fewer than a
threshold number of them gain no knowledge about f(0), the new reconstruc-
tion approach also allows only a qualified subset of the shareholders to confirm
the soundness of the underlying NI-TZK proof scheme and the validity of the
disclosed value x0. Conversely, relaying on the TZK property of the underlying
NI-TZK proof scheme, any group of parties that is smaller than the threshold
value will be unable to confirm the authenticity of the revealed value x0 (or any
function derived from it) and gain information about the original secret f(0) (or
any computation involving the original secret f(0)).

In practical distributed protocols, the dealer typically does not reveal the
main secret f(0). Instead, they disclose the results of specific computations car-
ried out with it, such as h0 = gf(0) in the context of distributed generation of
a DL tuple. In these cases, the dealer is required to publish a proof that the
computation was conducted using f(0), e.g., h0 = gf(0) ∧ f(i) = xi in the con-
text of distributed key generation for signature schemes such as Schnorr and
BLS. At first glance, this may seem unconventional. However, as we will show
later, it is actually sufficient and common practice in many threshold protocols,
e.g., DKGs and threshold signatures. In the upcoming section, we will explore
some applications and types of NI-TZK proof systems that one might need in
the Reconstruction phase.

Theorem 2 (VSS from NI-TZK Proof Schemes). If the proof scheme given
in Fig. 1 is a secure NI-TZK protocol for the relations in equation (3), then,
the non-interactive VSS scheme (given in Fig. 2) is secure. That is, (i) the
Reconstruction protocol results in the secret distributed by the dealer for any
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Initialization: Parties P1, · · · , Pn generate system parameters and each one registers
a PK to facilitate secure communications.

Share: Given n and t, to share x0, the dealer proceeds as follows:
1. Sample a uniformly random polynomial f(X) of degree t with coefficients

in a ring R, subject to f(0) = x0.
2. For i = 1, 2, · · · , n: set xi := f(i).
3. Given f(X) and x = (x1, · · · , xn), run the prover of NI-TZK scheme in

Fig. 1, and obtain the proof π := (C,C′, r(X), {πi}ni=1).
4. Send the share and the individual proof (xi, πi) privately to party Pi and

broadcast the elements (C,C′, r(X)) as the proof.
Verification: To verify the received shares, P1, · · · , Pn utilize their shares {xi}ni=1

and run the verifier of the NI-TZK proof scheme given of Fig. 1. If the veri-
fication of Pi fails, then Pi broadcasts a complain against the dealer. If more
than t shareholders complain against the dealer, then the Verification returns
false. If Pi complains that his part of proof does not verify, the dealer broad-
casts (xi, πi := (yi, y

′
i)) so that everyone can verify it using the verification

algorithm of the NI-TZK scheme. If it passed the verification, the protocol con-
tinues as normal, otherwise the parties disqualify the dealer and Verification
returns false. Since disqualifying the dealer or parties happens on the basis of
only broadcasted information, at the end all the honest shareholders will agree
on the same set of qualified parties Q ⊆ {1, 2, · · · , n} or will reject the final
verification. At the end, if the verification returns true, all honest shareholders
are sure that they have received a valid share of x0 = f(0), and any subset of
size larger than t of them can retrieve the secret x0.

Reconstruction: This can be done through two approaches: either by using Lagrange
interpolation as in previous works or by employing a novel approach outlined
below. In the new approach, the dealer reconstructs (i.e., reveals) the secret x0

and also proves its validity, and for that the process proceeds as follows:
1. Given the witness f(X), the dealer computes (reconstructs) x0 = f(0).
2. Using f(X) and x = (x0, x1, · · · , xn), run the prover of the NI-TZK scheme

in Fig. 1 for i = 0, 1, . . . , n, to prove that f(0) = x0 ∧ f(i) = xi for i =
1, . . . , n, and obtain (x0, y0, y

′
0, {Ci,C

′
i}ni=0, r(X), {πi}ni=1). This allows the

dealer to convince the shareholders that their shares come from a polynomial
of degree t with free term x0 = f(0).

3. Send the individual proof πi := (yi, y
′
i) privately to party Pi, and broadcast

the elements (x0, y0, y
′
0, {Ci,C

′
i}ni=0, r(X)).

4. Each shareholder Pi has secret values (xi, πi := (yi, y
′
i)), and a public proof

(x0, y0, y
′
0, {Ci,C

′
i}ni=0, r(X)). Given the set of statements and proofs, the

shareholders run the verification of the NI-TZK scheme in Fig. 1 and return
either true or false. Note that in this case, each shareholder Pi additionally
checks if C′

0 = C(x0, y
′
0) ∧ C0 == C(r(0) + d · x0, y0).

5. At the end, the algorithm return true if all the shareholders return true;
otherwise return false. Returning true, confirms that the value x0 is the
reconstruction of the main secret value f(0).

Fig. 2. The proposed NI-VSS scheme.

qualified set of shareholders, (ii) any non-qualified set of shareholders is unable
to recover the secret (i.e., unpredictability).
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Proof. In Theorem 1, we showed that the protocol presented in Fig. 1 is a NI-
TZK scheme for L, that is an n-distributed language for the list of relations given
in equation (3), satisfies completeness, threshold ZK, and soundness against the
prover and t malicious verifiers in the QROM.

Completeness of the NI-TZK scheme implies that if the parties P1, · · · , Pn

follow the protocol, then at the end of the Sharing phase, each of them obtain a
distinct evaluation of a polynomial degree t, where t < n. Relaying on the fact
that any degree t polynomial is uniquely determined by t+1 distinct evaluations,
any t+1 of n shareholders can use Lagrange interpolation and reconstruct f(X)
and retrieve the value f(0), which is the secret value in the NI-VSS scheme.
Similarly, any t (or in general any t + 1) shareholders can also verify the proof
given by dealer in the Reconstruction phase, and ensure that the secret value x0

revealed by the dealer, is equal to the secret shared value f(0).

The NI-TZK scheme’s soundness against prover and t malicious verifiers im-
plies that if there is no n-distributed input x′ ∈ LR such that xi = x′

i, for
all honest parties Pi, then the protocol (honest verifiers) will reject the proof
except with negligible probability. Therefore, a malicious dealer would have to
either break the soundness of the underlying NI-TZK proof scheme or it will be
caught with an overwhelming probability. It is important to note that, during
the verification process any conflicts between the dealer and shareholders are
resolved using the method outlined in the Verification algorithm. In the scenario
where the majority of shareholders are honest, this enables the parties to achieve
robustness within the resulting NI-VSS scheme.

For unpredictability, the threshold ZK property of the underlying NI-TZK
scheme guarantees that any polynomial-time adversary A that controls up to t
verifiers cannot learn anything about the secret polynomial f(x), including the
value f(0). As a result, any non-qualified set of shareholders is unable to recover
the secret x0 = f(0). In other words, if an adversary who controls a non-qualified
set of shareholders can learn about the secret value f(0), they can be used as an
adversary against the threshold ZK property of the NI-TZK proof scheme. ⊓⊔

3.3 Asymptotic Costs and Empirical Performance

Next, we first summarize the efficiency metrics for our proposed NI-VSS scheme,
and then assess its empirical performance through a prototype implementation.
To gauge the efficiency of new scheme, we also conduct a comparative analysis
with the widely used VSS scheme of Pedersen [28].

Asymptotic Costs. As in Shamir secret sharing, to share a secret x0 among
n parties with threshold value t, the dealer first computes n evaluations of a
degree-t polynomial f(X). Then, it runs the prover of NI-TZK scheme outlined
in Fig. 1 and generates a proof for the correctness of the shearing phase. To this
end, the dealer needs to compute n evaluations of a new degree-t polynomial
b(X), compute 2n commitments, query one time to the RO, and perform t sub-
tractions between the coefficients of f(X) and b(X). To verify their shares, the
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shareholders participate in the verification of the NI-TZK proof system (out-
lined in Fig. 1) and disseminate the final output to the network. As part of this
process, each shareholder must compute two commitments, one evaluation of a
random oracle, one polynomial evaluation of degree t, and one addition over ZN .
In terms of communication, the dealer broadcasts (C,C′, r(X)) to the network,
which consists of 2n commitments and t polynomial coefficients. It also sends the
individual proof (xi, πi) privately to party Pi, which consists of 3 ZN elements.

