
Lightweight Authentication of Web Data via Garble-Then-Prove

Xiang Xie
PADO Labs

xiexiangiscas@gmail.com

Kang Yang
State Key Laboratory of Cryptology

yangk@sklc.org

Xiao Wang
Northwestern University

wangxiao@northwestern.edu

Yu Yu
Shanghai Jiao Tong University

yuyu@cs.sjtu.edu.cn

Abstract

Transport Layer Security (TLS) establishes an authenticated and confidential channel to
deliver data for almost all Internet applications. A recent work (Zhang et al., CCS’20) proposed
a protocol to prove the TLS payload to a third party, without any modification of TLS servers,
while ensuring the privacy and originality of the data in the presence of malicious adversaries.
However, it required maliciously secure Two-Party Computation (2PC) for generic circuits,
leading to significant computational and communication overhead.

This paper proposes the garble-then-prove technique to achieve the same security require-
ment without using any heavy mechanism like generic malicious 2PC. Our end-to-end imple-
mentation shows 14× improvement in communication and an order of magnitude improvement
in computation over the state-of-the-art protocol. We also show worldwide performance when
using our protocol to authenticate payload data from Coinbase and Twitter APIs. Finally, we
propose an efficient gadget to privately convert the above authenticated TLS payload to addi-
tively homomorphic commitments so that the properties of the payload can be proven efficiently
using zkSNARKs.

1 Introduction

Transport Layer Security (TLS) [DR08, Res18] is the most widely deployed cryptographic protocol
for secure communication on the Internet. It provides end-to-end security against active attackers
between a client, namely C and a TLS server, namely S. However, if the client wants to use the
TLS payload data in a different application, TLS does not guarantee the originality of the data.
In particular, a malicious client could come up with a valid TLS transcript for any payload of its
choice. The issue stems from the fact that the TLS protocol assumes that both client C and server
S are honest, but in this new setting, the client can be malicious. For most websites, this is solved
by having a user authenticate one website in connection with the other website that needs the
data. Doing so under the client’s authorization allows the two websites to share data directly and
thus ensures no malicious client can break integrity. However, such a solution is not perfect. First,
users are often forced to share more information than needed, e.g., to prove that their credit score
is higher than a threshold, they need to share the score entirely. Second, this solution requires
adding new web infrastructures, which could hinder the deployment, especially when connecting
Web2 data to Web3 applications.

A recent work, DECO [ZMM+20], proposed a solution that does not require any change on the
TLS server side. From a high-level view, they ask a prover P (i.e., a user that intends to prove the
originality of the data) and a verifier V (i.e., a third party) to jointly emulate the computation of
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Region of P Oregon Virginia Milan Singapore Tokyo

Coinbase 1.66 (2.43) 2.85 (4.98) 6.47 (11.9) 6.05 (11.7) 3.94 (7.35)
Twitter 0.94 (1.71) 2.08 (4.10) 5.21 (10.8) 5.78 (11.7) 3.56 (7.12)

Table 1: Performance summary of our protocol. All numbers are reported in seconds, based
on the Coinbase API to query account balance (426-byte query and 5701-byte response) and the
Twitter API to query the number of followers (587-byte query and 894-byte response). Both online
time and total time (in parentheses) are reported. Verifier V is always located at California.

the TLS client C who interacts with S. Since neither P nor V ever holds TLS session keys, their
capability is the same as man-in-the-middle attackers and thus cannot forge a valid TLS transcript
for unauthorized data. In DECO, most of C’s computation is emulated using a maliciously secure
Two-Party Computation (2PC) protocol, which ensures that no derivation from the protocol can
help the malicious party break the privacy or integrity requirement when interacting with S. To
prove statements on the TLS payload, P proves to V the correct decryption of the ciphertext
(to obtain a plaintext) and desired statements on the plaintext using zkSNARKs [Gro10, GW11,
BCCT12, BCTV14].

Generic 2PC protocols in the malicious setting have been studied extensively in the past decade
(e.g., [LP07, NO09, sS11, Bra13, LPSY15]). DECO used an implementation of the authenticated
garbling [WRK17, HSS17, KRRW18, YWZ20], the state-of-the-art malicious 2PC framework that
significantly reduces the overhead compared to the semi-honest counterparts. However, even based
on the latest advances [DILO22, CWYY23], the computation and communication cost of maliciously
secure 2PC is still much higher than its semi-honest counterparts. Moreover, these protocols with
malicious security often require storing preprocessed authenticated triples, thus incurring a huge
memory overhead. The complexity of the maliciously secure protocol also makes it difficult to
implement and deploy such a protocol. As a result, the DECO protocol still requires 475 MB of
communication to authenticate a 2KB-sized payload via TLS and more than 50 seconds to finish
under a WAN network.

1.1 Our Contribution

In this paper, we design a new protocol for web-data authentication to third parties with improved
efficiency. We propose the garble-then-prove technique that can realize a special class of two-party
computation functionalities against malicious adversaries, with almost no overhead compared to
their semi-honest counterparts. We elaborate on our key concepts and contributions below and
refer to Section 3 for an overview of our core techniques.

Eliminating malicious 2PC via garble-then-prove. We avoid the use of maliciously secure
2PC, as a result of deeply understanding the features of authenticating web data in TLS. We observe
that since V is the verifier, the security requirements for V and the prover P differ in many ways.
During the secure TLS emulation, a corrupted V shall not learn the session keys as it immediately
reveals P’s private input; however, we can tolerate a corrupted P learning some information about
the session keys: since V does not have long-term secrets, the damage is remediable. We only
require P’s cheating behavior to be identifiable by V later. After the completion of the joint TLS
emulation, all of V’s shares of the TLS secrets can be opened to P since P can no longer alter the
TLS protocol. Simply put, our security requirement is as below: P and V start with inputs xP and
xV respectively and shall get outputs yP , yV such that (yP , yV) = f(xP , xV) for some two-output
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function f . If P cheats, it can replace the function to one of its own choice but V cannot cheat
in any way. During the checking phase, P will be given xV and V should be notified if P cheated
during the evaluation phase.

To accomplish this task, P first sends V a garbled circuit for f ; they also use an OT with
malicious security to let V get garbled labels on its input. Two parties then can obtain their
outputs but there is no way to ensure correctness. For that, we ask P to commit to V its input xP
and output yP . Now, V has shares xV , yV and commitments of xP , yP . After P gets xV , thus also yV ,
P can use a Zero-Knowledge (ZK) protocol to prove that (yP , yV) = f(xP , xV) w.r.t. the committed
values. P could launch a selective failure attack on xV (leaking one-bit of information), but it is
meaningless since xV is always given to P in the proving phase. For obvious reasons, we refer to this
technique as garble-then-prove. This technique can be also applied in, e.g., QUIC [CDH+16, IT21],
OAuth [Har12] and OpenID Connect [SBJ+14], to authenticate web data.

TLS-specific protocol optimization. Building on the above idea, we further optimize other
TLS building blocks in various ways. For example, we show how to carefully select values to
reveal, without providing any party an extra capacity, during the derivation of TLS session keys,
leading to a more than 2-fold reduction in handshake circuit size. We also pull the computation of
the Galois Message Authentication Code (GMAC) tags out of circuits and instead use Oblivious
Linear Evaluation with errors (OLEe) 1 to compute additive sharings of the powers of a random
element needed for GMAC, reducing the cost of GMAC computation by more than two orders of
magnitude. Doing so would allow the adversary to gain one bit of information of the TLS session
key, but that would not reduce the overall concrete security, for a reason similar to prior works,
e.g., [KOS15, YWZ20].

Efficient commitment conversion. To prove statements on the TLS data using zkSNARKs,
DECO embeds the TLS ciphertext into the statements and then proves in ZK the correctness
of decryption. For our protocol, we use the recent vector OLE (VOLE) based interactive zero-
knowledge proofs [WYKW21, DIO21, BMRS21, YSWW21] during the garble-then-prove execution.
This means that at the end of the protocol, two parties hold information-theoretic MACs (IT-MACs)
on each bit of the query and response involved in the TLS. One could prove statements using
VOLE-based ZK proofs or, alternatively, convert them to commitments friendly to zkSNARKs.
First, we convert IT-MACs over F2 to IT-MACs over Fq, ensuring the values are consistent. This
protocol can be viewed as a special version of zero-knowledge via garbled-circuit protocol [JKO13]
over garbling of Boolean-to-arithmetic identity gates [BMR16]. This makes the cost conversion
in the malicious case almost the same as the semi-honest setting. Then we convert arithmetic
IT-MACs to zkSNARK-friendly commitments, which can be achieved with high efficiency, since
both representations are additive-homomorphic. In this way, without using zkSNARKs, we can
convert the plaintext query and response to additively homomorphic commitments, which can then
be connected to various zkSNARKs, e.g., [CFQ19, CHM+20, CFF+21].

Full-fledged implementation. We implemented our protocol and report detailed performance in
Section 6. Our protocol outperforms DECO by more than an order of magnitude: 14× improvement
in communication and 7.5× to 15× improvements in running time. We also push through the last
mile to connect our implementation with real-world APIs connected via TLS. In Section 6.3, we
include two examples of using our protocol to authenticate API results from Coinbase and Twitter.
We report the performance when the prover is located in 18 cities worldwide with various network
conditions. We also show a summary of the performance in Table 1, where we can see that the

1OLEe provides a weaker security in which the malicious party can introduce an error into the OLE output, but
it can be generated more efficiently.
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whole protocol only takes around 7 seconds (4 seconds of online time) when a user in Tokyo proving
to a verifier in California about its Coinbase/Twitter API payload.

2 Preliminaries

We describe the TLS building blocks and model the security of authenticating web data. The
necessary cryptographic preliminaries to comprehend our protocol are described in Section A.

Notation. We use λ to denote the computational security parameter. We use x ← S to denote
that sampling x uniformly at random from a finite set S. For an algorithm A, we use y ← A(x)
to denote the operation of running A on input x and setting y as the output. We will use bold
lower-case letters like x for column vectors, and denote by xi the i-th component of x with x1 the
first entry. For a, b ∈ N, we write [a, b] = {a, . . . , b}. We write F2λ

∼= F2[X]/f(X) for some monic,
irreducible polynomial f(X) of degree λ. Depending on the context, we use {0, 1}λ, (F2)

λ and F2λ

interchangeably, and thus addition in (F2)
λ and F2λ corresponds to XOR in {0, 1}λ and a string

a ∈ {0, 1}λ is also a vector in (F2)
λ. For a bit-string x, we use lsb(x) to denote the least significant

bit of x. For a prime p, we denote by Zp a finite field.
We use [x]p = (xP , xV) to denote an additive secret sharing of x over Zp between P and V

holding xP and xV respectively. When the field is F2128 , we denote by [x]2128 . For details of
additive secret sharings, we refer to the reader for Section A.2. Let [[x]] = (x,M[x],K[x]) be an
Information-Theoretic Message Authentication Code (IT-MAC) such that M[x] = K[x] + x · ∆,
where the message x and MAC tag M[x] are held by a party P, and keys K[x],∆ are obtained by
another party V. We give more details of IT-MACs in Section A.3.

2.1 TLS Building Blocks

Transport Layer Security (TLS) is a family of protocols that guarantee privacy and integrity of data
between a client C and a server S. It consists of two protocols: (a) the handshake protocol in which
handshake secrets are established and the secrets are in turn used to generate application keys;
(b) the record protocol where data is transmitted with confidentiality and integrity via encrypting
and authenticating the data with the application keys. Our protocol focuses on authenticating web
data for TLS 1.2 [DR08], and is able to be extended to TLS 1.3 [Res18] that is shown in Section 5.3,
where both of TLS 1.2 and TLS 1.3 adopt HMAC to derive secrets and keys. 2 While TLS provides
different modes, we focus on the following most popular modes:

ECDHE RSA AES128 GCM SHA256

ECDHE ECDSA AES128 GCM SHA256,

where the hash function H is instantiated by SHA256, and a stateful Authenticated Encryption with
Associated Data (AEAD) scheme is instantiated by AES128 in the GCM mode. ECDHE adopts the
elliptic-curve Diffie-Hellman (DH) key exchange protocol to establish ephemeral secrets.

Our protocol is easy to be extended to support that AEAD scheme is instantiated by AES256 GCM
and H is replaced with SHA384, and also allows one to use other digital signature (e.g., DSA). Be-
sides, our protocol can be straightforwardly extended to support ECDH in which the server uses
a static DH value (rather than an ephemeral DH value). We did not optimize our protocol to
realize the CBC mode in TLS 1.2, since this mode has been demonstrated to be vulnerable to
the timing attack against several TLS implementations [AP13], and the GCM mode is preferred

2For now, about 77%∼79% websites use TLS 1.2, while about 9%∼20% websites adopt TLS 1.3 [tlsa].
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over CBC [tlsb]. In addition, TLS 1.3 did not support the CBC mode any more. Our garble-then-
prove approach can be also generalized to other modes such as CHACHA20 POLY1305 SHA256 and
AES128 CCM SHA256. In Section A, we describe the TLS 1.2 protocol in detail. Below, we describe
several key building blocks used in the TLS protocol.

HMAC. Given a key k and a message m as input, the well-known pseudo-random function HMAC
is defined as follows:

HMAC(k,m) = H(k ⊕ opad,H(k ⊕ ipad,m)),

where opad and ipad are two public strings with length of 512 bits (i.e., the repeated bytes of
0x36 and 0x5C respectively). Here we always assume that k has at most 512 bits, which is the
case for TLS. When the bit-length of k is less than 512, it will be padded with 0 to achieve 512
bits. As described above, we focus on considering that H is instantiated by SHA256. In particular,
SHA256 adopts the Merkle-Damg̊ard structure with block size of 512 bits, and uses fH as the one-
way compression function with output length of 256 bits. For example, H(m1,m2) is computed as
fH(fH(IV0 ,m1),m2) where m1,m2 ∈ {0, 1}512 and IV0 is a fixed initial vector.

Key derivation. Here we focus on the Pseudo-Random Function (PRF) in TLS 1.2 [DR08], where
the PRF is used to derive handshake secrets and application keys and adopts HMAC as its core.
TLS 1.3 [Res18] adopts the HKDF function [Kra10, KE10] as its key derivation function, where
this function is also based on HMAC. We refer the reader to Section 5.3 for the details of HKDF.
Specifically, the PRF function with output length ℓ in TLS 1.2 is defined below:

PRFℓ(key, label,msg) = HMAC(key,M1∥label∥msg) ∥ · · · ∥HMAC(key,Mn−1∥label∥msg) ∥
Truncm(HMAC(key,Mn∥label∥msg)),

where n = ⌈ℓ/256⌉, m = ℓ − 256 · (n − 1), M1 = HMAC (k, label∥msg) and Mi+1 = HMAC(k,Mi)
for i ∈ [1, n− 1]. For a bit-string x, Truncm(x) denotes truncating x to the leftest m bits.

Stateful AEAD scheme. The TLS protocol adopts a stateful AEAD scheme (stE.Enc, stE.Dec) to
encrypt/decrypt messages in the handshake and record layers. The encryption algorithm stE.Enc(key,
ℓc,h,M, ste) takes as input a secret key key, a target ciphertext length ℓc, a header h, a message
M and a state ste, and outputs a ciphertext ct. The decryption algorithm stE.Dec(key,h,ct, std)
takes as input key, a header h, a ciphertext ct and a state std, and outputs a plaintext M or a
special symbol ⊥ indicating that the ciphertext is invalid. When the AEAD scheme is instantiated
by AES128 GCM, stE.Enc(key, ℓc,h,M, ste) has the following steps:

1. Compute z0 := AES(key, ste) and update ste := ste + 1.

2. Suppose M is padded as (m1, . . . ,mn) with mi ∈ {0, 1}128. From i = 1 to n, compute zi :=
AES(key, ste) and ci := zi ⊕mi and update ste := ste + 1. Set C := (c1, . . . ,cn).

3. Suppose that the header h has been padded as an element in F2128 . Let ℓh be the bit length of h.
Given a vector X ∈ (F2128)

m, the GHASH polynomial ΦX : F2128 → F2128 is defined as ΦX(h) =∑m
i=1Xi · hm−i+1 ∈ F2128 . Compute h := AES(key,0) and a GMAC tag σ := z0⊕Φ(h,C,ℓh,ℓc)(h).

4. Output ct = (C, σ).

Algorithm stE.Dec(key,h,ct, std) has the same steps as stE.Enc, except for the following differences:

• Parse ct as (C, σ) and C as (c1, . . . ,cn). Compute mi := zi ⊕ ci for i ∈ [1, n] and set M =
(m1, . . . ,mn).

• Compute a tag σ′ as described above and check σ = σ′.

• If the check passes, output M. Otherwise, output ⊥.
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Functionality FAuthData

This functionality interacts with a prover P, a verifier V, a server S and an adversary.

• Upon receiving (sid,Query, α,S) from P and (sid, Query) from V, where sid is a session identifier,
Query is a query template and α is a private input for Query,

1. Compute a query Q := Query(α), and then send a pair (sid, Q) to S.
2. Receive a response (sid, R) from S and then store a tuple (sid, Q,R).

3. Send (sid, |Q|, |R|,S) to the adversary.

• Upon receiving (commit, sid, cid) from P, where cid is a fresh commitment identifier, if a tuple
(sid, Q,R) was previously stored, update it as (sid, cid, Q,R), and send (committed, sid, cid) to V and
the adversary.

• Output (sid, cid, Q,R) to P and (sid, cid,S) to V.

Figure 1: Functionality for authenticating web data.

2.2 Security Model and Functionalities

We provide an overview of the standard ideal/real model [Can00, Gol04] as well as the definitions
of ideal functionalities for Oblivious Transfer (OT), OLEe and commitments in Section A.1. We
also describe the definition of ideal functionality for interactive ZK proofs based on IT-MACs in
Section A.4.

Functionality for authenticating web data. We model the security of authenticating web data
by giving an ideal functionality. In this setting, we have three roles: a prover P, a verifier V and
a TLS server S, where P and V jointly play the role of the client to interact with the server S.
Prover P has data stored on the server, and intends to prove to V about properties of the data,
without any modification to the TLS server. At a high level, the protocols to authenticate web
data will involve the following steps performed in a secure and distributed way:

1. P and V (on behalf of the client) run the TLS protocol with S to establish an authenticated
and confidential channel.

2. Under the secure channel, P sends a query Q to S and receives a response R from S.
3. P sends the commitment of (Q,R) to V, and convinces V that the commitment is correct on a

valid pair (Q,R).

4. Given (Q,R) and its commitment, P can prove in zero knowledge to V that (Q,R) satisfies some
statement.

In this paper, we focus on constructing a secure protocol to realize the first three steps. The final
step can be realized using a variety of zero-knowledge proofs such as zk-SNARKs [Gro10, GW11,
BCCT12]. In this setting, the server S is always honest to run the protocol, 3 and so the security
only needs to be guaranteed when either P or V is corrupted. For adversarial model, we consider
a static, malicious adversary A who can corrupt one of P and V and may deviate the protocol
arbitrarily. The ideal functionality for authenticating web data is defined in Figure 1, and builds
upon the definition of the oracle functionality in [ZMM+20]. Following an example in [ZMM+20], a
query template could be Query(α) = “stock price of GOOG on June 1st, 2023 with API key = α”.

Functionality FAuthData (shown in Figure 1) implies the following security properties, where
similar properties were described in DECO [ZMM+20].

3We do not require any server-side modification or cooperation.
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Handshake Protocol

rC ← {0, 1}256, reqC := rC
reqC rS ← {0, 1}256, tS ← Zq

TS := tS ·G
σS ← Sign(skS , rC∥rS∥TS)

Verify certS and σS
resS resS := (rS , TS , certS , σS)

tC ← Zq

TC := tC ·G

pms := Fx(tC · TS) resC := TC pms := Fx(tS · TC)

(ms, keyC , stC , keyS , stS)← Derive(pms)

τC := H(reqC ,resS ,resC)

ufinC := PRF96(ms,PublicStr∥τC)

finC ← stE.Enc(keyC ,ufinC , stC)
(hC , finC) ufinC ← stE.Dec(keyC , finC , stC)

Check ufinC

τS := H(reqC ,resS ,resC ,ufinC)

ufinS := PRF96(ms,PublicStr∥τS)

ufinS ← stE.Dec(keyS , finS , stS)
(hS , finS) finS ← stE.Enc(keyS ,ufinS , stS)

Check ufinS

Record Protocol

encQ ← stE.Enc(keyC , Q, stC)
(hQ,encQ) Q← stE.Dec(keyC ,encQ, stC)

R← stE.Dec(keyS ,encR, stS)
(hR,encR) encR ← stE.Enc(keyS , R, stS)

Figure 2: Graphical depiction of TLS. PublicStr refers to strings defined in the TLS specification. HC ,
HS , HQ and HR are public metadata headers defined by the TLS specification. Some details are omitted.

