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Abstract. We examine the use of Trivium and Kreyvium as transciphering mechanisms for use with
the TFHE FHE scheme. Trivium was introduced in the eSTREAM project as a general purpose
stream cipher, whilst Kreyvium was introduced to strengthen Trivium (in the context of transciphering
BGV/BFV ciphertext). Previously both ciphers were investigated for FHE transciphering only in the
context of the BGV/BFV FHE schemes; this is despite Trivium and Kreyvium being particularly suited
to TFHE. Recent work by Dobraunig et al. gave some initial experimental results using TFHE. We
show that these two symmetric ciphers have excellent performance when homomorphically evaluated
using TFHE. Indeed we improve upon the results of Dobraunig et al. by at least two orders of magni-
tude in terms of latency. This shows that, for TFHE at least, one can transcipher using a standardized
symmetric cipher (Trivium), without the need for special FHE-friendly ciphers being employed. For
applications wanting extra security, but without the benefit of relying on a standardized cipher, our
work shows that Kreyvium is a good candidate.
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1 Introduction

A “standard” benchmark for MPC and FHE systems has, since the very early days of implementa-
tions of MPC and FHE, been the secure evaluation of symmetric key primitives. For example, the
first reported large actively secure MPC computation was an evaluation of the AES function using
garbled circuit-based techniques in [PSSW09]. In [PSSW09] an encryption of a single block under
AES took around 17 minutes. On the FHE side, the first reported computation of a function under
FHE was again that of the AES circuit in [GHS12]. In [GHS12] an encryption of an encryption of
a single block under AES took around 18 minutes (with parameters that enable bootstrapping for
further computation) or 4 minutes (for parameters which just allow the AES computation). How-
ever, due to the packing inherent in the underlying FHE system during this 18 (resp. 4) minutes
many such evaluations could be carried out. In particular 180 (resp. 120) blocks can be evaluated
at once, resulting in an amortized time of six (resp. two) seconds per block. Thus whilst a single
block evaluation gives us an 18 (resp 4) minutes latency of evaluation, the amortized time of six
(resp 2) seconds per block gives a throughput of 10 (resp. 30) blocks per second.

Over the intevening years the time it takes, both in MPC and FHE, to evaluate the AES circuit
has decreased considerably. For example actively secure MPC evaluation of AES now takes around
7 milliseconds latency on a LAN, with a throughput of 500 blocks per second [GRR+16]. On the
FHE side, using the TFHE cipher Stracivskt et al. [SMK22] report a time of four minutes latency
to evaluate a single block of AES; where the output can be used in further homomorphic processing
(an improvement on the 18 minutes of the prior result in this situation).

In addition, there is now a greater appreciation of why evaluating symmetric ciphers in MPC and
FHE is important in applications. The key usage of such operations is as a form of transciphering,
namely to get data efficiently into an MPC/FHE system3. However, for many applications using
FHE the latency and throughput from using AES is not good enough.

This has led researchers to develop symmetric ciphers for use specifically in MPC and FHE sys-
tems; thus creating so-called MPC- or FHE-friendly symmetric ciphers. Examples of these include
LowMC [ARS+15], Elisabeth [CHMS22], FLIP [MJSC16], MiMC [AGR+16], Rubato [HKL+22],
FiLIP [MCJS19], Rasta [DEG+18], Dasta [HL20], Fasta [CIR22], Pasta [DGH+21], and Kreyvium
[CCF+16] (which we will discuss in more detail later). Some older PRF designs, such as the Naor–
Reingold PRF [NR97] and the Legendre PRF [Dam90] have also been analyzed in the context of use
as MPC/FHE-friendly ciphers [GRR+16]. There are also MPC/FHE-friendly hash functions based
on sponge constructions, which can also be used to create symmetric ciphers; for example Rescue
[AAB+20], and Poseidon [GKR+21]. There has also been work on special MPC-friendly modes of
operation, e.g. [RSS17]. For such MPC/FHE-friendly ciphers one can obtain (in the actively secure
MPC setting) latencies in the order of milli-seconds, and throughputs in the order of thousands of
operations per second [GRR+16]. It remains an open problem in obtaining similar timings in the
context of FHE transciphering. In this paper we show that with TFHE and Trivium or Kreyvium
one is not far off.

Many of these specially designed ciphers have had less analysis than standard ciphers; thus it is
unclear whether organizations would be willing to deploy them when compared to a standardized
cipher. Indeed the construction of new proposals for MPC/FHE-friendly ciphers seem to come
at a rate faster than the communities ability to apply cryptanalytic effort to them. As just one

3 To transcipher data from an FHE encryption to symmetric encryption, one would perform the symmetric decryption
process homomorphically, and then perform some form of distributed decryption to obtain the ciphertext “in the
clear”.
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example, FLIP [MJSC16] was cryptanalyzed in [DLR16]. In addition, the MPC-in-the-Head based
signature scheme Picnic [CDG+17] which was submitted to the NIST PQC “non-competition”, did
not proceed to the final rounds. One of the reasons for this was that Picnic’s security was based
on the properties of the non-standardized MPC-friendly block cipher LowMC4. Thus companies
seemingly need to choose between either a slow, but standardized/well scrutinized, traditional
cipher, and a fast, but less standardized/less scrutinized, MPC/FHE-friendly cipher.

