
SALSA VERDE: a machine learning attack on Learning With
Errors with sparse small secrets

Cathy Yuanchen Li
FAIR, Meta

Emily Wenger
The University of Chicago

Zeyuan Allen-Zhu
FAIR, Meta

Francois Charton∗

FAIR, Meta
Kristin Lauter∗

FAIR, Meta

Abstract

Learning with Errors (LWE) is a hard math problem used in post-quantum cryp-
tography. Homomorphic Encryption (HE) schemes rely on the hardness of the
LWE problem for their security, and two LWE-based cryptosystems were recently
standardized by NIST for digital signatures and key exchange (KEM). Thus, it is
critical to continue assessing the security of LWE and specific parameter choices.
For example, HE uses secrets with small entries, and the HE community has con-
sidered standardizing small sparse secrets to improve efficiency and functionality.
However, prior work, SALSA and PICANTE, showed that ML attacks can recover
sparse binary secrets. Building on these, we propose VERDE, an improved ML
attack that can recover sparse binary, ternary, and narrow Gaussian secrets. Using
improved preprocessing and secret recovery techniques, VERDE can attack LWE
with larger dimensions (n = 512) and smaller moduli (log2 q = 12 for n = 256),
using less time and power. We propose novel architectures for scaling. Finally, we
develop a theory that explains the success of ML LWE attacks.

1 Introduction

Language models have been successfully applied to numerous practical science problems in recent
years. For example, transformers [57] have been used to solve problems in mathematics [40, 24],
theoretical physics [26], chemistry [50], and biology [46]. In this paper, we present an application
of transformers to computer security: the cryptanalysis of Learning With Errors (LWE) [45], a hard
math problem underpinning leading proposals for post-quantum public key cryptography.

Public-key cryptosystems are the main solution for secure communication over the Internet. Public
keys can be used to encode messages or verify digital signatures to or from a user with the correspond-
ing private key. Security relies on the fact that recovering the private key from the public data requires
solving a computationally hard math problem. Most currently deployed public-key systems are
based on RSA [47], which relies on the hardness of factoring large numbers into products of primes.
Unfortunately, large-scale quantum computers will enable implementation of Shor’s algorithm [52],
which can factor integers in quantum polynomial time and break such systems. As a result, new hard
problems are sought to serve as the basis of post-quantum public key cryptography (PQC). The US
National Institute of Standards and Technology (NIST) ran a 5 year competition to define future PQC
standards [2], and standardized 4 PQC systems in July 2022 [17]. Two of these rely on special cases
of the same hard (and Shor-free) problem: Learning with Errors (LWE).

The Learning With Errors problem (LWE) assumes that it is hard to recover a secret vector s,
given many LWE samples (a, b). In a LWE sample, each a is a random vector of n integers modulo
q (n is the dimension and q is the modulus), and b is a noisy modular inner product of a and the
secret key s—that is, b = a · s + e mod q, with the error e drawn from a Gaussian distribution of

∗Co-senior authors

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

width σe centered at 0, e ∼ N(0, σ2
e) and σe ≪ q. The hardness of LWE is related to the hardness of

well-known lattice problems such as the (approximate) Shortest Vector Problem (SVP).

Most classical attacks on LWE rely on lattice reduction [41, 49, 19]. For example, given m samples
(ai, bi), create a matrix Am×n whose m rows are the vectors ai. The unique shortest vector problem
(uSVP) attack recovers the secret s by finding the shortest vector in a lattice constructed from b, the
columns of Am×n, and other parameters. The best known algorithms for solving SVP run in time
exponential in the dimension n. Somewhat counter-intuitively, the smaller the modulus q, the harder
the LWE problem. Approximate solutions can be computed in polynomial time with LLL [41], but
the approximation factor is exponentially bad (exponential in n). We compare our results with uSVP
attacks on LWE in §A.7.

Machine learning (ML) attacks on LWE. SALSA [58], the seminal ML attack on LWE, uses a large
collection of LWE samples {(a, b)} with the same secret s to train a transformer [57] that predicts b
from a. SALSA presents methods for secret recovery via queries to the trained model, and observes
that high model accuracy is not needed: secrets are recovered as soon as the transformer starts to
learn (training loss drops). SALSA is a proof of concept, recovering binary secrets with 3 or 4 nonzero
bits for problems with dimension up to 128, small instances of LWE solvable via exhaustive search.

PICANTE builds on an observation from SALSA ([58, Table 4]): transformers trained on LWE
samples {(a, b)}, with entries of a drawn from a restricted range instead of all of [0, q), can recover
binary secrets with larger Hamming weights h (number of nonzero bits). So PICANTE introduces
a data preprocessing phase during which the LWE samples (a, b) are processed by BKZ, a lattice
reduction algorithm, to obtain LWE samples with the same secret but smaller coordinate variance
(and larger error, see §2). In addition to training the transformer on the preprocessed samples,
PICANTE reduces the number of LWE samples required for the attack from 4 million in SALSA to 4n
(e.g. 1400 for n = 350), and improves secret recovery. Overall, PICANTE can recover binary secrets
for dimensions up to 350 and Hamming weight up to 60. This is a considerable improvement over
SALSA, faster than the uSVP attacks we compare against, and out of reach for exhaustive search.

PICANTE has several limitations. First, it only recovers sparse binary secrets, an important but
limited subclass of LWE. Homomorphic encryption (HE) may use binary secrets, but HE and other
PQC schemes typically use ternary (si ∈ {−1, 0, 1}) or small (|si| < k, k small) secrets. Second,
PICANTE’s preprocessing is costly as dimension increases, making it difficult to scale PICANTE to
dimensions larger than 350. For n = 512, log2 q = 45, PICANTE’s preprocessing approach could
not finish in a month with full parallelization. Third, PICANTE only experiments with large modulus
q: log2 q = 23 for n = 256, log2 q = 27 for n = 300, and log2 q = 32 for n = 350. Practical
LWE-based systems use small q: LIZARD [21] recommends log2 q = 10 for n = 608 with sparse
binary secrets, and the HE standard [4] recommends log2 q = 25 for n = 1024 with ternary secrets.

Our work, SALSA VERDE, improves on PICANTE and makes the following contributions:

• We introduce a two-bit distinguisher, a new secret recovery technique for sparse binary, ternary
and small Gaussian secrets. VERDE fully recovers binary and ternary secrets equally well (§3).

• We improve data preprocessing techniques, making them forty times faster and 20% more
effective, enabling recovery of binary, ternary and small Gaussian secrets for dimension 512 (§4).

• We decrease the modulus q, showing VERDE outperforming uSVP attacks (§5 and §A.7).
• We propose NoMod, a framework for understanding the success of ML-based LWE attacks (§5).
• We present a theoretical analysis to show heuristically that successful secret recovery depends

only on
√
h and the standard deviation of the distribution of the LWE data (§6).

• We experiment with encoder-only models and compare their success with seq2seq models (§7).

Key results. Our main finding is that small, sparse LWE secrets are weak. For dimension n = 256,
we can recover binary and ternary secrets with 10% sparsity (h/n) for log2 q = 20, and with 3%
sparsity when log2 q = 12 (Table 1). For n = 512, log2 q = 41, we recover binary and ternary
secrets with ≥ 11% sparsity. Furthermore, VERDE scales well to higher dimensions for small sparse
secret recovery. Training VERDE models on n = 256/350/512 problems takes only 1.5/1.6/2.5 hours
per epoch, a small proportional increase compared to the increase in n. Also, we find that VERDE
runs faster than uSVP attacks, at the expense of using more compute resources in parallel (see A.7).

In Table 1, we report the timings for successful secret recoveries, for binary/ternary/Gaussian secrets,
with varying n and logq . The table records the highest h recovered for each column: for binary secrets,

2

h is the Hamming weight, and for ternary and Gaussian secrets, h is the number of non-zero entries.
We record the amount of time needed for each stage of the attack, preprocessing (in hours/CPU,
assuming full parallelization), model training (hours/epoch · (# epochs)), and total attack time. For
full parallelization, the number of CPU cores required is 4 million divided by 2n. Source code and
parameters to reproduce our main experiments are included in the supplementary material. The full
code base will be open-sourced.