• Prover-integrity : A malicious prover P cannot cause the query and response, whose commitments
are sent to an honest verifier V, to be inconsistent from that received or sent by the server S.

• Verifier-integrity : A malicious verifier V cannot cause P to receive an incorrect response, i.e., if
P outputs (Q,R), R must be S’s response to the query Q sent by P.

• Privacy : A malicious verifier V cannot learn any information on query Q and response R, except
for the public information (|Q|, |R|,Query) and which server S is accessed.

In the ideal world, all channels between honest parties and functionality FAuthData are confidential
and authenticated. This guarantees the privacy of secret values Q,R. As in [ZMM+20], we always
consider that the length of a query |Q|, the length of a response |R| and the name of a server S are
known by the adversary. We use an identifier cid to represent a commitment on the query Q and
responseR. From the definition of FAuthData, we have that the query-response pair (Q,R) committed
by FAuthData are always consistent. The adversary who corrupts P can only get an identifier cid and
has no way to tamper the values committed, which guarantees the prover-integrity. The honest
prover P will always output a response R from FAuthData, which is consistent with Q. Thus, the
adversary who corrupts V cannot make the honest prover receive an inconsistent response, which
guarantees the verifier-integrity.
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3 Technical Overview

Third-party authentication of TLS payload could be achieved using a malicious 2PC protocol with
a high overhead [ZMM+20]. Our key technique is to first garble and evaluate circuits, and then
prove the correctness of the resulting outputs in zero-knowledge. This enables us to use lightweight
MPC building blocks, i.e., plain Two-Party Computation protocols based on Garbled Circuits
(GC-2PC) that are the same as semi-honest protocols [Yao86, ZRE15, RR21] except for using ma-
licious OT instead of semi-honest OT, and the recent VOLE-based interactive zero-knowledge (IZK)
proofs [WYKW21, DIO21, BMRS21]. Our garble-then-prove technique can be used to authenti-
cate web data for TLS, and may also be of independent interest for other applications in which all
secrets are able to be known by a prover at the end, e.g., authenticating data from protocols like
QUIC [CDH+16, IT21], OAuth [Har12] and OpenID Connect [SBJ+14].

We also present a technique to convert from IT-MACs to additively homomorphic commitments
that are friendly to zkSNARKs. This technique could also be used in other applications such as
zero-knowledge machine learning [WYX+21]. Through the TLS application, we give an overview
of these techniques. Furthermore, we provide several tailored optimizations to further improve the
efficiency, based on the details of the TLS protocol. To help better understand our protocol, we
first give a detailed overview of the TLS protocol.

3.1 An Overview of the TLS Protocol

In Figure 2, we provide a pictorial overview, and show complete details in Figures 11 and 12 of
Section A. The protocol is executed between a TLS client (C) and a TLS server (S). It can be
roughly divided into 4 phases:

• Phase 1: pre-master secret. C samples a random nonce rC ← {0, 1}256, and then sends
reqC = rC to S. Then, S samples a random nonce rS ∈ {0, 1}256, a random element tS ∈ Zq,
and computes a group element TS := tS ·G. S sends back resS = (rS , tS , certS , σS), where certS
is a certification and σS is a signature on (rC , rS , TS). To finish the key-exchange protocol, C
sends back a random group element TC := tC ·G. Now both parties agree on a pre-master secret
pms = Fx(tC · TS) = Fx(tS · TC), where Fx is a function mapping an elliptic-curve point to its
x-coordinate.

• Phase 2: TLS session keys. With pms, C and S compute a master secret ms := PRF384(pms,
“master secret”, rC∥rS). Then, both parties compute a tuple (keyC , IVC , keyS , IVS ) := PRF448(ms,
“key expansion”, rS∥rC), where keyC , keyS ∈ {0, 1}128 are two application keys and IVC , IVS ∈
{0, 1}96 are the initial states stC , stS of AEAD encryption. In Figure 2, we refer to the whole
process as Derive.

• Phase 3: Finished messages. Two parties exchange test messages, which have already been
known by them, over the established AEAD-encrypted channel. The client’s message is ufinC =
PRF96(ms, “client finished”, τC), where τC is the hash of the TLS transcripts so far. C sends the
AEAD ciphertext finC of this message, which is encrypted with keyC and stC , to S. The server
decrypts finC and checks if ufinC is correct based on the same session key and values. Then S
sends back a similarly encrypted message, and C checks its correctness.

• Phase 4: Exchange payload. Finally, two parties exchange their application payload. The
exact process is essentially the same as Phase 3, with updated states for AEAD (based on AES-
GCM), except that now the underlying payload is provided by the client and server based on the
application. This phase could exchange several rounds of payload, depending on the application.
In Figure 2, we only show one round of payload for simplicity. The following technical overview
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focuses on the one-round case, and our protocol can be extended to support multiple rounds of
payload (see Section 5.2 for details).

3.2 Our Protocol Design

Now we introduce high-level ideas of our protocol based on the key observations described in
Section 1.1. When describing our protocol, we use a prover P and a verifier V, who jointly emulate
C, the TLS client.

3.2.1 Phase 1: Generating pre-master secret

The process of generating pre-master secret pms in TLS is essentially a Diffie-Hellman (DH) key
exchange. Since neither P nor V can know the outcome, they need to jointly emulate the TLS
client. The first round of interaction of messages (reqC ,resS) can be done by P alone without
V. The message resC and DH secret needs to be distributively computed by P and V. In more
detail, P and V pick tP ← Zq, and tV ← Zq respectively; V sends tV · G to P, who defines
resC := (tP + tV) · G and sends it to the server. In particular, P and V have an additive secret
sharing (i.e., tP · TS and tV · TS) of the DH secret (tP + tV) · TS . The above step is similar to
the previous protocols [ZMM+20, TLS23], who then use a fully secure multiplicative-to-additive
conversion protocol, a.k.a, Oblivious Linear Evaluation (OLE), to convert an additive sharing of
the EC point (tP + tV) · TS to an additive sharing of its x-coordinate (i.e., pms).

Obtaining fully secure OLE is often expensive and requires tailored zero-knowledge proofs or
excessive communication. However, in this particular setting, we show that an OLE with error
(OLEe), where the error could even depend on parties’ inputs, is already sufficient. Such an OLEe
can be efficiently computed using log q correlated OTs without the need of any extra checks. This
would lead to one-bit information leakage about pms to the adversary who corrupts the prover
P. However, due to the TLS protocol, pms is of high entropy and we can show that such leakage
does not help the adversary in guessing the whole secret pms. Intuitively, such an error could only
lead to the selective-failure attack, which allows the adversary to guess c bits of the secret with
probability 2−c, but if the guess is incorrect the protocol execution aborts. Such an attack does not
reduce concrete security since the adversary could bet on c bits of the secret too. A similar analysis
has already been used in designing maliciously secure protocols (e.g., [KOS15, CDE+18, YWZ20]).

3.2.2 Phase 2: Deriving TLS session keys

Now P and V hold an additive secret sharing of pms and need to derive additive sharings of TLS ses-
sion keys using PRF based on HMAC-SHA256. This is the most expensive part for TLS handshake
in DECO, who implemented this step using a fully malicious 2PC protocol to compute a circuit
containing 779,213 AND gates. We show how to achieve a 16× improvement in communication.

Eliminating malicious 2PC via garble-then-prove. We observe that using a fully malicious
2PC is a complete overkill for applications that allow a verifier to reveal all its secrets to a prover
later (e.g., authenticating web data for TLS). In our protocol, we use a plain GC-2PC protocol
with malicious OT between P and V to jointly derive session keys. In more detail, P is the circuit
garbler and V is the circuit evaluator. Any value that needs to be revealed to both parties is
revealed to V first (by letting P send the decoding information to V), who sends back the value
to P. In this way, V cannot break the privacy requirement of the function being computed (but
can still change the output, which can be detected later). However, a malicious P can cheat in
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a seemingly catastrophic way: a malicious P could change a Garbled Circuit (GC) to control the
output to be anything (could even be pms or something that can help P recover pms).

As we discussed in the main philosophy, instead of preventing P from cheating, we ensure that
P’s cheating behavior can be caught by V in hindsight. In more detail, we ask P to also commit
to V its input, i.e., P’s share of pms. Since we reveal the value to two parties by V getting it first,
P’s cheating behavior is “well-defined”: V has its own share of pms, the commitment of the other
share of pms, and the output of the GC that P garbled. If we later reveal V’s secret to P after
the TLS protocol terminates, P has all secrets (in particular, P knows V’s share of pms) and can
use a ZK protocol to prove that all outputs obtained by V are correct. We emphasize that P does
not prove the correctness of the GC, and thus we are using GC in a black-box way. In conclusion,
although V does not have a guarantee on P’s honesty during the protocol execution, V can detect
any cheating in hindsight as long as the GC output is first revealed to V.

This optimization alone significantly reduces the overhead of the protocol as it eliminates the
need of a malicious 2PC protocol, which is expensive in computation/communication but also
requires memory linear to the circuit size to store the preprocessing triples. We formally model
the 2PC with garble-then-prove approach as an ideal functionality FGP2PC shown in Section 4.1,
and show how to instantiate FGP2PC using plain GC-2PC with malicious OT and interactive ZK,
which is described in Section 4.2. The 2PC protocol with garble-then-prove approach may be of
independent interest, and may be applied in other scenarios such that all V’s secrets are allowed to
be revealed to P at the end.

TLS-specific circuit optimization. Our second optimization is to minimize the circuit to be
computed in the protocol above. By using unique features of how session keys are derived in TLS,
we are able to reduce the circuit size from 779,213 to 289,827 AND gates, a 2.7× improvement.
Let’s look at master secret ms as an example, which has a 384-bit output. The exact derivation
formula is as follows:

V = “master secret”∥rC∥rS ∈ {0, 1}592,
M1 = HMAC(pms, V ) ∈ {0, 1}256,
M2 = HMAC(pms,M1) ∈ {0, 1}256,
ms = HMAC(pms,M1∥V )∥Trunc128

(
HMAC(pms,M2∥V )

)
.

In the above equation, HMAC(k,m) = SHA256(k⊕opad, SHA256(k⊕ipad,m)), and that SHA256(m1,
m2,m3) = fH(fH(fH(IV 0, m1),m2),m3) where mi’s are 512-bit strings. To compute an HMAC-
SHA256, we need at least 4 SHA256 compress calls: 2 calls to compute the outer hash and at least
2 calls to compute the inner hash; if m is longer than 447 bits, the inner hash requires even more
calls.

Although there are totally 19 SHA256 compression calls to derive ms, we found that only 6 of
them need to be computed in GC-2PC. First, IV 1 = fH(IV 0, pms⊕ ipad) and IV 2 = fH(IV 0, pms⊕
opad) only need to be computed once in GC-2PC and they can be kept as garbled labels to be
reused in all HMAC computation. Second, the messages to all HMAC are public, which can be used
for optimization: we reveal the value IV 1 while keeping IV 2 secret, so that subsequent computation
taking IV 1 and the message can be done locally. We show the exact computation as follows:

M1 = fH
(
fH(IV 0, pms⊕ opad), fH(fH(fH(IV 0, pms⊕ ipad),m1),m2)

)
M2 = fH

(
fH(IV 0, pms⊕ opad), fH(fH(IV 0, pms⊕ ipad),M1)

)
ms = fH

(
fH(IV 0, pms⊕ opad), fH(fH(fH(IV 0, pms⊕ ipad),M1∥V1), V2)

)
∥

Trunc128
(
fH

(
fH(IV 0, pms⊕ opad), fH(fH(fH(IV 0, pms⊕ ipad),M2∥V1), V2)

))
,
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where red refers to computation in GC-2PC, green refers to local computation, and blue refers
to reused values. In the above equations, (m1,m2) and (V1, V2) are the bit-strings about V when
suitably padding V to specific bits. The process of deriving (keyC , IVC , keyS , IVS ) is very similar
to the above and also takes 6 SHA256 compression calls. Later, computing ufinC takes another
2 compression calls in GC-2PC. As a result, the whole circuit computing all needed HMAC takes
289,827 AND gates. This optimization is secure in the random oracle model (see Section E for
details).

3.2.3 Phase 3: Finished messages

Using a similar protocol, we compute (ufinC , ufinS) and reveal them to both parties. 4 Now the
main task is to perform AEAD encryption/decryption on public plaintext/ciphertext and secretly
shared AEAD keys. Our focus in this paper is AES-GCM (see Section 2.1 for a quick recall of
the scheme), which is the main scheme used over the Internet right now. We take distributedly
performing AEAD encryption as an example, and performing AEAD decryption is totally similar.
Note that DECO mainly supports CBC-HMAC and could support AES-GCM by computing in
a Boolean circuit all ciphertext blocks ci’s and powers hi’s using a fully malicious 2PC, where
ci = AES(key, st+ i)⊕mi for a state st and a plaintext mi, h = AES(key,0) and key ∈ {keyC , keyS}
is an application key. By revealing ci to both parties while only revealing an additive sharing of hi,
P and V can compute an additive sharing of the GMAC tag locally. This method can be very costly
since it requires securely computing a number of finite field multiplications equal to the number of
AES calls. What’s more, the circuit to compute a multiplication over F2128 has at least 8,765 AND
gates, even larger than the AES circuit itself!

AES-GCM computation consists of two tasks: computing the ciphertext and computing the
GMAC tag. The first task is relatively easy as we can use the garble-then-prove approach again to
avoid malicious 2PC, where the plaintext is known by both parties in this phase. However, com-
puting the GMAC tag is more complicated. Roughly speaking, the GMAC tag is an inner product
between a public vector over F2128 and a private vector (z0, h

1, . . . , hn) where z0 = AES(key, st)
is shared by both parties. Revealing any term in the second vector would allow the adversary to
forge a GMAC tag on any message of its choice. Computing z0 can be done in GC-2PC; however,
since we reveal the additive shares of z0, meaning that the output is not well defined from V’s
perspective, the garble-then-prove approach does not immediately work. To solve this issue, we
ask P to commit to its share of z0. After the completion of the TLS protocol, when P knows all
secrets, P will prove the computation with respect to the above commitment. To avoid computing
hi in circuits, we also reveal the additive shares of h together with z0. Then two parties use an
OLEe over F2128 to compute additive sharings on all powers of h. This way, each term only needs
2KB communication, 100× smaller than computing in GC-2PC! Similar to the use of OLEe in
phase 1, this also introduces a chance of a selective failure attack; however, it can be easily shown
that providing multiple chances of selective failure attacks does not provide any more power to the
adversary.

3.2.4 Phase 4: Payload

This phase is the first time P provides a private input (namely the query string) that is not part
of the TLS execution. The overall protocol is similar to phase 3 how we compute the finished
messages, except that the plaintext to AES-GCM-based AEAD is not public anymore. Therefore,

4 We could postpone the verification of ufinS to the phase in which P obtains all secrets and then can locally
check ufinS . This optimization removes the GC-2PC to compute ufinS (see Section 5.2 for more details).
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we can mostly follow the phase-3 protocol except that P XOR its query to the additive share of
AES output, and then sends the resulting value to V. In this way, V can obtain the ciphertext
directly by XORing the resulting value with its additive share.

After obtaining the AEAD cihertexts encQ and encR on the query Q and response R from P,
V opens tV ∈ Zq to P, who can replay the whole TLS protocol to obtain all values computed in
GC-2PC. At this point, V holds 1) the commitment to P’s share of pms; 2) the commitments to all
values revealed from GC-2PC as XOR shares of AES outputs; 3) the values revealed from GC-2PC
to both parties. Now P can prove to V in zero-knowledge that the whole computation is correct with
respect to the commitments and values that V has. The circuit proven in ZK includes 1) the circuit
computed in GC-2PC and 2) the decryption of the ciphertext to the response. However, the cost of
ZK is significantly smaller than GC-2PC: when using the latest VOLE-based ZK [YSWW21], the
communication of ZK is only 1 bit per AND gate, compared to 256 bits per AND gate required by
the GC-2PC protocol [ZRE15]. During the process of ZK, P also needs to commit to the plaintext
of the query and response to prove AEAD computation. They will be converted to a ZK-friendly
format in the next phase.

3.2.5 Converting to ZK-Friendly Commitments

Now V has commitments of the query Q and response R that P knows. Their correctness has
been verified by V through VOLE-based ZK. Such commitments are instantiated by IT-MACs and
denoted by [[u]] = ([[u1]], . . . , [[uℓ]]), where for each i ∈ [1, ℓ], ui ∈ {0, 1}, (ui,M[ui]) is obtained by P
and (K[ui],∆) is held by V.

We first convert the IT-MACs from binary field F2λ to a large field Zq for a prime q. Let

H : {0, 1}λ → Zq be a random oracle. For each component ui, V computes K̃[ui] := H(K[ui]) and

sends Wi := H(K[ui])− H(K[ui]⊕∆) + Γ ∈ Zq to P, who computes M̃[ui] := H(M[ui]) + ui ·Wi =

K̃[ui] + ui · Γ, where Γ ∈ Zq is a uniform global key known to V. We also ask P to commit to
(Q,R) using an additively homomorphic commitment (e.g., Pedersen [Ped92] and KZG [KZG10])
that is friendly to zkSNARKs. To check consistency between IT-MACs over Zq and additively
homomorphic commitments, we reveal a random linear combination of the values committed in
two formats, where the random challenges are chosen by V.

There are several extra considerations. First, the random linear combination would lead to
some leakage, so both parties need to generate one more random value committed in both formats
to mask the linear combination before it is revealed. Two commitments of the random value only
need to be consistent in the honest case. Second, the values {Wi} may not be computed correctly
and thus after P opens the linear combination, V needs to open the values {Wi} by revealing ∆ and
Γ, so that P can check that all values are computed correctly. Finally, the final check does not need
to be done over bits but any packing of the values. This could significantly reduce the number of
additively homomorphic commitments. In addition, two additional checks need to be performed to
prevent the possible privacy leakage on u by using inconsistent ∆ and Γ. See Section C for details.

3.3 Protocol Summary

Previous discussions provide a high-level intuition on how we design the protocol. However, partially
due to the complexity of TLS, the whole protocol is very complicated. Below, we provide a summary
of the whole protocol omitting the details when considering the optimization shown in Footnote 4.
The exact details of our protocol, along with the proof of security, can be found in Section 5 and
related appendices.

1. P samples and sends reqC to S and gets back resS .
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2. P forwards (reqC ,resS) to V, who sends tV ·G to P. Then P picks tP and sends (tP + tV) ·G
to S. Then P and V run the conversion from an elliptic-curve point to its x-coordinate, based
on OLE with errors, so that two parties obtain an additive sharing of pms.

3. Two parties run the GC-2PC protocol with the garble-then-prove technique to derive the key
material and client finished message. In particular, they obtain: 1) XOR shares of hC =
AES(keyC ,0) and zC = AES(keyC , stC); 2) initial vectors IVC , IVS , intermediate public val-
ues revealed in HMAC-based PRF, ufinC and its AES encryption; 3) pms,ms, keyS , keyC in the
form of garbled labels.

4. Based on OLEe over F2128 , P and V compute the GMAC tag with these XOR shares on (hC , zC)
in the offline-online mode. Then P assembles finC and sends it to the server S. After receiving
finS from S, P forwards it to V.

5. P and V execute the GC-2PC protocol with the garble-then-prove approach to generate the AES
ciphertext that encrypts P’s query and XOR shares of an AES output zQ = AES(keyC , stC +2).
Both parties use OLEe and the XOR shares on (hC , zQ) to compute the GMAC tag, and then P
sends the AEAD ciphertext encQ on the query Q to S. Then, S returns the AEAD ciphertext
encR on the response R to P, who forwards it to V.

6. P reveals its XOR shares of hC , zC , zQ to V, who can recover hC , zC , zQ and then use them to
locally verify the correctness of AEAD ciphertexts finC and encQ. Besides, encR can also be
locally verified by revealing the corresponding AES outputs to V.

7. V sends tV to P who checks that it is consistent with tV · G received earlier. P then computes
tP + tV , and recovers all values in the execution of TLS, including all values revealed previously.
If any value is incorrect, P aborts.

