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Abstract. We present a reactive MPC protocol built from FHE which is robust in the
presence of active adversaries. In addition the protocol enables reduced bandwidth
via means of transciphering, and also enables more expressive/efficient programs via
means of a Declassify operation. All sub-components of the protocol can be efficiently

realised using existing technology. We prove our protocol secure in the UC framework.
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1 Introduction

Multi-Party Computation (MPC) and Fully Homomorphic Encryption (FHE) are often
seen as competing technologies in the cryptographic goal of Computing on Encrypted
Data. However, this is a rather naive view. One can base MPC on various different
cryptographic building blocks, for example traditionally one based MPC on Linear Secret
Sharing Schemes (LSSSs) or Garbled Circuits (GCs). However, one can also base MPC on
FHE, as was originally pointed out in Gentry’s thesis [Gen09]. Gentry provides a simple
Secure-Function Evaluation (SFE) protocol in which parties use an FHE algorithm to
encrypt their inputs to each other, the parties then compute independently the function
output homomorphically, and then the (public) output is obtained via a distributed
decryption protocol.

Since its creation by Gentry, the development of FHE has been rapid. There are now a
plethora of schemes to choose from: BGV [BGV12], BFV [Bral2, FV12], CKKS [CKKS17],
GSW [GSW13], FHEW [DM15], and TFHE [CGGI20], to name but a few. Each scheme
comes with its own advantages and disadvantages, and particular applications for which it
is well suited.

One can view the distributed decryption protocol in Gentry’s SFE protocol above as a
mini-MPC protocol, thus we have (in some sense) built an SFE protocol from an FHE
scheme and a mini-MPC protocol, with the key generation itself performed by another
mini-MPC protocol (such as that in [RST*22]). There are a few drawbacks with Gentry’s
blueprint. Firstly, it only provides secure function evaluation (i.e. evaluation of a single
function, with a public output, in a one-shot manner), therefore it does not provide full
reactive MPC. Secondly, the protocol only provides semi-honest (a.k.a. passive) security.
On the other hand the communication complexity is a (admittedly large) function of the
input size, i.e. the communication complexity does not depend on the function complexity.

MPC and FHE have been combined in other ways. For example the SPDZ protocol
[DPSZ12] produces an actively-secure MPC protocol based on LSSS technology, but one
which uses an FHE scheme supporting circuits of multiplicative depth one (so called
Somewhat Homomorphic Encryption (SHE) schemes of depth one) as a means of providing
an efficient offline phase. Indeed one can view the offline phase of SPDZ as a variant of
Gentry’s FHE-based MPC protocol for the functionality of producing Beaver multiplication
triples. To obtain active security in SPDZ one needs to augment the FHE ciphertexts with
Zero-Knowledge Proofs of Knowledge (ZKPoKs). There are ZKPoKs which have been
specifically designed for this usage in the SPDZ protocol [BCS19].

In a different direction, [CLO"13] provides a robust MPC protocol, in the honest
majority setting, which utilizes an SHE scheme of a specified depth, which follows Gentry’s
blueprint for SFE. The extension from SHE to supporting any function is enabled by
replacing the bootstrapping in FHE by a special protocol based on distributed decryption;
namely bootstrapping is performed by interaction.

Another combination of MPC and FHE technologies has been the work on Multi-Key
FHE (MK-FHE), see [AJLT12, AJW11, LTV12] amongst many other works. In these
works, instead of parties generating a global single FHE key in an initialization phase (as
in the works above), the parties take their existing individual (multiple) FHE key pairs
and combine them in order to perform an MPC-like computation. Whilst this provides a
simpler operational setup, the practical implementations of MK-FHE are not as efficient
as single key FHE. Another variant of MK-FHE is that of Multi-Party FHE (MP-FHE).
The work on MP-FHE is much like our own application; namely there is a distributed key
generation protocol and a distributed decryption protocol. However in MP-FHE, the key
derivation is created directly from the underlying mathematics, as opposed to applying
generic MPC technology. Thus the resulting FHE schemes obtained are slightly different,
or have slightly larger parameters, than those proposed in single party FHE. We emphasise
that in our work we envisage the use of standard FHE scheme’s with the same parameter



sets for the single user case; but we use them in a multi-user environment. To distinguish
this from MK-FHE and MP-FHE, we call our usage simply Threshold-FHE.

In a seperate line of work, stretching over the last twenty years, a major performance
improvement in practical LSSS-based MPC protocols has been seen to come from “opening”,
or “declassifying” secret information during an MPC computation. This use of Declassify as
a basic operation has been exploited in many MPC systems to enable efficient fixed point,
floating point and other advanced operations, see for example [Cat21, Cd10, CS10, DFKT06]
amongst other works. Whilst the above works on applying FHE to SFE/MPC protocols
utilize a method to declassify data, via the distributed decryption protocol inherent in the
output operation, they have not exploited the ability to perform distributed decryption
as a means of declassifying data during a computation; and thus enabling a richer set of
basic operations than just Add and Mult.

In a final line of work, researchers have been investigating transciphering as a means of
reducing the huge ciphertexts seen in FHE computations. For example in the above works,
the parties need to encrypt via FHE, and so the input (whilst independent of the function
size) is still very large (as the FHE ciphertexts are large). In addition an MPC protocol
may wish to store data for a long period of time. By transciphering from the FHE cipher to
a more compact cipher (for example a simple encryption scheme based on a stream cipher)
and back again, one can reduce input bandwidth and storage quite considerably. The
paper [DGH™21] considers transciphering for BGV/BFV style FHE schemes, and presents
a specialized cipher tuned for these two schemes, called Pasta. They show that with
levelled BGV/BFV style FHE such a transciphering, from an encryption under Pasta to an
encryption under the FHE scheme, can be done in about 120 seconds for plaintext spaces of
17 and 33 bits. For TFHE style FHE, it would appear that utilizing a standard bit-oriented
stream cipher with low multiplicative depth (for example Trivium [De 06]) would be
more efficient, or even a small modification of Trivium such as Kreyvium [CCFT16]. In
[DGH"21], the authors report on a homomorphic implementation of Kreyvium using
TFHE which ouputs one encrypted bit of output every 237 milliseconds. In [BOS23] this
is improved to roughly 4 milliseconds per bit.

1.1 Our Contribution

We start by the observation that current FHE schemes are now fast enough that they can
be deployed in real life scenarios. In particular bootstrapping is no longer a bottleneck, for
example bootstrapping for the TFHE encryption scheme [CGGI20] can be done in under
20 milliseconds [CJLT20]. In addition distributed decryption can be done (depending
on the type of FHE scheme, the parameters and the number of parties) in either a few
milli-seconds or around half a second [DDE*23]!. Thus one can reasonably imagine
implementing, in the real world, an MPC protocol which utilizes a Threshold-FHE scheme.

Our second observation is that such (practical) protocols need to be fully general and
fully secure. By this we mean that the MPC protocol should be robust, i.e. it should
be maliciously secure and should provide guaranteed output delivery for honest parties,
and the input and output parties may be distinct from the parties executing the MPC
operation. In addition the protocol should be composable, so any security proof needs to
be given in the UC framework.

Our third observation is that one wants a protocol that supports fully reactive com-
putation, with both public and private outputs to parties. In particular the “programs”
executed by the MPC system should support useful features such as the Declassify operation
discussed above.

Our final observation is that one does not want the communication complexity of the
input, output and storage of data to depend on the relatively large FHE ciphertexts (and

1These are timings using standard processors, if FPGA or ASIC acceleration is applied then these
run-times for distributed decryption could be reduced by at least two orders of magnitude.



any associated zero-knowledge proofs which need to accompany them for active security
considerations). For example, one may want to support clients entering data which are on
a resource bound mobile device. Thus our MPC protocol should support transciphering as
a basic primitive.

Thus we provide an FHE based MPC protocol which implements the four main points
above. We provide a full UC proof of security for the protocol. We believe this is the
first time both transciphering and Declassify operations have been shown to the secure
within an FHE-based MPC protocol, as opposed to being secure in a stand-alone manner.
We pay particular attention to ensure that all building blocks used by our protocol are
efficiently implementable with current technology. Thus our protocol can be implemented,
and utilized today, to enable low-bandwidth, FHE-based MPC computations.

1.2 System Overview

We work in an MPC model in which we separate the parties into three sets; the parties
who provide input I = (Zy,...,Z;), the parties who obtain output O = (O, ...,0p), and
the parties who perform the computation C = (Cy,...,C¢). This distinguishing of roles
between the parties seems to have first been introduced in the FairplayMP system [BNP0S],
a generalization to secret sharing based MPC was presented in the Cybernetica research
report [BK11], with a full presentation being given in [BKL14].

We assume a monolithic adversary that can statically corrupt any number of input
parties, any number of output parties, and a specified fraction of the computing parties.
The number of computing parties which are corruptible is given by a threshold ¢, where
we assume ¢t < C'//3 in order to ensure that our distributed decryption protocol is robust?.
Obviously if all input parties are corrupted then there is little point in performing a secure
computation at all, so we can assume that at least one input party is honest.

We present our model in the synchronous communication model, but we believe it can
be easily adapted to the asynchronous model (assuming an asynchronous protocol for our
Declassify operation, and assuming a standard synchronization point for obtaining parties
inputs). Parties are assumed to be connected by authentic channels, except in specific
instances where we require private channels (these will be explicitly mentioned when we
require them).

1.3 Discussion

Our protocol is essentially an MPC protocol realised via FHE, and not via Yao- or LSSS-
based, constructions. We are using this MPC formalisation of an FHE-enabled protocol to
capture various use cases of FHE all in one go.

1.3.1 Standard MPC:

In the standard MPC definition we have I = @ = C. This captures standard MPC use
cases of secure data collaboration, and collaborative computing. As already remarked, an
initial (passively secure) SFE protocol based on FHE was originally given in Gentry’s PhD
thesis [Gen09).

The advantage of using our FHE-based MPC protocol, over a standard LSSS- or GC-
based MPC protocol, is that the communication costs can be reduced considerably. Indeed
our consideration of transciphering within our model is key to reducing communication
costs.

In practice network performance improves at a slower rate than computing performance;
this is inherent in technology as network latency is bound by the speed-of-light, and network

20ne can theoretically push this to ¢ < C/2, but then the distributed decryption protocol is much less
efficient given current technology.



bandwidth is also bound by physical limitations. On the other hand, methods of improving
computational efficiency seem to have no limits®. Thus it is expected in the long run that
computation intensive FHE-based MPC will outperform communication intensive LSSS-
or GC-based MPC.

