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Abstract. Timed commitments (Boneh and Naor, CRYPTO 2000) are a variant of standard com-
mitments which incorporates a forced opening mechanism that allows anyone to reveal the committed
message, but not before a certain prescribed date. Timed commitments have a wide-range of appli-
cations such as contract signing, fair multi-party computation, sealed bid auctions or new blockchain
applications such as preventing front-running or unbiased randomness generation.

We revisit the notion of timed commitments and propose an alternative simplified definition. We also
provide two new constructions of timed commitments with different trade-offs.

1 Introduction

Timelock puzzles were conceived by Rivest, Shamir and Wagner [RSW96] as a tool for “sending information
into the future”. They allow a sender to encrypt a message that can eventually be decrypted, but not before
a certain (approximated) future date chosen by the sender.

Concretely, given a function F : X — ), a timelock puzzle is defined by an input x € X and the puzzle
solution is the output y := F(x). It is required that evaluating F' involve a computation that is inherently
sequential (not known to be parallelizable). This guarantees that evaluating F, i.e. “solving puzzles”, cannot
be speeded up by leveraging extra computational power.!

The iterated application of a secure hash function would be a good candidate function F' that cannot be
parallelized. However, that would require the puzzle creator to invest a significant amount of computational
effort to arrive to the solution. Indeed, the same amount as a third party solving the puzzle. Ideally, it should
be possible for the puzzle creator to generate a valid puzzle-solution pair efficiently. Rivest et al. show that
this is possible [RSW96] if F' is implemented as an iterated squaring over a group of hidden order:

puzzle: = (G,g,T), where G is a group, g € G and T € N
solution: y = gQT

The above computation is conjectured to require 7' iterated squarings for a party who does not know
the group order (if the group and its representation are chosen appropriately). On the other hand, knowing
the group order n can dramatically speed up the evaluation: simply power g to (27 mod ). Consequently,
7 must be hidden from the public, but if it is known to the puzzle creator, they compute the solution very
efficiently. Rivest et al. achieve this by considering an RSA group, where the modulus is chosen by the puzzle
creator.

Sending information into the future. As mentioned earlier, timelock puzzles can be used to commit to a piece
of information that will eventually be revealed, after a certain (controllable) amount of time has passed. For
that, the “sender” can create a puzzle-solution pair (z,y), derive a secret key from y and use it to encrypt the
message of their choice, publishing puzzle x together with the corresponding ciphertext. This would allow
a third party to compute y by solving the puzzle, deriving the key from it, and decrypting the ciphertext,
recovering the original message.

Rivest et al. proposed several other applications of timelock puzzles, including fair auctions, scheduled
payments, or delayed key-escrow schemes. Remarkably, timelock puzzles can also be used to address a recent
but important problem, known as generalized front-running, which affects many permissionless blockchains
(see Section 1.2).

L Although, it can unavoidably be speeded up by utilizing a faster machine, or through hardware acceleration, e.g.
using FPGA or ASIC.



Verifiable delay functions. A verifiable delay function (VDF) [BBBF1§] is a function F' : X — ) that requires
a prescribed amount of time to be evaluated, even when using parallelization. In this sense, it is similar to
the underlying function of a timelock puzzle. However, the V in VDF requires that the validity of a claimed
output y can be efficiently verified by anyone. On the other hand, unlike timelock puzzles, VDFs do not
require that the computation of y be efficient for the party who chooses x. Indeed, they require that the
computation be inefficient for everyone (note that VDFs are more suited in applications where the actors
have a more symmetric role in the protocol, contrary to timelock). We refer to [Wes19, Piel9] for more details
about VDF. For the purposes of this paper, we will describe Pietrzak’s VDF argument (see Section 2.4).

Verifiable delay functions have shown to be useful for enforcing delays in the area of decentralized appli-
cations, where efficient public verifiability is paramount. In particular, they can be used for leader election,
proofs of replication, and randomness generation (see Section 1.2). Indeed, VDFs have been adopted by sev-
eral popular blockchains such as Tezos or Chia as part of their protocols, and other chains such as Ethereum
or Filecoin are working on their integration.