In Pedersen VSS scheme, to share a secret, a dealer needs to evaluate a degree-
t polynomial 2n times (i.e., n times with f(X) and n times with b(X)), compute
n exponentiations and t ≈ n/2 multiplications in the underlying group G. Then,
the dealer needs to broadcast t ≈ n/2 group elements as the commitments, and
also privately send 2 field elements to each party Pi, as their shares. Then, to
verify the shares, each verifier needs to compute t ≈ n/2 exponentiations in the
group G. Table 2, summarizes the asymptotic costs of our proposed protocol
and compares it with Pedersen’s scheme [28]. As a crucial optimization in our
scheme, we eliminate the need for additional randomness, represented as yi and
y′i within the hashes (i.e., the commitments). This optimization results in shorter
private communication from the dealer to the parties in the table.

Table 2. Asymptotic costs in Pedersen [28] and our proposed NI-VSS schemes. DL:
Discrete Logarithm, BC: Broadcast, n: Number of parties, EG: Exponentiation in group
G, MG: Multiplication in group G, PE : degree-t Polynomial Evaluation, H: Hashing,
|G|: G element size, |Zq|: Zq element size, |ZN |: ZN element size, |H|: Output size of
H, DV: Designated Verifier, FS: Fiat-Shamir.

VSS Scheme Assumption Sharing Dealer’s Communication Verification (DV)

Pedersen DL-based 1n EG Private: 2n |Zq| t ≈ 0.5n EG
[28] (IT & Classic) 2n PE BC: t ≈ 0.5n |G|

This work Hash-based 2n H Private: 1n |ZN | 1 PE + 3 H
Sec. 3.2 (PQ) 2n PE BC: 2n |H| + 0.5n |ZN | (1 H is for FS)

Empirical Performance. To assess the practical performance of the new VSS
scheme, we implemented a prototype of it alongside the Pedersen scheme us-
ing SageMath. In the new VSS scheme, we employed a SHA256 hash function
for instantiating the commitment scheme C and the random oracle H. For the
Pedersen scheme implementation, we utilized Curve 25519, and optimized the
implementation through Montgomery x-arithmetic. Additionally, we relied on
SageMath’s built-in functions for handling polynomials and hash operations.

To evaluate their performance, we conducted experiments where we varied
the number of parties and the threshold value. Specifically, we report the run
times of the Sharing and Verification phases, along with the communication size
for different numbers of parties, i.e., n, and threshold values, i.e., t. To conduct
these experiments, we ran our code on a laptop with Ubuntu 22.04 LTS, a 11th
Gen Intel(R) Core(TM) i9-11950H at base frequency 2.60GHz, and 64GB of
memory. All the operations in the sharing and verification phases are done in
a single-thread mode. The performance results with different values of (n, t),
ranging from (32, 15) to (16384, 8191) are summarized in Table 3.
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Table 3. Empirical performance of NI-VSS schemes Pedersen [28] and our proposed
scheme for various numbers of parties and threshold values (n, t). n: Number of parties,
t: Threshold value, BC: Broadcast, |Zq| = |ZN | = |G| = |H| = 256 bits.

(n, t) Scheme Sharing Dealer’s Communication Verification

Pedersen [28] 78.1 msec Private: 2.0 KB + BC: 0.5 KB 10.2 msec
(32, 15)

This Work 2.40 msec Private: 1.0 KB + BC: 2.5 KB 0.12 msec

Pedersen [28] 310 msec Private: 8.0 KB + BC: 2.0 KB 97.6 msec
(128, 63)

This Work 13.7 msec Private: 4.0 KB + BC: 10.0 KB 0.36 msec

Pedersen [28] 1.310 sec Private: 32.0 KB + BC: 8.0 KB 525 msec
(512, 255)

This Work 0.140 sec Private: 16.0 KB + BC: 40.0 KB 1.20 msec

Pedersen [28] 6.53 sec Private: 128 KB + BC: 32 KB 2.35 sec
(2048, 1023)

This Work 2.00 sec Private: 64 KB + BC: 160 KB 4.90 msec

Pedersen [28] 48.1 sec Private: 512 KB + BC: 128 KB 9.47 sec
(8192, 4095)

This Work 30.6 sec Private: 256 KB + BC: 640 KB 0.019 sec

Pedersen [28] 153.6 sec Private: 1024 KB + BC: 256 KB 19.2 sec
(16384, 8191)

This Work 121.7 sec Private: 512 KB + BC: 1280 KB 0.039 sec

The implementation results solidify the advantage of our NI-VSS scheme
over the Pedersen scheme in both sharing and verification phases, in addition
to post-quantum security. Specifically, our NI-VSS scheme demonstrates a re-
markable speedup in the verification phase, achieving 271×, 437×, and 498×
faster verification times than the Pedersen scheme for (n, t) equal to (128, 63),
(512, 255), and (8194, 4095), respectively. Similarly, in the sharing phase, for the
same settings, our scheme is approximately 22.6×, 9.3×, and 1.57× faster than
the Pedersen scheme. In terms of communication costs, our scheme has a broad-
cast cost for the dealer that is five times higher than the Pedersen scheme, but
the private communication size is halved. These implementation results also af-
firm the practicality and scalability of the new NI-VSS scheme for deployment
in various threshold protocols. One notable factor contributing to our improve-
ments in the sharing and verification phases is using lightweight cryptographic
operations such as hashing and polynomial evaluation, in the underlying NI-TZK
proof scheme.

We highlight that our implementation remains relatively naive, operating in
a single-threaded fashion without specific optimizations. A potential optimiza-
tion strategy could involve adopting algorithms from [36], which offer improved
computational complexity for evaluating a polynomial at multiple points, thus
improving the efficiency of the sharing (and also verification in some cases).

4 More Efficient Threshold Protocols in the DL Setting

In this section, we leverage our new VSS scheme from Section 3 and revisit the
well-known Pedersen DKG protocol [27] along with the threshold signature of
Gennaro, Jarecki, Krawczyk, and Rabin [21], which uses Schnorr’s signature [30]
for signing and Pedersen’s DKG protocol for generating the (ephemeral) keys.
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4.1 An Efficient DKG Protocol for DL

Pedersen DKG protocol [27] allows a group of parties to generate a DL instance,
e.g., pk = gsk, in a fully distributed manner, where g is the generator of the DL
group, and (sk, pk) are a pair of secret and public keys, respectively.

In the following, we present an efficient robust DKG protocol for distributed
generation of a DL instance, which can outperform Pedersen’s protocol. To this
end, we first construct an efficient NI-TZK proof scheme for the DL problem that
acts as a building block in our proposed DKG protocol (and threshold signature).
The NI-TZK proof scheme allows a prover to convince a set of verifiers (i.e.,
shareholders) that h = gf(0) ∧ f(i) = xi, for the shared input x = x1 ∥ x2 ∥
· · · ∥ xn, a secret polynomial f(X) ∈ Fp[X]t and a secret input x0 = f(0). One
usually can face with a similar scenario in the DL-based threshold protocols (e.g.,
threshold variants of El Gamal, ECDSA, etc.). The new NI-TZK proof scheme
is built for the following n-distributed relations,

Ri = {(g, h, xi, f(X))|h = gf(0) ∧ f(i) = xi}, (4)

where i = 1, . . . , n. Fig. 3 describes the algorithms of our proposed NI-TZK proof
scheme for the DL relation, where H is a random oracle and C is a computation-
ally hiding commitment scheme. Roughly speaking, the protocol is obtained by
slightly modifying the conjunction of the Schnorr ID protocol with the NI-TZK
scheme presented in Fig. 1. This is another instance of different NI-TZK proof
schemes that one may need in the Reconstruction phase of the new VSS scheme,
where parties reconstruct a function of the main secret f(0), namely h = gf(0),
rather than the plain value of it.

