
Post-Quantum Secure Over-the-Air Update of
Automotive Systems

Joppe W. Bos1[0000−0003−1010−8157], Alexander Dima2, Alexander
Kiening3[0000−0003−2161−8662], and Joost Renes4[0000−0003−1884−6330]

1 NXP Semiconductors, Leuven, Belgium
joppe.bos@nxp.com

2 PiNTeam GmbH, Germany
alexander.dima@pinteam.eu

3 DENSO AUTOMOTIVE Deutschland GmbH, Germany
a.kiening@eu.denso.com

4 NXP Semiconductors, Eindhoven, Netherlands
joost.renes@nxp.com

Abstract. With the announcement of the first winners of the NIST
Post-Quantum Cryptography (PQC) competition in 2022, the industry
has now a confirmed foundation to revisit established cryptographic algo-
rithms applied in automotive use cases and replace them with quantum-
safe alternatives. In this paper, we investigate the application of the
NIST competition winner CRYSTALS-Dilithium to protect the integrity
and authenticity of over-the-air update packages. We show how this
post-quantum secure digital signature algorithm can be integrated in
AUTOSAR Adaptive Platform Update and Configuration Management
framework and evaluate our approach practically using the NXP S32G
vehicle network processor. We discuss two implementation variants with
respect to performance and resilience against relevant attacks, and con-
clude that PQC has little impact on the update process as a whole.

Keywords: Post-Quantum Cryptography · Over-the-Air Update · Mi-
gration.

1 Introduction

Digital signatures are one of the core cryptographic building blocks in modern
digital security. The goal of this concept, invented by Diffie and Hellman [13], is
to provide message authentication against the public key of a sender. Applica-
tions of digital signatures are countless and diverse. In this work we look at the
application of digital signatures in automotive applications where secure boot
and secure (over-the-air) update are two main applications to protect against
modifications of the software or firmware with potentially malicious intentions.

In the last decades multiple digital signature designs have been standardized.
These approaches are either based on Elliptic Curve Cryptography (ECC) [31,39]
or the Rivest–Shamir–Adleman (RSA) [48] algorithm. However, assuming the

2 J. W. Bos, A. Dima, A. Kiening and J. Renes

availability of a large-scale quantum computer the security of these “classical”
approaches is threatened by Shor’s quantum algorithm [50] which is able to re-
cover such ECC/RSA private keys in polynomial time. To prepare for this quan-
tum threat, alternative public-key algorithms are necessary. These are typically
referred to as post-quantum or quantum-safe algorithms. The new algorithms
are intended to run on classical hardware yet provide sufficient protection even
against adversaries that are in possession of a quantum computer. They are
not to be confused with quantum cryptography such as Quantum Key Distri-
bution (QKD), where the cryptographic algorithms also run on infrastructure
(partially) consisting of quantum computers.

Recognizing the threat of quantum computer, the US National Institute of
Standards and Technology (NIST) put out a call for proposals [42] in 2016
to submit candidates for a new standards consisting of post-quantum secure
algorithms. In July 2022, NIST has recommended one primary algorithm for
digital signatures: CRYSTALS-Dilithium [14,35] (denoted simply as Dilithium
in the remainder of this paper) In addition, two other signature schemes will
also be standardized: Falcon [45] and SPHINCS+ [5,23]. The final standard for
Dilithium is expected to be published in 2024, which will deviate slightly from
the original Dilithium proposal due to comments from industry and academia
that were received as part of the standardization process. The NIST standard-
ized algorithms are also receiving interest from European standardization and
norms bodies. For example, the German Federal Office for Information Security
(BSI) will consider including Dilithium into their Technical Guidelines for Cryp-
tographic Mechanisms TR-02102-1 [15, Section 4] after the final NIST standard
has been published.

In this paper, we investigate the practical impact of Dilithium in one of the
key automotive use-cases: Over-The-Air (OTA) update. This is done from a
Tier-1 perspective where all the communication cost from host processor to the
secure processor is taken into account. For our experiment, we use the S32G
vehicle network processor and compare running the post-quantum secure sig-
nature verification in two settings. Firstly, the verification is performed on the
microprocessor which is based on the Arm Cortex-A53 and secondly, on the mi-
crocontroller which is part of the Hardware Security Engine (HSE) and based on
the Arm Cortex-M7. The A53 is larger and faster compared to the M7 but does
not offer security features to protect key-material or against advanced attacks
such as fault injection [8,7].

2 Background and Related Work

2.1 Post-Quantum Digital Signatures

In this work we follow the recommendation from NIST and focus on lattice-
based digital signatures. This area in cryptography has a rich history and a wide
variety of options relying on different hardness assumptions. One approach in
lattice-based cryptography is based on Regev’s work introducing the Learning
With Errors (LWE) problem [47], which relates to solving a “noisy” linear system

Post-Quantum Secure Over-the-Air Update of Automotive Systems 3

Table 1. Public key and signature sizes for each security level of Dilithium in bytes.

