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Abstract. In a hybrid key establishment system, multiple independent
key establishment schemes are combined in a manner that also combines
their security properties. Such constructions can combine systems that
are secure in different settings and achieve the combined security of all
systems. For example, classical and post-quantum systems can be com-
bined in order to secure communication against current threats as well
as future quantum adversaries. This paper describes machine-checked
proofs of security for a commonly-used hybrid key establishment system
that concatenates the secrets produced by other key establishment sys-
tems. Practical interpretation of these results is also provided in order
to guide the use of this system in applications and standards.
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1 Introduction

Widespread methods of key establishment, such as elliptic curve Diffie-Hellman
(ECDH), are insecure against quantum adversaries that may exist in the fu-
ture. This quantum threat has motivated the development of key establishment
systems that are conjectured to be secure against quantum computers [7]. A
pressing concern is that encrypted communication could be recorded today, and
then decrypted in the future after quantum computers have been developed,
and this concern could be addressed by using quantum-secure key establishment
today. Ideally, these novel key establishment systems could be deployed along
with traditional systems in a way that ensures the same level of security against
classical adversaries.

A hybrid key establishment mechanism (KEM)[6] can be used to establish
keys that are secure against future quantum adversaries while retaining security
against classical adversaries. In a hybrid KEM, multiple KEMs are combined in
an attempt to produce a single KEM that has all of the security properties of all
component KEMs. For example, a hybrid KEM could combine a post-quantum
KEM with a KEM based on ECDH. A challenge in developing a hybrid KEM is
that one or more component KEM is allowed to be completely insecure against
some class of adversary, and it is necessary to ensure that the adversary cannot
leverage this insecurity to defeat the hybrid KEM.

This paper examines a hybrid KEM combiner that concatenates the secrets
provided by the component KEMs, and then gives this concatenated secret to a
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key derivation function (KDF). The simplicity of this combiner makes it appeal-
ing for use as a key establishment system in many applications, and it is used in
multiple significant cryptographic standards and draft standards as described in
Section 7. This paper contains two proofs that show the KEM constructed using
this combiner is secure in different settings. First, the KEM is proved secure ac-
cording to indistinguishability under chosen plaintext attack (IND-CPA) in the
standard model under the assumptions that an underlying KEM is IND-CPA
and the KDF is secure according to a typical KDF security definition. Second,
the KEM is proved secure according to indistinguishability under chosen cipher-
text attack (IND-CCA) when the KDF is modeled as a random oracle and one
underlying KEM is assumed to be one way against chosen ciphertext attack
(OW-CCA).

The security proofs in this work ensure that the hybrid KEM retains the
security of the underlying KEMs, and that the composition is secure if at least
one KEM is secure. All theorems include concrete bounds to provide insight
into the security of each hybrid KEM when deployed at scale. Many standards
only require IND-CPA security, and the fact that this construction is IND-CPA-
secure follows directly from the assumptions on the KDF and underlying KEMs.
The IND-CCA proof is slightly more complex, and it depends on additional
behavior of the combiner aside from the concatenation of secrets. In order to
rule out trivial proof errors, the proofs are mechanically checked by the Coq
proof assistant[8] using the Foundational Cryptography Framework[16].

2 Notation

In game definitions, ← indicates assignment of a value to a variable, and the

variant
$←− indicates an assignment after executing a probabilistic procedure. For

stateful procedures, (state ← ·) and (· ← state) indicates saving to and loading
from state, respectively. This notation also coerces a set into a procedure that

samples uniformly from the set. For example, x
$←− {0, 1}n samples uniformly

from the set of bit sequences of length n and stores the result in x. Some defini-
tions use sequences of values, and array notation is used to describe an element
of that sequence. For example, if k is a sequence of keys, then k[i] is the key at
position i in the sequence. Sequences are also constructed by assigning to each
position in the sequence like k[i] ← x and then using k to refer to the entire
sequence. Some algorithms may fail to produce a valid result, and the ⊥ function
is used in definitions to test the results for this failure. The symbol ⊥ is also used
to describe a constant value x for which ⊥(x) is true. The symbol || indicates
concatenation of bit strings.