1.3.2 Outsourcing FHE:

In the standard outsourcing scenario, considered in many FHE papers, we have I = O = {Z},
i.e. a single identical input and output party. Then the computation is performed by a
single server, C = {C}, with the result returned to the user. That there is only one input
party, who must therefore be honest, can simplify the input protocols considered in our
paper (as we can assume all inputs are honestly created). Of course some outsourcing
examples have that the server also has some private input. In which case one has I = {Z,C},
O = {Z} and C = {C}; in which case one cannot assume that all inputs are validly created.

If we restricted our programs to not have any Declassify instructions then this becomes
the standard FHE outsourcing scenario and we can obtain semi-honest security if C
contains just one server*. However, to obtain robust security (i.e. to protect against a
dishonest server) one needs a form of Verifiable Computation (VC). A simple way to obtain
VC, and hence active robust security, is to ensure that C has at least three parties and
the set C contains an honest majority. This ensures that the function has been computed
correctly homomorphically.

The obvious disadvantage of not having a Declassify instruction is that every function
needs to be represented as an arithmetic circuit over any underlying ring R, which is a not
so expressive a representation. Without the Declassify instruction one is (often) led to more
complex representations of the same input program. Thus in practice, for outsourced FHE
computation one might still want to use an MPC-like situation where one has multiple
servers with at most ¢ < C'/3 bad servers.

1.3.3 Blockchain Scenario:

In a blockchain scenario one can imagine the parties I and O being users of the blockchain,
with data stored on the blockchain in encrypted form (when the data is sensitive). The
computing parties then become an analogue of network validators, which process a smart
contract over this encrypted data. That the input parties must agree on the smart contract
in this scenario, implies that the input parties and computing parties automatically have
consensus on the program P. The blockchain is simply the data store used by the validators
to store the variables and the program. Thus our methodology of transciphering to reduce
the cost of data storage will be key to such applications.

In the blockchain scenario one can also imagine a situation in which one actually has
two sets of parties making up the computing parties C. The first set C' just computes the
deterministic operations which require no interaction. We require of these operations that
they are executed correctly, thus the consensus mechanism of the blockchain can ensure
that the specific deterministic values are computed correctly, i.e. we have that C! must
contain an honest majority.

When an interactive operation needs to be performed on the FHE ciphertexts, one
now passes to a different set of parties C? of size C' where one can tolerate only t < C/3
adversarial parties®. In the blockchain situation one can image the set C2 being the set of
blockchain validators.

3Despite many people predicting the end of Moore’s Law for over two decades, there seems no evidence
that the improvement in compute performance is slowing down.

4Although we need a slightly different method for the Output command than what we will use, and
also a different FHE key setup, for example so that the single party in @ knows the decryption key. These
are all minor changes, which simplify the discussion and so we ignore them going forward.

5Again t < C/3 is chosen as opposed to t < C/2 for efficiency reasons with current technology.



Finally, in blockchains it is often important to enable bad actors to be identified, since,
for example, they can then be “slashed” in Proof-of-Stake style blockchains. This additional
systems security requirement is orthogonal to our work, but is enabled since we utilize
robust MPC components which enable the honest parties to detect which adversarial
parties are misbehaving.

1.4 Historical Overview

Here we outline some of the prior work, and point out how it relates to our own work.

1.4.1 Trivial FHE-based MPC:

We have already outlined how Gentry’s thesis [Gen09], which introduced the first FHE
scheme, also explained how a Threshold-FHE scheme could enable a communication
efficient, passively secure, SFE solution amongst n parties for a function F. The basic
protocol was for the parties to encrypt their inputs using the Threshold-FHE scheme, the
parties then evaluate the desired function using the FHE operations, and then the output
of the function is obtained via a distributed decryption operation.

That this “trivial” protocol is only passively secure is not due to the computation
stage (since for honest majority MPC one can take a majority verdict on the computation,
assuming the underlying FHE operations are deterministic in nature). The problem arises
from the input and output stages, one requires some way of showing that adversarial
parties both produce valid encryptions of their encrypted inputs, and know the underlying
messages. Similarly one requires an actively secure threshold decryption protocol. It is
this blue-print which we turn into an actively secure protocol in this paper, by using
the same methodology to secure the computation phase, but by utilizing zero-knowledge
proofs in the input phase, and using the actively secure threshold decryption protocol from
[DDE*23].

This “trivial” protocol clearly has communication which does not depend on the “size”
|F'| of the function being computed. In addition, the number of rounds also does not
depend on |F|. Indeed, if the distributed decryption protocol round complexity does
not depend on the number of parties, then the round complexity is constant. Thus the
communication complexity is roughly a linear function of n and the number of function
inputs and outputs®.

In our protocol, by using transciphering and assuming an initialization phase, which
can be amortized away, the communication complexity of the input phase, can be exactly
that of the (in the clear) inputs. For output of data, one requires distributed decryption
to obtain the transciphered outputs in our protocol. Thus whilst the parties accepting
output, @, have communication which is exactly that of the size of the actual (in the clear)
outputs, the computing parties, C, require communication which is dependent on both 7,
and the underlying FHE parameters.

1.4.2 Trading Computation for Communication:

Traditional MPC, based on garbled circuits or linear secret sharing, has a high commu-
nication complexity which depends on the function F' being computed. In GC-based
MPC the round complexity is constant, but the communication complexity depends on
|F|, in LSSS-based MPC both the round and the communication complexity depends
on the function F. We remarked above that communication complexity of the trivial
FHE-based MPC protocol of Gentry does not depend on the function F', both in terms

6We say roughly as (depending on the distributed decryption protocol) the parameter sizes of the FHE
scheme may depend on n. That it is linear in n is due to the fact that almost all distributed decryption
protocols will have complexity which is also linear in n.



of communication and round complexity. However, this comes at the expense of needing
“expensive” FHE operations (in terms of computational cost).

One can try to trade communication and computation in various ways.

o As already remarked, at a protocol level this is done in the SPDZ protocol [DPSZ12]
by (essentially) using a variant of Gentry’s protocol as the offline phase to evaluate
the function which produces Beaver triples. This offline phase can be built from the
BFV or BGV encryption schemes, but it requires addition of (specially designed)
zero-knowledge proofs to make it actively secure.

e In [CLO™13] a different protocol level trade-off is performed, where the (relatively
expensive) boot-strapping operations inherent in FHE are processed using an inter-
active (MPC-like) protocol. The approach of Choudhury et al [CLOT13] is justified
for FHE schemes, such as BGV and BFV, where bootstrapping is very expensive,
but for schemes such as TFHE the work of [CLO™13] makes little sense.

Whilst [DPSZ12] has been implemented and is relatively efficient, we do not know of any
implementation of [CLOT13].

In our work we do not make protocol level tradeoffs between communication and
computation, instead we design a protocol in which such trade-offs can be made at the
“program”/“function” level. The prior referenced work in the MPC domain for large
integer, fixed point and floating point operations, e.g. in [Cat21, Cd10, CS10, DFK*06],
enable (in any MPC protocol) computation to be traded for communication. In essence
they “break” the circuit paradigm of describing functions, by making use of the ability of
players to interact in an MPC protocol via opening/declassifying intermediate results. We
enable this richer methodology of describing functions to be evaluated via our Declassify
operation, which enables trading communication for computation, and we capture this in
our programming model by adapting the M-Circuits formalism of [BdOT21].

1.4.3 Threshold-FHE:

As already remarked threshold decryption for SHE/FHE schemes have been used in many
prior works. For example the first threshold key generation and decryption algorithm
for LWE-based encryption schemes [BD10] was presented at around the same time as
Gentry’s original thesis. For threshold SHE protocols one can go back to (at least) the
SPDZ protocol [DPSZ12], and the already mentioned work of Asharov et al [AJL"12] and
Choudhury et al [CLO"13]. Both [AJL™12] and [DPSZ12] are presented in the context of
full threshold sharing of the secret, whereas [CLO™13] presents it’s results for threshold
sharing where ¢ < n/3, in the case when (7) is small”. That [CLOT13] restricts to small
values of () is due to its use of Pseudo-Random Secret Sharing (PRSS) to enable Shamir
sharing of the noise-flooding term.

Threshold-FHE has been used to construct a generic thresholdizer for arbitrary pro-
tocols by Boneh et al. in [BGGK17]. They utilize a methodology of “clearing” out the
denominators when using Shamir sharing for large values of (?), which adds complexity to
the methodology. The paper [BGGT 18] extends this basic construction, by instead using
so-called {0, 1}-LSSS (a form of replicated secret sharing) to avoid the need for “clearing”
out the denominators in Shamir sharing. The disadvantage of using {0, 1}-LSSS is that the
size of each parties shares can become exponentially large. Further optimization of these
universal thresholdizer’s was recently given by Cheon et al [CCK23], using a tree-based
secret sharing scheme.

Most works on Threshold-FHE make use of noise flooding to obtain security for their
threshold protocols. This approach appears, at first sight, to require a super-polynomial
gap between the size of the LWE noise term and the ciphertext modulus. In [BS23] and
[CSST22] a way around such super-polynomial gap, via the Renyi divergence, was found.

"Here n is the total number of parties in the underlying secret sharing, and ¢ is an upper bound on the
number of adversarial parties amongst those n.



However, this comes at the expense of requiring a security model for distributed decryption
which is game-based and not simulation based; this causes a problem when composing
such a security model in larger protocols such as ours. In [DDE*23] it is argued that
such a super-polynomial gap is irrelevant for FHE schemes such as BGV and BFV, and is
only relevant for TFHE. The paper [DDE*23] then goes on to present a methodology for
threshold decryption for TFHE which does not rely on the Renyi divergence; instead it
uses noise-flooding combined with the efficient bootstrapping procedure inherent in TFHE.
In addition [DDE 23] utilizes an online/offline methodology for large values of (7;) in order
to allow a simple application of Shamir’s secret sharing scheme, and thus avoid the use of
PRSS in such cases. Hence, [DDE123] presents a methodology for threshold decryption
with a simulation based security proof, and which works for threshold access structures
with ¢ < n/3.