Much of the development of MPC/FHE-friendly special ciphers has been motivated by the fact
that for most MPC and FHE systems the underlying plaintext space is a large finite field, i.e. not
F2. Thus much of the prior work has focused on FHE schemes such as BGV [BGV12] and BFV
[FV12, Bra12]. However, for FHE systems such as TFHE [CGGI20] the plaintext space is exactly
F2, or Z/(2k) for some small value of k. Thus for such an FHE encryption scheme one might be
able to use a relatively standard cipher, or one closely related to a standardized cipher.

The most promising candidate for such a standardized TFHE-friendly cipher is Trivium [De 06].
This was a cipher designed for the eSTREAM project (a competition run via a European project,
between 2004 and 2008, in order to identify new stream ciphers). It was designed without any
thought of application to MPC or FHE. Indeed, it’s main design criteria were to achieve 80-bits
of security and to be efficient in hardware, as well as a reasonably efficient software implementa-
tion. Trivium ended up in the final eSTREAM portfolio of recommended ciphers, and has been
standardized in ISO/IEC 29192-3 [ISO12].

The security of Trivium is well established, with only some attacks on it, or closely related
ciphers, having been presented [ADMS09, BKM11, CGB+17, DDGP22, FV14, FWDM18, HJL+20,
HLM+20, HL11, KMN12, MB07, WB10, YT18, YT21, ZLL18]. However, the “security margin” for
Trivium is now considered to be relatively small.

This small security margin led Canteaut et al. [CCF+16] to introduce a tiny modification to
Trivium, called Kreyvium, in order to boost the security level to 128-bits. In addition, Kreyvium
protects against some of the prior attack methodologies on Trivium. The main motivation for
introducing Kreyvium was to present an FHE-friendly symmetric primitive with 128-bits of secu-
rity. Since the introduction of Kreyvium, further cryptanalysis has been performed on Kreyvium
[WIM17], and on both Trivum and Kreyvium [HJL+20, HLM+20, YT18]. Theoretical key recovery
attacks have been proposed against 839 round Trivium and 891 round Kreyvium [WHT+18], and
a distinguisher on 899 round Kreyvium was presented in [WIM17]. A practical key recover attack
against 805 round Trivium was presented in [YT21]. This has led both Trivium and Kreyvium to
still be considered secure.

1.1 Prior Work on Performance of FHE Transciphering

As discussed above a lot of the prior work has been on special ciphers which work over plaintext
spaces of the form Fp, for “large primes” p. The reader is suggested to examine the paper [DGH+21],
which not only introduces the cipher Pasta, but also provides extensive implementation experiments
on various ciphers, using different FHE libraries.

For the case of Fp, the authors of [DGH+21] show that a block cipher such as Pasta, when used
with an FHE-scheme such as BGV or BFV, can transcipher a single block ciphertext, encrypted
under Pasta into a ciphertext encrypted under the FHE scheme, in 120 seconds for the case of 17-
and 33-bit primes p. They conclude that for such situations Pasta is the preferred cipher.

4 The NIST report on their choice of SPHINCS+ vs Picnic [NIS22] states “NIST chose SPHINCS+ largely because
it could not confidently quantify the security of LowMC”.
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As remarked above Kreyvium was actually introduced in the context of trying to find a cipher
which is FHE-friendly. However, the paper [CCF+16] introducing Kreyvium looked at transcipher-
ing in the context of FHE schemes such as BGV and BFV, for which it is not ideally suited. The
reported performance of Trivium and Krevium in [CCF+16] were of the order of 1000’s of sec-
onds for latency, and throughputs of hundreds of bits per minute (when using BGV on a single
core machine), with a small improvement in this performance when using BFV. In addition, as
the BGV/BFV schemes do not (easily) support bootstrapping the transciphering was done to a
levelled FHE scheme, meaning very little output could be obtained before the cipher would need
to be re-initialized.

In [DGH+21] the authors report on an implementation of Kreyvium using TFHE, for which
Kreyvium is more suited. They present experiments which output 46 bits of output, and which takes
284 seconds to produce this output. To produce 46 bits of output in Kreyvium actually means one
has to clock the cipher 1198 = 46 + 1152 times, since the cipher requires one to discard the first
1152 bits of output. Thus, after this warm-up phase the experiments in [DGH+21] imply one can
obtain one bit of output every 284/1198 = 0.237 seconds. This rate can be continued, since we do
no need to reset the cipher, since TFHE supports bootstrapping. In this work we show roughly a
100-fold improvement on this throughput.

Other work, combining TFHE with FHE-friendly ciphers, has concentrated mainly on dedicated
(i.e. non-standardized cipher designs). For example [HMR20] gives a time of around 20 seconds per
output bit for TFHE, and 1-2 seconds per output bit for TGSW, when evaluating the FiLIP stream
cipher [MCJS19]. This was improved to 2.6 ms per bit using the FINAL FHE scheme [BIP+22] (a
scheme closely related to TFHE, but based on the NTRU-like as opposed to LWE-like assumptions)
in [CDPP22]. However, as we pointed out above ciphers such as FiLIP are not as well cryptanalyzed
when compared to standard ciphers such as Trivium.

1.2 Our Contribution

We revisit the ciphers Trivium and Kreyvium in the context of the TFHE homomorphic encryption
scheme. We concentrate on obtaining a low latency implementation, which then maximises the
throughput. The concentration on latency as opposed to throughput is motivated by application
concerns; customers are unlikely to want to wait minutes for an encryption to take place, even if
they get 100’s of such encryptions per execution.