Prover: Given, f(X) ∈ Fp[X]t, and the input x = (g, h := gf(0), x1, · · · , xn),
proceed as follows and output a proof π of the relations in equation (4).
1. Sample b(X)← Fp[X]t uniformly at random;
2. For i = 1, . . . , n: Sample yi, y

′
i ← {0, 1}λ uniformly at random and

set Ci = C(b(i), yi) and C′
i = C(xi, y

′
i);

3. Sample y0, y
′
0 ← {0, 1}λ and set C0 = C(gb(0), y0),C′

0 = C(g∥h, y′
0)

4. Set d← H(C,C′), where C = (C0,C1, . . . ,Cn),C
′ = (C′

0,C
′
1, . . . ,C

′
n);

5. Set r(X)← b(X)− d · f(X) mod p;
6. Return π := (g, h,C,C′, r(X), y0, y

′
0, {πi}ni=1), where πi = (yi, y

′
i);

Verification: Given π := (g, h,C,C′, r(X), y0, y
′
0, {πi := (yi, y

′
i)}ni=1), the verifiers

{Vi}ni=1 use their shares and individual proofs (xi, πi), and the verification pro-
ceeds as follows:
1. Verifier i acts as below and outputs true or false.

(a) If C′
i ̸= C(xi, y

′
i) or C

′
0 ̸= C(g∥h, y′

0) return false

(b) Set d′ ← H(C,C′);
(c) Compute h′ = gr(0) · hd.
(d) If Ci == C(r(i) + d · xi, yi) ∧ C0 == C(h′, y0) return true; otherwise

false;
2. Return true if all the verifiers return true; otherwise returns false.

Fig. 3. A NI-TZK proof scheme for discrete logarithm.
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Round 1 (VSS and Committing): Each party Pi proceed as follows:

1. Sample f (i)(X)← Fp[X]t subject to f (i)(0) = xi and set xij = f (i)(j)
2. Using (g, hi := gxi , {xij}nj=1), run the prover of NI-TZK proof scheme in Fig. 3,

and obtain π := (g, hi,C,C
′, r(X), yi0, y

′
i0, {πij}nj=1), where πij = (yij , y

′
ij).

3. Publish (g,C,C′, r(X)) and store (hi, yi0, y
′
i0, {xij , πij}nj=1) for next round.

Round 2 (Opening, Verification, PK Computation):

1) Opening: Each party {Pi}ni=1 broadcasts (hi = gxi , yi0, y
′
i0) and sends (xij , πij)

privately to party Pj . If a party refuses to open a commitment, then that party
is disqualified.

2) Verification: Each party {Pj}nj=1 uses (πij , yi0, y
′
i0) and verifies the correctness

of the share xij it got from Pi with respect to g, hi = gxi for i ̸= j, by running
the verifier of NI-TZK proof scheme given in Fig. 1. If the verification fails, then
Pj broadcasts a complaint against Pi. Any player with at least t+1 complaints
is disqualified. If Pj complains that Pi’s proof does not verify, then Pi broadcasts
(xij , yij , y

′
ij), so that everyone can verify it using the verification algorithm of

NI-TZK scheme. If this verification succeeds, the protocol continues as normal,
otherwise Pi is disqualified. Since disqualifying the parties happens on the basis
of only broadcasted information, at the end, all parties will agree on the same
set of qualified parties Q ⊆ {1, . . . , n} such that x =

∑
i∈Q LQ

0,ixi, where LQ
0,i =∏

j∈Q, j ̸=i
j

j−i
is a Lagrange coefficient.

3) PK Computation: Parties compute the public key as gx =
∏

i∈Q gL
Q
0,ixi .

Fig. 4. Designated verifier DKG protocol for DL-based schemes.

Theorem 3 (NI-TZK Proofs for DL). Let L be an n-distributed language
for the list of relations given in equation (4), t ≥ 1 be a security threshold such
that n ≥ 2t + 1. Assuming that the commitment scheme C is computationally
hiding, for any potential set I ⊆ [n] of size |I| ≥ n− t, the protocol described in
Fig. 3 is a non-interactive distributed threshold ZK protocol for L that satisfies
completeness, threshold ZK, and soundness against the prover and t malicious
verifiers in the ROM.

Proof. The proof is analogous to the proof of Theorem 1 which is omitted. We
highlight that in this case, in the soundness proof, one reduces the security of
scheme to the DL problem, thus this scheme only achieves classical security. ⊓⊔

Now, we can use the general NI-VSS of Fig. 2 and the NI-ZSK proof scheme
given in Fig. 3, and construct a DKG protocol with designated verifiers for DL.
The resulting DKG is described in Fig. 5 and can be considered as an adaption
of the Pedersen DKG protocol version from [21] to work with NI-TZK proofs
and the new VSS scheme.

Theorem 4. Under the DL assumption, the protocol in Fig. 4 is a secure DKG
protocol, namely it satisfies the correctness and secrecy properties against a ma-
licious adversary corrupting up to t parties, with t < n/2.

Proof. The proof is analogous to the ones in [7,21], but in this case the simulator
of DKG scheme runs the simulator of NI-TZK proof scheme as a subroutine. ⊓⊔
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KeyGen: Parties run the DKG protocol of Fig. 4. At the end, each party holds a
verified secret share xi of x. The resulting public key is gx. We assume Q0 =
{1, . . . , n} to be the qualified set at the end of this step.

Sign(m, ⟨xi⟩): To sign a message m, the parties in Q0 act as follows.
1. Parties run the DKG protocol of Fig. 4 to compute gb. Malicious parties

might be disqualified, so we end up with a set Q1 ⊆ Q0. Only the parties
in Q1 continue the protocol. Each party Pi in Q1 holds a share bi of b.

2. The parties compute the challenge d← H(gb||m).
3. Parties in Q1 behave as follows.

(a) Each party Pi computes and broadcasts r(i)(X) = b(i)(X)− ds(i)(X).
(b) Using the shared values from VSS phase, each other party Pj verifies

r(i)(j)
?
= b(i)(j)− ds(i)(j) .

(c) Whenever one of these checks fails, Pj broadcasts a complaint against
Pi. When a player Pi has t+ 1 or more complaints against them, they
are disqualified. The remaining players can then construct r(i)(0) by
reconstructing both b(i)(0) and s(i)(0). This is always possible when
there are at least t+ 1 honest parties.

(d) For each party Pi in Q = Q0\Q1, set and reconstruct r
(i)
l (0) = s

(i)
dl
(0).

(e) Using {r(i)(0)}i=1,...,n, parties build the response r =
∑

i∈Q r(i)(0) .
4. Finally, parties output the signature ((r, d),m).

Verify((r, d),m, pk): To verify a signature (r, d) on m using the public key pk = gx,
the verifier proceeds as follows.
1. Compute h = gr · (gx)−d.
2. Compute d′ ← H(h||m).
3. If d = d′, return valid, otherwise invalid.

Fig. 5. A novel robust threshold signature scheme based on GJKR scheme [21].

4.2 More Efficient Threshold Signatures from Schnorr’s Scheme

Next, using the DKG protocol given in Fig. 4, we modify the Schnorr-based
threshold signature scheme of Gennaro, Jarecki, Krawczyk, and Rabin [21], and
present a new variant of it that can be more efficient in practice. Fig. 5 represents
the description of our proposed robust threshold signature scheme that uses
Fig. 4 for the DKG and the distributed generation of the ephemeral key gb.

Theorem 5. Under the DL problem the threshold signature described in Fig. 5,
is secure against a static adversary corrupting up to t parties, with t < n/2.

We refer to App. A, for the security proof of the scheme.

Security Against Wagner’s Attack. The threshold signature in Fig. 5 is secure
against the concurrent attack using Wagner’s algorithm [5, 40]. Intuitively, the
attack crucially relies on the fact that an adversary can open ℓ sessions of the
protocol in parallel, that is in the same round. At each session r the adversary
gets gbi from the honest parties and computes its commitment shares gbj , j ∈ A,
based on the honest parties’ commitment shares, before submitting gb to the RO.
For big enough ℓ this is enough for the adversary to forge a signature [5]. As
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mentioned in the same paper [5], a countermeasure is to let parties commit
to the shares gbi and only after a round of broadcast they open them. This
clearly prevents the adversary to compute his shares adaptively. A typical way
for implementing this is using PK-based commitments such as Pedersen’s, as
done for example in [21, 26]. We have a similar approach in our protocol, and
reveal the commitments and opening at the beginning of the second round.