The application of Threshold-FHE to practical situations has also been investigated
in the context of the CKKS FHE scheme (which operates on approximate floating point
numbers). For example [ZDH20] examines the case of using CKKS for multiparty Convo-
lution Neural Network applications; giving run-times for various problems in the case of
two, four, eight and sixteen parties.

In [MTBH21] a semi-honest MPC protocol is given based on a threshold version of
the BFV encryption scheme. They demonstrate the utility of their protocol by giving
experimental runtimes of a Private Information Retrieval (PIR) application based on their
protocol. One can view the protocol in [MTBH21] as a semi-honest, BFV-specific version
of the actively secure, general-FHE protocol considered in our paper.

1.4.4 Multi-Party FHE based MPC:

In [LMK™22] the authors present an efficient manner in which to bootstrap FHEW
ciphertexts® which are smaller. They then show how to create a full-threshold secret shared
version of the FHEW decryption key, by combining existing keys together in the manner
used in MP-FHE. They do not detail how the resulting threshold decryption is performed,
nor present a performance evaluation.

MP-FHE has also found application in theoretical cryptography. For example [Coh16]
constructs constant round protocols for MPC over asynchronous networks, given an
asynchronous Byzantine agreement functionality, assuming static malicious adversaries
when ¢ < n/3. In [CsW19] a two round, semi-honest, SFE protocol is given with sublinear
communication complexity.

1.4.5 Multi-Key FHE-based MPC:

The above papers on FHE-based MPC, Threshold-FHE and MP-FHE assume, as we do, a
setup algorithm in which an FHE public key is prepared and the computing parties obtain
a threshold decryption key share. Such multi-party setup procedures are then implemented
using another form of MPC, see for example the one described in [RST122].

Another approach is to use FHE to enable an ad-hoc form of MPC, which requires
no multi-party set up protocol. Instead, it takes existing FHE keys and uses FHE-like
operations themselves (in particular a key-homomorphic property enabled by most LWE-
based FHE schemes) to produce a shared key which enables further MPC operations. This
approach, often dubbed Multi-Key FHE (MK-FHE)?, was first introduced in concurrent
work by Asharov et al [AJW11] and Lopez-Alt et al [LTV12], see also [AJLT12]. Multi-key
FHE can be further divided into those schemes which enable a user to encrypt a message in

8FHEW is a scheme which is closely related to TFHE.

9Although often it is called threshold multi-key FHE, and sometimes also just Threshold-FHE as well.
To add further confusion older papers use TFHE to mean “Threshold-FHE”, as opposed to the modern
usage of TFHE to mean “Torus FHE”.



the protocol to a single user key, or those which require encryption to a derived multi-user
key.

The papers [AJW11, AJL*12, LTV12] introduce LWE-based FHE schemes, which are
key-homomorphic, specifically for the task of creating MK-FHE. The resulting FHE-based
MPC protocols are made actively secure using zero-knowledge proofs. The paper of
Lopez-Alt et al [LTV12] based it’s construction on an NTRU-like assumption, which was
further extended in the YASHE FHE scheme [BLLN13]. However, such “overstretched”
NTRU-based schemes were subsequently shown to be insecure [ABD16].

The MPC protocols based on MK-FHE are often described in the context of a single
cloud which does the actual FHE computations, i.e. one has C =1 in our setting. With
the MK-FHE property being used to enable various parties to come together in an ad-hoc
manner (in a so called on-the-fly methodology) in order to compute a desired function,
using the cloud provider as a service. When C' = 1 the cloud-based MK-FHE protocols
need to require a form of Verifiable Computation (VC) to ensure the FHE part of the
operation is carried out correctly. We bypass the need for complex VC operations by
assuming an honest majority of computing parties in C, i.e. we assume t < C/2 (in fact
t<C/3).

In this context, of a single cloud provider, the distributed decryption operations need
to be performed by the output parties @, and not the computing parties C. A dishonest
majority of output parties in these protocols (when executing the threshold protocol
to obtain a decryption) can be accommodated (theoretically) by zero-knowledge proofs
being applied to the threshold decryption protocol. Our use, by the parties in C, of the
threshold decryption proposed in [DDET23], by passes this need for zero-knowledge proofs,
by increasing the number of honest parties in C' to a setting in which ¢ < C/3.

The key theoretical usage of MK-FHE is to produce very low round MPC protocols.
For example if one allows the use of the Common Random String (CRS) model then
MK-FHE enables two round actively secure MPC, [MW16]. A similar result [GGHR14] is
possible, without using MK-FHE, but using instead Indistinguishability Obfuscation (iO).
Assuming MK-FHE is, of course, theoretically nicer than assuming iO, since iO is not so
well established a primitive. Two rounds is thus known to be both necessary and sufficient
for MPC in the CRS model.

In the plain model (i.e. without a setup assumption such as a CRS) it was for a long
time an unknown problem as to how many rounds were both necessary and sufficient for
actively secure MPC. In 2016 it was shown [GMPP16] that four rounds were necessary,
and then in 2017, using MK-FHE, it was shown [BHP17] that four rounds were indeed
sufficient for actively secure MPC. If one assumes a PKI then three rounds are possible, as
shown (for semi-malicious adversaries) in [KLP18].

Further, theoretical, work has been carried out on MK-FHE-based MPC protocols. For
example, Damgard et al [DPR16] develop a form of equivocal FHE, which enables them to
extend the work of [AJW11, AJLT12, LTV12] from the static corruption model to the
adaptive model, whilst (again) giving a secure MPC protocol in the dishonest majority
setting.

Despite over ten years of research very little progress has been made on turning MK-
FHE into a practical reality, see for example [BP16, CCS19, CDKS19, CZW17, CM15,
KKL*22, KOA23, KMS22, LP19, PS16, YKHK18]. The extra functionality required by
such MK-FHE schemes requires larger parameter sets, and more complex algorithms, than
are needed in standard FHE schemes. For example, even the most efficient schemes require
FHE scheme parameters which scale with the number of intended users.

Thus multi-key protocols enabling on-the-fly cloud MPC not only require complex
zero-knowledge proofs, verifiable computing and such like, they also require the use of FHE
technology which is not yet ready for deployment; as it is at least an order of magnitude
less efficient than standard (non-multi-key) FHE techniques. Since the interactive set-up
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assumption for standard Threshold-FHE schemes is a relatively simple, and lightweight,
MPC protocol the extra benefit of MK-FHE, whilst theoretically appealing, appears to
have no practical realisation or commercial interest.

In our work, since we concentrate only on a setting which in which the primitives that
we use are currently ready for deployment, we utilize standard Threshold-FHE as opposed
to MK-FHE. However, our setting also enables more expressive MPC programs to be
evaluated than the pure arithmetic circuits considered by the above papers on MK-FHE.

1.5 Paper Overview

The required protocol building blocks, namely FHE itself, distributed decryption, tran-
sciphering and zero-knowledge proofs, are provided in Section 2. Then in Section 3 we
outline the programming model in which our MPC programs will be created. This enables
us to describe succinctly the requirements of the system, and also to map them onto
different use cases. In Section 4 we present the associated ideal functionality, this maps
the programming model of the previous section into a more “cryptographically” compact
representation which will be used in our security proof. In Section 5 we present our
MPC protocol itself, which builds upon the FHE sub-components introduced in Section
2. Finally, in Section 6 we present a proof that our protocol UC-implements the ideal
functionality.

2 Homomorphic Building Blocks

Our protocol relies on same basic building blocks arising from developments in Fully
Homomorphic Encryption (FHE); namely FHE itself, Threshold-FHE, FHE transciphering,
and ZKPoKs of plaintext knowledge for FHE ciphertexts. We present all these objects
generically, with pointers to specific instantiations. All our building blocks can be realised
in practical applications today.

2.1 Fully Homomorphic Encryption

We consider an FHE scheme with plaintext space a ring R, which one can think of
either as a finite field F or as a finite ring such as Z/(p*) (with Z/(2*) being a ring of
particular interest). An FHE scheme, with plaintext space a ring R, is a tuple of algorithms
(KeyGen, Enc, Dec, Add, Mult) and a space & of “valid” encryptions. The set £ is a subset
of a larger set E. These algorithms have the following signatures:
o KeyGen(1%): On input of the security parameter k, this randomized algorithm
produces a public/private key pair (pt, st).
e Enc(m,pt;r): On input of m € R, a public key, and randomness from a space of
random coins Coins, this produces a ciphertext ct € £.
o Dec(ct,st): On input of an element ¢t € £ and a secret key st this outputs the
corresponding plaintext m € R.
o Add(cty, cto, pt): On input of two elements cty, cty € £ which decrypt to my, ms € R
this deterministically produces a ciphertext cts € £ which decrypts to my + ms.
o Mult(cty, cto, pt): On input of two elements cty, cto € £ which decrypt to my,ms € R
this deterministically produces a ciphertext c¢ts € £ which decrypts to my - mo.
The correctness conditions of an FHE scheme are obvious; i.e. every element in £ should
be decryptable to the correct value.
To ease notation we write Add(cty, cto, pt) as ¢ty + ct2 and Mult(cty, cto, pt) as cty - cto.
We also assume that scalars (i.e. non-encrypted values in R) can be added and multiplied
into ciphertexts at will. Thus one can form arbitrary arithmetic expressions combining
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ciphertexts and plaintexts, with the output being a ciphertext if any of the input variables
are valid ciphertexts.

A key issue with existing FHE techniques, unlike many traditional public key ciphers,
is that it is not possibly to efficiently test whether a supposed ciphertext ct lies in £ or in
E. In fact the IND-CPA security of the scheme is often reduced to the hard problem of
distinguishing elements of £ from elements of E. This causes a problem in protocols as
we need to ensure that all ciphertexts which are attempted to be decrypted, are indeed
decryptable (i.e. valid ciphertexts). This is, one of the reasons, why we will require
zero-knowledge proofs of knowledge (ZKPoKs) below. In addition, not all elements in
€ may arise from applications of the Enc function, i.e. £ is not the image of R under
Enc. This is because valid ciphertexts also arise from the application of the homomorphic
operations Add and Mult.

