
On the Hardness of Scheme-Switching Between

SIMD FHE Schemes

Karim Eldefrawy

SRI International

karim.eldefrawy@sri.com

Nicholas Genise∗

Duality Technologies

ngenise@dualitytech.com

Nathan Manohar∗

IBM T.J. Watson Research Center

nmanohar@ibm.com

Abstract

Fully homomorphic encryption (FHE) schemes are either lightweight and can evaluate boolean circuits
or are relatively heavy and can evaluate arithmetic circuits on encrypted vectors, i.e., they perform single
instruction multiple data operations (SIMD). SIMD FHE schemes can either perform exact modular arith-
metic in the case of the Brakerski-Gentry-Vaikuntanathan (BGV) and Brakerski-Fan-Vercauteren (BFV)
schemes or approximate arithmetic in the case of the Cheon-Kim-Kim-Song (CKKS) scheme. While one
can homomorphically switch between BGV/BFV and CKKS using the computationally expensive boot-
strapping procedure, it is unknown how to switch between these schemes without bootstrapping. Finding
more efficient methods than bootstrapping of converting between these schemes was stated as an open
problem by Halevi and Shoup, Eurocrypt 2015 [HS15, HS14b].

In this work, we provide strong evidence that homomorphic switching between BGV/BFV and CKKS
is as hard as bootstrapping. In more detail, if one could efficiently switch between these SIMD schemes,
then one could bootstrap these SIMD FHE schemes using a single call to a homomorphic scheme-
switching algorithm without applying homomorphic linear transformations. Thus, one cannot hope to
obtain significant improvements to homomorphic scheme-switching without also significantly improving
the state-of-the-art for bootstrapping.

We also explore the relative hardness of computing homomorphic comparison in these same SIMD
FHE schemes as a secondary contribution. We show that given a comparison algorithm, one can bootstrap
these schemes using a few calls to the comparison algorithm for typical parameter settings. While we
focus on the comparison function in this work, the overall approach to demonstrate relative hardness of
computing specific functions homomorphically extends beyond comparison to other useful functions such
as min/max or ReLU.

1 Introduction

Fully homomorphic encryption (FHE) enables a client to encrypt their data, send it to a cloud server, and
have the server compute any function on the client’s encrypted data without knowledge of the decryption
key. This client-server setting for outsourcing computation is especially useful when the client has limited
computational capabilities, and the server has significantly more resources. FHE was first proposed in
1978 by Rivest et al. [RAD+78], but it was not until Gentry’s breakthrough in 2009 [Gen09b, Gen09a]

∗This work was partially done while these authors were at SRI International.

1

that the cryptographic community saw a plausible, (truly) fully homomorphic1 encryption scheme. Gen-
try’s breakthrough in 2009 focused on schemes with limited homomorphic capabilities that also possessed
a simple decryption circuit. Such schemes can homomorphically evaluate their decryption circuits to re-
encrypt, or “bootstrap,” their ciphertexts. Gentry showed that a fully homomorphic encryption scheme
can be obtained from any scheme that can homomorphically evaluate a NAND gate together with its
decryption circuit [Gen09b]. Further, Gentry based his scheme on ideal lattices since decryption in
lattice-based cryptosystems boils down to decoding noisy lattice points back to the public lattice (linear
operations followed by a rounding step).

FHE has gone through many iterations towards practicality since Gentry’s breakthrough in 2009.
Today, there are three main FHE cryptoschemes using (ring) lattices: FHEW/TFHE [DM15, CGGI16]
which encrypt one bit, or a scalar, at a time and the BGV/BFV or CKKS schemes which pack (up to)
thousands of plaintext values into each ciphertext. The former, FHEW/TFHE, schemes are relatively
lightweight but can only perform one nonlinear boolean or small-number operations for each lightweight
bootstrapping. On the other hand, the packed schemes, BGV/BFV and CKKS, can perform thousands
of arithmetic operations in parallel using ciphertext packing and also support computations between ci-
phertext slots using the underlying field’s Galois automorphisms. After a fixed number of multiplications
(referred to as the “depth”), these schemes need to perform a more expensive bootstrapping operation
to increase the size of the ciphertext modulus (and lower the relative noise level in the ciphertext in the
case of BGV/BFV).

In this work, we focus on the SIMD FHE schemes. BGV and BFV are schemes which perform ex-
act modular arithmetic modulo some prime power whereas CKKS performs approximate arithmetic on
fixed-point numbers. It is well-known that homomorphic scheme-switching between BGV and BFV can
be computed efficiently by scalar multiplications [AP13]. However, it is not known how to efficiently
switch between CKKS and BGV/BFV without bootstrapping.

Given the differing plaintext spaces, switching between schemes can be useful in a variety of applica-
tions. For example, say the majority of a computation is done in CKKS until the underlying plaintext
has lost a set number of precision bits. Then, one could homomorphically convert the CKKS cipher-
texts into BGV/BFV ciphertexts to continue the rest of the computation and avoid any further loss in
precision. Alternatively, a computation may consist of several stages where some stages are required to
be computed exactly and others can be computed approximately. One could compute homomorphically
using CKKS for the approximate stages of the computation and use BGV/BFV for the exact stages of
the computation. This is a natural setting since CKKS is much more efficient than BGV/BFV for per-
forming real and complex arithmetic computations. Another setting is to develop a general cross-scheme
bootstrapping technique where efficient homomorphic scheme-switching is the first step [HS15]. Then,
for example, an ASIC on a server for one scheme could be used for multiple FHE schemes.

Recently, there has been a flurry of work in scheme-specific hardware acceleration for SIMD schemes
[FSK+21, SFK+21, SFK+22, AdCY+23, GBP+22]. This gives a clear motivation for efficient homomor-
phic scheme-switching since a server might have a specialized ASIC for one scheme (CKKS) but has
many ciphertext stored encrypted in another scheme (BFV). Ideally, the server could homomorphically
switch the ciphertexts into the main scheme used in the ASIC without bootstrapping.

It is folklore that one can switch between schemes using bootstrapping. This is done, essentially,
by homomorphically evaluating the decryption circuit of one scheme inside the other. Unfortunately,
bootstrapping is computationally expensive, and, thus, it is desirable to obtain more efficient methods
of scheme-switching. Finding scheme-switching between BGV/BFV and CKKS methods without boot-
strapping was explicitly stated as an open problem by Halevi and Shoup Eurocrypt 2015 [HS15, HS14b].
The recent library OpenFHE [BBB+22] and the recent work [DMPS22] also both explicitly mention
that scheme-switching between BGV/BFV and CKKS as an open problem.

1Many schemes beforehand had limited homomorphic capabilities. They either had ciphertexts grow exponentially with
operations [FK94, AS08, MGH10] or they had limited homomorphism [BGN05, IP07]. See Chapter 3 of Gentry’s dissertation
[Gen09a] for a survey of previous schemes.

2

1.1 Our Results

We provide strong evidence that homomorphic scheme-switching between the aforementioned SIMD
FHE schemes is as hard as bootstrapping. In fact, we show that a weak variant of homomorphic scheme-
switching between these schemes which ignores the differences in the plaintext encoding can bootstrap
these SIMD schemes in one call to such an algorithm without applying homomorphic linear transforma-
tions. We model this homomorphic scheme-switcher as an oracle.

In more detail, both BGV/BFV and CKKS have ciphertexts of the form ct = (c0, c1) ∈ R2
Q, where

R := Z[X]/(XN+1) is a cyclotomic ring of integers, Q ∈ Z+ is a ciphertext modulus, and RQ := R/(QR).
Since converting between BGV and BFV can be done by simply multiplying by a constant [AP13], we
will focus on BGV in this work, but the results hold for BFV as well. In both BGV and CKKS,
(homomorphic) decryption begins by computing (c0 + c1 · s(X)) mod Q for a secret s(X) ∈ R. In
BGV, this results in p · e(X) + m(X) ∈ R, where p is the plaintext modulus. In CKKS, this gives
∆m(X) + e(X) ∈ R for some scaling factor ∆. A weak scheme-switcher from BGV to CKKS takes as
input a BGV ciphertext (c0, c1) ∈ R2

Q where (c0+c1 ·s(X)) mod Q = pe(X)+m(X) and outputs a CKKS
ciphertext (c′0, c

′
1) ∈ R2

Q′ where (c′0+c′1 ·s(X)) mod Q′ = ∆m(X)+e′(X). (A weak homomorphic scheme-
switcher from CKKS to BGV is defined analogously.) We refer to such a scheme-switcher as weak because
it homomorphically switches schemes with respect to the same ring polynomial m(X) without dealing
with the fact that BGV and CKKS have different plaintext encodings. Recall, in BGV, the plaintext
polynomial m(X) ∈ Rp is related to (Zp)

k or (Fpr)
k via a ring isomorphism [GHS12b], whereas in CKKS,

the plaintext polynomial ∆m(X)+ e(X) is embedded into CN/2 via the canonical embedding [CKKS17].
Thus, in order to homomorphically switch between these schemes in practice, one would also need to deal
with the differences in plaintext encodings. This is done by applying homomorphic linear transformations
where the matrix is represented by plaintext polynomials [HS14a, CHK+18]. However, we show this
weaker variant of homomorphic scheme-switching already implies an immediate bootstrapping algorithm
without applying homomorphic linear transformations. We model the weak scheme-switchers as oracles
OC →֒B and OB →֒C . Informally, we show the following main results.

Theorem 1 (Informal). If there exists a weak homomorphic scheme-switching algorithm from BGV to
CKKS, OB →֒C , then there exists a CKKS bootstrapping algorithm with the same time complexity plus the
time to perform one CKKS rescaling operation.

Theorem 2 (Informal). If there exists a weak homomorphic scheme-switching algorithm from CKKS to
BGV, OC →֒B , then there exists a BGV bootstrapping algorithm with the same time complexity plus the
time to perform one BGV plaintext multiplication, one plaintext addition, and one modulus switching
operation.

As a secondary contribution, we also explore the relative hardness of computing homomorphic compar-
ison in these SIMD FHE schemes. Prior works [CKK+19, CKK20, IZ21, LLKN21] focused on computing
homomorphic comparison (and other related functions such as max/min and ReLU) in these SIMD FHE
schemes since these functions are useful to compute for many machine-learning applications. Computing
comparisons in these SIMD schemes is difficult since comparison is not easily expressible as a shallow
arithmetic circuit. We model the homomorphic comparison functionality as an oracle O≥ and show how
to use several calls to this oracle to bootstrap these SIMD FHE schemes. We focus on comparison in this
work, but our approach extends to other related functions such as max/min and ReLU. Unlike our pri-
mary contribution on the hardness of homomorphic scheme-switching, this secondary result is somewhat
expected because bootstrapping requires some form of digit extraction.