We show that the standardized cipher Trivium is ready for use in FHE applications, and it
is already FHE-friendly. Thus there is no need to base application security on one animal in the
menagerie of purpose designed, but non-standardized MPC/FHE-friendly ciphers. For those users
interested in enhanced security, given Trivium’s small security margin, we also investigate Kreyvium
and show this is also ready for deployment. We feel the potential applicability of Kreyvium in real
FHE deployments would warrant standardization of this cipher in the near future.

2 Trivium and Kreyvium

As already remarked in the introduction, Trivium is a well-studied, and standardized stream cipher
which aims to provide 80-bits of security. However, cryptanalysis over the last fifteen years has
shaved off the security margin that Trivium provides. So whilst it can still be considered secure, it
can be said to only just provide 80-bits of security. This fact led Canteut et al [CCF+16] to introduce
a variant of Trivium, called Kreyvium, which aims to offer 128-bits of security. Interestingly they
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introduced the cipher exactly in the context of our study, namely homomorphic transciphering. In
this section we overview these two stream ciphers and highlight the small differences between them.

2.1 Trivium

The basis of Trivium is a set of three shift registers called a, b and c, of lengths 93, 84 and 111
bits respectively (making 288 bits in total). Once the state has been set up the three shift registers
feed into each other via the following equations, over F2:

ai = ci−111 + ci−110 · ci−109 + ci−66 + ai−69,

bi = ai−93 + ai−92 · ai−91 + ai−66 + bi−78,

ci = bi−84 + bi−83 · bi−82 + bi−69 + ci−87.

Notice the regular pattern here: the three top bits of a, b or c are combined with a lower bit (in
position 66 or 69) and then with a bit of a second register, to obtain a new bit in the second register.

To initialize the state an 80-bit key k0, . . . , k79 and an (up to) 80-bit initial value (IV) v0, . . . , v79
are fed into the lower bits of the a and b registers, with a getting the key, and b the IV. The rest
of the bits of all registers are set to zero, bar the top three bits of the c register, which are set to
one. The system is then clocked 4 · 288 = 1152 times before any keystream is actually used.

The output bit of Trivium is then obtained from the F2-equation

ri = ci−111 + ai−93 + bi−84 + ci−66 + ai−66.

The entire algorithm, with some algorithmic optimizations, is given in Figure 1.

Trivium

1. (s1, . . . , s93)← (k0, . . . , k79, 0, . . . , 0).
2. (s94, . . . , s177)← (IV 0, . . . , IV 79, 0, . . . , 0).
3. (s178, . . . , s288)← (0, . . . , 0, 1, 1, 1).
4. For i = 1, . . . , ? do

(a) t1 ← s66 + s93.
(b) t2 ← s162 + s177.
(c) t3 ← s243 + s288.
(d) If i > 1152 then output ri−1152 = t1 + t2 + t3
(e) t1 ← t1 + s91 · s92 + s171.
(f) t2 ← t2 + s175 · s176 + s264.
(g) t3 ← t3 + s286 · s287 + s69.
(h) (s1, . . . , s93)← (t3, s1, . . . , s92)
(i) (s94, . . . , s177)← (t1, s94, . . . , s176).
(j) (s178, . . . , s288)← (t2, s178, . . . , s287).

Fig. 1. The Trivium Stream Cipher

2.2 Kreyvium

Kreyvium is very similar to Trivium, except now there is a 128-bit key and a 128-bit IV value,
which are held in shift registers k and IV. The initial state is now defined as follows: The first
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93-bits of k are placed in the a register, the first 84-bits of IV are placed in the b register, the
remaining 44 bits of IV are placed in the c register, which is then padded with 1 values for all
remaining positions, except the final one which is set to zero.

The algorithm proceeds much as before except the registers k and IV are cyclicly rotated to
the right on every clock cycle. The top bit of the k register is added into both the output and the
update to the a register. In addition, the top bit of the IV register is added into the update to the
b register, so we have

ai = ci−111 + ci−110 · ci−109 + ci−66 + ai−69 + k127,

bi = ai−93 + ai−92 · ai−91 + ai−66 + bi−78 + IV 127,

ci = bi−84 + bi−83 · bi−82 + bi−69 + ci−87,

k = k ≫ 1,

IV = IV ≫ 1,

ri = ci−111 + ai−93 + bi−84 + ci−66 + ai−66 + k0.

The entire algorithm, with some algorithmic optimizations, is given in Figure 2, where we mark
the changes from Trivium in blue.

Kreyvium

1. (s1, . . . , s93)← (k0, . . . , k92).
2. (s94, . . . , s177)← (IV 0, . . . , IV 83).
3. (s178, . . . , s288)← (IV 84, . . . , IV 127, . . . , 1, . . . , 1, 0).
4. For i = 1, . . . , ? do

(a) t1 ← s66 + s93.
(b) t2 ← s162 + s177.
(c) t3 ← s243 + s288 + k127.
(d) If i > 1152 then output ri−1152 = t1 + t2 + t3
(e) t1 ← t1 + s91 · s92 + s171 + IV 127.
(f) t2 ← t2 + s175 · s176 + s264.
(g) t3 ← t3 + s286 · s287 + s69.
(h) (s1, . . . , s93)← (t3, s1, . . . , s92)
(i) (s94, . . . , s177)← (t1, s94, . . . , s176).
(j) (s178, . . . , s288)← (t2, s178, . . . , s287).
(k) (k0, . . . , k127)← (k127, k0, . . . , k126).
(l) (IV 0, . . . , IV 127)← (IV 127, IV 0, . . . , IV 126).