There are a plethora of FHE schemes available; each with different properties.

o BGV/BFV: These schemes [Bral2, BGV12, FV12] usually utilize a plaintext ring of

R = Fy, or more generally R = F if r slots are used, where p is a large prime. For
such schemes bootstrapping (needed to ensure the output of a series of homomorphic
operations lies in &) is very slow.

o CKKS: This scheme [CKKS17] enables a plaintext ring of an approximation to R,
i,e. R R, or an approximation to R" if r slots are used. Here bootstrapping is
relatively fast, but it only allows a smoothing out of the approximation to the real
numbers being used.

o TFHE: This scheme [CGGI20], in its most common implementation, enables a
plaintext space of R = Z/(2¥) (for a small value of k, say k = 1 or k = 4). However,
bootstrapping is highly efficient, and one can extend the homomorphic operations to
arbitrary look up tables on R.

2.1.1 FHE Security:

We assume a slightly different notion of FHE security than perhaps is sometimes used
(although this notion was used previously in for example [DPSZ12]); a notion which we
dub IND-KEY security.

Definition 1 (IND-KEY). We assume there is a “fake” key generation algorithm denoted
KeyGen*(1%), which only outputs public keys, which are indistinguishable from standard
public keys. In addition we require that applying the non-fake encryption algorithm with
the fake public key, produces a ciphertext which is statistically indistinguishable from an
encryption of zero with the fake public key. Thus we assume the following relationships
between distributions:

{pE : (pt, st) eKeyGen(l”)} = {];E  pk KeyGen*(l’“‘)}. (1)
{Enc(m,pNE;r) . ope KeyGen*™(1%), m <+ R, r <+ R}

~ {Enc(O,];E; r) : pe < KeyGen*(1%), 1+ R} 2)

A scheme which satisfies equations (1) and (2) is said to be IND-KEY secure.

All the above FHE schemes satisfy this security requirement as their public keys, and
ciphertexts, consist of a collection of LWE/Ring-LWE pairs. By the LWE assumption
these are indistinguishable from random pairs of elements from the appropriate sets.

FHE security is usually defined via an IND-CPA notion; namely that an adversary,
on input of pt, who selects two messages m; and mso of his choosing, cannot, on being
given a ciphertext c¢t* encrypting either m; or ms, decide whether ct* encrypts m; or
ms. Our IND-KEY notion, however, implies the standard IND-CPA security notion via
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the following sequence of hybrids: Take the experiment in the standard IND-CPA game
in which the encrypted message is the adversarially chosen message mg, now switch to
the using a fake public key pt. By our first security assumption (in equation (1)) this
hop is indistinguishable. Now hop to encrypting an encryption of zero, again this hop
is indistinguishable by our second security assumption (in equation (2)). Now hop to

encrypting my, and finally hop from the fake public key pt to the real one pt. These last
two hops are indistinguishable for the same reason.

2.2 Threshold-FHE

Formally we define the threshold decryption via two ideal functionalities. The first FieyGen,
in Figure 1, acts as a set-up assumption for our protocol, needed for the UC proof we
provide. It generates a key pair, and secret shares the secret key among the computing
parties C using a linear secret sharing scheme (-) which tolerates up to ¢ adversaries. Party
Ci’s share of a secret shared value z is denoted by (x);.

One can realise this functionality using a generic MPC protocol. Note, despite wanting
active security we do not “complete” adversarial input shares into a complete sharing (as
is often done in such situations), as we can assume the implementing MPC protocol for
FkeyGen does not actually need to do this.

;—‘ JT'.KeyGen !

Init(sid):
1. Execute (pt, st) «+ KeyGen(1") for the underlying FHE encryption
scheme.
2. Generate a secret sharing (s¢) of the secret key amongst the C players
in C.

3. Send (sid, pt) to all players (including the adversary), and send (sid, (s¢);)
to player C; (including adversarailly controlled players).

Figure 1: The ideal functionality for distributed key generation

The key functionality we want to implement is FkeyGenDec given in Figure 2. Note, that
this functionality always returns the correct result, irrespective of what the adversary does.
A protocol which realises FieyGenDec i the Fieycen-hybrid model is given in [DDE23]
when t < C/3, for all the FHE schemes above.

;—l ]:KeyGenDec !

Init(sid):
1. Execute (pt,st) < KeyGen(1”) for the underlying FHE encryption
scheme.
2. Send (sid, pt) to all players, including the adversary and store the value
st.

DistDecrypt(sid, ct,U): For a ciphertext ¢t € £ and a set of players U.
1. Compute m < Dec(ct, st).
2. Output (sid, ct, m) to all players in U, and (sid, ct) to the adversary (if
the adversary controls no party in U).

Figure 2: The ideal functionality for distributed key generation and decryption
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The functionality implies that if the target set of players & in the DistDecrypt cannot
be adversarially corrupted by definition, then the functionality is connected to the players
in Y via private channels. When the players in C implement such a functionality, this
implies (for such sets U) that the communication between the sets of players in C and
those in U is over private channels.
In our protocol the functionality is used in two situations:
e U contains a single output player, this is when DistDecrypt is used for private output
to an output player. We do not know if the player is adversarially corrupted, thus
we need private channels between the functionality and the player in Y.

e U is the set of computing partys C. Here C could contain an adversarial player, and
thus the output can be made in the clear by definition. So we only need authentic
channels.

2.3 FHE Transciphering

A big problem with FHE ciphertexts is that they are large, i.e. the bits needed to represent
an element in £ is large. Hence, a common proposal to avoid this is to enable a form
of homomorphic transciphering via another cipher (usually symmetric). We define the
underlying symmetric cipher with the following syntax,

R xR x{0,1}* x N — §,
(m, k; nonce, cnt) — C

Sym

Note, the key is an element of R as eventually we will be evaluating the symmetric cipher
given a homomorphic encryption of the key. We will also require the inverse operation

~1. SxRPx{0,1}* xN — R,

Sym
y (¢, k; nonce, cnt) — m

with an obvious correctness requirement
Sym_l( Sym( m, k; nonce,cnt ), k; nonce, cnt ) =m.

In what follows, for simplicity, we assume that S C R? for some value of ¢ (so we can also
evaluate Sym™* homomorphically). We also assume that every element of S corresponds
to a valid encryption of some message under Sym'%. We require the cipher to be IND-CPA
secure, which our two constructions below (from a secure PRG and a secure PRF) satisfy.

The cipher Sym is said to be FHE-friendly if there is an efficient way to implement
the algorithm homomorphically (with no distributed decryption interactions) within the
FHE scheme'! given a homomorphic encryption of the key, and possibly a homomorphic
encryption of the message and/or ciphertext.

Being FHE friendly means that, given a homomorphic encryption of the key

Enc(k, pt) = (ct1,...,cty) = ( Enc(kq, pt), ..., Enc(k,, pt) ),
and a (plaintext) nonce nonce/counter cnt, one can homomorphically compute
Enc( Sym( m,k; nonce,cnt ), pt) (3)

efficiently from Enc(k, pt) and either m or Enc(m, pt) . In addition one can also compute
efficiently
Enc( Sym™'( ¢, k; nonce,cnt ), pt) (4)

10This can be relaxed, but that would require further zero-knowledge proofs, and complications, in our
protocol, in order to prove that ciphertexts where actually valid encryptions.
1 Obviously it also has to be efficiently computable in the clear
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efficiently from Enc(k, pt) and either ¢ or Enc(c, pt).

In particular a vector plaintext message m can be encrypted, by someone who knows
the secret key k, into a compact ciphertext c. Then given ¢, someone who holds the
homomorphically encrypted secret key, Enc(k, pt), can transcipher ¢ into the encryption of
the message m under the FHE cipher Enc by evaluating equation (4). With access to a
distributed decryption functionality one can also transcipher a ciphertext encrypted under
Enc to a ciphertext encrypted under Sym, by evaluting equation (3), followed by applying
the distributed decryption functionality.

Such a symmetric encryption scheme can be easily derived from an FHE-friendly stream
or block cipher;

o If we are given an FHE-friendly stream cipher

RP x {0,1}* —  R*

PRG: V) — PRG(k IV).

then we can define Sym by the operation, with S =R,
Sym( m, k; nonce,cnt ) :=m + PRG(k, nonce)(cnt),

using the nonce as the stream cipher |V, and the counter cnt to index into the
resulting keystream.
e If we are given an FHE-friendly block cipher

R x {01} —» R,

PRE: 7k lv) T — PRF(K,IV).

then we can define Sym by essentially using the block cipher in CTR-mode
Sym( m, k; nonce,cnt ) := m + PRF(k, nonce||cnt),

using the IV as the nonce concaternated with the counter and S = R.
Note, the key difference between the block and the stream cipher is that in the block cipher
one has a potentially high cost on every invocation, whereas in the stream cipher each
invocation (a different increasing value of cnt for the same value of nonce) can be cheap,
but the initialization phase (processing the key and nonce) can be expensive.

2.3.1 Usage:

This transciphering can be used (in at least) two ways in an FHE program:

1. To store/read data one can have a global secret key k which no one knows, but which
everyone holds the associated FHE encrypted version (such a key can be obtained
by every party entering a key share homomorphically and then summing the keys up
to form a new key). To compactly store a homomorphically encrypted ciphertext ct,
encrypting a value m, for long term storage one computes

ct’ < Enc( Sym( ct, Enc(k, pt); nonce,cnt ), pt)

homomorphically. The value ct’ is passed to the distributed decryption functionality,
which gives us a ciphertext ¢ = Sym(m,k; nonce, cnt), which we can then store.
Then to read the data ¢ and return it to the homomorphic domain one computes
homomorphically the operation

ct < Enc( Sym™'( ¢, Enc(k, pt); nonce,cnt ), pt)

2. For efficient input and output of data from parties, each party P; can enter a key k;
for the PRG/stream cipher PRG into the system by inputing the homomorphically
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encrypted key Enc(k;, pt). Then to enter some data m € R the user actually inputs

the clear value ¢ = Sym( 'm, k;; nonce, cnt ), for some unique value (nonce, cnt). Then

the system computes the homomorphic encryption of m homomorphically as above.

For sending data, stored in the FHE ciphertext ct, back to the user, one computes

the inverse operation, as above, using the distributed decryption functionality.
Note, both of these programmatic “optimizations” are supported by our F-Circuit formalism
below. Whether one utilizes them in a program is up to the user, and we do not discuss
their further use.

2.4 Zero-Knowledge Proofs of Plaintext Knowledge

The zero-knowledge proofs we use will always be called with a prover being a party in
TUOQUC and the verifiers being the set C. We will apply the ZKPoKs to prove the specific
NP-relation Renc given by

Rene = {(ct7 (m,r)) : meR, reCoins, ct= Enc(m,pé;r)}.