Security level Public key Signature

Dilithium-2 1 312 2 420
Dilithium-3 1 952 3 293
Dilithium-5 2 592 4 595

modulo a known integer. This problem can be used as the basis for a signature
scheme, as shown by Lyubashevsky [34], by improving on his idea to apply Fiat-
Shamir with aborts [33] to lattices. A more specialized version is based on the
Ring Learning With Errors (R-LWE) problem [36,43], which works in a special
ring (more specifically the ring of integers of a cyclotomic number field) that
offers significant storage and efficiency improvements compared to LWE. Al-
though R-LWE has additional algebraic structure and relies on the (worst-case)
hardness of problems in ideal lattices, no significant concrete improvements in
cryptanalysis are known. Finally, a combination of many of these ideas (plus var-
ious improvements) resulted in CRYSTALS–Dilithium [14] based on something
which is known as Module-LWE. Table 1 gives an overview of the public-key and
signature sizes for the three Dilithium parameter sets.

An alternative direction to realize post-quantum secure digital signatures is
that of hash-based signatures. Two algorithms from this realm are known as eX-
tended Merkle Signature Scheme (XMSS) and Leighton-Micali Signatures [38]
(LMS) and have been established as Requests For Comments (RFCs) by the
Internet Engineering Task Force (IETF) [24,38]. Recently, they have been pub-
lished as a NIST Special Publication 800-208 [12] as well. These approaches are
based on well-established cryptographic primitives (i.e., hash functions) and have
efficient signature verification times. The main downside is that both signature
schemes are stateful on the end of the signer, which can seriously complicate
key management. Their stateless counterpart SPHINCS+ [22] solves this issue,
but at the cost of significantly increasing the signature size. Other alternatives
explore digital signatures based on the hardness of multivariate quadratic equa-
tions, error-correcting codes and isogenies. Unfortunately either their keys or
signatures are extremely large, or they are relatively inefficient, making them
difficult to apply in embedded scenarios.

In June 2023 a new standardization process was started by NIST with the
focus on small digital signature schemes. At the time of writing the submission
deadline had passed, but the proposals had not been made public yet. This
could lead to new, smaller signature schemes that could outperform Dilithium
or hash-based signatures. Having that said, it will take a number of years for the
proposals to be analyzed and finally published into a standard.

2.2 PQClean

The NIST standardization effort required inclusion of reference implementations
in pure C, to demonstrate the correctness and efficiency of the proposed algo-

4 J. W. Bos, A. Dima, A. Kiening and J. Renes

rithms. As there were no requirements with respect to software engineering stan-
dards, the code quality varied wildly and was often not directly fit for integration
into higher level protocols. This observation led Kannwischer, Schwabe, Stebila
and Wiggers [30] to develop PQClean, a collection of clean implementations of
the NIST PQC proposals in pure C.5 For example, any implementation included
in PQClean should check that code is valid in C99, passes functional tests, does
not write outside provided buffers, etc. For a full list of requirements we refer to
the Github repository.

Besides the clean implementations, PQClean also includes optimized imple-
mentations for targeted architectures depending on the algorithm. It includes
optimized Dilithium implementations for modern processors with support for
AVX2, and for the 64-bit Arm architecture family AArch64. The latter is part
of the ARMv8-A instruction set that is implemented in the Cortex-A53. We use
this optimized implementation to run Dilithium on the S32G host processors.

2.3 AUTOSAR

The AUTomotive Open System ARchitecture (AUTOSAR)6 is a consortium
of automotive companies and other interested parties to specify a harmonized
architecture and API for automotive middleware vendors to implement. These
middlewares offer typical services to automotive applications such as communi-
cation, logging, and diagnostics. AUTOSAR specifies two architectures for dif-
ferent kind of Electronic Control Unit (ECUs): the Classic Platform to support
applications with real-time requirements, and the Adaptive Platform for high-
performance applications running on a POSIX-compabtible operating system
such as Linux or QNX [1]. Both Classic and Adaptive Platforms are designed to
interact in an in-vehicle network.

For the Adaptive Platform, the AUTOSAR partners are developing a com-
mon Adaptive AUTOSAR Demonstrator (APD) to validate the specifications.
This demonstrator can be used by partners for their own proof of concept de-
velopments. We used this APD as basis for our practical evaluation later.

2.4 S32G Vehicle Network Processors

We target an S32G vehicle network processor as the platform of choice for the
impact assessment of integrating post-quantum cryptography in the over-the-
air update protocol. This high-end automotive processor is developed by NXP
Semiconductors and part of a larger S32 automotive platform which includes
the S32K, S32R and S32V and is designed to meet the safety and security re-
quirements in the automotive and industrial domains (i.e., compliance with IEC
61508 [25] and ASIL-D classification in ISO 26262 [26]). Typical uses include
service-oriented gateways, domain controllers, vehicle computers and safety pro-
cessors. The S32G consists of a combination of microcontrollers (MCUs) based

5 https://github.com/PQClean/PQClean
6 https://www.autosar.org

https://github.com/PQClean/PQClean
https://www.autosar.org

Post-Quantum Secure Over-the-Air Update of Automotive Systems 5

on the Arm Cortex-M7, and microprocessors (MPUs) based on Arm Cortex-A53.
These application CPUs are combined with several types of memory (SRAM,
DRAM, NOR/NAND Flash) and various hardware accelerators.

