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Abstract. Private-ID (PID) protocol enables two parties, each holding a private set of items,
to privately compute a set of random universal identifiers (UID) corresponding to the records
in the union of their sets, where each party additionally learns which UIDs correspond to which
items in its set but not if they belong to the intersection or not. PID is very useful in the privacy
computation of databases query, e.g. inner join and join for compute. Known PID protocols all
assume the input of both parties is a set. In the case of join, a more common scenario is that
one party’s primary key (unique) needs to join the other party’s foreign key (duplicate). How
to construct an efficient Private Multiset ID (PMID) protocol to support the above key-foreign
key join remains open.
We resolve this problem by constructing efficient PMID protocols from Oblivious PRF, Private
Set Union, and a newly introduced primitive called Deterministic-Value Oblivious Programmable
PRF (dv-OPPRF). We also propose some PMID applications, including Private Inner Join,
Private Full Join, and Private Join for Compute.
We implement our PMID protocols and state-of-the-art PID protocols as performance baselines.
The experiments show that the performances of our PMID are almost the same as the state-of-
the-art PIDs when we set the multiplicity Ux = Uy = 1. Our PMID protocols scale well when
either Ux > 1 or Uy > 1. The performances also correctly reflect excessive data expansion when
both Ux, Uy > 1 for the more general cross join case.

1 Introduction

1.1 Motivation

A large number of services today collect valuable but sensitive data from the same group of users.
These services could benefit from pooling their data together and jointly performing analytical tasks
(e.g., filtering and aggregation) on the aligned data. For example, consider two parties Alice and Bob:
Alice owns users’ profile data where each record has four attributes (user_id, user_name, age, sex),
and Bob collects users’ transaction data with each record as (user_id, prod_id, prod_name, price). The
identifier of a user, i.e., user_id, could be the username, e-mail address, or telephone number. The two
parties want to, e.g., securely align their records on user_id (concatenating the records with matching
user_id, one from each party), filter aligned records on age, and aggregate price, without exposing
the identifiers and the values of records. Such alignment is called the join of two tables A and B in
databases. Depending on whether to include records with unmatched identifiers in the join results,
there are inner joins (including only those with matched identifiers) and full joins (otherwise).

One way to realize the above functionalities is to use Private Set Operation (PSO) protocols. For
example, Private Set Intersection (PSI) [18, 10, 31, 24, 29, 6] offers a way to inner join two datasets
and learn the intersection membership without revealing anything outside the intersection; Private
Set Union (PSU) [23, 11, 7, 26, 22] could be used to compute full join of two datasets privately.
To compute on the join result, Private Set Intersection Cardinality/Sum (PSI-CA/PSI-Sum) [20, 19]
focus on computing the cardinality or linear functions of the intersection. Nevertheless, one PSO
protocol only focuses on one scenario, and different protocol introduces different design ideas, e.g.
DDH-based, OT-based, HE-based, which makes it difficult to unify them in a variety of application
scenarios. Circuit-PSI/PSU [17, 16, 4], on the other hand, support any function computation on the
⋆ This is the full version of a paper to be published in ICICS 2023.



intersection/union, since it outputs the secret shared result of intersection/union. Although circuit-
PSI/PSU is more powerful than PSI/PSU, it is usually less efficient due to the use of the general MPC
technique.

Private-ID (PID) protocol [5, 12] enables two parties, each holding a private set of items, to
privately compute a set of random universal identifiers (UID) corresponding to the records in the
union of their sets, where each party additionally learns which UIDs correspond to which items in its
set but not if they belong to the intersection or not. Private-ID provides a unified method to construct
the above PSO protocols. The main use of PID is to realize data alignment, that is, both parties can
sort their private data according to these universal identifiers. They can then proceed item-by-item,
doing any desired private computation. As a result, we can easily construct the above different PSO
protocols from PID.

However, the existing PID protocols [5, 12] require that the inputs of both parties are a set, that
is, the elements cannot be duplicated. The reason is that the way they generated UID only supports
distinct elements. This requirement restricts the existing PID protocols from being applied to perform
a wide range of analytical tasks with joins. In most analytical workloads, such as the decision support
benchmark TPC-DS [34], the majority of joins are key-foreign key joins which correspond to one-to-
many relationship between records from the two tables. In such joins, one party or table’s primary
key (an attribute with unique values in different records) needs to match the other’s foreign key (with
possibly duplicated values).

Recall the above example that Alice owns one table A (user_id, user_name, age, sex) and Bob owns
the other table B (user_id, prod_id, prod_name, price). Here, user_id is the primary key of table A as
each user’s profile corresponds to exactly one record; user_id in table B is a foreign key and may have
duplicated values as one user can buy multiple products. The two parties want to privately compute
the average price in transactions from users with ages older than 30:

SELECT AVG(B.price) FROM A INNER JOIN B
ON A.user_id = B.user_id WHERE A.age > 30

Note that such joint and private analytical tasks cannot be supported by the existing PID protocols
[5, 12], because the identifiers on both sides need to be unique. There are some works to support these
private queries [2, 3, 33]. However, all these works are implemented on the circuit using the general
MPC technique, e.g. Yao’s garbled circuit [37], GMW [15] etc, which makes it very inefficient.

For the general many-to-many relationship, the matched values will generate the Cartesian product
of the two datasets (also known as cross join)1. All the above applications require generating multiple
UIDs for duplicated values. We have the following questions:

Can we construct an efficient PID protocol in which the inputs of the parties are multiset?

1.2 Our Contribution

In this paper, we answer this question affirmatively in the semi-honest setting. Our contribution can
be summarized as follows:

– Efficient PMID constructions. We introduce the notion of private multiset ID (PMID) protocol
which supports the input of both parties to be multiset. We propose two PMID constructions:
the first one is based on sloppy OPRF [12], which has a faster running-time; the second one is
based on multi-point OPRF [6], which has a lower communication. The two constructions could
be viewed as a trade-off between computation and communication.

– Deterministic-Value Programmable PRF. To construct efficient PMIDs, we propose a new
variant of Programmable PRF [25] called Deterministic-Value Programmable PRF (dv-PPRF),
and its corresponding protocol called Deterministic-Value Oblivious PPRF (dv-OPPRF). The
deterministic-value property helps programming (probably duplicate) multiplicity for each element
in the multiset(s). With the help of dv-OPPRF, we obtain desired PMIDs by extending the PIDs
based on Oblivious PRF (OPRF) and PSU [12].

1 In real scenarios, most join operations are one-to-many relationship, and the many-to-many relationship is
usually considered to be avoided due to excessive data expansion. For completeness, we also consider such
a general case in this paper.
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– Implementations. We implement our PMID protocols and state-of-the-art PID protocols as
performance baselines. The experiments show that our PMID performances are almost the same
as their underlying PID counterparts [12] when we set the multiplicity Ux = Uy = 1. Our PMIDs
scale well when either Ux > 1 or Uy > 1, and the performance results also reflect excessive data
expansion when both Ux, Uy > 1 for the more general cross join case. Our implementations have
been open-sourced and freely available under public requests.

1.3 Overview of Our Techniques

We provide the high-level technical overview for our PMID constructions. We assume that party Alice
and Bob have multisets X and Y , respectively.

At first glance, one may consider using PIDs in a black-box manner to construct PMID protocols.
A natural idea is to let both parties use their de-duplicated sets to execute the PID protocol, then let
both parties tell each other the multiplicity of their elements, and finally both parties extend the UID
of duplicated elements locally. Unfortunately, such construction introduces additional information
leakage. Specifically, since Bob needs to tell Alice the multiplicity of all his elements, no matter
whether they are in the intersection or not, Alice would know the multiplicity of elements that even
do not belongs to herself, making this idea insecure.

Our starting point is the PID protocols of [12]. Their main idea is as follows, the parties execute
two Oblivious Pseudo-Random Function (OPRF) instances symmetrically. In the first instance, Alice
learns kA and Bob learns FkA

(yi) for each of his items yi; in the second instance, Bob learns kB and
Alice learns FkB

(xi) for each of her items xi. The UIDs is defined as id(x) := FkA
(x) ⊕ FkB

(x). The
parties compute the UIDs of the elements in their set and finally they execute a PSU protocol to
obtain the whole UID set. For better efficiency, [12] further introduces a “sloppy OPRF” technique to
generate UIDs. Roughly speaking, the sender inputs a set X and learns a key k, the receiver inputs a
set Y and learns values {zi}i∈[n]. For every yi ∈ Y , if yi ∈ X, then zi = Fk(yi), but such equality does
not hold for other zi. They use efficient batch single-point OPRF [24] to construct sloppy OPRF, see
Section 4.1 for more details.