The zero-knowledge proofs will be defined by four algorithms, which make use of a random
oracle:

o Prv(ct, (m,r)): A prover algorithm which, on input of a ciphertext ct and a witness
(m, ) for the relation Renc, will produce a proof .

o Ver(ct,m): A verifier algorithm which, on input of a ciphertext ¢t and a proof, will
output true or false.

o Sim(ct): A simulator algorithm which, on input of a ciphertext ct, will produce a
simulated proof 7; it does so by programming the underlying random oracle.

o Ext(ct): This knowledge extraction algorithm, which has black box (potentially
rewindable) access to the proving algorithm will extract the underlying witness for
the ciphertext ¢t from a prover which holds this witness.

For all of the FHE schemes mentioned earlier (BGV,BFV,CKKS and TFHE) the
encryption algorithm Enc is of the following form: It generates some “small” random
integer values (which one can consider as sums of bits, where the bits are part of the
random coins in r), then two values (a, b) are constructed which are linear combinations of
the random bits, the message, and the values in the public key pt. The final ciphertext is
the pair (a, b). One can therefore interpret the NP-relation Renc as a (multiple) subset-sum
relation over the hidden bits in the random coins r and the bits making up the message m.

Many proof systems for subset-sum/lattice like relations exhibit a form of soundness
slack. This means that the statement, which we can guarantee a dishonest prover actually
commits to, is a slightly modified version of the one which an honest prover is using. Use
of such proof systems in FHE-based protocols result in us having to increase parameters
in order to deal with the slack introduced by such proofs'?. To ensure simpler protocols,
and optimal parameters for our underlying FHE scheme, we require our zero-knowledge
proofs to exhibit no such soundness slack. With this requirement in mind there appears
two forms of (efficient) zero-knowledge proofs one could use.

2.4.1 Proofs Based on MPC-in-the-Head:

If post-quantum secure proofs are required then one technique to prove such subset sum
NP-relations is to use MPC-in-the-Head based zero-knowledge proofs. For example the
techniques of [FMRV22] and [FR22] can be applied directly to this situation resulting
in a very simple proof technique. Both these papers are based on specializations of the
general KKW [KKW18] method for MPC-in-the-Head. At heart these are interactive proof

12Effectively the FHE noise in fresh ciphertexts is increased, resulting in larger parameters, or more
bootstrapping, or both.
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systems (essentially X-protocols), but they are made non-interactive using the Fiat—Shamir
heuristic in the standard way. In these proofs the simulation algorithm Sim works by
programming the random oracle challenges, and the extraction algorithm Ext works (again
by programming the random oracle) by rewinding the prover and issueing the prover
different responses to it’s random oracle queries.

2.4.2 Proofs Based on Vector Commitments:

If one is prepared to accept pre-quantum security assumptions (in particular hardness
assumptions in elliptic curve groups which support pairings) one can utilize proofs based
on a vector commitment scheme, [Lib23]. These proofs are proven secure in the Algebraic
Group Model (AGM) [FKL18]. The prover, verifier and simulator work roughly (from a
very high level) just as in the previous case; with the simulator also needing to program
the underlying random oracle. However, the extraction algorithm works in the AGM and
does not need to rewind the prover. The extraction algorithm simply “observes” the group
operations performed by the prover, and from these is able to extract the underlying
witness.

In both cases the knowledge extraction via rewinding or via the use of the AGM, causes
the underlying ZKPoK to not be UC secure. However, this does not cause an issue in our
main protocol security proof. We can still prove UC security of our underlying MPC-FHE
protocol. The reason for this is as follows: Our UC protocol simulator will know the secret
key of the underlying cryptosystem and so can extract the important part of the witness,
i.e. m, by simply decrypting. In our security proof that the simulator is valid, where we do
not know the secret key, we can extract the witness at that point by either rewinding the
environment or using the AGM. In particular the rewinding/AGM execution is required
only for the security reduction that the protocol simulator is correct, and not for actually
implementing the protocol simulator. Thus the proof will ensure we have a UC-secure
protocol.

3 Basic Multi-Party Programming Model

We wish the parties to be able to perform a reactive computation, i.e. the function
to be computed can depend on any publicly revealed values of the computation. The
computation is performed over the ring R supported by the FHE scheme.

3.1 The Programming Model

We present the functions to be computed not as arithmetic circuits over R, but as an
“extended” arithmetic circuit, i.e. an arithmetic circuit which can contain additional
gadgets/instructions. This mirrors how MPC systems are built in the real world, and
was formalized by the concept of M-Circuit from [BdOT21]. We adopt the notion of
M-Circuit and slightly adapt the definitions in what follows to the special case of FHE
operation. One can see our definitions as a specialisation /extension of the general M-Circuit
concept presented in [BdOT21]. As we extend the type system of M-Circuits to cope with
FHE-based transciphering, we call our notion an F-Circuit to avoid confusion with the
more MPC-inspired M-Circuits from [BAO*21].

Our machine state state consists of a set of registers V = {varid;}. Each register has a
fized type, which is one of the following four types

e (R,—): This refers to a variable which holds a non-sensitive value in the ring R.

o (R,s): This refers to a variable which holds a sensitive value in the ring R, it equates

(in our protocol) to a variable which is stored under the FHE encryption scheme Enc.
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o (R,t): This again refers to a variable which holds a sensitive value in the ring
R, it equates (in our protocol) to a variable which has been transciphered into an
encryption under the scheme Sym for storage purposes.

e (—,—): This refers to a variable which holds a non-sensitive integer value (in some
bounded range, say [0, ..., 2%]).
There is a special integer register pc of type (—, —). The register pc can be alterred by a

program, and will be used as the program counter.

One can extend the state machine to include stacks of the above register types (and
not just flat register banks), as well as memory banks which can be indexed by values of
type (—, —). It is also convenient if the stack values can be indexed by relative indexes
of type (—, —). These extensions are immediate and left to the reader. The key point is
that a register, stack, or memory bank has a fixed type which does not change during
computation. Thus “casting” needs to be done via assignment. We refer to the fixed type
of a register varid by the notation type(varid) = (type!(varid), type?(varid)).

An instruction

instr € {Input, Output, Add, Mult, Declassify, Trans® ", Trans'*, Terminate}

operates on the machine state as follows:

o Input(varid,): This accepts an input (of the type associated with varid) from player
Z; for i € [1,...,1I]. We require type?(varid) € {s, —}, where if type?(varid) = s then
it is assumed that this is private input from player Z;.

o Output(varid,): This outputs the value of varid to player O; for i € [1,...,0]. We
require type?(varid) € {s, —}, and if type?(varid) = s then it is assumed that player
O; learns the clear value of varid, even though it is not stored in clear form.

o Add(varid,, varid,, varid, ): This computes varid, = varid, +varid, where type?(varid,),
type?(varid,) € {—,s}. We require type*(varid,) = s if either type®(varid,) or
type?(varid,) are equal to s, otherwise type?(varid,) = —. We also require that
type! (varid,) = type'(varid,) = type!(varid,), although see the note about implicit
coercion if varid, or varid, is a non-sensitive value in {0,1} C Z or {0,1} C R.

o Mult(varid,, varid,, varid,): This computes varid, = varid, - varid, where (again)
type?(varid, ), type®(varid,) € {—,s}. We, again, require type®(varid,) = s if either
type?(varid, ) or type®(varid,) are equal to s, otherwise type®(varid,) = —, and again

require that type!(varid,) = type! (varid,) = type’(varid,). Again, see the note about
implicit coercion if varid, or varid, is a non-sensitive value in {0,1} C Z or {0,1} C R.

o Declassify(varid,, varid,): This takes an input register of type type(varid,) = (R, s)
and produces an output register of type type(varid,) = (R, —), which holds the same
value. Note, in the protocol this requires interaction.

. Transs*t(varidy,varidz): This performs the identity operation on the underlying
value. The input type type(varid,) is of type (R, s), and the output type type(varidy)
is of type (R,t). Note, in the protocol this operation requires interaction.

o Trans'”*(varid,,varid,): This performs the identity operation on the underlying
value. The input type type(varid,) is of type (R,t). and the output type type(varid,)
is of type (R, s). Note, in the protocol this operation requires no interaction.

e Terminate: This simply stops the computation and deletes the internal state, i.e. the
contents of all registers.

To ease notation we can write a sequence of addition and multiplication instructions as an
arithmetic expression, e.g.

varid, < varid, - varid, + varid, - varid, + varid..

We assume an implicit coercion between the values {0,1} € R and the values {0,1} € Z,
for the purposes of addition and multiplication'®. Thus one can form expressions of the

13We could extend coercion to any subset of Z which could be represented as values in R. For example
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form

a+b-c+(1-b)-d

where a, ¢ and d have type (—, —) and b is of type (R, —) but it is guaranteed that b € {0, 1}.
Note, one cannot compute arithmetic operations on items of type2(-) =t.

A program P is an ordered sequence of instructions, P = [instry, ..., instr;]. We execute
the program by setting pc < 1. to start with and then executing the following steps in
turn.

e Fetch the instruction instr indexed by pc.

e Increment pc by one.

o Execute the operation defined by instr.

Note, conditional branching on non-sensitive values is allowed via assigning to the pc value
via
pc <— varidy - 100 4 (1 — varidy) - 200

which will jump to instruction 100 if varid, = 1 and jump to instruction 200 if varid, = 0.

Subroutine execution can also be supported by using the clear variables to maintain
a call-return stack for the pc counter; with a call resulting with a push to the stack
followed by a pc assignment, and a return resulting in a pop from the stack and then a pc
assignment. Variable passing can be performed using stacks for other data types in the
standard manner. Local variables (for subroutines) can be dealt with via the usual stack
handling mechanisms.

Different FHE schemes may allow different gadgets/instructions; for example TFHE
allows the homomorphic evaluation of arbitrary look up tables (LUTs) over R. Such LUTs
can be expressed (inefficiently) in our F-Circuit model, as every lookup table is effectively
a (high-degree) polynomial evaluation. Thus one can “encode” a program which utilizes
LUTs in the above F-Circuit formalism, and then, when executing it, one can utilize the
more efficient implementation enabled in TFHE.