4.3 Efficiency of New Protocols

Next, we summarize the efficiency of the proposed DKG protocol (Fig. 4) and
the threshold signature (Fig. 5) and compare them with the ones proposed by
Pedersen [28] and Gennaro et al. [21].

Comparing our DKG protocol to the variant of Pedersen DKG presented
in [21], we observe asymptotic improvements in computational cost of parties.
In our DKG protocol, each party is required to perform approximately 2n expo-
nentiations within the group, conduct 3n evaluations of degree-t polynomials in
the field, and execute 5n hash operations for commitment purposes. While, in
the Pedersen DKG each party needs to compute (2tn+n) exponentiations in the
group, 2n degree-t polynomial evaluations in the field, and a single hash opera-
tion. Regarding communication, our DKG protocol entails each party privately
sending n field elements to other participants, along with broadcasting approxi-
mately 2n images generated through hash functions (i.e., the commitments) and
t field elements (i.e., coefficients of r(X)). Conversely, in the Pedersen DKG pro-
tocol, each party privately sends 2n field elements to the other participants and
then broadcast 2t group elements. We refer Table 4 for a summarized comparison
of the asymptotic costs in both DKG protocols.

When evaluating the efficiency of threshold signatures, as outlined in our
protocol (described in Fig. 5), in addition to executing our DKG protocol with
associated costs summarized in Table 4, each participants is required to perform
n evaluations of degree-t polynomials in the field (for the verification of partial
openings) and broadcast t field elements (representing the coefficients of the
polynomial r(i)(X)). In the GJKR [21] signature, alongside the Pedersen DKG
protocol with its cost breakdown provided in Table 4, each party must conduct
2n group exponentiations and broadcast a single field element (for the opening).

In line with the efficiency trends observed in the VSS and DKG protocols, we
anticipate that our threshold signature scheme can have significantly improved
performance compared to the construction presented by Gennaro et al. [21].

Table 4. Asymptotic costs in the GJKR [21] variant of Pedersen DKG [28] and
our proposed scheme. DL: Discrete Logarithm, BC: Broadcast, n: Number of parties,
t ≈ n/2: Threshold value, EG: Exponentiation in group G, PE : degree-t Polynomial
Evaluation, H: Hashing, |G|: G element size, |Zq|: Zq element size, |H|: H image size.

DKG Scheme Assumption Parties’ Computation Communication

GJKR [21] DL-based (2nt+ n) EG + 2n PE + 1 H Private: 2n |Zq|
(Pedersen [28]) (2nt EG is for verify) BC: 2t ≈ n |G|

This work DL & 2n EG + 3n PE + 5n H Private: 1n |Zq|
Sec. 4.1 Hash-based (2n EG + n PE + 3n H is for verify) BC: 2n |H| + t |Zq|



VSS from Distributed ZK Proofs and Applications 27

5 More Efficient Threshold Protocols from Isogenies

Our VSS construction from Section 3 can be seamlessly integrated into current
isogeny-based DKG protocols and threshold signatures present in the litera-
ture [1, 2, 7, 12]. The resulting protocols outperform the current state-of-the-art
in terms of communication and/or computational cost.

In the interest of clarity and conciseness, we defer a brief introduction to
isogenies and of the state-of-the-art protocols to App. B. Here, we only present
the modifications to these protocols to achieve the better performance results.

5.1 More Efficient DKG Protocols for CSIDH

In this section, we revisit the DKG protocols recently proposed in [2] for CSIDH-
based primitives, which can be considered variants of CSI-RAShi [1,7] and Struc-
tured CSI-RAShi [1]. We only focus on the structured case (i.e. where the target
public key has the structure {Ei = [cix0]E0}ki=1 for public integers {ci}ki=1),
as it is generally more efficient and a single public key is a special case of this
(for k = 1). The extended (non-structured) case (i.e. public keys of the type
{Ei = [xi]E0}ki=1) can be inferred from the latter.

Structured CSI-RAShi++ DKG Protocol. Both DKG protocols proposed
in [2] are new variants of the protocols in [1, 7] with lower computational cost
which in terms of isogeny computations. This is achieved at the cost of higher
communication complexity, a reduced number of corrupted parties to n/3, and
an interactive share verification in the final DKG protocols.

We revisit these protocols in Fig. 10 of App. B.2. They consist of two stages:
a VSS step and a computationally secure public key computation step. During
the VSS step, the parties engage in the BGW VSS scheme [4] and share a secret
x0 (i.e., the secret key) among themselves. Then, in the (public key) computation
step, they use their shares obtained from the first step and compute the target
public key {Ei = [cix0]E0}ki=1 in a round-robin fashion.

In this section, we show that by integrating our new NI-VSS scheme into the
VSS step of their DKG protocols, we can resolve all of the drawbacks mentioned
above at the same time. Our protocols achieve lower communication, allow n/2
corrupted parties and are non-interactively verifiable, while achieving the same
computational complexity as the fastest protocols from [2].

In Fig. 6, we present a new variant of the structured DKG protocol from [2,
Section 4], by replacing the BGW VSS scheme used in their protocol with our
NI-VSS scheme. This replacement results in a reduction of IT security in the VSS
step to computational security, but overall, as in the original case, the resulting
DKG protocol achieves quantum computational security.

We discuss security below. For formal definitions of the security properties
of DKGs, we refer to [7, 21].

Theorem 6 (Structured CSI-RAShi++ DKG Protocol). If the VSS scheme
given in Fig. 2 is a secure verifiable secret sharing scheme in the QROM, then
the DKG protocol of Fig. 6 is secure in the QROM. That is correct, robust, and
satisfies the secrecy property.
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Verifiable Secret Sharing Step: This is done using the NI-VSS scheme presented
in Fig. 2 in a standard distributed manner. Namely, each party Pi one time plays
the role of the dealer in Fig. 2, samples f (i)(X), and then in a verifiable manner
shares f (i)(0) with other parties. In the end, all the shareholders get a share of the
joint secret key x0, where implicitly is defined as x0 =

∑
i∈Q f (i)(0) for a qualified

set Q. Each party Pj obtains its share of x0 as xj =
∑

i∈Q f (i)(j).

SPK Computation Step: This is done as in the structured public key computation
step of the DKG protocol presented in [2, Section 4], which is reviewed in Fig. 10.
At the end, the parties return the structured public key {Ei = [cix0]E0}ki=1.

Fig. 6. Structured CSI-RAShi++: an efficient DKG protocol for a structured public
key {Ei = [cix0]E0}ki=1.

Proof. The proof is almost identical to the proof of [2, Theorem 4.1], except that
in this case we will rely on the security of the new NI-VSS, proven in Theorem 2,
rather than the security of the BGW VSS scheme [4] which is employed in the
secret sharing step of their DKG protocol. ⊓⊔

Efficiency of the Revised DKG Protocols. In Tables 5 and 6, we summarize
the computational and communication costs of our proposed DKG protocols,
CSI-RASHI++ and Structured CSI-RAShi++ (both from Fig. 6, the former for
the choice k = 1), and compare them with current DKG protocols in the CSIDH
setting. To have a fair comparison we express the computational cost as the
sequential runtime of the protocol steps, i.e. the total runtime from start to finish,
including when some of the parties are idle. We quantify the communication
cost as the amount of outgoing communication per party. Our cost analysis
methodology builds on that of [2] with some optimizations from [1].

Table 5. Sequential computational costs (including idle time) of the different DKGs
from [2] and from this work, in terms of polynomial evaluations, isogeny computations
and calls to the commitment scheme and random oracle. For compactness, we assume
gcd(k, n) = min{k, n} and do not explicitly write down the gains through the twist
trick. See [2] for more details.