The precise configuration depends on the choice of model: we deploy the
S32G274A which contains 3 Arm Cortex-M7 cores, 4 Arm Cortex-A53 cores, and
8 MB of system RAM. Each of the MCUs runs in a delayed lockstep configuration
at a maximum frequency of 400 MHz and has 32 KB instruction and data caches.
The MPUs are configured as 2 clusters of 2 cores each running at a maximum
frequency of 1 GHz. Every core has access to 32 KB L1 instruction and data
caches, while each cluster shares another 512 KB of L2 cache. Optionally, the A53
clusters can be configured to also run in a delayed lockstep setting, effectively
removing one of the clusters from an application’s point of view but increasing
the fault tolerance.

Most notably, the processor contains a Hardware Security Engine (HSE)
which supports both symmetric and (classical) asymmetric cryptography accel-
erators, a random number generator, and dedicated secure memory. The HSE is
responsible for the boot flow if secure boot is enabled as well as serving as the
Root of Trust (RoT) for host applications: in our setting computing the post-
quantum secure signature verification. The HSE Firmware (HSE-FW) has been
extended by Bos et al. [9, Section 4.1] to include Dilithium into the signature
verification service. This is a high-secure low-memory software implementation
which has protection against fault attacks, and supports all parameter sets of
Dilithium v3.1.

2.5 Related work

A generic approach to reduce the memory consumption of Dilithium on con-
strained devices is presented by Bos, Renes, and Sprenkels in [10]. In the auto-
motive domain there have been investigations on applying post-quantum cryp-
tography to the setting of secure boot. An impact assessment of hash-based
post-quantum secure schemes on secure boot is studied by Kampanakis, Pan-
burana, Curcio and Shroff [27]. Hermelink, Pöppelmann, Stöttinger, Wang and
Wan perform an investigation into Authenticated Key Exchange (AKE) com-
bining different post-quantum cryptographic schemes [20]. In [16], Feritzmann,
Vith, Flórez and Sepúlveda analyze lattice-based Key Encapsulation Mecha-
nisms (KEMs) for automotive systems. An investigation of the practical impact
of migrating the secure boot flow on a Vehicle Network Processor using Dilithium
is done by Bos, Carlson, Renes, Rotaru, Sprenkels, and Waters in [9].

The other use-case is secure over-the-air software update. A survey on this
topic in connected vehicles is performed by Halder, Ghosal, and Conti [18]. Some
benchmark results using the post-quantum secure schemes Dilithium and Falcon
in the setting of OTA update on a Arm Cortex-A53 are presented by Manna, Per-
azzo, Treccozzi, and Dini in [37]. In [3], Banegas, Zandberg, Baccelli, Herrmann,
and Smith investigate low-power software update with the Software Updates
for Internet of Things (SUIT) [40,41] specification focussing on low-power IoT
devices.

6 J. W. Bos, A. Dima, A. Kiening and J. Renes

3 Over-the-Air Update

Over-the-air updates include services like software over-the-air (SOTA), firmware
over-the-air (FOTA), and over-the-air provisioning (OTAP). To implement this,
the AUTOSAR Adaptive Platform offers the specification of the functional clus-
ter “Update and Configuration Management” (UCM) which is responsible for
handling the vehicle side of the update process. This includes the following steps
of the components shown in Figure 1:

1. Download the update package by the UCM client;
2. Check the package’s authentification tag (e.g., digital signature);
3. Evaluate the package’s manifest;
4. Interact with state management;
5. Apply the update.

In this section we describe the considerations we have taken for the implemen-
tation.

3.1 OTA Update Security

The verification of the authentication tag (i.e., step 2) is the most important step
for our work. There are several ways in which a malicious entity can subvert the
integrity of the package. Firstly, they can attempt to obtain a digital signature
over a malicious package, which would pass the authentication check in step 2.
This could be done by comprimising the signing infrastructure and having direct
access to the (secret) signing key, but for the purpose of this work such attacks
are considered out of scope as they cannot be thwarted by countermeasures on
the processor itself. Alternatively, the signing key can be retrieved by breaking
the public-key cryptographic scheme that is deployed. This attack is a realistic
scenario for a quantum adversary, as it allows them to efficiently obtain the
signing key for classical systems such as RSA or ECDSA. Indeed, for this reason
timely migration to post-quantum alternatives is critical. In this work we deal
with this attack vector by relying on the quantum security of Dilithium.