8. V now holds commitments to P’s share of pms and values revealed as XOR shares earlier. P
proves to V in zero-knowledge that these commitments are consistent with the values revealed
to V based on the TLS specification.

9. Two parties run a protocol to convert the commitments on Q and R based on IT-MACs to
additively homomorphic commitments like Pedersen on the same values.

4 Secure 2PC Protocol via Garble-Then-Prove

In this section, we first present the formal definition of ideal functionality for 2PC via garble-then-
prove. Then, we describe an efficient protocol to securely realize the ideal functionality, based on a
plain Garbled-Circuit-based Two-Party Computation (GC-2PC) protocol with malicious OT and
a ZK protocol based on IT-MACs. In Section D.1, we give the definition of garbling schemes.

4.1 Functionality for Garble-Then-Prove

In Figure 3, we give the detailed definition of ideal functionality FGP2PC in the garble-then-prove
framework. In particular, the input, eval, output commands model the security of a plain Garbled-
Circuit-based secure Two-Party Computation (GC-2PC) protocol, and the commit, prove commands
abstract the security of ZK proofs. In the real protocol execution, P plays the role of the garbler
and prover, while V acts as the evaluator and verifier. After a GC-2PC protocol execution, we
always consider that P could obtain all inputs (including V’s inputs). Then, P can convince V that
all values obtained by V are correct using a ZK proof. This makes our garble-then-prove approach
(defined in FGP2PC) not suitable for the case that the inputs of V need to be kept secret in the whole
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Functionality FGP2PC

This functionality runs with a prover P, a verifier V and an adversary, and initializes a state state0 = ⊥.

Input. Upon receiving (input, id, x) from A ∈ {P,V} and (input, id) from the other party, where id is a
fresh identifier and x ∈ {0, 1}, store (id, x).

Commit. Upon receiving (commit, id, x) from P and (commit, id) from V, where id is a fresh identifier
and x ∈ {0, 1}, store (com, id, x) and send (committed, id) to both parties.

Evaluate. Upon receiving (eval, j, fj , id1, id2, id3) from P and V, where this is the j-th call and fj :
{0, 1}∗ × {0, 1}m × {0, 1}m → {0, 1}∗ × {0, 1}n is a Boolean circuit, do the following:

1. If id1,i (resp., id2,i) for all i ∈ [1,m] are present in memory, retrieve (id1,i, xj,i) (resp., (id2,i, yj,i)) for
i ∈ [1,m], and define xj = (xj,1, . . . , xj,m) (resp., yj = (yj,1, . . . , yj,m)). If id1,i = ⊥ (resp., id2,i = ⊥)
for all i ∈ [1,m], set xj = ⊥ (resp., yj = ⊥). Otherwise, abort.

2. If P is honest, set (statej , zj) := fj(statej−1,xj ,yj). Otherwise, receive a circuit f ′j from the adver-
sary, and compute (statej , zj) := f ′j(statej−1,yj).

3. Update the state as statej and store (id3,i, zj,i) for i ∈ [1, n].
Output. Upon receiving (output, id, A) from P and V, where A ∈ {P,V,both}, and (id, z) or (com, id, z)
was previously stored, do the following:

1. If A ∈ {V,both}, update (id, z) as (id, z, output ,V) and output (output, id, z) to V.
2. If A ∈ {P,both}, receive e ∈ {0, 1} from the adversary if V is corrupted, or set e = 0 otherwise.

3. If A ∈ {P,both}, output (output, id, z ⊕ e) to P.
Reveal and Prove. Upon receiving (revealandprove) from P and V, send all V’s inputs to P, and
henceforth ignore all the commands described as above. From j = 1 to ℓ where ℓ is the number of calls
to the (eval) command, execute as follows:

1. Receive (prove, j, gj , idj , id
′
j) from P and V, where gj is the verification circuit corresponding to the

evaluation circuit fj , either idj = ⊥ or (com, idj,i) for all i ∈ [1,m] are present in memory, and id′
j

is the vector of identifiers on the output zj in the j-th (eval) call.

2. If idj = ⊥, set xj = ⊥. Otherwise, retrieve (com, idj,i, xj,i) for i ∈ [1,m] and set xj = (xj,1, . . . , xj,m).
Run (state∗j , z

∗
j ) := gj(state

∗
j−1,xj) where state∗0 = ⊥.

3. For each i ∈ [1, n], if (id′j,i, zj,i, output ,V) was previously stored, then check that z∗j,i = zj,i.

If any check fails, send (false) to V. Otherwise, send (true) to V.

Figure 3: Reactive functionality for 2PC in the garble-then-prove framework.

protocol execution. In Section 5, we have shown that FGP2PC can be used to authenticate web data
for TLS. More applications of our garble-then-prove approach can be exploited, e.g., authenticating
data for QUIC [CDH+16, IT21], OAuth [Har12] and OpenID Connect [SBJ+14].

By calling the (input) command, one of two parties P and V is able to input a bit. Through the
(commit) command, the prover P is able to commit to bits, and these bits committed would in turn
be used for proving the correctness of circuit evaluations. To open some bits committed, P and V
can call the (output) command to let V obtain the bits. The bits provided by a malicious P for
the (input) command may be inconsistent with that for the (commit) command. This is harmless
for security, as P’s bits were always committed before the reveal-and-prove phase. Through the
(output) command, P, or V, or both of them can obtain an output. For the case that both parties
obtain the same output, we always consider that V first obtains the output and then P gets it.

Functionality FGP2PC defines a reactive functionality, which allows two parties to evaluate a
series of Boolean circuits f1, . . . , fℓ, such that the input to each circuit fj is the state information
statej−1, P’s input vector xj and V’s input vector yj , and the output includes the updated state
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Protocol ΠGP2PC

Inputs. P (acting as the garbler and prover) and V (acting as the evaluator and verifier) hold a reactive
circuit that is defined by a series of Boolean circuits f1, . . . , fℓ. For each circuit fj , P and V hold two
input vectors xj and yj respectively. For each j ∈ [1, ℓ], let gj be the verification circuit corresponding
to circuit fj . Let H : {0, 1}∗ → {0, 1}λ be a random oracle.

Preprocessing phase. P and V do the following:

1. Both parties call functionality FIZK to initialize a global key ∆ ∈ {0, 1}λ sampled uniformly by V.
2. For j ∈ [1, ℓ], P runs (Fj ,e

in
j ,e

st
j ,dj) ← Garble(fj ,e

st
j−1) where est0 = ⊥, and then sends a garbled

circuit Fj to V.

Online evaluation phase. From j = 1 to ℓ, P and V know the inputs xj ,yj ∈ {0, 1}m, and execute
the following steps.

3. Both parties call functionality FIZK on the input xj to generate a vector of IT-MACs [[xj ]].

4. P and V execute the following steps to let V obtain the garbled labels on yj .

(a) P runs the encoding algorithm two times: L[0j ] ← Encode(ej ,⊥, 0m) and L[1j ] ←
Encode(ej ,⊥, 1m), where L[0j ] = (L[0j,1], . . . , L[0j,m]) and L[1j ] = (L[1j,1], . . . , L[1j,m]).

(b) For i ∈ [1,m], P (as a sender) and V (as a receiver) call functionality FOT on respective input
(L[0j,i], L[1j,i]) and yj,i ∈ {0, 1}, and V obtains L[yj,i]. Then, V sets L[yj ] := (L[yj,1], . . . , L[yj,m]).

5. P runs L[xj ]← Encode(ej ,xj ,⊥), and sends L[xj ] to V.
6. V runs (L[statej ], L[zj ])← Eval(Fj , (L[statej−1], L[xj ], L[yj ])) where L[state0] = ⊥.
7. Output processing and opening of committed bits: P and V execute the following steps.

(a) If P will open a vector vj that consists of a part of bits committed in IT-MACs, P sends vj to
V, and then both parties call the (check) command of functionality FIZK on IT-MACs [[vj ]]− vj

to check that vj is opened correctly.

(b) If V will obtain the output zj , P sends dj to V (where dj can actually be sent in the preprocessing
phase). Then V runs zj ← Decode(lsb(L[zj ]),dj).

(c) If both parties will output zj , V directly sends zj (as computed in the previous step) to P.
(d) If only P will get zj , V sends lsb(L[zj ]) to P who runs zj ← Decode(lsb(L[zj ]),dj).

Online reveal-and-prove phase. In this phase, P and V execute as follows.

8. V sets τ := H(L[y1], . . . , L[yℓ]) and sends (y1, . . . ,yℓ, τ) to P. For j ∈ [1, ℓ], P runs L[yj ] ←
Encode(ej ,⊥,yj). Then P computes τ ′ := H(L[y1], . . . , L[yℓ]) and aborts if τ ̸= τ ′.

9. From j = 1 to ℓ, P sets (statej , ẑj) := fj(statej−1,xj ,yj) where state0 = ⊥. For each output zj
obtained by P, it checks zj = ẑj and aborts if the check fails.

10. Let state∗0 = ⊥. From j = 1 to ℓ, P and V do the following:

(a) Both parties call the (zkauth) command of functionality FIZK on IT-MACs [[state∗j−1]], [[xj ]] and
circuit gj to generate [[state∗j ]] and [[z∗

j ]] with (state∗j , z
∗
j ) = gj(state

∗
j−1,xj).

(b) If V outputs zj , both parties call the (check) command of FIZK on IT-MACs [[z∗
j ]]− zj to check

that zj = z∗
j .

If any check fails, V outputs false. Otherwise, it outputs true.

Figure 4: Protocol for securely instantiating FGP2PC in the (FOT,FIZK)-hybrid model.
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information statej and output vector zj . If P is corrupted, FGP2PC receives an arbitrary circuit f ′j
from the adversary, and computes the output with f ′j . In this case, since f ′j is totally determined
by the adversary, it can have involved P’s input, and thus the input to circuit f ′j does not contain
xj . If V is corrupted, we allow the adversary to add an error into the bit output to P. By calling
the (revealandprove) command, P gets all inputs (including V’s inputs) from FGP2PC. In this case,
P is able to check the correctness of all values outputted to it by recomputing these values. If the
check fails, P could send abort to functionality FGP2PC.

The (prove) command allows P to convince V that all values output to V are correct. In
particular, FGP2PC uses a verification circuit gj to check the output computed by circuit f ′j if
P is corrupted or fj otherwise. If P is honest, the check always passes. If P is corrupted and
provides an incorrect circuit f ′j leading to a different output, then the check fails and FGP2PC would
abort. We can define gj(state

∗
j−1,xj) = fj(state

∗
j−1,xj ,yj) where V’s input yj is known by both

parties in the reveal-and-prove phase and has been involved in gj , and state∗j−1 = statej−1 in the
honest case. If xj is public, then xj can be defined in gj and gj(state

∗
j−1,xj) ignores the input

xj in this case. Before the (revealandprove) command is called, the bits output to P or V may be
incorrect. After the (revealandprove) command was executed, P checks the correctness of all its
outputs by itself, and the correctness of the circuit outputs obtained by V is also checked. That
is, FGP2PC can guarantee the correctness of circuit evaluations at the end. Besides, FGP2PC assures
the privacy of the honest party’s inputs, as the messages between FGP2PC and the honest party are
communicated over a secure channel. However, if P is corrupted, it is able to mount a selective-
failure attack. Informally, given a circuit f and inputs x,y of P and V, a malicious P could learn
f ′(x′,y) = f(x,y) in the reveal-and-prove phase for the malicious chosen circuit f ′ and input x′.
This leaks at most one-bit information on the input y of honest party V. This is harmless as P
could always get y in the reveal-and-prove phase. If P is honest, a malicious V cannot learn any
secret information.

For applications that need to prevent V to introduce errors in the outputs (e.g., writing user
data in the TLS server), we define an ideal functionality Fnoerr

GP2PC. This functionality is the same
sas FGP2PC, except that the adversary who corrupts V is not allowed to introduce any error for all
(output) commands.

4.2 Instantiation of Functionality FGP2PC

In Figure 4, we present a concretely efficient two-party protocol to instantiate functionality FGP2PC

(shown in Figure 3) in the (FOT,FIZK)-hybrid model based on a garbling scheme (defined in Sec-
tion D.1). 5 This protocol combines a plain GC-2PC protocol with the recent interactive ZK proof
modeled in functionality FIZK. By calling functionality FIZK, P could open a part of bits committed
in IT-MACs to V. For the sake of simplicity, we do not split a circuit output zj such that P and V
obtain different parts of zj . Our protocol can be straightforwardly extended to support the general
case where zj allows to be split. In Figure 4, if an input vector xj = ⊥ or yj = ⊥, then the
operations on the vector are ignored.

In protocol ΠGP2PC, for j ∈ [1, ℓ], i ∈ [1,m], 0j,i and 1j,i are zero and one respectively corre-
sponding to the bit yj,i, and L[0j,i] and L[1j,i] are 0-label and 1-label respectively associated with
garbled label L[yj,i]. The authentication for V’s input yj is realized by sending L[yj ] to P. We use a
random oracle H to compress the garbled labels L[y1], . . . , L[yℓ], which reduces the communication
by (ℓm− 1)λ bits. When proving circuits, the state information is transferred by IT-MACs on the
state, i.e., [[state∗j ]] with state∗j = statej for an honest protocol execution.

5Here functionality FIZK does not include any command in FGP2PC (i.e., it now has only the commands associated
with IZK based on IT-MACs).
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The security of protocol ΠGP2PC (Figure 4) is stated in the following theorem. The detailed
proof is postponed to Section D.2.

Theorem 1. If the garbling scheme satisfies the simulation-based privacy and obliviousness, then
protocol ΠGP2PC (shown in Figure 4) securely realizes functionality FGP2PC (shown in Figure 3) in
the (FOT,FIZK)-hybrid model, assuming H is a random oracle.

In our protocol ΠAuthData shown in Section 5.1, a part of entries (e.g., initial vectors) in an input
vector xj could also be known by V. In this case, xj can be hardwired in the circuit gj without
needing to authenticate xj with IT-MACs.

Extending the protocol to instantiate Fnoerr
GP2PC. If both parties will output zj , then P receives

zj from V, and can compute lsb(L[zj ]) := zj ⊕ lsb(L[0j ]) by itself. This case is equivalent to the
case in which only P will get zj , and P directly receives lsb(L[zj ]) from V. Therefore, we only
need to focus on the case that only P will get zj , when extending the protocol to securely realize
functionality Fnoerr

GP2PC.
In protocol FGP2PC shown in Figure 4, the only way, which V introduces an error to an output,

is to send a vector of bits bj ̸= lsb(L[zj ]) to P. Thus, to guarantee that P obtains a correct output,
we only need to add an authentication mechanism w.r.t. lsb(L[zj ]) into the protocol FGP2PC. The
resulting protocol is natural to securely realize functionality Fnoerr

GP2PC. Specifically, let S ⊆ [1, ℓ]
be the set of indices that P will obtain the outputs, i.e., for each j ∈ S, P will get zj . For
each j ∈ S, except for sending lsb(L[zj ]) to P who runs z′

j ← Decode(lsb(L[zj ]),dj), V computes
µ := H((L[zj ])j∈S), and P computes a vector of garbled labels L[z′

j ] and sets µ′ := H((L[z′
j ])j∈S).

Then, P and V run an equality-testing protocol, e.g., [HKE12], to verify that µ = µ′. If µ ̸= µ′,
then P aborts. A malicious V cannot forge garbled labels L[bj ] with bj ̸= lsb(L[zj ]), and otherwise
it will break the security of garbling scheme. Therefore, in the random oracle model, the probability
that µ = µ′ but bj ̸= lsb(L[zj ]) is negligible in λ. The authentication mechanism only requires a
small communication overhead, compared to the communication cost of protocol ΠGP2PC.

5 Authenticating Web Data for TLS

In Section 4, we define an ideal functionality FGP2PC for 2PC in the garble-then-prove framework,
and then show an efficient protocol securely realizing FGP2PC. Based on FGP2PC we provide a
complete description of our protocol (denoted by ΠAuthData) that authenticates web data for TLS
1.2 in Section 5.1. Then, we show how to extend protocol ΠAuthData to support multi-round query-
response sessions and describe further optimizations in Section 5.2. While ΠAuthData focuses on the
case of reading user data, we also extend it to support for writing user data in Section 5.2. In
Section 5.3, we also show how to extend our protocol to support TLS 1.3.

5.1 Detailed Protocol for Authenticating Data

Our protocol ΠAuthData is divided into four phases, where the last three phases are jointly called
online phase.

• Preprocessing: A prover P and a verifier V generate correlated randomness before the TLS
connection.

• Handshake: P and V call FGP2PC to perform client operations. This phase establishes the
connection with S while neither of P and V know any secrets or application keys.

• Record: P and V call FGP2PC to encrypt a query Q, and then P locally decrypts the ciphertext
on a response R.
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• Post-record: In this phase, the TLS protocol has terminated. Now, P is allowed to know all
secret values in the TLS session. Then P and V call FGP2PC to prove the correctness of all
values revealed to V. Finally, both parties transform IT-MACs of Q and R into their additive-
homomorphic commitments, which are connected to a variety of zk-SNARKs.

The main protocol ΠAuthData invokes the following three sub-protocols, whose details are described
in Section B.

• Sub-protocol ΠE2F (shown in Section B.1) converts additive sharings of elliptic-curve points into
that of x-coordinates, and will be used to generate an additive sharing [pms]p of pre-master secret
in the handshake phase.

• Sub-protocol ΠPRF (shown in Section B.2) calls FGP2PC to compute HMAC-based PRF in the
handshake phase. Then, it proves correctness of all opened values by calling FGP2PC in the post-
record phase. Protocol ΠPRF will be used to generate the master secret ms, application keys
keyC , keyS , initial vectors IVC , IVS and ufinC ,ufinS .

• Sub-protocol ΠAEAD (shown in Section B.3) calls FGP2PC to compute AES blocks used for en-
cryption/decryption of AEAD, and uses OLEe to compute GMAC tags, in the handshake and
record phases. In the post-record phase, ΠAEAD calls FGP2PC to prove correctness of all AES
blocks, and invokes FIZK to generate IT-MACs [[Q]] on a query Q. Sub-protocol ΠAEAD is used
to encrypt ufinC , Q to obtain the ciphertexts finC ,encQ and decrypt finS to get ufinS .

P and V generate authenticated bits [[Q]] and [[R]] in the post-record phase by calling an ideal
functionality FIZK for ZK proofs based on IT-MACs. Functionality FIZK (shown in Section A.4) is
a simple extension of the ideal functionality defined in [WYX+21], and can be securely realized using
the recent VOLE-based ZK protocols [WYKW21, DIO21, BMRS21, YSWW21]. Besides, P and V
call an ideal functionality FConv (shown in Section C) to convert [[Q]] and [[R]] into their additively
homomorphic commitments in the post-record phase. In Section C, we present an efficient protocol
to securely realize FConv.

We postpone the details of protocol ΠAuthData to Figures 17 and 18 in Section B.4. As in
DECO [ZMM+20], protocol ΠAuthData focuses on the case of one-round query-response session, i.e.,
a prover P and a verifier V jointly generate and send the AEAD ciphertext of a single query Q to a
server S who returns the AEAD ciphertext of a single response R to P. Note that one-round session
is enough for a lot of applications [ZMM+20]. For one-round session, P is unnecessary to decrypt
the AEAD ciphertext encR on the response R and verify its GMAC tag by running sub-protocol
ΠAEAD with V. These operations can be performed locally by P after it knows the server-to-client
key keyS , where the TLS session terminates after encR was received by P and forwarded to V.
Nevertheless, P and V still need to generate [[zR]] and [[R]] by calling functionality FIZK. V also
needs to check the correctness of the GMAC tag in ciphertext encR via getting hS = AES(keyS ,0)
and zR = AES(keyS , st

C
d ).

The security of protocol ΠAuthData depends on the PRF-Oracle-Diffie-Hellman (PRF-ODH) as-
sumption, which has been used for proving the security of TLS 1.2 [JKSS12, KPW13] and is
recalled in Section E. Besides, we assume that the underlying signature scheme satisfies Existential
UnForgeability under Chosen-Message Attack (EUF-CMA).

Theorem 2. If the PRF-ODH assumption holds and the underlying signature scheme is EUF-
CMA secure, then protocol ΠAuthData (shown in Figures 17 and 18) securely realizes functionality
FAuthData (shown in Figure 1) in the (FOLEe,FGP2PC,FCom,FIZK,FConv)-hybrid model, assuming
that the compression function fH underlying PRF is a random oracle and AES is an ideal cipher.