To generate multiple UIDs for duplicated elements, a natural idea is to lengthen the original UID
with Pseudo-Random Generator (PRG) and take the output of PRG as the new UID. However, this
method meets difficulties in security proof. In the original PID security proof [12], the UID is directly
generated from the OPRF output. Since the simulator plays the role of OPRF functionality, the
simulator can program the OPRF outputs directly so that the adversary can get the simulated UIDs
that are consistent with the real ones. However, if we use PRG to generate the new UIDs, the simulator
could only program the seed of PRG instead of PRG outputs, since PRG is one-way. As a result, the
simulator cannot get the simulated UIDs output from PRG that are consistent with the ones from
the real execution. To solve this problem, our idea is to use a programmable Random Oracle (RO) to
institute the PRG, and the simulator could program the output of RO to real UIDs.

We also note that there is an important difference between PMID and PID: for an intersection
element x, if its multiplicity in Alice’s set is u1 and its multiplicity in Bob’s set is u2, then x meets
the general cross join case and both parties will obtain u1u2 UIDs. If u2 (resp. u1) > 1, Alice (resp.
Bob) will know that x is in the intersection and its multiplicity in Bob (resp. Alice)’s set. This leakage
is implicit in the PMID definition2 and cannot be avoided. To conclude, the security of PMID is
guaranteed in two aspects: on the one hand, one party cannot distinguish the elements of its own set
from the elements which the other party’s multiplicity is 1 in the intersection; on the other hand, both
parties cannot learn the multiplicity of elements outside their set.

To tell each other the multiplicity of intersection elements, our idea is to let both parties use an
Oblivious Key-Value Store (OKVS) [13] to encode the multiplicity of their elements. However, if we
use OKVS to encode multiplicity directly, both parties could use this OKVS to test any element’s
multiplicity, which makes the protocol insecure. Due to the above problem of OKVS, we consider
using Oblivious Programmable PRF (OPPRF) [25] to program the multiplicity. The main difference
between OKVS and OPPRF is that OPPRF actively enforces the receiver to evaluate the function
on a limited number of queries, whereas OKVS is simply a data structure that is sent in the clear
to the receiver, thus, no limit on the number of evaluation is set. The main idea of OPPRF is to
2 The definition of our PMID naturally comes from the rules of join operation.
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Fig. 1: A Toy Demonstration of Computing the Example Query using PMID.

generate some one-time pads by OPRF and let the value encoded by the OKVS be multiplicity plus
these one-time pads. However, we find the security of underlining programmable PRF (PPRF) is
overkill for our construction because the security requires the values programmed by PPRF are all
randomly selected. In our construction, these values are multiplicity of both parties’ input, which
is deterministic. As a result, we propose a weaker variant of PPRF, which we called deterministic-
value programmable PRF (dv-PPRF). Roughly, the dv-PPRF program some deterministic values
in PPRF and the adversary will learn these values, what we need is the queries outside of these
deterministic values are pseudorandom. Furthermore, we room in the construction of dv-PPRF, and
we find this new notion comes from a new property of OKVS, which we called partial obliviousness,
see section 2.6 for details. After defining dv-PPRF, we naturally extend this primitive to the protocol
called deterministic-value oblivious programmable PRF (dv-OPPRF) as [25]. See section 3 for more
technical details. We note that we take the first step to explore the possibility that using PPRF to
program non-random values, since the security property [25] requires the values should be randomly
selected.

For those single elements in the multiset, i.e. the multiplicity is 1, if we program 1 directly in
OPPRF, the parties can distinguish these elements from their own set elements because OPPRF will
output a random number in their elements by the randomness of underlining PRF. Thus we also let
both parties program random values for those single elements, resulting in they cannot distinguish
them.

Putting all the pieces together, we can build PMID protocol from OPRF, dv-OPPRF, and PSU
functionality in a modular way. (See Section 4 for the technical details). With the help of PMID, we can
compute the example query shown in Section 1.1 as follows. First, both parties run PMID to compute
the set of UID corresponding to the records in the union of Alice’s set and Bob’s multisets, where
each party learns which UIDs correspond to which items. Then, both parties extend their dataset to
have an UID column and sort the dataset by UID. In this way, datasets from both parties are aligned
using UID without leaking the intersection. The attributes for UIDs that do not match any records
are set as null. Finally, two parties run the desired computation under any general MPC protocol to
obtain the query result. See Figure 1 as a toy demonstration.

2 Preliminaries

2.1 Notation

We use κ and λ to denote the computational and statistical security parameters, respectively. We
use [n] to denote the set {1, 2, . . . , n} and [m,n] to denote the set {m,m + 1, . . . , n}. We use a set
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of key-value pairs to represent multiset, e.g. Y = {(y1, u1), (y2, u2)} denotes a multiset in which the
multiplicity of element y1 is u1 and the multiplicity of element y2 is u2. For a bit string v we let
vi denote the i-th bit. We use the abbreviation PPT to denote probabilistic polynomial-time. We
denote a

R←− A that a is randomly selected from the set A, and a ← A(x) that a is the output of the
randomized algorithm A on input x, and a := b that a is assigned by b.

2.2 Security Model

This work operates in the semi-honest model, where adversaries may try to learn as much information
as possible from a given protocol execution but are not able to deviate from the protocol steps. We
use the standard security definition for two-party computation [14] in this work.

Definition 1. Let viewΠ
A (X,Y ) and viewΠ

B (X,Y ) be the views of Alice and Bob in the protocol, and
let output(X,Y ) be the output of both parties in the protocol. A protocol Π is said to securely compute
functionality f in the semi-honest model if for every PPT adversary A there exists a PPT simulator
SimS and SimR such that for all inputs X and Y ,

{viewΠ
A (X,Y ), output(X,Y )} ≈c {SimA(X, f(X,Y )), f(X,Y )}

{viewΠ
B (X,Y ), output(X,Y )} ≈c {SimB(Y, f(X,Y )), f(X,Y )}

2.3 Oblivious Transfer

Oblivious Transfer (OT) [35] is an important cryptographic primitive used in various multiparty com-
putation protocols. We define the generalized primitive of 1-out-of-2 OT in Figure 2.

Parameters: Sender S, Receiver R, message length κ.
Functionality:

– Wait for input b ∈ {0, 1} from the receiver R.
– Wait for input (x0, x1) from the sender S.
– Give xb to the receiver R.

Fig. 2: 1-out-of-2 Oblivious Transfer Functionality Fot

2.4 Oblivious PRF

An OPRF [9] allows the receiver to input x and learn Fk(x), where F is a PRF, and k is known to
the sender. In this work, we use two variant of OPRF, namely, batch single-point OPRF [24] and
multi-point OPRF [29, 6, 36].

In the batch single-point OPRF, the sender learns a set of PRF keys {ki}i∈[n]
3 and the receiver

learns PRF values {Fki
(xi)}i∈[n] on its inputs {xi}i∈[n]. Note that the receiver learns the output of the

PRF on only one value per key, and the sender does not learn which output the receiver learned. In the
multi-point OPRF, the sender learns a PRF key k and the receiver learns PRF values {Fk(xi)}i∈[n]

on its inputs {xi}i∈[n]. The ideal functionality for batch single-point OPRF and multi-point OPRF
are shown in Figure 3 and Figure 4.

3 In fact, the protocol in [24] realizes OPRF instances where the keys ki are related in some sense. However,
the PRF that it instantiates has all the expected security properties, even in the presence of such related
keys. For the sake of simplicity, we ignore this issue in our notation. See [24] for more details.
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Parameters: Sender S, Receiver R, a PRF F , set sizes n
Functionality:

– Wait for input {x1, . . . , xn} from the receiver R.
– Sample n random PRF keys {k1, . . . , kn} and give them to the sender S.
– Give {Fk1(x1), . . . , Fkn(xn)} to the receiver R.

Fig. 3: Batch Single-Point OPRF Functionality Fbsp-oprf

Parameters: Sender S, Receiver R, a PRF F , set sizes n
Functionality:

– Wait for input {x1, . . . , xn} from the receiver R.
– Sample a random PRF key k and give it to the sender S.
– Give {Fk(x1), . . . , Fk(xn)} to the receiver R.

Fig. 4: Multi-Point OPRF Functionality Fmp-oprf

2.5 Cuckoo Hashing

Cuckoo hashing was introduced by Pagh and Rodler in [28]. In this hashing scheme, there are α hash
functions h1, . . . , hα used to map n items into ρ = ϵn bins and a stash, and we denote the i-th bin as
Bi. The Cuckoo hashing can guarantee that there is only one item in each bin, and the approach to
avoid collisions is as follows: An element x is inserted into a bin Bh1(x). Any prior contents z of Bh1(x)

are evicted to a new bin Bhi(z), using hi to determine the new bin location, where hi(z) ̸= h1(x) for
i ∈ [α]. The procedure is repeated until no more evictions are necessary, or until a threshold number of
relocations has been performed. In the latter case, the last element is put in a special stash. According
to the empirical analysis in [32], we can adjust the values of α and ϵ to reduce the stash size to 0 while
achieving a hashing failure probability of 2−λ.

