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Abstract—Considering password-based authentication tech-
nique, password memorability is a real challenge on users.
Hence, password reuse across different web applications is a
common trend among users which makes websites vulnerable
to credential stuffing attack. A solution as password manager
helps the users to create random passwords for different web-
sites on the user machine. However, it has practical challenges.

Password database breach detection is another related
and challenging task. Among recent developments for breach
detection, honeyword-based approach is much appreciated by
the research community. However, honeyword generation itself
is a challenging part of the solution.

In this work, we propose i) Password Reuse Detection
(PRD) protocol for detecting password reuse using a secure
two party private set intersection; ii) Breach Detection (BD)
protocol that detects credential stuffing attacks using two
party private set inclusion protocol based on random oblivious
transfer. Both the proposals are designed for the authentication
servers of the respective applications and need communication
between multiple websites following the work by wang et al.
Through analysis we show that our PRD protocol is around
2.8 times faster, and space efficient than existing works for
5000 honeywords. Our near to real-time BD protcol is around
2 times faster than existing works.

Index Terms—Password reuse, Breach detection, Credential
stuffing, Private set intersection, Password hashing, Honey-
words.

1. Introduction

Credential breaches have become a serious and a com-
mon threat to both users and organisations. Credential leaks
occur in almost every industry and compromise millions of
users data. According to IBM, the average time for detecting
a breach is around 206 days [1]. Meanwhile, the adversary
can access the users data from the breached website and
can try to log-in with the breached credentials at other
websites assuming users might hold an account. Adversary
will succeed only if the user had set same password at
those websites. These types of attacks are often referred as
credential stuffing attacks. Recent studies [2]–[4] have found
that significant percentage of users reuse their password at
different websites. Another study [5] has shown that pass-
word reuse is a major reason for database breaches. Websites
like Facebook buys black market passwords to ensure the

safety of users accounts [6]. Hence, preventing password
reuse reduces the number of credential leaks dramatically.

Most of the breach detection systems use the concept of
honeywords [7]. Honeywords are decoy passwords which
are stored along with original password of the user. Apart
from password authentication database, websites maintain
an additional server called honeychecker which stores the
index of user chosen password. Submitting any of the
honeywords as passwords during the login attempt detects
a breach. This is because when an adversary breaches an
account he cannot distinguish honeywords from user chosen
password. In this approach, breach detection is possible
only at the breached website. However, our work on breach
detection considers a completely different scenario which
involves two websites. Database breach occurs at one web-
site and gets detected by the other one. Goal of our breach
detection system is to mitigate credential stuffing attacks.

There are very few significant works which talk about
the password reuse problem [8] and breach detection mech-
anisms [9]–[11]. The work on password reuse detection by
Wang et al’s [8] in 2019 uses trusted third party called Di-
rectory. The Directory acts like bridge between two websites
that check for a password reuse. We propose a new protocol
called Password Reuse Detection (PRD) protocol to detect
password reuse among websites without relying on any third
party. We also propose a breach detection model which is
similar as Amnesia proposed by Wang et al’s [9]. The breach
detection model Amnesia uses homomorphic encryption to
identify credential stuffing attack. Our proposed protocol
uses Private Set Inclusion to detect credential stuffing attacks
and enhances the performance in terms of time and space
complexities when compared to Amnesia.

Contribution: Following are the contributions of this paper.

1) Protocol for Password Reuse Detection: We propose
a secure two party protocol called Password Reuse
Detection (PRD) Protocol to detect password reuse
without revealing the real values of the involved cre-
dentials. The two parties in the protocol are the two
websites, namely, Target and Monitor. PRD is based
on the scenario that a user holds an account at Monitor
website with their user id as id1 and uses same id1 to
register at the Target Website. On receiving the regis-
tration request, Target communicates with Monitor to
detect password reuse and notifies the user accordingly.
We propose two versions of PRD protocol based on the



number of honeywords. Following are the two versions
of our protocol.

a. PRD.V1: This version is mainly based
on Diffie-Hellman based PSI and recom-
mended when number of honeywords are
less than 500.

b. PRD.V2: This version uses an Oblivious
Pseudo Random Function based Private
Set Intersection protocol and recommended
when number of honeywords are in the
range of 500-5000.

2) We compare our PRD protocol with the work by Wang
et. al. proposed in the year 2019 and show that ours is
computationally more efficient.

3) Protocol for Detecting Credential Stuffing: The goal
of this protocol is to detect credential stuffing attacks
thereby detecting a breach. We assume that an adver-
sary breaches the database as many times as possible
and then try to guess password by applying dictionary
attack. Our proposed protocol is based on the following
scenario. The breach has occurred at the Target website
and an attacker is trying to login at Monitor with
stolen credentials from Target website. We assume that
both websites implement honeywords. For every three
consecutive unsuccessful login attempts at Monitor,
Monitor checks for a breach using Oblivious Transfer
(OT) based Private Set Inclusion protocol by communi-
cating with the Target website. If the password entered
at Monitor is in Target’s list of passwords, a breach
gets detected at Target Website.

4) Our breach detection protocol provides real-time re-
sponse whereas the best result (Amnesia) proposed by
Wang et al., is not real-time.

5) We show that our breach detection protocol is compu-
tationally more efficient than Amnesia.

The remaining sections of the paper are organised as
follows: The Section 2 discusses about related work and
Section 3 explains the technical concepts involved in our
proposed protocols. The Section 4 gives a detailed descrip-
tion of PRD.V1 and PRD.V2 protocols. Section 5 focuses
on the security analysis of our protocols. Next, Section 6
includes the comparative results with existing protocols. In
Section 7 we discuss other significant attacks and possible
ways to mitigate them. Finally, we conclude our work and
scope of future work in Section 8.