Timed commitments. Timed commitments were introduced by Boneh and Naor [BN0O] as a variant of stan-
dard commitments that allows anyone to reveal the committed message through a forced opening mechanism.
However, such mechanism is designed to be computationally expensive and non-parallelizable to ensure that
the message will remain hidden until an approximated future date. Furthermore, once a commitment is
opened, anyone can efficiently verify the correctness of the opened message. More concretely, timed commit-
ments were originally defined to be interactive protocols with a committing phase and a (forced) opening
phase and they were required to achieved the following properties:

(i) Guaranteed opening: after the commit phase, the receiver gets convinced that the forced opening will
be successful (before actually performing the computation).
(ii) Provable opening: the (forced) opening phase results in a certificate of the validity of the opened value.
(iii) Sequentiality: the forced opening phase cannot be significantly speeded up with parallelization.

Timed commitments can thus be seen as a primitives that combine properties from both timelock puzzles
(fast generation and sequentiality) and from verifiable delay functions (verifiability).

Since the first construction by Boneh and Naor, other works have explored the notion of timed com-
mitments (especially in the non-interactive setting) and have considered additional security properties such
as non-malleability [KLX20]. However, the constructions in [KLX20] make use of general-purpose zero-
knowledge proofs and their commitment phase is very inefficient, requiring an expensive computation by
the committing party. Other works [TCLM21] study timed commitments over class groups, to avoid trusted
setups, and focus on commitment protocols involving multiple parties. Note that class groups are very
new primitives whose security needs to be more consolidated and studied further. Other remarkable works
are [MA22, CJ22], but they also rely on zero-knowledge proofs.

In this work, we aim at constructing timed commitment schemes whose efficiency is suitable for practical
applications. We thus focus on constructions with no trusted setup and that do not rely on the use of
zero-knowledge proofs.

1.1 Our contributions

We revisit and simplify the notion of timed commitments. In particular, we remove the condition of guaranteed
opening. Namely, we do not require that there exist a mechanism to guarantee that the forced opening of
the commitment will be successful. Instead, we consider a special message |, which is the default opening
value for commitments whose forced opening is unsuccessful. Furthermore, our mechanisms for verifiability
of openings make it possible to prove that a commitment is “invalid” (that it forced opens to L). One could
argue that this simplified definition leads to a primitive that is strictly weaker, as it is no longer possible to
know in advance whether the forced opening will be successful. We claim that this is not the case, as this
problem is inherent: under the original definition of timed commitments a malicious party can create a valid
commitment to a meaningless message (there is no way to know in advance whether the result of forced



opening will be valid in the language induced by the use case, e.g., that it will be a well-formed blockchain
transaction).

We establish formal security definitions (Section 3) for our new presentation that facilitate a simple
and rigorous security analysis when used for applications such as preventing the problem of block producer
extractable value, and efficient, unbiased randomness generation (see Section 1.2). We also provide two
constructions of timed commitments with different trade-offs and formally prove that they meet our security
requirements (Section 4).

1.2 Applications

Preventing generalized front-running. The problem of generalized front-running, also referred to as as block
producer extractable value (BPEV) in proof-of-stake chains or as miner extractable value (MEV) in proof-
of-work blockchains, is a common attack that affects permissionless blockchains where transactions can be
observed before they are actually included on-chain. This allows block producers to benefit from the fact
that they can choose the order of transactions within a block. For example, upon receiving a transaction,
a block producer can craft a block including this transaction and one of their own in such a way that the
sequential execution of both transactions guarantees a profit.

This problem can be partially mitigated by leveraging commitment schemes: users commit to their
transactions, which are included on-chain in committed form and whose execution is postponed until they are
revealed. Unfortunately, this solution allows malicious users to open their commitments selectively depending
on their own interest.

Using timed commitments instead would solve this issue. There could be a party (possibly a block
producer) who is prepared to open commitments of users who denied to collaborate?, and produce proofs of
correctness of these openings, which can be efficiently verified on-chain.

Randomness generation. Generation of uniform and unbiased randomness is a critical problem in decentral-
ized systems. The RANDAO protocol is a widely used approach to solve this problem and, in a nutshell,
works as follows. Every party participating in the process of randomness generation samples a string (of
a prescribed length) uniformly at random and commits to it, transmitting the commitment to the other
parties. When all parties have received all commitments, they start the revelation phase, where each opens
their own commitment. The output of the protocol is then computed by aggregating all such strings, e.g.,
by XORing them, which guarantees that as long as one of the users chose their string uniformly at random,
the final output is uniformly distributed.