Assuming that no signature can be created over a malicious package, a ma-
licious entity could instead try to compromise the integrity of the public key. In
that case the verification in step 2 would pass, but would verify authenticity with
respect to an attacker controlled public key for which they can sign arbitrary
packages. To trust the authenticity of update packages, strong protection on the
public key is therefore required. For example, this can be achieved by storing
the (hash of the) public key in Read-Only Memory (ROM) such as fuses.

Finally, the runtime execution of the verification of the authentication tag
could be compromised. It is well known that such advanced security threats
should be considered in the automotive domain [32]. One category of such a rel-
evant security threat for signature verification are active attacks. An example of
such an attack is fault analysis [8] and more specifically differential fault analysis
(DFA) [7]. Such types of attacks work by utilizing under-powering and power

Post-Quantum Secure Over-the-Air Update of Automotive Systems 7

Table 2. Threats and assets for signature verification.

Threat Targeted Asset

1 Compromise the signing infrastructure
Secrecy of the signing
key

2 Change the key via manipulated software on the ECU Integrity of the public
key3 Change the key via physical access to the ECU

4 Change the execution of the cryptographic algorithms
via manipulated software on the ECU Integrity of the

algorithm execution5 Change the execution of the cryptographic algorithm
via physical access to the ECU

spikes, clock gitches, temperature attacks, optical attacks or electromagnetic in-
jection to introduce faults during the execution. If some operations are skipped
or performed incorrectly during the execution process, then this should lead to
an incorrect calculation of the output which could be used to learn something
about the secret key material used. When using signature verification no secret
key material is used. However, a simple attack would be to fault the control
if-statement if a signature is correct to always yield true. This would lead to
unauthorized updates with invalid signatures to be installed on the target de-
vice. In the setting of Dilithium a survey of both passive and active attacks is
given in [46].

We summarize an overview of the threats in Table 2. Although there are dif-
ferent ways to achieve security against these attack vectors, ultimately it boils
down to a well-defined Root of Trust (RoT). The expected capabilities of RoTs
are outlined for example by TCG [11, Part 1 §9.5.5] or GlobalPlatform [17]. Its
implementation has to conform with the latest security standards and certifi-
cations (e.g., ISO 26262). Typically, the RoT comes in the form of a Hardware
Security Module (HSM) or Hardware Security Engine (HSE).

3.2 OTA Update Implementation

As shown in Figure 1, cryptographic algorithms can be implemented in ECUs in
two ways: in an HSM or in a software library executed directly on a host appli-
cation core. While the HSM approach generally offers better protection mecha-
nisms especially against physical attacks (see Section 3.1), it is also typically less
flexible than executing the software on the host processor. Which approach to
choose depends on performance requirements and the risk treatment decisions
based on the Threat Analysis and Risk Assessment (TARA).

To implement support for digital signature verification, UCM can use the
services offered by the CryptoAPI, which abstracts interaction with concrete
cryptographic implementations by means of Crypto Providers. Crypto Providers
are secure wrappers of cryptographic software libraries or secure element host
drivers. They serve two purposes: standardizing user interaction and securing

8 J. W. Bos, A. Dima, A. Kiening and J. Renes

HSM

Software
Crypto Provider

Verification

Fig. 1. Update package and UCM dependencies to other Functional Clusters [2].

crypto objects such as secret key material, secret seed material or special pub-
lic keys. Ideally, to comply with the AUTOSAR architecture, we would add a
new Crypto Provider for the HSE Linux host driver. Unfortunately, the Adap-
tive Platform Demonstrator does not feature a sufficiently up-to-date reference
implementation of the CryptoAPI. Therefore, we decided to integrate the PQC-
enhanced HSE Linux host driver with UCM and use low-level driver interfaces
directly to perform the signature verification.

3.3 OTA Update Performance Requirements

It is clear that performance is critical for Over-the-Air updates. However, the
performance issues do not come from executing the cryptographic operations but
arise when scheduling OTA software updates at a massive scale over a cellular
network (like 4G LTE to 5G). This becomes clear from the standardization
survey for over-the-air updating in vehicles [19] where no standards mention
specific latency requirements for the signature verification but the challenges of
deploying large scale updates over the cellular network is mentioned over-and-
over again. Security, on the other hand, is highlighted at many places. This is of
course not a surprise since safety and security are key requirements in an update
protocol: this reduces, for example, the risk to remotely install malware in the
vehicle. A survey on security attacks and defense techniques for connected and
autonomous vehicles can be found in [44].

In short, a (small) performance loss when migrating towards post-quantum
cryptography is not expected to have an impact on the end user experience as
it will be negligible in the overall update time. As we shall see in Section 4,
this holds true for both the implementation in the HSM/HSE as well as on the
host processor. From a security point of view, it therefore makes the HSE the
preferred way of executing the signature verification. The host processor would
be the preferred option only if the additional flexibility is more important than
the loss in security guarantees.