We use the notation B ← Cuckooρh1,...,hα
(X) to denote hashing the items of X into ρ bins using

Cuckoo hashing on hash functions h1, . . . , hα : {0, 1}∗ → [ρ]. Some positions of B will not matter,
corresponding to empty bins.

2.6 Oblivious Key-Value Store

A key-value store [30, 13] is simply a data structure that maps a set of keys to corresponding values.
The definition is as follows:

Definition 2 (Key-Value Store). A key-value store is parameterized by a set K of keys, a set V of
values, and a set of function H, and consists of two algorithms:

– EncodeH({(x1, y1), . . . , (xn, yn)})4: on input key-value pairs {(xi, yi)}i∈[n] ⊆ K × V, outputs an
object D (or, with statistically small probability, an error indicator ⊥).

– DecodeH(D,x) : on input D and a key x, outputs a value y ∈ V.

Correctness. For all A ⊆ K × V with distinct keys:

(x, y) ∈ A and ⊥̸= D ← EncodeH(A) =⇒ DecodeH(D,x) = y

Obliviousness. For all distinct {x0
1, . . . , x

0
n} and {x1

1, . . . , x
1
n}, if EncodeH does not output ⊥ for

{x0
1, . . . , x

0
n} or {x1

1, . . . , x
1
n}, the distribution of {D|yi ← V , i ∈ [n],EncodeH((x0

1, y1), . . . , (x
0
n, yn))} is

computationally indistinguishable to the distribution of {D|yi ← V , i ∈ [n],EncodeH((x1
1, y1), . . . , (x

1
n, yn))}.

A key-value store is an oblivious key-value store (OKVS) if it satisfies the obliviousness property.
Intuitively, obliviousness means that when value is randomly selected, the distribution of D is

independent from key’s set. In our application, we instead require OKVS to satisfy the following
partial obliviousness property since our application will always leak some values.
4 We sometimes use EncodeH(X,Y ) for EncodeH({(x1, y1), . . . , (xn, yn)}) for convenience, where X =
{x1, . . . , xn}, Y = {y1, . . . , yn}.
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Partial Obliviousness. For t ∈ [n], and some fixed key-value pairs {(xi, yi)}i∈[t], for all distinct
{x0

t+1, . . . , x
0
n} and all distinct {x1

t+1, . . . , x
1
n}, if EncodeH does not output ⊥, then the following

distributions are computationally indistinguishable:

{D|yi
R←− V , i ∈ [t+ 1, n],EncodeH((x1, y1), . . . , (xt, yt), (x

0
t+1, yt+1), . . . , (x

0
n, yn))}

{D|yi
R←− V , i ∈ [t+ 1, n],EncodeH((x1, y1), . . . , (xt, yt), (x

1
t+1, yt+1), . . . , (x

1
n, yn))}

We note that when t = 0, this property is equal to the standard Obliviousness, and when t = n,
the two distributions are identical.

Proof of Partial Obliviousness. Common OKVS candidates include polynomial, Garbled Bloom
Filter (GBF) [8] and Garbled Cuckoo Table (GCT) [30, 36, 13] etc, which are linear OKVS schemes.
We give the definition of linear OKVS and prove it to satisfy the partial obliviousness in Appendix A.

2.7 Private Set Union

PSU is a special case of secure two-party computation. The ideal functionality for PSU is given in
Figure 5.

Parameters: Sender S, Receiver R, set sizes ny and nx.
Functionality:

– Wait for input X = {x1, . . . , xnx} from the receiver R.
– Wait for input Y = {y1, . . . , yny} from the sender S.
– Give output X ∪ Y to the receiver R.

Fig. 5: Private Set Union Functionality Fpsu

3 Deterministic-Value (Oblivious) Programmable PRF

We review the concepts of Programmable PRF (PPRF) [25] here and also introduce our novel
deterministic-value variant of a PPRF.

3.1 Definitions

Programmable PRF (PPRF) [25] is a special PRF with the additional property that on a certain
“programmed” set of inputs the function outputs “programmed” values. A programmable PRF consists
of the following algorithms:

– KeyGen(1κ,P)→ (k, hint): Given a security parameter and set of points P = {(x1, y1), . . . , (xn, yn)}
with distinct xi-values, generates a PRF key k and (public) auxiliary information hint.

– F (k, hint, x)→ y: Evaluates the PRF on input x, giving output y.

Correctness. A programmable PRF satisfies correctness if (x, y) ∈ P , and (k, hint)← KeyGen(1κ,P),
then F (k, hint, x) = y.
Security. For security, considering the following experiment:

ExpA(X,Q, κ):
for each xi ∈ X, choose random yi ← V
(k, hint)← KeyGen(1κ, {(xi, yi)|xi ∈ X})
return A(hint, {F (k, hint, q)|q ∈ Q})

We say that a PPRF is (n, µ)-secure if for all |X0| = |X1| = n, all |Q| = µ, and all PPT A:
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|Pr[ExpA(X0, Q, κ) = 1]− Pr[ExpA(X1, Q, κ) = 1]| ≤ negl(κ)

The security requires that it is hard to tell what the set of programmed points was, given the
hint and µ outputs of the PRF, if the points were programmed to random outputs. This implies that
unprogrammed PRF outputs (i.e., those not set by the input to KeyGen) are pseudorandom.

However, we find that the above security property is too strong to be used in our construction.
What we want is to use the PPRF to ”program” the multiplicity of the sender’s elements and let the
receiver evaluate the function on his own set elements. The multiplicity is uniquely determined by the
input set, instead of randomly selected as in the security definition. In fact, the multiplicity of some
intersection elements must be leaked to the adversary. Fortunately, we find the security property of
PPRF is overkill and the following deterministic-value pseudorandomness is enough:

Deterministic-Value Pseudorandomness. For any fixed set of points P = {(x1, y1), . . . , (xt, yt)},
considering the following experiment:

ExpA(P, X,Q, κ):
for each xi ∈ X, choose random yi ← V
(k, hint)← KeyGen(1κ,P ∪ {(xi, yi)|xi ∈ X})
return A(P, hint, {F (k, hint, q)|q ∈ Q})

We say that a PPRF satisfying (t, n, µ)-deterministic-value pseudorandomness if for all |X0| =
|X1| = n− t, all |Q| = µ satisfying Q ∩ {x1, . . . , xt} = ∅ and all PPT A:

|Pr[ExpA(P, X0, Q, κ) = 1]− Pr[ExpA(P, X1, Q, κ) = 1]| ≤ negl(κ)

In the above definition, some points, i.e. P, are definitely leaked to the adversary. However, what
we need is only the pseudorandomness of PPRF values outside of the leaked set.

Definition 3 (dv-PPRF). A Deterministic-Value Programmable PRF (dv-PPRF) is the PPRF
scheme satisfying correctness and (t, n, µ)-deterministic-value pseudorandomness.

After defining the dv-PPRF, it is natural to define the functionality of Deterministic-Value Obliv-
ious Programmable PRF (dv-OPPRF) like [25]. We give the formal description of dv-OPPRF func-
tionality in Figure 6. The only difference between standard OPPRF [25] and dv-OPPRF is that the
underlying PPRF is replaced by dv-PPRF.

Parameters: Sender S, Receiver R, a dv-PPRF scheme (KeyGen, F ), and upper bound n on the number
of points to be programmed, and bound µ on the number of queries.
Functionality:

– Wait for input P = {(x1, y1), . . . , (xn, yn)} from the sender S.
– Wait for input {q1, . . . , qµ} from the receiver R.
– Run (k, hint)← KeyGen(1κ,P) and give (k, hint) to the sender S.
– Give {hint, F (k, hint, q1), . . . , F (k, hint, qµ)} to the receiver R.

Fig. 6: Deterministic-Value Oblivious Programmable PRF Fdv-OPPRF

3.2 Construction of dv-PPRF

To construct dv-PPRF, the main idea is to combine the PRF and the OKVS with partial oblivi-
ousness property. Let F̂ be a PRF and (EncodeH ,DecodeH) be an OKVS scheme satisfying partial
obliviousness. We define it as follows:

– KeyGen(1κ, {(x1, y1), . . . , (xn, yn)}): Choose a random key k for F̂ . Compute an OKVS D :=

EncodeH((x1, y1 ⊕ F̂k(x1)), . . . , (xn, yn ⊕ F̂k(xn))). Let hint be D.
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– F (k, hint, q) = F̂k(q)⊕ DecodeH(hint, q).

Theorem 1. Assuming the OKVS scheme satisfies partial obliviousness, the above construction is a
dv-PPRF.

Proof. If there is an adversary A can break the deterministic-value pseudorandomness of dv-PPRF,
then we can construct a PPT distinguisher D to distinguish the two distributions of partial oblivious-
ness in OKVS with non-negligible probability. Let P = {(x1, y1), . . . , (xt, yt)}, X0 = {x0

t+1, . . . , x
0
n}

and X1 = {x1
t+1, . . . , x

1
n}.