2. Related Work

In this section we discuss about the existing solutions
related to password reuse prevention. Existing mechanisms
take one of the following approaches: i) Client side ap-
proach or ii) Server side approach. In client side approach,
existing solutions are password managers like 1password
ping [12] and google password manager [13]. These pass-
word managers create strong password on behalf of user.
Since password managers create strong random passwords

for each websites, possibility of password reuse is limited.
A recent survey [14] shows that 65% of users do not trust
password managers and hence new approach is required
to mitigate the problem of password reuse. In server side
approach, generally computations are done on the server
side to check for password reuse without the intervention
of user. In this approach, identification is done by username
of the user. As most of the users keeps same username or
e-mail ID across different websites. Hence, it is easy to
identify the password reuse assuming same username used
across different websites. To the best of our knowledge, the
work by Wang et al [8] is the first one to introduce the
concept of password reuse across different websites. Other
significant works are [11], [15]–[18].

A new framework was introduced in 2019 [8]. It pro-
posed a new Private Memebership Test (PMT) protocol
which is based on partial homomorphic encryption to iden-
tify use of similar passwords. According to the frame-
work, the important terminologies are Responder (websites
at which the user already holds an account), Requester
(websites at which the user is willing to register new ac-
count) Apart from Requester and Responder, they employ a
trusted third party service called Directory. Communication
between Requester and Responder website is done via di-
rectory. Directory stores all the usernames (pseudonymous)
of the Requester website and a list of Responders corre-
sponding to the username. During registration the user enters
their username (assuming same as at other Responders)
and their choice of password. Requester website creates
a bloom filter [19] with user chosen password using k
number of hash functions. The Requester website sends
a request to the directory which includes username, hash
functions and ciphertext of indices of the bloom filter. The
directory forwards the request to a subset of Responders.
After receiving the message from Directory, Responder con-
structs a bloom filter of same length as constructed by the
Requester. Responder contains a list of similar passwords
and honeywords [7], [20], [21] corresponding to the user’s
password. Responder stores these passwords (both honey
and similar) corresponding to the username in the bloom
filter using the received hash functions. Responder computes
a homomorphic operation between the received encrypted
indices and its indices of the bloom filter. The result is
encrypted with a public key of Requester website and sent
back to the Requester website via Directory. Requester
decrypts with the corresponding secret key, if it finds a
password reuse, it rejects the previously entered password
and asks the user for a new one. The disadvantages of the
framework are: use of a trusted third party as a directory and
the running time of the protocol is more if both the parties
uses TOR [22] network than if they do not use TOR.

There are several existing works on breach detection
techniques, however, our work is very much aligned with
the work by Wang et al [9] proposed in 2021 is very close
to our work. They introduced a new framework to detect
credential stuffing attack by using a protocol called Private
Containment Retrieval (PCR) Protocol. This PCR protocol
consists of 3 stages namely, PCR request, PCR Response



and PCR Reveal. According to their framework, the website
where the adversary already breached the database and
got access to the user’s credential (username, passwords
including honeywords) is referred to as Target website. The
adversary then implements a credential stuffing attack at
some other website called Monitor website assuming the
compromised user of Target website might hold an account
at Monitor as well. It is assumed that both the Target
website and Monitor website mutually agree to participate
in the protocol. At some arbitrary time, Target website sends
a PCR request which consists of username, public key,
salt, set of passwords (both honeywords and user chosen
password) corresponding to the username. Monitor website
saves the request locally and responds after every unsuc-
cessful login attempt by the user. Since the Target website
uses honeywords, the adversary cannot identify the original
password. On unsuccessful attempt, the Monitor computes
a homomorphic operation between the entered password at
the Monitor and the received set of passwords from the
Target website. The result is encrypted with the received
public key and sent back to the Target (PCR Response).
The Target decrypts with its secret key and checks if any
of the honeywords is used for login attempt (PCR Reveal).
Therefore, there is a high chance to try with a honeyword
that could be detected at the later stage of the protocol.
If yes, a breach of Target website is detected. The main
drawback of this model is that it is not a real time detection
system.

There are also services/works like Have I Been Pwned
[15] and Microsoft’s password monitor system [17] and
Kurt et al [16], Bijeeta et al [23] which notifies the user
if they are involved in a breach. These breach detection
systems contains a database of already breached credentials
and checks whether the user account/password is in the
breached database following a privacy preserving technique.
Since breach detection takes around 206 days as per IBM
report [1], by the time the user is notified there would be a
significant amount of damage.

3. Technical Overview

In this section we will give an overview of the relevant
technical concepts that we have used for our protocol.

3.1. Oblivious Transfer (OT)

The concept of Oblivious Transfer (OT) was first intro-
duced by Rabin in 1981 [24]. In this setting, the sender
has 2 messages and receiver has a choice bit. Receiver
receives a message bit corresponding to the choice bit with
a probability of 0.5. While, the sender remains oblivious as
to whether or not receiver received the message. Another
setting called 1− out− of − 2 OT which means the sender
has two inputs say (m0,m1) and the receiver has one choice
bit i ∈ {0, 1}. If i = 0, receiver wants to receive m0, if
i = 1, receiver wants to receive m1. The receiver receives
the message of its choice without learning anything about
other messages whereas the sender sends the message as per

receiver’s choice without knowing anything about receiver’s
choice bit.

1-out-of-2 OT can be extended to 1-out-of-N OT in
which the sender has n pairs of messages each of length
l bits and receiver has an n − bit choice vector. In this
case, the receiver forms n × l matrix and perform an OT
on each row. In practice, n >> l. Since the OT uses public
key operations, we require high computation for 1-out-of-N
OT.