We provide a formal proof of Theorem 2 in Section E.
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5.2 Extensions and Optimizations

Extend to multi-round query-response sessions. We are able to extend the protocol ΠAuthData

to support multiple rounds of payload. Specifically, P and V can execute sub-protocol ΠAEAD (shown
in Figures 15 and 16 of Section B.3) multiple times to encrypt multiple queries, where the additive
sharings of powers of hC = AES(keyC ,0) need to be computed only once and are reused among
these sub-protocol executions. Note that the state stC is always increased for computing multiple
AEAD ciphertexts following the TLS specification. This prevents P or V to forge GMAC tags by
using the same state for different ciphertexts.

If every query is independent of previous responses (Case 1), P can locally decrypt the AEAD
ciphertexts of all responses, after the TLS session terminates and it obtains the server-to-client
application key keyS . If every query relies on previous responses (Case 2), P has to decrypt the
ciphertexts of all responses via interacting with V. This can be done by running sub-protocol
ΠAEAD with type1 = “decryption” and type2 = “secret”, where ΠAEAD was designed for support-
ing decryption of AEAD ciphertexts in the record phase. During the protocol execution, ΠAEAD

also allows P and V to verify the correctness of GMAC tags in AEAD ciphertexts of responses.
Therefore, in both cases, P can check the correctness of AEAD ciphertext on every response via
sending the ciphertext to V and then running sub-protocol ΠAEAD with V, before generating the
ciphertext on the next query. In fact, this is unnecessary and the GMAC tags of AEAD ciphertexts
on all responses can be verified locally by P after it knows keyS (see below for discussion of this
optimization). In Case 2, the decryption of the response’s ciphertext sent in the final-round session
can still be performed locally with keyS .

In the case of multi-round sessions, both P and V can use the same approach implied in the
post-record phase of main protocol ΠAuthData (Figures 17 and 18) to check the correctness of all
AEAD ciphertexts on multiple queries and responses. In Case 2, we note that P needs to decrypt
the AEAD ciphertexts on responses using keyS , and then compares the resulting plaintexts with
that obtained during the execution of sub-protocol ΠAEAD, when it performs the local verification
with keyS in the post-record phase. This verification aims to check that no error is introduced to
the responses computed via the distributed decryption in sub-protocol ΠAEAD. Both parties are also
able to obtain the IT-MACs on all responses in a way totally similar to main protocol ΠAuthData.
Note that the IT-MACs on all queries have already been obtained during multiple executions of
sub-protocol ΠAEAD.

Optimization. We can further optimize the efficiency of protocol ΠAuthData by delaying the check
of ufinS and AEAD ciphertext finS from the handshake phase to the post-record phase. That is,
P and V do not execute sub-protocol ΠAEAD to generate ufinS and the GMAC tag used to check
finS . Instead, P can locally check their correctness after it obtains master secret ms. Verifier V
checks the correctness of ufinS by calling the (prove) command of functionality FGP2PC with P,
and then checks the correctness of finS = (c, σ) in the following two steps:

1. P sends z1 to V, and then proves z1 = AES(key∗S , IVS + 1) by calling the (prove) command
ofFGP2PC, where key∗S and IVS are the server-to-client application key and initial vector whose
correctness has been proved in the post-record phase. Then, V checks that ufinS ⊕ z1 = c.

2. V checks the correctness of GMAC tag σ in the way shown in the post-record phase of protocol
ΠAuthData.

This has no impact on privacy and integrity, as this optimization only delays the check. If one
of these values is incorrect, P or V aborts. Note that this optimization is supported by the TLS
implementation. Furthermore, this optimization can be applied in the case of multi-round sessions.
That is, P and V can delay the correctness check of all AEAD ciphertexts on responses from the
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record phase into the post-record phase by checking the correctness of GMAC tags via the approach
shown in main protocol ΠAuthData. Recall that P also checks that the responses output by sub-
protocol ΠAEAD are identical to that via the local decryption with keyS , when it performs the local
verification in the post-record phase. This optimization allows us to reduce communication rounds
and improve the whole performance.

Extend to support for writing user data. Our protocol ΠAuthData (shown in Figures 17 and 18)
focuses on reading user data from a website acting as the TLS server. For most of Web2 and Web3
applications, it is sufficient. Nevertheless, for a few applications, a user (i.e., prover) may be
desirable to write its data on the website (e.g., updating personal information) during the protocol
execution of ΠAuthData. In this case, a malicious verifier V may tamper the queries sent from a
prover P to the TLS server by adding some errors into the AES ciphertexts on queries. The attack
would be detected by P after it obtains all secrets. However, the user data on the website has
already been tampered. To prevent such attacks, we need to extend functionality FGP2PC to an
ideal functionality Fnoerr

GP2PC (defined in Section 4.1) that does not allow V to introduce any errors.
In Section 4.2, we show how to extend the protocol instantiating FGP2PC to securely realize Fnoerr

GP2PC

with no extra communication. When replacing FGP2PC with Fnoerr
GP2PC, protocol ΠAuthData would allow

P to securely write user data.
This holds for multi-round sessions. For the multi-round session extension as described above,

we point out a caveat. If the writing queries relying on previous responses, then P and V need
to execute sub-protocol ΠAEAD to check the correctness of the AEAD ciphertext on each response
except for the final response, before sending the AEAD ciphertext on the next query to the server.
Otherwise, the above optimization, which locally checks the AEAD ciphertexts on all responses
after obtaining keyS , can still be used.

5.3 Extending Our Protocol for TLS 1.3

While the protocol ΠAuthData shown in Figures 17 and 18 of Section B.4 focuses on the case of TLS
1.2, we are also able to extend it for TLS 1.3, and will implement the protocol to authenticate web
data for TLS 1.3 in the future work. The main differences between TLS 1.2 and TLS 1.3 are the key
derivation function (KDF) and the handshake phase. In this section, we focus on the handshake
mode of full 1-RTT, where the optional mode of 0-RTT based on a pre-shared key can be securely
computed in a similar way.

The key derivation in TLS 1.3 adopts the HMAC-based key derivation function (HKDF) [Kra10,
KE10], which consists of two sub-functions: HKDF.Extract and HKDF.Expand. Specifically, prk ←
HKDF.Extract(salt , ikm) takes as input a non-secret random salt and a secret input key material
ikm, and then extracts a pseudorandom key prk, i.e., prk = HMAC(salt , ikm). Note that salt is the
HMAC key, and ikm is the HMAC input. In this case, we can securely compute HKDF.Extract in
the following manner:

prk = fH
(
fH(IV 0, salt ⊕ opad), fH(fH(IV 0, salt ⊕ ipad), ikm)

)
,

where red refers to computation in GC, and green refers to local computation. Then prk is expanded
to an output keying material okm with a specified length. Specifically, okm← HKDF.Expandℓ(prk, info)
takes as input prk, a public context-specific information info and an output length ℓ, and outputs

okm = T1 ∥ . . . ∥Tn−1 ∥Truncm(Tn),

where Ti = HMAC(prk, Ti−1∥info∥i) for each i ∈ [1, n], T0 is an empty string, n = ⌈ℓ/256⌉ and
m = ℓ − 256 · (n − 1). It is easy to see that the sub-protocol ΠPRF (shown in Section B.2) for
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TLS 1.2 can be directly extended to securely compute HKDF.Expandℓ(prk, info) for TLS 1.3. In
particular, the circuit optimization for PRF in TLS 1.2 is able to be applied for HKDF.Expand in
TLS 1.3.

In the handshake phase of TLS 1.3, the client and server run the Diffie-Hellman key exchange
protocol without authentication to establish a pre-master secret pms, which can be executed similar
to protocol ΠAuthData. Then pms is derived to a handshake secret hs via HKDF.Extract, and then
hs is derived to the client handshake traffic secret chts and server handshake traffic secret shts
via HKDF.Expand. The secrets chts, shts are used to generate the client handshake key chk and
server handshake key shk via HKDF.Expand. Then, hs is also used to derive a mater secret ms via
invoking HKDF.Extract and HKDF.Expand respective once. Next, ms is used to drive four secrets
with HKDF.Expand: the client application traffic secret cats, server application traffic secret sats,
exporter master secret ems and resumption master secret rms. Using HKDF.Expand, the secrets
cats, sats are derived to the client application key cak and server application key sak. The derivation
of all secrets and keys can be securely computed by P and V by executing a protocol similar to
sub-protocol ΠPRF.

While chk and shk are used to encrypt/decrypt the subsequent messages (e.g., client/server fin-
ished messages, signatures and certifications) in the handshake phase, cak and sak are independent
and used to encrypt/decrypt application data in the record phase. Therefore, we can open chk
and shk to the prover P, and then P is able to locally perform the encryption/decryption in the
handshake phase. 6 That is, it is unnecessary to run sub-protocol ΠAEAD (shown in Section B.3)
to compute stateful AEAD in the handshake phase. Besides, handshake traffic secrets chts and
shts are used to produce client and server finished messages, and are independent from application
traffic secrets cats and sats. In this case, we can open chts and shts to P, and then P can locally
generate the finished messages. Furthermore, ems can be computed locally by P after it knows all
secrets in the post-record phase, as ems is an exporter master secret and not used in the record
phase. The secret rms is also able to be computed locally by P after it knows all secrets in the
post-record phase, if P and V will not jointly execute a session resumption with rms. The opti-
mizations would significantly reduce the cost in the handshake phase. Overall, 21 invocations of
SHA256 compression functions need to be executed in GC-2PC, compared to that 14 invocations in
TLS 1.2 for our protocol and 30 invocations in TLS 1.3 for DECO [ZMM+20]. As for our protocols,
the communication cost in the handshake phase of TLS 1.3 is about 1.5× larger than that in TLS
1.2.

6 Performance Evaluation

6.1 Implementation and Experimental Setup

We implemented our protocol in C++, including 4000 lines of code of protocol development and
3000 lines of testing code. Our implementation is complete and can interact with real-world
APIs. We use the EMP toolkit [WMK16] for the implementation of the following building blocks:
KOS OT [KOS15], Ferret OT [YWL+20], half-gates-based GC with optimization of concrete se-
curity [ZRE15, GKWY20] and interactive ZK (called QuickSilver) [YSWW21]. We leave it as the
future work to incorporate the recent three-halves GC construction [RR21] to further reduce the
communication cost of our protocol.

All benchmarks are performed over AWSm5.large instances, with 2 vCPUs and 8 GB of memory.
Note that our protocol only needs about 150 MB of memory for 2KB query and response. Every

6This observation has been found in DECO [ZMM+20].
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Figure 5: Performance of our protocol under different network bandwidths and latency. The
length of query and response is 2 KB.

Payload 256B 512B 1KB 2KB 256B 512B 1KB 2KB 256B 512B 1KB 2KB

Communication cost WAN (100Mbps, RTT=50ms) LAN (1Gbps, RTT=0ms)
MegaByte (MB) Second (s) Second (s)

DECO [ZMM+20] 206 255 345 475.7 24 27.2 36.3 51.6 5.91 6.46 8.9 11.21
This work 15.2 17.8 22.9 33.3 3.19 3.43 3.96 4.9 0.46 0.51 0.61 0.72

Table 2: Comparing the performance of DECO [ZMM+20] and our protocol under LAN and
WAN.

experiment involves three parties: the TLS server S, the prover P and the verifier V. Except for
the global-scale experiment based on real-world APIs in Section 6.3, we place S and P on the same
machine and V on a different machine with changing network condition, where the communication
between S and P is negligible compared to that between P and V. We use one thread for all
running time, and adopt tc to manually control the network bandwidth and roundtrip latency to
desired levels. The running time and communication reported in this section are the end-to-end
performance, including the preprocessing and setup costs.

6.2 Scalability of Our Protocol

Performance of protocol ΠAuthData. In Figure 5, we show the performance of our protocol
ΠAuthData (shown in Figures 17 and 18) under different bandwidths and latency, while fixing the
query and response to 2KB. We show both the offline cost (which can be done before the TLS
connection) and the online cost (which can only be done during the TLS connection). Overall, our
protocol is highly efficient. For example, under a realistic network with 200 Mbps bandwidth and
50 ms latency, the end-to-end running time is under four seconds while the runtime in the online
phase is less than two seconds.

We can also see that the online performance is highly dependent on the latency: it is less than
50 ms when the latency is low, but could be up to 3 seconds when the latency is as high as 100 ms.
This matches the roundtrip complexity that we measured from our implementation, which needs
31 roundtrips of communication. The offline cost is less affected by the latency but more on the
network bandwidth; this is because the transmission of garbled circuits, which is majority of the
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Figure 6: Online and total performance of accessing Coinbase and Twitter servers with globally
distributed provers. All numbers are reported in seconds in the form of “online time (total time)”. The
verifier is fixed at California. The server is hosted by Coinbase/Twitter, which may have mirrors in various
locations.

WAN (100 Mbps, RTT = 50 ms) LAN (1 Gbps, RTT = 0 ms)

Payload 256 B 512 B 1 KB 2 KB 256 B 512 B 1 KB 2 KB

Conversion 161 ms 173 ms 202 ms 278 ms 11 ms 20 ms 38 ms 76 ms

Table 3: Performance of commitment conversion with different payload length.

communication of our protocol, is in the offline phase.

Comparison with prior work. We compare the performance of our protocol with DECO [ZMM+20].
Since the code of DECO is not open sourced and that the performance of malicious 2PC has been
constantly improving, we benchmark the performance based on the latest implementation of au-
thenticated garbling. We also incorporate the Ferret OT [YWL+20] to the implementation to
further reduce the communication cost. This is the most practically efficient malicious 2PC imple-
mentation so far. We only included the time needed in malicious 2PC, which includes computing
the TLS session keys and 4 AES-GCM ciphertexts. When computing the GMAC tag, we assume
that one field multiplication over F2128 takes 8,765 AND gates, including 8,192 ANDs to compute
the multiplication and 573 ANDs to compute the reduction. Note that there exists more efficient
garbling for binary extension field multiplication [HK21] but only in the semi-honest setting. This
is a lower bound as the DECO protocol also includes other components. All performance num-
bers are measured using the same type of AWS instances. The result of the comparison is shown
in Table 2, where we can observe roughly 14× improvement in communication and 7.5× to 15×
improvement in running time over LAN and WAN.

We record the peak memory usage of both protocols. Under 2 KB query and response, the
malicious 2PC needed in DECO requires a peak memory of 3 GB while our protocol only needs
about 150 MB of memory. The huge difference is mainly due to the fact that authenticated garbling
requires storing preprocessed triples for all AND gates in the circuit before the execution (to achieve
constant roundtrips), while all building blocks that we use can be streamed without the need to
store them all at once.

Performance of conversion. We also benchmarked the performance of commitment conversion
of our protocol in different network settings, which is shown in Table 3. The IT-MAC-based
commitments on payload is converted to Pedersen commitments [Ped92]. We observe that in
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both WAN and LAN settings, the conversion protocol is very cheap compared to the overall web
authentication protocol, and the cost of conversion is linear to the payload size. It takes roughly 37
ms to convert an additional kilobyte of payload to Pedersen commitments under LAN and roughly
67 ms per KB under WAN. The basetime in WAN is higher due to the higher latency.

6.3 Global-Scale Benchmarks

We integrate our protocol to access real-world web servers and test the performance, as shown in
Figure 6. Specifically, we utilize provided APIs to query Coinbase and Twitter servers.

• Coinbase API: We benchmark fetching the balance of BTC using the prover’s API secret [coi].
It has a query of size 426 bytes and response of size 5701 bytes. Our protocol communicates 17.6
MB in the offline phase and 0.9 MB in the online phase.

• Twitter API: We benchmark using the prover’s credential token to retrieve the number of
followers [twi]. This API has a query size of 587 bytes and response size of 894 bytes. Our
protocol communicates 18.9 MB in the offline phase and 0.4 MB in the online phase.

In all experiments, the verifier V is deployed in the US West (represented by the purple circle), while
the provers (represented by the blue circles) are distributed across 18 cities worldwide. All prover
and verifier machines are hosted in AWS while the TLS server is hosted by Coinbase/Twitter,
which may have nodes close to the prover. The online time required for the process ranges from
0.3 seconds to 10 seconds, depending on the round-trip time between the prover and verifier, which
aligns with our expectation. From the experimental results shown in Figure 6, we conclude that
our protocol is concretely efficient for real-world applications.

Note that the performance of our protocol only depends on the bandwidth and latency in
different network settings, and is independent of the concrete city in which the verifier locates.
Our intent is to show the performance of our protocol between parties of different distances. In
practical scenarios, one could deploy multiple verifiers in proximity to the provers. This deployment
strategy serves to minimize the round-trip time and significantly boost the overall performance of
the system.
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TLS-DHE in the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 273–293. Springer, Heidelberg, August
2012.

[KE10] H. Krawczyk and P. Eronen. HMAC-based extract-and-expand key derivation function
(HKDF). RFC 5869, 2010. https://www.rfc-editor.org/rfc/rfc5869.txt.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension
with optimal overhead. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 724–741. Springer, Heidelberg,
August 2015.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious
arithmetic secure computation with oblivious transfer. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 2016, pages 830–842. ACM Press, October 2016.

[KPW13] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the
TLS protocol: A systematic analysis. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 429–448. Springer, Heidelberg,
August 2013.

28

https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/rfc/rfc5869.txt


[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme.
In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer,
Heidelberg, August 2010.

[KRRW18] Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Optimizing au-
thenticated garbling for faster secure two-party computation. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages
365–391. Springer, Heidelberg, August 2018.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments
to polynomials and their applications. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 177–194. Springer, Heidelberg, December 2010.

[LOS14] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest majority multi-
party computation for binary circuits. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 495–512. Springer, Heidelberg,
August 2014.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Moni Naor, editor, EURO-
CRYPT 2007, volume 4515 of LNCS, pages 52–78. Springer, Heidelberg, May 2007.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant
round multi-party computation combining BMR and SPDZ. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 319–338. Springer, Heidelberg, August 2015.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-
knowledge SNARKs from linear-size universal and updatable structured reference
strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019, pages 2111–2128. ACM Press, November 2019.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
681–700. Springer, Heidelberg, August 2012.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation.
In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 368–386. Springer,
Heidelberg, March 2009.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–
140. Springer, Heidelberg, August 1992.

[Res18] E. Rescorla. The transport layer security (TLS) protocol version 1.3. RFC 8446,
August 2018. https://www.rfc-editor.org/rfc/rfc8446.txt.

[Roy22] Lawrence Roy. SoftSpokenOT: Quieter OT extension from small-field silent VOLE
in the minicrypt model. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part I, volume 13507 of LNCS, pages 657–687. Springer, Heidelberg,
August 2022.

29

https://www.rfc-editor.org/rfc/rfc8446.txt


[RR21] Mike Rosulek and Lawrence Roy. Three halves make a whole? Beating the half-
gates lower bound for garbled circuits. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 94–124, Virtual Event, August
2021. Springer, Heidelberg.

[SBJ+14] Nat Sakimura, John Bradley, Michael B. Jones, Breno de Medeiros, and Chuck Mor-
timore. OpenID Connect Core 1.0 incorporating errata set 1, 2014.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Wal-
ter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer,
Heidelberg, May 1997.

[sS11] abhi shelat and Chih-Hao Shen. Two-output secure computation with malicious ad-
versaries. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 386–405. Springer, Heidelberg, May 2011.

[tlsa] https://www.gigamon.com/content/dam/resource-library/english/

infographic/in-tls-adoption-research.pdf.

[tlsb] https://ciphersuite.info/cs/TLS_RSA_WITH_AES_256_CBC_SHA256/.

[TLS23] TLSNotary. Proof of data authenticity. https://docs.tlsnotary.org, Access at
2023. Source code is available at https://github.com/tlsnotary/tlsn.

[twi] https://developer.twitter.com/en/docs/twitter-api/users/lookup/

api-reference/get-users-me.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient Multi-
Party computation toolkit. https://github.com/emp-toolkit, 2016.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and effi-
cient maliciously secure two-party computation. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 21–37. ACM
Press, October / November 2017.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable,
and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In 2021 IEEE Symposium on Security and Privacy, pages 1074–1091. IEEE Computer
Society Press, May 2021.