3 Security and Correctness Definitions

3.1 Key Encapsulation Mechanisms

A key encapsulation mechanism is a tuple of algorithms (KGen,Enc,Dec).
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– KGen is a probabilistic key generation algorithm that produces a pair (sk, pk),
where sk is a secret key and pk is a public key.

– Enc is a probabilistic encapsulation algorithm that takes a public key pro-
duced by KGen. Enc produces a pair (k, c), where k is a shared secret and c
is a ciphertext encapsulating that key.

– Dec is a deterministic decapsulation algorithm that takes a secret key pro-
duced by KGen and a ciphertext produced by Enc. Dec produces the shared
secret k

A key encapsulation is carried out in practice between two parties, Alice
and Bob. Alice runs KGen to produce (sk, pk) and sends pk to Bob. Bob runs
Enc(pk) to produce (k, c) and sends c to Alice. Alice runs Dec(sk, c) to obtain k.
At the conclusion of this protocol, k is a shared secret known to both parties. To
prevent man-in-the-middle attacks, the values pk and c must be authenticated.

KEM Correctness In order for a KEM to be useful, the secret values returned
by Enc and Dec must be the same. For some KEMs, these values may be dif-
ferent, but only with small probability. The correctness error is defined as the
probability that these secret values differ.

Game Gcorrect
KEM

(sk, pk)
$←− KGen()

(k, c)
$←− Enc(pk)

if ⊥(k) return 0

k′ ← Dec(sk, c)

return k ̸= k′

Fig. 1: Correctness game

Definition 1 (KEM Correctness Error). Let KEM be a key encapsulation
mechanism, the correctness error of KEM is

CorKEM= Pr[Gcorrect
KEM = 1]

Indistinguishability under Chosen Plaintext Attack A KEM has no
plaintext, and therefore there is no adversarial choice of plaintext. The word
“plaintext” only appears in this definition due to the fact that it is derived
from similar definitions used for encryption. A KEM achieves indistinguishabil-
ity under chosen plaintext attack (IND-CPA) against adversary A if A cannot
distinguish the secret from a random secret, except with acceptably small prob-
ability. A accepts the secret along with all of the public information produced
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by the KEM, and it returns a bit that may encode the adversary’s decision
about whether the secret is real or random. In this and similar definitions, the
secret and public information given to A is called the challenge. This definition
is parameterized by a probability distribution S that is a source of good random
secrets.

Game G0ind-cpaKEM (A)

(·, pk) $←− KGen()

(k, c)
$←− Enc(pk)

if ⊥(k) return 0

return A(pk, c, k)

Game G1ind-cpaKEM,S (A)

(·, pk) $←− KGen()

(k, c)
$←− Enc(pk), k′ $←− S()

if ⊥(k) return 0

return A(pk, c, k′)

Fig. 2: IND-CPA games

Definition 2 (IND-CPA Advantage). Let KEM be a key encapsulation mech-
anism and A be an algorithm, then the advantage of A against IND-CPA of KEM
w.r.t. source S is

Advind-cpaKEM,S(A) =
∣∣∣ Pr[G0ind-cpaKEM (A) = 1

]
− Pr

[
G1ind-cpaKEM,S(A) = 1

] ∣∣∣
Indistinguishability under Chosen Ciphertext Attack Indistinguishabil-
ity under chosen ciphertext attack (IND-CCA) is identical to IND-CPA except
that the adversary is also given access to a Chosen Ciphertext Attack (CCA)
oracle that invokes Dec on any input ciphertexts except for the one associated
with the challenge.

Game G0ind-ccaKEM (A)

(sk, pk)
$←− KGen()

(k, c)
$←− Enc(pk)

if ⊥(k) return 0

return ADsk,c(pk, c, k)

Game G1ind-ccaKEM,S(A)

(sk, pk)
$←− KGen()

(k, c)
$←− Enc(pk), k′ $←− S()

if ⊥(k) return 0

return ADsk,c(pk, c, k′)

Fig. 3: IND-CCA games
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Oracle Ds̃k,c̃(c)

if c = c̃ return ⊥

return Dec(s̃k, c)

Fig. 4: CCA oracle

Game Gow-cca
KEM (A)

(sk, pk)
$←− KGen()