Polynomial Eval. Isogenies Commitments RO queries

Basic

DKG [2]
2(n− 1)2 + nλ(n+ 2) 2nλ+ n 2n(n+ 3) 2n

Extended
DKG [1,2]

2(n− 1)2k+
nλ(n

⌈
k
n

⌉
+ k)

n(nλ+ 1)
⌊
k
n

⌋ 2n((n− 1)
⌈
k
n

⌉
+

2k)
nk

Structured
DKG [2]

2(n− 1)2+
nλ(2n+ 1)

n(nλ+ 1)
⌊
k
n

⌋
2n(3n− 1) n2

Our Basic
DKG

(3n− 1) + nλ(n+ 2) 2nλ+ n 2n(n+ 5)− 2 3n

Our Extended
DKG

(3n− 1)k+
nλ(n

⌈
k
n

⌉
+ k)

n(nλ+ 1)
⌊
k
n

⌋ 2n((n− 2)
⌈
k
n

⌉
+

+4k)− 2k
2nk

Our Structured
DKG

(3n− 1) + 2n2λ n(nλ+ 1)
⌊
k
n

⌋
2n(3n+ 1)− 2 n(n+ 1)
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Table 6. Communication costs of different DKGs from [2] and this work, in terms of
elements in ZN and E , and the number of commitments and proof pieces (i.e. elements
of size 2λ). The cost represents the outgoing cost per party. The cost of the basic DKG
follows by setting k = 1.

Element of ZN Element of E Commitment/Proof Piece

Extended
DKG [1,2]

2k(n− 1)(n+ t− 1)
+knλ(t+ 1)

nk nk(3n+ 2)

Structured
DKG [2]

2(n− 1)(n+ t− 1)
+nλ(t+ 1)

nk n(3n+ 2)

Our Extended
DKG

k(nλ(t+ 1) + n+ t) nk k(n(3n+ 5)− 1)

Our Structured
DKG

nλ(t+ 1) + n+ t nk n(3n+ 5)− 1
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Fig. 7. Computational and communication costs of the DKG protocols [1, 2, 7] for the
CSIDH-512 parameter set, shown as a function of the number of parties for k = 26.

In Fig. 7, we further plot the computational and communication costs of
our protocols and compare them to the literature. We note that the number of
isogeny computations coincides exactly with [2], currently the fastest in the lit-
erature. In terms of communication, both the extended and structured versions
of our protocols outperform their counterparts from the literature. For asymp-
totically large n, the communication cost of our protocols tend towards the
communication cost of CSI-RAShi, as the commmunication cost of underlying
NI-TZK proof schemes starts to dominate in these regions.

5.2 Threshold, Efficient, and Robust CSI-SharK

Next, we revisit the CSI-FiSh-based threshold signing protocol of Campos and
Muth [12], and construct ThreshER SharK, which is a Threshold, Efficient and
Robust signature scheme based on CSI-SharK [1]. Campos-Muth threshold
signature [12] is based on the basic version of CSI-FiSh [8], with its public key
and the ephemeral keys being sampled by the CSI-RAShi DKG protocol [7]. The
basic version of CSI-FiSh is based on an ID scheme that has a binary challenge
space, leading to long signing and verification times. By using larger public keys
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KeyGen: Given an integer k, as the design parameter in CSI-SharK signature, the
parties first agree on a public exceptional set Ξk = {c0 = 0, c1 = 1, c2, . . . , ck−1}.
Then, they engage in the DKGStructured CSI-RAShi++ protocol (refer to Fig. 6) to
sample the public key pk := (E0, . . . , Ek−1), where Ei = [cix]E0. At the end,
we have a qualified set, which w.l.o.g. we assume to be Q0 := {P1, P2, . . . , Pn}.

Sign(m, ⟨xi⟩): To generate a signature on m, the parties in Q0 act as follows.
1. For l = 1, . . . , tk, parties run (bl, Fl, Bl)← DKGCSI-RAShi++(E0). Note that

at each invocation, malicious parties might be disqualified. We assume to
end every step with a set Ql ⊆ Ql−1. Only the parties in Qtk continue the
protocol.

2. The parties compute the challenge d1, . . . , dtk ← H(F1, . . . , Ftk ||m).
3. For l = 1, . . . , tk, the parties in Qtk behave as follows.

(a) each party Pi computes r
(i)
l (X) = b

(i)
l (X)− dls

(i)(X).
(b) using their secret values shared during the NI-VSS protocol, namely

s(i) and b
(i)
l , each other party Pj verifies

r
(i)
l (j)

?
= b

(i)
l (j)− dls

(i)(j)

(c) Whenever one of these checks fails, Pj broadcasts a complaint against
Pi. When a player Pi has t+ 1 or more complaints against them, they
are disqualified. The remaining players can then construct r

(i)
l (0) by

reconstructing both b
(i)
l (0) and s(i)(0) using the information from the

DKGs. This is always possible when there are at least t + 1 honest
parties.

(d) For each party Pi in Ql\Qtk , reconstruct r
(i)
l (0) in the same way.

(e) For each party Pi in Q0\Ql, set and reconstruct r
(i)
l (0) = s(i)(0).

(f) Using {r(i)l (0)}i=1,...,n, parties build the responses rl =
∑

i∈Q r
(i)
l (0) .

4. Finally, parties output the signature (r, d), where r = (r1, . . . , rtk ).

Verify((r, d1, . . . , dtk ),m, pk): To verify a signature (r, d1, . . . , dtk ) on m using the
public key pk = (E1, . . . , Ek−1), the verifier proceeds as follows.
1. For l = 1, . . . , tk, compute Fl = [rl]Edl , where
2. Compute d′1, . . . , d

′
tk ← H(F1, . . . , Ftk ||m)

3. If d1 = d′1 ∧ · · · ∧ dtk = d′tk , return valid, otherwise invalid.

Fig. 8. ThreshER SharK: a Threshold, Efficient, and Robust signature scheme based
on CSI-SharK.

(e.g. extended or structured ones) of k elements, less repetitions are needed and
the signatures become faster and smaller.

Similarly, one can extend the robust threshold signing protocol of Campos
and Muth to work with the extended version of CSI-FiSh [8] or its structured
counterpart CSI-SharK [1]. Based on the comparisons presented in Tables 5-
6 and Fig. 7, we know that the latter has faster DKG protocols to gener-
ate the public key. Considering this, we propose two modifications to enhance
the efficiency of Campos and Muth’s robust threshold signature scheme [12].
First, we adapt their threshold signature scheme to work with CSI-SharK [1].
Consequently, the parties can use the Structured CSI-RAShi++ DKG proto-
col to sample the keys and need to store only a single secret key. As the sec-
ond modification, we employ the (non-structured) extended variant of our pro-
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posed CSI-RAShi++ DKG protocol to sample the ephemeral keys for the re-
vised threshold signature scheme. Fig. 8 describes the algorithms of the result-
ing robust threshold signature, which is called ThreshER SharK. In the figure,
H : {0, 1}∗ → (Ξk)

tk is a random oracle which returns tk elements from an
exceptional set Ξk = {c0 = 0, c1 = 1, c2, . . . , ck−1} of size k. ThreshER SharK
uses the new NI-VSS scheme in both the key generation and singing protocols.

Efficiency. ThreshER SharK, utilizing an SPK, benefits from the ability to
sample keys more efficiently using Structured CSI-RAShi++. While it is pos-
sible to extend Campos and Muth’s robust threshold signature scheme [12] to
accommodate the extended version of CSI-FiSh and gain efficiency through our
proposed DKG protocols, it should be noted that the result would be less effi-
cient than ThreshER SharK (We refer to Tables 5-6 for a detailed comparison).

Security. We discuss security of our scheme in App. B.3.

6 Conclusion

In this paper, we presented a general construction for building a NI-VSS scheme
using a ZK proof scheme over secret shared data, as formally defined by Boneh
et al. [10]. Leveraging this construction, we proposed a practical post-quantum
secure NI-VSS scheme based on Shamir secret sharing.