Unfortunately, this simple protocol is not guaranteed to terminate. What if a party does not open their
commitment in the revelation phase? A natural protocol modification to guarantee termination would be to
exclude that party’s value in the computation of the final output. However, that allows a malicious party
to bias the result. Namely, they can wait until everybody has opened their commitment and then decide
whether or not they want open their own (being able to choose between two possible outcomes). This problem
worsens when n parties collude, being able to choose between 2" possible outcomes.

In order to mitigate the above problem, some important blockchains such as Tezos or Chia have started
to use verifiable delay functions as part of their randomness generation protocols. For example, by using the
output of RANDAO as the input of a VDF function. If the VDF difficulty is properly adjusted, the malicious
parties trying to bias the output of RANDAO would not have enough time to evaluate the VDF during the
revelation phase. Therefore, the decision of whether or not they open their commitment cannot be based on
what the final outcome will be. Furthermore, the public verifiability of VDFs makes it possible to produce
a certificate of the fact that the result of the protocol is correct. This allows the blockchain nodes to avoid
the expensive VDF evaluation and simply verify such certificate.

Nevertheless, VDF's are very new primitives which deserve more study. The VDF difficulty should prob-
ably be overestimated in order to account for possible hardware acceleration. This makes VDF solutions for
randomness generation significantly more expensive than RANDAO (not for the blockchain nodes, but for

2 Such users may be penalized in order to discourage such behavior.



the party who evaluates the VDF), affecting the protocol duration. Replacing standard commitments with
timed commitments in the RANDAO protocol could mitigate this issue. If the scheme has the property that
commitment creators can produce proofs of opening of their own commitments very efficiently, and they
collaborate to do so, we could avoid having to bruteforce any opening: leading to a very efficient protocol
in the optimistic case that parties are honest. Dishonest behavior can be discouraged through economic
incentives and will not lead to any biases in randomness generation since the commitments of users who do
not collaborate will eventually be opened too.

1.3 Technical overview

The underlying function used by the timelock puzzle scheme by Rivest et al. [RSW96], i.e. iterated squaring
over a group, is the same function considered by the two most popular VDFs [Wes19, Piel9]. Therefore,
one could be tempted to build a timed commitment by equipping the timelock puzzle by Rivest et al.
with the verification mechanisms devised by Wesolowski or Pietrzak. However, this attempt does not work
because knowing the group order compromises the soundness of both VDF arguments. Indeed, with the
group order, an adversary could break the adaptive root assumption and the low order assumption, the
two security assumptions on which Wesolowski’s argument and Pietrzak’s argument respectively rely. Under
these conditions, the commitment creator would have the ability to fake opening proofs.

Remark 1. If we used authenticated encryption to encrypt the committed message, this would ensure that
a commitment can only be opened to one message. However, this would not counter the fact that the
commitment creator can forge puzzle-solution proofs, because we need to account for invalid commitments.
Indeed, the following attack would be possible. Let x be the timelock puzzle chosen by the creator and let
y be its solution. The creator could select a private-key k # y and encrypt the desired message m with it,
producing ct. The pair (x,ct) would be an invalid commitment, as it is not well-formed: a party bruteforcing
the puzzle would arrive to y and realize that decryption of ct with y fails. However, the puzzle creator could
forge a VDF proof of the (false) fact that (x, k) is a valid puzzle-solution pair, thus convincing anyone that
m is the correct opening of the commitment.

Note that for the use cases that we devised in Section 1.2, our new definition of timed commitments must
handle invalid commitments: it should be possible to prove/verify that a commitment is malformed (and does
not force open to any message). As we have seen, a commitment creator who has the ability to forge puzzle-
solution proofs can produce a commitment of a message and then prove that it opens to such message, but
they can also prove that the commitment is invalid. The timed commitment definition of soundness should
prevent such situation. On the other hand, it is not clear how to achieve quick commitment generation, while
hiding the group order from all parties (including the commitment creator).