(k, c)
$←− Enc(pk)

if ⊥(k) return 0

s
$←− ADsk,c(pk, c)

if k ∈ s

return 1

else

return 0

Fig. 5: OW-CCA game

Definition 3 (IND-CCA Advantage). Let KEM be a key encapsulation mech-
anism and A be an algorithm, then the advantage of A against IND-CCA of
KEM w.r.t. source S is

Advind-ccaKEM,S(A) =
∣∣∣ Pr[G0ind-ccaKEM (A) = 1

]
− Pr

[
G1ind-ccaKEM,S(A) = 1

] ∣∣∣
One Way under Chosen Ciphertext Attack A KEM is one way under cho-
sen ciphertext attack (OW-CCA) against an adversary A if A can only produce
the resulting shared secret with acceptably small probability. In this definition,
A is given all of the public information produced by the KEM, and A also gets
access to the CCA oracle. The adversary produces a set of values and, they win
if the shared secret is in the set.

Definition 4 (OW-CCA Advantage). Let KEM be a key encapsulation mech-
anism and A be an algorithm, then the advantage of A against OW-CCA of KEM
is

Advow-cca
KEM (A) = Pr[Gow-cca

KEM (A) = 1]

3.2 Key Derivation Functions

A key derivation function (KDF) is a function on four arguments (s, r, c, ℓ),
where s is the input key material, r is salt, c is arbitrary information (a.k.a.
“info”) associated with the output key material, and ℓ is the desired output key
material length.
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Secure Key Derivation Function To prove IND-CPA security of the hybrid
KEM, we can use a weaker form of the secure key derivation function definition
from [13], in which the adversary is not given access to a KDF oracle. In this
definition, S is a source of input keying material that also produces auxiliary
public information, and Salt is a source of extractor salt. The definition is also
modified to allow the source S to fail to produce a value.

Game G0kdf-weak
KDF,Salt,S(A)

(s, a)
$←− S()

if ⊥(s) return 0

r
$←− Salt()

(c, ℓ)
$←− A(a, r)

o← KDF(s, r, c, ℓ)

return A′(o)

Game G1kdf-weak
KDF,Salt,S(A)

(s, a)
$←− S()

if ⊥(s) return 0

r
$←− Salt()

(c, ℓ)
$←− A(a, r)

o
$←− {0, 1}ℓ

return A′(o)

Fig. 6: KDF weak security games

Definition 5 (Weakly Secure KDF Advantage). Let KDF be a function,
S be a source of input key material, Salt be a source of salt, and A and A′ be a
pair of procedures comprising an adversary, then the advantage of this adversary
against weak security of KDF when extracting from S using Salt is

Advkdf-weak
KDF,S,Salt(A) =

∣∣∣ Pr[G0kdf-weak
KDF,S,Salt(A) = 1

]
− Pr

[
G1kdf-weak

KDF,S,Salt(A) = 1
] ∣∣∣

Key Derivation Functions as Random Oracles In one of the proofs in
this paper, the KDF is modeled as a random oracle. More precisely, the KDF
is modeled as a family of distinct random oracles for each length value ℓ, where
each random oracle takes a query tuple (s, r, c) and returns a random bit string
of length ℓ if the query is not entirely equal to a previous query value.

4 Hybrid KEMs and the Concatenation KDF Combiner

A hybrid key encapsulation mechanism is composed of key encapsulation mecha-
nisms KEMi for i ∈ {1 . . . n}. The components of KEMi are (KGeni,Enci,Deci).
The construction uses a combiner C that takes the information produced from
each KEM along with some context v and label l. The combiner produces a
shared secret of the desired length ℓ. If any routine from any KEM fails to pro-
duce a value, then the hybrid KEM fails. This definition of a hybrid KEM is
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only used to illustrate how a hybrid KEM is organized in practice, and proofs
use a more general definition that allows the adversary to have full control over
some of the KEMs.