1.2 Technical Overview

A simplified view of a weak scheme-switching oracle, OB →֒C , is shown in Figure 1. The main intuition is
that any non-trivial bit-wise manipulations on an RLWE encryption’s message/error polynomial’s coeffi-
cients are the most expensive operations performed in bootstrapping. This is seen in BGV’s decryption
circuit: there is a linear operation on the ciphertext over RQ, d := c0 + c1 · s mod Q, followed by some
nonlinear rounding, d mod p. In essence, we show the homomorphic nonlinear rounding in either BGV or
CKKS can be achieved by (homomorphically) moving around contiguous bits of the message/error poly-
nomial’s coefficients, weakly switching the plaintext encoding of the encrypted plaintext. Hence, a weak
converter is quite powerful in the FHE setting. We sketch the case from BGV to CKKS using OB →֒C

3

BGV e m

CKKS m e′

Figure 1: Visualization of a weak scheme-switching oracle from BGV to CKKS. This process is called
weak because homomorphic scheme-switching using this oracle requires us to call BGV’s slots-to-coefficient
algorithm, a homomorphic linear transformation, before we call the oracle and CKKS’s coefficient-to-slots
algorithm, another homomorphic linear transformation, after we call the oracle. We show this “weak”
process is surprisingly powerful: it allows for bootstrapping CKKS ciphertexts without homomorphic linear
transformations.

since it is simpler. Recall the main idea of bootstrapping a CKKS ciphertext [CHK+18]: we have a CKKS
ciphertext ct = (c0, c1) ∈ R2

q which we implicitly treat as a ciphertext with respect to a larger ciphertext
modulus Q > q with q | Q. That is, we view ct as a pair of elements in R2

Q. We need to compute the
y(X) 7→ y(X) mod q function (where the mod is taken on all the coefficients of y(X)) homomorphically
on ct to obtain a ct′ ∈ R2

Q that decrypts to approximately the same value as ct under the same secret key
for some ciphertext modulus Q′ > q. Observe that c0 + c1 · s(X) = ∆m(X) + e(X) + I(X)q where each
coefficient of ∆m(X) + e(X) is ≪ q. Notice that bootstrapping in CKKS reduces to clearing the high
order bits of the plaintext polynomial’s coefficients (the I(X)q term). Standard CKKS bootstrapping
moves these coefficients to the plaintext slots via discrete Fourier transform (DFT), computes the mod q
function via a polynomial approximation, and then moves the result back to the coefficients.

However, there is a much more efficient algorithm for performing the y 7→ y mod q function on a
CKKS ciphertext’s coefficients given the oracle in Figure 1. If we simply treat the input CKKS ciphertext
ct ∈ R2

Q as a BGV ciphertext with plaintext modulus q, we observe that ct is a valid BGV encryption of
∆m(X) + e(X) with error I(X)q for some small integer polynomial I(X). The oracle OB →֒C applied to
this BGV encryption outputs a CKKS encryption of ∆′(∆m(X)+e(X))+e′(X) with ciphertext modulus
Q′ ≫ q and some other error e′(X), noting that q > ∆m(X). Therefore, we perform one CKKS rescaling
operation and return the result as the new bootstrapped ciphertext of CKKS encrypting m(X). The
CKKS to BGV case is similar.

1.3 Related Works

Switching between BGV/BFV and CKKS without bootstrapping was first mentioned as an open prob-
lem in the updated version of [HS15, HS14b] as it pertains to a potential cross-scheme bootstrapping
technique.

The problem of switching between FHEW/TFHE and BGV/BFV and CKKS is an orthogonal prob-
lem since once you apply homomorphic linear transformations on the latter, the rest is up to extract-
ing the coefficients as separate lightweight FHEW/TFHE ciphertexts. This was done explicitly in
[BGGJ20, LHH+21], respectively called Chimera and Pegasus, and was partially done in the original
FHEW/TFHE works [DM15, CGGI16] while interfacing the homomorphic accumulator and LWE Regev
encryptions [Reg05, Reg09]. Chimera [BGGJ20] and Pegasus [LHH+21] consider methods of scheme-
switching between CKKS and TFHE via bootstrapping. Moreover, Chimera [BGGJ20] also considers
scheme-switching from BFV to TFHE by bootstrapping. Chimera handles the differing plaintext spaces
by using the underlying ring’s coefficient packing, similar to our approach. Kim et al. [KDE+21] take
this idea further and apply FHEW/TFHE techniques to packed schemes, BGV/BFV and CKKS. Liu,
Micciancio, and Polyakov [LMP22] developed a high precision FHEW functional bootstrapping with the
CKKS-to-FHEW/TFHE application in mind, building on Chillotti et al. [CLOT21].

Additionally, several works [CKK+19, CKK20, IZ21, LLKN21] have focused on methods of computing
comparison (and other related functions such as max/min and ReLU) in these SIMD FHE schemes since
these functions are useful to compute for applications, but are not easily expressible as arithmetic circuits.

4

We note the security model likely changes when going from BGV/BFV to CKKS, since the latter
is an approximate FHE scheme [LM21], if the user publishes decryption results. One must apply noise
flooding when switching to CKKS in applications where the noisy CKKS decryption value is publicly
available or published [LMSS22].

1.4 Organization

In Section 2, we cover the necessary background and preliminaries. Scheme-switching oracles are defined
in Section 3. We also show how to transform a weak scheme-switching oracle, which works on coefficients,
into a strong scheme-switching oracle, which inputs a packed BGV (resp. CKKS) ciphertext and outputs
a packed CKKS (resp. BGV) ciphertext, in this section. In Section 4, we give the main results of our
paper in Theorems 5 and 6. In Section 5, we show how one can bootstrap BGV and CKKS with a few
calls to comparison oracles. We conclude in Section 6.

2 Preliminaries

We denote the integers as Z, the rationals as Q, the reals as R, and the complex numbers as C. For
polynomials or vectors of real numbers, we use the notation ⌈v⌋ to denote coefficient-wise rounding to
the integers. For an integer z, we denote its balanced remainder modulo q as [z]q ∈ [−q/2, q/2) and its
p-digit decomposition as z =

∑
i z〈i〉pi where z〈i〉 ∈ [−p/2, p/2). We denote an integer z’s k-through-

j middle digits as z〈j, . . . , k〉 = ∑j
i=k z〈i〉pi for k < j. Throughout the paper, we use power of two

cyclotomic rings2 (fields), R := Z[X]/(XN + 1) (F := Q[X]/(XN + 1)) is the cyclotomic ring (field) of
order 2N , where N is a power of two. We often view these rings in their coefficient embedding. That is,
a(X) =

∑N−1
i=0 aiX

i ∈ R embeds as a(X) ↔ (a0, . . . , aN−1) ∈ ZN and the analogous embedding for the

cyclotomic field. We denote the ℓ∞ norm of a polynomial in a(X) =
∑N−1

i=0 aiX
i ∈ R as ‖a‖∞ = maxi |ai|.

Any two polynomials f, g ∈ R satisfy ‖fg‖∞ ≤ N‖f‖∞‖g‖∞. This worst-case bound is rarely met when
the polynomials are distributed as in FHE ciphertexts and ‖fg‖∞ ≤ 2

√
N‖f‖∞‖g‖∞ is often seen in

practice with high probability [HPS19].

2.1 RLWE SIMD Schemes

Here we discuss the main SIMD schemes used in practice: CKKS [CKKS17], BGV [BGV12], and
BFV [Bra12, FV12] . These schemes are RLWE-based crypto-systems [LPR10] and use ciphertext pack-
ing [GHS12b, SV14], which allows a ciphertext to hold up to thousands of plaintext scalars for common
parameters. Even though BGV and BFV can encrypt elements from an extension field of Zp, we focus
on the case where they encrypt scalar elements for simplicity. BGV/BFV and CKKS differ greatly in
their plaintext spaces even with this simplification. The former have each plaintext scalar in Zp, and the
latter has each in R (or even C) via fixed-point approximations. Since we can always switch between
BFV and BGV with the same plaintext spaces cheaply with scalar multiplications [AP13, KPZ21], we
will often focus on BGV in this work, but our results also apply for BFV.

Let R := Z[X]/(XN +1) be the 2N-th cyclotomic ring for N a power of two and let RQ := R/QR be
the ciphertext space where Q is a positive integer. When sampling ring elements, we refer to them by
their coefficient representations in the appropriate space (i.e. ZN ,ZN

Q ,ZN
p). We will work with residue

classes in the balanced representation (so elements of ZQ are represented by [−Q/2, Q/2) ∩ Z).
BGV. A BGV encryption is defined as follows.

Definition 2.1. Fix a ciphertext modulus Q, a plaintext modulus p (typically a prime power), and a
ring dimension N . Further, p and Q must be coprime integers. A BGV encryption of m ∈ Rp for a
secret s ∈ R with small norm, and a noise distribution χ, is a pair of ring elements ct = (c0, c1) ∈ R2

Q

where c0 = as+ pe +m, c1 = −a, and e ← χ. To decrypt, one computes (c0 + c1s mod Q) mod p. For
correctness of decryption, we require that ‖pe + m‖∞ < Q/2. We denote the set of BGV ciphertexts
that decrypt to m, under some fixed s and χ, as BGVs(m)p,Q ⊂ R2

Q.

2All of our results apply to arbitrary cyclotomic fields. See [HS20] for the full details of BGV in general cyclotomics.

5

Note that we leave χ unspecified since the error distribution is affected by homomorphic operations.
The appropriate χ for a particular ciphertext will be clear from context.

BFV. A BFV encryption is defined as follows.

Definition 2.2. Fix a ciphertext modulus Q, a plaintext modulus p (typically a prime power), and
a ring dimension N . A BFV encryption of m ∈ Rp for a secret s ∈ R with small norm, and a noise
distribution χ, is a pair of ring elements ct = (c0, c1) ∈ R2

Q where c0 = as+ ⌈∆m⌋+ e, for ∆ = Q
p
∈ Q,

c1 = −a, and e← χ. To decrypt, one computes

m′ = ⌈(c0 + c1s mod Q)/∆⌋ .

For correctness of decryption, we require that ‖e‖∞ < Q/(2p)− 1/2 = (∆− 1)/2.

See [KPZ21] for more details on BFV, its optimized version, and its relation to BGV.