[WYX+21] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique:
Efficient conversions for zero-knowledge proofs with applications to machine learning.
In Michael Bailey and Rachel Greenstadt, editors, USENIX Security 2021, pages 501–
518. USENIX Association, August 2021.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: Efficient
and affordable zero-knowledge proofs for circuits and polynomials over any field. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2986–3001. ACM
Press, November 2021.

30

https://www.gigamon.com/content/dam/resource-library/english/infographic/in-tls-adoption-research.pdf
https://www.gigamon.com/content/dam/resource-library/english/infographic/in-tls-adoption-research.pdf
https://ciphersuite.info/cs/TLS_RSA_WITH_AES_256_CBC_SHA256/
https://docs.tlsnotary.org
https://github.com/tlsnotary/tlsn
https://developer.twitter.com/en/docs/twitter-api/users/lookup/api-reference/get-users-me
https://developer.twitter.com/en/docs/twitter-api/users/lookup/api-reference/get-users-me
https://github.com/emp-toolkit


Functionality FOT

Upon receiving (ot, (m0,m1)) from a sender P and (ot, b) from a receiver V, where m0,m1 ∈ {0, 1}ℓ and
b ∈ {0, 1}, this functionality outputs mb to V.

Figure 7: Functionality for oblivious transfer.
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A More Preliminaries

A.1 Security Model and Functionalities

Ideal/real security model. We use the standard ideal/real paradigm [Can00, Gol04] to prove
security of our protocol in the presence of a malicious, static adversary. In the ideal-world ex-
ecution, the parties interact with a functionality F, and some of them may be corrupted by an
ideal-world adversary (a.k.a., simulator) S. In the real-world execution, the parties interact with
each other in an execution of protocol Π, and some of them may be corrupted by a real-world
adversary A (that is often called an adversary for simplicity). We say that protocol Π securely
realizes functionality F, if the output of the honest parties and A in the real-world execution is
computationally indistinguishable from the output of the honest parties and S in the ideal-world
execution. We consider security with abort, and thus allow the ideal-world/real-world adversary to
abort the functionality/protocol execution at some point. We prove security of our protocol in the
G-hybrid model in which the parties execute a protocol with real messages and also have access to
a sub-functionality G.

OT. Oblivious Transfer (OT) allows a sender to transmit one of two messages (m0,m1) to a
receiver, who inputs a choice bit b and obtains mb. For security, b is kept secret against the
malicious sender, and m1−b is unknown for the malicious receiver. The standard OT functionality
is recalled in Figure 7. Correlated OT (COT) is an important variant of OT where two messages
m0 and m1 satisfy a fixed correlation, i.e., m0 ⊕ m1 = ∆. Both OT and COT correlations can
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Functionality FOLEe

This functionality operates over a finite field F. Let m = ⌈log |F|⌉. This functionality interacts with a
sender P, a receiver V and an adversary.

• Upon receiving (ole, x) from a sender P and (ole, y) from a receiver V where x, y ∈ F, execute as
follows:

1. If P is honest, sample z1 ← F. Otherwise, receive z1 ∈ F from the adversary.

2. If P is malicious, receive a vector e ∈ (F)m from the adversary, and compute an error e′ :=
⟨g ∗ e,y⟩ ∈ F where y = g−1(y) is the bit-decomposition of y ∈ F, ∗ is a component-wise product
and ⟨a, b⟩ denotes the inner product of two vectors a, b.

3. If V is honest, compute z2 := x ·y− z1+ e′ ∈ F (where e′ is set as 0 if P is also honest). Otherwise,
receive z2 ∈ F from the adversary, and recompute z1 := x · y − z2 ∈ F.

• Output z1 to P and z2 to V.

Figure 8: Functionality for OLE with errors.

be generated in the malicious setting using either the IKNP-like protocols [KOS15, Roy22] or the
PCG-like protocols [BCG+19b, BCG+19a, YWL+20].

OLE with errors. Oblivious Linear Evaluation (OLE) can be viewed as an arithmetic general-
ization of OT, and allows two parties to obtain an additive sharing of multiplication of two field
elements. When applying OLE into our protocol, we show that OLE with errors (OLEe) is suf-
ficient, where the privacy is guaranteed against malicious adversaries but a malicious sender can
introduce an error into the resulting OLE correlation.

Functionality for OLE with errors is shown in Figure 8. Without loss of generality, we focus on a
finite field either F = Zp for a prime p or F = F2λ . We define a “gadget” vector g = (1, g, . . . , gm−1)
for m = ⌈log |F|⌉, where g = 2 if F = Zp for a prime p and g = X if F = F2λ . For a vector
x ∈ {0, 1}m, we have ⟨g,x⟩ =

∑m
i=1 xi · gi−1 ∈ F. We also denote by g−1 : F → {0, 1}m the

bit-decomposition function that maps a field element x ∈ F to a bit vector x ∈ {0, 1}m, such that
⟨g, g−1(x)⟩ = x. Following previous work (e.g., [BCG+20]), we allow a corrupted party to choose
its output. If a sender P is corrupted, then it can introduce an error vector e into functionality
FOLEe. Then, FOLEe computes an error e′ relying on the input y of a receiver V. Finally, the
error e′ is added into the output z2 of V. The introduction of errors is asymmetric, i.e., V is not
allowed to add an error into the output of P. This model the asymmetric security of the COT-
based protocol [Gil99, KOS16] that securely realizes functionality FOLEe. This protocol allows us to
obtain fast computation, where the communication of OLEe is only a small part of communication
of our protocol.

Commitment. Our protocol adopts an additively homomorphic commitment scheme, which is
modeled in the functionality FHCom shown in Figure 9. We always assume that the message space
of values to be committed is a finite field F, and denote by FHCom[F] the functionality with message
space F. In this case, the lincomb command is well-defined where all operations are defined over
F. We need that such commitment scheme is non-interactive. For example, the Pedersen com-
mitment scheme [Ped92] satisfies the requirement. To realize functionality FHCom, we need that
Pedersen commitment is equipped with a non-interactive ZK proof (or proved under generic group
model [Sho97]).

In addition, our protocol also needs to call the standard commitment functionality (denoted
by FCom) without homomorphic properties. This functionality is the same as that shown in Fig-
ure 9 except that the (lincomb) command is removed and message space is {0, 1}∗ rather than F.
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Functionality FHCom

This functionality runs with two parties PA and PB, and operates as follows.

Commit: Upon receiving (commit, cid, x) from PA, store (cid, x) and output (committed, cid) to PB.
Ignore any subsequent (commit) command with the same cid.

Open: Upon receiving (open, cid) from PA, if (cid, x) was previously stored, then output (opened, cid, x)
to PB.

Linear combination: Upon receiving (lincomb, cid′, cid1, . . . , cidn, c0, c1, . . . , cn) from PA and PB, if
(cidi, xi) for all i ∈ [1, n] are previously stored and ci for all i ∈ [0, n], compute y :=

∑n
i=1 ci · xi + c0,

store (cid′, y) and send (done, cid′, {cidi}ni=1, {ci}ni=0) to both parties.

Figure 9: Functionality for homomorphic commitments.

Functionality FIZK

This functionality has all the features of FGP2PC (shown in Figure 3), and also involves the following
commands.

Initialize. Upon receiving (init) from a prover P and (init,∆) from a verifier V where ∆ ∈ {0, 1}λ, store
∆ and ignore all subsequent (init) commands.

Input authentication. Upon receiving (authinput, id, w) from P and (authinput, id) from V, where
w ∈ {0, 1} and id is a fresh identifier, run Auth(w) so that the parties obtain [[w]] and store (id, [[w]]).

Prove circuits. Upon receiving (zkauth, C, idin, idout) from P and V, where C : {0, 1}m → {0, 1}n is a
Boolean circuit and idini for all i ∈ [1,m] are present in memory, retrieve (idini , [[xi]]) for i ∈ [1,m], and
compute (y1, . . . , yn) := C(x1, . . . , xm). For i ∈ [1, n], run Auth(yi) so that the parties obtain [[yi]] and
store (idouti , [[yi]]).

Check. Upon receiving (check, id1, . . . , idℓ) from P and V, if (idi, [[yi]]) for all i ∈ [1, ℓ] were previously
stored, send true to V if yi = 0 for all i ∈ [1, ℓ] or false otherwise.

Macro Auth(x) (this is an internal subroutine only)

If ∆ was previously stored, do the following:

• If V is honest, sample K[x]← {0, 1}λ. Otherwise, receive K[x] ∈ {0, 1}λ from the adversary.

• If P is honest, compute M[x] := K[x]⊕x∆. Otherwise, receive M[x] ∈ {0, 1}λ from the adversary and
recompute K[x] := M[x]⊕ x∆.

• Send (x,M[x]) to P and K[x] to V.

Figure 10: Functionality for IZK proofs based on IT-MACs.

Functionality FCom can be securely realized by defining H(m, r) as a commitment on a message m,
where H is a random oracle and r is a randomness.

A.2 Additive Secret Sharings over Fields

Our protocol will adopt additive secret sharings between P and V over a finite field F. For a field
element x ∈ F, we write [x] = (xP , xV) such that xP + xV = x ∈ F, where one of xP , xV is random
in F. It is well-known that additive secret sharings are additively homomorphic. In particular,
give public constants c0, c1, . . . , cℓ and additive sharings [x1], . . . , [xℓ], P and V can locally compute
[y] := c0 +

∑ℓ
i=1 ci · [xi]. For an additive sharing [x], we define its opening procedure:

• x← Open([x]): P sends xP to V, and V sends xV to P in parallel. Then, both parties compute
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Protocol TLS 1.2

Inputs. A client C and a server S hold the following inputs:

• Personal inputs: C has a query template Query and a private input α for Query. S holds a secret key
skS and a certification certS involving a public key pkS .

• Common inputs: The common inputs except for Fx are chosen by C or S in the handshake phase.

– Let Fx be a function mapping an elliptic-curve point to its x-coordinate.

– Let H be a cryptographic hash function and PRF be a pseudorandom function.

– SIG = (Sign,Verify) is a signature scheme, where the key-generation algorithm is omitted, Sign is the
signing algorithm used to generate signatures, and Verify is the verification algorithm that outputs
0 (reject) or 1 (accept). The signature scheme is assumed to satisfy Existential UnForgeability
under Chosen-Message Attack (EUF-CMA).

– (G, p, q,G) is an elliptic-curve group, where p is a prime defining the base field that coordinates
locate in and G is a generator with a prime order q.

– stE = (Enc,Dec) is a stateful AEAD scheme, where the key-generation algorithm is omitted.

Handshake protocol execution. C interacts with S to generate a pair of session keys.

1. Client request: C samples rC ← {0, 1}256 and sends reqC := rC to S.
2. Server response: S performs the following steps:

(a) Sample rS ← {0, 1}256 and tS ← Zq, and compute TS := tS ·G.
(b) Run σS ← Sign(skS , rC∥rS∥TS), and then send resS := (rS , TS , certS , σS) to C.

3. Client response: If certS is invalid or Verify(pkS , rC∥rS∥TS , σS) = 0, C aborts. Otherwise, C samples
tC ← Zq and computes TC := tC ·G, and then sends resC := TC to S. Both parties compute:

(a) C computes pms := Fx(tC · TS) ∈ Zp, and S computes pms := Fx(tS · TC) ∈ Zp.

(b) C and S compute ms := PRF384(pms, “master secret”, rC∥rS) ∈ {0, 1}384.
(c) They compute (keyC , IVC , keyS , IVS ) := PRF448(ms, “key expansion”, rS∥rC) ∈ {0, 1}448 with

keyC , keyS ∈ {0, 1}128 and IVC , IVS ∈ {0, 1}96.

4. Client finished: Let hC be a header specifying the sequence number, version and length of a plaintext,
and ℓC be the target ciphertext length. Client C performs the following:

(a) Compute τC := H(creq∥sres∥cres) and ufinC := PRF96(ms, “client finished”, τC) ∈ {0, 1}96.
(b) Initialize (stC , stS) := (IVC , IVS ), and run finC ← stE.Enc(keyC , ℓC ,hC ,ufinC , stC). Then,

send (hC , finC) to S.

S initializes (stC , stS) := (IVC , IVS ), and runs ufinC ← stE.Dec(keyC ,hC , finC , stC). Then, S
checks the validity of ufinC using ms, and aborts if the check fails.

5. Server finished: Let hS be a header and ℓS be the target ciphertext length. S does the following:

(a) Compute τS := H(reqC∥resS∥resC∥ufinC) and ufinS := PRF96(ms, “server finished”, τS) ∈
{0, 1}96.

(b) Run finS ← stE.Enc(keyS , ℓS ,hS ,ufinS , stS), and then send (hS , finS) to C.

C runs ufinS ← stE.Dec(keyS ,hS , finS , stS) and checks ufinS using ms, and aborts if the check fails.

Figure 11: Handshake and record protocols for TLS 1.2.
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Protocol TLS 1.2, continued

Record protocol execution with one-round session. C interacts with S to retrieve its personal
data as follows:

6. Client query: Let hQ be a header and ℓQ be the target ciphertext length. C and S execute as follows:

(a) C runs Q := Query(α) and encQ ← stE.Enc(keyC , ℓQ,hQ, Q, stC), and sends (hQ,encQ) to S.
(b) S runs Q← stE.Dec(keyC ,hQ,encQ, stC), and generates R according to Q.

7. Server response: Let hR be a header and ℓR be the target ciphertext length. C and S do the following:

(a) S runs encR ← stE.Enc(keyS , ℓR,hR, R, stS), and then sends (hR,encR) to S.
(b) C gets R← stE.Dec(keyS ,hR,encR, st

C
d ).

Figure 12: Handshake and record protocols for TLS 1.2, contined.

x := xP + xV ∈ F.
For a field element x only known by P (resp., V), both parties can locally define its additive sharing
[x] = (x, 0) (resp., [x] = (0, x)). When applying additive secret sharings into our protocol, we only
need two types of finite fields: one is Zp for a large prime p and the other is F2128 . The additive
sharing of x is denoted by [x]p for former and [x]2128 for latter.

A.3 Information-Theoretic MACs

Information-Theoretic Message Authentication Codes (IT-MACs) were widely used in secure Multi-
Party Computation (MPC) (e.g., [BDOZ11, NNOB12, LOS14, FKOS15, WRK17, HSS20, YWZ20,
BLN+21, DILO22]) and interactive ZK proofs [WYKW21, DIO21, BMRS21]. We will use IT-MACs
to authenticate bits. Let ∆ ∈ F2λ be a global key that is only known by one party V. A bit x ∈ {0, 1}
known by another party P can be authenticated by giving V a uniform local key K[x] ∈ F2λ and
P the corresponding MAC tag M[x] = K[x] + x · ∆ ∈ F2λ . We denote such an authenticated bit
by [[x]] = (x,M[x],K[x]). For a vector x ∈ {0, 1}n, we write [[x]] = (x,M[x],K[x]) where M[x] =
(M[x1], . . . ,M[xn]) and K[x] = (K[x1], . . . ,K[xn]). IT-MACs are additively homomorphic, meaning
that given public coefficients c0, c1, . . . , cℓ ∈ F2λ and IT-MACs [[x1]], . . . , [[xℓ]], P and V can locally
compute [[y]] =

∑
i∈[1,ℓ] ci · [[xi]]+ c0. IT-MACs could be considered as COT correlations that can be

generated by the recent PCG-like protocols [BCG+19b, BCG+19a, YWL+20, CRR21, BCG+22]
with malicious security. We can also extend IT-MACs to authenticate values over a large field F.
We denote an authenticated value by [[x]]F = (x, M̃[x], K̃[x]), where P holds x, M̃[x] ∈ F and V holds
Γ, K̃[x] ∈ F such that M̃[x] = K̃[x]+x ·Γ ∈ F. Authenticated bits/values can be opened and checked
non-interactively in a standard way (see, e.g., [NNOB12, DNNR17, WYKW21]).

A.4 Interactive ZK Proofs based on IT-MACs

Based on IT-MACs, a family of Interactive Zero-Knowledge (IZK) proofs with fast prover time
and a small memory footprint was recently proposed [WYKW21, DIO21, BMRS21]. Our protocol
will use an IZK proof to prove satisfiability of a Boolean circuit. Such ZK proofs can commit to a
witness using IT-MACs, evaluate the circuit such that all wire values are committed with IT-MACs,
and then enable the prover and verifier to obtain IT-MACs on output values.

In Figure 10, we define an ideal functionality FIZK that models security of the recent IZK
proofs for Boolean circuits based on IT-MACs. FIZK is the simplification of the ideal functionality
defined in the previous work [WYX+21]. Functionality FIZK is able to be efficiently realized by the
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recent IT-MACs-based IZK protocol such as [YSWW21]. At the beginning of execution, a verifier V
samples a uniform global key ∆ ∈ {0, 1}λ to initialize FIZK. Then, a prover P and the verifier V can
authenticate witnesses via the (authinput) command. Following previous work [CDE+18, WYX+21],
a macro Auth is defined to generate IT-MACs, and allows one corrupted party to choose its output
from Auth. P can convince V that a circuit output is computed correctly by calling the (zkauth)
command in which all output bits are authenticated with IT-MACs. To check that y = y′ for an IT-
MAC [[y]] and public value y′, P and V can call the (prove) command to compute [[y]]−y′, and then
call the (check) command to verify that y−y′ = 0. Using known techniques [NNOB12, WYKW21],
the IT-MACs can be checked in a batch with constant small communication. Therefore, we allow
the (check) command to be called for a batch of IT-MACs.

B Details of Our Authenticating-Data Protocol and Sub-Protocols
for TLS Building Blocks

In this section, we first describe three sub-protocols that are used in our protocol ΠAuthData. Then
we provide the details of protocol ΠAuthData to authenticate web data in TLS 1.2. In the handshake
and record phases of protocol ΠAuthData, all secrets and application keys are stored by functionality
FGP2PC as its state, and then they are implicitly input by both parties to the sub-protocol execu-
tions. It is natural to see how state and state∗ maintained by FGP2PC are updated from the protocol
description.

In these protocols, we assume that functionality FIZK inherits the commands of FGP2PC, such
that it can directly authenticate the inputs and outputs stored in FGP2PC with IT-MACs, where
this works if both FGP2PC and FIZK adopt the IT-MACs-based IZK protocol to instantiate.

B.1 Sub-Protocol for Conversion of Sharings

In Figure 13, we present a sub-protocol in the FOLEe-hybrid model to convert additive sharings of
Elliptic-Curve (EC) points to that of x-coordinates. Let EC(Zp) be an elliptic curve defined over
a finite field Zp for a prime p, where Zp is the base field that coordinates locate in. We abuse
the notation, and still use + denote addition operation over EC(Zp). Nevertheless, we note that
addition operation over EC(Zp) is different from that over Zp. For two EC points Z1 = (x1, y1)
and Z2 = (x2, y2) with x1 ̸= x2, the x-coordinate of their addition z = Fx(Z1 +Z2) is computed as
z = η2 − x1 − x2 ∈ Zp where η = (y2 − y1)/(x2 − x1) ∈ Zp. Similar to the conversion protocol in
DECO [ZMM+20], this sub-protocol uses OLE correlations to compute the coordinate z. Compared
to the protocol [ZMM+20], our protocol has two different points: one is that we only adopt OLE
with errors (instead of fully secure OLE); the other is that we divide it into the preprocessing phase
and online phase to obtain fast online efficiency.

B.2 Sub-Protocol for Computing HMAC-PRF

In Figure 14, we present the details of a concretely efficient 2PC protocol to securely compute the
HMAC-based pseudorandom function PRFℓ defined in Section 2.1, where ℓ is the output length of
PRF. When applying this protocol into our main protocol shown in Section 5.1, sub-protocol ΠPRF

(Figure 14) will be used in three different cases that are distinguished by a label type.

• If type = “secret”, ΠPRF is used to generate a master secret ms from a pre-master secret pms,
where the secrets are stored by functionality FGP2PC.
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Protocol ΠE2F

Inputs. P holds an elliptic-curve (EC) point Z1 = (x1, y1), and V has an EC point Z2 = (x2, y2), where
these coordinates are defined over Zp.

Preprocessing phase. Before launching a TLS session, P and V execute the following preprocessing:

1. P and V sample a1, b1, b
′
1, r1 ← Zp and a2, b2, b

′
2, r2 ← Zp, respectively. Then, both parties define

additive sharings [a]p = (a1, a2), [b]p = (b1, b2), [b
′]p = (b′1, b

′
2), [r]p = (r1, r2).