KGen()

for i = 1 . . . n do

(sk[i], pk[i])
$←− KGeni()

return (sk, pk)

Fig. 7: Notional Hybrid KGen

Encv,l,ℓ(pk)

for i = 1 . . . n do

(k[i], c[i])
$←− Enci(pk[i])

if ⊥(k[i]) return ⊥
return (C(v, l, ℓ, k, pk, c), (pk, c))

Fig. 8: Notional Hybrid Enc

Decv,l,ℓ(sk, (pk, c))

for i = 1 . . . n do

k[i]← Deci(pk[i])

if ⊥(k[i]) return ⊥
return C(v, l, ℓ, k, pk, c)

Fig. 9: Notional Hybrid Dec

CtKDFf(v, l, ℓ, k, pk, c)

secret← k[1]∥k[2]∥ . . . ∥k[n]
v′ ← f(v, pk, c)

return KDF(secret, l, v′, ℓ)

Fig. 10: CtKDF combiner

The concatenation KDF combiner (CtKDF) produces an intermediate secret
by concatenating the shared secrets produced by the KEMs. This intermediate
secret is given to the KDF along with an info value that is produced by applying
the function f to all of the public information produced by the KEMs. The
function f is used to format the information so that it can be used as a KDF info
value, and the function will have different required properties in different proofs.
The output of the KDF is the shared secret produced by the hybrid KEM.

5 Security Proofs

The hybrid KEM using the CtKDF combiner is proved IND-CPA-secure in the
standard model and IND-CCA-secure in the random oracle model (ROM). These
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proofs use the more general hybrid KEM definition shown in Figures 11, 13, and
12. In this definition, there is one KEM at position s in the sequence of KEMs
that is ”strong” in the sense that we only make security/correctness assumptions
about this KEM. This KEM is composed of (KGens, Encs, Decs), and it executes
first. Then the adversary procedure Â gets the public outputs from this KEM
and produces all of the values from the other KEMs. Â also chooses the context
value that is given to the combiner, and Â is allowed to communicate freely with
A. The total number of KEMs, the position of the values from the strong KEM
in the sequences/concatenation, and the length of the secret produced by each
KEM are arbitrary but must be chosen before the game.

The hybrid KEM ciphertext includes the public key and ciphertext of the
strong KEM, as well as all secrets, public keys, ciphertext, and context infor-
mation chosen by Â. In the return statement of Figure 13, pk and c are the
combined sequences containing the strong values as well as values supplied by
Â. The hybrid ciphertext does not include the strong secret, so only the value k̂
is added to the ciphertext.

In the hybrid Dec construction in Figure 12, only the strong decapsulation
procedure Decs is used. The adversary chooses the other shared secret values
by including them in the hybrid ciphertext supplied to this procedure. This
organization is used to model a scenario in which the adversary has enough
control over the other Dec procedures that it can freely choose the ciphertext
values and the resulting shared secret values.

KGen()

(sks, pks)
$←− KGens()

return (sks, pks)

Fig. 11: Hybrid KGen

Decv,l,ℓ(sk, (pk, c, k, v))

k[s]← Decs(sk, c[s])

if ⊥(k) return ⊥
return C(v, l, ℓ, k, pk, c)

Fig. 12: Hybrid Dec

Encv,l,ℓ(pks)

(ks, cs)
$←− Encs(pks)

(k̂, p̂k, ĉ, v)
$←− Â(pks, cs)

for i = 1 . . . n do

if i = s

(k[i], pk[i], c[i])← (ks, pks, cs)

else

(k[i], pk[i], c[i])← (k̂[i], p̂k[i], ĉ[i])

if ⊥(k) return ⊥

return (C(v, l, ℓ, k, pk, c), (pk, c, k̂, v))

Fig. 13: Hybrid Enc
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5.1 CtKDF is IND-CCA in the Random Oracle Model

In the random oracle model, CtKDF is IND-CCA secure as long as at least one
KEM is correct and OW-CCA secure. In this setting, the KDF is modeled as a
random oracle O as described in Section 3.2. The secure KEM may not access the
random oracle, but both adversary procedures Â and A may access the random
oracle. This proof relies on the fact that the function f is an injection, so the
combiner includes the ciphertext value in the info value provided to the KDF. If
this value was not provided to the KDF, then the adversary could get past the
equality check in the CCA oracle by choosing a different ciphertext value, but a
set of secret values that match the ones it chose at the beginning of the game.