D works as follows: after receiving D, the distinguisher D selects a random PRF key k from the
key space K of PRF F̂ . Then, D defines hint := D and let F (k, hint, q) := F̂k(q) ⊕ DecodeH(hint, q)
for any query q ∈ Q. The distinguisher D invokes A with input (P, hint, {F (k, hint, q)|q ∈ Q}) and
outputs A’s output. For simplicity, we use (P, (Xb, Y )) to denote ((x1, y1), . . . , (xt, yt), (x

b
t+1, yt+1),

. . . , (xb
n, yn)) for b ∈ {0, 1}, where yi

R←− V , i ∈ [t+ 1, n]. We have:

|Pr[D(D)|D = EncodeH(P, (X0, Y ))]− Pr[D(D)|D = EncodeH(P, (X1, Y ))]|

=|Pr[A(P, hint, {F (k, hint, q)}q∈Q)|k
R←− K, hint = EncodeH(P, (X0, Y ))]−

Pr[A(P, hint, {F (k, hint, q)}q∈Q)|k
R←− K, hint = EncodeH(P, (X1, Y ))]|

=|Pr[A(P, hint, {F (k, hint, q)}q∈Q)|(k, hint)← KeyGen(P, (X0, Y ))]−
Pr[A(P, hint, {F (k, hint, q)}q∈Q)|(k, hint)← KeyGen(P, (X1, Y ))]|

=|Pr[ExpA(P, X0, Q, κ) = 1]− Pr[ExpA(P, X1, Q, κ) = 1]|

Thus D breaks partial obliviousness of OKVS with the same advantages as A.

Now we are ready to give the construction of dv-OPPRF protocol, the formal description is in
Figure 7. Simulation is trivial, as the parties’ views in the protocol are exactly the dv-OPPRF output.

Parameters:

– Two parties: Sender S and Receiver R.
– Ideal Fmp-oprf primitives specified in Figure 4.
– An OKVS scheme (EncodeH ,DecodeH).

Input of Sender: P = {(x1, y1), . . . , (xn, yn)}
Input of Receiver: Q = {q1, . . . , qµ}
Protocol:

1. The parties invoke multi-point OPRF functionality Fmp-oprf , S acts as the sender and receives a
random PRF key k, R acts as the receiver with input Q and receives {F̂k(q)|q ∈ Q}.

2. S computes an OKVS D := EncodeH((x1, y1⊕ F̂k(x1)), . . . , (xn, yn⊕ F̂k(xn))) and defines hint := D.
3. S sends hint to the receiver R.
4. R outputs (hint, {DecodeH(hint, q)⊕ F̂k(q)|q ∈ Q}).

Fig. 7: General construction of dv-OPPRF Protocol Πdv-OPPRF

4 Private Multiset ID

We give the formal definition of Private Multiset ID (PMID) functionality FPMID in Figure 8. As we
mentioned in Section 1.1, the one-to-many relationship is the main application scenario of PMID.
Therefore, we consider two versions of PMID: in the one-sided version, the input of Alice is a set while
the input of Bob is a multiset; in the general version, the input of both parties is multiset. We also
explicitly define the leaked set from in the functionality, though it could be inferred from the PMID
outputs. We highlight the redundant part, i.e. Xleak, in the definition of one-sided version, which could
be easily verified Xleak = ∅ when ux

1 = · · · = ux
m = 1.

9



Parameters: Two parties Alice and Bob. Number of items m,n for the Alice and Bob; length of identifiers
l; the upper bound of duplicate item in X and Y , Ux and Uy; the ID mapping id : {0, 1}∗ → {0, 1}l.
Functionality:

– Wait for input X = {(x1, u
x
1), . . . , (xm, ux

m)} ⊂ {0, 1}∗ × [Ux] from Alice. In the one-sided version,
ux
1 = · · · = ux

m = 1, i.e. the input of Alice is a set.
– Wait for input Y = {(y1, uy

1), . . . , (yn, u
y
n)} ⊂ {0, 1}∗ × [Uy] from Bob.

– Let X ′ := {x1 . . . , xm} and Y ′ := {y1 . . . , yn} be the sets without duplication items corresponding to
X and Y .

– For every xi ∈ X ′ \ Y ′ , choose ux
i random identifier id(x

(t)
i ) ∈ {0, 1}l, t ∈ [ux

i]; for every yi ∈ Y ′ \X ′,
choose uy

i random identifier id(y
(t)
i ) ∈ {0, 1}l, t ∈ [uy

i ]; for every zi ∈ X ′ ∩ Y ′, assuming (zi, u
x
i) ∈

X, (zi, u
y
i) ∈ Y , choose ux

iu
y
i random identifier id(z

(t)
i ) ∈ {0, 1}l, t ∈ [ux

iu
y
i ].

– Define R∗ := {id(x(t)
i )|xi ∈ X ′\Y ′, t ∈ [ux

i]}∪{id(y
(t)
i )|yi ∈ Y ′\X ′, t ∈ [uy

i ]}∪{id(z
(t)
i )|zi ∈ X ′∩Y ′, t ∈

[ux
iu

y
i ]}.

– Define IDX := {id(x(t)
i )|xi ∈ X ′ \ Y ′, t ∈ [ux

i]} ∪ {id(z
(t)
i )|zi ∈ X ′ ∩ Y ′, t ∈ [ux

iu
y
i ]}. Define IDY :=

{id(y(t)
i )|yi ∈ Y ′ \X ′, t ∈ [uy

i ]} ∪ {id(z
(t)
i )|zi ∈ X ′ ∩ Y ′, t ∈ [ux

iu
y
i ]}.

– Define Xleak := {(xi, u
x
i)|(xi, u

x
i) ∈ X,ux

i > 1} and Yleak := {(yi, uy
i)|(yi, u

y
i) ∈ Y, uy

i > 1}.
– Give output (R∗, IDX , Yleak)

a to Alice and give output (R∗, IDY , Xleak ) to Bob.

a We note that the IDX also includes the mapping relationship between xi and id(x
(t)
i ), t ∈ [ux

i] (similarly
for y’s) while the R∗ does not contain this relationship.

Fig. 8: Private Multiset ID Functionality FPMID. The highlighted parts could omit for one-sided version.

4.1 PMID from Sloppy OPRF

Now we describe our PMID protocol. As we mentioned in Section 1.3, the parties run sloppy OPRF
twice to generate the UIDs of the de-duplicated set, then both parties program the multiplicity of their
elements by dv-OPPRF, the elements with multiplicity 1 are programmed by a random value. After
execution of dv-OPPRF, the parties compute the multiplicity of all their elements and query random
oracle to obtain the UIDs. Finally, the parties run a PSU protocol to obtain the whole UIDs’ set. Now,
we give our PMID protocol in Figure 9. The redundant parts for one-sided version are highlighted.

Correctness. For xi ∈ X ′ ∩ Y ′, suppose xi is placed to bin hv(xi) by Alice, then Alice com-
putes rA(xi) = DecodeH(PB , xi||v) ⊕ fA

hv(xi)
⊕ FsA(xi). Since xi ∈ Y ′, the OKVS PB satisfies

DecodeH(PB , xi||v) = FsB (xi) ⊕ FkB
hv(xi)

(xi||v). Thus we have that rA(xi) = FsB (xi) ⊕ FsA(xi).
Similarly, for yj ∈ X ∩Y ′, we also have rB(yj) = FsA(yj)⊕FsB (yj), which means rA(xi) = rB(yj) for
xi = yj ∈ X ′ ∩ Y ′. In the case of uy

j > 1, we have dBi = F (kB , hintB , xi) = F (kB , hintB , yj) = cyj = uy
j .

Thus ūx
i = ux

i · dBi = ux
i · u

y
j , and id(x

(t)
i ) = id(y

(t)
j ) for t ∈ [ux

i · u
y
j ]. In the case of uy

j = 1, we
have dBi = F (kB , hintB , xi) = F (kB , hintB , yj) = cyj . Since cj is randomly picked from {0, 1}σ,
by setting σ = λ + log nUy, a union bound shows probability of cj ≤ Uy is negligible 2−λ. Thus
ūx
i = ux

i · 1 = ux
i · u

y
j with overwhelming probability and id(x

(t)
i ) = id(y

(t)
j ) for t ∈ [ux

i · u
y
j ]. If

xi ∈ X ′ \ Y ′, by the deterministic-value pseudorandomness of dv-OPPRF, dBi is indistinguishable
from random distribution over {0, 1}σ. By setting σ = λ + logmUx

5, the union bound guarantees
dBi > Ux with overwhelming probability, which infers ūx

i = ux
i with overwhelming probability.

Theorem 2. The protocol in Figure 9 securely computes FPMID against semi-honest adversaries in
the (Fbsp-oprf ,Fpsu)-hybrid model.