The proposed NI-VSS scheme can be viewed as a modification of the variant
of the Pedersen VSS scheme used in the GJKR DKG protocol [21], where we
replace the Pedersen commitment with a hash-based commitment scheme. The
later modification pushes the protocol to the designated verifier setting, requires
a ZK proof over secret shared data, but enables the attainment of Post-Quantum
(PQ) security and notably improved efficiency. Consequently, our NI-VSS scheme
presents a more efficient and PQ-secure alternative to the Pedersen [28] (or
Feldman [19]) VSS scheme in scenarios where public verifiability is not necessary.
This holds true for various (post-quantum secure) threshold protocols such as
DKG schemes and threshold signatures. To assess the performance of the new
NI-VSS scheme alongside the well-established Pedersen scheme, we conducted a
prototype implementation, yielding promising results. Compared to the Pedersen
scheme, while incurring a 2.5× higher broadcast cost for the dealer, our scheme
demonstrates significantly faster sharing times, ranging from 32.5−3.25× faster
for different values of (n, t), spanning from (32, 15) to (2048, 1023). Moreover,
verification times are substantially reduced, with the new scheme requiring 85−
479× less time. Using our scheme, a dealer can share a secret with 2048 parties
in approximately 2 sec, while parties can verify their shares in less than 5 msec.

A key advantage of new PQ-secure NI-VSS scheme, when compared to the
IT-secure BGW VSS scheme [4], is its reduced communication overhead and
improved robustness. Specifically, our scheme requires half of the shareholders
to be honest, as opposed to two-thirds in the BGW VSS scheme.

Leveraging the new NI-VSS scheme we revisited and improved various clas-
sic and PQ-secure DKG and threshold signing protocols [1,2,7,12,21]. Through
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our revisions, we have not only improved their performance but also relaxed the
requirements on the number of honest parties in some cases. We have introduced
a new variants of the Pedersen DKG [28] combined with the GJKR threshold
signature scheme [21] that can outperform the original versions in terms of com-
putational cost. One notable factor contributing to these improvements is the
practical advantage of using a hash function for commitment, which often out-
performs the Pedersen commitment. Our results show that, in practice, DKG
and threshold signing protocols with designated verifiers suffice for constructing
a threshold signature scheme with public-verifier. Our revisions also have led to
the development of two DKG protocols and a threshold signature scheme based
on isogenies that surpass the state-of-the-art constructions [2, 12]. Our isogeny-
based threshold signature scheme builds upon the CSI-SharK signature [1], but it
can also be adapted to work with the CSI-FiSh [8], although with lower efficiency
in the key generation phase.

The remarkable efficiency and simplicity of the NI-VSS scheme render it a
valuable tool for various classic and PQ-secure threshold protocols, extending
beyond those revisited in this paper. Future research can explore the integration
of the new NI-VSS scheme and the revised protocols into other settings and
threshold protocols, while evaluating their impact on overall efficiency.
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A Security of the Schnorr-based Threshold Signature

The proof is analogous to that of Gennaro et al. [21]. Let A be an adversary that
breaks the unforgeability of the threshold signing protocol in Fig. 5. Then we
construct a simulator Sim that uses A as a subroutine to break the DL problem.

Specifically, the challenger for the DL problem gives hT to Sim which needs
to find xT such that hT = gxT . The strategy is to embed hT into the public
key computation of the protocol in Fig. 5. For simplicity9, assume that the
set of malicious parties is A = {P1, . . . , Pt} while the set of honest parties is
H = {Pt+1, . . . , Pn}.

Sim simulates the parties in H correctly except one, say Pn. In other words,
for Pt+1, . . . , Pn−1 it follows the DKG protocol as an honest party would, there-
fore producing a partial public key hi. While for party Pn, it simulates the
NI-TZK in such a way that hT is the partial public key of Pn.

To sign a message m, Sim samples rn, c ← Zp uniformly at random, and
sets zn := grnh−c

T . Then Sim simulates the DKG protocol for computing the
ephemeral key z the same way as it did for the public key, by forcing the con-
tribution of Pn to be zn. It finally programs the RO so that c = H(z∥m). The
simulation of the ephemeral key succeeds except when the query (z,m) is queried
to the RO before Sim gets the value z. One can prove that this only happens
with negligible probability. After that, Sim simply follows the protocol normally,
using the shares ri that it computed honestly and rn to compute the response
r =

∑
i ri, therefore simulating the transcripts of the protocol.

If the adversary is able to forge a signature, say (c, r) on a message m with
non-negligible probability ε, then Sim re-winds A to the point where it asked the
query (z∥m) to H, where z = gry−c. From that point, the simulator keeps simu-
lating the protocol with fresh randomness and eventually will get a new forgery
(c′, r′) on m with (c′ ̸= c). The probability that this happens is non-negligible in
ε by the forking lemma. This means that, with non-negligible probability, Sim
gets two pairs (c, r), (c′, r′) such that

z = grh−c = gr
′
h−c′ ,

or, by expanding each factor,

gr

(
n−1∏
i=1

(gxi)−c

)
· h−c

T = gr
′

(
n−1∏
i=1

(gxi)−c′

)
· h−c′

T

9 This is without loss of generality in that the protocol is symmetric for all parties
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from which Sim can compute the discrete logarithm of hT as xT = r−r′

c′−c −∑n−1
i=1 xi, given that it has all the shares xi for i ̸= n.

B More Efficient Threshold Protocols from Isogenies

In this section, we first start with a brief introduction to isogeny-based cryptog-
raphy and then present the current CSIDH-based DKG protocols and threshold
signatures scattered throughout the literature [1, 2, 7, 12].

B.1 Isogeny-based Cryptography

Isogenies are rational maps between elliptic curves that are also homomorphisms
with respect to the natural group structure on these curves. Our investigation is
limited to the set E of supersingular elliptic curves over prime fields Fp and sepa-
rable Fp-rational isogenies defined between them (the so-called CSIDH setting).
Isogenies from an elliptic curve to itself are called endomorphisms. Under the
addition and composition operations, the endomorphisms of elliptic curves form
a ring. The subring of Fp-rational endomorphism rings of curves in E is always
isomorphic to an order O in the quadratic imaginary field Q(

√
−p). Separable

isogenies are uniquely defined by their kernel, which can be identified with the
kernels of ideal classes in the ideal-class group cl(O). As a result, we can see the
class group as acting on the set E via a free and transitive group action.

To ensure efficient computation of isogenies, the prime p is usually chosen
such that p − 1 = 4

∏
i ℓi, where the ℓi are small prime factors. The factor 4

ensures that p ≡ 3 mod 4 and that the special elliptic curve E0 : y2 = x3 + x
is supersingular. Throughout this work, we assume that the class group cl(O)
is known, enabling the transformation of arbitrary ideals into efficiently com-
putable isogeny chains of degrees li using the relation lattice. We note that this
is not a trivial assumption as current class group computations in reach fall
short of realistic security levels [8,11,29] or lead to very slow protocols [17]. We
point out, however, that there are polynomial-time quantum algorithms to this
end [25]. We refer to [6, 8, 13, 39] for more details on the explicit computations
of isogenies. For a more thorough introduction to isogenies and isogeny-based
cryptography, we recommend [13,16,35].