Theorem 1 (CtKDF IND-CCA Security in the Random Oracle Model).
For any injective function f and any adversary comprising procedures Â and A,
the advantage of this adversary against IND-CCA of CtKDF is

Advind-ccaCtKDFf,{0,1}ℓ(ÂO,AO,D) ≤ Advow-cca
KEMs

(BO,D,Â,A) + CorKEMs

where B is defined in Figure 14.

BO,D,Â,A(pks, cs)

(k̂, p̂k, ĉ, v)
$←− ÂO(pks, cs)

for i = 1 . . . n do

if i = s

(pk[i], c[i])← (pks, cs)

else

(pk[i], c[i])← (p̂k[i], ĉ[i])

letD′ = D̂D
pk,c,k̂,v in

okm
$←− {0, 1}ℓ

AO,D′
(pk, (pk, c, k̂, v), okm)

return S(Q(O))

Fig. 14: Constructed adversary
against OW-CCA in CtKDF ROM
security proof

Oracle D̂D
pk′,c′,k′,v′(pk, c, k, v)

if ((pk, c, k, v) = (pk′, c′, k′, v′)) return ⊥
k[s]← if c[s] = c′[s] then ω else D(c[s])
if ⊥(k) return ⊥
return O(k[1]∥k[2]∥ . . . ∥k[n], l, f(v, pk, c))

Fig. 15: Constructed CCA Oracle in CtKDF
ROM security proof

In Figure 14, Q(O) returns the sequence of queries that were made to the
random oracle over the course of the game. The S function takes this sequence
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and removes all information except for the strong secret values. Also in this
figure, D̂ is the CCA oracle constructed using D, and D′ is an instantiation of
this oracle on specific parameters produced by this game.

Figure 15 shows the oracle that is constructed from the CCA oracle and
given to this adversary. In this figure, ω is a special value that is used in place
of the secret produced by the strong KEM. The domain of the random oracle is
modified in the proof to allow the secret in position s to be either a bit string
or this special value ω. Also in this figure, l is a constant value defined by the
construction that is typically used as a label. The construction also defines an
output length value ℓ that does not appear in these figures due to the way the
random oracle is modeled.

The proof steps are summarized here, and the complete mechanized proof [15]
provides additional details.

1. The two IND-CCA games produce identical probability distributions unless
one of the adversary procedures queries the random oracle on the KDF
input tuple that is used to produce the strong secret output. The IND-CCA
advantage of the adversary against CtKDF is at most the probability of this
event b. Due to the equality test in the CCA oracle, this event can only occur
due to direct queries to the random oracle by the adversary. The remaining
proof steps are used to produce a bound on the probability of this event.

2. In the game that defines the probability of event b, the random oracle is
queried on a tuple associated with the challenge. This query can be removed
so that this tuple does not appear in the history of queries to the random
oracle. This game transformation does not change the probability distribu-
tion.

3. Continue transforming the game associated with event b and remove all calls
to Decs on the ciphertext value associated with the challenge cs. Instead of
calling Decs to produce the required value, use the secret value ks produced
by Encs when the challenge values were created. The distance between this
transformed game and the previous game is the correctness error of KEMs.

4. Transform the game so that it defines a new event b′, in which the random
oracle is queried on any value containing secret produced by Encs. This event
can occur when the adversary queries the random oracle directly, or when
it is produced by a call to Decs on some value other than the challenge
ciphertext cs. The probability of event b′ is greater than or equal to the
probability of event b in the previous game.

5. In the CCA oracle, use the value ω in place of ks when queried on the
challenge ciphertext cs. The probability of event b′ in this game is equivalent
to the probability of event b′ in the previous game.

6. After the last transformation, the game does not call Decs on the challenge
ciphertext cs, and it only uses the challenge secret ks to check its presence
in the history of random oracle queries. This game is equivalent to game
defining OW-CCA for KEMs against the constructed adversary described
previously.
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The game transformations in steps 3 and 5 above are the only ones that do
not produce identical probability distributions, so the terms associated with the
correctness and OW-CCA security of KEMs are the only terms in the bound.