2. P (as a sender) and V (as a receiver) call functionality FOLEe on respective input (a1, b1, a1, b
′
1, r1)

and (b2, a2, b
′
2, a2, r2) to obtain additive sharings [a1b2]p, [a2b1]p, [a1b

′
2]p, [a2b

′
1]p and [r1r2]p.

3. Both parties locally compute additive sharings [c]p := [a1b1]p + [a1b2]p + [a2b1]p + [a2b2]p and [c′]p :=
[a1b

′
1]p + [a1b

′
2]p +[a2b

′
1]p + [a2b

′
2]p, where c = a · b ∈ Zp and c′ = a · b′ ∈ Zp.

4. P and V locally compute [r2]p := [r21]p + 2 · [r1r2]p + [r22]p.

Handshake phase. When the inputs (x1, y1) and (x2, y2) are known, P and V do the following:

5. Both parties define [x2 − x1]p = (−x1, x2), and compute [w]p = [(x2 − x1) · a]p as follows:

(a) ϵ1 ← Open([x2 − x1]p − [b]p).

(b) [w]p := ϵ1 · [a]p + [c]p.

6. The parties run w ← Open([w]p) and abort if w = 0. Both parties define [y2 − y1]p = (−y1, y2), and
then compute [η]p = [(y2 − y1)/(x2 − x1)]p = w−1 · [(y2 − y1) · a]p as follows:

(a) ϵ2 ← Open([y2 − y1]p − [b′]p).

(b) [η]p := w−1 · (ϵ2 · [a]p + [c′]p).

7. Two parties compute [z]p = [η2 − x1 − x2]p as follows:

(a) ϵ3 ← Open([η]p − [r]p).

(b) [z]p := ϵ23 + 2ϵ3 · [r]p + [r2]p − [x1]p − [x2]p.

8. P and V output an additive sharing [z]p with z = Fx(Z1 + Z2).

Figure 13: Protocol for conversion of additive secret sharings from EC points to x-coordinates.

• If type = “open”, ΠPRF is used to generate and open unencrypted finished messages ufinC and
ufinS and to check the correctness of ufinC and ufinS .

• If type = “partial open”, ΠPRF is used to generate a tuple (keyC , IVC , keyS , IVS) and open
(IVC , IVS) where keyC , keyS are two application keys and IVC , IVS are public initial vectors.
In this case, ΠPRF is also used to check the correctness of IVC , IVS .

As stated in Section 3.2, we allow P and V to reveal some intermediate values, which is secure
in the random oracle model. In this case, we split the Boolean circuit of computing PRFℓ into
three sub-circuits C1, C2, C3. This allows us to formally describe how to reveal the values. In the
post-record phase, the corresponding verification circuits are proved to check the correctness of
the values opened. Since the values have been revealed, we can utilize the public values to define
circuits C′2,i for i ∈ [1, n] and C′3, which are obtained by transforming a part of inputs for circuits
C2, C3 into public values. It is easy to see how state and state∗ maintained by FGP2PC are updated
from the description of sub-protocol ΠPRF, and thus the state update of FGP2PC is omitted.

B.3 Sub-Protocol for Stateful AEAD Schemes

In Figures 15 and 16, we describe details of sub-protocol ΠAEAD to securely realize encryption
and decryption of the stateful AEAD scheme based on AES-GCM. Protocol ΠAEAD works in the
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Protocol ΠPRF

Inputs. P and V input two bit strings label and msg as well as a label type ∈ {“open”, “partial open”,
“secret”}. Let n = ⌈ℓ/256⌉ and m = ℓ − 256 · (n − 1). Suppose that functionality FGP2PC stores
secret ∈ {pms,ms} that is packed into 512 bits with zero.

Definition of circuits. P and V define the following Boolean circuits:

• C1(secret) inputs secret ∈ {0, 1}512, and outputs IV1 = fH(IV0, secret ⊕ ipad) as well as IV2 =
fH(IV0, secret⊕ opad), where fH is the compression function of H and IV0 is a fixed initial vector.

• C2(IV2,Wi) takes as input IV2,Wi ∈ {0, 1}256, and outputs Mi = fH(IV2,Wi).

• C3(IV2, X1, . . . , Xn) takes as input IV2, X1, . . . , Xn ∈ {0, 1}256, and then outputs der =
(
fH(IV2, X1),

. . . , fH(IV2, Xn−1),Truncm(fH(IV2, Xn))
)
∈ {0, 1}ℓ.

Let C′2,i(IV2) be the Boolean circuit that outputs C2(IV2,Wi) for a public value Wi, and C′3(IV2) be the
Boolean circuit that outputs C3(IV2, X1, . . . , Xn) for public values X1, . . . , Xn.

Handshake phase. When the inputs are known, P and V do the following:

1. Both parties call the (eval) command of FGP2PC on the state secret and circuit C1 to compute IV1
and IV2. Then, P and V call the (output) command of FGP2PC to open IV1 to both parties.

2. Let M0 = label∥msg . From i = 1 to n, both parties compute Wi := fH(IV1,Mi−1), and call the
(eval) command of functionality FGP2PC on the state IV2, circuit C2 and P’s input Wi to compute
Mi = fH(IV2,Wi). Then, P and V call the (output) command of FGP2PC such thatMi for all i ∈ [1, n]
are opened to both parties.

3. For i ∈ [1, n], both parties compute Xi := fH(IV1,Mi∥label∥msg). Then, the parties call the (eval)
command of FGP2PC on circuit C3 and P’s input (X1, . . . , Xn) to compute the output der.

4. If type = “open”, P and V call the (output) command of FGP2PC to open der. If type = “partial open”,
both parties call (output) command of FGP2PC to open (IVC , IVS), where der = (keyC , IVC , keyS , IVS).

Post-record phase. Functionality FGP2PC stores secret∗ that is identical to secret in the honest case,
where P knows secret∗ in this phase. In the post-record phase of main protocol ΠAuthData (Figures 17
and 18), P performs the local verification to check the correctness of all values opened. That is, P
performs the following checks involved in the (prove) command of FGP2PC. In this phase, P and V do
the following, and V aborts if any check fails.

5. Both parties call the (prove) command of functionality FGP2PC on the state secret∗ and circuit C1 to
generate IV ∗

2 = fH(IV0, secret
∗ ⊕ opad) and check IV1 = fH(IV0, secret

∗ ⊕ ipad).

6. For i ∈ [1, n], both parties call the (prove) command of functionality FGP2PC on the state secret∗ and
circuit C′2,i to check that Mi = fH(IV

∗
2 ,Wi) for public value Wi.

7. Both parties call the (prove) command of functionality FGP2PC on the state secret∗ and circuit
C′3 to generate der∗ =

(
fH(IV

∗
2 , X1), . . . , fH(IV

∗
2 , Xn−1),Truncm(fH(IV

∗
2 , Xn))

)
for public values

X1, . . . , Xn. If type = “open”, then FGP2PC checks that der∗ = der. If type = “partial open”,
then der∗ = (key∗C , IV

∗
C , key

∗
S , IV

∗
S ) and FGP2PC checks that IV ∗

C = IVC and IV ∗
S = IVS .

Figure 14: Protocol for securely computing HMAC-based PRF in the FGP2PC-hybrid model.

(FGP2PC,FOLEe,FCom,FIZK)-hybrid model, and uses FGP2PC to compute AES blocks and prove their
correctness. Functionality FOLEe will be used in the generation of GMAC tags, and FCom is called
to prevent the possible attack of forging GMAC tags (see below for details). Functionality FIZK

is used for generating IT-MACs on the plaintexts underlying the AEAD ciphertexts. Recall that
FIZK inherits the commands of FGP2PC, and thus can directly authenticate the inputs and outputs
of FGP2PC with IT-MACs. To support the extension of multi-round sessions of the main protocol
ΠAuthData (described in Section 5.2), sub-protocol ΠAEAD is designed to cover the case of decrypting
AEAD ciphertexts in the record phase. To compute GMAC tags of AEAD ciphertexts, we let P
and V generate additive sharings of the powers of a field element h = AES(key,0) ∈ F2128 , following
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Protocol ΠAEAD

Inputs. The prover P and verifier V hold the following inputs:

• Both parties hold a state st for AEAD, the ciphertext length ℓc and header h.

• Both parties input a label type1 ∈ {“encryption”, “decryption”}. If type1 = “encryption”, P inputs a
plaintext M that has been padded as (m1, . . . ,mn) with mi ∈ {0, 1}128. If type1 = “decryption”, both
parties input a ciphertext ct = (C, σ′) with C = (c1, . . . ,cn).

• The parties input a label type2 ∈ {“secret”, “open”}. If type2 = “open”, V inputs the same plaintext
M for type1 = “encryption”, and n = 1. Let m ≥ n+2 be the maximum number of AES blocks used
to generate any AEAD ciphertext in the TLS protocol execution. If type2 = “secret”, both parties
input

[
hi
]
2128

for all i ∈ [1,m] where h = AES(key,0).

Definition of circuits. P and V define the following Boolean circuits.

• Caes(key, hP , z0,P , st0, st1) takes as input key ∈ {0, 1}λ, hP , z0,P ∈ {0, 1}128 and (st0, st1), and outputs
hV = AES(key,0) ⊕ hP , z0,V = AES(key, st0) ⊕ z0,P , and z1 = AES(key, st1). Let C′aes(key) be
the corresponding verification circuit that outputs h = AES(key,0), z0 = AES(key, st0), and z1 =
AES(key, st1) for public values st0, st1.

• Daes(key, z0,P , . . . , zn,P , st0, . . . , stn) takes as input key ∈ {0, 1}λ, zi,P ∈ {0, 1}128 and sti for each
i ∈ [0, n], and outputs zi,V = AES(key, sti) ⊕ zi,P for each i ∈ [0, n]. Let D′

aes(key, z1,P , . . . , zn,P) be
the corresponding verification circuit, which outputs z0 = AES(key, sti) and zi,V = AES(key, sti)⊕zi,P
for i ∈ [1, n], where sti for all i ∈ [0, n] are public values.

Preprocessing phase. Before starting a TLS session, P and V execute the following preprocessing:

1. Depending on the value of type2, P and V do the following:

• If type2 = “open”, then P samples hP , z0,P ← {0, 1}128, and P and V call the (commit) command
of functionality FGP2PC on the P’s input (hP , z0,P) to let FGP2PC commit to (hP , z0,P).

• If type2 = “secret”, then for each i ∈ [0, n], P samples zi,P ← {0, 1}128, and both parties call the
(commit) command of functionality FGP2PC on the P’s input zi,P to have FGP2PC commit to zi,P .

Handshake/record phase. In the handshake phase, functionality FGP2PC stores key ∈ {keyC , keyS}.
2. For i ∈ [0, n], both parties compute sti := st+ i. Relying on the value of type2, P and V execute:

• If type2 = “open”, P and V call the (eval) command of functionality FGP2PC on the state key,
Boolean circuit Caes and P’s input (hP , z0,P , st0, st1) to compute hV , z0,V and z1. Then, both
parties call the (output) command of FGP2PC to let V obtain (hV , z0,V) and open z1 to both of
them. Note that no one knows key in this phase.

• If type2 = “secret”, P and V call the (eval) command of FGP2PC on the state key, Boolean circuit
Daes and P’s input (z0,P , . . . , zn,P , st0, . . . , stn) to compute zi,V for i ∈ [0, n]. Then both parties
call the (output) command of FGP2PC to make V obtain zi,V for i ∈ [0, n].

3. Depending on the values of type1 and type2, P and V do the following:

• If type2 = “open”, then both parties compute c1 := z1⊕m1 and setC := c1 if type1 = “encryption”,
or m1 := z1 ⊕ c1 and set M := m1 if type1 = “decryption”.

• If type2 = “secret”, for each i ∈ [1, n], P computes bi := zi,P ⊕ mi, and sends bi to V who
computes ci := bi ⊕ zi,V if type1 = “encryption”. For each i ∈ [1, n], V sends zi,V to P, who sets
ci := bi⊕zi,V if type1 = “encryption”, or mi := zi,P⊕zi,V⊕ci if type1 = “decryption”. Both parties
set C := (c1, . . . ,cn) if type1 = “encryption”, or P setsM := (m1, . . . ,mn) if type1 = “decryption”.

Figure 15: Protocol for securely computing AES-GCM-based AEAD.
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Protocol ΠAEAD, continued

4. If type2 = “open”, P and V define an additive sharing [h]2128 = (hP , hV). Then, both parties generate

a multiplication sharing (h̃P , h̃V) such that h = h̃P · h̃V ∈ F2128 as follows:

(a) P samples h̃P ← F2128\{0}. Then, P (as a sender) and V (as a receiver) call functionality

FOLEe on respective input (h̃P)
−1 and hV to obtain an additive sharing (sP , sV) such that

sP + sV = (h̃P)
−1 · hV ∈ F2128 .

(b) P computes d := (h̃P)
−1 ·hP +sP ∈ F2128 and sends it to V, who computes h̃V := d+sV ∈ F2128 .

Thus, we have h̃P ·h̃V = h̃P ·((h̃P)−1·hP+sP+sV) = h̃P ·((h̃P)−1·hP+(h̃P)
−1·hV) = hP+hV = h.

5. If type2 = “open”, from i = 2 to m, P and V compute an additive sharing
[
hi
]
2128

by letting P (as a

sender) and V (as a receiver) call functionality FOLEe on respective input (h̃P)
i and (h̃V)

i to obtain

an additive sharing
[
hi
]
2128

= (ai, bi) such that ai + bi = (h̃P)
i · (h̃V)i = hi ∈ F2128 .

6. P and V define an additive sharing [z0]2128 = (z0,P , z0,V). For C = (c1, . . . ,cn), the parties compute
an additive sharing [σ]2128 = (σP , σV) of a GMAC tag σ = z0 ⊕ Φ(h,C,ℓh,ℓc)(h) as follows:

• Let w ∈ F2128 be the field element corresponding to the bit-vector (ℓh, ℓc).

• Both parties locally compute [σ]2128 := [z0]2128 +h ·
[
hn+2

]
2128

+
∑n

i=1 ci ·
[
hn+2−i

]
2128

+w · [h]2128 .

7. Depending on type1, P and V output the following:

• If type1 = “encryption”, P sends σP to V, and V sends σV to P in parallel. Then both parties set
σ := σP ⊕ σV and output ct = (C, σ).

• If type1 = “decryption”, by calling functionality FCom, P commits to σP , while V commits to σV .
Then, by calling FCom again, P opens σP to V, and V opens σV to P. Both parties compute
σ := σP ⊕ σV , and then abort if σ ̸= σ′ or output M otherwise.

Post-record phase. The following step 8 was performed before the (revealandprove) command of
FGP2PC is called. In this phase, FGP2PC stores key∗ with key∗ = key in the honest case, and P knows
key∗. In the post-record phase of main protocol ΠAuthData (Figures 17 and 18), P performs the local
verification to check the correctness of each AEAD ciphertext. That is, P performs the following checks
involved in the (prove) command of FGP2PC. In this phase, P and V execute the following steps:

8. If type2 = “open”, both parties call the (output) command of functionality FGP2PC to open (hP , z0,P)
to V, and then V locally computes h := hP⊕hV and z0 := z0,P⊕z0,V . If type2 = “secret”, both parties
call the (output) command of FGP2PC to open z0,P to V, and then V locally computes z0 := z0,P⊕z0,V .

9. If type2 = “open”, both parties call the (prove) command of FGP2PC on the state key∗ and circuit C′aes
to check h = AES(key∗,0), z0 = AES(key∗, st0), and z1 = AES(key∗, st1). If type2 = “secret”, both
parties call the (prove) command of FGP2PC on the state key∗, committed inputs (z1,P , . . . , zn,P) and
circuit D′

aes to check z0 = AES(key∗, st0) and zi,V = AES(key∗, sti)⊕ zi,P for i ∈ [1, n]. In both cases,
V aborts if the check fails.

10. If type2 = “secret”, for i ∈ [1, n], P and V call the (authinput) command of FIZK on zi,P to generate
[[zi,P ]]. In this case, both parties locally compute [[zi]] := [[zi,P ]] ⊕ zi,V for i ∈ [1, n]. Then, P and V
locally compute [[mi]] := [[zi]]⊕ ci for i ∈ [1, n], and set [[M]] = ([[m1]], . . . , [[mn]]).

Figure 16: Protocol for securely computing AES-GCM-based AEAD, continued.

the high-level framework in DECO [ZMM+20]. While DECO computes these additive sharings
using a maliciously secure 2PC protocol, we use FOLEe to generate the additive sharings of the
powers of h, which is sufficient for applications (e.g., TLS) where GMAC tags are unforgeable even
if one-bit information of h is revealed.

When applying sub-protocol ΠAEAD into our protocol ΠAuthData (shown in Section 5.1), we use
a label type1 to distinguish that ΠAEAD is used for encryption from decryption, and a label type2
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to distinguish that a plaintext needs to be kept secret from that the plaintext allows to be opened
as a public value. Specifically, we have the following four cases:

• If type1 = “encryption” and type2 = “open”, ΠAEAD is used to generate a client finished message
finC .

• If type1 = “decryption” and type2 = “open”, ΠAEAD is used to generate a server finished message
finS . In this case, an optimization is described in Section 5.2.

• If type1 = “encryption” and type2 = “secret”, ΠAEAD is used to generate AEAD ciphertexts and
IT-MACs on queries.

• If type1 = “decryption” and type2 = “secret”, ΠAEAD is used to decrypt and verify AEAD
ciphertexts of responses and to generate IT-MACs on responses. When only one-round query-
response session is executed, ΠAEAD is unnecessary to be invoked. When multi-round query-
response sessions are executed by P and V, both parties can execute sub-protocol ΠAEAD to
decrypt every AEAD ciphertext from the server (see Section 5.2 for more optimization).

Note that only for the case of type2 = “open”, the additive sharings of powers of h = AES(key,0)
need to be generated. For the case of type2 = “secret”, these additive sharings are input to ΠAEAD

and reused to generate GMAC tags.
When applying OLE with errors and additive secret sharings without authentication to compute

GMAC tags for the case of type1 = “decryption”, a subtle issue is that a rushing adversary A, who
corrupts P, may first get the share σV of a GMAC tag held by honest verifier V, and then sends
σ′P = σ′− σV to V, where σ′ is the GMAC tag involved in the AEAD ciphertext. When σ′ is valid,
V will always accept the AEAD ciphertext, even if adversary A adds some error into σV such that
σP + σV ̸= σ′ where σP is the share that should be obtained by A. In this case, A could learn the
error without incurring abort, and then recovers h = AES(key,0) from the error. To prevent this
attack, we let P and V first commit to their shares of GMAC tag and then open them by calling
functionality FCom. This enforces adversary A to determine its share σ′P that would be opened
before seeing σV , and A has to guess pseudorandom value h before getting key. A similar attack
can be done by a malicious V, and the countermeasure is the same. This is not a problem for the
case of type1 = “encryption”, since adversary A does not get a GMAC tag from the TLS server.

B.4 Details of Protocol ΠAuthData

In Figures 17 and 18, we give the details of protocol ΠAuthData, which enables P to convince V that
a query Q and a response R committed are consistent, i.e., R is produced by a TLS server on Q.
This protocol invokes three sub-protocols ΠE2F, ΠPRF, ΠAEAD, which have been described in the
previous subsections. Protocol ΠAuthData works in the (FOLEe,FGP2PC,FCom,FIZK,FConv)-hybrid
model, where FOLEe is called by sub-protocols ΠE2F,ΠAEAD, and FCom is used by ΠAEAD. Note that
ΠPRF and ΠAEAD share the functionality FGP2PC such that the state of FGP2PC invoked by ΠPRF can

be directly used in ΠAEAD. Since ΠPRF and ΠAEAD are invoked multiple times, and we use Π
(i)
PRF

(resp., Π
(i)
AEAD) to denote the i-th execution of ΠPRF (resp., ΠAEAD).

In protocol ΠAuthData, p̃ms ∈ Zp is a pre-master secret, and pms represents its bit-decomposition
form. Two parties P and V need to evaluate a modulo-addition circuit to transform an additive
sharing of p̃ms over finite field Zp into that of pms over a binary field by calling FGP2PC. When
FGP2PC and FIZK are instantiated, garbled circuits and random IT-MACs are generated in the
preprocessing phase.
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Protocol ΠAuthData

A prover P and a verifier V, who execute the following protocol to play the role of a client, interact
with a server S who inputs (certS , skS) defined in Figures 11 and 12. P holds a private input α for a
query template Query known by both parties. Let Fx be a function mapping an elliptic-curve point to
its x-coordinate.