Fig. 2. The Kreyvium Stream Cipher

3 Transciphering in TFHE

In this section we outline how transciphering is integrated with the TFHE, and along the way we
briefly introduce TFHE for the reader who is new to this FHE scheme.
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3.1 Generic Transciphering Protocol

As explained in the introduction, in the context of FHE, transciphering is the method of using
an encryption scheme E within the fully homomorphic one FHE. To illustrate the usage, let us
assume a classical scenario where a client C sends their encrypted data to a server S. To sim-
plify, let E be a (standard) symmetric cipher and FHE be a symmetric homomorphic encryp-
tion scheme with plaintext space Z/pZ. Formally these ciphers are given by tuples of algorithms;
E = (KeyGen,Encrypt,Decrypt) and FHE = (KeyGen,Encrypt,Decrypt,EvalCircuit). The process is
described in Figure 3.

Transciphering

C:
1. skE ← E.KeyGen(1λ)
2. (evkFHE, skFHE)← FHE.KeyGen(1λ)
3. Let m1, . . . ,mk ∈ Z/pZ for some k ∈ N be the cleartexts.
4. For i ∈ [1, . . . , k], cti ← E.Encrypt(skE,mi)
5. ctskE ← FHE.Encrypt(skFHE, skE)
6. Send to S: (ct0, · · · , ctk, ctskE)

S:
1. For i ∈ [1, . . . , k], ct′i ← FHE.EvalCircuit(evkFHE,E.Dec(ctskE , cti))

Fig. 3. Generic Transciphering Protocol between a symmetric E and a FHE FHE cryptosystems

In what follows, we instantiate FHE as the TFHE scheme, and E with either Trivium or
Kreyvium. The homomorphic evaluation of the decryption circuit starts by generating the out-
put keystream of Trivium or Kreyvium r, in the encrypted domain using the Trivium/Kreyvium
instructions. The last step is a homomorphic XOR operation between the input (plaintext) Trivium
ciphertext and homomorphically encrypted value of r.

3.2 TFHE Scheme and Large Integer Representation

The key to understanding our optimized implementation of Trivium/Kreyvium one needs to un-
derstand how the plaintext space of the TFHE cipher interacts with so-called “programmable
bootstrapping”. In particular it is not necessary to perform a bootstrapping operation upon every
boolean gate operation.

TFHE is a fully homomorphic encryption scheme in which bootstrapping (the algorithm to
refresh reduce the noise in a ciphertext after a series of homomorphic operations) has the property
that it is programmable. In particular during bootstrapping an arbitrary lookup table can be
evaluated homomorphically on the ciphertext. The TFHE scheme relies on the LWE problem (and
it’s variant RLWE/GLWE). In what follows, we denote an LWE ciphertext of a message m ∈ Z/pZ,
with the secret key sk

$← Sn (S could be a binary, ternary or discrete Gaussian distribution), a mask

a
$← (Z/qZ)n (with q the ciphertext modulus), a scaling factor ∆ = q

p , and some noise e
$← Nσ2

(Nσ2 is a discrete Gaussian of variance σ2, assumed to be centered in 0), by the equation

LWEn,q
sk (∆ ·m) = (a, ⟨a , sk⟩+∆ ·m+ e mod q).
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In practice, for TFHE, one usually selects p to be a small power of two up to 10 bits (say p = 2, 4,
or 16), and q to be 232 or 264.

Programmable bootstrapping (PBS) gives the possibility to homomorphically evaluate almost
any univariate functions f : Z/pZ→ Z/pZ. When both q and p are powers of two, the functions f
which can be evaluated via the PBS are those which are negacyclic on the input domain to which
they are applied. A negacyclic function is one for which we have

f(x+ p/2) = −f(x) (mod p)

for x ∈ [0, . . . , p/2). Note, we only require negacyclicity on the input values x for which we will
apply the function. Often in TFHE this is enabled by adding an extra bit into the plaintext space,
which is made to always equal zero. As we shall see one can sometimes uses this extra bit if the
function f and the application is designed to cope with it.

In order to extend these ideas to bivariate functions g : Z/pZ × Z/pZ → Z/pZ, the idea is to
split p into two parts: the message msg and carry spaces carry. In other words one thinks of the
real “message” lying in the range [0, . . . ,msg − 1], with a carry lying in [0, . . . , carry − 1], plus an
addition buffer bit to ensure that any bivariate function computing on the message and carry spaces
is negacyclic. This leads to setting p = 2 · carry ·msg.

For instance, for a two bits of message space we have msg = 4, and for three bits of carry
space we have carry = 8. In most homomorphic operations one wants to pick these values so that
msg ≤ carry in order to help with evaluation of bivariate functions. Then, assuming that the carry
space is empty, by concatenating two ciphertexts ct1 and ct2 into one (i.e., ctres = msg · ct1 + ct2),
we are able to compute a PBS over the two inputs. Note that the carry space is also used as a
buffer for levelled operations (i.e., homomorphic operations which do not get immediately followed
by a bootstrapping operation). In our most efficient implementation of transciphering we utilized
msg = 2 and carry = 2.