In 2003, Ishai et al proposed a new protocol for OT
extension, IKNP protocol, which computes large number of
OTs by performing k base OTs [25]. That means, 1-out-of-
N OT can be computed by performing k number of base
OTs. In practice, k << N and number of OTs required to
perform is independent of number of message pairs. Let us
consider a case where a sender has n message pairs each of
l − bit long (n ∈ {0, 1}l) and receiver has an n-bit choice
vector r i.e., r ∈ {0, 1}n. We follow the same notation as
used in [25], [26]. Initially, sender creates a random k− bit
string s and receiver creates two n × k random matrices
T and U . Let tj and uj denote the jth row of T and U
matrices respectively, where,

tj ⊕ uj =

{
1k, if rj = 1

0k, if rj = 0

Now, Both the sender and receiver performs 1-out-of-
k OTs where the role of sender and receiver is exchanged
from the usual setting. Receiver inputs its k − bit string s
as choice vector and sender inputs its matrices as messages
to the OT. Note that sender’s inputs in each of k OTs to be
performed is n− bit long. The sender can run k number of
OTs with k−bit inputs and use a Pseudo Random Generator
(PRG) to get the effect of k OTs with n − bit inputs. The
outputs which sender gets with its choice vector is put into
a matrix Q, where the jth row of matrix Q is defined as
follows:

qj = tj ⊕ [rj .s] =

{
tj , if rj = 0

tj ⊕ s, if rj = 1

In 2013, Kolesnikov and Kumaresan observed that the
matrices T and U on receiver side are prepared in such a
way that rows in T⊕U is either all ones or zeros [26]. They
interpreted the rows with all zeros or ones as repetition code
and replaced this repetition code with linear error correcting
code with large distance as selection bit encoding. Using the
concept of linear error correcting code qj can be interpreted
as qj = tj ⊕ [c(rj).s] and H(tj) as H(qj ⊕ [c(rj).s] where
c is the error correcting code. They also proved that for
security parameter k, the OT extension offers O(log k)
factor performance improvement in computation and com-
munication than compared to IKNP [25]. They interpret this
as an Oblivious Pseudo Random Function (OPRF).

3.2. Private Set Intersection (PSI) protocol

PSI setting allows two parties p1 and p2 with sets
A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn} respec-



tively to learn nothing more than their intersection elements
(A ∩ B). Our work mainly deals with the balanced case
where size of the sets are same at both the parties and
hence our PSI protocols are also for balanced case. There are
several applications of PSI such as bot net detection [27],
human genome [28], relationship path discovery in social
networks [29], etc. The PSI protocols can be categorized
based on the underlying primitive as hashing, Public key
based PSI, OT based PSI. Out of all the above mentioned
methods, naive hashing is the simplest one. In naive hashing,
elements of both the sets are hashed using cryptographic
hash functions. Element wise hashed values are compared
with the common elements.

3.2.1. Diffie-Hellman based PSI. Diffie-Hellman based PSI
is first introduced in 1986 by Meadow et al [30] later
improved by Huberman et al in 1999 [31]. The protocol
works as follows: Let x and y be the private keys of
user A and user B respectively Set A = {a1, a2, . . . , an}
and B = {b1, b2, . . . , bn}. Both A and B hashes their set
elements and raises the hash output to the power of x and
y respectively and gets A′ = (H(a1), H(a2), . . . ,H(an))

x

and B′ = (H(b1), H(b2), . . . ,H(bn))
y. Both the users

exchange their values. Both the parties raise their re-
ceived values (after exchange) to the power of their secret
keys. (A′′ = (H(b1), H(b2),. . . , H(bn))

y)x and B′′ =
((H(a1), H(a2), . . . ,H(an))

x)y. One of the party sends its
results to the other to compare the values of A′′ and B′′.

Diffie-Hellman based PSI is very easy to implement but
the cost of computing exponentiation for each element is
high. Hence, Diffie-Hellman based PSI is preferred if parties
hold smaller sets.

3.2.2. OT based PSI. It is the most efficient PSI than
compared to other variants. In 2014, pinkas et al proposed
a PSI protocol [32] based on random OT [33]. The sender
inputs its set to the random OT and receives all message-
pairs irrespective of its set elements whereas receiver only
receives the messages corresponding to their set of elements.
Sender then selects the messages based on its set elements,
XORs the selected messages and sends to the receiver.
The receiver inputs its choice bits to random OT, gets the
corresponding messages and XOR the messages. Receiver
compares this XOR output with the value received from the
sender. This requires n2 comparison between 2 sets. Pinkas
et al [32] uses cuckoo hashing to reduce the comparing
complexity.

In 2015, Pinkas et al improved [32] by using a dif-
ferent hashing technique called permutation based hash-
ing (discussed in later subsection) to reduce the length
of strings [34]. The computational complexity eventually
decreased from O(n log2n) to O(nlog n).

In 2016, Kolesnikov and Kumaresan proposed a new 2
party PSI protocol based on OPRF [35]. This protocol can
compute 2 million size sets in about 4 seconds. An OPRF
protocol, consists of two parties namely, sender and receiver.
Sender holds a function Fs where s is the seed while the
receiver has an input x. At the end of the protocol, receiver

receives Fs(x) (result of the PRF on a single input x chosen
by the receiver) without knowing anything about function F
while the sender will not learn anything about x at the end
of the protocol. General OPRF allows receivers to evaluate
the PRF on several inputs but proposed OPRF [35] allows
the receiver to evaluate only at single point. Hence they are
interpreted as single point OPRFs. OTs are used to generate
large batches of OPRF instances. In this work, sender inputs
its elements in a PRF (F ) using the seed s. The outputs of
PRF (F (s, r)) are stored in a cuckoo hash table on receiver’s
side. Sender is not aware of which location (bin) corresponds
to which seed. The sender sends the PRF values of both
seeds to the receiver (assuming two hash functions are used
to map elements in to bins in cuckoo hashing). In addition
to this, If all the elements are not mapped to the cuckoo
hashing, the sender might have to send an extra stash (an
array) to the receiver. The receiver finds an intersection if
any between its PRF values and received PRF values. It
is shown that this protocol is highly efficient in terms of
computation but not in communication because of sending
multiple PRF values per element.

In 2019, Pinkas et al proposed a new PSI protocol [36]
based on OT extension [25]. They are the first one to reduce
the communication complexity of the protocol to linear(
O(n) where n is the number of elements in the set) using
general assumptions i.e, One Way Function (OWF) and OT.
Instead of using a PRG, Pinkas et al [36] uses OPRF which
allows the sender to learn a PRF F and allows the receiver
to learn F (yi) for chosen item in its set {y1, y2, . . . , yi}.
If sender has set X containing {x1, x2, . . . , xi} then sender
sends F (x1), F (x2), . . . F (xi) to the receiver. Receiver finds
the intersection between the sets. They replaced PRG with
a PRF. Results show that the protocol is highly efficient in
terms of communication. Sender sends its Fs(x) values by
interpolating it in a polynomial. After receiving the polyno-
mial, receiver evaluates the polynomial with its Fs(y) values
and finds an intersection if and only if Fs(x) = Fs(y).