5.2 CtKDF is IND-CPA in the Standard Model

In the standard model, CtKDF is IND-CPA-secure as long as at least one KEM
is IND-CPA-secure and the KDF is a weakly secure key derivation function for
the appropriate source of key material. This proof does not require the ciphertext
to be given to the KDF as info, so f can be any function.

Theorem 2 (CtKDF Security in the Standard Model). For any function
f and any adversary comprising procedures Â and A, the advantage of A against
IND-CPA of CtKDF is

Advind-cpa
CtKDFf,{0,1}ℓ(Â,A) ≤ Advind-cpaKEMs,K

(BÂ,A) + Advkdf-weak
KDF,K+(K)

(CA, C′A)

where B is defined in Figure 16, and C and C′ are defined in Figure 17. K is
the secure distribution of secrets associated with KEMs, and K+ is the derived
source of input keying material defined in Figure 18.

BÂ,A(pks, cs, ks)

(k̂, p̂k, ĉ, v)
$←− Â(pks, cs)

for i = 1 . . . n do

if i = s

(k[i], pk[i], c[i])← (ks, pks, cs)

else

(k[i], pk[i], c[i])← (k̂[i], p̂k[i], ĉ[i])

okm← CtKDFf(v, l, ℓ, k, pk, c)

return A(pk, c, okm)

Fig. 16: Constructed adversary against
IND-CPA in CtKDF standard model se-
curity proof

CA((pk, c, v), r)

state← (pk, c)

return (f(v, pk, c), ℓ)

C′A(okm)

(pk, c)← state

return A(pk, c, okm)

Fig. 17: Constructed adver-
sary against KDF weak se-
curity in CtKDF standard
model security proof

The constructed adversary accepts the salt value r from the KDF security
definition, but it does not examine it. In all definitions used in this proof, the
value ℓ is a global constant that determines the output key length.

The simple proof is summarized below.
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K+(K)

(·, pks)
$←− KGens()

(·, cs)
$←− Encs(pks)

k
$←− K

(k̂, p̂k, ĉ, v)
$←− Â(pks, cs)

for i = 1 . . . n do

if i = s

(k[i], pk[i], c[i])← (k, pks, cs)

else

(k[i], pk[i], c[i])← (k̂[i], p̂k[i], ĉ[i])

return (k[1]∥k[2]∥ . . . ∥k[n], (pk, c, v))

Fig. 18: Derived keying material source in CtKDF standard model secu-
rity proof

1. Beginning with G0ind-cpa, replace the secret produced by Encs with a random
value sampled from K. The distance between the transformed game and the
previous game is the IND-CPA advantage of constructed adversary B against
IND-CPA of KEMs.

2. Replace the output secret with a random value sampled from S. The dis-
tance between this game and the previous game is the weakly-secure KDF
advantage of constructed adversary C against KDF when extracting from
source K+(K).

Proof Mechanization The proofs in this paper are mechanized and checked
using the Foundational Cryptography Framework(FCF) [16], a computational
cryptography library for the Coq proof assistant. FCF includes a simple proba-
bilistic programming language along with a probability theory and program logic
that enables reasoning on programs in this language. The library also includes
reusable cryptographic definitions and arguments that were used in these proofs.

The proof is checked by Coq to ensure that it contains no errors. In partic-
ular, the mechanized proof rules out some classes of error that have troubled
cryptographic proofs in the past:

– All cryptographic assumptions are applied correctly. [12]

– All arguments and transformations are valid and are applied correctly. [10]
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6 Interpretation and Caveats

Inclusion of the Ciphertext in the KDF Info The IND-CCA proof relies
on the fact that the ciphertext is given to the KDF in the info parameter. One
could imagine a simpler construction in which only the concatenated secrets are
given to the KDF. This simpler construction would not be IND-CCA, because
the adversary could use its control over the other KEMs to produce a different
ciphertext that results in the same concatenated secrets. This ciphertext would
bypass the equality check in the CCA oracle, and then the adversary would learn
the output secret. This observation was also made for similar constructions in [11]
and [6].