Table 1. VERDE attack times (preprocessing, model training, and total), for dimension n and log2 q.
h = # non-zero entries in recovered secrets, b = binary, t = ternary, g = Gaussian secret distributions.
(n, log2 q) (256, 12) (256, 20) (350, 21) (350, 27) (512, 41)

secret distribution b t g b t g b t g b t g b t g
highest h 8 9 5 33 24 7 12 13 5 36 36 10 63 58 16

preprocessing (hrs/CPU) 1.5 1.5 1.5 7.5 7.5 7.5 16 16 16 216 216 216 840 840 840
training time (hrs) 1.5 3 12 3 7.5 1.5 1.6 25.6 1.6 1.6 17.6 3.2 17.5 27.5 2.5
total time (hrs) 3 4.5 13.5 10.5 15 9 17.6 41.6 17.6 218 234 220 858 868 843

Scope of results. Instances of cryptographic problems like LWE can be broadly categorized as
easy (solvable via exhaustive search), medium-to-hard (requiring significant resources to solve), or
standardized (believed secure). VERDE attacks medium-to-hard LWE problems (parameterized by
dimension n, Hamming weight h, modulus q). VERDE does not attack toy problems (like SALSA
did), nor does it attack the NIST standard directly. Rather, VERDE demonstrates successful attacks
on medium-to-hard LWE problems using tools from AI, improving our understanding of the security
of proposed LWE-based cryptosystems.

2 SALSA VERDE Overview
In this section we describe the SALSA VERDE attack and relevant parts of its predecessor PICANTE.

If
 use 2-bit distinguisher

Data preparation Model training Secret recovery

Reduce
with BKZ

Distinguisher

4n LWE
samples

Train transformer on
BKZ-reduced samples

4 Run secret recovery
on trained model

5

After each
epoch

If , stop;
else, keep training

Resample to
matrices

1 2 3

..
.

make

or

RBKZAi (RA, Rb)

Rb = R(A s + e)
i i

Figure 1. Overview of VERDE’s attack methodology

High-level overview. Like PICANTE, VERDE starts with 4n LWE samples with the same secret s.
In practice, this data would be eavesdropped. VERDE then proceeds in three stages: preprocessing,
model training and secret recovery (see Figure 1). The preprocessing stage augments the 4n initial
(a, b) pairs to 2 million, then runs lattice reduction to yield a training set of 4 million samples with
the same secret s. The preprocessed data is used to train a transformer to predict b from a. After
each training epoch (2 million LWE samples), the model is queried to form a secret guess. The attack
succeeds if the secret guess is correct, tested via statistical methods without knowledge of the actual
secret. Otherwise, the model is trained for another epoch, and secret recovery is run again.

Data preprocessing. VERDE’s preprocessing is similar to PICANTE’s, with several improvements.
First, we create n×n matrices Ai by sampling without replacement n of the 4n original LWE samples.
Then, we apply lattice reduction to the matrices Ai to reduce the standard deviation of their entries
(initially uniformly distributed over [0, q)). This process generates 2n preprocessed samples (a′, b′),
with the same secret and is implemented in parallel to create a training set of 4 million samples.

During lattice reduction, PICANTE applies BKZ (as implemented in fplll [27]) to the 2n× 2n matrix:

Λi =

[
ω · In Ai

0 q · In

]
. BKZ finds a linear transformation [Ri Ci] such that the norms of the 2n

rows of [Ri Ci]Λi = [ω ·Ri RiAi + q ·Ci] are small. Applying Ri to Ai and bi, PICANTE
generates 2n reduced LWE pairs (RiAi,Ribi) (modulo q). VERDE instead rearranges the rows of

Λi and applies lattice reduction to Λ′
i =

[
0 q · In

ω · In Ai

]
. This reduces the number of operations

needed for lattice reduction and allows BKZ to run with lower floating point precision. These two
improvements cut the preprocessing time significantly.

3

They also result in smaller Ri norms (smaller error in Ribi), which can be leveraged to further
reduce the norm of RiAi + q ·Ci by using a lower ω parameter (ω = 10) than PICANTE (ω = 15).
Finally, VERDE replaces BKZ with two interleaved algorithms (BKZ 2.0 [19] and the efficient
reduction technique introduced in [15]), adaptively increases the blocksize and precision as reduction
progresses, and introduces a stopping condition. For instance, for n = 256 and log2 q = 20, VERDE’s
preprocessing is 45× faster, while improving the quality of the reduction by 20% (Table 2).

Table 2. Impact of successive improvements to preprocessing. n = 256, log2 q = 20. Reduction factor of
the standard deviation of entries of Ai: lower is better. Time: # of hours to preprocess one matrix on one CPU.

preprocessing technique reduction factor time (hrs/CPU)

PICANTE 0.53 338
+ reordered Λi rows 0.47 136
+ reduced floating point precision 0.47 24
+ reduced parameter ω from 15 to 10 0.43 38

VERDE (+ interleaved reduction, adaptive blocksize, early stopping) 0.43 7.5

Quality of reduction is measured by the standard deviation of the entries of Ai. Preprocessing time
in Table 2 is the hours needed to process one matrix on a single CPU. We list the time for all n, q
attempted in Tables 5 and 19. For each dimension n and modulus q, we process 2 million/n matrices
in parallel across hundreds of CPUs, see §A.1 for details. Better preprocessing allows VERDE to
scale to larger dimensions and retrieve secrets with larger h.

Transformer training. The 4 million reduced LWE pairs are used to train a transformer to predict b
from a. The values b and the coordinates of a are integers in [0, q). They are represented in base
B = ⌈q/8⌉ (for log2 q > 30, B = ⌈q/16⌉) and encoded as sequences of two tokens over a vocabulary
of 2, 000 (see §A.1 for a discussion of these choices). Model training is framed as a translation task,
from a sequence of 2n tokens representing a to a sequence of 2 tokens representing b (see [40, 12]
for similar uses of transformers for mathematical calculations). The model is trained to minimize the
cross-entropy between model prediction and the sequence of tokens representing b, using the Adam
optimizer with warmup [39] and a learning rate of 10−5. For n = 256, 350 and 512, each epoch uses
2 million LWE samples and runs for 1.5, 1.6, or 2.5 hours. Time/epoch doesn’t vary with q or secret
type. Our models train on one NVIDIA V100 32GB GPU and often succeed in the first epoch for low
h. Number of epochs required are included in many tables throughout, including Tables 3 and 4.

VERDE uses the same architecture as PICANTE: a sequence to sequence (seq2seq) transformer [57],
with a one-layer encoder (dimension 1024, 4 attention heads), and a 9-layer decoder (dimension 512,
4 heads). The last 8 layers of the decoder are shared (i.e. they form a Universal Transformer [25]).
Iteration through shared loops is controlled by the copy-gate mechanism introduced in [22].

Seq2seq models allow output sequences to be longer than inputs, a useful feature for machine
translation but not necessary in our setting. For comparison, we also implement a simpler encoder-
only transformer, that is 4-layer BERT-like (dimension 512, 4 heads), together with rotary word
embeddings (analogous to the rotary position embeddings [55]) to account for the modular nature of
the problem. On top of this, we also add an earth mover’s distance (EMD) auxiliary objective. We
compare this model’s performance to that of the seq2seq model (§7).

Secret recovery. Secret recovery runs after each epoch (2 million LWE samples). PICANTE used
three recovery methods: direct recovery, cross-attention and distinguisher. Direct recovery struggles
as dimension increases, because it relies on accurate model evaluations at special a values which are
out of distribution for the training set. Cross-attention is incompatible with encoder-only architectures
and is consistently outperformed by the distinguisher on VERDE-preprocessed data. Thus, VERDE
only uses the distinguisher, which works as follows: for any test vector atest and random K, if the
i-th entry of the secret si is zero, then (atest +Kei) · s = atest · s (where ei is the i-th standard basis
vector). Therefore, for each i, the distinguisher computes the difference between model predictions
on atest and atest +Kei for different atest. If differences are small, the corresponding si is likely zero.
For ternary and Gaussian secrets, the distinguisher is modified (see §3).

For successful secret recovery, the trained model must generalize well to {atest}, the vectors used
for testing. In PICANTE, the distinguisher runs on random atest, with coordinates uniform in [0, q).
However, the model is trained on preprocessed atrain, with a non-uniform coordinate distribution. So
PICANTE’s distinguisher recovery requires that the model generalize outside its training distribution.

4

This is known to be a difficult ML task. Instead, VERDE runs the distinguisher on a held-out subset
of 128 preprocessed vectors atest. Since the test vectors have the same distribution as the training set,
the trained model only needs to generalize in-distribution, a much easier task. This change in atest
improves the performance of the distinguisher (see Table 14 in §A.4).

In practice, for each secret coordinate, the distinguisher computes the sum of the absolute difference
between model predictions at atest and atest+Kei, for 128 vectors atest and a random K ∈ (0.3q, 0.7q)
for each atest. The model makes a secret prediction s′ by setting the bits to 1 on the h coordinates
with the largest sums, and verifies s′ by computing a · s′ − b on the original 4n LWE samples. If the
secret is correctly predicted, this quantity should always be small. The statistical properties of this
test are discussed in section A.2 of [42]. Having discussed VERDE’s background and described its
methodology, we now present VERDE’s key results, as summarized in §1. We begin with results on
ternary and narrow Gaussian secrets.