In 2020, Chase et al [37] proposed an improved version
of Kolesnikov’s protocol [35] but it is not as efficient as
[35].

3.3. Private Set Inclusion

Private Set Inclusion is a special case of 2 party Private
Set Intersection protocol in which one party hold n elements
and other party holds only a single element. Pinkas et al.
[32] explains Private Set Inclusion using random OTs. Both
the parties XOR their random OT outputs and then compare
the values.

3.4. Cuckoo Hashing

Cuckoo hashing was introduced by Rasmus pagh and
Rodler in 2001 [38]. Cuckoo hashing is more efficient than
bloom filters and hence used as an alternative to bloom
filters and hash tables. Lookup complexity of cuckoo hash-
ing is O(1). Similar to bloom filters, cuckoo hashing also
uses k hash functions to map the elements into bins. If



there is a collision, the existing element is replaced by
new element and the existing element is relocated to other
bin (decided based on the value of other hash functions).
The process repeats until the element finds a bin or reach
maximum number of re-locations. If the element fail to get
inserted in any of the bin, it is inserted into an array called
stash. It was shown that for a stash of size d ≤ ln(n),
insertion of n elements fails with the probability n−d [39].
Cuckoo hashing supports deletion operation with worst case
complexity O(1).

3.5. Permutation Based Hashing (PBH)

In [40] Arbitman et al introduced the technique called
Permutation Based Hashing (PBH) for reducing the memory
usage in cuckoo hashing. PBH is similar to feistel network.
In PBH the element is divided into 2 parts i.e, Left part and
Right part. Number of bins are represented in the power of
2. Length of left part of the hashed password is equal to
the exponent of number of bins when expressed in the form
of base 2. Length of right part will be remaining number
of bits of hashed password. If an element X is to mapped
using PBH technique, we divide X into two parts xL and
xR. The element X is mapped to bin xL⊕f(xR) where
f is a random function. The element xR is stored in the
bin. The paper [34] uses Permutation Based Hashing (PBH)
technique to reduce the length of items x bits to x − β,
where β is the size of table

In this paper, we use the concept of PBH to reduce the
size of the password which prevents from intersection attack
and dictionary attack. Cuckoo hashing is used for mapping
the elements to a particular bin as in [34]. In practice,
we store the hash of the passwords (honeywords and user
chosen) in the bins. In case number of honeywords are at
most 5000, there is a possibility that few of the passwords
are not being inserted in the bins.

Hence, these passwords need to be stored in a separate
array called stash. Inserting more elements in the stash
increases the overhead to linear. There are 2 ways to reduce
the insertions in the stash as mentioned below:

1) Create large number of bins (2n(1+ ∈) bins) [41].
2) Increase the number of hash functions to 3 instead of

2 hash functions [42].

4. Proposed Protocols

In this section we describe our proposed protocols,
namely Password Reuse Detection (PRD) protocol and
Breach Detection protocol in detail.

4.1. Password Reuse Detection Protocol

This protocol helps to detect any attempt by a user to
reuse a password (during registration) at the website (called
Target) which was previously reused at other website (called
Monitor). The proposed protocol excludes any need of
trusted third party service from its execution comparing with
the work by Wang et al [8]. Following are our assumptions:

Figure 1: Overview of PRD protocol

1) Both the Target and Monitor websites mutually agree
to participate in the protocol.

2) We consider an attacker as semi-honest and the PSI
protocols which we are using are also executing in
semi-honest setting.

3) The number of honeywords used at Target website and
Monitor website must be same.

4) The hash functions required to map the passwords into
the bins of the cuckoo hashing are identical at both
websites. We also assume that function used to hash
passwords at both the websites are identical.

For every new registration of username (UT ) and Pass-
word (pt) at Target website, Target website generates honey-
words corresponding to password. We assume honeywords
generated using the available techniques [7], [20], [43], [44]
are different even if the password is same. We also assume
that password hash is computed using a salt Saltu for
user UT . Therefore, password reuse among websites can be
identified if and only if salt at both the websites are identical
corresponding a user UT .

The goal of our protocol is to identify whether the
password of a user UT registered at Target website is same
as at Monitor. If true, Target website suggests the user to
choose another password. Figure 1 shows an overview of
our PRD protocol including different stages of the protocol.

We divide the PRD protocol into 3 stages which are
described below:

1) Identifying Stage: In this stage, the Target website
tries to confirm if username UT exists in Monitor
database (DBM ). To identify, the Target takes the hash
output of UT as H(UT ) where H is a cryptographic
hash function and sends N -bit prefix of H(UT ) as
H(UT )[0:N ] represented as Hu to the Monitor. The
value of N depends on the number of users at both
the websites so as to avoid multiple matching of pre-
fixes. Monitor compares (Hu) with the N-bit prefix
of all its usernames H(UM1)[0:N ],. . . , H(UMn)[0:N ])
stored in DBM . If there is a match, Monitor sends the
corresponding salt, Saltu and Target uses Saltu for
UT . Else, the Target generates a random salt. Target
adds the new credentials to its database (DBT ) to
generate honeywords corresponding to pt, Target calls
Honeygen() function which outputs pt1 , pt2 . . . , ptn .
The hashed vales are represented as p′t, p

′
t1 , . . . , p

′
tn

at Target and p′m, p′m1
, . . . , p′mn

at Monitor. Detailed
protocol is given in algorithm 1.

2) Response stage: Since username is identical, it is
plausible that password might also be identical at both
the websites. We mainly use PSI protocol (explained in



Algorithm 1 Identifying Stage
User Target Monitor
User

UT , pt−−−−→
H(UT ) ← UT

H(UT )[0:N ] ← H(UT )
Hu := H(UT )[0:N ]

Hu−−→
True/False ← (Hu ∈ DBM )
If (True)

Saltu ← DBM

else ⊥
Saltu/ ⊥←−−−−−

If (Saltu)
{pt1 , . . . , ptn}← HoneyGen(pt)

Add {H(pt, Saltu), . . . ,H(ptn , Saltu)} to DBT

Move to Response stage
else Saltu

$←− {0, 1}∗
{pt, pt1 , . . . , ptn} ← HoneyGen(pt) and
Add {H(pt, Saltu), . . . ,H(ptn , Saltu)} to DBT

Notify UT as Registered

Notation: := is for assignment, x← y shows x is derived from y, x $←− y shows x is randomly sampled from y, HoneyGen
is honeyword generation algorithm.