Proof. Since the protocol is symmetric, we only exhibit the simulator for simulating corrupt Alice.
For the one-sided version, we note that the messages that need to be simulated are strictly less

than the general version (there is no need to invoke the functionality Fdv-OPPRF in step 12), which
means the simulator of the general version infers the simulator of one-sided version.
5 Thus we set σ = max{λ+ log nUy, λ+ logmUx}.
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Corrupt Alice: The simulator for corrupt Alice receives ideal output (R∗, IDX , Yleak). The simulator
simulates Alice’s view as follows:

1. In step 1, the simulator executes honestly to obtain A.
2. In step 2, the simulator selects uniform random {fA

u }u∈[ρ1], then invokes OPRF simulator with
input (A, {fA

u }u∈[ρ1]) and appends the output to the view.
3. In step 3, the simulator selects a random OKVS PB and appends it to the view. Here the simulator

also computes rA(x) for x ∈ X ′ as the honest Alice does.
4. In step 6, the simulator selects uniform random PRF keys {kAu }u∈[ρ2], then it invokes OPRF

simulator with input {kAu }u∈[ρ2] and appends the output to the view. The simulator also selects a
random key sA for Alice.

5. In step 9, the simulator defines cxi as the honest Alice does.
6. Let |Yleak| = µ. For xi ∈ Yleak, let dBi denote the multiplicity of xi. For xi /∈ Yleak, the simulator

selects dBi
R←− {0, 1}σ and computes (kB , hintB)← KeyGen({(xi, d

B
i )}i∈[m]). In step 10, The simu-

lator invokes dv-OPPRF simulator with input (X ′, hintB , {dBi }i∈[m]) and appends the output to
the view.

7. In step 11, the simulator defines ūx
i as the honest Alice does.

8. In step 12, the simulator computes the key of dv-PPRF as (kA, hintA)← KeyGen({(xi, c
x
i)}i∈[m]).

Then the simulator invokes dv-OPPRF simulator with input ({(xi, c
x
i)}i∈[m], kA, hintA) and ap-

pends the output to the view.
9. In step 14, for i ∈ [m], t ∈ [ūx

i ]: let id(x
(t)
i ) as the response of RO query rA(xi)||t.

10. In step 16, the simulator invokes PSU simulator with input IDX and appends the output and R∗

to the view.

We show the correctness of this simulation via a sequence of hybrids:

– Hybrid0. The first hybrid is the real interaction described in Figure 9. Here, the honest Bob uses
input Y , and honestly interacts with the corrupt Alice. Let T0 denote the real view of Alice.

– Hybrid1. Let T1 be the same as T0, except that all terms of the form Fk(z) are replaced by random
values. This hybrid is computationally indistinguishable from T0 by the security of Fbsp-oprf and
the pseudorandomness of PRF.

– Hybrid2. Let T2 be the same as T1, except that the OKVS PB in step 3 is randomly selected.
Since all {FsB (y)}y∈Y ′ are substituted by random values, by obliviousness of OKVS, T1 and T2

are statistically indistinguishable.
– Hybrid3. Let T3 be the same as T2, except that the inputs of the Bob are replaced by random

items except those with multiplicity greater than one in the intersection (i.e. the items in Yleak).
Note that for those yj /∈ Yleak, the value dBi is uniform and independent from Alice’s view. By
the deterministic-value pseudorandomness property of dv-PPRF, T1 and T2 are computationally
indistinguishable.

– Hybrid4. Let T4 be the same as T3, except that the PSU execution is replaced by underlining
PSU simulator. The security of Fpsu functionality guarantees that T4 and T3 are computationally
indistinguishable.

– Hybrid5. Let T5 be the same as T4, except the way of computing id(x). Instead of computing
id(x

(t)
i ) as in step 12, where H̄(rA(xi)||t) is a uniform random value, we instead compute id(x

(t)
i )

randomly and then program H̄(rA(xi)||t) to be the correct value, i.e., H̄(rA(xi)||t) := id(x
(t)
i ).

This change has no effect on Alice’s view distribution. This hybrid is exactly the view output by
the simulator.

4.2 PMID from Standard OPRF

Though sloppy OPRF-based PMID is usually more efficient, we find that the standard multi-point
OPRF-based PMID has lower communication. For completeness, we also present the PMID protocol
based on the standard multi-point OPRF here. The protocol is described in Figure 10. The redundant
parts of the one-sided version are highlighted.

Correctness. For all i ∈ [m], if xi ∈ Y ′, there is a yj ∈ Y ′, j ∈ [n] s.t. yj = xi. In the case of uy
j > 1,

we have dBi = F (kB , hintB , xi) = F (kB , hintB , yj) = cyj = uy
j . Thus ūx

i = ux
i ·dBi = ux

i ·u
y
j , and id(x

(t)
i ) =
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id(y
(t)
j ) for t ∈ [ux

i · u
y
j ]. In the case of uy

j = 1, we have dBi = F (kB , hintB , xi) = F (kB , hintB , yj) = cyj .
Since cj is randomly picked from {0, 1}σ, by setting σ = λ+log nUy, a union bound shows probability of
cj ≤ Uy is negligible 2−λ. Thus ūx

i = ux
i ·1 = ux

i ·u
y
j with overwhelming probability and id(x

(t)
i ) = id(y

(t)
j )

for t ∈ [ux
i · u

y
j ]. If xi ∈ X ′ \ Y ′, by the deterministic-value pseudorandomness of dv-OPPRF, dBi is

indistinguishable from random distribution over {0, 1}σ. By setting σ = λ + logmUx
6, the union

bound guarantees dBi > Ux with overwhelming probability, which infers ūx
i = ux

i with overwhelming
probability.

We now state the security properties of our PMID.

Theorem 3. The protocol in Figure 10 securely computes FPMID against semi-honest adversaries in
the (Fmp-oprf ,Fpsu)-hybrid model.

Proof. Since the protocol is symmetric, we only exhibit the simulator for simulating corrupt Alice.
For the one-sided version, we note that the messages that need to be simulated are strictly less

than the general version (there is no need to invoke the functionality Fdv-OPPRF in step 6), which means
the simulator of the general version infers the simulator of one-sided version.

Corrupt Alice: The simulator for corrupt Alice receives ideal output (R∗, IDX , Yleak). The sim-
ulator simulates Alice’s view as follows:

1. In step 1, the simulator selects a random PRF key kA, then invokes OPRF simulator with input
kA and appends the output to the view.

2. In step 2, the simulator selects random values for FkB
(xi), then invokes OPRF simulator with

input (X ′, {FkB
(x)|x ∈ X ′}) and appends the output to the view.

3. Let |Yleak| = µ. For xi ∈ Yleak, let dBi denote the multiplicity of xi. For xi /∈ Yleak, the simulator
selects dBi

R←− {0, 1}σ and computes (kB , hintB) ← KeyGen({(xi, d
B
i )}i∈[m]). In step 4, The simu-

lator invokes dv-OPPRF simulator with input (X ′, hintB , {dBi }i∈[m]) and appends the output to
the view.

4. In step 5, the simulator defines ūx
i as the honest Alice does.

5. In step 6, the simulator computes the key of dv-PPRF as (kA, hintA) ← KeyGen({(xi, c
x
i)}i∈[m]).

Then the simulator invokes dv-OPPRF simulator with input ({(xi, c
x
i)}i∈[m], kA, hintA) and ap-

pends the output to the view.
6. In step 8, for i ∈ [m], t ∈ [ūx

i ]: let id(x
(t)
i ) as the response of RO query FkB

(xi)⊕ FkA
(xi)||t.

7. In step 9, the simulator invokes PSU simulator with input IDX and appends the output and R∗

to the view.

We show the correctness of this simulation via a sequence of hybrids:

– Hybrid0. The first hybrid is the real interaction described in Figure 10. Here, the honest Bob uses
input Y , and honestly interacts with the corrupt Alice. Let T0 denote the real view of Alice.

– Hybrid1. Let T1 be the same as T0, except that all terms of the form Fk(z) are replaced by random
values. This hybrid is computationally indistinguishable from T0 by the security of Fmp-oprf and
the pseudorandomness of PRF.

– Hybrid3. Let T3 be the same as T2, except that the inputs of the Bob are replaced by random
items except those with multiplicity greater than one in the intersection (i.e. the items in Yleak).
Note that for those yj /∈ Yleak, the value dBi is uniform and independent from Alice’s view. By
the deterministic-value pseudorandomness property of dv-PPRF, T1 and T2 are computationally
indistinguishable.

– Hybrid3. Let T3 be the same as T2, except that the PSU execution is replaced by underlining
PSU simulator. The security of Fpsu functionality guarantees that T3 and T2 are computationally
indistinguishable.