3 Secret Distributions

One of VERDE’s major contributions is a method to recover secrets from sparse ternary and narrow
Gaussian distributions, both of which are being considered for use in real-world cryptosystems [4].
Prior ML-based LWE attacks (PICANTE and SALSA) only recovered sparse binary secrets. Here, we
describe VERDE’s method for recovering these more general secret distributions, and its performance
on ternary and small Gaussian secrets for fixed dimension n = 256 and log2 q = 20. Throughout this
paper, h denotes the number of nonzero entries in a secret, which is equal to the Hamming weight in
the binary case. We define secret sparsity as the percentage of nonzero secret entries h/n.

Recovering ternary and small Gaussian secrets. In lattice-based cryptography, ternary secrets are
vectors s of dimension n, with entries equal to 0, 1, or −1 (with equal probability of 1 and −1 in
sparse secrets). Gaussian secrets are vectors s of dimension n, with entries drawn from a Gaussian
distribution with small standard deviation σ. In this paper, we use σ = 3. The Homomorphic
Encryption Standard [4] includes secure parameter choices for Gaussian secrets with σ = 3.2.

Ternary and Gaussian secrets introduce new challenges for ML-based attacks on LWE. The recovery
methods in PICANTE distinguish zero from nonzero bits. In the binary case, this produces one
guess sguess, which can be verified by checking that b−a · sguess is small. In the ternary case, PICANTE

would produce 2h secret guesses (about 12h guesses for Gaussian secrets), due to the additional −1
entries, and verification becomes very expensive as h increases. VERDE recovers ternary secrets
using a two-step approach: first, partial recovery distinguishes zero from nonzero entries, then full
recovery guesses the sign of the nonzero bits.

Partial recovery. To identify nonzero bits, VERDE uses the binary secret distinguisher from §2
(after [42, Section 4.3]). For each secret bit, it computes a score from a sample of reduced LWE pairs.
The h bits with the highest scores are candidate nonzero bits. VERDE assumes h is not known and
runs the next step for all reasonable possible values of h, e.g. from 1 to n/20. Partial recovery alone
is a major contribution, as we are not aware of existing attacks that can identify nonzero secret bits.

Full recovery (ternary secrets). To determine whether nonzero bits of a ternary secret are 1 or −1,
VERDE introduces a novel two-bit distinguisher, leveraging the following observation. If two nonzero
secret bits si and sj are equal, then for any a, exchanging the coordinates ai and aj will result in
the same b, and corresponding model predictions will be close. Otherwise, model predictions will
be different (if si ̸= sj). Similarly, if si = sj , for any a and c ̸= 0, changing ai → ai + c and
aj → aj − c yields the same b, and close model predictions. The two-bit distinguisher uses these
techniques to compare each nonzero bit with all others, therefore defining two classes of nonzero bits.
Letting one class of bits be 1 or −1, VERDE produces two secret guesses to be verified.

Full recovery (Gaussian secrets). At present, we implemented full recovery only for binary and
ternary secrets. However, full recovery of small Gaussian secrets is possible via the following
adaptation of the two-bit distinguisher. The two-bit distinguisher groups nonzero secret bits into k
classes believed to have the same value. In our case, the nonzero bits follow a Gaussian distribution
with σ = 3, so we may safely assume that all non-zero secret bits are in [−9, 9] (within 3 standard
deviations) – i.e. k = 18. Since the secret is Gaussian, we expect the largest classes to correspond
to the values −1 and 1, followed by −2 and 2, and so on. Therefore, we can intelligently assign
values to classes based on class size, and test the corresponding 2k/2 = 512 secrets. We leave

5

implementation of this as future work and report the performance of partial Gaussian secret recovery,
using knowledge of s to validate correctness.

Table 3. Partial and full ternary secret recovery. n = 256, log2 q = 20. Epoch when secret is recovered.

h 5 10 15 20 21 22 23 24 25

partial recovery 8/10 6/10 6/10 2/10 3/10 2/10 1/10 3/10 1/10
training epoch 0,0,0,0,0,0,1,7 0,0,1,1,1,1 0,0,0,1,2,8 0,2 0,1,3 2,5 9 0,4,7 2

full recovery 8/10 6/10 5/10 1/10 3/10 2/10 0/10 1/10 0/10
training epoch 0,0,0,0,0,0,1,7 1,2,2,6,7,8 1,1,6,9,11 5 4,10,17 8,22 5,12

Table 4. Partial Gaussian secret recovery. n = 350, log2 q = 27. Epoch when secret is recovered.

h 4 5 6 7 8 9 10

partial recovery 8/10 8/10 7/10 5/10 2/10 2/10 4/10
training epoch 0,0,0,0,1,1,1,1 0,0,0,1,2,3,3,7 0,0,1,2,2,5,10 2,2,3,7,10 0,2 1,9 1,5,6,12

Figure 2. Best h recovered vs. log2 q and
secret distribution. n = 256.

VERDE’s performance across secret distributions.
VERDE recovers ternary secrets with sparsity up to 10%,
with comparable performance on binary secrets. Table 3
provides details on partial and full ternary secret recovery
for n = 256 and log2 q = 20 and h = 5 − −25. For
low values of h (h < 20), ternary secrets are partially
recovered early during training (i.e. mostly in epoch 0 or
1, during the first pass on preprocessed data), and usually
fully recovered in the same epoch or shortly after. As h
increases, more training is required for recovery, and the
delay between partial and full recovery increases.

For small Gaussian secrets, VERDE only implements par-
tial recovery (recovery of the nonzero bits). Table 4 presents results for n = 350 and log2 q = 27.
Recovered h are lower than in the binary case, and models require less training for low h.

Figure 2 compares VERDE’s performance across secret distributions for problems with n = 256 and
different moduli q. For each setting, we run 100 recovery experiments and report the highest h secret
recovered in those attempts. Recovery is comparable for binary and ternary secrets. Small Gaussian
secrets are significantly harder.

4 Large Dimension

The hardness of LWE increases as n grows. PICANTE recovered sparse binary secrets for dimension
up to n = 350. VERDE pushes this limit to n = 512, for sparse binary, ternary, and narrow Gaussian
secrets. For n = 512 and log2 q = 41, VERDE recovers binary and ternary secrets with sparsity up to
0.12 (highest h = 63, 60) and Gaussian secrets with h up to 16. The longer VERDE’s preprocessing
step runs, the higher h secrets it can recover. Recall that real-world schemes like LIZARD operate in
dimension n = 608 [21] and HE in dimension n = 1024 [4]. Those systems use significantly smaller
q where LWE is harder: log2 q = 10 and 27, respectively, compared to VERDE’s log2 q = 41.

VERDE’s performance in large dimension. Table 5 shows VERDE’s performance for dimension
n = 512, after 7 to 35 days of preprocessing, on the same set of matrices Ai. For each preprocessing
time, we measure the quality of lattice reduction via a “reduction factor,” computed by taking the ratio
of the standard deviation of reduced Ai entries to the standard deviation of a random matrix with
uniform coefficients 0 ≤ ai < q, i.e. stddev(Abkz)

stddev(Arand)
, with stddev(Arand) =

q√
12

. This metric, used in
PICANTE for selecting BKZ parameters, is discussed in § 6. As Table 5 demonstrates, the maximum
recoverable h is strongly correlated to the quality of lattice reduction.

Preprocessing adjustments for large n. Scaling up to n = 512 requires a number of adjustments to
our preprocessing methodology. For n = 512, the first loops in BKZ 2.0 are very slow. To avoid this,
we use BKZ with smaller blocksizes than those used for n = 256 and 350 (see §A.1). Also, lattice

6

Table 5. Data preprocessing vs performance. n = 512, log2 q = 41. Highest values of h recovered, for
different reduction factors (lower factor = better reduction).

preprocess time reduction factor binary h ternary h Gaussian h

7 days 0.519 16,17,17,20 17,20,20,21,21 8,8,8,8,10,10,13
10 days 0.469 21,22,23,28 22,24,24,27,27,29 11,11,11,12,12,12
14 days 0.423 32,32,34,34,35,40 32,34,34,35,35 11,11,11,12,12,12
20 days 0.380 35,35,36,41,49 35,35,37,45,46 13,13,13,16
28 days 0.343 40,43,45,47,50,51,55 40,41,41,44,45,48,48,53 13,13,14,16,16
35 days 0.323 48,48,49,52,57,59,63 45,46,50,55,58,60 14,16

reduction is significantly slower for larger matrices. To mitigate this, for n = 512, we use 448 LWE
samples (instead of 512) when generating Ai for lattice reduction, therefore reducing the matrix size
from 1024× 1024 to 960× 960. Experimentally, we observe that using slightly fewer samples did
not negatively impact our reduction factor or attack performance.