A key noise management operation in BGV is modulus-switching, defined as follows. Note, we focus
on the case where the moduli, Q and Q′, satisfy Q = DQ′, as all feasible BGV implementations include
a chain of ciphertext moduli satisfying this divisibility requirement, e.g., HELib [HS20].

Definition 2.3 ([BGV12, GHS12b]). Let ct ∈ BGVs(m)p,Q be a BGV ciphertext and Q = Q′D be
a positive integer coprime with p, and Q mod p = Q′ mod p = 1. Then, the BGV modulus-switching
operation is

ct
′ ← ⌈(Q′/Q) · (ct+ δ)⌋p ∈ R2

Q′ ,

where δ = p · ([−c0/p]D, [−c1/p]D) ∈ R2 and ⌈Q′

Q
z⌋p maps an integer z ∈ [−Q/2, Q/2) to the nearest

integer, z′, in [−Q′/2, Q′/2) such that z′ ≡ z mod p. We write ct′ ← BGV.ModSwitch(ct)Q→Q′ ∈
BGVs(m)p,Q′ as shorthand for BGV modulus-switching.

Modulus-switching is the main noise-management technique used in BGV besides bootstrapping. The
following lemma states its effect on ciphertext noise precisely.

Lemma 2.1 ([BGV12, GHS12b]). If ct ∈ BGVs(m)p,Q is a BGV ciphertext satisfying

‖c0 + c1s mod Q‖∞ ≤ Q

2
− pD(1 +N‖s‖∞)

2
,

then ct′ ← BGV.ModSwitch(ct)Q→Q′ ∈ BGVs(m)p,Q′ is a BGV ciphertext with error norm ‖e′‖∞ at
most ‖e‖∞/D + (1 +N‖s‖∞)/2, where Q′D = Q and e ∈ R is the error for the input ciphertext ct.

CKKS scheme. A CKKS encryption with respect to a scaling parameter ∆ ∈ Z is defined as follows.

Definition 2.4. Fix a ciphertext modulus Q, ∆ ∈ Z+, and a ring dimension N . A CKKS encryption of
m ∈ R with scaling factor ∆ ∈ Z+ is a pair of ring elements ct = (c0, c1) ∈ R2

Q where c0 = as+ e+∆m,
c1 = −a. To decrypt, one computes ⌈(c0 + c1s mod Q)/∆⌋. For correctness of decryption, we require
that ‖∆m + e‖∞ < Q/2. We denote the set of CKKS ciphertexts, under some fixed s and χ, as
CKKSs(m)∆,Q ⊂ R2

Q.

The flexibility in choosing ∆, together with ciphertext packing, allows CKKS encryption to encrypt
fixed-point approximations of numbers. Next, we describe the analogous noise-management technique in
CKKS to BGV’s modulus switching.

Definition 2.5 ([CKKS17]). Given a CKKS ciphertext ct ∈ CKKSs(m)∆,Q with a ciphertext modulus
Q = Q′D, CKKS rescaling is the following operation:

ct
′ ← ⌈(Q′/Q) · ct⌋ ∈ R2

Q′ ,

where multiplication is done overQ. We use CKKS.Rescale(ct)Q→Q′ as shorthand for the above operation.

Rescaling and modulus switching are the nearly same operation, but the rounding factor in BGV has
entries as large as ±p/2 wheres the rounding factor in CKKS has smaller entries in [±1/2]. Next, we
give the change in ciphertext noise under the infinity metric of the coefficients.

Lemma 2.2 ([CKKS17]). Let ct ∈ CKKSs(m)∆,Q be a CKKS ciphertext satisfying

‖c0 + c1s mod Q‖∞ ≤ Q/2−D(N‖s‖∞ + 1)/2

and let Q = Q′D. Then, the operation, ct′ ← CKKS.Rescale(ct)Q→Q′ ∈ R2
Q′ , is a CKKS encryption,

ct′ ∈ CKKSs(m)∆/D,Q′. Furthermore, if the error term e in ct = (as + ∆m + e,−a) has norm ‖e‖∞,
then ct′ has an error norm ‖e′‖∞ with norm at most ‖e‖∞/D + (N‖s‖∞ + 1)/2.

6

It is easy to see that if ct satisfies

‖c0 + c1s mod Q‖∞ ≤ Q/2−D(N‖s‖∞ + 1)/2,

then you can always decrypt after rescaling. The same holds true for BGV modulus-switching if the
input ciphertext satisfies

‖c0 + c1s mod Q‖∞ ≤ Q/2− pD(N‖s‖∞ + 1)/2.

Homomorphic operations. Adding and multiplying ciphertexts in BGV and CKKS are given by
the following simple operations: if ct = (c0, c1) ∈ BGVs(m)p,Q and ct′ = (c′0, c

′
1) ∈ BGVs(m′)p,Q, then

addition over R2
Q (ct + ct′) gives a ciphertext in BGVs(m + m′)p,Q. We can multiply a BGV (CKKS)

ciphertext by a plaintext polynomial α ∈ Rp (α ∈ R) by simply returning ct ← α · ct ∈ R2
Q. It is easy

to see how this increases the noise from ‖e‖∞ to ‖α‖∞‖e‖∞. Multiplying BGV or CKKS ciphertexts is
given by (d0, d1, d2) = (c0c

′
0, c0c

′
1 + c′0c1, c1c

′
1) ∈ R3

Q. In BGV, we get the following:

(c0 + c1s)(c
′
0 + c′1s) = c0c

′
0 + s(c0c

′
1 + c′0c1) + s2c1c

′
1

= p(pee′ + em′ + e′m) +mm′

= mm′ mod p.

We have the following analogous equations for multiplying two CKKS ciphertexts:

(c0 + c1s)(c
′
0 + c′1s) = c0c

′
0 + s(c0c

′
1 + c′0c1) + s2c1c

′
1

= ∆2mm′ + (∆me′ +∆m′e+ ee′).

Therefore, we “re-linearize” the ciphertext after multiplication with a key-switching operation to get
a ciphertext represented with two polynomials again in RQ encrypting mm′. For simplicity, we use
the Gentry-Halevi-Smart method [GHS12c] for relinearization: The relinearization key is an RLWE
encryption of s2 under the original key s under a larger modulus, Q′ = PQ where Q is the largest
modulus allowed for ciphertexts. That is, the evaluation key is evk := (−as+Ps2+pe, a) ∈ R2

P ·Q. Then,
we relinearize (d0, d1, d2) by returning

(d0, d1) + BGV.ModSwitch(d2 · evk)PQ→Q.

For CKKS, we have the same operations but the evaluation key does not have its RLWE error scaled by
p: evk := (−as+ Ps2 + e, a) ∈ R2

PQ.

See [BGV12, GHS12b, CKKS17] for the full details of the BGV and CKKS schemes.

2.2 Useful Lemmas

Here we list some useful lemmas used throughout the paper. First, we list a core lemma to the state of
the art in BGV bootstrapping’s digit extraction procedure. We list the case simplified to the plaintext
space being a prime p 6= 2.

Lemma 2.3 ([HS15]). Let p > 1, r ≥ 1, and q̃ = pr + 1 be integers with p being an odd prime. Let z be
an integer such that |z/q| + |[z]q | < (q − 1)/2. Then,

[z]q = z〈0〉 − z〈r〉 mod p.

Next, we list a lemma which summarizes the complexity to perform homomorphic digit extraction
in BFV and BGV. Digit extraction is a crucial step in these schemes’ state-of-the-art bootstrapping
algorithms.

Lemma 2.4 ([CH18]). Let p be prime, v < e be positive integers, u be an integer input modulo pe with
digits

u = u〈e− 1, . . . , 0〉 =
e−1∑

i=0

uip
i.

Then, there is an algorithm with
√
2pev multiplications and arithmetic depth v log p+ log e which returns

u〈e− 1, . . . , v〉 =
e−1∑

i=v

u〈i〉pi.

7

2.3 Bootstrapping Circuits for BGV and CKKS

Here we describe the state of the art in BGV (BFV) and CKKS bootstrapping. The linear portion of the
RLWE decryption function is c0 + c1s mod q for both BGV and CKKS. However, BGV further performs
a modulo p operation, for plaintext p coprime to q, so

m = (c0 + c1s mod q) mod p = (m+ pe) mod p.

CKKS takes a ciphertext at the lowest level, (c0, c1) ∈ R2
q just like BGV, but implicitly treats the

ciphertext as a high level ciphertext in R2
Q. Then,

c0 + c1s mod q = ∆m+ e+ Iq

for some small polynomial I = I(X) ∈ R. Therefore, the majority of CKKS bootstrapping is spent
computing the y 7→ y mod q homomorphically

Both CKKS and BGV use plaintext packing which enables SIMD arithmetic. CKKS packing is
given by the canonical embedding modulo complex conjugation: a(X) ∈ R can be represented by
(a(δ), a(δi1), . . . , a(δiN/2−1)) ∈ CN/2 where δ is a complex root of XN + 1 and i1, . . . , iN/2−1 are repre-
sentatives of Z∗

2N /{±1}. BGV ciphertext packing is given by the analogous representation modulo p:
(a(ζk1), a(ζk2), . . . , a(ζkj)) ∈ F

j

pd
where ζ ∈ Zp is a root of XN + 1 mod p, d is the order of p in Z∗

2N ,

and {ζkj } are coset representatives of Z∗
2N /〈p〉 [HS20]. Switching between coefficient reprensetation and

these evaluation representations is done by linear transformations over C and Zp, respectively. Both
can be performed homomorphically on a ciphertext, where the former is approximate. These linear
transformations are a key step in bootstrapping and can be evaluated with constant multiplicative depth
[HS14a, CHK+18].

BGV. In more detail, BGV bootstrapping is given by:

1. Modulus-switch to a special ciphertext modulus of the form q̃ = pr + 1 [HS15].

2. Perform a homomorphic inner-product with an encrypted version of the secret key at the highest
level (also called the bootstrapping hint). Here, the input ciphertext is treated as a plaintext to
the bootstrapping hint.

3. Unpack the ciphertext with a homomorphic linear transformation (constant depth, but time-
intensive). This moves the ciphertext coefficients to the ciphertext slots. Depending on parameters,
these values may require multiple ciphertexts.

4. Homomorphically compute the function x 7→ (x mod q̃) mod p via the state-of-the-art digit extrac-
tion polynomials [CH18].

5. Repack the ciphertext with the inverse of the homomorphic linear transformation from the second
step above with respect to the smaller, original plaintext modulus p.

See [GV22] for more details and the state of the art in BGV and BFV bootstrapping.