Finally, we note that class groups are generally of composite order. By work-
ing in cyclic subgroups of cl(O) with generator g and order N | #cl(O), we can
redefine the group action as [ ] : ZN × E → E , where ideals of the form ga for
a ∈ ZN can be reduced modulo the relation lattice and efficiently computed. To
work in a subgroup ZN ′ ⊂ ZN , we can simply use the generator gN/N ′

. For the
rest of this work, we always assume the choice of the subgroup ZN to be such
that {1, . . . , n} defines an exceptional set modulo N , i.e. that n is smaller than
the smallest divisor of N .
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B.2 (Structured) PVPs and DKG Protocols

(Structured) Piecewise Verifiable Proofs. We provide a brief overview of
Piecewise Verifiable Proofs (PVPs) [7], as well as two available constructions
that are utilized in the various threshold schemes from [1, 2, 7, 12]. PVPs are
particular ZK proofs over secret shared data [10] that similarly consist of a
collection of distributed relations R0, . . . , Rn, with the same witness space, where
each statement can be verified independently. The goal of a PVP is to prove the
existence of a witness w that satisfies (xi, w) ∈ Ri for every i ∈ {0, . . . , n}, given
a list of statements x0, . . . , xn. The proof itself takes the form of (π̃, πi)i∈{0,...,n},
where (π̃, π0) enables verification of x0 in relation to R0 (also known as the main
or central proof), and πi for i ∈ {1, . . . , n} enables verification of xi in relation
to Ri. Roughly speaking, PVPs [7] can be considered as a special case of NI-
TZK proofs over shared data [10], when the proof piece (π̃, π0) associated to
R0 is named the central proof, and the (π̃, πi)i∈{0,...,n} are the proof pieces that
are only relevant for {Ri}i∈{0,...,n}. In [2, 7], the authors have presented PVP
schemes for the following list of n-distributed relations R = (R0, . . . , Rn),

R0 = {((Ξk, F1, F
′
1, . . . , Fk, F

′
k), f(x)) | (F ′

l = [clf(0)]Fl)
k
l=1 },

∀i = 1, . . . , n : Ri = {(xi, f(x))|f(i) = xi} (5)

where the statement of R0 consists of a public exceptional10 set Ξk = {c1 =
1, c2, . . . , ck} and a set of curves (F1, F

′
1, . . . , Fk, F

′
k) ∈ E2k, and the statements

for the relations {Ri}i=1,··· ,n are elements of ZN . The witnesses for both PVP
schemes is a secret polynomial f(X) ∈ ZN [X]t, which is a polynomial in the
variable X with coefficients defined over ZN and have a maximum degree of t.
In fact, the PVP scheme proposed in [7], is a special case of the PVP scheme
proposed in [2], when k = 1, i.e., Ξ1 = {c1 = 1} 11.

Fig. 9 describes the prover and verification algorithms of the PVP schemes
proposed in [2, 7], where H : {0, 1}∗ → {0, 1}λ is a random oracle and C :
{0, 1}∗ × {0, 1}λ → {0, 1}2λ is a commitment scheme that is collapsing [37,
Definition 12] and quantum computationally hiding [7, Definition 2]. In [2, 7],
the authors show that their PVP schemes are correct, sound (against the prover
and t malicious verifiers) and ZK (i.e., TZK, ZK against t malicious verifiers),
for the relation in equation (5) Their PVP schemes [2, 7] have a binary/ternary
challenge space, and allow a prover to convince a set of verifiers that she knows
the secret element f(0) ∈ ZN that connects a pair or a set of elliptic curves with
correct factors through the group action [f(0)], and where each verifier has a
share of f(0).

Robust DKG Protocols for CSIDH. DKG protocols allow a group of parties
to generate a secret and public key pair in a fully distributed manner. The

10 We can use superexceptional sets in the case, where all F1 = · · · = Fk = E0, where
E0 : y2 = x3 + x, see [3].

11 Note that a PVP scheme is a NI-TZK proof for its underlying n-distributed relation,
and actually in both PVP schemes [2, 7], the authors implicitly prove the TZK and
soundness against the prover and t malicious verifiers, but do not call them as such.
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Prover: Given, a witness polynomial f(X) ∈ ZN [X]t and a statement x =
((Ξk, F1, F

′
1, . . . , Fk, F

′
k), x1, · · · , xn)), outputs a non-interactive piecewise proof

π of the relations in equation (5).
1. Parse Ξk = {c1, c2, . . . , ck}.
2. For j = 1, . . . , λ: sample bj ← ZN [X]t and compute

F̂ 1
j = [c1bj(0)]F1 , . . . , F̂ k

j = [ckbj(0)]Fk

3. Sample y0, y
′
0 ← {0, 1}λ uniformly at random;

4. Set C0 = C(F̂ 1
1 , · · · , F̂ k

1 ∥ · · · ∥ F̂ 1
λ , . . . , F̂

k
λ , y0),

5. Set C′
0 = C(F1, F

′
1 ∥ · · · ∥ Fk, F

′
k, y

′
0).

6. For i = 1, . . . , n: sample yi, y
′
i ← {0, 1}λ and set

Ci = C(b1(i) ∥ · · · ∥ bλ(i), yi) and C′
i = C(xi, y

′
i);

7. d = d1 . . . dλ = H(C,C′), where C = (C0, . . . ,Cn),C
′ = (C′

0, . . . ,C
′
n);

8. For j = 1, . . . , λ: compute rj(x) = bj(x)− djf(x) mod N
9. Return π̃ = (C,C′, r) and {πi = (yi, y

′
i)}ni=0, where r = (r1, . . . , rλ).

Verification: Given, an index i ∈ {0, . . . , n}, a statement piece xi of the form
x0 = (Ξk, F1, F

′
1, · · · , Fk, F

′
k) if i = 0, or xi ∈ ZN if i ̸= 0, as well as a proof

piece (π̃, πi) = ((C,C′, r), (yi, y
′
i)), outputs true or false.

1. If C′
i ̸= C(xi, y

′
i), then return false

2. d1 . . . dλ = H(C,C′);
3. If i == 0:

- For j = 1, . . . , λ:
- If dj == 0: F̃ 1

j ← [c1rj(0)]F1, . . . , F̃ k
j ← [ckrj(0)]Fk,

- else F̃ 1
j ← [c1rj(0)]F

′
1, . . . , F̃ k

j ← [ckrj(0)]F
′
k

- return C0 == C(F̃ 1
1 , · · · , F̃ k

1 ∥ · · · ∥ F̃ 1
λ , · · · , F̃ k

λ , y0)
4. Else, return Ci == C(r1(i) + d1xi ∥ · · · ∥ rλ(i) + dλxi, yi)

Fig. 9. The prover and verification algorithms of the PVP schemes proposed in [7]
(when k = 1, i.e., Ξ1 = {c1 = 1}) and [2].

property of robustness implies that this key pair generation always succeeds, even
in the presence of malicious parties that can behave arbitrarily. In [7], Beullens,
Disson, Pedersen, and Vercauteren constructed the first robust DKG protocol
for CSIDH, called CSI-RAShi, that allows a set of parties to sample public key
F1 = [x0]E0 in a distributed manner, with x0 being their Shamir secret shared
value. CSI-RAShi works in the majority honest setting and consists of two steps.
In the first step, each party Pi samples a polynomial fi(X) ∈ ZN [X]t, where
t ≤ ⌊n−1

2 ⌋, and publishes Fi = [fi(0)]F0, while sharing the values fi(j) among
the other parties {Pj}j∈[n]. To ensure the correctness of the shared values, parties
publish a PVP (i.e., a NI-TZK proof) for the relations R0, . . . , Rn as described
earlier (in Fig. 9 for k = 1, i.e., Ξ1 = {c1 = 1}). Then, each other party Pj verifies
“their” relation Rj as well as the main relation R0. In an honest-majority setting,
if all parties agree that their shares are correct, they can be certain that each
one of them possesses a share of a unique polynomial fi(X) of degree t, whose
evaluation in 0 is in committed in Fi = [fi(0)]F0. In the next step, parties use
their committed values and in a round-robin manner compute the final public
key [x0]E0 and attach a ZK proof for their correct action (i.e., updating the PK
correctly).
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In follow-up work [1], Atapoor, Baghery, Cozzo, and Pedersen presented a
new variant of the CSI-RAShi DKG protocol (so-called Structured CSI-RAShi),
that allows a set of parties to sample a structured public key (SPK), i.e. a
public key of the type {[cix0]E0}ki=1, where Ξk := {c1 = 1, c2, · · · , ck} is an
exceptional set, in a distributed manner. Structured CSI-RAShi also works in
the majority-honest setting and allows a set of parties to sample an SPK at least
3× faster than the case that one uses the extended and optimized version of CSI-
RAShi [1]. Similar to CSI-RAShi, the structured CSI-RAShi also consists of two
phases. Its first phase is the same as in the basic CSI-RAShi, but in the second
phase, parties use multiples of their committed values fi(0) and in a round-robin
manner compute the final SPK and attach a ZK proof for their correct action
(i.e., updating the SPK correctly). Using multiples of the same secret allows to
summarize multiple related statements into a single ZK proof.