Interestingly, the VDF argument by Pietrzak could be sound even against an adversary who knows the
group order, if the group does not contain low order elements: in that case the low order assumption would
hold unconditionally. (Pietrzak proposed a mechanism to build groups of hidden order with this property?,
see Figure 2). However, the previous attempt of timed commitments falls short even when implemented over
such rough groups and using Pietrzak’s argument. The reason is that the commitment creator could deviate
from the scheme and choose a group that is not rough. This cannot be noticed by a third party (at least with
Pietrzak’s implementation of rough groups) and, again, would give the creator the ability to forge proofs of
opening.

The previous issue could be overcomed by including zero-knowledge proofs that ensure that the group
is rough, but this would incur an undesirable overhead. Instead, our first construction resolves the problem
by embedding some extra piece of information in the committed message from which anyone can verify the

3 This group implementation requires sampling safe primes, i.e., primes of the form 2p+ 1 where p is also prime.
This can be considered costly, but our experiments show that it is possible to generate 1024-bit safe primes in
under a second (on average) with OpenSSL running on a personal laptop 11th Gen Intel(R) Core(TM) i7-1185G7
@ 3.00GHz. This bit length should be enough for most blockchain applications.



roughness of the group (see Section 4.1). This creates a loop that prevents the previous attack: if the creator
selects a group that is not rough, they can fake puzzle-solution proofs, but they will not be able to be able
to convince anyone that a commitment is valid, as a witness of the roughness of the group does not exist.

We propose a second construction that works with both Pietrzak’s and Wesolowski’s arguments and any
algebraic group where such arguments are sound. (In this case, the group order must be hidden from all
parties, including the commitment creator). This second construction is based on the idea that a puzzle-
solution pair can be rerandomized. In particular, if (z,y) is a valid puzzle-solution pair to the iterated
squaring function, so is the pair (z",y"), for any r € N. This way, at the cost of introducing a setup phase
where a valid puzzle-solution pair is computed for the desired difficulty 7', we can then generate arbitrarily
many puzzle-solution pairs very efficiently, without the group order. Unfortunately, this does not seem to be
enough to achieve a desirable property that we mentioned earlier: it should be possible for the commitment
creator to produce a proof of opening efficiently. We refer to Section 4.2 for details on how we achieve this
extra property by integrating the previous idea in a slightly different manner.

2 Preliminaries

2.1 Notation

For n € N, we define Z,, := Z/nZ, the ring of integers modulo n. We denote its group of units by Z%. If
a,b € N are congruent modulo n, we write a =, b. We denote the Jacobi symbol of @ modulo n by (%). We
use multiplicative notation for abstract algebraic groups. A safe prime is a prime number of the form 2p+ 1
where p is also prime. Given two functions f,g: N — [0, 1], we write f = g if the difference |f(\) — g(N\)| is
asymptotically smaller than the inverse of any polynomial. Function f is said to be negligible if f ~ 0, whereas
it is said to be overwhelming when f = 1. We denote by {0, 1}* the set of strings of arbitrary length. We define
a special symbol for concatenation || that allows for unambiguous parsing. Namely, (mq || ms) = (m] || mj)

implies that m; = m} and ms = m), for all my, mo, m{, mb € {0,1}*.

2.2 Hidden order groups

Let G be an algorithm that on input a security parameter in unary 1%, outputs the description of a
group G of unknown order, together with a trapdoor 7. The group description allows to efficiently com-
pute the group law, test membership and perform uniform (or statistically close to uniform) sampling over
G. Furthermore, using trapdoor 7, it is possible to derive the group’s order and checking A-roughness of
the group’s order. In particular, we assume the existence of algorithms order and A-rough taking (G, )
as input and returning an integer and a bit respectively. Furthermore, we require that, for all A € N,
Pr[(G,7) <~ G(1*) : A-rough(G,7) =1] = 1 and that for every G, 37%, A-rough(G,7*) = 1 imply that G
is well-defined, and that order(G,7*) is the correct order of G, which is A-rough (all its prime divisors are
greater than 2*).

2.3 Encryption

We require an encryption scheme to allow decryption in the future with the weak security property of
indistiguishability in the presence of an eavesdropper.

Definition 1. A private-key encryption scheme is a triple of PPT algorithms:

« Gen(1*) — k, on input a security parameter, outputs a key.
e Enci(m) — ct, on input a key k and a message m € {0,1}*, outputs a ciphertext.
e Decg(ct) = m/L, on input a key k and a ciphertext ct, (deterministically) outputs a message or L.