Algorithm 2 Response Stage: (PRD.V1)
Target Monitor

p′T = {p′t, p′t1 , p
′
t2 , p

′
t3 , . . . , p

′
tn} p′M = {p′m1

, p′m2
, p′m3

, . . . , p′mn
}

SKT ← KeyGen(.) SKM ← KeyGen(.)
HPT

= {H(p′t)
SKT , . . . ,H(p′tn)

SKT } HPM
= {H(p′m)SKM , . . . ,H(p′mn

)SKM }
HPT−−−→
HPM

, HSKM
PT←−−−−−−−−

True/F lase← (HSKM

PT

?
= HSKT

PM
)

If (True)
Password Reuse Detected
Go to Decision stage

Else:
Successful registration

Section 3) to check for password reuse. We propose two
versions of Password Reuse Detection (PRD) protocol,
PRD.V1 and PRD.V2.

a) PRD.V1 (for number of honeywords < 500):
In this version, we use Diffie Hellman based PSI
as discussed in section 3.2.1 where the values are
the hashed password and honeywords received from
Identifying stage. To run the protocol, both the Tar-
get and Monitor generates their random secrets as
SKT and SKM respectively by running a keyGen
algorithm as shown in algorithm 2.
Hashed Passwords (including honeywords) at both
websites are raised to the power of their respective
secret keys. We denote Target’s set of passwords
as HPT

and Monitor’s set of passwords with HPM

respectively. Target website sends the set HPT
to

Monitor website. Monitor website sends the set HPM

to Target website and HSKM

PT
. Target website then

compares the sets HSKT

PM
and HSKM

PT
and checks

for common entries. As honeywords are distinct and
different even if the password is same, intersection of
at least a single element implies reuse of password.

b) PRD.V2 (for number of honeywords > 500 and
< 5000): In this version, both Target and Monitor
construct a cuckoo hash table with hashed passwords
using Permutation Based Hashing (PBH). Note that
the word passwords include both user chosen pass-
word and corresponding honeywords. Both the par-
ties uses PBH technique as discussed in section 3.5
to reduce the size of passwords. Reduced size of
passwords are inserted into bins using cuckoo hash-
ing. We assume that hash functions required to map



Algorithm 3 Response stage (PRD.V2)
Target PSI Monitor

For i = 0 to n For i = 0 to n
[p′ti ]R

PBH←−− p′ti [p′mi
]R

PBH←−− p′mi

CuckooHTR

h1,h2,h3←−−−− [p′ti ]R CuckooHMR

h1,h2,h3←−−−− [p′mi
]R

OT k
m←−−−−−−−−−−−→

ri
$←− {0, 1}∗, 0 ≤ i ≤ n Select c $←− {PRC}

c←−−−−
s

$←− {0, 1}k
Constructs matrices [T0]n×k, [T1]n×k

∀ jth row ∈ T0, t0,j ← {0, 1}k
∀ jth row ∈ T1 set t1,j = c(ri)⊕ t0,j
t0,j and t1,j are input to OT

Select bit si ∈ s
Hcorr(t0,j ⊕ c(ri)) is the OT output Hcorr(qj ⊕ c(ri).s) is the OT output

PRTY←−−−−−−−−−−−→
P (x) := Hcorr(t0,j ⊕ c(ri)) Q(x) := Hcorr(t0,j ⊕ c(ri).s)
Coefficients of P (x) send to Monitor

O =
{Hcorr(Q(t0,j⊕c(ri).s))⊕s.P (t0,j⊕c(ri))

O is send to Target.
Based on the value O password reuse is detected.

Notation: PRC- Pseudo Random Code ; [p′ti ]R represents right part of password

the passwords into the bins of the cuckoo hashing
are identical at both the websites. We use 3 hash
functions for cuckoo hashing as suggested in [34],
[42]. We compute PSI between two cuckoo hash
tables of Target and Monitor website as proposed
by Kolisnikov et al [35] for computation and Pinkas
et al for communication [36]. The steps involving in
PSI are described in detail.
Initially, Target chooses a random string ri. Monitor
chooses a Pseudo Random Code (c) from family of
Pseudo Random Code and sends c to Target website.
Target website constructs two n× k matrices T0, T1

respectively while Monitor website selects a random
k-bit string si. Target inputs t0,j and t1,j to the OT
while Monitor uses its s bit string as choice vector.
For every OT instance, Monitor outputs qi. A matrix
Q is constructed with all qis where, qi represents
column of matrix Q. At the end of OT, Target
receives Hcorr(t0,j ⊕ c(ri)) and Monitor receives
Hcorr(qj ⊕ [c(ri).s]) where Hcorr is the correlation
robust hash function. Target website creates a poly-
nomial P with its outputs and sends the coefficients
to Monitor website. Monitor website creates a poly-
nomial Q and computes a XOR operation as shown
in the algorithm. Monitor website sends this result
(O = {Hcorr(Q(t0,j⊕c(ri).s))⊕s.P (t0,j⊕c(ri))) to
the Target website. Target website detects a password
reuse based on the received O. Detailed protocol is
given in algorithm 3.

3) Decision Stage: After finding an intersection, Target

sends an email notification to the user suggesting for
a password change and warns the user about conse-
quences of password reuse. If a password reuse has
been identified, our protocol does not reject any user’s
passwords because we cannot deny any user to create
an account at Target websites. Doing so will restrict
the democratized access to the website.

4.2. Breach Detection Protocol

In this section we give a detailed view of our breach
detection technique. Let us assume that Target website was
breached by an adversary who has access to all users
credentials. Now, there is a possibility that adversary gets
access to the user accounts of other websites (referred
as Monitors) if the user reused the passwords (credential
stuffing). Following are our assumptions:

1) Adversary breaches the target passively.
2) Adversary can breach the database any number of

times.
3) Adversary cannot breach Monitor website when it has

breached Target.
4) Adversary can access Monitor website accounts

through hit and trail method.
5) All the OT protocols used are semi-honest.