Constructed Adversaries and Complexity Classes The results in Section
5 accept an arbitrary adversary comprising procedures A and Â, and the ad-
versaries that are constructed from these procedures in the reduction appear in
the theorem statements. These constructed adverary procedures define the class
of adversary against which security assumptions hold. For example, instead of
assuming that a KEM is IND-CPA secure against all probabilistic polynomial
time (PPT) adversaries in Theorem 2, we can inspect the constructed adversary
B and see that it is PPT if A is PPT.

Salting the Key Derivation Function The construction in this paper uses
a fixed label to salt the KDF. In practice, this label must be distinct from any
other label used with the KDF on the same secrets. Otherwise, an attacker can
leverage this other use of the KDF to obtain knowledge of the secrets.

The two parties may produce a random label through an authenticated ex-
change that occurs before the exchanges related to the KEM. By doing so, they
can ensure (with overwhelming probability) that the label is distinct from other
labels used with the KDF. Further, using a random label to salt the KDF would
allow the provable security of this construction to benefit from existing results
related to salted functions. In particular, the KDF could be assumed to be a
generic extractor, which is provably true in the case of HKDF [13].

Without salt, the standard model CtKDF security result of Theorem 2 relies
on the assumption that the KDF is a deterministic extractor for a particular
source in which a random bit string is combined with bits that are chosen ar-
bitrarily and independent of the random string. This assumption deserves some
scrutiny due to limitations [17] on deterministic extraction.

Strong KEM Random Oracle Access In the security proofs in the random
oracle model in Section 5, the strong KEM used in the hybrid constructions is
not allowed to query the random oracle. In practice, this KEM may use the same
function that is modeled as a random oracle, and the proof will still apply as
long as the KEM is given a distinct clone of the random oracle. For example,
the strong KEM could invoke the KDF using a distinct label.
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Classical Oracle Access In the IND-CCA proof, the reduction and all defi-
nitions are classical. This result implies security against a classical adversary as
well as security against a quantum adversary that only has classical access to
the CCA oracle and the random oracle. In practice, when this hybrid KEM is
implemented on a classical computer, it is reasonable to assume that a quantum
adversary only has classical access to the CCA oracle. A quantum adversary is
expected to have quantum access to the hash function, so we can only use this
result to conclude security against a quantum adversary if we assume that the
(classical) ROM is a reasonable model for a hash function implemented on a
quantum computer. The general lifting theorem of [18] does not apply because
the adversary can force the game to make a non-constant number of queries to
the random oracle.

Key Reuse IND-CPA security does not imply that the KEM result k is secret
when the values produced by KGen are reused in multiple protocol instances.
That is, a new sk value must be produced for each protocol instance, and it
must be discarded after the shared secret is produced. The IND-CCA security
proof implies that private keys produced by KGen can be saved and reused across
multiple sessions. Though there are two important caveats associated with this
implication:

– This proof requires the KDF to be modeled as a random oracle. In contrast,
the IND-CPA proof uses a relatively weak assumption about the KDF.

– Issues related to forward secrecy and compromise of the reused key are out-
side the scope of this paper. In practice, key reuse should be avoided in order
to provide forward secrecy.

7 Standards

The construction in this paper is modeled after similar constructions in inter-
national standards, and the security of these standards can be derived from the
results in Section 5 and additional assumptions.

7.1 ETSI

The CtKDF construction in ETSI TS 103 744 [1] is a specialization of the one
defined in Section 4. The ETSI CtKDF uses HKDF, which is modeled as a
random oracle in Theorem 1 and assumed to be a weakly secure KDF for a
particular source of key material in Theorem 2.

The IND-CPA theorem requires no additional assumptions on the behavior
of the formatting function f. ETSI TS 103 744 describes a formatting function
that concatenates the values including their lengths, and then hashes the result
to produce the info value for the KDF. The part leading up to (but not including)
the hash function invocation is injective and can be viewed as the function f in
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the IND-CCA proof. We can view the hash function invocation as part of the
random oracle.

The hybrid KEM in this standard also accepts a pre-shared key which is
included in the concatenation along with the other secrets. The definition of the
hybrid Enc procedure in Figure 13 allows the adversary procedure Â to produce
values that will be used as these pre-shared keys. So the proofs in this paper also
apply to this standardized hybrid KEM when arbitrarily bad pre-shared keys are
used along with at least one good KEM. The proofs in Section 5 do not imply
that the hybrid KEM is secure when only the pre-shared key is strong, but facts
of this sort could be proved using arguments that are similar to the ones in this
section.