CKKS. For CKKS, we perform the following:

1. Treat the ciphertext as a larger modulus ciphertext (Q≫ q).

2. Unpack the ciphertext with a homomorphic linear transformation. This moves the coefficients into
the plaintext slots. If the ciphertext is fully packed, this will need to output 2 ciphertexts to store
the N coefficients. If ≤ N/4 slots are used, then we can fit all the coefficients in the slots of a single
ciphertext. See [CHK+18] for more details. This step is referred to as CoeffsToSlots.

3. Compute an approximation of the y 7→ y mod q homomorphically ([CHK+18, CCS19, HK20,
LLL+21, JM20, JM22, LLK+22]).

4. Re-pack the ciphertext with a homomorphic linear transformation. This step is referred to as
SlotsToCoeffs.

Another optimization in CKKS bootstrapping was recently given in [BCC+22] where they treat boot-
strapping as a black box and bootstrap twice in order to reduce the error induced strictly from bootstrap-
ping. Recently, [KPK+22] showed how to save a few ciphertext levels in the overall CKKS bootstrapping
procedure by computing the EvalRound function homomorphically instead of EvalMod.

8

3 Homomorphic Scheme-Switching

In this section, we define variants of scheme-switching oracles. First, we define weak scheme-switching
oracles. A weak scheme-switching oracle takes a CKKS (resp. BGV) ciphertext encrypting a ring
polynomial m(X) and outputs a BGV (resp. CKKS) ciphertext encrypting the same ring polynomial
m(X). We call the scheme-switching oracles weak because they fix the encrypted message in its coefficient
form, instead of the evaluation representation (slots), and do not handle the fact that BGV and CKKS
have different message encodings. In other words, we would still have to call the CKKS (resp. BGV)
slots-to-coefficients function before calling the oracle and re-pack the BGV ciphertext homomorphically
after calling the oracle. Next, we define strong scheme-switching oracles which switch packed ciphertexts.
We conclude with showing how to transform a weak oracle into a strong oracle with homomorphic linear
transformations.

3.1 Weak Scheme-Switching Oracles

Here we define two weak scheme-switching oracles needed for our main result: one that takes a BGV
ciphertext encrypting some message polynomial m(X) and outputs a CKKS ciphertext for m(X) (with
respect to some scaling factor ∆) and another which takes a CKKS ciphertext encrypting some message
polynomial m(X) (with respect to some scaling factor ∆) and outputs a BGV ciphertext encrypting
m(X). Ideally, these oracles are black boxes parameterized by BGV and CKKS parameters which have
the same functionality as decrypting a BGV (resp. CKKS) ciphertext and re-encrypting the message
polynomial in CKKS (resp. BGV) without direct access to the secret key.

Regarding noise and ciphertext moduli, these oracles potentially lower the quality (i.e., the noise
magnitude to modulus ratio) of the ciphertexts they convert, just as a real FHE computation would. We
have the oracles take as input a ciphertext with noise from an error distribution χin and return a cipher-
text with noise from an error distribution χ. Note that an oracle returning a ciphertext with a smaller
modulus and the same noise magnitude as the input is analogous to an oracle returning a ciphertext with
the same ciphertext modulus but with a larger noise magnitude since we can always modulus-switch or
rescale the oracle’s output without the secret key.

First, we define the weak scheme-switching oracle from BGV to CKKS:

Definition 3.1. Let OB →֒C(ctin; p,∆, Q,Q′, χin, χ) denote the BGV-to-CKKS oracle that takes as input
a BGV ciphertext ctin = (c0, c1) encrypting some m, i.e., c0 + c1s mod Q = m+ pe for error distributed
as e ∼ χin, and is parameterized by a BGV plaintext modulus p ∈ Z+, a CKKS scaling factor ∆, an
input ciphertext modulus Q, an output ciphertext modulus Q′, an input noise distribution χin, and an
output noise distribution χ, potentially a randomized function of χin, χ = f(χin). The oracle returns a
CKKS encryption of m, ctout = (c′0, c

′
1) ∈ R2

Q′ , i.e., c′0 + c′1s mod Q′ = ∆m+ eχ, for a potentially smaller
modulus Q′ ≤ Q and an error eχ, where eχ = f(e), under the same secret key as the input ciphertext.

Observe that since we allow f to be a randomized function in the above definition, Def. 3.1 captures
instantiations of the oracle where χ is independent of χin, and f simply ignores the input noise distribu-
tion χin. However, by defining the oracle in this manner, we also capture situations where χ is dependent
on χin, which is also possible depending on the oracle instantiation. The other scheme-switching oracles
in this paper are defined analogously for the same reason.

Next, we define the analogous oracle for switching from CKKS to BGV.

Definition 3.2. Let OC →֒B(ctin;∆, p,Q,Q′, χin, χ) denote the CKKS-to-BGV oracle that takes as input
a CKKS ciphertext ctin = (c0, c1) ∈ R2

Q encrypting some m, i.e., c0 + c1s mod Q = ∆m + e for error
distributed as e ∼ χin, a CKKS scaling factor ∆, and is parameterized by a a BGV plaintext modulus
p ∈ Z+, an input ciphertext modulus Q, an output ciphertext modulus Q′, an input noise distribution
χin, and an output noise distribution χ, potentially a randomized function of χin, χ = f(χin). The oracle
returns a BGV encryption of m, ctout = (c′0, c

′
1) ∈ R2

Q′ where c′0+c′1s mod Q′ = m+peχ, for a potentially
smaller modulus Q′ ≤ Q and an error eχ, where eχ = f(e), under the same secret key as the input
ciphertext.

9

Observe that in order to preserve m(X), the oracles must be called with appropriate parameters. For
example, when calling OB →֒C , if ‖eχ‖∞ > ∆, then the least significant bits of m(X) will be destroyed by
the error (we would only have an approximation of m(X)). This is commonplace in CKKS encryption
and why CKKS is often referred to as an “approximate” FHE scheme. When calling OC →֒B , the returned
ciphertext is a BGV encryption of m(X) mod p. Thus, the higher-order bits of the coefficients of m(X)
will be lost if their magnitude is larger than p/2.

3.2 Strong Scheme-Switching Oracles

Here we discuss strong scheme-switching oracles, which take packed ciphertexts as input and return a
packed ciphertext in another SIMD scheme. First, we define strong scheme-switching oracles. Then,
we show how to transform a weak scheme-switching oracle into a strong one via homomorphic linear
transformations.

Recall the BGV plaintext encoding in its simplest form, where p is a prime with p = 1 mod 2N .
Here, the RLWE plaintext space is Zp[X]/(XN + 1), and XN + 1 splits modulo p. This means that
Zp[X]/(XN + 1) ∼= ZN

p by evaluating a polynomial at the primitive roots of unity modulo p via the
discrete Fourier transform (DFT) over the field. Let D denote this matrix. Then, given an input vector
v ∈ ZN

p , one packs it into a polynomial by treating it as the evaluation of some polynomial over the
roots of unity and recovers the polynomial by taking the inverse modulo p: m(X) := D−1v. In general,
the cyclotomic polynomial might not split modulo p, but it will factor into degree k polynomials. Then,
the plaintext space is Fℓ

pk where N = k · ℓ, and the packing is similar. See Appendix C of [GHS12b]

or [HS20] for the full details. Given a vector v ∈ ZN
p , we denote the BGV encoding algorithm as

m(X) = encodeBGV(v) with m(X) ∈ Rp. The inverse is denoted by v = decodeBGV(m(X)).

CKKS packing is done analogously but with the primitive complex roots of unity. Here, the roots
of XN + 1 over C are all N primitive roots of unity of order 2N . Evaluating a polynomial at all of
these roots leads to an element in the conjugate space H = {z = (zj)j∈Z

∗

2N
: zj = z−j} ⊂ CN where

one half of the vector z is the conjugate of the other half and Z∗
2N denotes the unit group of Z2N . Call

this map τ . CKKS encoding only uses one half of these vectors by projecting down to CN/2. Call this
projection π. CKKS encoding is the inverse of this process: given a vector v ∈ CN/2, take the inverse
DFT corresponding to the projected portion of the symmetric space H. Since this only gives us an
element in R[X]/(XN +1), CKKS encoding scales and rounds this element to R = Z[X]/(XN +1). This
is done in the canonical embedding space H by scaling up by some scaling factor ∆ and rounding to
the ring R: m(X) = ⌊τ−1(∆π−1(v))⌉ where the projection π is invertible on the image of H. Further,
we often write the scaled CKKS message as ∆m(X) by linearity and since we can add the rounding
error into the RLWE error. Representing the message as ∆m(X) helps gauge the number of bits left for
homomorphic operations, roughly log(Q)− log(∆) for small m. Given a vector v ∈ CN/2, we denote the
CKKS encoding algorithm as m(X) = encodeCKKS(v,∆), m(X) ∈ R. The (lossy) inverse is denoted by
v′ = decodeCKKS(m(X),∆).

Given a BGV or CKKS ciphertext encrypting a packed polynomial, one can homomorphically rotate
the slots by performing a field automorphism σ to the ciphertext. For example, if ct = (c0, c1) ∈ R2

Q is
a BGV ciphertext encrypting m(X) = encodeBGV(v), then (σi(c0), σi(c1)) encrypts

m′(X) = σi(m) = encodeBGV((vi, vi+1, . . . , vN−1−i mod N))

under the secret key σi(s). That is, σi is the Galois automorphism that cyclically shifts the vector by
i positions. We then key-switch back to a ciphertext encrypted under s using an operation similar to
relinearization.(Relinearization is a special case of key-switching.)

Now consider a strong homomorphic scheme-switching algorithm. Given a BGV ciphertext (as+pe+
m,−a) where m = m(X) = encodeBGV(v) encodes N elements in Zp, the goal is to switch to either one or
two packed CKKS ciphertexts encrypting the elements of v. We say potentially two ciphertexts since we
expect applications to use BGV for exact multiplication before overflow modulo p and the spaces C and
F2
p are incompatible in terms of arithmetic operations. For simplicity, assume we want to pack them into

one CKKS ciphertext. Then, given (as+ pe+m,−a), the output is a ciphertext (a′s + e′ +∆m′,−a′)

10

where m′ = m′(X) = encodeCKKS(v,∆). This yields the following definitions.