On the other hand BGV/BFV/CKKS allow operations on vectors and associated
homomorphic slot-wise manipulation operations. Again one can see these as simply more
compact ways to encode the register manipulations we present in an F-Circuit description.

One can run BGV and BFV in a “levelled mode” only, in which no bootstrapping
is allowed. In such a situation one needs to restrict the class of programs P that our
protocol will support, so that no value will exceed the maximum level. To do this one needs
to augment the type of a variable varid with its “level” if it is of type (R, s). Then the
operations on elements of type (R, s) need to keep track of the associated level, returning
a failure if the level bound is exceeded. Such an adaption of our model is easy, but tedious,
and obviously less suitable for long term reactive computations so we leave this extension
to the reader. A different way around the problem of failing if the level bound is exceeded,
is to use the Declassify operation to perform a type of interactive bootstrapping; this is
essentially the main idea behind the protocol in [CLOT13].

3.2 Compilation

A real program is going to be written in a high level language, this high level language
representation needs to be compiled down to the representation given above. This com-
pilation process is itself a security concern. As discussed in [BAOT21] for M-Circuits,
two functionally equivalent compilations of the same input program can be such that one
leaks private data and one does not. In this paper we assume that a suitable security
analysis has been applied to the compilation process, and that any revealed values (for
example in Declassify operations) are proved not to reveal sensitive information. Thus this
paper considers the security issues related to executing the F-Circuit representation of the
function, on the assumption that the F-Circuit does exactly what the users expect it to.

if R = Fp, then one could consider coercion between the whole of R and the subset {0,...,p— 1} C Z.
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The program to be computed P must be agreed (by consensus) by the input I and
computing parties C. This is particularly important as the program could simply be of
the form

Input(x, 1)
Declassify(y, x)

which would output player Z;’s private input.

Our security requirement is the standard robust MPC requirement that the adversary
only learns data which is revealed to it via the program (i.e. any declassified values, and
values which it enters as inputs, or receives as output, and any values which can be deduced
from that), in addition if the adversary deviates from the program then the honest parties
will still compute the values as required. This is captured in an ideal functionality given in
Section 4.

To obtain robustness we will require ¢ < C/3, mainly to enable the efficient distributed
decryption operation, given in [DDET23], to be used in the Declassify operation. This
could be relaxed to t < C'/2 (theoretically) if a more complicated Declassify operation was
created.

4 Ideal Functionality

The ideal functionality, in Figure 3 below, specifies exactly what we would like an ideal
execution of a F-Circuit amongst the parties to provide. Again, we re-iterate that we
make no claim that the execution of the F-Circuit provides the desired application security
concerns (that is a problem for the compiler), we are only interested in defining abstractly
what the execution of the F-Circuit should enable.

Again we assume a register bank V = {varid; }, which again (for simplicity) we assume
is a flat single file of registers, i.e. no stacks or index-able memory. The ideal functionality
keeps track of registers which are in the clear, as well as registers which are meant to be
held securely within the functionality.

For simplicity of exposition we allow this ideal functionality to output an abort, but
this only happens for a badly typed program; which should be caught by the compiler.
Thus the reader should treat the abort’s as purely syntactic sugar for their reading, and
not as actual abort’s by the functionality.

Note the ideal functionality assumes that all players agree on each instruction sent to
it, thus this implies consensus on the input F-Circuit program.
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r-l ]:F—Ci'rcuit l

Init: On input (sid, Init, R) from all parties store R.
Input:  On input of (sid,Input,Z;,varid,z), for Z; € I, from Z; and
(sid, Input, Z;, varid) from all other parties:
1. If type?(varid) & {s, —} then abort.
If type!(varid) = R and = € R then store z in varid.
If type! (varid) = — and = € Z then store z in varid.
If type?(varid) = — then send x to the adversary.
If x =L then store the value zero in varid.
This last case corresponds to an adversarial input x which is mistyped.
Output: On input of (sid, Output, O;,varid) for O; € I from all parties:
1. If type?(varid) & {s, —} then abort.
2. Send the value x stored in varid to O;.
3. If type?(varid) = — then also send x to the adversary.
Add: On input of (sid, Add, varid., varid,, varid, ) from all parties:
1. If type'(varid,) # type!(varid,) or type'(varid,) # type'(varid,) then
abort.
With a caveat here in relation to the implicit coercions mentioned earlier.
2. If type?(varid,) & {s, —} then abort.
3. If (type®(varid;) = s or type®(varid,) = s) and type*(varid,) # s then
abort.
4. Retrieve z from varid, and y from varid, and store z = x + y in varid,.
Mult: On input of (sid, Mult, varid,, varid,, varid,) from all parties:
1. If type!(varid,) # type'(varid,) or type'(varid,) # type'(varid,) then

G N

abort.
Again, with a caveat here in relation to the implicit coercions mentioned
earlier.

2. If type?(varid,) & {s,—} then abort.

3. If (type*(varid,) = s or type?(varid,) = s) and type®(varid,) # s then
abort.

4. Retrieve z from varid, and y from varid, and store z = x - y in varid,.
Declassify: On input of (sid, Declassify, varid,, varid;) from all parties:

1. If type(varid,) # (R, s) or type(varid,) # (R, —) then abort.

2. Assign the contents z of varid, to varid, and send x to the adversary if

C contains a corrupt party.

Trans*~*: On input of (sid,Transs_>t,varidy7varidz) from all parties:

1. If type(varid,) # (R, s) or type(varid,) # (R,t) then abort.

2. Assign the contents x of varid, to varid,,.
Trans'”*: On input of (sid, Trans'~*, varid,, varid, ) from all parties:

1. If type(varid,) # (R,t) or type(varidy) # (R, s) then abort.

2. Assign the contents x of varid, to varid,,.

Figure 3: The ideal functionality for executing a program represented by a F-Circuit

5 The MPC-FHE Protocol

Here, we combine all the components together into one protocol which executes the
F-Circuit functionality.

The protocol is given in Figure 4-Figure 7, where we assume the input F-Circuit is
validly typed. The protocol is given in the {FkeyGenDec }-hybrid model, and works in the
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fully robust/malicious setting; i.e. the protocol should not abort. All players are assumed
to be connected by authentic channels. However, if the output routine with variant = Enc
is used then the servers C need to be connected to the parties in Q via private channels.

'-[ HF—Circuit (Part I) ]

Init(sid):

1. The players call Init on FieyGenDec SO that all players obtain pt.

2. All players Z; € I generate a random symmetric key k;; € R”, encrypt
it using Enc(ki;,p¥ri,;) to obtain cti; € £°. The ciphertext ct;; is
broadcast to all players in C.

3. All players O; € O generate a random symmetric key k, ; € R”, encrypt
it using Enc(k, i, p¥; 7, ;) to obtain ct,; € £°. The ciphertext ct,; is
broadcast to all players in C.

4. All players C; € C generate a random symmetric key k. ; € R”, encrypt
it using Enc(k.;,p¥; 7. ;) to obtain ct.; € £°. The ciphertext ct.; is
broadcast to all players in C.

5. The players in I, O and C call the prover 7 < Prv(ct(m,r)) with input
the respective ciphertexts (ct;;, ct,; and ct. ;), the respective plaintexts
(ki i, ko and k¢ ;), and the respective randomness (7 ;, ro; and 7¢;), in
order to obtain proofs 7 ;, m,; and 7 ;.

6. The proofs are broadcast to the players in C. The players in C verify the
proofs using Ver(ct, ). If any proof fails then the parties in C replace
the associated ciphertext with a default encryption of zero.

Set cty < ctc1 +- - -+t ¢, this is an encryption of kg = k.1 +-- -+ k. ¢
Set cnty; < 0 for all Z; € I.

Set cnt, ; < 0 for all O, € O.

Set cnt, < 0.

e © o

Figure 4: The protocol for executing a program represented by a F-Circuit — Part I

The connections between the players in I and the players in C are assumed to be by
reliable broadcast channels, which are reliable in the presence of byzantine faults, including
by the sender. This can be ensured by the players in C executing an echo-broadcast upon
recieving data from a player in I, to ensure the value has indeed been broadcast correctly.
As C contains an honest majority, the players in C can take a majority vote on what the
precise input is, or declare the parties input to be invalid.

For the Input and Output commands we provide two different implementations when
type?(varid) = 5. We refer to the type of input/output as the variant, which is an element
of {Enc,Sym,—}. When the input/output value is in the clear then we assume that
variant = —.

e The first, indexed by Enc, utilizes, for input, an FHE ciphertext plus a zero knowledge
proof (it therefore requires rather a large amount of data transfer), whilst for output
requires the outputting party to be connected by private channels to the parties in C
(which execute the distributed decryption functionality). Realising so many private
channels may be problematic in some situations.

e The second variant, indexed by Sym, utilizes for both input and output the transci-
phering methodology into a ciphertext encrypted by a key which only the input (resp.
output) party knows. It requires no such private channels, and enables minimal
bandwidth consumption.

We see that for private output to parties we have a trade-off; either we require private
channels between the output party and the parties in C, or we only require authenticated
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,-[ Hp_circwit (Part IT) }

Input(sid, Z;, varid, z;; variant): When player Z; wishes to input a value x of valid
type type(varid) we execute:
1. If type?(varid) = — then player P; broadcasts x, in the clear, to all players

in C.

2. If type?(varid) = s and variant = Enc then

(a) Player P; encrypts x using ct, < Enc(z, pt;r,), with randomness
T

(b) Player P; broadcasts ct, to all players in C.

(¢) Player P; invokes the prover m, « Prv(ct,, (z,r;)) with input the
ciphertext ct,, the message x and the associated randomness 7,
and broadcasts the resulting proof 7, to all players in C.

(d) If the proof verifies when calling Ver(ct,, 7,), then the players in C
store ct, in register varid, otherwise they store a default encryption
of zero in register varid.

3. If type?(varid) = s and variant = Sym then

(a) Player P; encrypts x using

c, < Sym( z, ki ;; sid,enti; ).

(b) Player P; broadcasts ¢, to all players in C.
(¢) The players in C transcipher ¢, from an encryption under Sym to
an encryption under Enc by computing

ety — Symfl( Cy, cti ;5 sid, enti; ).

(d) Incremement cnt; ;.

Note, if any of the proofs do not verify, or the broadcasts are invalid
then the players in C store a deterministic default value, say zero (resp.
a homomorphic encryption of zero) in the register varid.