In a different work [2], the same authors presented two new DKG protocols
for CSIDH-based primitives, but using the BGW VSS scheme [4]. The latter uses
bivariate polynomials and is very efficient and achieves information-theoretical
security, but it needs at least 2/3 of the parties to be honest and also requires
interaction between the verifiers (shareholders) to check the validity of the shares.
Then, in the second phase of their DKG protocols, parties use their secret shared
value from the previous phase, namely fi(0), and engage in a round-robin public
key computation protocol. In order to prove correct action, parties can now
use PVPs instead of ZK proofs. The authors propose two protocols, one using
(extended) public keys, and one using SPKs. For the latter, the structured PVPs
from Fig. 9 are used. Fig. 10 summarizes both their DKG protocols and highlights
the differences. Note that the first phases (the VSS) are identical.

B.3 On the Security of ThreshER SharK

Here we give an intuitive proof of the security of the protocol in Fig. 8. The proof
is a reduction-based argument, which means that we show that given an adver-
sary that breaks the sEU-CMA security of the signing protocol in Fig. 8, then we
can construct an efficient algorithm S that solves a hard problem. The problem
will be the one behind the CSI-SharK signature scheme, which is the Vectoriza-
tion Problem with Auxiliary Inputs (VPwAI) [3]. The proof is analogous to the
DL-based one given in [21, Theorem 2].

Assume A is an adversary controlling up to t parties in the protocol in Fig. 8
and that breaks the unforgeability property of the threshold signature. The sim-
ulator S receives a set of k structured supersingular elliptic curves along with
the exceptional set Ξk = {c0 = 0, c1 = 1, · · · , ck−1},{

Ξk, E0, E
∗
1 = [c1x

∗]E0, · · · , E∗
k−1 = [ck−1x

∗]E0

}
from the challenger. He needs to find the secret isogeny x∗. The simulator embeds
the elliptic curves he got from the challenger into the protocol for computing
the public key. Specifically, he simulates the DKG protocol, so that the resulting
public key is E0, E

∗
1 = [c1x

∗]E0, · · · , E∗
k−1 = [ck−1x

∗]E0. To do this, like in the
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Verifiable Secret Sharing (BGW VSS) [4]:

1. For i = 1, . . . , n, player Pi

(a) samples q(i)(Z)← ZN [Z]t and sets x(i) = q(i)(0),
(b) samples S(i)(X,Y )← ZN [X,Y ]t with S(i)(0, Z) = q(i)(Z),

(c) for j = 1, . . . , n, defines f
(i)
j (X) = S(i)(X, j) and g

(i)
j (Y ) = S(i)(j, Y ) and

sends {f (i)
j (X), g

(i)
j (Y )} privately to party Pj .

2. For k = 1, . . . , n, each pair of players Pi, Pj checks that f
(k)
i (j) = g

(k)
j (i) and

g
(k)
i (j) = f

(k)
j (i). Whenever one of these checks fails, the concerned player runs

the conflict resolution procedure of BGW VSS scheme (reviewed in [2, Section
3.1]. In case the procedure outputs⊥, the dealer Pk of the concerned polynomials
is disqualified, otherwise the protocol continues normally.

3. In the end, all the honest players agree on the same set of qualified players
Q ⊆ {1, . . . , n}, and the shared secret key x is given as the sum of the individual
secrets of the qualified players x =

∑
i∈Q x(i), while the parties’ shares of x can

be constructed as xj =
∑

i∈Q f
(i)
j (0).

Computing the Single/Structured Public Key:

4. Let Q = {1, . . . , n′}. Given a superexceptional set Ξk = {c1 = 1 , c2, . . . , ck}, a
qualified set of parties engage in a round-robin protocol, and party Pi computes

F 1
i ← [x(i)]F 1

i−1 , F 2
i ← [c2x

(i)]F 2
i−1, . . . , F k

i ← [ckx
(i)]F k

i−1 ,

where F 1
0 = F 2

0 = · · · = F k
0 = E0 . At each step, party Pi also uses the

Structured PVP scheme given in Fig. 9, and creates and publishes a PVP proof,

π(i) = (π̃(i), π
(i)
1 , . . . , π

(i)

n′ )← Prover
(
Ξk, (F

1
i−1, F

1
i , · · · , F k

i−1, F
k
i ); q

(i)(Z)
)

which includes a main proof (π̃(i), π
(i)
0 ) as well as individual proof pieces π

(i)
j for

each other player Pj . Note that in a single public key generation, they run the
PVP scheme in Fig. 9 for k = 1, i.e., Ξ1 = {c1 = 1} .

5. Each other player Pj verifies both Prover(j, f
(i)
j (0), π̃(i), π

(i)
j ) and

Verifier(0, (Ξk, (F
1
i−1, F

1
i , · · · , F k

i−1, F
k
i )), π̃

(i), π
(i)
0 ). Whenever a verifica-

tion of π(i) fails, the verifier Pj broadcasts f
(i)
j (X). All other parties verify the

correctness of f
(i)
j (X) as in step 2. If it is correct, since there are at least t

honest players, they will be able to reconstruct q(i)(0), compute Fi and proceed
with the protocol (and potentially disqualify Pi). Otherwise, if the checks of

f
(i)
j (0) fail, the complaint can be ignored (or Pj disqualified). In the latter case,
the shares of Pj can also be reconstructed by the at least t honest players.

6. At the end of the round-robin, the parties return the structured public key

F 1
n′ = [x0]E0 , F 2

n′ = [c2x0]E0, · · · , F k
n′ = [ckx0]E0 .

Fig. 10. The DKG protocols of Atapoor, Baghery, Cozzo, and Pedersen for a single [2,
Section 3] and an SPK generation [2, Section 4]. Both schemes use the BGW VSS [4]
for secret sharing. The highlighted terms are particular for single PK computation.

proof of the protocol in Fig. 6, he follows the protocol faithfully for all honest
parties except one, say Pj∗ , for which he sets Ej

i = E∗
i for i = 1, · · · , k− 1. This

way, the contribution of party Pj∗ is implicitly set to be x∗ −
∑j∗−1

i=1 xi.
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After the key generation, the simulator samples d = (d1, · · · , dtk) and r =
(r(1), · · · , r(tk)) uniformly at random. Then, he computes Fi = [d(i)]Edi

for each
i = 1, · · · , tk and programs the random oracle so that

d = H(F1∥ · · · ∥Ftk∥m).

Then the simulator plays the role of the honest parties in step 1 of Fig. 8 so as to
force the ephemeral curves to be F(1), · · · , F(tk), for each one following exactly
the same strategy as in the proof of Fig. 6. This succeeds except if the query
(F1, · · · , Ftk ,m) was already asked the RO and the output was not d1, · · · , dtk .
One can prove that this probability is negligible.

After successfully simulating the ephemeral keys, the simulator can easily

simulate the partial responses. For r
(j)
i with i ̸= j∗, j = 1, · · · , tk, the simulator

computes it by using the shares xi and b
(j)
i it either chose or got from the

adversary. For r
(j)
j∗ , the simulator simply computes r

(j)
j∗ = r(j)−

∑
i ̸=j∗ r

(j)
i . This

concludes the simulation part.
In order to extract the secret isogeny x∗, the simulator follows the following

strategy. After getting a forgery (d1, · · · , dtk), (r(1), · · · , r(tk)) on a messagem, he
rewinds the adversary to the point where he makes the query (F1∥ · · · , Ftk∥m) to
H. Then he continues to simulate from that point on with fresh randomness. By
the forking lemma, with non-negligible probability, the adversary will produce
a new forgery (d̃1, · · · , d̃tk), (r̃(1), · · · , r̃(tk)), for the same message m. Then, the
simulator computes

x∗ =
r(l) − r̃(l)

d̃(l) − d(l)
−
∑
j ̸=j∗

xj ,

which is a solution for the VPwAI.
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