We denote ℜ(y) and ℑ(y) as the respective real and imaginary part of a complex number, y ∈ C,
and ℜ(y),ℑ(y) as the function applied component-wise to a vector y ∈ Cm. We define the strong
scheme-switching oracles below:

Definition 3.3. Let Ostrong
B →֒C(ctin; p,∆, Q,Q′, χin, χ) denote the strong BGV-to-CKKS oracle that takes

as input a BGV ciphertext ctin = (c0, c1) encrypting some m, i.e., c0 + c1s mod Q = m + pe for m =
m(X) = encodeBGV(v), v ∈ ZN

p with error distributed as e ∼ χin, and is parameterized by a BGV
plaintext modulus p ∈ Z+, a CKKS scaling factor ∆, an input ciphertext modulusQ, an output ciphertext
modulus Q′, an input noise distribution χin, and an output noise distribution χ, potentially a randomized
function of χin, χ = f(χin). The oracle returns a CKKS encryption of m, ctout = (c′0, c

′
1) ∈ R2

Q′ , i.e.,
c′0 + c′1s mod Q′ = ∆m′ + eχ where m′ = encodeCKKS(v,∆)/∆, for a potentially smaller modulus Q′ ≤ Q
and an error eχ, where eχ = f(e), under the same secret key as the input ciphertext.

Definition 3.4. Let Ostrong
C →֒B(ctin;∆, p,Q,Q′, χin, χ) denote the CKKS-to-BGV oracle that takes as input

a CKKS ciphertext ctin = (c0, c1) ∈ R2
Q encrypting some m, i.e., c0 + c1s mod Q = ∆m + e for m =

m(X) = encodeCKKS(v,∆)/∆, v ∈ CN/2 with error distributed as e ∼ χin, a CKKS scaling factor
∆, and is parameterized by a a BGV plaintext modulus p ∈ Z+, an input ciphertext modulus Q,
an output ciphertext modulus Q′, an input noise distribution χin, and an output noise distribution χ,
potentially a randomized function of χin, χ = f(χin). The oracle returns a BGV encryption of m, i.e.,
ctout = (c′0, c

′
1) ∈ R2

Q′ where c′0+c′1s mod Q′ = m′+peχ withm′ = encodeBGV(v
′) where v′ = (ℜ(v),ℑ(v)),

for a potentially smaller modulus Q′ ≤ Q and an error eχ, where eχ = f(e), under the same secret key
as the input ciphertext.

Next, we show how to take a weak scheme-switcher and transform it into a strong scheme-switcher
using homomorphic linear transformations. We will use the following two lemmas on homomorphically
encoding and decoding in CKKS and BGV. The following algorithms/lemmas are given in terms of
minimal plaintext-ciphertext depth for simplicity. Note, homomorphically applying the BGV and CKKS
encoding/decoding algorithms can be done with homomorphic linear transformations where the matrix
is stored as plaintexts polynomials. In the case of CKKS, this is an approximate linear transformation
due to the CKKS encoding function. We summarize this in Lemmas 3.1 and 3.2 below.

Lemma 3.1 ([HS14a]). Given a BGV ciphertext ct = (c0, c1) ∈ R2
Q, c0 + c1s = m + pe for m(X) =

encodeBGV(v), v ∈ ZN
p , together with its public evaluation key evk, one can homomorphically transform

ct into a BGV ciphertext ct′, under the same secret key, encrypting v in the coefficients of m′(X), in a
plaintext-ciphertext multiplicative depth one circuit and N/2 ciphertext rotations.

Lemma 3.2 (Algorithm 1 in [CHK+18]). Given a CKKS ciphertext ct = (c0, c1) ∈ R2
Q, c0 + c1s =

∆m+ e for m(X) = encodeCKKS(v,∆)/∆, v ∈ CN/2, together with its public evaluation key evk, one can
homomorphically transform ct into a CKKS ciphertext ct′ ∈ R2

Q′ , under the same secret key, encrypting v

in the coefficients of m′(X), in a plaintext-ciphertext multiplicative depth one circuit and N/2 ciphertext
rotations. The resulting ciphertext modulus Q′ ≤ Q depends on the precision to which this approximate
computation is performed, which a more precise computation resulting in ct′ having a smaller Q′.

See Chen et al. [CCS19] or Han et al. [HHC19] for a faster algorithm for homomorphic encoding
and decoding using an FFT-like algorithm with a deeper circuit. Further efficiency optimizations can
be found in [BMTPH21]. The algorithms in Lemmas 3.1 and 3.2 encode each linear transformation’s
matrix by N (resp., N/2) diagonals as plaintext polynomials and apply the matrix-vector multiplication
homomorphically. See [HS14a, CHK+18] for more details.

If the input ciphertext in Lemma 3.1 (resp., Lemma 3.2) has distribution χin, then denote the output
distribution as TB(χin) (resp., TC(χin)). In practice, the noise growth from applying the homomorphic
linear transformations is relatively small, but the homomorphic computation involved is time-intensive.

We now show how to take a weak scheme-switching oracle and turn it into a strong scheme-switching
oracle at the cost of two levels of plaintext-ciphertext multiplicative depth.

Theorem 3. Given a weak scheme-switching oracle from BGV to CKKS, OB →֒C(ctin; p,∆, Q,Q′, TB(χin), χ),
there exists a strong scheme-switching oracle from BGV to CKKS, Ostrong

B →֒C(ctin; p,∆, Q,Q′′, χin, TC(χ)),
where Q′′ is related to Q′ by the instantiation of Lemma 3.2.

11

Proof. Let ct′′ = (c′′0 , c
′′
1) ∈ R2

Q be a BGV ciphertext where c′′0 + c′′1s = m′′ + pe′′ and m′′ = m′′(X) =
encodeBGV(v) for some vector v ∈ ZN

p . Let χ′′ denote the input error’s distribution, e′′ ∼ χ′′. Compute
the following:

1. Run the algorithm in Lemma 3.1 to get a ciphertext ct′ = (c′0, c
′
1) where c

′
0+c′1s = m′+pe′ encrypts

v as the coefficients in m′: m′(X) = v0 + v1X + · · ·+ vN−1X
N−1. Denote the error distribution of

ct′ by TB(χ
′′).

2. Call the weak scheme-switching oracle on ct′,

ĉt← OB →֒C(ct
′; p,∆, Q,Q′, TB(χ′′), χ),

to get ĉt = (ĉ0, ĉ1) ∈ R2
Q′ where ĉ0 + ĉ1s = ∆m′ + ê.

3. Let v′ ∈ CN/2 denote v’s entries stored as a complex vector. Run the algorithm in Lemma 3.2 to
get ct = (c0, c1) ∈ R2

Q′′ where c0 + c1s = ∆m + e and m = m(X) = encodeCKKS(v
′,∆)/∆. The

error distribution of e is TC(χ).

�

Theorem 4. Given a weak scheme-switching oracle from CKKS to BGV, OC →֒B(ctin;∆, p,Q′, Q′′, TC(χin), χ),
there exists a strong scheme-switching oracle from CKKS to BGV, Ostrong

C →֒B(ctin;∆, p,Q,Q′′, χin, TB(χ)),
where Q′ is related to Q by the instantiation of Lemma 3.2.

Proof. The proof is analogous to that of Theorem 3. �

4 Bootstrapping Via A Weak Scheme-Switching Oracle

In this section, we show our main results that one can bootstrap a BGV (resp., CKKS) ciphertext using
a single call to a weak scheme-switching oracle without computing homomorphic linear transformations.
Recall that since BFV ciphertexts can be simply converted to BGV ciphertexts via scalar multiplica-
tion [AP13], our result for BGV also applies to BFV.

We show two directions:

1. Using a BGV to CKKS weak scheme-switching oracle, one can bootstrap a CKKS ciphertext using
one oracle query and

2. Using a CKKS to BGV weak scheme-switching oracle, one can bootstrap a BGV ciphertext using
one oracle query.

To bootstrap a CKKS ciphertext, we only need to perform one CKKS rescaling in addition to the oracle
call. To bootstrap a BGV ciphertext, we only need to perform a homomorphic inner product and one
BGV modulus-switching in addition to the oracle call. Thus, we provide powerful evidence that scheme-
switching is at least as hard as bootstrapping and improvements to scheme-switching should lead to
improvements to bootstrapping.

4.1 Bootstrapping in CKKS from a BGV-to-CKKS Oracle

We begin by showing that a weak BGV-to-CKKS scheme-switching oracle allows one to bootstrap a
CKKS ciphertext immediately. As mentioned above, this allows the user to bootstrap a CKKS ciphertext
without the costly coefficients-to-slots homomorphic linear transformation or its inverse. In the reduction,
we are calling OB →֒C with a BGV plaintext modulus equal to the input ciphertext modulus q. We
emphasize that treating the lowest level ciphertext modulus as a plaintext modulus is common in BGV
bootstrapping. See [GHS12a, HS15] for more details.

Theorem 5. Fix some CKKS parameters: R = Z[X]/(XN +1), ∆,∆in positive integers, and q ≪ Q′′ ≤
Q′ ≤ Q as ciphertext moduli with q | ∆Q′′ = Q′ | Q. Let the ciphertext ct ∈ CKKSs(m)∆in,q be the input.
Then, the existence of a BGV to CKKS weak scheme-switching oracle, OB →֒C(· ; q,∆, Q,Q′, χ′, χ),
implies the existence of a CKKS bootstrapping algorithm where the time to bootstrap is the time complexity
of the oracle plus the time complexity to rescale from Q′ to Q′/∆, and the output ciphertext has noise at

most ‖e‖∞ +
‖eχ‖∞

∆
+ (N‖s‖∞ + 1)/2, where e is the error term of ct and eχ is the error term in the

output of OB →֒C .

12

Proof. Let ct = (c0, c1) ∈ R2
q be the input ciphertext in CKKSs(m)∆in,q . That is, the ciphertext satisfies

c0+c1s mod q = ∆inm+e. By embedding c0, c1 into RQ, it follows that this new ciphertext with modulus
Q satisfies c0 + c1s mod Q = ∆inm + e + I(X)q where I(X) is an integer polynomial that depends on
the Hamming weight and norm of the secret key, s ∈ R. Note that I(X) · q ≪ Q for common parameter
settings. Then, the reduction simply calls the weak scheme-switching oracle with BGV plaintext p = q,
where χ′ is the implicit error distribution of viewing ct as a BGV ciphertext in the above manner.

Let
ct

(1) = OB →֒C(ct; q,∆, Q,Q′, χ′, χ).

Notice that ct(1) ∈ R2
Q′ satisfies

c
(1)
0 + c

(1)
1 s mod Q′ = ∆(∆inm+ e) + eχ

where eχ ∼ χ. Therefore, we simply call the CKKS rescale function and return the result ct(2) ←CKKS.Rescale(ct(1),∆).