In general, an operation called keyswitching preceeds the PBS operation. A keyswitch allows one
to transform a ciphertext ct encrypted with a key sk to another ciphertext encrypted under a key
sk′. The PBS takes ciphertexts encrypted under sk′, and transforms them (during bootstrapping)
into ciphertexts encrypted under sk. Thus, in order to be consistent, a keyswitch is computed before
the PBS. The first keyswitch changes sk to sk′, whereas during the PBS the key is switched from
sk′ to sk. Thus, the output ciphertext has the same encryption as the input one. Let bsk be a
bootstrapping key, ksk a keyswitching key. We use the following signature to design the chaining
of such a keyswitch (KS) and PBS as applying a function f(·):

ctout(f(m))← PBS(bsk, ksk, ct(m), x 7→ f(x)).

with a simple keyswitch denoted by:

ctout(m)← Keyswitch(ksk, ct(m))

As described in [BBB+23], the original TFHE scheme does not allow working with plaintexts
larger than 10 bits. To overcome this constraint, the idea is to apply a radix decomposition on
the large plaintext and to encrypt independently each part. More formally, let pt ∈ Z/PZ be the
plaintext, let β ∈ N be the basis, such that |β| ≤ 10. The β-radix decomposition of pt can be
written as: pt =

∑d−1
i=0 pti · βi, for some d ∈ N and 0 ≤ pti < β for i ∈ [0, . . . , d − 1]. Then, an

encryption of pt is:
ct(pt) = {LWEn,q

sk (∆ · pti)}i∈[0,...,d−1]

9



In what follows, we denote ρi the set of parameters associated to a precision pi. A parameter
set contains values ensuring secure LWE instances (i.e., n, q, σLWE,), secure GLWE instances for
the bsk (i.e., the GLWE dimension k, the polynomial size N , and the standard deviation σGLWE)
and correctness parameters (i.e., the decomposition bases and levels for the PBS and the KS, βPBS,
ℓPBS, βKS, ℓKS). A ciphertext associated to a parameter set ρ is written as ct(·)ρ.

3.3 Casting between TFHE encryptions

In TFHE, the complexity (and thus the concrete timings) of computing a PBS is linked to the pre-
cision of the plaintext. All cryptographic parameters are defined depending on the input precision.
We refer to [BBB+23, Fig.8] for more details. This means that choosing the right message precision
has a major impact on the performance. In the case of the transciphering, the best precision needed
to implement the decryption algorithm of E might not be the same as the one for the following
homomorphic operations. The idea is then to be able to cast from one precision to another one.

Here, we focus on an approach allowing casting from a smaller precision p1 to a larger one p2
(where pi = log2(msgi·carryi)+1). This is because both Trivium and Kreyvium are boolean oriented,
whereas the best trade off between precision and computational time, for standard computations
on encrypted integer values under TFHE, is around 5 bits of precision. Thus we want to cast from
one set of parameters (used for Trivium/Kreyvium evaluation) and another set (used for operations
on encrypted integers). The idea of the casting algorithm is first to pack as many ciphertexts as
possible into one. This is done by shifting a ciphertext by the size of the message space msg1.
Then, a keyswitch is applied to switch from the first set of parameter to the second. This requires
a dedicated keyswitching key, denoted kskρ1→ρ2 , going from the parameter set ρ1 to ρ2. Finally, a
PBS is applied in order to go from the scaling factor ∆1 to ∆2. The process is described in Figure 4.

4 Implementation of Trivium in TFHE

There are various design choices in how one could implement transciphering in TFHE. In this
section we outline two major ones, the underlying data type used for the homomorphic evaluation
of Trivium/Kreyvium and how this data type is casted into the data types used by following
homomorphic evaluations.

4.1 Three Potential Underlying Data Types

We examined three underlying methodologies for representing the data within the homomorphic
evaluation of Trivium and Krevium.

FheBool: A näıve implementation of the symmetric schemes would use the default API of the
library (which we will refer to as the high-level API in what follows). The high-level API provides
a FheBool type, representing a bit message encrypted using the TFHE scheme. The FheBool type
internally uses a ciphertext modulus of q = 232, and it computes a bootstrapping operation after
each Boolean operations (e.g., AND, OR, XOR, ...) except the NOT one. Since both Trivium
and Kreyvium are working with bits, the FheBool type seems to be a good fit. It allows the
production of a stream of pseudorandom FheBool, each being the encrypted version of the actual
Trivium and Kreyvium stream. However, this approach does not offer many possibilities to optimize
computations.
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Casting

Conditions:
1. msg1 · carry1 ≥ msg2;
2. p2 ≥ p1

Input:
1. kskρ1→ρ2 : keyswitching key from parameter sets ρ1 to ρ2
2. (kskρ2 , bskρ2): keyswitching and bootstrapping keys to compute a PBS using the parameter set ρ2
3. ct(m)ρ1 = {LWEn1,q1

sk1
(∆1 ·mi)}i∈[0,...,κ−1]: a ciphertext encrypting a message m under parameters ρ1

Output: A ciphertext ctρ2(m) = {LWEn2,q2
s2 (∆2 ·m′

i)}

Algorithm:

1. For i ∈
[
0, . . . ,

⌊
κ·log2(msg1)
log2(msg2)

⌋]
:

(a) // Packing
For j ∈ [0, . . . , log2(

msg2
msg1

)]:

i. ctρ1(mi)← ctρ1i (mi) + 2j·log2(msg1) · ctρ1j (mj)
(b) // Switching to the second parameter set

ctρ2(mi)← Keyswitch(kskp1→p2 , ct(mi))
(c) // Adjusting to the scaling factor ∆2

ctρ2(mi)← PBS(bsk, ksk, ctρ2(mi)
′, x 7→ x ≫ log2

(
∆1
∆2

)
)

2. Return ctρ2(mi)

Fig. 4. Casting Algorithm between two LWE ciphertexts

FheUint8: A second näıve implementation would use the FheUint8 type, representing a byte
encrypted via the high-level TFHE API. One might be tempted to do this as such a representation
could potentially avoid any casting operation after the transciphering algorithm was performed.