A private-key encryption scheme is correct if for every m,

Pr[k < Gen(1*) : m = Decy(Ency(m))] =1 .



Let H: {0,1}* — {1,...,2*} be a hash function (modeled as a random oracle).

Pietrzak.Prove(G, T, g, h):

Inputs: group description G, time-bound T' = 2¢ € N, group elements g, h € G
Output: proof ensuring that g2T =h
: let go =g and ho :=h
: for every i =1,...,t do:
_ o(T/2h

1
2
3: compute v; ‘= g , sample r == H(v; || gi—1 || hi—1 || 9)°, and set g; == gj_1v; and h; = v]hi—1
4

: return 7 = {v;, gi, hi }icpy

Pietrzak.Verify(G, T, g, h, 7):

Inputs: group description G, time-bound T' = 2* € N, group elements g, h € G proof 7

Output: 1/0 (indicating acceptance or rejection, respectively)

1: if g ¢ G or h ¢ G then return 0

2: parse m as {vi, gi, hi}icpy), let go '= g and ho := h, and compute 7; := H(v; || gi—1 || hi—1 || 7) Vi € [¢]
ifdieft]:vi¢GorgigGorh; ¢ Gorg; #g, v or hy # v, hi—1 then return 0
4

: return (hy = g7)

Fig. 1: Pietrzak’s succinct argument for relation R(G,T,g,h) =g, h € G A g2T = h.

¢ Including 7 in the hash is not necessary for soundness, but it leads to a better bound, independent of T'.

Definition 2 (Indistiguishability in the presence of an eavesdropper). A private-key encryption
scheme is indistiguishability in the presence of an eavesdropper if for every (stateful) PPT algorithm A, the
following probability is negligibly close to % m A:

Pr [ (mo,m1) < A(1*); k < Gen(1*); b« {0, 1}; ct < Enci(myp); b’ < A(ct) : b=1]

2.4 Pietrzak’s VDF argument

As a component of his VDF, Pietrzak proposed a public-coin interactive argument for relation R(G, T, g, h) :=

g,heGA 92T = h [Piel9]. The protocol can be proven secure under the low order assumption, which states
that it is computationally hard to find non-trivial elements of low order in a given group:

Definition 3 (Low order assumption). The low order assumption holds for algorithm G if for PPT
adversary A the following probability is negligible in \:

Pr[(G,_) « G(1"); (ud) < AG) : peGAp#la Nl1<d<2* Apt=1g] ,
where the probability is taken over the coins of G and A.

If the group order is rough (it does not contain “small” prime factors), by virtue of Lagrange’s theorem,
the low order assumption holds unconditionally, even if the adversary is allowed to choose the group or knows
the group order. Remarkably, in such groups Pietrzak’s argument achieves statistical soundness.



G(1*): sample £(\)-bits safe primes p, q; set N = p-¢; return (G = N,7 := p)
z€G: return 1 <z < (N-1)/2 A (%) =+1

zoy: return |x-y mod N|

order(G := N,7:=p): let ¢ = N/p; return W

A-rough(G := N, 7 :=p): let ¢ = N/p; return 1 iff p, ¢ are safe primes > 2!

Fig.2: A-rough group generator based on the signed quadratic residues of an RSA group [Piel9].

In Figure 1, we present the non-interactive version of Pietrzak’s argument [Piel9, BBF18], compiled from
the interactive one through the Fiat-Shamir heuristic. For simplicity, we assume T is a power of two, but the
protocol can be adjusted to handle arbitrary T" values, as mentioned in the original publication. The verifier
needs to perform O(log,(T)) small exponentiations in GG, whereas, as presented, the prover must compute
O(T) group squarings. However, if the prover has also solved the underling timelock puzzle (i.e. computed
h from G, T and g), and stored some relevant values during the computation, the proof can be completed
in O(V/T) squarings [Piel9, BBF18].

Pietrzak’s argument is complete in the following sense, which can be easily shown by induction on ¢. For
every G, g € G, T = 2! € N and 7 « Pietrzak.Prove(G, T, g, ¢ ), it holds Pietrzak.Verify(G, T, g, g** ,7) = 1.