Figure 5: The protocol for executing a program represented by a F-Circuit — Part 11

channels, but we require the computing parties to execute a transciphering operation.
Both options require a distributed decryption operation; one with private output and one
with public output.
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A Tr_cireusr (Part 111) |

Output(sid, O;, varid; variant): When player O; is expecting an output value x of
valid type type(varid) we execute:
1. If type?(varid) = — then
(a) The contents of register varid is sent to player O; by all players in C.
(b) Player O; takes the majority verdict as the value of the register sent.
(¢) The value sent is the output value.
2. If type?(varid) = s and varid = Enc then
(a) All players in C U {O;} invoke DistDecrypt(sid,ct;,{O;}) on
FkeyGenDec Where ¢t is the contents of register varid.
(b) The party O; receives the output plaintext value, and takes this
as the output value. Note, that O; only receives the value implies
private channels between the entities in C and the entities in O.
3. If type?(varid) = s and varid = Sym then
(a) All players in C take the contents ct, of register varid and computes
homomorphically

ctl, < Sym( cty, cto 5 sid, cnto; ).
(b) All players in C invoke ¢ < DistDecrypt(sid, ct/,, C) on FieyGenDec-
(¢) The value c is sent to player O; by the players in C, with O; taking

the majority verdict as the value of the ciphertext sent.
(d) Player O; decrypts c to obtain « by computing

o+ Sym~( c, ko i; sid,entg; ).

(e) Incremement cnt, ;.

Figure 6: The protocol for executing a program represented by a F-Circuit — Part III
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ﬂ[ HF—Circuit (Part IV) }

Add(sid, varid. , varid,, varid,):
1. The players in C retrieve x from varid, and y from varid, and store
z=ux+y in varid,.
Mult(sid, varid, varid,, varid, ):
1. The players in C retrieve = from varid, and y from varid, and store
z = -y in varid,.
Declassify(sid, varid,, varid,):
1. The players in C retreive c¢t, from varid, and execute
DistDecrypt(sid, ct;, C) on FkeyGenDec-
2. The output y they receive is assigned to the register varid,.
57" (sid, varid,, varid, ):
1. The players in C retrieve ct, from varid,, recall this is an FHE-encrypted
ciphertext.
2. The players in C homomorphically compute

Trans

ct, « Sym( cty, cto; sid,cnt, ).

3. The players in C execute ¢ < DistDecrypt(sid, ct,, C) on FkeyGenDec-

4. The output ¢ they receive (along with the counter cnt.) is assigned to
the register varid,,.

5. Incremement cnt,.

Trans'~*(sid, varid,, varid, ):

1. The players in C retrieve cntl|c, from varid,, recall this is a Sym-
encrypted ciphertext with index cnt.

2. The players in C homomorphically compute

ct, « Sym ™' ( ¢4, cto; sid, et ).

3. The output ct, is assigned to the register varid,.

Figure 7: The protocol for executing a program represented by a F-Circuit — Part IV
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6 Security Proof

The security proof for our protocol will follow the rough outline of the proof of the offline
phase for the SPDZ protocol from [DPSZ12]. The formal statement we aim to prove is

Theorem 1. In the random oracle model'*'>, the protocol Ilp_circuit (in Figure 4—
Figure 7) UC realizes the functionality Fr_circuit from Figure 3 in the { FeyGenDec }-
hybrid model, assuming the underlying FHE encryption scheme is IND-KEY secure, and
the cipher Sym is IND-CPA.

This proof is in the UC model, we so we first outline the basic overview. As well as
the honest parties executing a protocol we have an adversarial party A which performs
the actions for the parties which are adversarially controlled. The adversary A mounts an
attack on the protocol, by statically corrupting as many input and output players as it
wants, as well as up to t of the computing parties'6.

In addition there is an additional entity Z called the environment. The environment
sits in one of two worlds; a real world or an ideal world. The goal of the enviroment is to
output a single bit. If Z outputs one, then it thinks it is sitting in a real world. On the
other hand if Z outputs zero, then it thinks it is sitting in a simulated world.

When Z is sitting in the real world it selects the honest parties inputs, which it gives
to the honest parties. The environment also receives the outputs of the honest parties
at the end of the protocol execution. However, the environment does not get to see the
random tapes/internal variables (e.g. the keys, key shares etc) of the honest parties. The
environment executes the adversarial entity and during the attack, Z takes complete
control over the actions of the corrupted parties.

When Z is sitting in the ideal world, there is now another entity called a simulator
S. The simulator must simulate the environment’s view of the protocol so that it looks
like what Z would see in a real attack. The simulator has access to the ideal functionality
Fr_circwit from Figure 3. The environment in the ideal world still selects the honest
parties inputs, which it gives to the (dummy) honest parties. If the inputs are private,
these inputs are passed directly to the ideal functionality, and are not available to the
simulator. Again during the attack, the environment takes complete control over the
actions of the corrupted parties. Once again, at the end of the protocol, the environment
Z gets access to the outputs of the honest parties, by having them directly passed to Z
from the ideal functionality. The simulator S does not get access to the private outputs of
the honest parties, but does get access to the public outputs of all parties.

Our protocol IIp_cireuit, from Figure 4-Figure 7, is said to (computationally) securely
implement Fr_circuit, if a poly-time bounded environment Z outputs one with essentially
the same probability in the real as the ideal process.

In a G-hybrid model, the protocol executes just as in the real world, however the
parties have access to an ideal functionality G for some sub-task. During the protocol, the
parties communicate with G as in the ideal world. The main UC-composition theorem
[Can00, Can01] says that an ideal functionality proved secure in the G-hybrid model, will
be secure when the sub-task represented by G is realized by a UC-secure protocol that
realizes G.

14We model the hash functions used in the ZKPoKs as random oracles, as discussed earlier.

151f using vector commitment based ZKPoKs then one also needs to add the Algebraic Group Model as
well here.

16Static corruption implies that all the parties are actually defined at the start of the protocol. This
can be relaxed, by for example allowing the adversary to add in new parties to I and @ dynamically (but
not new parties into C), which are either honest or corrupt.
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f-[ SF—Circuit (Part I) ]

Init(sid):

1. The simulator simulates the call to FkeyGenDec by internally running the
algorithm KeyGen, in order to obtain a key pair (pt, st), as well as shares
(st);. The pt is sent to all players, and the (st); for corrupt C; are sent
to the adversary. The global secret key st is stored by the simulator.

2. The simulator executes all the steps of Init of Il p_cjreuir for the honest
players.

3. The simulator on receiving ct;;, ct,; or ct.; from adversarial players,
along with their zero-knowledge proofs, m; ;, m, ; or 7, it
(a) Checks the proofs are correct by calling Ver(ct; ;,m; ;). If any verifi-

cation fails then the associated ciphertext is replaced with a default
encryption of zero.
(b) Decrypt the ciphertext using s¢, so as to obtain k; ;, ko ;, and k¢ ;

4. This means that the simulator knows k; ;, ko ;, and k. ; for all 4, and
hence also knows ko = k.1 + - + k¢ .c.

Figure 8: The simulator for Fr_cjreuit — Part 1

r-[ SF—Circuit (Part II) ]

Input(sid, Z;, varid, x; variant):
1. If Z; is honest:

(a) If type?(varid) = — then the functionality will output = to the
adversary, thus the simulator will also learn z. The simulator
essentially does nothing for such operations.

(b) If type?(varid) = s and variant = Enc then the simulator, who does
not know x, generates an encryption ct, of a random value z, using
randomness 7., along with a valid proof obtained by executing
7, < Prv(cty, (x,7r;)). The simulator passes c¢t, and 7, to any
adversarial parties in C.

(c) If type?(varid) = s and variant = Sym then the simulator, who again
does not know z, but does know k; ; generates an encryption c, of
a random value under the encryption scheme Sym, and passes this
to any adversarial parties in C.

(d) The parties in C then process the incoming value as specified in the
protocol.

2. If Z; is dishonest:

(a) What ever value of type(varid) is sent, the simulator can extract the
underlying value z, either because it is in clear, or because S knows
sk, or because S knows k; ;.

With the substitution for zero in the case of the adversary not sending
a valid proof, or not broadcasting a consistent value etc.

(b) The wvalue x 1is then passed to Fr_cireuir by calling

(sid, Input, Z;, varid, ).

Figure 9: The simulator for Fr_cjreuit — Part 11
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¢-[ SF—Circuit (Part III) ]

Output(sid, O;, varid; variant):
1. If O; is honest:

(a) If type?(varid) = — then the simulator knows the value z, and can
thus transmit the ‘in clear’ communication to Z; for honest parties
in C.

(b) If type?(varid) = s and variant = Enc then the simulator simulates
the operation by utilizes the distributed decryption functionality.

(c) If type?(varid) = s and variant = Sym then the simulator simulates
a call to DistDecrypt with output being a public random ciphertext
c under Sym for the key k, ;.

2. If O, is dishonest:

(a) If type?(varid) = — then the simulator knows the value x, and can
thus simulate the transmission of the ‘in clear’ communication to Z;
from the honest parties in C.

(b) If type?(varid) = s and variant = Enc then the simulator simu-
lates a call to DistDecrypt, for the output value obtained by calling
(sid, Output, O;, varid) on Fp_circuit-

(c) If type?(varid) = s and variant = Sym then the simulator obtains
by calling (sid, Output, O;, varid) on Fr_cireuit- The value x is then
encrypting using Sym with the key k,; to obtain c. Finally, the
simulator simulates a call to DistDecrypt for the output value c.

Figure 10: The simulator for Fr_cjreuit — Part T11

r-[ SF—Circuit (Part IV) }

Add(sid, varid, varid,, varid,):
1. There is nothing to simulate here
Mult(sid, varid., varid,, varid,):
1. There is nothing to simulate here, the honest players just follow the
protocol.
Declassify(sid, varid,, varid,):
1. The simulator simulates a call to DistDecrypt, for the output value
obtained by calling (sid, Declassify, varid,, varid;) on Fr_circuit-
sid, varid,, varid,):
1. Generate the ciphertext ct, as in the real protocol.
2. Simulate a call to DistDecrypt, for the output value ¢ a random ciphertext
output by Sym under the key k.
sid, varid,, varid,):
1. There is nothing to simulate here, the honest players just follow the
protocol.