– Hybrid4. Let T4 be the same as T3, except the way of computing id(x). Instead of computing
id(x

(t)
i ) as in step 8, where H̄(FkA

(xi)⊕FkB
(xi)||t) is a uniform random value, we instead compute

id(x
(t)
i ) randomly and then program H̄(FkA

(xi) ⊕ FkB
(xi)||t) to be the correct value, that is,

H̄(FkA
(xi) ⊕ FkB

(xi)||t) := id(x
(t)
i ). This change has no effect on Alice’s view distribution. This

hybrid is exactly the view output by the simulator.
6 Thus we set σ = max{λ+ log nUy, λ+ logmUx}.
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5 Applications

Private Inner Join. The most direct application of PMID is private inner join. In this scenario, two
parties with different datasets/tables want to align their record on some identifiers, e.g. user_id. The
parties first perform a PMID protocol with the input of their identifiers (which may contain duplicated
elements), then let the parties send their own UID set to the other. The parties match the UID of
their own set and the other parties’ set, and output the matched elements. The security is guaranteed
by the fact that the UID of the element outside a party’s set is random to him, and no additional
information is leaked from these UIDs.
Private Full Join. Unlike inner join, full join returns all records regardless of whether their identifiers
are matched. Assuming Alice obtains the output, we should let Alice obliviously retrieve the elements
outside her UID set. Note that PMID protocol can be used for data alignment, that is, after execution
of PMID, the parties could sort the UIDs in R∗, e.g. let R∗ = {r1, . . . , rt} be the sorted set, and define
an indication bit string (a, b ∈ {0, 1}t for Alice and Bob separately) as ai(or bi) = 1 if and only if
ri ∈ IDX(or IDY ). In this way, both parties get an aligned indication bit string, i.e. the same bit
ai and bi indicate the same element whether belongs to their set. Note that if ai = 0, we must have
bi = 1 and vice versa. We can use this property to compute full join privately. What we want is letting
Alice learn the element correspond to ai = 0, we can let both parties invoke t OTs, and let Bob input
(yi,⊥) for bi = 1 and (⊥,⊥) for bi = 0. In this way, Alice will obtain all the elements corresponding
to the whole UIDs set R∗, which is exactly the output of full join.
Private Join for Compute. In this scenario, Alice and Bob want to get a secret sharing of the join
result for further complicated computations. The main idea is also to use PMID for data alignment.
The parties first compute the indication bit string a, b ∈ {0, 1}t as before. Then the parties share
their string to the other, i.e. Alice selects random a′

R←− {0, 1}t, computes a′′ := a ⊕ a′ and sends a′′

to Bob, Bob selects random b′
R←− {0, 1}t, computes b′′ := b ⊕ b′ and sends b′ to Alice. Then Alice

and Bob invoke the AND functionality Fand with input (a′, b′) and (a′′, b′′) respectively. As a result,
Alice outputs p and Bob outputs q where p ⊕ q = (a′ ⊕ a′′) ∧ (b′ ⊕ b′′) = a ∧ b. Note that the AND
functionality Fand could be efficiently implemented from OT. The parties could feed the p and q to
any MPC circuit to compute any function they want to compute.

6 Theoretical Analysis of Communication

Recall that we have presented two variants of our protocol. In this section, we will refer to them as:

– Sloppy-PMID: PMID protocol from sloppy OPRF specified in Figure 9.
– Std-PMID: PMID protocol from standard OPRF specified in Figure 10.

We use the state-of-the-art 3H-GCT [13] as our OKVS instantiation. The PSU protocol is instan-
tiated with [12].

In Table 1, we show the theoretical communication complexity of our protocol compared with
the BKM+ protocol [5] and the GMRSS protocol [12] in the semi-honest setting. This measures how
much communication the protocols require on an idealized network where we don’t care about protocol
metadata, realistic encodings, byte alignment, etc. In practice, data is split up into multiples of bytes
(or CPU words), and different data is encoded with headers, etc. Empirical measurements of such
real-world costs are given later in Table 2 and Table 3.

7 Implementation and Performance

In this section, we discuss details of our PMID implementations and report our performances. We also
implement state-of-the-art PID protocols [5, 12] under the same experiment setting and report their
performances as baselines. Since PMID reduces to PID when Ux = Uy = 1, such comparisons would
show the additional costs from PID to more general PMID functionalities.
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Table 1: Theoretical communication costs of P(M)ID protocols (in bits), calculated using computational se-
curity κ= 128 and statistical security λ= 40. Ignore costs of base OTs (in our protocol and GMRSS) which
are independent of input size. t is the size of the intersection (t = n/2 is used here). ρ is the width of OT
extension matrix (depends on n and protocol). σ is the length of items. Ux and Uy are the upper bound of
multiplicity of X and Y respectively. m and n are the input sizes of the Alice and Bob respectively.

Protocol Communication m=n
212 216 220

[5] (4m + 4n − 3t)|G| 1664n 1664n 1664n

[12] (1.27ρ + 3σ)(m + n) + 1.27nρ

+3mσ + (1.27n logn + n)(κ + σ)
5340n 6588n 7918n

Std-PMID (4.8κ + 1.2σ)(m + n) + 1.27nUρ

+3mUσ + (1.27nU lognU + nU)(κ + σ)

192Uxn + 3667Uyn

+1382n + 244Uy logUyn

216Uxn + 4823Uyn

+1402n + 254Uy logUyn

240Uxn + 6060Uyn

+1421n + 264Uy logUyn

Sloppy-PMID (1.27ρ + 4.8σ)(m + n) + 1.27nUρ

+3mUσ + (1.27nU lognU + nU)(κ + σ)

192Uxn + 3667Uyn

+1712n + 244Uy logUyn

216Uxn + 4823Uyn

+1809n + 254Uy logUyn

240Uxn + 6060Uyn

+1906n + 264Uy logUyn

7.1 Experimental Setup

We ran all our experiments on a single Intel Core i9-9900K with 3.6GHz and 128GB RAM. We
execute the protocol on two progresses operated by separated terminals with the network connection
built via the local network. We emulate two network connections, namely LAN/WAN configurations,
using Linux tc command. The LAN setting has a latency 0.02ms and bandwidth of 10Gbps, while the
WAN setting has a latency 80ms and bandwidth of 100Mbps. All experiments are done with 128-bit
inputs, in which half of the inputs from two parties are in the intersection. In PMID, we let the
input of Alice have the form X = {(x1, u

x
1), . . . , (xn, u

x
n)} = {(x1, Ux), . . . , (xn, Ux)}, and the input

of Bob have the form Y = {(y1, uy
1), . . . , (yn, u

y
n)} = {(y1, Uy), . . . , (yn, Uy)}. In the one-sided PMID,

the input of Alice is simply set as X = {(x1, 1), . . . , (xn, 1)}. In this way, we can have consistent
total computation/communication costs under single-thread and multi-thread settings with the same
inputs. We used the same methodology and environment to report all performances.

We use an asynchronous event-driven network application framework Netty to maintain the network
connection, and use the well-known tool Protocol Buffers for data serialization and deserialization.
This meets the compatibility and robustness requirements for industry-designed libraries, so that the
reported performance results would reflect the actual costs when deploying protocols in real situations.

7.2 Implementation Details

Existing PID implementations are under different experimental settings. For example, [5] imple-
mented their protocol in Rust programming language with specific libraries that support more efficient
Curve25519 elliptic curve cryptography (ECC) operations. On the other hand, [12] implemented their
PID protocol in C++ that only supports inputs represented as a 64-bit string (i.e., unsigned long)
and 64-bit PID outputs. Note that to achieve the statistical security parameter λ = 40, the bit length
of PID should be set as λ+ logm+ log n, which would beyond 64 even when m and n are relatively
small, i.e., m,n > 212. Such different experimental settings make it hard to have unified comparisons.

We fully re-implemented state-of-the-art PID protocols [5, 12] and their underlying basic protocols
using Java, including the base OT construction of [27], the OT extension construction of [21] with
the optimization of [1], the batch single-point OPRF of [24] for private equality tests, and the PSU
construction of [12] with the multi-thread optimization of [22] for uniting PID/PMID. We did subtle
optimizations for our implementations to make our performance results close to or even beyond the
ones reported in the original works.

Note that the efficiency of [5] highly depends on the ECC operation efficiency, and base OT also
invokes ECC operations. In our experiments, we introduced C/C++ MCL7 library in our implemen-
tations to perform efficient ECC operations and use Java Native Interface (JNI) technique to invoke
MCL from Java. We use the curve ‘secp256k1’, a NIST elliptic curve with 256-bit group elements. For
the hash-to-point operation, we use SHA-256 applied to the input, and re-applied until the resulting
output lies on the elliptic curve. Such setting has been used in Google’s PSI-Sum [19].

7 https://github.com/herumi/mcl
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For [12], we did not only re-implement the PID scheme based on “Sloppy OPRF” (Sloppy-[12])
but also implemented the PID scheme based on “standard OPRF” (Std-[12]) by using the lightweight
OPRF schemes introduce by [6] as the underlying OPRF. We used the OKVS introduced by [13] in
our Std-PMID and Sloppy-PMID. Our PMID implementation covers the general version and the one-
sided version. Besides, we also consider the case when both parties’ inputs are sets and PMID reduces
to its PID counterpart, where all steps for programming multiplicity can be omitted. We leveraged
the Fork-Join concurrency technique to support multi-thread computations. We fixed the thread pool
size to manually limit the maximal number of threads invoked during our multi-thread experiments.
Our complete implementation is available on GitHub8.