Theorem 1 (Pietrzak’s Soundness). Let H : {0,1}* — {1,...,2*} be a random oracle. For every (un-
bounded) algorithm A making at most Q queries to H, and every \,T € N:

G is A-rough A gQT #%h < Q

P RN T) :
v |(G g, hm) e AT T) A Pietrzak.Verify(G, T, g, h,m) = 1] — 2*

Building A-rough groups. A possible way to build a A-rough group is to consider a composite-order
elliptic-curve whose order is A-rough. However, the group order would not be hidden in this case. A simple
alternative, suggested by Pietrzak [Piel9], is to work over the signed quadratic residues [FS97, HK09] of an
RSA group whose modulus is the product of two safe primes. More concretely, let N := p - ¢ for safe primes
p and ¢ and define:

QRy ={x € Zy : Ir € Zy.m* =y x} QR ={|z| €Z% : z € QRy} ,
where |z| denotes the absolute value of integer x, when the elements of Z% are represented as integers
in the range [—(N—1)/2,(N—1)/2]. QR} is a cyclic group of order p(N)/4 for group law o defined as
zoy = |z -y mod N|. Furthermore, membership of an element z in QR;{, can be efficiently tested by

checking that x € [1, (N —1)/2] and that = has Jacobi symbol 41. For group trapdoor 7 we can simply select
one of the two prime factors of N (see Figure 2).

3 Timed commitments

In this section, we present our new definition of timed commitments and their security properties.
Definition 4. A timed commitment scheme is a tuple of PPT algorithms:

« Setup(1*) — pp, on input the security parameter X, outputs some public parameters pp.



« Commit(1*, pp, T, m) — v, on input X, a time-bound T € N, a message m € {0,1}*, and some public
parameters, outputs a commitment .

» Open&Prove(T,v) — (m, ), on input a time-bound and a commitment, outputs a message (or L) and
a proof T.

* Verify(T,v,m,m) — 1/0, on input a time-bound, a commitment, a message/L, and a proof, outputs a
bit (1 representing acceptance and 0 representing rejection).

The Setup algorithm is optional, a construction that does not require such algorithm is called setup-free.
Algorithms Open&Prove (on its first output) and Verify are deterministic. Furthermore, algorithms Commit
and Verify run in time O(log T'), whereas Open&Prove has time complexity ©(T).

Valid commitments. We denote by Open(T, ) the first output of Open&Prove. Furthermore, we say that a
commitment ¢ is valid with respect to time-bound T if Open(T, ) # L. Otherwise, we say the commitment
is 4nvalid (with respect to T').

A timed commitment scheme is correct if any honestly generated commitment opens to the message that
was committed and if the verification of the proof produced by an honest execution of Open&Prove is always
successful.

Definition 5 (Correctness). A timed commitment scheme is correct if VA, T € N and all pp + Setup(1*):

1. for every m € {0,1}*, Pr [z/J + Commit(1*, pp, T, m); m’ < Open(T,v) : m = m’] =1,

2. for every (adversarially generated) commitment 1,

Pr [(m, ) + Open&Prove(T, ) : Verify(T,,m,n) =1] = 1.

A timed commitment scheme is sound if it is computationally unfeasible to produce false proofs of
opening, even if the adversary is allowed to choose the commitment and the wrong opening message.

Definition 6 (Soundness). A timed commitment scheme scheme is sound if for every PPT algorithm A,
and for every T € N, the following probability is negligible in A:

Pr [(w,m*, ) < AN, T) : Verify(T,p,m*, 7*) =1 A m* # Open(T,w)] )

Finally, a timed commitment scheme is sequential if it is unfeasible to reveal any information about the
committed message in less than the prescribed time T', even using parallelization.

Definition 7 (Sequentiality). A timed commitment scheme is (o, p)-sequential if for any pair of random-
ized algorithms Ay, running in total time O(poly(A\,T)), and Asg, running in parallel time o(T) on at most
p(T) parallel processors, and for any A, the following difference is negligible in A:

(mo, my, st) < A (1}, T) 1
Pr [ b+ {0,1}; pp < Setup(1?); o < Commit(1*,pp, T,mp) : b=10b"| — 3
b« As(st, )

where it is required that Ay produce two messages of the same length.