Post-Quantum Secure Over-the-Air Update of Automotive Systems 9

Fig. 2. The S32G2 processors for vehicle networking software ecosystem.

4 Benchmark results and Discussion

In this section we elaborate on the practical details of the PQC secure OTA
demonstrator, and discuss the pros and cons of the different options.

4.1 Development Setup

For development we used the S32G Vehicle Networking Evaluation Board (VNP-
EVB) and Vehicle Networking Reference Design (VNP-RDB2). Both function
virtually identically for our purposes, the latter being the more recent and rec-
ommended development board (though now already superseded by the RDB3
board). These boards come equipped with a Linux Board Support Package (BSP)
for the Cortex-A53 MPUs that we used as a basis for integrating Dilithium into
our software. The BSP provides Linux User IO (UIO) drivers and a messaging
module (libhse) that provides direct low-level access to the HSE. See Figure 2
for an overview of the S32G2 software ecosystem. The use of Dilithium signature
verification is almost completely transparent for a user: as is the case for ECC or
RSA, a message, public key and signature are provided to a signature service in
which the signing scheme can be specified. As part of the integration of Dilithium
into the firmware, the signing scheme can simply be set to Dilithium instead of
the classical choices of ECC or RSA. We refer to Figure 3 for the control flow
when executing Dilithium signature verification on the HSE.

4.2 Executing the Cryptographic Algorithms

As explained in Section 2.4, our platform contains a microprocessor based on the
Arm Cortex-A53 running at 1000 MHz which we will refer to as the host. The

10 J. W. Bos, A. Dima, A. Kiening and J. Renes

Fig. 3. Overview of delivering data to the HSE in order to execute its functionality.

Hardware Security Engine utilizes a microcontroller based on the Arm Cortex-
M7 running at 400 MHz. As the Cortex-A53 has a much more extensive archi-
tecture than the Cortex-M7, it is no surprise that most software can be exe-
cuted significantly faster. This is especially the case as it runs at a much higher
frequency. The difference in performance can typically be offset by additional
cryptographic hardware support in the HSE, but this is not yet available for the
S32G2. For future platforms (e.g., S32G3 with SHA3 acceleration), the difference
between the host and the HSE will favor the HSE much more.

4.3 Results

It is clear from Section 3.3 that the execution time of the signature verification
algorithm typically is not the bottleneck in the setting of OTA update for au-
tomotive applications. However, to assess the impact of the ongoing migration
towards post-quantum cryptography we quantify the impact of switching to the
usage of Dilithium-2 signature verification. This impact is measured in the form
of the latency of the verification algorithm.

Remark 1. The latency is not solely determined by the choice of signature scheme
itself, but also by the length of the software update. Typically, all digital sig-
nature verification schemes pre-hash the variable-length input to a fixed-size
digest, possibly including miscellaneous other data such as padding, a public
key, a commitment, etc. Afterwards the digest is processed to create or check
the final digital signature. This step is independent of the signature scheme cho-
sen but the exact the choice of the hash function does differ in practice. For
example, the ECDSA [51] signature scheme starts by applying a FIPS 180 [49]
compliant hash function (e.g., SHA-256) to the input message. Dilithium signs
(and verifies) arbitrary-length messages by hashing them together with the pub-
lic key, using Keccak [6] (the permutation underlying SHA-3). The choice of hash

Post-Quantum Secure Over-the-Air Update of Automotive Systems 11

function has no impact on the security of the public-key signature scheme, it can,
however, have significant impact on the performance in practice. For example,
the S32G274A used offers hardware support for SHA-2 and not for (variants
of) SHA-3. Therefore we focus on the setting where a SHA-512 hash over the
software is signed instead and subsequently verified.

We adjusted the OTA update protocol such that it uses the post-quantum
secure Dilithium algorithm. For our experiments we utilized the Dilithium-2 pa-
rameter set: this means a public-key of 1 312 bytes and verifying a signature of
2 420 bytes (see Table 1). The 64-byte pre-hashed software update together with
the signature is validated using the Dilithium signature verification algorithm.
As explained in Section 3.2 two approaches are considered: running the verifica-
tion on the host processor itself and executing the Dilithium verification on the
HSE. Our benchmark figures include all overhead required to run the signature
verification: i.e., the timer starts and stops at the host processor before and af-
ter the complete signature verification. All together, the Dilithium-2 verification
time is 0.5ms on the host processor and 11.1ms on the HSE.