7.3 Performance Analysis

PID Comparisons. The running times and communication costs for existing PID schemes [5, 12]
and our PMID schemes when Ux = Uy = 1 are shown in Table 2. Observe that the running time
and the communication cost of [12] reported in Table 2 are higher than they reported in the original
work. This is because [12] supports UID with maximal 64-bit input length, which is not long enough
to prevent UID collision under the statistical parameter λ = 40 when m,n ∈ {214, 216, 218, 220}. The
longer UID leads to more costs in PSU and “Sloppy OPRF”. We also note that the performance of
[5] in our table is slightly better than the original work. This is mainly because we leverage the more
efficient ECC library MCL, which introduces assembly language for speeding up the ‘secp256k1’ ECC
operation performances. Since [5] is public-key based, it has the lowest communication of all schemes.
Thus it has a better performance in the WAN setting.

The communication cost and the running time of our PMID are identical to that of [12] (both for
the standard version and the sloppy version) when Ux = Uy = 1. This reflects the fact the PMID
reduces to its PID counterpart when both multiplicities are 1.
Scalability and Parallelizability. We demonstrate the scalability and parallelizability of our PMID
protocols by evaluating them on set sizes n = m ∈ {214, 216, 218, 220} with multiplicity U = 3 for
either party and for both parties. We run each party in parallel with T ∈ {1, 8} threads. We report
the performance in Table 3, showing running times in both LAN/WAN settings.

Our PMID protocol scales well when either party has multiplicity 3. When Ux = 1, Uy = 3, the
running time of our PMID increases by about 2×. When T increases from 1 to 8, we find that our
protocol improves by 2.3 − 3.1× in the LAN setting. In the WAN setting, it only speedup about
1.2− 1.7×, which is mainly due to the bandwidth limit.

When both parties have multiplicity Ux = Uy = 3, the efficiency of PMID decreases quadratically,
which correctly follows the excessive data expansion property for cross join. The Java Virtual Machine
complains running out of memory when m = n = 220. When n = m ∈ {214, 216, 218}, the running
time of our PMID increases by about 4× both in the LAN setting and the WAN setting. The result
is consistent with the best practice for analytical tasks: except for special cases, avoiding cross join
because it can blow up the amount of data coming out of the task.

Table 2: Communication (in MB) and run time (in seconds) of the private-ID protocol for input set sizes
n = 214, 216, 218, 220 executed over a single thread for LAN and WAN configurations.

Protocols
LAN(s) WAN(s) Comm(MB)

214 216 218 220 214 216 218 220 214 216 218 220

[5] 4.33 17.4 69.67 277.56 5.07 19.42 75.56 298.05 3.35 13.41 53.63 214.5

Std-[12] 1.86 9.03 4.77 217.51 4.85 17.43 76.96 327.49 16.45 70.51 302.3 1284.47

Sloppy-[12] 1.75 7.82 35.49 162.71 6.02 17.87 73.79 306.53 20.89 87.9 384.28 1602.82

Std-PMID 2.05 9.54 47.56 221.43 5.64 18.41 78.05 326.63 16.45 70.51 302.3 1284.47

Sloppy-PMID 1.75 7.76 35.97 163.73 5.83 18.75 77.88 315.6 20.89 87.9 384.28 1602.82

8 https://github.com/alibaba-edu/mpc4j
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Table 3: Running time (in seconds) of Sloppy-PMID and Std-PMID with set size ( n = m ), number of threads
(T ∈ {1, 8}) and number of multiplicity (U ∈ {1, 3}) in WAN/LAN settings. Cells with ”-” denote setting that
program out of memory.

n Protocol
Multi-
plicity

Comm.(MB)
Running time (s)

LAN WAN
Ux Uy Alice Bob Total T=1 T=8 T=1 T=8

214

Sloppy-PMID
1 1 9.31 11.58 20.89 1.75 0.7 5.83 4.35

1 3 15.82 22.73 38.55 3.47 1.53 9.13 7.35

3 3 43.1 56.09 99.19 7.88 3.21 19.81 16.24

Std-PMID
1 1 7.09 9.36 16.46 2.05 0.68 5.64 3.95

1 3 13.6 20.51 34.11 3.82 1.48 9.23 6.84

3 3 40.88 53.87 94.75 8.42 3.35 20 15.41

216

Sloppy-PMID
1 1 39.49 48.41 87.9 7.76 3.02 18.75 14.85

1 3 68.36 95.44 163.8 15.58 6.66 35.04 26.32

3 3 187.23 237.51 424.74 37.35 16.26 82.3 63.93

Std-PMID
1 1 30.8 39.71 70.51 9.54 3.24 18.41 13.44

1 3 59.67 86.75 146.42 17.73 7.03 34.8 24.04

3 3 178.54 228.82 407.36 38.38 16.3 82.24 60.5

218

Sloppy-PMID
1 1 174.82 209.46 384.28 35.97 14.94 77.88 56.76

1 3 299.02 405.66 704.68 72.33 32.88 144 107.13

3 3 813.55 1010.59 1824.13 181.58 89.62 345.54 268.1

Std-PMID
1 1 133.83 168.47 302.3 47.56 15.46 78.05 49.78

1 3 258.03 364.67 622.7 84.51 32.96 147.63 101.62

3 3 772.56 969.6 1742.15 195.43 92.1 350.43 261.19

220

Sloppy-PMID
1 1 733.61 869.21 1602.82 163.73 75.93 315.6 230.64

1 3 1271.21 1690.33 2961.54 347.49 173.61 608.68 449.01

3 3 - - - - - - -

Std-PMID
1 1 574.44 710.03 1284.47 221.43 77.49 326.63 203.64

1 3 1112.04 1531.16 2643.19 405.15 177.51 628.13 422.77

3 3 - - - - - - -
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A Proof of Partial Obliviousness

We first give the formal definition of linear OKVS as follows:

Definition 4 (Linear OKVS). An OKVS is linear (over a field F) if V = F (“values” are elements
of F), the output of Encode is a vector D in Fm, and the Decode function is defined as:

DecodeH(D,x) = ⟨row(x), D⟩ :=
m∑
j=1

row(x)jDj

for some function row : K → Fm. Hence Decode is a linear map from Fm to F.

The mapping row : K → Fm are typically defined by the hash function H.
For a linear OKVS, one can view the Encode function as generating a solution to the linear system

of equations: 
−row(x1)−
−row(x2)−

...
−row(xn)−

DT =


y1
y2
...
yn

 (1)

Theorem 4. When EncodeH chooses uniformly from the set of solutions to the linear system, the
linear OKVS satisfies the partial obliviousness property.

Proof. Now we prove the two distribution of D are statistically indistinguishable. We use RDT = Y
to represent equation 1 and we decompose the matrix as[

R1

R2

]
DT =

[
Y1

Y2

]
where R1 and Y1 correspond to the first t rows of the matrix, and R2 and Y2 correspond to the
last n − t rows. We use DX,Y to represent all possible outputs of EncodeH(X,Y ). We have D ←
EncodeH(X,Y )⇐⇒ D

R←− DX,Y .
We denote the two distributions in the definition of partial obliviousness as W1 and W2 respectively.

Since there are t fixed key-value pairs (x1, y1), . . . , (xt, yt), both outputs of W1 and W2 must satisfy
R1D

T = Y1.
For any D0 ∈ Fm constrained on R1D

T
0 = Y1, we have Pr[Y2

R←− Fn−t : R2D
T
0 = Y2] =

1
|F|n−t and

thus Pr[D ← EncodeH(X,Y ) : D = D0|Y2 ̸= R2D
T
0 ] = 0. The distribution of W1 is as follows:

Pr[D ←W1 : D = D0] = Pr[Y2
R←− Fn−t, D

R←− DX,Y : D = D0]

=
∑

Y ′
2∈Fn−t

Pr[Y2
R←− Fn−t : Y2 = Y ′

2 ] · Pr[D
R←− DX,Y : D = D0|Y2 = Y ′

2 ]

= Pr[Y2
R←− Fn−t : Y2 = R2D

T
0 ] · Pr[D

R←− DX,Y : D = D0|Y2 = R2D
T
0 ]

=
1

|F|n−t
· 1

|DX,Y |

The only difference between W1 and W2 is that the constant matrix R2 is different, which does not
affect the probability. Similarly, we obtain Pr[D ←W2 : D = D0] =

1
|F|n−t · 1

|DX,Y | .
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Parameters:

– Two parties: Alice and Bob.
– An OKVS scheme (EncodeH ,DecodeH).
– Ideal Fdv-OPPRF primitives specified in Figure 6.
– Ideal Fbsp-oprf primitives specified in Figure 3.
– Ideal Fpsu primitives specified in Figure 5.
– A PRF F : {0, 1}∗ → {0, 1}σ.
– Random oracle H̄ : {0, 1}∗ → {0, 1}l.
– Random hash functions h1, . . . , hα1 : {0, 1}∗ → [ρ1] and h′

1, . . . , h
′
α2

: {0, 1}∗ → [ρ2].