5 Small Modulus

To define real-world parameters for lattice-based cryptography, standardization committees and
communities (e.g. [4, 17]) select a small enough modulus q (for fixed dimension n), so that all
known attacks are (heuristically) predicted to run in time at least 2128, therefore attaining the U.S.
government minimum 128-bit security level. For classical lattice reduction attacks, the smaller the
modulus, the more difficult the attack. This is because lattice reduction algorithms such as LLL
and BKZ attempt to compute short vectors in Euclidean space, but cryptosystems operate modulo
q. Smaller moduli result in smaller lattice volumes, meaning shorter target vectors are required to
break the system. In our ML approach, we also observe that VERDE is less likely to succeed when q
is smaller (see Table 6). Nevertheless, VERDE outperforms the uSVP attack (§A.7).

Figure 3. h of recovered secrets vs. log2 q, n = 256.
10 random binary secrets attempted for each h. One
green dot represents a successful recovery.

Table 6. Highest h recovered, n = 256, 350. Secret
distributions are b = binary, t = ternary, g = Gaussian.

n, log2 q
reduction

factor
recovered h
b t g

256, 20 0.43 33 24 7
256, 18 0.53 18 19 7
256, 16 0.63 12 12 6
256, 14 0.71 9 9 6
256, 12 0.77 6 6 5

350, 27 0.38 36 36 10
350, 21 0.61 12 13 5

PICANTE vs. VERDE’s performance on small q. PICANTE attacks larger moduli: it can recover
binary secrets with h = 31 for log2 q = 23 and n = 256, and h = 60 for log2 q = 32 and n = 350.
Table 6 presents VERDE’s highest recovered h (in 10 random attempts) for dimensions 256 and 350
and different q for binary, ternary, and narrow Gaussian secrets. First, note that VERDE recovers
binary secrets with h = 33 for n = 256 and log2 q = 20, but also, VERDE succeeds for much
smaller q, as small as log2 q = 12, a near-real-world parameter setting, demonstrating that VERDE
significantly outperforms PICANTE. However, for smaller q, VERDE recovers only secrets with
smaller h. As with classical attacks, the likely culprit is lattice reduction: the reduction factor after
preprocessing is 0.71 for log2 q = 12 versus 0.43 for log2 q = 20, and h for recovered binary secrets
drops from 33 to 6. Section 6 provides a theoretical explanation of this phenomenon.

Figure 3 visualizes VERDE’s success rates for n = 256 with binary secrets. For every value of q and
h, we run VERDE on 10 binary secrets, using the same preprocessed data. VERDE’s success rate
decreases as h increases. Attempting 10 random binary secrets for n = 256, log2 q = 12, VERDE
recovers secrets for up to h = 6 but not h = 7, 8 (Table 6). However, with more attempts, VERDE
recovers 1/100 binary secrets for h = 8. Experiments with different random seeds (see §A.2) suggest
that model initialization alone is not responsible for how success rate trends with h.

Explaining success for smaller q via NoMod. As Table 6 indicates, for given n and h, secrets are
harder to recover for smaller q. This suggests that the modular operations in the computation of b

7

Proportion of NoMod training data

Figure 4. Effect of NoMod data on
secret recovery for n = 256, binary
secrets. Count = # of experiments.

Table 7. NoMod % before/after permuting the columns of A. n =
256, log2 q = 14, binary secrets. Each column is a random secret for
each h = 6, 7, 8. Entries are the NoMod %. Green = secret recovered;
red or black = failure.

h method NoMod percentages and recovery success

6
original 56 61 60 61 56 52 67 67 76 67
permuted 57 67 56 67 62 67 60 60 52 56

7
original 60 60 52 49 60 75 55 60 55 56
permuted 67 52 60 75 60 73 60 71 59 66

8
original 60 74 74 66 60 66 55 60 63 55
permuted 55 55 60 52 55 60 55 49 60 60

from a might account for the difficulty. To investigate this, we evaluate, for a given known binary
secret s, the percentage of samples where computing b did not require the modular operation, for
the 4 million samples in our training set. More precisely, we represent the mod q coordinates of a
and b in the interval (−q/2, q/2), and compute x = a · s− b without modular operations. If b was
computed without modular operations, then x is equal to the error for that sample, which is small.
Otherwise x is equal to the error plus a multiple of q. For each (a, b), if |x| < q/2, then no modular
operation was performed. We define NoMod to be the percentage of such x in the training set.

Figure 4 shows the distribution of secret recoveries, for varying NoMod, for 210 experiments with
dimension n = 256 and log2 q = 20. Clearly, recovery occurs when NoMod exceeds a threshold
value, empirically observed to be 67%. These results confirm our hypothesis that modular arithmetic
is the major cause of failure to recover secrets, and help explain the observation ([42, §6.4] and
§A.2) that some secrets are never recovered, no matter how many model initializations are tried. For
a given secret, NoMod is a property of the training data, not of model initialization, and multiple
initializations only seem to help when NoMod is close to the recovery threshold.

A trick for improving attack success. The NoMod percentage can only be calculated if the secret is
known, so it cannot aid real-world attack settings. However, our NoMod observations suggest that, if
recovery fails for a given secret s, the failure may be due to a low NoMod factor in the preprocessed
training set. This reveals a strategy for potentially recovering such secrets. If an initial run of VERDE
fails for a secret s, start over with the (un-preprocessed) matrices Ai, sampled from the original
LWE samples. For each of these, apply a random permutation Π to the columns and preprocess the
permuted matrices. This creates a new dataset of A′ with corresponding b′, associated to a permuted
counterpart s′ of the original secret s. If the NoMod of s′, b′ and A′ is higher that that of s, b and
A (though this cannot be measured), s′ can be recovered. If the attack succeeds, s can be restored
by applying the inverse of permutation Π. Table 7 presents the impact of permutations on NoMod
for 10 secrets and h = 6, 7, 8 for n = 256 and log2 q = 14. Some secrets become recoverable after
using the permutation trick.

6 A Theoretical Scaling Law for VERDE

Intuition. The NoMod experiments provide a key insight about the hardness of secret recovery
in SALSA-based attacks on LWE. They suggest that a secret s can be recovered from a training
set if over 67% of the {x = a · s − b} are concentrated in the interval of length q. If the random
variable x is Gaussian (a reasonable assumption for h ≫ 1, since the entries of a are random and
bounded), 68% of its values will be within one standard deviation of its mean, i.e. spread over two
standard deviations. Therefore, for the secret to be recoverable, the standard deviation of x should
satisfy σx ≤ q/2. If s is a binary secret with Hamming weight h, and the entries of a have standard
deviation σa, we have x ≈ a · s− e and σx ≈

√
hσa + σe ≈

√
hσa. Therefore, s is recoverable if√

hσa ≤ q/2, or σa ≤ q

2
√
h

.

Scaling Laws. We now apply this insight to the experimental results of ML-based attacks on LWE.
Consider the original SALSA attack, which does not utilize data preprocessing. Since the entries of
a are uniformly distributed over [0, q), σa = q√

12
. Replacing in σa ≤ q

2
√
h

yields h ≤ 3, the main
experimental result of SALSA. If we constrain the entries of a to be in [0, αq) (Table 4 in [58]), we
have σa = αq√

12
, and h ≤ 3

α2 . Applying this formula for α ∈ 0.6, 0.55, 0.5, 0.45, we obtain maximal
recoverable Hamming weights of 8, 10, 12 and 15, which closely match SALSA experimental results.

8

These results shed light on the role of preprocessing in PICANTE and VERDE. When the standard
deviation of a is reduced by a factor α, maximal recoverable h increases by a factor 1

α2 . However,
the formula h ≤ 3

α2 underestimates actually recovered h by a factor of 2. For instance, from the
reduction factors from Table 5, we should expect recovered h to range from 11 to 29 as preprocessing
time increases from 7 to 35 days, but actual recovered h ranges from 20 to 63. As seen in §5, the
preprocessing step makes some secrets easier to recover for the same h, so VERDE performs better
than predicted by theory for some secrets (at the expense of other secrets). Finally, note that the
formula for the standard deviation of x is the same for ternary and binary secrets. This accounts for
the observation in §3 that ternary secrets are of similar difficulty for VERDE as binary secrets.

7 Model architecture

VERDE’s baseline model uses a seq2seq architecture as in SALSA and PICANTE. Here, we compare
it to the new encoder-only model discussed in §2. Specifically, this new model is based on the
DeBERTa [34] model but replaces its “relative positional embeddings” with rotary word embeddings,
in the spirit of rotary positional embeddings (RoPE) [55] but applied to the integer words. It has
4 layers, 4 heads and 512 dimensions. On top of the cross-entropy loss, we add an auxiliary,
squared earth mover’s distance (EMD) loss to compare model’s softmax distribution with the target
b. This encourages the model to make predictions that are at least close to the targets, if not exact
matches. Trained with the auxiliary EMD loss, the model also replaces the beam search used in
the distinguisher with a novel EMD-based distinguisher that compares the difference between the
distributions produced by the model on atest and atest +Kei.