4.4 Discussion

As seen from Section 4.3, the latency on the host processor is lower than on
the HSE. This difference in performance is explained by the fact that the host
processor and the HSE differ significantly in terms of the offered performance:
e.g., the instruction set as well as the clock speed of both platforms differ sig-
nificanly. For example, if we compare the Dilithium-2 verification results on a
Cortex-M7 by [21] to the ones from [4] on a Cortex-A72 then one already sees a
difference of 5–6 times. Hence, if we also take the difference in clock-speed into
account (another factor of 2.5×) one expect that the host processor is around
14 times faster. However, we stress again that the host processor is unprotected
against advanced attacks relevant in the automotive domain (see Section 3.1).
The HSE, on the other hand, offers much more security features compared to the
host processor. This includes protection against side-channel and fault attacks.
The unprotected implementation in [21] requires 1 439 kilo cycles, measured on
STM32F767ZI NUCLEO-144 development board. At 200 MHz this corresponds
to about 7.1ms. This is faster than our implementation, but can be explained
by the fact that the HSE includes fault protection and applies more aggressive
time-memory trade-offs that impact performance further. Whereas the runtime
RAM memory required in [21] is about 36 kB for Dilithium-2, the HSE requires
less than 3 kB.

Looking ahead, much of the 11.1ms in the HSE signature verification is spent
in the software implementation of the SHAKE-256 algorithm used in Dilithium
verification. This does not come as a surprise as the embedded benchmarking
platform PQM4 [28,29] (running on a ARM Cortex-M4) reports that over 80
percent of the verificaton time is spent in SHA3. Future generations (e.g., S32G3)
will have dedicated SHA3 hardware available, pushing the performance to be

12 J. W. Bos, A. Dima, A. Kiening and J. Renes

very close to the host processor. Nevertheless, in the context of a full over-
the-air software update, a difference of 10ms in verification latency is negligible
and will have no impact on the experience of the vehicle owner. Therefore the
security features offered by the HSE significantly outweigh the small difference
in performance.

References

1. AUTOSAR: Explanation of adaptive platform design. https://www.autosar.org/
fileadmin/standards/R22-11/AP/AUTOSAR EXP SWArchitecture.pdf (2022)

2. AUTOSAR: Specification of update and configuration management.
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR SWS
UpdateAndConfigurationManagement.pdf (2022)

3. Banegas, G., Zandberg, K., Baccelli, E., Herrmann, A., Smith, B.: Quantum-
resistant software update security on low-power networked embedded devices. In:
Ateniese, G., Venturi, D. (eds.) Applied Cryptography and Network Security. pp.
872–891. Springer International Publishing (2022). https://doi.org/10.1007/978-3-
031-09234-3 43

4. Becker, H., Hwang, V., Kannwischer, M.J., Yang, B.Y., Yang, S.Y.: Neon NTT:
Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1. IACR TCHES
2022(1), 221–244 (2022). https://doi.org/10.46586/tches.v2022.i1.221-244

5. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The SPHINCS+ signature framework. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019. pp. 2129–2146. ACM Press (Nov 2019).
https://doi.org/10.1145/3319535.3363229

6. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (May 2013). https://doi.org/10.1007/978-3-642-38348-9 19

7. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (Aug 1997). https://doi.org/10.1007/BFb0052259

8. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults (extended abstract). In: Fumy, W. (ed.) EU-
ROCRYPT’97. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (May 1997).
https://doi.org/10.1007/3-540-69053-0 4

9. Bos, J.W., Carlson, B., Renes, J., Rotaru, M., Sprenkels, A., Waters, G.P.:
Post-quantum secure boot on vehicle network processors. In: 20th escar Eu-
rope – The World’s Leading Automotive Cyber Security Conference (2022).
https://doi.org/10.13154/294-9372

10. Bos, J.W., Renes, J., Sprenkels, A.: Dilithium for memory constrained devices. In:
Batina, L., Daemen, J. (eds.) AFRICACRYPT 22. LNCS, vol. 2022, pp. 217–235.
Springer Nature (Jul 2022). https://doi.org/10.1007/978-3-031-17433-9 10

11. Challener, D., Goldman, K.: Trusted Platform Module Library Specification, Fam-
ily “2.0”, Level 00, Revision 01.59 (2019), https://trustedcomputinggroup.org/
work-groups/trusted-platform-module/

12. Cooper, D., Apon, D., Dang, Q., Davidson, M., Dworkin, M., Miller, C.: Recom-
mendation for stateful hash-based signature schemes. SP 800-208, National Insti-
tute of Standards and Technology (2020)

https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_EXP_SWArchitecture.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_EXP_SWArchitecture.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_UpdateAndConfigurationManagement.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_UpdateAndConfigurationManagement.pdf
https://doi.org/10.1007/978-3-031-09234-3_43
https://doi.org/10.1007/978-3-031-09234-3_43
https://doi.org/10.46586/tches.v2022.i1.221-244
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.13154/294-9372
https://doi.org/10.1007/978-3-031-17433-9_10
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/

Post-Quantum Secure Over-the-Air Update of Automotive Systems 13

13. Diffie, W., Hellman, M.E.: New directions in cryptography.
IEEE Transactions on Information Theory 22(6), 644–654 (1976).
https://doi.org/10.1109/TIT.1976.1055638

14. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR TCHES
2018(1), 238–268 (2018). https://doi.org/10.13154/tches.v2018.i1.238-268, https:
//tches.iacr.org/index.php/TCHES/article/view/839