The output ct(2) ∈ R2
Q′′ , Q′′ = Q′/∆, now satisfies c

(2)
0 + c

(2)
1 s mod Q′′ = ∆inm + e′′ with ‖e′′‖∞ ≤

‖e‖∞+
‖eχ‖∞

∆
+(N‖s‖∞+1)/2 by the rescaling lemma, Lemma 2.2. An illustration of the proof is given

in Figure 2. �

4.2 Bootstrapping in BGV from a CKKS-to-BGV Oracle

In this subsection, we show how to use a weak CKKS-to-BGV scheme-switching oracle to bootstrap
a BGV ciphertext. At a high level, bootstrapping a BGV ciphertext consists of linear operations and
then digit extraction. The digit extraction step involves taking a BGV encryption of a message z with
plaintext modulus pr+1 and computing a BGV encryption of the message z〈r〉 with plaintext modulus
p, where z〈r〉 is the rth digit in the base-p decomposition of z. By viewing the BGV encryption of z as
a CKKS encryption with ∆ = pr, the CKKS-to-BGV oracle will output a BGV encryption of z〈r〉 with
plaintext modulus p.

Theorem 6 below uses the same bootstrapping hint as the state-of-the-art BGV bootstrapping al-
gorithm. That is, if we wish to refresh a ciphertext ct = (c0, c1) ∈ BGVs(m)p,q to a larger modulus
Q, we first modulus-switch to a smaller modulus of a special form, q̃ = pr + 1, yielding a ciphertext
in BGVs(m)p,q̃. Then, we use a bootstrapping hint, an encryption of the secret key under the target
ciphertext modulus and a larger plaintext modulus BGVs(s)pr+1,Q, to get the encrypted inner product in
the larger ciphertext space BGVs(c0 + c1s)pr+1,Q. This is done by treating the ciphertext in BGVs(m)p,q̃
as plaintext to the bootstrapping hint in BGVs(s)pr+1,Q. See Halevi and Shoup’s 2015 paper, [HS15], for
the full details.

Theorem 6. Fix some BGV parameters: R = Z[X]/(XN +1), p a prime, and q̃ = pr +1≪ Q′ ≤ Q are
ciphertext moduli. Let ct ∈ BGVs(m)p,q̃ be the input ciphertext and let hint = (h0, h1) ∈ BGVs(s)pr+1,Q be
a bootstrapping hint where s ∈ R is ct’s secret key. Then, the existence of a CKKS to BGV weak scheme-
switching oracle, OC →֒B(· ; ∆, p,Q,Q′, χ′, χ), implies the existence of a BGV bootstrapping algorithm
with time complexity that of the oracle plus the time complexity to modulus-switch from Q to Q′ and the
time complexity to perform a homomorphic inner product between ct and hint, where ct’s polynomials are

treated as plaintext to the hint. The output ciphertext has noise as most Q′

Q
q̃2‖ehint‖∞+(1+N‖s‖∞)/2+eχ,

where ehint is the noise of hint and eχ is the noise of the output of OC →֒B.

Proof. Let ct = (c0, c1) ∈ BGVs(m)p,q̃ be the input ciphertext and hint = (h0, h1) ∈ BGVs(s)pr+1,Q be
the bootstrapping hint for ct’s secret key, s ∈ R. The reduction is as follows.

1. First, perform the homomorphic inner product to get an encryption of z = 〈ct, (1, s)〉:

ct
(1) = c1 · hint+ (c0, 0) ∈ BGV

s(z)pr+1,Q.

2. Next, call the oracle on the resulting ciphertext with ∆ = pr, where χ′ is the implicit error distri-
bution of ct(1) when viewed as a CKKS ciphertext:

ct
(2) ← OC →֒B(ct(1); pr, p,Q,Q′, χ′, χ).

13

Input ct ∈ R2
q :

log2 q

m e

(1) Treat input as ct ∈ R2

Q with Q ≫ q.

log2 Q

I m e

(2) Call the BGV to CKKS oracle with BGV plaintext p = q, or q · I = pe.

log2 Q
′

m e e′

(3) The oracle returns a CKKS ciphertext with ∆′(∆ · m + e) + e′ as its en-
coded message and error, and ciphertext modulus Q′ ≤ Q. Lastly, we rescale
to a new modulus Q′′ = Q′/∆′. log2 Q

′′

m e′′

Figure 2: CKKS bootstrapping using a BGV to CKKS weak scheme-switching oracle. Our input is a CKKS
ciphertext with small modulus q. We call the weak scheme-switching oracle on the input ciphertext with
BGV plaintext modulus equal to the input CKKS ciphertext modulus.

3. View ct(1) as a ciphertext with plaintext modulus p and mod switch toQ′, ct(3) ←BGV.ModReduce(ct(1), Q,Q′),
and return the difference

ctout = ct
(2) − ct

(3) mod Q′ ∈ BGV
s(m)p,Q′ .

Correctness is as follows. Recall, the operation (z mod q̃) mod p is z〈0〉−z〈r〉 mod p by Lemma 2.3. The
oracle treats the input ct as a CKKS ciphertext where the least significant digit is in the r-th position
(the lower digits are considered as part of the error). Then, we treat ct(1) as implicitly encrypting z〈0〉
modulo p, and the result follows.

To analyze the error associated with ctout, let ehint denote the error associated with the ciphertext
hint. It follows that ‖e(1)‖∞ ≤ q̃‖ehint‖∞. ct(2) has associated error eχ given by the oracle and plaintext

modulus p. By Lemma 2.1, ‖e(3)‖∞ ≤ Q′

Q
q̃2‖ehint‖∞+(1+N‖s‖∞)/2. Note that the correctness condition

for Lemma 2.1 holds since q̃2‖ehint‖∞ ≪ Q/2 for reasonable parameters. Thus,

‖eout‖∞ ≤ Q′

Q
q̃2‖ehint‖∞ + (1 +N‖s‖∞)/2 + eχ.

�

We note that the above proofs adapt easily to the case where the BGV plaintext modulus is a power
of p. See Figure 2 and Figure 3 for pictorial illustrations representing the reductions in Theorem 5 and
Theorem 6.

4.3 Switching Between Schemes Using Bootstrapping

Here, for completeness, we briefly sketch how to switch between schemes using bootstrapping. The main
idea is that a coefficient-packed BFV ciphertext can be seen as an “exhausted” coefficient-packed CKKS
ciphertext and vice versa. If we have an algorithm that bootstraps a coefficient-packed CKKS ciphertext,

14

Input ct ∈ R2

q̃ together with a bootstrapping hint hint ∈ BGV
s(s)Q,pr+1 where

s is the secret key encrypting ct and q̃ = pr + 1:
log2 q̃

e mlog2 Q

ehint s

(1) Perform the homomorphic inner product where we treat the input ci-
phetext as two plaintext polynomials to the boostrapping hint. That is,
c1 · hint+ (c0, 0) ∈ R2

Q where ct = (c0, c1).

z〈0〉
z〈r〉

e1 z = c0 + c1s

(2) Label the result as ctz〈0〉 since it encrypts z〈0〉 modulo p. Then feed the
CKKS to BGV oracle a copy of ctz〈0〉 but with ∆ := pr−1. Label the output
of the oracle as ctz〈r〉 since it encrypts z〈r〉. (Mod-switch ctz〈0〉 down to the
oracle’s outputted ciphertext modulus Q′ if needed.)

m0 = z〈0〉

e2 m0

m1 = z〈r〉

e3 m1

(3) Lastly, subtract ctz〈0〉 − ctz〈r〉 and mod-switch down to lower the noise.
We have that the result is a ciphertext in BGV

s(m)Q′′,p by Lemma 2.3.

e4 m

Figure 3: BGV bootstrapping using a CKKS to BGV weak scheme-switching oracle.

which is easily obtained from a SIMD-packed CKKS bootstrapping algorithm via homomorphic linear
transformations [HS18], then we can treat a coefficient-packed BFV ciphertext as a CKKS ciphertext
and bootstrap using the aforementioned algorithm. The output will be a CKKS ciphertext with the
inputted BFV ciphertext’s message as its plaintext polynomial. The other direction is analogous. We
can treat a coefficient-packed CKKS ciphertext as a coefficient-packed BFV ciphertext and use a BFV
bootstrapping algorithm to convert the inputted ciphertext to a BFV ciphertext. Lastly, we can convert
between BGV and BFV cheaply with a scalar multiplication [AP13]. This shows how to convert between
BGV/BFV and CKKS with bootstrapping.

5 Bootstrapping Via A Comparison Oracle

The SIMD FHE schemes discussed in this work are capable of natively evaluating arithmetic circuits
homomorphically in a SIMD fashion over an encrypted vector of plaintext values. However, there are
various functions, such as comparison, that are useful to compute for applications, but are not easily
expressible as an arithmetic circuit. Several prior works [CKK+19, CKK20, IZ21, LLKN21] have focused
on methods of computing comparison (and other related functions such as max/min and ReLU) in these
SIMD FHE schemes.

15

In this section, we explore the relative hardness of homomorphically evaluating the comparison func-
tion in these SIMD FHE schemes by showing how to bootstrap in these schemes using several calls to a
comparison oracle. In particular, we show how to bootstrap packed CKKS ciphertexts and thinly packed
BGV ciphertexts. At a high level, our comparison oracles (one for CKKS and one for BGV) will take as
input a ciphertext ct encrypting a vector of plaintext values (m1, . . . ,mt) and a value α and output a
new ciphertext ct′ that encrypts the value 1 in its i-th slot if mi ≥ α and 0 otherwise. We observe that
a comparison oracle only outputs the encryption of a single bit in each slot and, thus, it is much weaker
than the scheme-switching oracles in Section 3. In particular, we will have to make several calls to the
comparison oracle in order to bootstrap (as opposed to only a single call to the weak scheme-switching
oracles in Section 4). Moreover, we will also have to apply the homomorphic linear transformations
CoeffsToSlots and SlotsToCoeffs in order to bootstrap, which was not required previously when using the
weak scheme-switching oracles. While we focus on comparison in this section, our approach also extends
to related functions such as max/min and ReLU.

To see how a comparison oracle could be used to bootstrap, we will sketch the intuition for the CKKS
case as it is slightly simpler than the BGV case. Recall that CKKS bootstrapping begins by taking a
ciphertext ct ∈ R2

q and viewing it as a ciphertext with respect to the largest modulus Q. Viewed this
way, ct now decrypts to ∆m+e+ I(X)q, and thus, we now need to homomorphically compute the mod q
function on the coefficients of the encrypted polynomial. If we call the CoeffsToSlots homomorphic linear
transform, we can put the coefficients of this polynomial in the ciphertext slots. Let K denote an upper
bound on ‖I‖∞. Then, using logK calls to a comparison oracle, we can homomorphically compute the
mod q function to remove the Iq term. This is done by clearing one bit of I at a time starting from
the most significant bit by comparing to an appropriate power of 2 and subtracting the two ciphertexts.
Once we have homomorphically computed the mod q function, we apply the SlotsToCoeffs homomorphic
linear transform to finish bootstrapping.