Trans® " (

Trans'7%(

Figure 11: The simulator for Fr_cjreuit — Part IV
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6.1 The Simulator S

The simulator is given in Figure 8-Figure 11. It will play the honest player’s parts, whilst
the environment Z will play the parts of the corrupt players'”. The simulator runs an
internal copy of Fkeygen and gg"ﬂ in order to simulate calls to these functionalities.

The key problem in creating the simulator, is that to call the ideal functionality,
the simulator needs to somehow extract the dishonest parties private inputs from the
output of the adversary, in order to pass the adversarial inputs to the ideal functionality.
However, since the simulator knows the underlying secret key of the FHE scheme, via the
functionality FikeyGen, it can decrypt every FHE ciphertext sent on behalf of the corrupt
players. This can then be used to obtain the required input, for the corrupt parties, to the

functionality Fr_circuit-

6.1.1 Discussion:

There is something a bit intuitively weird going on with the simulation here, for those not
used to UC proofs, which we now elaborate on. Consider the program executed between
two input/output parties P; and Pa, of which Py is honest and Ps is dishonest:

Type (R,s): varid_x, varid_y, varid_z;
Type (R,-): varid_d;

Input(P1l,varid_x,x; Sym); <- Line 1
Input(P2,varid_y,y; Sym); <- Line 2
varid_z = varid_x + varid_y; <- Line 3
varid_d = Declassify(varid_z); <- Line 4

In Line 1 of our sample F-Circuit the honest party enters a ciphertext c, which encrypts
their input x under the cipher Sym, and then this is transformed into a ciphertext ct,
encrypting their input z under Enc by computing

ety < Sym( ¢y, ctiq; sid,entiq ).

Then in Line 4 all parties obtain the value of z. But party P, knows y and hence from z
can compute . Thus it seems the above program seems to provide a decryption oracle,
both for the ciphertext ¢, encrypting z under Sym, and the ciphertext ct, encrypting «
under Enc.

Thus it seems that our Declassify algorithm provides a decryption oracle for the
adversary for the scheme Sym and the scheme Enc. But neither of these schemes are
IND-CCA, they are only IND-CPA. This can at first sight seem very weird indeed; that an
IND-CPA scheme is enough to protect against what appears to be some form of decryption
oracle. But it can be explained by two facts: The first fact is that in the security proof we
never need to call a decryption oracle to decrypt any ciphertext encrypted under Sym or
Enc for an unknown secret key. The second fact is that the Declassify algorithm calls are
actually answered in the proof by calling the ideal functionality. Thus the information
which is revealed by the decryption oracle, and any information which can be derived from
such queries, are allowed by the security model of the ideal functionality.

For example in a normal CCA attack against an additive homomorphic encryption
scheme, one might encrypt mg or my, and then ask the decryption oracle to decrypt the
ciphertext which decrypts to 2 - my, by using the additive homomorphic property. But
this is perfectly acceptable in our model, as if the ideal functionality allows the leaking of
2 - my, then it also allows the adversary to learn my.

7Thus for simplicity of exposition we assume only one adversarial entity, and do not split into an
“environment” and an “adversary”.
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There is then some more (at first sight) weirdness in the simulation. Again look at
Line 1 of our example F-Circuit, as P; is honest the simulator creates a random ciphertext
¢, which purports to encrypt x; but it clearly does not. It is actually an encryption of
a value x’. During the following processing of Line 1, the parties in C will produce an
encryption ct, by computing

ety Symfl( Cy, cti1; sid,entig ),

but this is neither an encryption of z or z/, Then in Line 4 the value z is revealed to the
adversary.

It would appear, at first sight, that this could be used by the adversary to tell that the
values ¢, and ct, are fake. However, security of ¢, is maintained since we assume, in the
proof, that the function Sym cannot be distinguished from an ideal random function. The
security of ct, is maintained by a similar IND-CPA style argument (actually our IND-KEY
definition from earlier) for the homomorphic encryption scheme.

6.2 The Proof

We now present a proof sketch of Theorem 1. As pointed out earlier our proof follows
roughly the same idea as the proof sketch of the offline phase in [DPSZ12]. We only
present a sketch, leaving out the specifics of accounting for the acummulation of different
extraction and accumulation errors, in order to make the main ideas clearer for the reader.
We first assume that there is an environment Z that can distinguish between the real
process and the simulated/ideal process. In other words we have, for some Z, that

Adv(Z) :=Pr[1+ Z(Real )] — Pr[1+ Z(1Ideal )] >e.

We will use Z to construct an algorithm B which breaks in the IND-KEY security of the
FHE scheme. By contradiction we can then conclude that our initial assumption of Z
existing is false.

Algorithm B takes as input a public key pt* and is asked to determine whether pt*
comes from a valid execution of KeyGen(1*) or the execution of KeyGen* (1), which recall is
an algorithm which produces a “meaningless” public key, i.e. one for which the encryption
algorithm produces ciphertexts which contain no information on the underlying message.
Thus, B’s goal is to determine whether pt* = pt, for the an output p€ of KeyGen(1¥), or
p€* = pt, for an output p¢ of KeyGen™(17). Recall the public keys output by these two
algorithms are themselves indistinguishable.

The algorithm B will execute Z, in that algorithm B will play for the honest parties,
whilst Z will play for the dishonest parties. The main thing that B does is that it uses it’s
input public key p¢*, instead of calling Fieygen in step 1 of Init in Figure 8. For the shares
st; for the dishonest players, it sends random values to the environment Z. Thus B needs
to operate without needing access to the underlying secret key s¢.

Algorithm B then selects a bit . When b = 0 it tries to emulate to Z an execution
of the ‘Ideal’ environment, when b = 1 it tries to emulate an execution of the ‘Real’
environment. Algorithm B will output one (i.e. it thinks the input key pt* is a real one,
i.e. pt), if when it selects b = 0 algorithm Z outputs zero (i.e. Z thinks it is in the ideal
world), and when it selects b = 1 algorithm Z outputs one (i.e. Z thinks it is in the real
world).

b = 0: Algorithm B in this case runs a copy of the simulator, and it does exactly what the
simulator would do. Except it is unable to decrypt the ciphertexts encrypted under p¢*,
as B does not have the associated private key.

So in line 3 of Init and line 2a of Input, algorithm B uses the knowledge extractor for
the associated zero-knowledge proofs to extract the underlying message (with negligible
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probability of failure). In particular'® it rewinds the prover in the zero-knowledge proof
(i.e. Z). The algorithm B is allowed to do this, since it is running its own copy of Z. It can
respond to the challenges in different ways, in order to extract the value, since B controls
the random oracle used to generate the proof challenges.

The zero-knowledge proofs that honest players execute in the protocol are simulated by
B, using the algorithm Sim, and not executed for real (even on the random inputs chosen
by the simulator).

It is clear that from Z’s perspective in the case when b = 0 and the public key is valid,
i.e. pt* = pt, then Z is running in the simulated execution. Thus,

Pr[ 1+ B(pt) | b=0]=Pr[ 0 Z( Ideal ) ] + &,

where 0y accounts for any probability of failure in extracting the underlying messages
for the dishonest parties or errors in the zero-knowledge proof simulations, and is thus
negligible. _

When p€* = pt the FHE encryptions contain statistically no information about the
messages contained inside them. Also the zero-knowledge proofs reveal no information,
as they were produced via simulations and not via actual values. In addition, as Sym is
assumed to be IND-CPA, we can do a game hop to ensure that the encryptions of messages
m under the cipher Sym for honest players symmetric keys, or the key kg, also contain no
information about the underlying messages. Thus we have, since the algorithm B sees no
information about the messages it can at best output one with probability one half,

1

Pr[ 1+« B(pt) | b=0] 5

+ o,
where 4 is essentially as above, but also includes terms related to the IND-CPA advantage
of the function Sym.

b =1: When b = 1 algorithm B will run the honest players precisely as in the real algorithm;
except the inputs for the honest players will be provided by the environment Z and any
zero-knowledge proofs will be provided by running the zero-knowledge simulator, Sim, and
not by running the real prover, Prv.

Algorithm B can now provide a simulation to the environment Z, without needing
recourse to the ideal functionality. It first extracts the inputs from the dishonest players
inputs, just as in the case b = 0 above, by rewinding. Given the honest and dishonest
players inputs the algorithm B can simulate the Declassify queries by running the F-Circuit
in the “clear”.

It is then clear that from Z’s perspective in the case when b = 1 and the public key is
valid, i.e. p&* = p&, then Z is running in the real execution. Thus,

Pr[1<+ B(pt) |b=1]="Pr[ 1+ Z(Real) ]+ d,

where ¢; accounts for any probability of failure in extracting the underlying messages
for the dishonest parties or errors in the zero-knowledge proof simulations, and is thus
negligible. _

Again, when p&* = p€ the FHE encryptions contain statistically no information about
the messages contained inside them, neither do the zero-knowledge proofs (as they are
simulations), and neither do the encryptions under Sym (after a suitable game hop). Thus
we have, for some small negligible constant 47,

1
)

18For ZKPoKs based on Fiat-Shamir transforms, for those based on vector commitments one extracts
the witness by inspecting the lists maintained in the AGM.

Pr[ 1 B(pt) |b=1]= = +5.
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Combining these cases together we have, assuming Pr[b = 1] = Pr[b =0] = 1/2,

2 Adv(B) =2 ( Pr[ 1+ B(pt) | - Pr[ 1 B(b) ] ),
:<Pr[1<—8(p£’)|b:0]
+Pr[ 1< B(pe) | b=1])
— (P14 BpE) [b=0]
+Pr[ 1 B(pe) [ b=1]),
:(Pr[OeZ(Ideal)}+5O>
+ (Pr[ 14 Z(Real ) ] +5))
~(3+)
(3 +);
- (Pr[1<—Z( Real)]+(1—Pr[1<—Z( Ideal)]))
4 (G040 — 6, — &) — 1,
- <Pr[1<—Z( Real ) | — Pr[ 1 < Z( Ideal)]),
+ (d0 + 81 = 8- 97),
= Adv(Z) + 6,
>e+6

So if € is non-negligible, i.e. the simulation can be distinguished by the environment Z,
then Adv(B) is also non-negligible and the FHE scheme is not IND-KEY secure. As we
assume that the scheme is IND-KEY secure, this implies that € cannot be non-negligible,
and thus our protocol is secure.
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