15. Federal Office for Information Security (BSI): Technical guidelines for
cryptographic mechanisms (tr-02102). https://www.bsi.bund.de/EN/
Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/
Technische-Richtlinien/TR-nach-Thema-sortiert/tr02102/tr02102 node.html

16. Fritzmann, T., Vith, J., Flórez, D., Sepúlveda, J.: Post-quantum cryptogra-
phy for automotive systems. Microprocessors and Microsystems 87, 104379
(2021). https://doi.org/https://doi.org/10.1016/j.micpro.2021.104379, https://
www.sciencedirect.com/science/article/pii/S0141933121005299

17. GlobalPlatform Technology: Root of Trust Definitions and Requirements
Version 1.1 (GP REQ 025) (2018), https://globalplatform.org/specs-library/
globalplatform-root-of-trust-definitions-and-requirements/

18. Halder, S., Ghosal, A., Conti, M.: Secure over-the-air software updates
in connected vehicles: A survey. Computer Networks 178, 107343 (2020).
https://doi.org/10.1016/j.comnet.2020.107343, https://www.sciencedirect.com/
science/article/pii/S1389128619314963

19. Halder, S., Ghosal, A., Conti, M.: Secure over-the-air software updates in connected
vehicles: A survey. Computer Networks 178, 107343 (2020)

20. Hermelink, J., Pöppelmann, T., Stöttinger, M., Wang, Y., Wan, Y.: Quantum safe
authenticated key exchange protocol for automotive application. In: 18th escar
Europe : The World’s Leading Automotive Cyber Security Conference (Konferen-
zveröffentlichung) (2020). https://doi.org/10.13154/294-7549

21. Howe, J., Westerbaan, B.: Benchmarking and analysing the NIST PQC finalist
lattice-based signature schemes on the ARM cortex M7. Cryptology ePrint Archive,
Report 2022/405 (2022), https://eprint.iacr.org/2022/405

22. Hülsing, A., Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S., Gazdag,
S.L., Kampanakis, P., Kölbl, S., Lange, T., Lauridsen, M.M., Mendel, F.,
Niederhagen, R., Rechberger, C., Rijneveld, J., Schwabe, P., Aumasson, J.P.,
Westerbaan, B., Beullens, W.: SPHINCS+. Tech. rep., National Institute of
Standards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/
round-3-submissions

23. Hülsing, A., Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S., Gazdag,
S.L., Kampanakis, P., Kölbl, S., Lange, T., Lauridsen, M.M., Mendel, F.,
Niederhagen, R., Rechberger, C., Rijneveld, J., Schwabe, P., Aumasson, J.P.,
Westerbaan, B., Beullens, W.: SPHINCS+. Tech. rep., National Institute of
Standards and Technology (2022), available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022

24. Hülsing, A., Butin, D., Gazdag, S.L., Rijneveld, J., Mohaisen, A.: XMSS: Extended
Hash-Based Signatures. RFC 8391 (2018)

25. International Electrotechnical Commission (IEC): Functional safety of electri-
cal/electronic/programmable electronic safety-related systems. IEC 61508 (2010)

26. International Organization for Standardization (ISO): Road vehicles - functional
safety. ISO 26262 (2018)

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr02102/tr02102_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr02102/tr02102_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr02102/tr02102_node.html
https://doi.org/https://doi.org/10.1016/j.micpro.2021.104379
https://www.sciencedirect.com/science/article/pii/S0141933121005299
https://www.sciencedirect.com/science/article/pii/S0141933121005299
https://globalplatform.org/specs-library/globalplatform-root-of-trust-definitions-and-requirements/
https://globalplatform.org/specs-library/globalplatform-root-of-trust-definitions-and-requirements/
https://doi.org/10.1016/j.comnet.2020.107343
https://www.sciencedirect.com/science/article/pii/S1389128619314963
https://www.sciencedirect.com/science/article/pii/S1389128619314963
https://doi.org/10.13154/294-7549
https://eprint.iacr.org/2022/405
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

14 J. W. Bos, A. Dima, A. Kiening and J. Renes

27. Kampanakis, P., Panburana, P., Curcio, M., Shroff, C.: Post-quantum hash-based
signatures for secure boot. In: Silicon Valley Cybersecurity Conference. Springer
(2020). https://doi.org/10.1007/978-3-030-72725-3

28. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-quantum
crypto library for the ARM Cortex-M4, https://github.com/mupq/pqm4

29. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: Testing and
Benchmarking NIST PQC on ARM Cortex-M4. Workshop Record of the Second
PQC Standardization Conference (2019), https://cryptojedi.org/papers/#pqm4

30. Kannwischer, M.J., Schwabe, P., Stebila, D., Wiggers, T.: Improving Software
Quality in Cryptography Standardization Projects. In: IEEE European Sympo-
sium on Security and Privacy, EuroS&P 2022 - Workshops, Genoa, Italy,
June 6-10, 2022. pp. 19–30. IEEE Computer Society, Los Alamitos, CA, USA
(2022). https://doi.org/10.1109/EuroSPW55150.2022.00010, https://eprint.iacr.
org/2022/337

31. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–
209 (1987)

32. Lemke, K., Paar, C., Wolf, M.: Embedded security in cars. Springer (2006)

33. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 598–616. Springer, Heidelberg (Dec 2009). https://doi.org/10.1007/978-3-642-
10366-7 35

34. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-29011-4 43

35. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G.,
Stehlé, D., Bai, S.: CRYSTALS-DILITHIUM. Tech. rep., National Institute of
Standards and Technology (2022), available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022

36. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (May / Jun 2010). https://doi.org/10.1007/978-3-642-13190-
5 1

37. Manna, M.L., Perazzo, P., Treccozzi, L., Dini, G.: Assessing the cost
of quantum security for automotive over-the-air updates. In: 2021 IEEE
Symposium on Computers and Communications (ISCC). pp. 1–6 (2021).
https://doi.org/10.1109/ISCC53001.2021.9631426

38. McGrew, D.A., Curcio, M., Fluhrer, S.R.: Hash-Based Signatures. RFC 8554, RFC
Editor (04 2019), https://www.rfc-editor.org/rfc/rfc8554.txt

39. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO’85. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (Aug 1986).
https://doi.org/10.1007/3-540-39799-X 31

40. Moran, B., Tschofenig, H., Birkholz, H., Zandberg, K., Øyvind Rønningstad: A
concise binary object representation (CBOR)-based serialization format for the
software updates for internet of things (SUIT) manifest. Internet-Draft draft-ietf-
suit-manifest-22, Internet Engineering Task Force, https://datatracker.ietf.org/
doc/draft-ietf-suit-manifest/22/, work in Progress

41. Moran, B., Tschofenig, H., Brown, D., Meriac, M.: A firmware update architecture
for internet of things. RFC 9019 (2021). https://doi.org/10.17487/RFC9019, https:
//www.rfc-editor.org/info/rfc9019

https://doi.org/10.1007/978-3-030-72725-3
https://github.com/mupq/pqm4
https://cryptojedi.org/papers/#pqm4
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://eprint.iacr.org/2022/337
https://eprint.iacr.org/2022/337
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1109/ISCC53001.2021.9631426
https://www.rfc-editor.org/rfc/rfc8554.txt
https://doi.org/10.1007/3-540-39799-X_31
https://datatracker.ietf.org/doc/draft-ietf-suit-manifest/22/
https://datatracker.ietf.org/doc/draft-ietf-suit-manifest/22/
https://doi.org/10.17487/RFC9019
https://www.rfc-editor.org/info/rfc9019
https://www.rfc-editor.org/info/rfc9019

Post-Quantum Secure Over-the-Air Update of Automotive Systems 15

42. National Institute of Standards and Technology: Post-quantum cryptography
standardization. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization

43. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-
LWE for any ring and modulus. In: Hatami, H., McKenzie, P., King,
V. (eds.) 49th ACM STOC. pp. 461–473. ACM Press (Jun 2017).
https://doi.org/10.1145/3055399.3055489

44. Pham, M., Xiong, K.: A survey on security attacks and defense techniques
for connected and autonomous vehicles. Computers & Security 109, 102269
(2021). https://doi.org/https://doi.org/10.1016/j.cose.2021.102269, https://www.
sciencedirect.com/science/article/pii/S0167404821000936

45. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2022), available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022

46. Ravi, P., Chattopadhyay, A., Baksi, A.: Side-channel and fault-injection attacks
over lattice-based post-quantum schemes (kyber, dilithium): Survey and new re-
sults. Cryptology ePrint Archive, Report 2022/737 (2022), https://eprint.iacr.org/
2022/737

47. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press
(May 2005). https://doi.org/10.1145/1060590.1060603

48. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the Association for Computing
Machinery 21(2), 120–126 (Feb 1978). https://doi.org/10.1145/359340.359342

49. Secure hash standard. National Institute of Standards and Technology, NIST FIPS
PUB 180-4, U.S. Department of Commerce (Aug 2015)

50. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: 35th FOCS. pp. 124–134. IEEE Computer Society Press (Nov 1994).
https://doi.org/10.1109/SFCS.1994.365700

51. Public Key Cryptography For The Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA). American National Standards Institute
(ANSI), X9.62-1998 (Nov 2015)

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1145/3055399.3055489
https://doi.org/https://doi.org/10.1016/j.cose.2021.102269
https://www.sciencedirect.com/science/article/pii/S0167404821000936
https://www.sciencedirect.com/science/article/pii/S0167404821000936
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2022/737
https://eprint.iacr.org/2022/737
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/359340.359342
https://doi.org/10.1109/SFCS.1994.365700

	Post-Quantum Secure Over-the-Air Update of Automotive Systems