7.2 NIST

NIST SP 800-56C Rev. 2 [4] allows hybrid shared secrets that are produced by
contatenating a “standard” shared secret Z with an arbitrary secret T to produce
Z ′ = Z∥T . The“standard” secret is placed first in the concatentation, and the
rest of the concatenation can contain an arbitrary number of additional secrets.
The CtKDF combiner described in this paper complies with this NIST standard
if all of the following are true:

– The first shared secret in the concatenation is produced by an approved key
establishment scheme as specified in NIST SP 800-56A and SP 800-56B.

– The KDF is an approved “Two-Step” KDF as specified in NIST SP 800-56C.

NIST SP 800-56C Rev. 2 does not place strict requirements on the infor-
mation that is provided as info to the KDF. This information may be produced
using an injective function f that binds the resulting secret to the public keys and
ciphertexts, in which case the IND-CCA proof applies. The variant of CtKDF
used in this standard is IND-CPA regardless of the properties of the formatting
function f.

7.3 IETF

Internet draft draft-stebila-tls-hybrid-design [2] describes how to incorporate
post-quantum KEMs in TLS 1.3 via a hybrid construction that uses concate-
nation. This construction is used to produce the TLS handshake secret. It is
a special case of CtKDF, so it is IND-CPA according to the proof in Section
5. TLS 1.3 invokes HKDF multiple times using different info values to produce
different secrets. The info provided to HKDF includes a hash of all of the hand-
shake messages that were exchanged, and these handshake messages include all
of the KEM public keys and ciphertexts. If we view this hash function invocation
as part of the random oracle, this construction is also IND-CCA according to
the proof in Section 5. In order to apply this result to TLS 1.3, choose one of
the secrets (e.g. the traffic secret) as the challenge value that is produced by the
game, and the CCA oracle can be used to produce the other secrets by using
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different info values. The adversary cannot distinguish the chosen secret from a
random value, even with knowledge of the other secrets and anything else that
can be learned from the CCA oracle. Since the choice of secret is arbitrary, this
security result applies to all secrets produced using HKDF in TLS 1.3.

Internet draft draft-kampanakis-curdle-ssh-pq-ke [3] uses concatenation of
secrets to incorporate a post-quantum KEM into SSH. SSH produces keys and
IVs by hashing a concatenation of values: HASH(K || H || X || session_id),
where X varies according to the purpose of the derived material. When a hyrbid
KEM is desired, K is the concatenation of two secrets produced by two KEMs,
and the public keys and ciphertexts are incorporated into the hash H. Applying
the proofs in this paper to this draft standard is less direct due to the use of the
bare hash function, and due to the lack of intermediate steps in the construction
that produce secrets. In order to apply the IND-CPA result, we can view the
entire set of calls to the hash function as a single invocation of a secure KDF
that produces multiple secrets. To apply the IND-CCA result, we can view each
each secret independently, and allow other secrets for the same sessions to be
produced using the CCA oracle. The hash function is modeled as a random
oracle, and the construction is IND-CCA secure as long as the Dec oracle only
accepts values of H, X, and session_id of a fixed length that is chosen at the
beginning of the game. In practice, the lengths of these values must be fixed for
the lifetime of the secrets, and the implementation must reject any value of the
wrong length.

8 Related Work

Hybrid KEM combiners have been studied previously. The standards described
in this paper could also be modeled using the dualPRF combiner of [6] or the
split-key PRF combiner of [11]. Compared to those models, the model used in
this paper is slightly less abstract, as it explicitly describes the concatenation
operation and the related requirements on the concatenated values. This paper
also contributes machine-checked proofs and an explanation of how these proofs
apply to various (draft) standards.

Machine-checked proofs of security have been previously developed in order
to ensure proofs are valid and to increase trust in the security of cryptographic
constructions. For example, SHA-3 was proved to be indifferentiable from a ran-
dom oracle using EasyCrypt [5], the TLS record layer was proved correct using
F* [9], and the WireGuard protocol was proved secure using CryptoVerif [14].
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