In a cleartext implementation, in C say, one might store the Trivium state/key etc in blocks
of 8, 32 or 64 bits depending on whether ones native machine type was a byte, long, or longlong.
This FheUint8 representation is the TFHE analogy, where the 8 bits of the data type standin
for each byte of the original Trivium or Kreyvium cipher; be it from the key, registers, messages,
etc. In practice, all the high-level integer types of the TFHE-rs library are radix represention of
the underlying actual integer, using ciphertexts with msg = 4, representing 2-bit input messages.
The FheUint8 is then only a wrapper around four of these ciphertexts ; the equivalent of looking
up bits in the registers consists in reconstructiong bytes from two bytes of the registers, a costly
operation. However, what this also means is that it is straightforward (i.e., casting is trivial) with
this representation to transcipher messages that use the same radix representation, into any other
integer type of the TFHE-rs library. The downside of this implementation is its poor performance:
using bigger ciphertexts and more complex representations means one needs more costly bitwise
operations. By construction, Trivium/Kreyvium does not allow leveraging the potential advantages
of this representation. We provide this implementation for comparison as it provides simple casting
for further homomorphic operations; however it is very costly in terms of transcipherting. Thus, it
probably should never be used in practice because of its poor performance.

Optimized implementation: Our best implementation revolves around a family of types from the
TFHE-rs library dubbed shortints, where a small integer (of modulus 2, 4, 8, or 16), is encrypted
in a single ciphertext, along with a potential carry (empty, or of modulus 2, 4, 8, 16). This carry
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can hold temporary results during an FHE circuit evaluation, often allowing optimizations. The
radix representation of the high-level integers of the TFHE-rs library uses ciphertexts encrypting
2 bits of message and 2 bits of carry.

In this implementation we represented each bit with a different ciphertext, with each of these
ciphertexts being the encryption of a 1-bit message and a 1-bit carry, plus a one bit buffer (to enable
negacyclic function evaluations via the PBS). Thus we set p = 8. This enabled us to take advantage
of the fact that this representation does not necessarily need a PBS after each arithmetic operation:
for example we can let an addition overflow over the carry bit (a so-called leveled addition in the
language of TFHE). Meaning we can perform two (leveled) additions in a row before doing a PBS
(or one addition and one bitwise AND for example). This carry bit then needs to be cleaned at
the end of each step, which, however, does require a PBS operation. This means we set the PBS to
compute the function

f :

{
Z/8Z −→ Z/8Z
x 7−→ x (mod 2)

Naively, one would assume that this would allow us to process three bit additions, and then apply
a PBS to obtain a reduction modulo two. i.e., one could compute

PBS(bsk, ksk, x1 + x2 + x3, f) = x1 ⊕ x2 ⊕ x3,

since, if xi ∈ {0, 1} then (as an integer) the domain of the PBS lies in {0, 1, 2, 3}, and so the function
f is applied to an element of the plaintext space where the buffer bit is equal to zero. Since f it is
negacyclic on these inputs when considered as a function.

However, the function f above is also negacyclic on the input value four, as f(4) = 0 = −0 =
−f(0). This means we can actually add four values together before needing to perform a PBS
operation, i.e., one can compute

PBS(bsk, ksk, x1 + x2 + x3 + x4, f) = x1 ⊕ x2 ⊕ x3 ⊕ x4,

Alas, this idea does not extend as the function f is not negacyclic on the input value five, as
f(5) = 1 ̸= 7 = −f(1).

Since the PBS operation is the most costly operation (by far), we try to optimize them out
of the circuit as much as possible. Every XOR gate is represented by a (leveled) addition in our
scheme. Our main steps (executed 64 times in parallel) for Trivium would thus go like this:

– Execute steps 4a, 4b, and 4c as simple (leveled) additions, i.e. with no PBS operation being
carried out. [zero PBS]

– Spawn 4 threads:
• Step 4d:, as two (leveled) additions, along with two ‘clean carry’ operations [one PBS];
• Step 4e: as an AND gate [one PBS] followed by two (leveled) additions, then a ‘clean carry’
operation, [one PBS]; (for Kreyvium an extra ‘clean carry’ operation is needed, meaning an
additional PBS);
• Step 4f: as an AND gate [one PBS] followed by two (leveled) additions, then a ‘clean carry’
operation, [one PBS];
• Step 4g: as an AND gate [one PBS] followed by two leveled additions, then a ‘clean carry’
operation, [one PBS]; (for Kreyvium an extra ‘clean carry’ operation is needed, meaning an
additional PBS);

– Return: r, t1, t2, t3
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Making a total of eight PBS operations spread over the four threads. We can then output the 64
return values, and update each register 64 times. When fully parallelized, this will cost the latency
equivalent of two operations PBS per output bit. For Kreyvium one requires ten PBS operations
spread over the four threads, with a latency equivalent to three PBS operations per output bit.