• Preprocessing : Generate correlated randomness. Before starting a TLS session, P and V
run the preprocessing phase of sub-protocols ΠE2F (Figure 13) and ΠAEAD (Figure 15) to generate
random additive sharings. Both parties call functionality FIZK (Figure 10) to initialize a global key
∆ ∈ {0, 1}λ sampled uniformly by V.

• Handshake : Generate pre-master secret.

1. P samples rC ← {0, 1}256 and sends reqC := rC to S. Then, P receives resS = (rS , TS , certS , σS)
from S, and sends (reqC ,resS) to V. If certS is invalid or Verify(pkS , rC∥rS∥TS , σS) = 0, P and
V abort.

2. V samples tV ← Zq, computes TV := tV ·G, and sends TV to P. P samples tP ← Zq and computes
TP := tP ·G, and sets TC := TP + TV = (tP + tV) ·G. Then, P sends resC := TC to S and V.

3. P computes Z1 := tP · TS , and V computes Z2 := tV · TS . Then P and V run sub-protocol ΠE2F

(Figure 13) on respective inputs Z1 and Z2 to get an additive sharing [p̃ms]p = Fx(Z1+Z2), where
P holds p̃msP ∈ Zp and V has p̃msV ∈ Zp such that p̃msP + p̃msV = p̃ms mod p.

• Handshake : Generate master secret and application keys.

4. P and V define the bit decomposition of p̃msP ∈ Zp and p̃msV ∈ Zp as pmsP ∈ {0, 1}⌈log p⌉ and
pmsV ∈ {0, 1}⌈log p⌉ respectively. Let AddModp be a Boolean circuit which inputs pmsP , pmsV ∈
{0, 1}⌈log p⌉, and outputs pms ∈ {0, 1}⌈log p⌉ that is the bit decomposition of p̃ms = p̃msP + p̃msV ∈
Zp. Then, P and V call the (input) and (eval) commands of FGP2PC on respective inputs
(pmsP , pmsV) and common circuit AddModp to generate and store pms. Both parties also call
the (commit) command of FGP2PC on the P’s input pmsP to commit to pmsP .

5. Both parties run sub-protocol Π
(1)
PRF (Figure 14) on the state pms, message (“master secret”, rC∥rS)

and a label “secret” to make FGP2PC generate and store ms = PRF384(pms, “master secret”, rC∥rS).
6. P and V run sub-protocol Π

(2)
PRF (Figure 14) on the state ms, message (“key expansion”, rS∥rC) and

a label “partial open” to generate a tuple (keyC , IVC , keyS , IVS ) = PRF448(ms, “key expansion”,
rS∥rC), where FGP2PC stores keyC , keyS ∈ {0, 1}128 and opens IVC , IVS ∈ {0, 1}96 to both parties.
Both parties initialize (stC , stS) := (IVC , IVS ).

• Handshake : Exchange finished messages.

7. P and V compute τC := H(reqC∥resS∥resC). Then, both parties run sub-protocol Π
(3)
PRF (Fig-

ure 14) on the state ms, message (“client finished”, τC) and a label “open” to let the parties obtain
ufinC = PRF96(ms, “client finished”, τC).

8. P and V run sub-protocol Π
(1)
AEAD (Figure 15) on the state keyC , a tuple (stC , ℓC ,hC ,ufinC),

a label “encryption” and a label “open” to generate finC = stE.Enc(keyC , ℓC ,hC ,ufinC , stC).
During this execution, both parties obtain

[
hiC

]
2128

for i ∈ [1,m] where hC = AES(keyC ,0) and
m = ⌈|Q|/128⌉ + 2. Both parties update stC := stC + 2. P sends (hC , finC) to S, who checks
correctness of finC and ufinC following the TLS specification and aborts if the check fails.

9. After receiving (hS , finS) from S, P forwards it to V. Then, P and V compute τS :=

H(reqC∥resS∥resC∥ufinC). Both parties execute sub-protocol Π
(4)
PRF (Figure 14) on the state

ms, message (“server finished”, τS) and label “open” such that both parties get ufinS =
PRF96(ms, “server finished”, τS).

10. P and V run sub-protocol Π
(2)
AEAD (Figure 15) on the state keyS , a tuple

(
stS , ℓS ,hS , finS

)
, a label

“decryption” and a label “open” such that both parties get ufinS
′. Then, P and V check that

ufinS = ufinS
′ and abort if the check fails. The parties update stS := stS + 2.

Figure 17: Protocol of authenticating web data for TLS.
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Protocol ΠAuthData, continued

• Record : Query and Respond. P and V encrypt a query and obtain a ciphertext on a response.

11. P computes Q := Query(α). Then, P and V execute sub-protocol Π
(3)
AEAD (Figure 15) on the state

keyC , a tuple
(
stC , ℓQ,hQ, Q, {

[
hiC

]
2128
}i∈[1,m]

)
, a label “encryption” and a label “secret” such that

both parties obtain encQ = stE.Enc(keyC , ℓQ,hQ, Q, stC). Then, P sends (hQ,encQ) to S.
12. Following the TLS specification, S checks the correctness of (hQ,encQ), and aborts if the check

fails. Then S decrypts encQ to get Q, and computes a ciphertext (hR,encR) on a response R.
Then, S sends (hR,encR) to P, who forwards it to V.

• Post-record : Prove with ZK. P and V check correctness of the values produced so far.

13. Both parties run the post-record phase of sub-protocol executions Π
(1)
AEAD, Π

(2)
AEAD and Π

(3)
AEAD to let

V obtain (hC , hS , zC , zS , zQ), where zC , zS , zQ are the AES blocks used to generate the GMAC
tags involved in finC , finS ,encQ.

14. P and V call the (revealandprove) command of functionality FGP2PC, which sends pmsV to P. In
parallel, V sends tV ∈ Zp to P. Then P verifies that TV = tV · G and aborts if the equality does
not hold. P performs the following checks, and sends abort to FGP2PC and aborts if any check fails.

(a) P computes p̃ms
∗
:= Fx((tP + tV) · TS), sets pms∗ as the bit decomposition of p̃ms

∗
, and then

checks that pms∗ = AddModp(pmsP , pmsV).

(b) P uses pms∗ to check the correctness of all values opened during sub-protocol execution Π
(1)
PRF,

by recomputing these values with pms∗ and comparing them with the values opened.
(c) P computes ms∗ := PRF384(pms∗, “master secret”, rC∥rS), and uses ms∗ to check the correct-

ness of all values opened during sub-protocol executions Π
(2)
PRF, Π

(3)
PRF and Π

(4)
PRF by recomputing

these values with ms∗, where (key∗C , IV
∗
C , key

∗
S , IV

∗
S) := PRF320(ms∗, “key expansion”, rS∥rC)

is computed, IVC = IV ∗
C , IVS = IV ∗

S are checked, and ufinC ,ufinS are checked.
(d) P uses (key∗C , key

∗
S ,ufinC ,ufinS , Q) to check the correctness of finC , finS and encQ by

recomputing these ciphertexts and comparing them with ciphertexts finC , finS and encQ.
(e) P runs R← stE.Dec(key∗S ,hR,encR, stS). If stE.Dec outputs ⊥, P aborts.

15. Let AddModp be a Boolean circuit which inputs pmsP and outputs pms∗ = AddModp(pmsP , pmsV)
for a common value pmsV . P and V call the (prove) command of functionality FGP2PC on the
committed input pmsP and circuit AddModp to generate and store pms∗.

16. Given pms∗ stored in FGP2PC, by calling functionalities FGP2PC and FIZK, P and V execute the

post-record phase of sub-protocol executions Π
(1)
PRF, Π

(2)
PRF, Π

(3)
PRF, Π

(4)
PRF, Π

(1)
AEAD, Π

(2)
AEAD and Π

(3)
AEAD

to let V check the correctness of all values obtained by V in the previous steps. If the check fails,
V aborts. During these sub-protocol executions, key∗S was stored by FIZK, and [[Q]] was generated.

17. Both parties call the (zkauth) command of functionality FIZK on the state key∗S and Boolean circuit
AES [stS ] to generate [[zR]], where AES [stS ] takes as input key

∗
S and outputs zR = AES(key∗S , stS).

P sends zR to V, and then both parties call the (check) command of FIZK on [[zR]]−zR to check that
zR received by V is correct. Then, V uses (hC , hS , zC , zS , zQ, zR) to check the correctness of all
GMAC tags in the AEAD ciphertexts finC , finS ,encQ,encR following the AEAD specification,
and aborts if the check fails.

18. P and V parse encR = (CR, σR). Both parties call the (zkauth) command of functionality FIZK

on the state key∗S and Boolean circuit AESDec[stS ,CR] to generate [[R]], where AESDec[stS ,CR]
takes as input key∗S , and decrypts CR to an output R with key∗S and stS .

• Post-record : Commit to query and response.

19. P and V call the (convert) command of functionality FConv (Figure 19) on IT-MACs ([[Q]], [[R]]) to
obtain (cid1, . . . , cidℓ) (resp., (cid

′
1, . . . , cid

′
n)) that denotes the commitment identifiers on Q (resp.,

R). Then, both parties output these identifiers, and P also outputs (Q,R).

Figure 18: Protocol of authenticating web data for TLS, continued.
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Functionality FConv

This functionality interacts with P and V, and has all the features of FIZK (shown in Figure 10) and
FHCom (shown in Figure 9). Furthermore, this functionality involves the following commands.

Conversion. Upon receiving (convert, id, cid) from P and V, if (id, [[x]]) was previously stored, then
store (cid, x).

Reveal global key. Upon receiving (revealkey) from P and V, if ∆ was previously stored, then send ∆
to P. Ignore all commands associated with ∆.

Figure 19: Functionality for converting IT-MACs to additively homomorphic commitments.

C Converting IT-MACs into Commitments

Our protocol will commit to queries and responses using an Additively Homomorphic Commitment
(AHC) scheme, which is modeled in functionality FHCom shown in Figure 9. In the main protocol
ΠAuthData (shown in Section 5.1), we use a conversion functionality FConv (shown in Figure 19) to
convert IT-MACs into AHCs. The definition of the (convert) command of functionality FConv is
similar to that of the ideal functionalities in prior works, e.g., [EGK+20, WYX+21]. Functionality
FConv additionally includes a (revealkey) command which reveals global key ∆ to P and hereafter
ignores all commands related to ∆. In this section, we present a protocol to securely realize
functionality FConv with revealkey, and show how to simply extend this protocol to realize FConv

without revealkey.
In Figure 20, we show an efficient protocol ΠConv to securely instantiate functionality FConv.

This protocol enables two parties to convert authenticated bits into AHCs with message space of a
large field F. For example, we can convert such IT-MACs into Pedersen commitments [Ped92] or
KZG polynomial commitments [KZG10] (by packing multiple values together). Then, the Pedersen
or KZG commitments can be used in zk-SNARKs such as [CFQ19, GWC19, MBKM19, CHM+20,
CFF+21] to accelerate generation of the proofs on statements w.r.t. queries and responses. We
focus on the case that F is a finite field modulo a large prime q (i.e., F = Zq), but our protocol
supports any large field F. 7

We realize conversion in two steps: (1) convert IT-MACs over a binary field F2λ into that over
a prime field F using a random oracle [IKNP03, CKKZ12, GKWY20, GKMN21]; (2) convert IT-
MACs over F into AHCs using a random linear combination. In protocol ΠConv (Figure 20), we use
functionality FHCom to commit to the bits of queries and responses (i.e., u) rather than using an
AHC scheme. This allows us to simplify the proof of security. When instantiating FHCom with an
AHC scheme, P can output the randomness that is used to generate these AHCs, and in turn the
randomness will be used by P as a part of witness in subsequent ZK proofs on these AHCs.

In step 3 of protocol ΠConv, V sends field elements {Wi}, that encrypt global key Γ, to P. A
malicious party V may introduce some errors into these field elements, which allows it to learn
some bits of secret vector u. To prevent such attack, we adopt the commit-then-open approach:
V first commits to global keys ∆,Γ, and then opens them to P who can check the correctness of
{Wi} with ∆,Γ and its MAC tags. In this case, we also let P commit to the MAC tag M̃[y] that
will be opened later, before ∆,Γ are opened. This assures that P cannot forge a MAC tag on an
inconsistent value y after knowing ∆,Γ.

In the case that V is malicious, it may commit to an inconsistent global key ∆′ = ∆ ⊕ E1 for
an error E1 ̸= 0 chosen by V. Then, V could open ∆′ along with Γ to an honest prover P who uses
K′[ui] = M[ui]⊕ui∆⊕uiE1 = K[ui]⊕uiE1 to check the correctness ofWi for i ∈ [1, n], where K[ui] =

7In this paper, we say that F is a large field if |F| ≥ 2λ.
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Protocol ΠConv

Inputs. Parties P and V hold the following inputs:

• V holds a uniform global key ∆ ∈ {0, 1}λ. Both parties input a vector of IT-MACs [[u]] =
(u,M[u],K[u]) with u = (u1, . . . , un) ∈ {0, 1}n and M[ui] = K[ui]⊕ ui∆ for i ∈ [1, n].

• Both parties input [[v]] = (v,M[v],K[v]) with a random vector v = (v1, . . . , vλ) ∈ {0, 1}λ and M[vi] =
K[vi]⊕ vi∆ for i ∈ [1, λ].

• Let H : {0, 1}λ → F be a random oracle, and H′ : {0, 1}∗ → {0, 1}λ be another random oracle.

Preprocessing phase. P and V execute the following preprocessing:

1. V samples Γ← F, and then commits to (∆,Γ) by calling functionality FCom.

2. P samples u0 ← F. Then, P (acting as a sender) and V (acting as a receiver) call FOLEe on respective

input u0 and Γ. Functionality FOLEe sends M̃[u0] ∈ F to P and −K̃[u0] ∈ F to V such that M̃[u0] =

K̃[u0] + u0 · Γ ∈ F. Let [[u0]]F = (u0, M̃[u0], K̃[u0]).

Online phase. P and V convert [[u]] into additive homomorphic commitments of u over a large field F.
3. For i ∈ [1, n], P and V convert [[ui]] into [[ui]]F as follows:

(a) V computes Wi := H(K[ui]) − H(K[ui] ⊕ ∆) + Γ ∈ F and sets K̃[ui] := H(K[ui]) ∈ F, and then
sends Wi to P.

(b) P computes M̃[ui] := H(M[ui]) + ui ·Wi ∈ F, where M̃[ui] = K̃[ui] + ui · Γ.
(c) Both parties define [[ui]]F = (ui, M̃[ui], K̃[ui]).

4. For i ∈ [0, n], P commits to ui by sending (commit, cidi, ui) to FHCom[F] which sends (committed, cidi)
to V.

5. V samples χ1, . . . , χn ← F and sends them to P. Both parties locally compute [[y]]F :=
∑

i∈[1,n] χi ·
[[ui]]F + [[u0]]F. P and V compute a linear combination of the commitments of u0, u1, . . . , un by
sending (lincomb, cid′, cid0, . . . , cidn, χ1, . . . , χn) to functionality FHCom[F] which stores (cid′, y) with
y =

∑
i∈[1,n] χi · ui + u0.

6. P commits to M̃[y] ∈ F by calling functionality FCom. Then, V opens (∆,Γ) to P by calling func-

tionality FCom. In parallel, V computes τ := H′(K[v1], . . . ,K[vλ]), and sends (τ, K̃[y]) to P.
7. For i ∈ [1, n], P computes K[ui] := M[ui]⊕ui∆ and checksWi = H(K[ui])−H(K[ui]⊕∆)+Γ. Then, P

computes τ ′ := H′(M[v1]⊕v1∆, . . . ,M[vλ]⊕vλ∆) and checks τ ′ = τ . P also checks M̃[y] = K̃[y]+y ·Γ.
If any check fails, P aborts.

8. P opens the commitment of y by sending (open, cid′) to functionality FHCom[F] which sends

(opened, cid′, y) to V. In parallel, P opens M̃[y] to V by calling FCom. V checks that M̃[y] = K̃[y]+y ·Γ
and aborts if the check fails.

9. For i ∈ [1, n], both parties output (cid1, . . . , cidn) that represents the identifiers of commitments of
u1, . . . , un.

Figure 20: Protocol for converting IT-MACs to AHCs in the (FCom,FHCom,FOLEe)-hybrid model.

M[ui]⊕ui∆. For i ∈ [1, n], malicious verifier V can constructWi = H(K[ui])−H(K[ui]⊕∆⊕E1)+Γ
to guess ui = 0 orWi = H(K[ui]⊕E1)−H(K[ui]⊕∆)+Γ to guess ui = 1. This allows V to perform a
selective failure attack on some bits of u. We prevent such attack by letting two parties additionally
input [[v]] with a random v ∈ {0, 1}λ, where [[v]] can be efficiently generated by calling the (authinput)
command of functionality FIZK or running the COT protocol with the same global key ∆. When ∆
is revealed, for each i ∈ [1, λ], V needs to send K[vi] to P who checks K[vi] = M[vi]⊕vi∆. If V opens
an inconsistent ∆′, it has to guess v ∈ {0, 1}λ correctly, which occurs with probability at most 1/2λ.
We can use a random oracle H′ to compress communication of sending K[v] from λ2 bits to λ bits.
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In addition, a malicious V may use an inconsistent Γ′ = Γ+E2 for an error E2 ̸= 0 chosen by V when
calling functionality FOLEe, which results in an incorrect correlation M̃[u0] = K̃[u0]+u0 ·Γ+u0 ·E2.
In this case, we have that M̃[y] = K̃[y] + y · Γ + u0 · E2, where K̃[y] =

∑
i∈[1,n] χi · K̃[ui] + K̃[u0].

After (y, M̃[y]) is opened to V, it can compute u0 := (M̃[y]− K̃[y]− y · Γ)/E2 and then reveals the
linear combination

∑
i∈[1,n] χi · ui. We prevent the attack by letting V send K̃[y] to P who checks

M̃[y] = K̃[y]+y ·Γ before (y, M̃[y]) is opened. If V sends K̃[y]′ = K̃[y]+E3 to P, then we obtain that
u0 · E2 + E3 = 0, which occurs with probability at most 1/|F|, as u0 is uniform in F and (E2, E3)
is independent of u0. For more details, see the proof of Theorem 3.

We can extend protocol ΠConv to securely realize functionality FConv without the (revealkey)
command. Specifically, two parties P and V converts [[u]]∆ into [[u]]∆′ for an independent random
global key ∆′, and then use [[u]]∆′ to execute the protocol. In this way, only ∆′ is revealed, and
∆ is still kept secret. Thus, [[u]]∆ can still be used in other protocol executions. The remaining
task is to generate [[u]]∆′ with a consistent vector u. P and V can produce [[u]]∆′ by executing a
COT protocol. However, a malicious P may adopt an inconsistent vector u′ in the COT protocol
execution. This can be detected by checking the consistency of [[u]]∆ and [[u]]∆′ using a random
linear combination. In particular, V samples ψ1, . . . , ψn ← F2λ and sends them to P. Then, both
parties locally compute

[[z]]∆ =
∑

i∈[1,n]

ψi · [[ui]]∆ + [[r]]∆, [[z]]∆′ =
∑

i∈[1,n]

ψi · [[ui]]∆′ + [[r]]∆′ ,

where [[r]]∆ and [[r]]∆′ are IT-MACs on a random value r ∈ F2λ , and they can be generated by
running the COT protocol. Here r is used to mask

∑
i∈[1,n] ψi · ui ∈ F2λ . A malicious P may incur

the inconsistency of r in [[r]]∆ and [[r]]∆′ , which would has no impact on security. P can send z to V,
who checks that both [[z]]∆ − z and [[z]]∆′ − z are IT-MACs on zero. If the vector u is inconsistent
in [[u]]∆ and [[u]]∆′ , this check passes with negligible probability, as ψi for all i ∈ [1, n] are sampled
at random after [[u]]∆ and [[u]]∆′ have been defined. Combining with the above approach, our
approach underlying the protocol ΠConv is easy to be extended to convert additively homomorphic
commitments into IT-MACs.

Theorem 3. Protocol ΠConv (shown in Figure 20) securely realizes functionality FConv (shown in
Figure 19) in the (FCom, FHCom,FOLEe)-hybrid model, if H is a random oracle.