4 Constructions

In this section, we present two very simple an efficient timed commitment schemes, based on hidden order
groups, with different trade-offs. Our first construction does not require a setup phase, but it requires using
a rough-order subgroup of an RSA group. Our second construction can be instantiated over any group of
hidden order, but it requires a setup phase for every desired value of T

Both constructions are extensions of the timelock puzzles by Rivest et al. [RSW96] equipped with mech-
anisms for public verifiability (from VDF technology [BBBF18, Wes19, Piel9]). Consequently, sequentiality
in both constructions follows from the assumption that iterated squaring over the relevant group is a se-
quential problem and the security of the encryption scheme (which only needs to be 1-time CPA secure, see
Definition 2) and the security of the key derivation function.

4.1 First construction: a setup-free timed commitment

The main idea behind this scheme is that the party who commits chooses the group and will know the group
order. This allows them perform iterated squaring efficiently over the group. However, the group must be
A-rough (see Figure 2) to guarantee that Pietrzak’s argument is sound, even against parties who know the
group order. To ensure that the party who commits does not cheat and indeed chooses a group which is
A-rough, they are required to include a witness of the A-roughness of the group in the committed message.
A commitment will only be considered valid if its opened message indeed contains a witness that asserts the
A-roughness of the group.

Theorem 2. The timed commitment scheme from Figure 3 is correct and sound in the ROM.

Proof. Correctness can be checked by inspection. Soundness is a direct consequence of Lemmas 1 and 2
which, together, imply a stronger notion of soundness (against unbounded adversaries). a

Lemma 1. For every \,T € N, every m* # L, ¢ s.t. Open(T,v) # m*, and all 7*, Verify(T, v, m*, 7*) = 0.

Proof. Let 9 be (G, g,ct) and parse 7* as (h*,75). Since m* # L, if Verify(T, 1, m*, 7*) returns 1, then the
conditional in step 3 must be satisfied, thus Deckpr(s+)(ct) = (7| m*) with A-rough(G,7*) =1 and g € G.

Also, for Verify to return 1 in step 5, given that the group order is correct, it must hold ng = h*. Under
these conditions, it is clear that Open(T), ) will return m*, violating the Lemma precondition. a

Lemma 2. For every probabilistic (unbounded) algorithm A making at most Q queries to its random oracle*,
all \,T € N and every 1 s.t. Open(T, 1)) # L, Pr[r* + A(T, %) : Verify(T,, L, 7*) = 1] < Q/2*.

Proof. Let ¢ be (G, g, ct). Since Open(T, 1) # L, the Open&Prove algorithm from Figure 3 returned a value
in step 3, which implies that g € G and

DecKDF(ng)(ct) = (7] _) with A-rough(G,7) =1 . (1)
For Verify to return 1 when m = L, A must produce 7* := (h*, 75) such that:
Pietrzak.Verify(G, T, g, h*,7p) = 1 A Deckprn+)(ct) = (7% || ) with A-rough(G,7*) =0 .

Note that equation (1) implies that for the second clause in the above conjunction to hold, it must be
KDF(h*) # KDF(gQT). Assuming KDF is an injective function we have h* # g2T. However, in virtue of

Theorem 1, if h* # ng the probability that an adversary performing at most @ queries to the RO produces
7} such that Pietrzak.Verify(G, T, g, h*,7%) = 1, for a A\-rough group G (as ensured by (1)), is upper-bounded

by Q/2*. O



Commit(1*, T, m):

1: sample (G,7) + G(1*) and g + G > See Figure 2
2: set e == (27 mod order(G, 7)), compute® k := KDF(g*) and ct < Ency (7 || m)
3: return ¢ := (G, g, ct)

Open&Prove(T, vy := (G, g, ct)):

1: compute h = gQT, k :== KDF(h), and pt := Decg/(ct)

2: compute 7p < Pietrzak.Prove(G,T, g, h) and set 7 := (h,7p)

3: if L # pt = (7| m) and A-rough(G,7) =1 and g € G then return (m, )
4

: else return (L, 7)

Verify(T,v¢ = (G, g,ct),m, 7 :== (h,7p)):

1: compute k := KDF(h) and pt := Decy(ct)

2: if m # | then

3 if pt = (7 ||m’) with m’ = m and A-rough(G,7) = 1 and g € G then
4: let e := (27 mod order(G, 7)) and compute b’ == g°

5 return (A" = h)

6 else return 0

7: else return Pietrzak.Verify(G, T, g,h,7p) =1 and (pt # (7 || _) or A-rough(G,7) = 0) >m=_1

Fig. 3: Setup-free timed commitment scheme.