Input of Alice: X = {(x1, u
x
1), . . . , (xm, ux

m)} ⊂ {0, 1}∗×[Ux]. In the one-sided version, ux
1 = · · · = ux

m = 1,
i.e. the input of Alice is a set. Let X ′ := {x1 . . . , xm} be the set without duplication items corresponding
to X.
Input of Bob: Y = {(y1, uy

1), . . . , (yn, u
y
n)} ⊂ {0, 1}∗× [Uy]. Let Y ′ := {y1 . . . , yn} be set without duplica-

tion items corresponding to Y .
Protocol:

1. (Sloppy OPRF Bob → Alice) Alice does A ← Cuckooρ1h1,...,hα1
(X ′).

2. The parties call Fbsp-oprf , where Alice is the receiver with input A and Bob is the sender. Bob receives
output (kB

1 , . . . , kB
ρ1) and Alice receives output (fA

1 , . . . , fA
ρ1). Alice output is such that, for each x ∈ X,

assigned to bin u by hash function hv, we have fA
u = FkB

u
(x||v).

3. Bob chooses a random PRF key sB , he computes an OKVS PB := EncodeH({(y||v, FsB (y) ⊕
FkB

hv(y)
(y||v))}y∈Y ′,v∈[α1]) and sends PB to Alice.

4. For each item x that Alice assigned to a bin with hash function hv, Alice defines rA(x) :=
DecodeH(PB , x||v)⊕ fA

hv(x)
⊕ FsA(x).

5. (Sloppy OPRF Alice → Bob) Bob does B ← Cuckooρ2
h′
1,...,h

′
α2

(Y ′).
6. The parties call Fbsp-oprf , where Bob is the receiver with input B and Alice is the sender. Alice receives

output (kA
1 , . . . , k

A
ρ2) and Bob receives output (fB

1 , . . . , fB
ρ2). Bob output is such that, for each y ∈ Y ′,

assigned to bin u by hash function hv, we have fB
u = FkA

u
(y||v).

7. Alice chooses a random PRF key sA, she computes an OKVS PA := EncodeH({(x||v, FsA(x) ⊕
FkA

hv(x)
(x||v))}x∈X,v∈[α2]) and sends PA to Bob.

8. For each item y that Bob assigned to a bin with hash function hv, Bob defines rB(y) :=
DecodeH(PA, y||v)⊕ fB

hv(y)
⊕ FsB (x).

9. (Program Multiplicity) For i ∈ [m], if ux
i = 1, Alice selects a random cxi

R←− {0, 1}σ, else defines
cxi := ux

i. For j ∈ [n], if uy
j = 1, Bob selects a random cyj

R←− {0, 1}σ, else defines cyj := uy
j . Note that

here we pad ux
i and uy

j with 0 from logUx and logUy bits to σ bits.
10. The parties call Fdv-OPPRF, where Bob is sender with input {(yj , cyj)}j∈[n] and receives (kB , hintB),

and Alice is receiver with input X ′. As a result, Alice receives hintB , {dBi := F (kB , hintB , xi)}i∈[m].
11. For i ∈ [m], if 1 < dBi ≤ Uy, Alice defines ūx

i := ux
i · dBi ; else ūx

i := ux
i. Alice also defines Yleak :=

{(xi, d
B
i )|i ∈ [m], 1 < dBi ≤ Uy}.

12. The parties call Fdv-OPPRF, where Alice is sender with input {(xi, c
x
i)}i∈[m] and receives (kA, hintA),

and Bob is receiver with input Y ′. As a result, Bob receives hintA, {dAj := F (kA, hintA, yj)}j∈[n].

13. For j ∈ [n], if 1 < dAj ≤ Ux, Bob defines ūy
j := uy

j · d
A
j ; else ūy

j := uy
j . Bob also defines the leaked set

Xleak := {(yj , dAj )|j ∈ [n], 1 < dAj ≤ Ux}. In the one-sided version, Bob defines ūy
j := uy

j for j ∈ [n].
14. (ID computation) For i ∈ [m], t ∈ [ūx

i], Alice computes id(x
(t)
i ) := H̄(rA(xi)||t). Let IDX :=

{id(x(t)
i )|i ∈ [m], t ∈ [ūx

i]}.
15. For j ∈ [n], t ∈ [ūy

j ], Bob computes id(y
(t)
j ) := H̄(rB(yj)||t). Let IDY := {id(y(t)

j )|j ∈ [n], t ∈ [ūy
j ]}.

16. (Union) Alice and Bob invoke the PSU functionality Fpsu with input IDX and IDY respectively. As
a result, Bob receives R∗ := IDX ∪ IDY and sends R∗ to Alice.

Fig. 9: PMID Protocol ΠPMID from Sloppy OPRF. The highlighted parts could omit for one-sided version.
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Parameters:

– Two parties: Alice and Bob.
– Ideal Fdv-OPPRF primitives specified in Figure 6.
– Ideal Fmp-oprf primitives specified in Figure 4 and underlining PRF F : {0, 1}∗ → {0, 1}σ.
– Ideal Fpsu primitives specified in Figure 5.
– Random oracle H̄ : {0, 1}∗ → {0, 1}l

Input of Alice: X = {(x1, u
x
1), . . . , (xm, ux

m)} ⊂ {0, 1}∗×[Ux]. In the one-sided version, ux
1 = · · · = ux

m = 1,
i.e. the input of Alice is a set. Let X ′ := {x1 . . . , xm} be the set without duplication items corresponding
to X.
Input of Bob: Y = {(y1, uy

1), . . . , (yn, u
y
n)} ⊂ {0, 1}∗ × [Uy]. Let Y ′ := {y1 . . . , yn} be the set without

duplication items corresponding to Y .
Protocol:

1. (OPRF) Alice and Bob invoke the multi-point OPRF functionality Fmp-oprf . Alice acts as the sender
and Bob acts as the receiver with input Y ′. As a result, Alice receives a PRF key kA and Bob receives
{FkA(y)|y ∈ Y ′}.

2. Alice and Bob invoke another multi-point OPRF functionality Fmp-oprf . Bob acts as the sender and
Alice acts as the receiver with input X ′. As a result, Bob receives a PRF key kB and Alice receives
{FkB (x)|x ∈ X}.

3. (Program Multiplicity) For i ∈ [m], if ux
i = 1, Alice selects a random cxi

R←− {0, 1}σ, else defines
cxi := ux

i. For j ∈ [n], if uy
j = 1, Bob selects a random cyj

R←− {0, 1}σ, else defines cyj := uy
j . Note that

here we pad ux
i and uy

j with 0 from logUx and logUy bits to σ bits.
4. The parties call Fdv-OPPRF, where Bob is sender with input {(yj , cyj)}j∈[n] and receives (kB , hintB),

and Alice is receiver with input X ′. As a result, Alice receives hintB , {dBi := F (kB , hintB , xi)}i∈[m].
5. For i ∈ [m], if 1 < dBi ≤ Uy, Alice defines ūx

i := ux
i · dBi ; else ūx

i := ux
i. Alice also defines Yleak :=

{(xi, d
B
i )|i ∈ [m], 1 < dBi ≤ Uy}.

6. The parties call Fdv-OPPRF, where Alice is sender with input {(xi, c
x
i)}i∈[m] and receives (kA, hintA),

and Bob is receiver with input Y ′. As a result, Bob receives hintA, {dAj := F (kA, hintA, yj)}j∈[n].

7. For j ∈ [n], if 1 < dAj ≤ Ux, Bob defines ūy
j := uy

j · d
A
j ; else ūy

j := uy
j . Bob also defines the leaked set

Xleak := {(yj , dAj )|j ∈ [n], 1 < dAj ≤ Ux}. In the one-sided version, Bob defines ūy
j := uy

j for j ∈ [n].
8. (ID computation) For i ∈ [m], t ∈ [ūx

i], Alice computes id(x
(t)
i ) := H̄(rA(xi)||t). Let IDX :=

{id(x(t)
i )|i ∈ [m], t ∈ [ūx

i]}.
9. For j ∈ [n], t ∈ [ūy

j ], Bob computes id(y
(t)
j ) := H̄(rB(yj)||t). Let IDY := {id(y(t)

j )|j ∈ [n], t ∈ [ūy
j ]}.

10. (Union) Alice and Bob invoke the PSU functionality Fpsu with input IDX and IDY respectively. As
a result, Bob receives R∗ := IDX ∪ IDY and sends R∗ to Alice.

Fig. 10: PMID Protocol ΠPMID from Standard OPRF. The highlighted parts could omit for one-sided version.
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