Table 8. Performances of seq2seq and encoder-only models. n = 256, log2 q = 12; n = 512, log2 q = 41.
For binary and ternary secrets, we run 10 secrets per h and indicate the epochs of full recovery.

n, secret χs 256, binary 256, ternary 512, binary 512, ternary

h 5 6 4 5 6 57 59 63 55 58 60

Seq2seq 7 4,7 0,5,7,18 0,0,1 1 4 8 7 16 11 -
Encoder-only 20,23,27 16,23,28 0,16,27 1,1,2,6 2 2 3 3 - 6 5

Overall, we find that the performance of the two models are comparable (see Table 8). The encoder-
only model requires more training epochs before recovery for n = 256, log2 q = 12, but requires
fewer epochs for n = 512, and may scale well to larger n. Furthermore, we observe that the EMD
distinguisher still enables full recovery of ternary secrets with high h.

8 Related Work

ML for cryptanalysis. Numerous proposals leverage ML for cryptanalysis, either indirectly or
directly. We call approaches which use ML as part of (but not the main element of) the cryptanalysis
process indirect approaches. Indirect approaches typically use ML models to strengthen existing
cryptanalysis approaches, such as side channel or differential analysis [18]. Most relevant to this
work is a recent paper showing the successful use of ML algorithms in side-channel analysis to
attack Kyber, one of the NIST standardized PQC proposals [28]. Direct ML-based cryptanalysis
schemes train models to directly recover cryptographic secrets from plaintext/ciphertext pairs or
similar information. Such approaches have been studied against a variety of cryptosystems, including
block ciphers [29, 9, 18, 3, 53, 38, 8], hash functions [30], and substitution ciphers [1, 54, 7, 31]. The
two ML-based LWE attacks described in §1, SALSA [58] and PICANTE [42], fall under this heading.

Use of transformers for mathematics. In recent years, language models have been used to solve
math problems beyond the cryptanalysis applications explored in this work. Much prior work has
considered how well language models can solve written math problems [35, 48]. More recently, [32]
showed large transformers could achieve high accuracy on elementary/high school problems, and [59]
explored the accuracy of GPT-3 [11] on math word problems. Language models have also been
applied to formalized symbolic math problems. After [40] demonstrated that transformers can solve
such problems with high accuracy, follow-up work has explored transformers’ use in theorem proving
[43], dynamical systems [13], SAT solving [51], transport graphs [14], and symbolic regression
[10, 23]. Finally, some have proposed customizing model architectures to enable specific arithmetic
operations [36, 56, 44].

9

9 Discussion

We present VERDE, a ML-based attack on LWE with sparse small secrets. VERDE improves data pre-
processing and secret recovery, enabling significant performance gains over prior work, SALSA [58]
and PICANTE [42]. In particular, VERDE can recover secrets with more general distributions (ternary,
small Gaussian), larger dimensions n, smaller moduli q, and higher h. In our implementation,
VERDE outperforms the uSVP attack, requiring less time but more compute resources (details in
Appendix A.7). Most importantly, this work provides key theoretical insights into observed attack
performance, paving the way for targeted future work. Note that even if we recover secrets with
seemingly low probability, such as one seed out of ten succeeds for that secret (1/10), or if we do not
recover all secrets successfully, such as we recover one out of ten secrets with our attack, this is still
enough to make these cryptosystems unsafe to use with low weight secrets (unless there is a way to
check for vulnerability to our attack without running the attack).

Limitations and broader impact. Despite significantly advancing the state-of-the-art in ML-based
LWE attacks, VERDE cannot yet break standardized LWE-based PQC schemes, limiting its real-world
impact. Because of this, our paper raises no immediate security concerns. Nevertheless, we have
shared a copy of our paper with the NIST PQC group to make them aware of this attack.

Future work. Scaling VERDE to attack real-world systems requires work in several directions:
increasing dimension n, reducing modulus q, and increasing h, the number of nonzero entries in
recoverable secrets. Continued innovations in model architecture (a la §7) may allow attacks in higher
dimension n, while the theoretical scaling law of §6 provides helpful guidance for improving q and
h. Given our new insight and analysis of the importance of the NoMod percentage, we conclude
that the reason that small q is hard for the transformers with our current approach is that they are not
good at modular arithmetic (not yet, anyway—this is an area for future work and improvement). In
addition, our preprocessing is not well-suited to what is precisely needed and relies on existing lattice
reduction algorithms which scale poorly with n and q.

This suggests two avenues for improvement: first, to develop model architectures that perform
modular arithmetic better. Limited existing work has studied the application of ML to modular
arithmetic more broadly [44, 33]. Second, alternative preprocessing techniques should be developed
to directly concentrate the distribution of random vectors, without relying on lattice reduction methods.
With the goal of reducing the standard deviation of the training data, around any center, techniques
from the broader math community may prove helpful.

Acknowledgements. We thank Jana Sotáková for her contributions to developing the attack on
ternary secrets, Hamming reduction techniques, and Section A.3. We also thank Mark Tygert for his
helpful input.

10

References

[1] Ezat Ahmadzadeh, Hyunil Kim, Ongee Jeong, and Inkyu Moon. A Novel Dynamic Attack on
Classical Ciphers Using an Attention-Based LSTM Encoder-Decoder Model. IEEE Access,
2021.

[2] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, et al. Status report on the
second round of the nist post-quantum cryptography standardization process. US
Department of Commerce, NIST, 2020. https://www.nist.gov/publications/
status-report-second-round-nist-post-quantum-cryptography-standardization-
process.

[3] Mohammed M Alani. Neuro-cryptanalysis of DES and triple-DES. In Proc. of NeurIPS, 2012.
[4] Martin Albrecht, Melissa Chase, Hao Chen, et al. Homomorphic encryption standard. In

Protecting Privacy through Homomorphic Encryption, pages 31–62. Springer, 2021. https:
//eprint.iacr.org/2019/939.

[5] Martin R. Albrecht. On Dual Lattice Attacks Against Small-Secret LWE and Parameter Choices
in HElib and SEAL. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology – EUROCRYPT 2017, pages 103–129, Cham, 2017. Springer International
Publishing. https://eprint.iacr.org/2017/047.

[6] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015. https://eprint.iacr.
org/2015/046.

[7] Nada Aldarrab and Jonathan May. Can sequence-to-sequence models crack substitution ciphers?
2020. https://arxiv.org/abs/2012.15229.

[8] Seunggeun Baek and Kwangjo Kim. Recent advances of neural attacks against block ciphers.
In Proc. of SCIS, 2020.

[9] Adrien Benamira, David Gerault, Thomas Peyrin, and Quan Quan Tan. A deeper look at
machine learning-based cryptanalysis. In Proc. of Annual International Conference on the
Theory and Applications of Cryptographic Techniques, 2021.

[10] Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Paras-
candolo. Neural symbolic regression that scales. 2021. https://arxiv.org/abs/2106.
06427.

[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, et al. Language models are
few-shot learners. In Proc. of NeurIPS, 2020.

[12] François Charton. Linear algebra with transformers, 2021. https://arxiv.org/abs/2112.
01898.

[13] François Charton, Amaury Hayat, and Guillaume Lample. Learning advanced mathematical
computations from examples. 2020. https://arxiv.org/abs/2006.06462.

[14] François Charton, Amaury Hayat, Sean T. McQuade, Nathaniel J. Merrill, and Benedetto
Piccoli. A deep language model to predict metabolic network equilibria. 2021. https:
//arxiv.org/abs/2112.03588.

[15] François Charton, Kristin Lauter, Cathy Li, and Mark Tygert. An efficient algorithm for integer
lattice reduction, 2023. https://arxiv.org/abs/2303.02226.

[16] Hao Chen, Lynn Chua, Kristin Lauter, and Yongsoo Song. On the Concrete Security of LWE
with Small Secret. Cryptology ePrint Archive, Paper 2020/539, 2020. https://eprint.iacr.
org/2020/539.

[17] Lily Chen, Dustin Moody, Yi-Kai Liu, et al. PQC Standardization Process:
Announcing Four Candidates to be Standardized, Plus Fourth Round Candidates.
US Department of Commerce, NIST, 2022. https://csrc.nist.gov/News/2022/
pqc-candidates-to-be-standardized-and-round-4.

[18] Yi Chen and Hongbo Yu. Bridging Machine Learning and Cryptanalysis via EDLCT. Cryptology
ePrint Archive, 2021. https://eprint.iacr.org/2021/705.

[19] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better Lattice Security Estimates. In Proc. of
ASIACRYPT 2011, 2011.