For every three consecutive unsuccessful login attempts at
Monitor, Monitor website sends a request to Target to check
if an identical username exists at Target website. If the result
is true, Monitor and Target websites compute Private Set
Inclusion (PSI) protocol to check whether the unsuccessful



password attempts entered at Monitor website are in the
list of Target’s honeywords. Note that this breach detection
protocol is also a per user approach. If the entered incorrect
password is in the list of Target’s honeywords, a breach is
detected at Target website.

We divide our breach detection technique into 2 stages:
1) Preliminary Stage: Just like identifying stage in PRD

protocol, N -bit hashed prefix of the Username is sent
by Monitor to Target website. If result is true, Monitor
receives the salt from Target and the protocol goes to
next stage.

2) Detection Stage: The goal is to find if the unsuccessful
password attempt is in the list of Target’s honeywords
(detecting credential stuffing). Now, both the parties
compute a Private Set Inclusion protocol using random
Oblivious Transfer [32]. Target and Monitor run n
parallel OTs (assuming Target has n− 1 honeywords)
as shown in algorithm 4. For every three consecutive
unsuccessful login attempts, Monitor initiates OT by
sending H(pm) while Monitor inputs all n-values one
by one to the OT. Target inputs different values for
each instant (H(pt1), H(pt2), . . . ,H(ptn)) while Mon-
itor inputs the same value. Monitor receives a random
message (Mmi

) (where i can be either 0 or 1) for each
OT instance while Target gets a pair of random mes-
sages (Mt0,1) for every instance. Monitor XOR’s the
received random messages and send to Target. Target
computes the XOR of its random pair of messages
corresponding to its set and compare with received
XOR value of Monitor. XOR value will be 0 if the
values are identical. So value 0 implies a breach is
detected at Target website.

5. Security

In this section we analyse the security of the proposed
protocols, namely, Password Reuse Detection (PRD) and
Breach Detection sequentially.

5.1. Password Reuse Detection

As discussed in section 4.1, our Password Reuse Detec-
tion protocol consists of 3 stages. We discuss the security
of each of stages below.

5.1.1. Identifying Stage: . Target website sends an N -bit
hashed prefix of username to the Monitor. Monitor tries
to identify if there is a match between received prefix of
username and prefixes of its usernames.

Assume a case where user does not hold an account
at Monitor, but Target sends the N -bit hash prefix. In this
case, Monitor should not be able to deduce that a specific
user is about to register with a username ut at Target. Since
cryptographic hash is a one way function, Monitor cannot
gain any extra information from the received hashed prefix
of the username when the entry does not match. Hence, there
is no privacy leakage from N -bit hashed prefix of username.

5.1.2. Response Stage. After identification of a username,
both the Target and Monitor website runs the response stage
to identify if there is a password reuse among the websites.
We propose 2 variants depending on the usage of number
of honeywords. We propose PRD.V1 for websites with less
than 500 honeywords and PRD.V2 for greater than 500
honeywords but less than 5000 honeywords.

1. PRD.V1: The following theorem proves the security of
the protocol.

Theorem 1. Solving pre-image of hashed passwords is
equivalent to solving DDH problem

Proof. In our protocol, Target and Monitor individually
generates secret keys and hashed passwords of both the
parties are raised to their secret keys respectively. Secret
keys are generated by a keyGen algorithm with security
parameter λ. Value of λ can be set as suggested in [45].
Finding underlying hashed password is considered as a hard
problem and is equivalent to DDH problem.

2. PRD.V2: In this version, we hash all the passwords
(including honeywords) at both Target and Monitor and store
them in a cuckoo hash table using PBH respectively. PSI is
performed between the cuckoo hash tables of Target and
Monitor. We are using combination of Kolesnikov et al’s
[35] and Pinkas et al’s [36] PSI protocols as discussed in
section 3.2.2. Both Target and Monitor perform 1-out-of-k
(where k << n) Oblivious Transfers to find the intersection.
Here we briefly describe the security proofs.

Theorem 2. Neither the original password nor the hashed
password can be identified from the cuckoo hash tables.

Proof. Usage of permutation based hashing minimizes the
length of hashed passwords to be stored in a cuckoo hash
table. Adversary cannot regenerate the actual value from
the stored reduced length of the hashed passwords. Only
possibility for the adversary is to guess the value. The
probability of guessing the correct value is negligible. If the
lengths of left part and right part of the password are 240 and
16 bits respectively, then adversary needs to guess remaining
240 bits because permutation based hashing technique only
stores 16 bits (right part). Guessing the remaining 240 bits
is negligible.

As mentioned in PRD.V2 protocol section 4.1, we can
consider OT extension as OPRF with s, c as seeds. We
can observe that many OT instances have same s and c.
Kolesnikov et al [35] termed it as OPRF instance with
related keys. Following the proof given by Kolesnikov et
al [35] which claims that security of OPRF in terms of m-
related key where m is the maximum elements, we claim
that our case is also m-RK-PRF secure. In our case, m is
the number of passwords (n) (including honeywords which
are greater than 500).

Now we discuss the security of Pinkas et al protocol
[36] which we use for communication between the two
parties (Target, Monitor) for exchanging their outputs after
performing OTs to find the intersection of elements.



Algorithm 4 Breach Detection Protocol
Monitor Target

Monitor inputs H(pm) to OT H(pti) Target input to OT
Receives Mmi from OT Receives Mt0,1 from OT.
Monitor sends ⊕n

i=1Mmi to Target.
Target checks if ((⊕n

i=1Mmi)== (⊕n
i=1Mti))

Security for Target’s Inputs: For security against a
malicious Monitor, Target’s input (output of the PRF) must
be hidden. This can be achieved if all the inputs (outputs of
PRF) are uniformly distributed over the polynomial.