4.2 Transciphering

By the definition of transciphering, we are using a different integer representation in the cipher
than the one used in the high level integer types for the data. Thus, we need to switch between
the keys used in the FHE evaluation of Trivium and Kreyvium, to the keys corresponding to the
integers that we actually want to transcipher in the higher level application. In other words we
need to cast the underlying data type of the homomorphic encryption from one which is preferred
for Trivium/Kreyvium evaluation, into one which is preferred for further (application specific)
homomorphic evaluation.

Following Figure 5, the client is using Trivium/Kreyvium to encrypt its messages whereas
the secret key is encrypted using TFHE. On the server side, Trivium/Kreyvium is ran in the
encrypted domain. As previously described, the best precision (i.e., cryptographic parameter set) to
homomorphically compute the symmetric encryption scheme differs from the one used to compute
over homomorphic integers. For example one may be operating on homomorphically encrypted
integers of 16, 32 or 64 bits in length (i.e., FheUint16, FheUint32, FheUint64). Since Trivium
has a natural parallel execution of 64-bits in parallel, this is relatively easy to translate into the
domain over which one is computing if the integer length is less than 64. In contrast, the input
ciphertexts are encrypted under Trivium using r, leading to ct(r) = LWEn1,q1

sk1
(∆1 · r) in the FHE-

encrypted domain. So we need to transform these ciphertexts into ciphertexts which encrypted the
same message under TFHE.

This is done quite easily by seeing the Trivium ciphertexts (denoted ctTrivium(·)) as triv-
ial TFHE ciphertexts. The idea is first to split ctTrivium(·) = b63∥b62∥ . . . ∥b0 (with bi ∈ F2)
into blocks of two bits. Each chunk is now seen as a trivial LWE ciphertext: ct(b2i∥b2i+1) =
LWEn2,q2

0⃗
(∆2 · (b2i∥b2i+1) = (⃗0, ∆2 · (b2i∥b2i+1)), so that the ciphertext ctρ2(m) encrypting the

64-bit m is equal to {ctρ2(b2i∥b2i+1)}i∈[0,...,31]. This step is obviously adaptable to any message
space msg, and is generally denoted by:

ctρ2 [ctTrivium(m)]← TrivialSplitting(log2(msg2), ct
Trivium(m))

Now, the encrypted randomness ct(r) needs to be cast from the precision p1 = 2 (with msg1 =
carry2 = 2) to p2 = 16. This is achieved by the process described in Figure 4. This can also be
parallelized, with one thread per pair of bits, so 32 threads per step. Each of these threads will
perform a leveled addition, an LWE keyswitch, and a bitshift (this last one will also perform a
PBS). After all this is done, we have produced a stream of ciphertexts, interoperable via FHE with
the radix representation of any high-level integer of TFHE-rs. Finally, for transciphering, we then
XOR each of the resulting ciphertext with an element of the radix representation of a FheUint64,
again done 32 times in parallel, and each of these XOR operations also requiring a PBS. All in all,
this transciphering step costs a latency of two PBS operations when fully parallelized.
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Transciphering between Trivium and TFHE

Notations:
– skTrivium: Trivium secret key
– IV: Trivium input vector
– Encrypt∗: random generation of 64 bits using Trivium (i.e., the XOR step is ignored)
– skρi : TFHE secret key associated to the parameter set ρi
– kskρi , bskρi : Evaluation keys (i.e., keyswitching and bootstrapping)

C(skT, skρ1 ,m):

1. IV
$← F80

2

2. r ← Trivium.Encrypt∗(skT , IV)
3. ctTrivium(m)← m XOR r
4. Send to S: (ctTrivium(m), IV, ctρ1(skT ))

S(kskρ1→ρ2 , {kskρi , bskρi}i∈[1,2]):
1. ctρ1(r)← TFHE.EvalCircuit((kskρ1 , bskρ1),Trivium.Encrypt∗(ctρ1(skT ), IV))
2. ctρ2(r)← TFHE.Casting(kskρ1→ρ2 , bskρ2 , kskρ2 , ct

ρ1(r))
3. ctρ2 [ctTrivium(m)]← TrivialSplitting(log2(msg2), ct

Trivium(m))
4. ctρ2(m)← TFHE.EvalCircuit((kskρ2 , bskρ2), ct

ρ2 [ctTrivium(m)] XOR ctρ2(r))

Fig. 5. Transciphering Algorithm using TFHE and Trivium.

5 Experimental Evaluation

In the last section we detailed how we implemented Trivium and Kreyvium using TFHE. In this
section we explain how we implemented the transciphering operations ontop of the TFHE-rs
library.

5.1 Multithreading Strategy

We chose to implement the Trivium and Kreyvium encryption schemes using theTFHE-rs library5.
In all of the following cases we used multithreading to process 64 bits in parallel (or 8 bytes, when
applicable). Additionally, in each of the 64 (or 8) threads, we further subdivide the workload as
much as possible since the algorithms are composed of 3 or 4 independent computation blocks.

We explain how the Trivium and Kreyvium design allows us to clock 64-bits of output in one
execution; with maximum thread utilization. Recall, for Trivium and Kreyvium, that processing 64
bits of state in parallel is enabled by the ciphers design.