11

https://www.nist.gov/publications/status-report-second-round-nist-post-quantum-cryptography-standardization-
https://www.nist.gov/publications/status-report-second-round-nist-post-quantum-cryptography-standardization-
process
https://eprint.iacr.org/2019/939
https://eprint.iacr.org/2019/939
https://eprint.iacr.org/2017/047
https://eprint.iacr.org/2015/046.
https://eprint.iacr.org/2015/046.
https://arxiv.org/abs/2012.15229
https://arxiv.org/abs/2106.06427
https://arxiv.org/abs/2106.06427
https://arxiv.org/abs/2112.01898
https://arxiv.org/abs/2112.01898
https://arxiv.org/abs/2006.06462
https://arxiv.org/abs/2112.03588
https://arxiv.org/abs/2112.03588
https://arxiv.org/abs/2303.02226
https://eprint.iacr.org/2020/539
https://eprint.iacr.org/2020/539
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://eprint.iacr.org/2021/705

[20] Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son. A Hybrid of Dual and
Meet-in-the-Middle Attack on Sparse and Ternary Secret LWE. IEEE Access, 2019.

[21] Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song. Lizard: Cut Off the Tail! A
Practical Post-quantum Public-Key Encryption from LWE and LWR. In Dario Catalano and
Roberto De Prisco, editors, Security and Cryptography for Networks, pages 160–177, Cham,
2018. Springer International Publishing. https://eprint.iacr.org/2016/1126.pdf.

[22] Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. The Neural Data Router: Adaptive
Control Flow in Transformers Improves Systematic Generalization. In Proc. of ICML, 2022.

[23] Stéphane d’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and François Charton.
Deep symbolic regression for recurrent sequences. 2022. https://arxiv.org/abs/2201.
04600.

[24] Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, et al. Advancing mathematics by
guiding human intuition with AI. Nature, (7887), 2021.

[25] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Uni-
versal transformers. In Proc. of ICLR, 2019.

[26] Aurélien Dersy, Matthew D. Schwartz, and Xiaoyuan Zhang. Simplifying polylogarithms with
machine learning, 2022. https://arxiv.org/abs/2206.04115.

[27] The FPLLL development team. fplll, a lattice reduction library, Version: 5.4.4. Available at
https://github.com/fplll/fplll, 2023.

[28] Elena Dubrova, Kalle Ngo, and Joel Gärtner. Breaking a fifth-order masked implementation
of crystals-kyber by copy-paste. Cryptology ePrint Archive, 2022. https://eprint.iacr.
org/2022/1713.

[29] Aron Gohr. Improving attacks on round-reduced speck32/64 using deep learning. In Proc. of
Annual International Cryptology Conference, 2019.

[30] Sergij V Goncharov. Using fuzzy bits and neural networks to partially invert few rounds of
some cryptographic hash functions. 2019. https://arxiv.org/abs/1901.02438.

[31] Sam Greydanus. Learning the enigma with recurrent neural networks. 2017. https://arxiv.
org/abs/1708.07576.

[32] Kaden Griffith and Jugal Kalita. Solving Arithmetic Word Problems with Transformers and
Preprocessing of Problem Text. 2021. https://arxiv.org/abs/2106.00893.

[33] Andrey Gromov. Grokking modular arithmetic, 2023. https://arxiv.org/pdf/2301.
02679.pdf.

[34] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced
BERT with disentangled attention. In Proc. of ICLR, 2021.

[35] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
1997.

[36] Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. 2015. https://arxiv.
org/abs/1511.08228.

[37] Ravi Kannan. Minkowski’s Convex Body Theorem and Integer Programming. Mathematics of
Operations Research, 12:415–440, 1987.

[38] Hayato Kimura, Keita Emura, Takanori Isobe, Ryoma Ito, Kazuto Ogawa, and Toshihiro
Ohigashi. Output prediction attacks on block ciphers using deep learning. In Proc. of Applied
Cryptography and Network Security Workshops, 2022.

[39] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. of
ICLR, 2015.

[40] Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In Proc. of
ICLR, 2020.

[41] H.W. jr. Lenstra, A.K. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261:515–534, 1982.

[42] Cathy Li, Jana Sotáková, Emily Wenger, Mohamed Malhou, Evrard Garcelon, Francois Charton,
and Kristin Lauter. SALSA PICANTE: a machine learning attack on LWE with binary secrets,
2023. https://arxiv.org/abs/2303.04178.

12

https://eprint.iacr.org/2016/1126.pdf
https://arxiv.org/abs/2201.04600
https://arxiv.org/abs/2201.04600
https://arxiv.org/abs/2206.04115
https://github.com/fplll/fplll
https://eprint.iacr.org/2022/1713
https://eprint.iacr.org/2022/1713
https://arxiv.org/abs/1901.02438
https://arxiv.org/abs/1708.07576
https://arxiv.org/abs/1708.07576
https://arxiv.org/abs/2106.00893
https://arxiv.org/pdf/2301.02679.pdf
https://arxiv.org/pdf/2301.02679.pdf
https://arxiv.org/abs/1511.08228
https://arxiv.org/abs/1511.08228
https://arxiv.org/abs/2303.04178

[43] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving,
2020. https://arxiv.org/abs/2009.03393.

[44] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking:
Generalization beyond overfitting on small algorithmic datasets, 2022. https://arxiv.org/
abs/2201.02177.

[45] Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In
Proc. of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, 2005. https:
//dblp.org/rec/journals/corr/cs-DS-0304005.bib.

[46] Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. Biological structure and function
emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of
the National Academy of Sciences, 2021.

[47] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 1978.

[48] David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing Mathematical
Reasoning Abilities of Neural Models. 2019. https://arxiv.org/abs/1904.01557.

[49] C.P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical
Computer Science, 53(2):201–224, 1987.

[50] Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A. Hunter,
Costas Bekas, and Alpha A. Lee. Molecular transformer: A model for uncertainty-calibrated
chemical reaction prediction. ACS Central Science, 5(9):1572–1583, 2019.

[51] Feng Shi, Chonghan Lee, Mohammad Khairul Bashar, Nikhil Shukla, Song-Chun Zhu, and
Vijaykrishnan Narayanan. Transformer-based Machine Learning for Fast SAT Solvers and
Logic Synthesis. 2021. https://arxiv.org/abs/2107.07116.

[52] Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994.

[53] Jaewoo So. Deep learning-based cryptanalysis of lightweight block ciphers. Security and
Communication Networks, 2020.

[54] Shivin Srivastava and Ashutosh Bhatia. On the Learning Capabilities of Recurrent Neural
Networks: A Cryptographic Perspective. In Proc. of ICBK, 2018.

[55] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding, 2021. https://arxiv.org/abs/2104.09864.

[56] Andrew Trask, Felix Hill, Scott Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural
arithmetic logic units. 2018. https://arxiv.org/abs/1808.00508.

[57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. of NeurIPS, 2017.

[58] Emily Wenger, Mingjie Chen, François Charton, and Kristin E Lauter. Salsa: Attacking lattice
cryptography with transformers. Proc. of NeurIPS, 2022.

[59] Mingyu Zong and Bhaskar Krishnamachari. Solving math word problems concerning systems
of equations with GPT-3. In Proc. of AAAI, 2022.

13

https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://dblp.org/rec/journals/corr/cs-DS-0304005.bib
https://dblp.org/rec/journals/corr/cs-DS-0304005.bib
https://arxiv.org/abs/1904.01557
https://arxiv.org/abs/2107.07116
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/1808.00508

A Appendix

A.1 Parameters

Table 9. LWE, preprocessing, and training parameters. For the adaptive increase of preprocessing parameters,
we start with blocksize β1 and LLL-delta δLLL1, and upgrade to β2 and δLLL2 at a later stage. Parameters base
B and bucket size r are used to tokenize the numbers for transformer training.

n log2 q q β1 δLLL1 β2 δLLL2 base B bucket size r

256

12 3329 35 0.99 40 1 417 1
14 11197 35 0.99 40 1 1400 1
16 42899 35 0.99 40 1 5363 4
18 222553 35 0.99 40 0.99 27820 16
20 842779 35 0.99 40 0.99 105348 64

350 21 1489513 30 0.96 40 0.99 186190 128
27 94056013 30 0.96 40 0.99 5878501 4096

512 41 2199023255531 18 0.93 22 0.96 137438953471 134217728

VERDE runs data preprocessing with the parameters shown in Table 9 in parallel using multiple
CPUs. We fully parallelize when the time to process one matrix is greater than 24 hours—e.g., for
n = 350, log2 q = 27, we used 5000 CPUs. Otherwise, we parallelize on fewer CPUs depending
on the attack time allowed—e.g., preprocessing is completed on 270 CPUs in less than 4 days for
n = 256, log2 q = 14, and on 990 CPUs in less than 3 days for n = 256, log2 q = 18.