Security for Monitor: The security of the protocol
relies on the property that hamming distance (κ of size 128
bits) between P (x) from R(x) (x is Monitor’s PRF outputs)
is large if Monitor’s values is not in the set of Target’s
values. For more details we would encourage the reader to
go through section 3.3 in Pinkas et al [36].

We conclude that usage of PBH along with both the PSI
protocols [35], [36] does not leak any information about
hashed passwords.

5.2. Breach Detection Protocol

In this section, we discuss the security of our breach
detection protocol. Our breach detection protocol consists
of 2 stages: i) Preliminary Stage and ii) Detection Stage.
We discuss the security of both the stages below.

Preliminary Stage: Security in preliminary stage is to
preserve the anonymity of username which is established as
explained in the section 5.1.1

Detection Stage: In Detection Stage, the goal is to detect
if any of the honeywords of breached Target website is
entered as part of unsuccessful login attempt at Monitor
website. We use random OT and compute Private Set In-
clusion [32] to check if Target website had been breached.
We discuss the security of random OT and Private Set
Inclusion as presented by Asahrov et al [33] and Pinkas
et al [32]. Since we are using random OT, the outputs are
independent of inputs (Target’s input: Passwords; Monitor’s
input: passwords of unsuccessful login attempt). Parties
cannot learn anything from each other’s inputs. The security
of OT depends on the security parameter denoted by κ.
Please refer to [45] for NIST parameters. Target cannot
learn anything from received Monitor’s value because the
sent value is XOR of its OT outputs (random vales).

We conclude that other party (Target) cannot deduce any
information from the received values and hence our breach
detection model does not leak any information about the
passwords.

6. Results

In this section we present the feasibility results of Pass-
word Reuse Detection Protocol (PRD) and Breach Detection
Protocol (BDP) by comparing with existing best results.

6.1. Password Reuse Detection

We present our results in this section by comparing
with wang et al’s ”How to end Password Reuse on the
Web” [8]. Their protocol involves 4 parties: a user who is
willing to register a new account at Requester website, a
Responder website where the user already holds an account,
a Directory which is a trusted third party service and acts
as bridge between Responder and Requester website. They
use partial homomorphic encryption scheme to identify the
use of similar passwords.

Our protocol involves 3 parties: a user who is willing
to register at a Target website, Monitor website where the
user is already holding an account. We propose two versions
of our Password Reuse Detection (PRD) protocol based on
the number of honeywords used at each website. If the
number of honeywords are less than 500 we use Diffie-
Hellman PSI version to identify the password reuse. If the
number of honeywords are greater than 500 we use PSI
protcol as presented in Kolesnikov et al [35] and Pinkas
et al [36]. PRD.V1 takes less computation, storage and
communication because of its smaller set size. Hence, we
stress more about the results of PRD.V2 i.e, case with more
than 500 honeywords.

In the upcoming part of the section, we compare the
storage, computation and communication results with Wang
et al’s work [8].

• Storage: Wang et al [8] uses bloom filter for storing
the passwords (including honeywords). The use of
bloom filters might not be a good approach because
of following two reasons.

1) False Positives: One of the main downside of
using bloom filter is that elements can keep on
getting inserted in the bins and can result in more
false positives.

2) Space complexity: Bloom filters occupy
more space than compared to cuckoo hashing
[46]. Since we are using cuckoo hashing and
permutation based hashing, storage complexity
would be less when compared to [8].

Responders in Wang et al’s protocol [8] contains
an additional database to maintain hash of similar
passwords and their honeywords corresponding to
each user. Our protocol requires only one additional
database at both Target and Monitor websites to store
N -bit hash prefix of username. The cuckoo hash
tables at both the websites are created on the fly
and are not stored.



Table 1: Comparison of different protocol run times

Protocol Run time

Protocol Technique Set Size:
28

Set Size:
210

Set Size:
212

Wang et al
[8]

PMT ≃0.8 sec 2 sec 10 sec

PRD.V1 DH based
ECC [32]

≃0.2 sec 0.7 sec 2.8 sec

PRD.V2 KKRT [35] 0.192 sec ≃0.2 sec 0.211 sec

Table 2: Comparison of Communication protocol run times

Run time in seconds

Set Size 100 Mbps 10 Mbps 1 Mbps

212 0.99 sec 1.01 sec 3.51 sec
216 2.02 sec 5.36 sec 40.08 sec
220 10.53 sec 66.0 sec 645.3 sec

• Computation: We use Kolesnikov et al’s [35] PSI
protocol for performing PSI computation. Results
show that the computation part as presented in
[35] is the most efficient one. We assume that
popular websites use utmost 5000 honeywords
which is approximately 212. From the results
of [35], it can be seen that the run time of PSI
protocol takes around 211 ms. This 211 ms includes
communication latency. Since we use [35] for
computation, we observe that the computation time
required for computing the PSI would be even
lesser. Table 1 shows comparison of run times
between our protocol (both the versions) and Wang
et al [8].

• Communication: For communication we use pinkas
et al’s protocol [36]. It creates an n-degree polyno-
mial by interpolating all the passwords of Monitor
website and sends that polynomial to the Target
website. Target evaluates the polynomial with its
passwords and finds an intersection if and only if
both the values are same.
In [36], given data shows that the protocol is highly
efficient at low bandwidth. From table 2, it can be
observed that communication latency takes around
1 second for a set of size of 212 elements at a low
bandwidth of 10 Mbps. Adopting lower bandwidth
protocol does not burden the servers of Target and
Monitor websites without any compromise in effi-
ciency of the protocol. It is to be noted that, servers
operate in the order of Gbps, dedicating some tens
of Mbps to participate in this protocol does not
burden the server. The communication complexity
of the protocol is O(n) where n is the number of
passwords which are in Target and Monitor’s set.

From the above results, sum of communication and
computation latency would be around 1.16 second for a set
size of 212 at 10Mbps. Apart from computation and com-

munication we have identifying stage to check for username
match. Keeping in mind of space complexity and search
complexity we suggest websites to use cuckoo hashing.