5.1 Comparison Oracles

Here, we define the comparison oracles rigorously in the same manner as in Section 3. The oracles’
inputs are a ciphertext ct ∈ R2

Q and a scalar α. For CKKS, the comparison oracle is parameterized
by input and output scaling factors ∆,∆′, input and output ciphertext moduli Q,Q′, and output error
distribution χ. For BGV, the comparison oracle is parameterized by the plaintext modulus p, input and
output ciphertext moduli Q,Q′, and output error distribution χ. We omit the input error distribution
χin from the parameters of these oracles as it is clear from context. Recall from Section 3 that the output
error distribution χ is related to χin via a randomized function f that is determined by the instantiation
of the oracle.

Definition 5.1 (CKKS Comparison Oracle). LetO≥(ct, α;∆,∆′, Q,Q′, χ) denote the CKKS comparison
oracle that takes as input a ciphertext ct ∈ CKKSs(m)∆,Q ⊂ R2

Q that decrypts to ∆m+e = v and returns
ct′ ∈ CKKSs(m′)∆′,Q′ ⊂ R2

Q′ . The output ciphertext ct′ = (c′0, c
′
1) satisfies c

′
0+c′1s mod Q′ = ∆′m′+eχ =

v′ where v′ is a polynomial with Sloti(v
′) ≈ ∆′ if Sloti(v) ≥ ∆ ·α and Sloti(v

′) ≈ 0 otherwise and eχ ∼ χ.
The error in the approximation of each Sloti(v

′) is determined by the error polynomial eχ’s contribution
to the ith slot.

Definition 5.2 (BGV Comparison Oracle). Let O≥(ct, α; p,Q,Q′, χ) denote the BGV comparison oracle
that takes as input a ciphertext ct ∈ BGVs(m)p,Q ⊂ R2

Q and returns ct′ ∈ BGVs(m′)p,Q′ ⊂ R2
Q′ . The

output ciphertext ct′ = (c′0, c
′
1) satisfies c′0 + c′1s mod Q′ = m′ + peχ where m′ is a polynomial with

Sloti(m
′) = 1 if Sloti(m) ≥ α and Sloti(m

′) = 0 otherwise and eχ ∼ χ.

5.2 Bootstrapping in CKKS from Comparisons

We first show how to bootstrap a CKKS ciphertext using a CKKS comparison oracle. For ease of
exposition, we will focus on the case where the ciphertext moduli and scaling factors are powers of two.
We show the following theorem.

16

Theorem 7. Let R, Q, ∆ be CKKS parameters. Let ct = (c0, c1) ∈ R2
q be a CKKS ciphertext such that

c0 + c1s = ∆m+ e + I(X)q over the ring R with ‖I(X)‖∞ ≤ K. Then assuming the existence of a list
of CKKS comparison oracles O≥ from Definition 5.1, with parameters

O≥(ct
′
i−1,K/2i; q,K/2i−1 · q,Qi−1, Qi, χ)

satisfying Qi | Qi−1 for i = 1 to logK, there is a CKKS bootstrapping algorithm that makes log2 K calls
to the oracles together with the CoeffsToSlots and SlotsToCoeffs homomorphic linear transformations for
CKKS bootstrapping.

Proof. Let ct = (c0, c1) ∈ R2
q be the input ciphertext in CKKSs(m)∆,q. That is, the ciphertext satisfies

c0+ c1s mod q = ∆m+e. By embedding c0, c1 into RQ, it follows that this new ciphertext with modulus
Q satisfies c0 + c1s mod Q = ∆m+ e+ I(X)q where I(X) is an integer polynomial that depends on the
Hamming weight and norm of the secret key, s ∈ R. Note that I(X)·q ≪ Q for commonly used parameter
settings. Let K be an upper bound on the magnitude of a coefficient of I(X). WLOG, assume that K is
a power of 2. First, we run the CoeffsToSlots step of the CKKS bootstrapping procedure (see Sec. 2.3)
to obtain a ciphertext ct′ ∈ R2

Q′ that encrypts the coefficients of ∆m+ e+ I(X)q in its slots. Note that
if ct was a fully packed ciphertext, this would require two ciphertexts to store all the coefficients. For
simplicity, we will assume that ct is not fully packed so that the coefficients can all be encrypted in a
single ciphertext ct′.

Each coefficient of I(X) can be expressed as
∑logK−1

i=0 2i · Ii with Ii ∈ {0, 1}. Let ct′ = ct′0. For i = 1
to logK, call

O≥(ct
′
i−1,K/2i; q,K/2i−1 · q,Qi−1, Qi, χ)

to obtain cti with ciphertext modulus Qi. Then, mod down ct′i−1 to modulus Qi to obtain ct′′i−1. Set
ct′i = ct′′i−1 − cti.

Observe that ct′logK is a ciphertext with modulus QlogK that has the coefficients of ∆m + elogK in
its slots. Call SlotsToCoeffs to obtain a bootstrapped ciphertext. �

5.3 Bootstrapping in BGV from Comparisons

We now show how to bootstrap a BGV ciphertext using a BGV comparison oracle. We show the following
theorem.

Theorem 8. Let R, q, p be BGV parameters and let ct ∈ BGVs(m)p,q be an input ciphertext. Then, the
existence of oracles O≥(ct, α; p

r+1, Qi−1, Qi, χ), for Qi ≫ q, pr+1 < q, implies the existence of a BGV
bootstrapping algorithm that makes ⌈log p⌉ − 1 calls to the oracles and also computes a homomorphic
inner product and the homomorphic linear transformations CoeffsToSlots and SlotsToCoeffs for BGV
bootstrapping.

Proof. First, we calculate the homomorphic inner product with standard techniques: The input is a
BGV ciphertext ct ∈ BGVs(m)p,q, and we switch to the modulus q̃ = pr + 1,

ct
′ ← ModSwitch(ct, q̃).

Using the bootstrapping hint, hint ∈ BGVs(s)Q,pr+1 , calculate the homomorphic inner product

ct
′′ = c′1 · hint+ (c′0, 0) ∈ BGV

s(z)pr+1,Q.

Now we have a BGV ciphertext in BGVs(z)Q,pr+1 , and we can call the homomorphic linear trans-
formation CoeffsToSlots to move these coefficients to the slots modulo pr+1. Call this ciphertext ct0.
Notice that in each slot, we want to next extract the largest p-digit in z = prz〈r〉+pr−1(lowerdigits). Let
k = ⌈log2 p⌉. Now we use the oracle to extract

z〈r〉 =
K−1∑

i=0

2izri ,

17

for zri ∈ {0, 1}, bit-by-bit.

Initialize ctsum ← (0, 0). For i = 1, . . . , k − 1, let

ct
′
i ← O≥(cti−1, p

r · 2k−i; pr+1, Qi−1, Qi, χ)

and let cti = ModSwitch(cti−1, Qi) − (pr2k−i) · ct′i and ctsum ← 2k−i · ct′i +ModSwitch(ct′i, Qi). Finally,
ctsum is an encryption of z〈r〉 modulo p so we compute the ciphertext

ModSwitch(ctk−1, Qk−1)− ctsum

and then call the homomorphic linear transformation SlotsToCoeffs to move the slots modulo p to the
coefficients and return the resulting ciphertext.

Correctness follows from Lemma 2.3.

6 Conclusion

In this work, we provide strong evidence that homomorphic scheme-switching between the BGV/BFV
and CKKS SIMD FHE schemes is as hard as bootstrapping. We achieve this by showing how to boot-
strap both BGV/BFV and CKKS ciphertexts with a single call to such an algorithm (in fact, only a
weak scheme-switching algorithm that does not convert the differences in packings between the schemes)
without having to perform homomorphic linear transformations. In addition, we show how homomor-
phic comparisons are analogously powerful by bootstrapping with a few calls to a SIMD comparison
algorithm. The fact that we can bootstrap with one call to a weak scheme-switching oracle is surprising
since weak scheme-switching appears much simpler than bootstrapping.

References

[AdCY+23] Rashmi Agrawal, Leo de Castro, Guowei Yang, Chiraag Juvekar, Rabia Tugce Yazicigil,
Anantha P. Chandrakasan, Vinod Vaikuntanathan, and Ajay Joshi. FAB: an fpga-based
accelerator for bootstrappable fully homomorphic encryption. In HPCA, pages 882–895.
IEEE, 2023.

[AP13] Jacob Alperin-Sheriff and Chris Peikert. Practical bootstrapping in quasilinear time. In
CRYPTO (1), volume 8042 of Lecture Notes in Computer Science, pages 1–20. Springer,
2013.

[AS08] Frederik Armknecht and Ahmad-Reza Sadeghi. A new approach for algebraically homo-
morphic encryption. IACR Cryptol. ePrint Arch., page 422, 2008.

[BBB+22] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja Er-
abelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee, Zeyu Liu,
Daniele Micciancio, Ian Quah, Yuriy Polyakov, Saraswathy R.V., Kurt Rohloff, Jonathan
Saylor, Dmitriy Suponitsky, Matthew Triplett, Vinod Vaikuntanathan, and Vincent Zucca.
Openfhe: Open-source fully homomorphic encryption library. Cryptology ePrint Archive,
Paper 2022/915, 2022. https://eprint.iacr.org/2022/915.

[BCC+22] Youngjin Bae, Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Taekyung Kim.
Meta-bts: Bootstrapping precision beyond the limit. Cryptology ePrint Archive, Paper
2022/1167, 2022. To Appear in CCS 2022. https://eprint.iacr.org/2022/1167.

[BGGJ20] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev. CHIMERA: com-
bining ring-lwe-based fully homomorphic encryption schemes. J. Math. Cryptol., 14(1):316–
338, 2020.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In
TCC, volume 3378 of Lecture Notes in Computer Science, pages 325–341. Springer, 2005.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In ITCS, pages 309–325. ACM, 2012.

18

https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/1167

[BMTPH21] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-Pierre
Hubaux. Efficient Bootstrapping for Approximate Homomorphic Encryption with Non-
sparse Keys. In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryp-
tology – EUROCRYPT 2021, pages 587–617, Cham, 2021. Springer International Publish-
ing.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical
gapsvp. In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 868–886.
Springer, 2012.