In VERDE, the tokenization used by the transformer mirrors the strategy in §4 of [42], but uses
smaller bases B and larger bucket sizes r for better performance (Table 9, 10 of [42]). Decreasing B
is further supported by Table 10, evaluated on a low modulus data using VERDE’s preprocessing
(n = 256, log2 q = 16). Full ternary secret recovery and partial Gaussian secret recovery both
improve with smaller B = 5363.

Table 10. Secret recovery for different bases. n = 256, log2 q = 16. We show full ternary secret recovery
and partial Gaussian secret recovery when using B = 7150 and 5363 on the same datasets and secrets.

ternary Gaussian
h 8 9 10 11 12 3 4 5 6

B = 7150 2/10 0/10 1/10 0/10 1/10 5/10 6/10 1/10 1/10
B = 5363 2/10 0/10 2/10 0/10 2/10 5/10 6/10 1/10 3/10

A.2 More seeds for initialization

The ML attacks benefit from running multiple times with different seeds, or initializations, as was
demonstrated in PICANTE [42, Section 6.4]. More seeds improve both the success probability and the
number of epochs required. Table 11 shows how binary secret recovery improves with more seeds,
for different Hamming weights h when n = 256 and log2 q = 12.

Table 11. Secret recovery with 1 vs 5 seeds. n = 256, log2 q = 12, binary secrets. For 1 seed, epoch is the
epoch of secret recovery; For 5 seeds (ran on the same secrets as the 1 seed experiments), epoch is the lowest
epoch of secret recovery among the 5 initializations for each secret.

h 3 4 5 6

recovery, 1 seed 5/10 1/10 1/10 1/10
epoch 0,0,0,8,17 0 17 13

recovery, 5 seeds 7/10 3/10 1/10 2/10
epoch 0,0,0,7,7,8,17 0,5,5 7 4,7

Table 12 shows the results for ternary secrets on n = 512, log2 q = 41, where we run 5 initializations
for each secret. While most initializations partially recovered the secret, only a few got full recovery
within 20 epochs. Full recovery benefits from more initializations, especially for high h.

14

Table 12. Ternary secret recovery with 5 initializations. n = 512. ‘-’: recovery did not occur in ≤ 20 epochs.

h 45 46 50 55 58 60

epoch of partial recovery 4,4,6,6,7 1,1,1,1,1 3,4,5,7,- 5,6,6,6,7 6,6,8,10 5,8,8,8,12
epoch of full recovery 10,-,-,-,- 5,7,-,-,- 4,10,14,17,- 16,-,-,-,- 11,11,-,-,- -,-,-,-,-

A.3 Comparison with PICANTE

To demonstrate the power of the new preprocessing in SALSA VERDE, we run a set of experiments
on n = 256, log2 q = 23, where PICANTE also showed success. Using blocksize β = 40, each
matrix is processed by VERDE in about 1.5 days; PICANTE took 2.2 days/matrix. VERDE achieves a
reduction factor of 0.25, compared to 0.33 in PICANTE. As shown in Table 1, the difference in the
preprocessing step is even more striking for lower q.

The highest h recovered by PICANTE was h = 31 in 4 out of 20 experiments; VERDE recovered
h = 43. In Table 13, we see that for h = 26 − 31, VERDE significantly outperforms PICANTE in
both the success rate and the number of epochs required. In other words, better preprocessing results
in lower training time and better secret recovery.

Table 13. Epochs of secret recovery for PICANTE vs. VERDE. n = 256 and log2 q = 23. ‘-’ means secret
not recovered. 5 secrets per h, except for PICANTE h = 31 (20 secrets).

h 26 27 28 29 30 31

PICANTE 2,3,4,7,- 10,-,-,-,- 5,-,-,-,- 5,9,11,-,- 17,20,32,-,- 6,12,26,27 (out of 20 secrets)
VERDE 0,0,2,2,7 2,6,-,-,- 0,0,0,1,2 0,1,1,1,- 0,1,2,3,- 1,2,3,4,-

A.4 Distinguisher tested on reduced data outperforms random data

We compare the performance of running the distinguisher on the preprocessed data that were held
out from the training set (DistBKZ) with running on random vectors (Distrand). We run both set of
experiments with the same model initialization seeds, and record a success for the method(s) that
recovers the secret at the earliest epoch. Table 14 indicates that DistBKZ performs better.

Table 14. Secret recovery by running the distinguisher on the random vectors and bkz preprocessed data.
n = 256, log2 q = 23, on data processed using PICANTE’s approach.

h 27 28 29 30 31

DistBKZ 2/5 1/5 1/5 0/5 0/5
Distrand 1/5 0/5 0/5 0/5 0/5

A.5 Dimension reduction techniques

Most of the entries in a sparse secret are zero, so prior work [5] has suggested the idea of randomly
assuming a subset of the entries to be zero and removing them to reduce the dimension of the lattice
problem. The assumption will be correct with some probability depending on the secret’s sparsity.
Here we explore an improvement on this strategy: we use the partially trained model to glean signal
on which entries should be kicked out. We can either try to kick out zeros, which we call dimension
reduction, or in the binary case, kick out 1s, which we call Hamming reduction, or combined.

This technique will be better than random when the model has begun to learn information about
the bits, reflected in their relative rankings. Specifically, the ranking strategies described in [42,
Section 4.3] are used to compute scores which estimate the likelihood of secret bits being 1. Once the
model has started to learn, we can assume that the highest ranked bits will correspond to secret bits
which are equal to 1, and the lowest ranked bits will correspond to zeros. So we use this information
to reduce the dimension of the problem by kicking out low-ranked bits which we guess to be zero
or high-ranked bits which we guess to be 1. Then, we retrain a model on the smaller dimensional
samples and hope to recover the secret. If the original kicked out bits were correct and the model
recovers the secret of the smaller dimensional problem, then we find the original secret.

Dimension reduction. Since there are many more 0s than 1s in sparse secrets, we can potentially
reduce the dimension significantly. Once we remove the bits with low scores, we can simply re-run

15

training on the dataset with (a′, b) where a′ are the samples with the corresponding bits removed. If
the indices have been identified incorrectly, then the reduction will fail. For n = 256, log2 q = 14,
VERDE attempted 10 binary secrets with h = 10 and did not recover the secret. Then we tried
dimension reduction on these experiments and recovered one secret.

Hamming reduction. Kicking out 1s from the secret is particularly valuable, given the theoretical
analysis of the VERDE in Section 6. If nonzero bits are indeed ranked at the top by the model, a
straightforward approach of kicking out the top-ranked bits and retraining on the smaller dimension
and Hamming weight will likely yield improved secret recovery.

But in case some of the top-ranked bits are not equal to 1, we propose the following strategy. Suppose
S is a small set of indices for bits with the highest scores. We construct the following problem: let s′
be s with bits in S flipped, and a′ be a with ai negated for i ∈ S. Equivalently, for i ∈ S, a′i = −ai
and s′i = 1− si. Then, the corresponding

b′ = a′ · s′ =
∑
i ̸∈S

aisi +
∑
i∈S

a′is
′
i =

∑
i ̸∈S

aisi +
∑
i∈S

−ai(1− si) = b−
∑
i∈S

ai.

If more than half of the indices in S are 1, then s′ has a smaller Hamming weight, hence the instance
(a′, b′ = b−

∑
i∈S ai) is likely easier. If exactly half of the indices in S are 1, then s′ has the same h

as s, but the new instance (a′, b′) will have a different NoMod and may be recoverable.

A.6 Attacking sparse secrets in larger dimensions

For sparse secrets on even larger dimensions, we can apply our attack after using combinatorial
techniques to exploit the sparsity of the secret. The approach would be to combine VERDE with the
techniques from [5, 20] as follows: Randomly kick out k entries of the secret, assuming they are zero,
which will be true with some probability. This reduces the LWE problem to a smaller dimension where
VERDE can recover the secret. The expected cost of the attack would be VERDE’s cost multiplied by
1/p, where p = (n−h

n)k is the probability that the assumption that the k entries are 0 is correct.

A.7 Comparison with lattice reduction/uSVP attacks

In this section we compare VERDE with classical lattice reduction attacks in two ways. The LWE
Estimator [6] gives heuristic predicted running times for the best-known lattice reduction attacks. But
even the authors of the LWE Estimator claim that the estimates are often wrong and unreliable. So
we compare VERDE to the Estimator results but we also compare to concrete running times in the
case n = 256, achieved by implementing the uSVP lattice attacks ourselves, on the same machines
where we run our ML-based attacks. Unfortunately, many attacks listed by the LWE Estimator lack
practical/accessible implementations, and we lacked the time and resources to implement all of
these and run comparisons. Thus, we focus our concrete comparisons on the uSVP attack, which
the Estimator predicts to be the best method for larger n such as n = 512. We leave comparison
of VERDE against other lattice reduction attacks as important future work for the broader lattice
community, as practical attack run-times are poorly understood, especially for small sparse secrets.