Checking identical username at Monitor can be com-
pared to login time. Generally, login time for a user is
around 2 seconds. This time is between user and server
but in our case it is between Target server and a Monitor
server. It is obvious that the time will be less than 2 seconds.
Considering the worst case scenario which is around 2
seconds, we claim that our protocol run time is at most
around 3.5 seconds (at 1Mbps) for 5000 honeywords. This
estimate is much less when compared to wang et al’s work
[8] which takes around 10 seconds for 212 when one monitor
is employed. Hence, our protocol is approximately 2.8 times
faster than Wang et al’s work [8] for set size of 212.

6.2. Breach Detection Protocol

We present the results of our Breach Detection protocol
by comparing with work by Wang et al Amnesia [9]. As
per their protocol, Target website sends a PCR request
consisting of salt, username, list of sweetwords, public key
in an encrypted form to Monitor website at some arbitrary
time. Monitor generates a response by computing a partial
homomorphic encryption with passwords of failed login
attempt. Monitor sends the response back to the Target.
Target decrypts the result and perform required action based
on the decrypted result.

Our work is an improvised version of wang et al [9]
(Detecting credential stuffing) and is near real time. We
compare our results with the credential stuffing model.
Following similar approach, our main goal is to identify
whether a honeyword of Target website is given as part of
failed login attempt at Monitor website. We present a new
model for credential stuffing at Monitor website. Our model
consists of 2 entities namely, Target website and Monitor
website. We assume that user holds an account at both Target
and Monitor website and user’s account is breached at Target
website. For three consecutive unsuccessful login attempts at
Monitor website, it sends N -bit hashed prefix of username
to the Target to check whether the user is also registered
at Target. If yes, then both run a random OT based Private
Set Inclusion [32], [33] to check if the submitted password
at Monitor as part of login attempt is in the list of Target’s
honeywords. We directly use random OT as presented by
Ashrov et al [33] in which the length of strings is 80 bits.
Although the number of communication rounds is more than
Wang et al work [9], we claim the run time of our protocol
is much less than compared to their work.

• Storage: In [9] Wang et al does not hold any extra
database apart from login database for their protocol.
Also, they use cuckoo filter to optimize space com-
plexity. In our protocol we hold an extra database
which contains N -bit hash prefix of usernames at
both the websites.

• Protocol Run time: Table 3 represents the run time
of Wang et al’s [9] and Pinkas et al’s Private Set



Table 3: Wang et al protocol run time

Protocol Run time

Protocol set size: 28 set size: 210 Set Size: 212

Wang et al [9] (4cores) ≃ 45 msec ≃ 150 msec ≃400 msec

Pinkas et al [32] ≃ 0.08 sec 0.13 sec 0.2 sec

Inclusion [32]. We include Wang et al’s [9] results
considering the best case that is with 4 cores. The
run time for maximum number of honeywords i.e,
5000 which is ≃ 212 is 400 msec whereas our
protocol run time is around 200 msec.

7. Discussions

7.1. Password Reuse Detection (PRD) protocol

In this section we discuss about few general attacks and
ways to mitigate them. We have two cases:

i) Malicious Target: There are two possible attacks
when a Target website is malicious. They are:

a) DoS attack on Monitor: A malicious Target
website can send multiple requests with ran-
dom bits as N -bit hashed prefix of username
to Monitor. Monitor website can simply reject
the requests from Target website if it finds any
abnormal network traffic from Target website.
b) DoS attack on User: A malicious target
website can send multiple notifications to user
requesting for a password change even though
password is not a reused one. These multiple
requests from Target website may annoy the
user or put them in a panic state. Proper aware-
ness can be given to the user after logging into
the website through pop up messages which
explains the above scenario. User can report to
the Target website about its abnormal behaviour.

ii) Malicious Monitor: There are three possible attacks
when Monitor is Malicious as explained below.

a) DoS attack on Target: A malicious Monitor
website can send multiple responses to the Tar-
get. If an identical username has been identified
at Monitor website, Monitor can send multiple
responses like sending multiple salt strings to
the Target. These can be mitigated in the same
way as suggested for the case of DoS attack on
Monitor.
b) Sending incorrect responses: A malicious
monitor can send incorrect responses to Target
website. Target can mitigate this by sending few
ineffective requests if it identifies any abnormal
behaviour. Abnormal behaviour can be identi-
fied by sending one of the user’s request which
has been previously identified and resolved as a
password reuse.

c) No response from Monitor: A malicious
Monitor might not respond to the Target web-
site. This can be mitigated by replicating the
Monitor website so that if one of the server does
not participate in the protocol, the requests can
be directed to one of the remaining servers.

7.2. Breach Detection protocol

Most of the attacks for breach detection are similar to the
Password Reuse Detection protocol as discussed in section
7.1. Again we consider two cases:

i) Malicious Target: Malicious Target website might
not respond for the Monitor’s request to check and confirm
if first N -bit hashed prefix of username exists with Target
website. This can be mitigated by maintaining replicated
Target servers so that if one server does not respond others
can still participate in the protocol.

ii) Malicious Monitor: A malicious Monitor website
can send multiple requests to Target website. This request
can be the first step of our protocol i.e., checking whether the
username which was given as part of failed login attempt is
identical to any of the username that Target website already
holds. This can lead to a Denial of Service (DoS) attack
on Target website. If the network traffic is found to be
abnormal, Target website can discard the requests sent by
Monitor website.

8. Conclusion and Future Work

In this paper, we introduce two protocols Password
Reuse Detection protocol and Breach Detection protocol.
The former is used to detect password reuse among websites
and the latter is used to detect credential stuffing attacks.
We use state of the art Private Set Intersection protocols
to compute the password intersection between Target and
Monitor websites. We claim that our protocol is ≃2.8 times
faster than Wang et al [8]. We also believe that deploying
this framework might reduce the problem of password reuse
consequently breaches. Our Breach Detection protocol is
used to detect breach of Target website. We use Private Set
Inclusion protocol with random OT to detect the breach of
Target website. We claim that our breach detection protocol
is 2 times faster than existing scheme of Wang et al [9].

Our PRD protocol runs only for 2 parties which mu-
tually agree to Monitor each other. A better approach is to
implement multiparty PSI protocol for detection of password
reuse by sending requests to multiple Monitor websites
simultaneously. This can be an extension of the current
work.
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