[CCS19] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved bootstrapping for approximate ho-
momorphic encryption. In EUROCRYPT (2), volume 11477 of Lecture Notes in Computer
Science, pages 34–54. Springer, 2019.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In ASIACRYPT (1),
volume 10031 of Lecture Notes in Computer Science, pages 3–33, 2016.

[CH18] Hao Chen and Kyoohyung Han. Homomorphic lower digits removal and improved FHE
bootstrapping. In EUROCRYPT (1), volume 10820 of Lecture Notes in Computer Science,
pages 315–337. Springer, 2018.

[CHK+18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. Boot-
strapping for approximate homomorphic encryption. In EUROCRYPT (1), volume 10820
of Lecture Notes in Computer Science, pages 360–384. Springer, 2018.

[CKK+19] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun-Hee Lee, and Keewoo Lee. Numerical
method for comparison on homomorphically encrypted numbers. In Steven D. Galbraith
and Shiho Moriai, editors, Advances in Cryptology - ASIACRYPT 2019 - 25th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security,
Kobe, Japan, December 8-12, 2019, Proceedings, Part II, volume 11922 of Lecture Notes in
Computer Science, pages 415–445. Springer, 2019.

[CKK20] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Efficient homomorphic comparison
methods with optimal complexity. In Shiho Moriai and Huaxiong Wang, editors, Advances
in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and
Application of Cryptology and Information Security, Daejeon, South Korea, December 7-
11, 2020, Proceedings, Part II, volume 12492 of Lecture Notes in Computer Science, pages
221–256. Springer, 2020.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic encryption
for arithmetic of approximate numbers. In ASIACRYPT (1), volume 10624 of Lecture Notes
in Computer Science, pages 409–437. Springer, 2017.

[CLOT21] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Improved pro-
grammable bootstrapping with larger precision and efficient arithmetic circuits for TFHE.
In ASIACRYPT (3), volume 13092 of Lecture Notes in Computer Science, pages 670–699.
Springer, 2021.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption in less
than a second. In EUROCRYPT (1), volume 9056 of Lecture Notes in Computer Science,
pages 617–640. Springer, 2015.

[DMPS22] Nir Drucker, Guy Moshkowich, Tomer Pelleg, and Hayim Shaul. Bleach: Cleaning errors
in discrete computations over ckks. Cryptology ePrint Archive, Paper 2022/1298, 2022.
https://eprint.iacr.org/2022/1298.

[FK94] Michael Fellows and Neal Koblitz. Combinatorial cryptosystems galore! 1994.

[FSK+21] Axel Feldmann, Nikola Samardzic, Aleksandar Krastev, Srini Devadas, Ronald G. Dreslin-
ski, Karim Eldefrawy, Nicholas Genise, Chris Peikert, and Daniel Sánchez. F1: A fast and
programmable accelerator for fully homomorphic encryption (extended version). CoRR,
abs/2109.05371, 2021.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.
IACR Cryptol. ePrint Arch., page 144, 2012.

19

https://eprint.iacr.org/2022/1298

[GBP+22] Robin Geelen, Michiel Van Beirendonck, Hilder V. L. Pereira, Brian Huffman, Tynan
McAuley, Ben Selfridge, Daniel Wagner, Georgios Dimou, Ingrid Verbauwhede, Frederik
Vercauteren, and David W. Archer. BASALISC: flexible asynchronous hardware accelera-
tor for fully homomorphic encryption. IACR Cryptol. ePrint Arch., page 657, 2022.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. Diss. Stanford University, 2009.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178.
ACM, 2009.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Better bootstrapping in fully homomorphic
encryption. In Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog
overhead. In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 465–
482. Springer, 2012.

[GHS12c] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit.
In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 850–867. Springer,
2012.

[GV22] Robin Geelen and Frederik Vercauteren. Bootstrapping for BGV and BFV revisited. IACR
Cryptol. ePrint Arch., page 1363, 2022.

[HHC19] K. Han, M. Hhan, and J. H. Cheon. Improved Homomorphic Discrete Fourier Transforms
and FHE Bootstrapping. IEEE Access, 7:57361–57370, 2019.

[HK20] Kyoohyung Han and Dohyeong Ki. Better Bootstrapping for Approximate Homomorphic
Encryption. In Stanislaw Jarecki, editor, Topics in Cryptology – CT-RSA 2020, pages
364–390, Cham, 2020. Springer International Publishing.

[HPS19] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An improved RNS variant of the BFV
homomorphic encryption scheme. In CT-RSA, volume 11405 of Lecture Notes in Computer
Science, pages 83–105. Springer, 2019.

[HS14a] Shai Halevi and Victor Shoup. Algorithms in helib. In CRYPTO (1), volume 8616 of
Lecture Notes in Computer Science, pages 554–571. Springer, 2014.

[HS14b] Shai Halevi and Victor Shoup. Bootstrapping for helib. IACR Cryptol. ePrint Arch., page
873, 2014.

[HS15] Shai Halevi and Victor Shoup. Bootstrapping for helib. In EUROCRYPT (1), volume 9056
of Lecture Notes in Computer Science, pages 641–670. Springer, 2015.

[HS18] Shai Halevi and Victor Shoup. Faster homomorphic linear transformations in helib. In
CRYPTO (1), volume 10991 of Lecture Notes in Computer Science, pages 93–120. Springer,
2018.

[HS20] Shai Halevi and Victor Shoup. Design and implementation of helib: a homomorphic en-
cryption library. IACR Cryptol. ePrint Arch., page 1481, 2020.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In TCC,
volume 4392 of Lecture Notes in Computer Science, pages 575–594. Springer, 2007.

[IZ21] Ilia Iliashenko and Vincent Zucca. Faster homomorphic comparison operations for BGV
and BFV. Proc. Priv. Enhancing Technol., 2021(3):246–264, 2021.

[JM20] Charanjit S. Jutla and Nathan Manohar. Modular Lagrange Interpolation of the Mod Func-
tion for Bootstrapping of Approximate HE. Cryptology ePrint Archive, Report 2020/1355,
2020. https://eprint.iacr.org/2020/1355.

[JM22] Charanjit S. Jutla and Nathan Manohar. Sine series approximation of the mod function for
bootstrapping of approximate HE. In EUROCRYPT (1), volume 13275 of Lecture Notes
in Computer Science, pages 491–520. Springer, 2022.

[KDE+21] Andrey Kim, Maxim Deryabin, Jieun Eom, Rakyong Choi, Yongwoo Lee, Whan Ghang, and
Donghoon Yoo. General bootstrapping approach for rlwe-based homomorphic encryption.
IACR Cryptol. ePrint Arch., page 691, 2021.

20

https://eprint.iacr.org/2020/1355

[KPK+22] Seonghak Kim, Minji Park, Jaehyung Kim, Taekyung Kim, and Chohong Min. Evalround
algorithm in CKKS bootstrapping. In ASIACRYPT, 2022.

[KPZ21] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. Revisiting homomorphic encryption
schemes for finite fields. In ASIACRYPT (3), volume 13092 of Lecture Notes in Computer
Science, pages 608–639. Springer, 2021.

[LHH+21] Wen-jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter Qu. PEGASUS: bridging
polynomial and non-polynomial evaluations in homomorphic encryption. In IEEE Sympo-
sium on Security and Privacy, pages 1057–1073. IEEE, 2021.

[LLK+22] Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No, and
HyungChul Kang. High-precision bootstrapping for approximate homomorphic encryp-
tion by error variance minimization. In Orr Dunkelman and Stefan Dziembowski, editors,
Advances in Cryptology – EUROCRYPT 2022, pages 551–580, Cham, 2022. Springer In-
ternational Publishing.

[LLKN21] Eunsang Lee, Joon-Woo Lee, Young-Sik Kim, and Jong-Seon No. Optimization of ho-
momorphic comparison algorithm on rns-ckks scheme. Cryptology ePrint Archive, Paper
2021/1215, 2021. https://eprint.iacr.org/2021/1215 .

[LLL+21] Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-Seon No. High-
precision bootstrapping of RNS-CKKS homomorphic encryption using optimal minimax
polynomial approximation and inverse sine function. In EUROCRYPT (1), volume 12696
of Lecture Notes in Computer Science, pages 618–647. Springer, 2021.

[LM21] Baiyu Li and Daniele Micciancio. On the security of homomorphic encryption on approxi-
mate numbers. In EUROCRYPT (1), volume 12696 of Lecture Notes in Computer Science,
pages 648–677. Springer, 2021.

[LMP22] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-precision homomorphic sign
evaluation using FHEW/TFHE bootstrapping. In ASIACRYPT, 2022.

[LMSS22] Baiyu Li, Daniele Micciancio, Mark Schultz, and Jessica Sorrell. Securing approximate
homomorphic encryption using differential privacy. In CRYPTO (1), volume 13507 of
Lecture Notes in Computer Science, pages 560–589. Springer, 2022.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science,
pages 1–23. Springer, 2010.

[MGH10] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additively homomorphic
encryption with d -operand multiplications. In CRYPTO, volume 6223 of Lecture Notes in
Computer Science, pages 138–154. Springer, 2010.

[RAD+78] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
STOC, pages 84–93. ACM, 2005.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56(6):34:1–34:40, 2009.

[SFK+21] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald G. Dres-
linski, Christopher Peikert, and Daniel Sánchez. F1: A fast and programmable accelerator
for fully homomorphic encryption. In MICRO, pages 238–252. ACM, 2021.

[SFK+22] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar, Nicholas Genise,
Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and Daniel Sánchez. Craterlake: a
hardware accelerator for efficient unbounded computation on encrypted data. In ISCA,
pages 173–187. ACM, 2022.

[SV14] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Des. Codes
Cryptogr., 71(1):57–81, 2014.

21

https://eprint.iacr.org/2021/1215

	Introduction
	Our Results
	Technical Overview
	Related Works
	Organization

	Preliminaries
	RLWE SIMD Schemes
	Useful Lemmas
	Bootstrapping Circuits for BGV and CKKS

	Homomorphic Scheme-Switching
	Weak Scheme-Switching Oracles
	Strong Scheme-Switching Oracles

	Bootstrapping Via A Weak Scheme-Switching Oracle
	Bootstrapping in CKKS from a BGV-to-CKKS Oracle
	Bootstrapping in BGV from a CKKS-to-BGV Oracle
	Switching Between Schemes Using Bootstrapping

	Bootstrapping Via A Comparison Oracle
	Comparison Oracles
	Bootstrapping in CKKS from Comparisons
	Bootstrapping in BGV from Comparisons

	Conclusion