Table 15. Concrete comparison of VERDE and uSVP attacks for n = 256, binary secrets, varying q and h.
VERDE’s total attack time is the sum of preprocessing and training time (with recovery included). Preprocessing
time assumes full parallelization, and training time is the number of epochs to recovery multiplied by epoch time
(1.5 hours/epoch). fail means no successful secret recovery for uSVP to compare to.

LWE parameters VERDE attack time uSVP attack time (hrs)
log2 q h Preprocessing (hrs) Training Total (hrs)

12 8 1.5 2 epochs 4.5 fail
14 12 2.5 2-5 epochs 5.5-10 fail
16 14 8.0 2 epochs 11 fail
18 18 7.0 3 epochs 11.5 558
18 20 7.0 1-8 epochs 8.5-19 259
20 22 7.5 5 epochs 15 135-459
20 23 7.5 3-4 epochs 12-15 167-330
20 24 7.5 4 epochs 13.5 567
20 25 7.5 5 epochs 15 76 - 401

16

Table 15 presents our concrete comparison between VERDE and the uSVP attack on binary secrets
for n = 256. To summarize the comparison, VERDE outperforms the uSVP attack in two senses: 1)
VERDE fully recovers sparse binary and ternary secrets for n and q in some cases where the uSVP
attack does not succeed in several weeks or months using fplll BKZ 2.0 [19] with the required block
size; and 2) in cases where we improve the uSVP implementation enough (see below) to run with the
required large block size, we find that in all cases, VERDE recovers the secrets much faster.

Summarizing classical lattice reduction attacks. Table 16 gives the estimated heuristic cost and
specifies the block size for attacking sparse binary and ternary secrets for n = 256, 350, 512 and
various q with the best known classical lattice reduction attack.

Table 16. Estimated cost of best classical attack (LWE Estimator). For VERDE’s highest h, we run the LWE
Estimator and report the estimated cost and block size β for the best predicted attack.

n log2 q
binary secret ternary secret

h best attack rop β h best attack rop β

256

12 8 dual_mitm_hybrid 243.0 40 9 dual_mitm_hybrid 243.8 40
14 12 dual_hybrid 247.2 40 13 dual_hybrid 247.7 41
16 14 dual_hybrid 246.8 40 16 dual_hybrid 247.4 41
18 23 bdd_hybrid 247.1 45 23 dual_hybrid 247.4 41
20 36 bdd 244.0 45 33 bdd 244.2 46

350 21 12 dual_mitm_hybrid,
bdd_mitm_hybrid 246.4 40 13 dual_mitm_hybrid 246.9 54

27 36 bdd 244.9 47 38 bdd, bdd_hybrid 244.1 43

512 41 63 usvp/bdd 242.9 40 60 usvp/bdd 242.9 40

Table 17. Estimated cost and block sizes of uSVP. n = 256, log2 q = 16, 18, 20, for binary, ternary, and
Gaussian secrets with h nonzero entries.

log2 q
binary ternary Gaussian

h rop β h rop β h rop β

16 12 254.7 86 12 254.9 87 6 269.3 138
18 18 249.5 67 19 249.8 68 7 259.5 102
20 25 245.4 52 24 245.4 52 7 253.5 80

Table 17 gives the same information for the uSVP classical lattice reduction attack, focusing on
n = 256 for some of the larger q and h where VERDE succeeds.

uSVP attack performance, binary secrets. For n = 256 and log2 q = 20, we run the concrete
uSVP attack using fplll BKZ 2.0 with Kannan’s embedding and parameters ([37], [16]). With block
size 50 and 55, secrets are not recovered in 25 days, and block size 60 or larger cannot finish the first
BKZ loop in 3 days. We propose two improvements to get these attacks to run faster and better: 1)
we rearrange the rows of the uSVP matrix as in VERDE; 2) we use the adaptive float type upgrade
as in VERDE. In addition, after each BKZ loop, we also run the secret validation obtained from the
shortest vector found so far, and terminate if we get a secret match.

With rearranging the rows but without the adaptive float type upgrade, we have to use higher precision
because otherwise the attack fails due to low precision after running for 23 hours. The attacks run
quite slowly with high precision and did not recover secrets after 25 days, except in one case where a
binary secret with h = 22 was recovered with block size 55 in 414 hours, roughly 17 days.

With rearranging the rows and the adaptive float type upgrade, we ran n = 256 and log2 q = 20 with
block size 50− 55 for binary/ternary secrets, and n = 256 and log2 q = 18 with block size 65 for
binary/ternary secrets. See Table 18 for running times and h. For example, for log2 q = 20, a ternary
secret with h = 25 was recovered in 280 hours, roughly 12 days, and for log2 q = 18, a binary secret
with h = 20 was found in ≈ 11 days. When the block size used is lower than predicted by the
estimator (50 instead of 52 for log2 q = 20 and 65 instead of 67 for log2 q = 18, see Table 17, 18),
the uSVP attack succeeds in recovering only a few secrets out of many which were tried.

17

Table 18. uSVP concrete attack time, n = 256. Upper: log2 q = 20, lower: log2 q = 18. For each h, block
size and secret distribution, we run 5 experiments on different secrets and show the secret recovery time (in
hours). ‘-’ means no success in 25 days.

n = 256, log2 q = 20

blocksize secret h = 22 h = 23 h = 24 h = 25

50 binary - - - 451, 531
ternary 261, 367 - - -

55 binary 135, 161, 459 167, 323, 330 567 76, 280, 401
ternary 43, 241, 432 234, 296 226, 257, 337 280

n = 256, log2 q = 18

blocksize secret h = 11 h = 12 h = 17 h = 18 h = 19 h = 20

65 binary 32 - - 558 - 259
ternary 324, 553 109 594 - - -

The concrete experiments allow us to validate to some extent the predictions of the Estimator in many
cases, giving confidence in the comparison with VERDE. Running the uSVP attack with block size
70 or larger didn’t finish the first BKZ loop in 3 days, so we expect longer attack time for Gaussian
secrets and for binary and ternary secrets with lower q.

Gaussian secrets. VERDE achieves partial Gaussian secret recovery for small h, reducing the secret
recovery to a lattice problem in tiny dimension (h). Because the preprocessing time and per epoch
time does not vary with secret distribution, VERDE’s attack time on Gaussian secrets is comparable
to on binary secrets (see Table 15, 19). We note that preprocessing takes longer for n = 350 and
log2 q = 27 due to precision issues. This is an important observation because lattice problems
are supposed to be harder for smaller q. In contrast, with classical attacks, the Estimator predicts
significantly larger block sizes required, and longer running times (Table 20), than for binary secrets.
VERDE compares favorably to classical attacks on Gaussian secrets, especially on small q (where
the problem is harder), e.g., VERDE recovers Gaussian secrets with h = 5− 6 in 4.5− 15 hours for
n = 256, log2 q = 12, where the cost of best classical attacks is predicted to be 291 rop.

Table 19. VERDE’s performance on LWE problems with n = 256 and 350, Gaussian secrets, varying q and
h. Preprocessing time: hours to process one matrix. Total attack time: sum of preprocessing time (assuming full
parallelization) and training time (number of epochs multiplied by hours per epoch, see §2).

LWE parameters VERDE attack time
n log2 q h Preprocessing (hrs) Training hrs/epoch Total (hrs)

256

12 5-6 1.5 2-9 epochs

1.5

4.5-15
14 5-6 2.5 2-21 epochs 5.5-34
16 9 8.0 2 epochs 11
18 9 7.0 3 epochs 11.5
20 10 7.5 5 epochs 15

350 21 5 16 1-5 epochs 1.6 18-24
27 10 216 2-13 epochs 219-237

Table 20. LWE Estimator: best classical attack on Gaussian secrets on various q. n = 256 and 350. For
VERDE’s highest h, we show the best classical attack, the attack cost (rop), and predicted block size β from the
LWE Estimator.

n log2 q h best attack rop β

256

12 6 bdd / bdd_hybrid 291.0 214
14 6 bdd / bdd_hybrid 277.7 166
16 9 bdd / bdd_hybrid 267.1 128
18 9 bdd 257.7 93
20 10 bdd / bdd_hybrid 251.9 72

350 21 5 bdd 265.2 120
27 10 bdd / bdd_hybrid 250.2 68

18

	Introduction
	Salsa Verde Overview
	Secret Distributions
	Large Dimension
	Small Modulus
	A Theoretical Scaling Law for Verde
	Model architecture
	Related Work
	Discussion
	Appendix
	Parameters
	More seeds for initialization
	Comparison with Picante
	Distinguisher tested on reduced data outperforms random data
	Dimension reduction techniques
	Attacking sparse secrets in larger dimensions
	Comparison with lattice reduction/uSVP attacks