In addition in the case of Trivium (see Figure 1), the steps 4a, 4b, and 4c can be done in parallel,
and after that the steps 4d, 4e, 4f, and 4g can be done in parallel. In the case of Kreyvium (see
Figure 2), the same parallelization scheme would work: first steps 4a, 4b, and 4c, and then the sets
4d, 4e, 4f, and 4g. The total maximum number of threads that can be used at one time is then
64 × 4 = 256. This can potentially be achieved with an actual machine. However to simplify the
implementation and handle a possibly low CPU count, we use Rayon (a Rust crate for multithread-
ing). The advantage is that it does not instantiate more threads than the CPU count, but rather
launches 256 jobs that are to be consumed by the actual launched threads.

5 Available from https://github.com/zama-ai/tfhe-rs.
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We now turn to our experimental evaluation of the transciphering operation. Recall we maintain
two parameter sets, given in Table 1, one to compute homomorphically the ciphers Trivium and
Kreyvium, and one to compute generic TFHE computations, we also maintain keyswitching keys
to go between the two representation. Each parameter set is defined to offer 128-bit security, and
to guarantee an error probability bound on computation of 2−40.

Trivium/Kreyvium TFHE Integer Key Switching
Evaluation Evaluation kskρ1→ρ2

Parameter Parameters (ρ1) Parameters (ρ2) Parameters

LWE dimension n 684 742 /
GLWE dimension k 3 1 /
Polynomial size N 512 2048 /
LWE standard deviation σLWE 2.04378× 10−5 7.06984× 10−6 /
GLWE standard deviation σGLWE 3.45253× 10−12 2.94036× 10−16 /
PBS base log log2(βPBS) 18 23 /
PBS level ℓPBS 1 1 /
KeySwitch base log log2(βKS) 4 3 1
KeySwitch level ℓKS 3 5 15
Message Space msg 2 4 /
Carry Space carry 2 4 /

Table 1. Cryptographic parameters

We can now outline our experimental results. All execution times were obtained on an AWS
m6i.metal machine, with 128 virtual CPUs, 512 GB of RAM, and a clock speed of 3.5 GHz.
Our implementation takes some advantage of native CPU instructions, such as SIMD and AVX
instructions. We timed the four values;

– The warm-up time. This is the average time to execute 1152/64 = 18 64-bit cycles of the main
loop. This is the delay one needs to pay when initializing the symmetric ciphers with a new
homomorphically encrypted key.

– The latency. This is the average time difference between the 30’th and the 31’st round of
producing 64-bit outputs. This measures the time a user needs to wait, having processed one
block of 64-bits, before the next block is ready.

– The throughput. This is the average number of bits per second produced by the cipher, after the
warmup phase, when run for a minute on the above processor with no other operations being
carried out.

– The transciphering. This is time needed to fully transcipher a FheUint64 ciphertext (the most
expensive one), including the generation of the 64 bits (this was not done on the implementations
that used the FheBool type, as key switching in this context was not directly available).

Our results, averaged over 100 executions, are given in Table 2. Thus after the warmup phase,
we are able to obtain a sustained throughput of over 500 bits per second (resp. over 400 bits per
second) for Trivium (resp. Kreyvium). This equates to a transciphering speed of under 300 ms per
64-bit plaintext block.
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Encryption FHE Warm-Up Latency Throughput Transciphering
Scheme Type (ms) (ms) (bit/s) (ms)

Trivium FheBool 2676 161 398 n/a
Trivium FheUint8 12483 714 90 980
Trivium Optimized version 2259 121 529 259
Kreyvium FheBool 2828 168 381 n/a
Kreyvium FheUint8 12932 768 83 1043
Kreyvium Optimized version 2883 150 427 291

Table 2. Run time results
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lier, and Renaud Sirdey. Stream ciphers: A practical solution for efficient homomorphic-ciphertext com-
pression. In Thomas Peyrin, editor, Fast Software Encryption – FSE 2016, volume 9783 of Lecture
Notes in Computer Science, pages 313–333, Bochum, Germany, March 20–23, 2016. Springer, Heidelberg,
Germany.

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rech-
berger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017: 24th Conference on Computer and Communications Security, pages 1825–1842,
Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

CDPP22. Kelong Cong, Debajyoti Das, Jeongeun Park, and Hilder V. L. Pereira. SortingHat: Efficient private deci-
sion tree evaluation via homomorphic encryption and transciphering. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, ACM CCS 2022: 29th Conference on Computer and Communications
Security, pages 563–577, Los Angeles, CA, USA, November 7–11, 2022. ACM Press.

CGB+17. Marco Cianfriglia, Stefano Guarino, Massimo Bernaschi, Flavio Lombardi, and Marco Pedicini. A novel
GPU-based implementation of the cube attack - preliminary results against Trivium. In Dieter Goll-
mann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17: 15th International Conference on Applied
Cryptography and Network Security, volume 10355 of Lecture Notes in Computer Science, pages 184–207,
Kanazawa, Japan, July 10–12, 2017. Springer, Heidelberg, Germany.

CGGI20. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully homomorphic
encryption over the torus. Journal of Cryptology, 33(1):34–91, January 2020.

CHMS22. Orel Cosseron, Clément Hoffmann, Pierrick Méaux, and François-Xavier Standaert. Towards case-
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