“ KDF is a key derivation function from G elements to the key space of Enc.

4.2 Second construction

The main idea behind our second construction (described Figure 4) is to use a group whose order is hidden
to everyone, even the party who commits. This construction is less limited than our previous one in the type
of group, as normal RSA groups or class groups can be used. Furthermore, this construction has the nice
property that the committer can create a proof of opening very efficiently.

In order for the commitment algorithm to be efficient, we will precompute a timelock puzzle-solution
pair (x,y) for the desire time bound T. We will also precompute a Pietrzak argument of the validity of the
pair. (In fact, we could use any VDF argument which is compatible with the iterated squaring function, e.g.
Wesolowski’s argument [Wes19], as in this case the group order is not known to anyone). Such pair can be
rerandomized as (z",y") for any r € N, leading to a new valid pair. (This technique has been previously
used in the literature). However, updating the VDF argument for the new rerandomized pair does not seem
possible. To resolve this problem, we will accept the validity of a puzzle-solution pair if it is “linked” to an
equivalent pair for which a valid VDF argument exists.

Theorem 3. The timed commitment scheme from Figure j is correct and sound.

4 The random oracle is involved in Pietrzak’s non-interactive argument.
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Setup(1?):

1: sample a group G of hidden order, using security parameter A
2: for a range of T; do

3: sample g; < G and compute h; := gQTi

4: generate 7r1\-/DF + VDF.Prove(G, T, gi, hi)

return (G, {g:, hi, 7" }:)

o

Commit(1*, pp := (G, {gs, hi, @/ }1), T, m):
1: Let (g, h, 7'°F) be the tuple in pp relative to T

2: sample r € N with enough entropy, e.g. uniformly in [1,2*], and compute (g%, h*) := (9", h")

3: compute ct <— Enckpr(p+)(m) and return ) := (G, g*, ct).

Open&Prove(T, v = (G, g*,ct)):
1: compute h* = g*ZT7 and mype  VDF.Prove(G, T, g", h*)

2: set m = Deckpr(p+)(ct) and 7 := (g, h™, mypg, 1)*

3: return (m, )

VerifY(T7 w = (G7 9*7 Ct)7 m, T = (97 h, TvoF, S))
1: return g* = g° A VDF.Verify(G,T, g, h,mvor) = 1 A Deckpr(ns)(ct) =m

Fig.4: Second construction of a timed commitment scheme.

¢ The chest creator can create a valid proof very efficiently (skipping the above VDF proving, by reusing the
existing precomputed proof) if they keep the randomness r used during the committing phase. Namely, they
can set ™ = (g, h, mvor, ), where (g, h, Tvor) is the tuple from pp relative to T

Proof. Correctness can be checked by inspection. Consider a PPT adversary A against the soundness of the
scheme. We build a PPT adversary B against the soundness of the underlying VDF argument. On input G
and T € N, B forwards them to .A, who will produce a triple (¢, m,n). B will then parse 7 as (g, h, mvpF, s)
and return (g, h, mypr). We argue that if A is successful, then B is successful (in their respective games).

Assume A is successful, i.e. it holds both that Verify(T, v, m, ) = 1 and m # Open(T, ©), or equivalently,
with ¢ = (G, g", ct), we have that g* = g° A VDF.Verify(G,T,g,h,mvpr) = 1 A Deckprns)(ct) = m and
m # DecKDF(g*ZT)(ct).

Now, assume for a moment that ng equals h. Given ¢g* = ¢g°, we would have g*2T = gS2T = (ng)S = h®.
Therefore, since Dec is deterministic, DecKDF(g*zT)(ct) = Deckpr(n+)(ct). But this is a contradiction since the
left-hand side of the previous equality is different from m, whereas the right-hand side equals m. Consequently,
we conclude that gQT and h are different, which combined with the fact that VDF .Verify(G, T, g, h, 7ype) = 1
imply that B is successful too, as desired. a
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