Proof. We first consider the case of a malicious prover P and then consider the case of a malicious
verifier V. In each case, we construct a PPT simulator S given access to functionality FConv,
which runs a PPT adversary A as a subroutine, and emulates functionalities FCom,FHCom,FOLEe.
Whenever A or the honest party simulated by S will abort, S sends abort to FConv, and then aborts.
In both cases, S simulates random oracle H′ by answering a random string in {0, 1}λ for each query
while keeping the consistency of answers.

Malicious prover P. In this case, S knows (ui,M[ui]) for i ∈ [1, n] and (vi,M[vi]) for i ∈ [1, λ]. S
samples Γ← F. For each query Y of random oracle H, S responds as follows:

• Before (∆,Γ) is revealed, if Y was previously queried, retrieve (Y,Z) and send Z to A. Otherwise,
sample Z ← F, store (Y, Z) and send Z to A.

• After (∆,Γ) is revealed, respond as above, except for the following difference: if Y = M[ui]⊕∆
for some i ∈ [1, n], retrieve (M[ui], Zi), set Z := Zi −Wi + Γ if ui = 0 or Z := Wi + Zi − Γ
otherwise, then store (Y, Z) and send Z to A.

By emulating functionalities FCom, FHCom and FOLEe, S interacts with adversary A as follows.

46



1. In the preprocessing phase, S emulates FOLEe by receiving u0, M̃[u0] and an error vector e sent
by A to FOLEe.

2. For each i ∈ [1, n], S samples Wi ← F and sends it to A. Then S computes M̃[ui].

3. S emulates functionality FHCom[F] by receiving u′i from A for i ∈ [0, n]. Then, S computes
ei := u′i − ui ∈ F for i ∈ [0, n].

4. S samples χ1, . . . , χn ← F and sends them to adversary A. Then, S computes M̃[y] with
(M̃[u0], M̃[u1], . . . , M̃[un]).

5. S emulates the (commit) command of FCom by receiving M̃[y]′ from A. Then, S computes
E := M̃[y]′ − M̃[y] ∈ F. Next, S receives ∆ from functionality FConv. S emulates the (open)
command of FCom by sending (∆,Γ) to A.

6. S computes K[vi] := M[vi]⊕ vi∆ for i ∈ [1, λ] and sets τ := H(K[v1], . . . ,K[vλ]). S also computes
K̃[ui] := M̃[ui] − ui · Γ ∈ F for i ∈ [1, n] and K̃[u0] := M̃[u0] − u0 · Γ − (g ∗ e) ⊙ Γ ∈ F, then
computes K̃[y] :=

∑
i∈[1,n] χi · K̃[ui] + K̃[u0] ∈ F. Then, S sends (τ, K̃[y]) to A.

7. S checks that E = (
∑

i∈[1,n] χi · ei+ e0) ·Γ+ (g ∗e)⊙Γ and ei = 0 for all i ∈ [1, n], where vector
Γ is the bit-decomposition of Γ ∈ F. If the check fails, S aborts.

It is easy to see that the simulation of functionalities FCom, FHCom,FOLEe is perfect. After obtaining
∆, S is able to compute K[vi] for i ∈ [1, λ], and then uses them to simulate τ perfectly. Similarly,
after knowing Γ, S can compute K̃[ui] for i ∈ [0, n], and then uses them to compute K̃[y] that has the
same distribution as the one sent in the real protocol execution. The simulation of random oracle
H is also perfect, unless A makes a query M[ui] ⊕∆ for some i ∈ [1, n] to H before ∆ is revealed.
The bad event happens with negligible probability, since ∆ ∈ {0, 1}λ is unknown for A. Before ∆
is revealed, Wi for i ∈ [1, n] in the real protocol execution are uniform. This because ∆ ∈ {0, 1}λ
is uniform and H is a random oracle, and thus the probability that A makes a query M[ui]⊕∆ to
random oracle H for some i ∈ [1, n] is negligible in λ. The elements W1, . . . ,Wn in the real protocol
are computationally indistinguishable from that simulated by S. For a malicious P, checking M̃[y] =
K̃[y]+y ·Γ in the real protocol execution is equivalent to check E = (

∑
i∈[1,n] χi ·ei+e0)·Γ+(g∗e)⊙Γ

in the ideal-world execution. The only difference is that S additionally checks ei = 0 for all i ∈ [1, n].
Below, we show that ei = 0 for all i ∈ [1, n], if honest V does not abort in the real protocol

execution. As analyzed above, Wi for each i ∈ [1, n] is computationally indistinguishable from a
uniform element in the real protocol execution. Therefore, Γ is computationally indistinguishable
from a uniform element in F before it is revealed. Thus, we have

∑
i∈[1,n] χi · ei + e0 = 0. The

coefficients χ1, . . . , χn ∈ F are sampled uniformly after the errors e0, e1, . . . , en have been defined.
Therefore, ei = 0 for all i ∈ [1, n], except with probability 1/|F| that is negligible. Overall, the
checking performed by S is computationally indistinguishable from that performed by V in the real
protocol execution. In addition, we also obtain that (g ∗ e) ⊙ Γ = 0, which allows A to reveal
one-bit information of Γ on average. This is harmless as Γ ∈ F still has a sufficiently high entropy
before it is revealed and A would always obtain Γ in step 6.

In conclusion, the joint distribution of the outputs of A and V in the real-world execution is
computationally indistinguishable from that of S and V in the ideal-world execution.

Malicious verifier V. In this case, S knows ∆, K[ui] for i ∈ [1, n] and K[vi] for i ∈ [1, λ]. S
simulates a random oracle H by answering a random field element in F for each query while keeping
the consistency of answers. S emulates functionalities FCom, FHCom and FOLEe, and interacts with
A as follows.

1. In the preprocessing phase, S emulates the (commit) command of functionality FCom by receiving
(∆′,Γ) from A.
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2. S emulates FOLEe by receiving Γ′ and −K̃[u0] from A.
3. For each i ∈ [1, n], after receiving Wi from A, simulator S sets K̃[ui] = H(K[ui]).

4. For AHCs of u0, u1, . . . , un, S emulates the (commit) command of FHCom[F] by sending cidi for
i ∈ [0, n] to A.

5. After receiving χ1, . . . , χn from A, S computes K̃[y] following the protocol description.

6. S receives (τ, K̃′[y]) from A. Then S checks that τ = H′(K[v1], . . . ,K[vλ]) and ∆′ = ∆. S also
checks K̃′[y] = K̃[y] and Γ′ = Γ. If any check fails, S aborts.

7. S uses K[ui] for i ∈ [1, n] and (∆,Γ) to check correctness of Wi for all i ∈ [1, n] following the
protocol description.

8. S emulates the (open) command of functionality FHCom[F] by sending a random element y ∈ F
to A. Then, S computes M̃[y] = K̃[y] + y · Γ, and emulates the (open) command of FCom by
sending M̃[y] to A.

It is clear that the simulation of functionalities FCom, FHCom,FOLEe is perfect. In the following, we
show that all checks performed by honest prover P in the real protocol execution are statistically
indistinguishable from that performed by S in the ideal-world execution. Let E1 = ∆ ⊕ ∆′,
E2 = Γ′ − Γ and E3 = K̃′[y] − K̃[y]. If E1 ̸= 0 and P does not abort, then τ = H′(M[v1] ⊕
v1∆ ⊕ v1E1, . . . ,M[vλ] ⊕ vλ∆ ⊕ vλE1) = H′(K[v1] ⊕ v1E1, . . . ,K[vλ] ⊕ vλE1). If A makes a query
(K[v1]⊕v1E1, . . . ,K[vλ]⊕vλE1) to random oracle H′, then A succeeds to guess v which occurs with
probability 1/2λ as v ∈ {0, 1}λ is uniform. Otherwise, A guesses τ correctly, which happens with
probability 1/2λ, as τ = H′(K[v1] ⊕ v1E1, . . . ,K[vλ] ⊕ vλE1) is uniformly random in the random-
oracle model. Therefore, checking τ and ∆′ = ∆ in the ideal-world execution is statistically
indistinguishable from checking τ in the real protocol execution. Additionally, due to E1 = 0, P
always computes K[ui] = M[ui]⊕ui∆, and thus the check of Wi for all i ∈ [1, n] is identical in both
worlds. Then we obtain that M̃[ui] = K̃[ui] +ui ·Γ. If E2 ̸= 0, then M̃[u0] = K̃[u0] +u0 ·Γ+u0 ·E2.
Thus, M̃[y] = K̃[y] + y · Γ + u0 · E2. If P does not abort in the real protocol execution, then
K̃′[y] = M̃[y] − y · Γ, meaning that E3 = u0 · E2. Since E2, E3 have been defined before y is
opened, we have E2 = E3 = 0 based on the fact that u0 ∈ F is uniform before y is opened.
Therefore, checking K̃′[y] and Γ′ = Γ in the ideal-world execution is statistically indistinguishable
from checking K̃′[y] in the real protocol execution. From the fact that u0 ∈ F is uniform, y ∈ F
opened by P in the real protocol execution is uniformly random in F. This means that y simulated
by S has the identical distribution as that in the real protocol execution. Due to E2 = 0, we have
that M̃[y] = K̃[y] + y ·Γ. Hence, M̃[y] opened by S also has the identical distribution as that in the
real protocol execution.

In conclusion, the joint distribution of the outputs of A and P in the real-world execution is
statistically indistinguishable from that of S and P in the ideal-world execution.

Optimizations. We can further optimize the efficiency of protocol ΠConv as follows:

• When instantiating FHCom with an additively homomorphic commitment scheme with algo-
rithm Commit, we are able to use the Fiat-Shamir transformation to generate random chal-
lenges χ1, . . . , χn without any interaction. In particular, P and V can compute (χ1, . . . , χn) :=
H′′(W1, . . . ,Wn,Commit(u1), . . . ,Commit(un)), where H′′ is a random oracle and Commit(ui) is
an AHC on bit ui for i ∈ [1, n]. Note that |F| ≥ 2λ and F is sufficiently large to support Fiat-
Shamir. The challenges ψ1, . . . , ψn used for converting IT-MACs between different global keys
can be computed in a similar way based on the Fiat-Shamir transformation.
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• In protocol ΠConv (Figure 20), we let P commit to every bit ui, which requires to generate n
AHCs and IT-MACs over F, where n is the length of u. We can reduce the communication and
computational costs of generating these AHCs from O(n) to O(n/m) by first packing IT-MACs
of m bits together and then converting them into AHCs. Here m is a parameter depending on
the applications, and satisfies that 2m − 1 < |F| in order to avoid overflow. Recall that we focus
on the case of F = Zq for a prime q. Then, after P and V generated [[ui]]F for i ∈ [1, n], both
parties can compute [[vj ]]F :=

∑m
i=1 2

i−1 · [[u(j−1)m+i]]F for j ∈ [1, ℓ] where ℓ = ⌈n/m⌉ and vj is an
integer of m bits. Using the same approach, both parties can convert [[vj ]]F into Commit(vj) for
j ∈ [1, ℓ], where Commit denotes the commit algorithm of an AHC scheme.

D Garbling Schemes and Proof of Security

In this section, we first give the definition of garbling schemes, and then describe the formal proof
for the security of protocol ΠGP2PC (Figure 4).

D.1 Definition of Garbling Schemes

Following previous work [BHR12], we define a garbling scheme GS = (Garble, Encode,Decode,Eval)
that is extended to explicitly consider two-input circuits. For the sake of simplicity, we assume that
the least significant bits of garbled outputs are sufficient to be decoded into circuit outputs, which
has been satisfied by most of concretely efficient garbling schemes (e.g., [ZRE15, RR21]).

• (F,e,d)← Garble(f): On input a circuit f : {0, 1}m ×{0, 1}m → {0, 1}n, this algorithm outputs
a garbled circuit F , an encoding information e and a decoding information d. (Here we omit the
input of security parameter 1λ for simplicity.)

• (L[x], L[y]) ← Encode(e,x,y): On input the encoding information e and two input vectors
x,y, this algorithm outputs two garbled inputs L[x], L[y]. If x = ⊥ (resp., y = ⊥), then
L[y]← Encode(e,⊥,y) (resp., L[x]← Encode(e,x,⊥)).

• L[z]← Eval(F, L[x], L[y]): On input a garbled circuit F and garbled inputs L[x], L[y], this algo-
rithm outputs a garbled output L[z].

• z ← Decode(lsb(L[z]),d): On input the least significant bits of garbled output L[z] and a decoding
information d, this algorithm outputs z = f(x,y).

In the above definition, for a vector x = (x1, . . . , xm) ∈ {0, 1}m, L[x] is defined as (L[x1], . . . , L[xm])
where L[xi] is a garbled label on bit xi for i ∈ [1,m]. In most of concretely efficient garbling schemes,
we have lsb(L[z])⊕ lsb(L[0]) = z for a vector z ∈ {0, 1}n, where L[0] is a vector of garbled labels on
a zero vector. In this case, the decoding information d = lsb(L[0]) and Decode(lsb(L[z]),d) outputs
z = lsb(L[z])⊕ lsb(L[0]).

We recall that a garbling scheme GS satisfies simulation-based privacy [BHR12], if there ex-
ists a simulator SGC, who takes as input (y, z) and a circuit f , and then outputs (F ′, X ′, Y ′,d′)
which is computationally indistinguishable from (F, L[x], L[y],d), where (F,e,d)← Garble(f) and
(L[x], L[y]) ← Encode(e,x,y). When SGC does not obtain the circuit output z and the distin-
guisher is not given the decoding information d, the security property is called simulation-based
obliviousness [BHR12]. Since our protocol sends a garbled circuit in the preprocessing phase and
then evaluates it in the online phase, we require that SGC is adaptive, i.e., SGC(f) first outputs a
garbled circuit F ′ and a decoding information d′ as well as an additional state information st, and
then SGC(st,y, z) outputs an encoded input (X ′, Y ′). For obliviousness, this also need to hold if z
is not provided and the decoding information d′ is not output. It is well-known that many existing
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garbling schemes (e.g., [ZRE15, RR21]) satisfy adaptive security in the (programmable) random
oracle model. In addition, we require that for any input vector y, every Probabilistic Polynomial
Time (PPT) adversary, who is given (F, L[x], L[y],d) as defined above, cannot produce (y′, Y ′) such
that y′ ̸= y and Y ′ = Encode(e,⊥,y′). It is not hard to see that the security property holds if the
garbling scheme satisfies simulation-based privacy.

We apply a garbling scheme for a reactive circuit that consists of a series of Boolean circuits
f1, . . . , fℓ and maintains a state. Let state0 = ⊥ be the initial state. For j ∈ [1, ℓ], statej−1 is used
in the computation of circuit fj , and an updated state statej is output by fj , i.e., (statej , zj) ←
fj(statej−1,xj ,yj). To handle this case, we denote by einj the encoding information on the inputs
of fj , and use estj to represent the encoding information on statej , i.e., garbled labels L[statej ] on
statej can be computed with estj and statej . Informally, we can write L[statej ]← Encode(estj , statej).
Therefore, for garbling circuit fj , estj−1 is also input to Garble, and Garble additionally outputs

estj , i.e., (Fj ,e
in
j ,e

st
j ,dj) ← Garble(fj ,e

st
j−1). In this way, we can guarantee that the encoding

information estj−1 used for garbling fj−1 and fj is identical. When evaluating a reactive circuit,
the state information can be transferred by garbled labels on the state. That is, garbled labels
L[statej−1] are used for the evaluation of garbled circuit Fj , and then garbled labels L[statej ] are
output and used in the evaluation of garbled circuit Fj+1. We denote by (L[statej ], L[zj ]) ←
Eval(Fj , (L[statej−1], L[xj ], L[yj ])) such an evaluation procedure. Note that for garbling reactive
circuits, we only change the description of algorithms to keep compatible with the definition of
reactive circuits, and the security properties as we need are the same.

D.2 Security Proof for Protocol ΠGP2PC

Theorem 4 (Theorem 1, restated). If the garbling scheme satisfies the simulation-based privacy
and obliviousness, then protocol ΠGP2PC (shown in Figure 4) securely realizes functionality FGP2PC

(shown in Figure 3) in the (FOT,FIZK)-hybrid model, assuming H is a random oracle.

Proof. We first consider the case of a malicious prover P and then consider the case of a malicious
verifier V. In each case, we construct a PPT simulator S given access to functionality FGP2PC,
which runs a PPT adversary A as a subroutine, and emulates functionalities FOT,FIZK. Whenever
A or the honest party simulated by S will abort, S sends abort to FGP2PC, and then aborts. For the
case of a malicious V, S also invokes a simulator SGC for the underlying garbling scheme. When
S invokes SGC, the description of SGC is naturally extended to handle the case of reactive circuits
(see below for details).

Simulation of random oracle H. In both cases, S simulates a random oracle H by answering a
random string in {0, 1}λ for each query while keeping the consistency of answers.

Malicious prover. By emulating ideal functionalities FOT and FIZK, S interacts with A as follows.

1. For j ∈ [1, ℓ], S receives a garbled circuit Fj from A.
2. From j = 1 to ℓ, S simulates the online evaluation phase as follows:

(a) S emulates functionality FIZK by receiving xj and the MAC tags on [[xj ]] from A. Then, S
sends xj to functionality FGP2PC as P’s input.

(b) S emulates functionality FOT by receiving garbled labels L[0j ] and L[1j ] from A.
(c) S receives a vector of garbled labels L[xj ] from A.
(d) If P will open a vector vj committed in IT-MACs, S receives v′

j from A. Then, S emulates
the (check) command of FIZK on IT-MACs [[vj ]]−v′

j by checking vj = v′
j . If the check fails,

then S aborts.
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(e) If V will obtain an output zj , S receives a decoding information dj from A.
(f) S defines a circuit f ′j as follows:

• On input a state L[statej−1] and V’s input yj , set L[yj ] according to (L[0j ], L[1j ]).
• Run (L[statej ], L[zj ])← Eval(Fj , (L[statej−1], L[xj ], L[yj ])).
• If V will obtain an output zj , then run zj ← Decode(lsb(L[zj ]),dj) and output (L[statej ], zj).
Otherwise, output (L[statej ], lsb(L[zj ])).

(g) S sends f ′j to functionality FGP2PC as a “malicious” circuit chosen by P.
(h) If both P and V will obtain an output zj , S receives zj from FGP2PC, and then sends it to
A. If only P will get zj , S receives lsb(L[zj ]) from FGP2PC and forwards it to A.

3. In the reveal-and-prove phase, S receives y1, . . . ,yℓ from functionality FGP2PC. For each j ∈ [1, ℓ],
S sets L[yj ] according to (L[0j ], L[1j ]). Then, S sends τ = H(L[y1], . . . , L[yℓ]) to A.

4. From j = 1 to ℓ, S emulates the (zkauth) command of functionality FIZK by receiving the MAC
tags on [[state∗j ]] and [[z∗

j ]] from A. If S receives false from functionality FGP2PC, it aborts.

The simulation of FIZK is perfect, as S only receives xj for j ∈ [1, ℓ] and MAC tags, and checks
if vj = v′

j honestly. S also perfectly simulates functionality FOT, as it only records garbled labels
(L[0j ], L[1j ]) for j ∈ [1, ℓ]. The definition of circuit f ′j for each j ∈ [1, ℓ] behaves just as that V
evaluates garbled circuit Fj with the Eval algorithm. The circuits f ′1, . . . , f

′
ℓ maintain the state that

consists of the corresponding garbled labels. For each j ∈ [1, ℓ], if V would obtain the output, then
the decoding information dj is received from A, and thus f ′j could output zj by running the Decode
algorithm; otherwise, circuit f ′j just outputs the least significant bits of garbled labels L[zj ]. In this
way, honest verifier V would obtain the same output in both ideal-world execution and real-world
execution. Functionality FGP2PC sends lsb(L[zj ]) to S as P’s output, and then S sends lsb(L[zj ])
to A. Here, lsb(L[zj ]) for all j ∈ [1, ℓ] sent by FGP2PC has the same distribution as that in the real
protocol execution. It is easy to see that τ simulated by S has the identical distribution as that
sent by V in the real protocol execution. For j ∈ [1, ℓ], state∗j and z∗

j are computed in the same
way in both worlds. Therefore, the check of zj = z∗

j is identical in both worlds. Overall, the joint
distribution of the outputs of honest V and A in the real-world execution is identical to that of V
and S in the ideal-world execution.

Malicious verifier. By emulating functionalities FOT and FIZK, and invoking the simulator SGC,
S interacts with adversary A as follows.

1. S emulates FIZK by receiving ∆ ∈ {0, 1}λ from A.
2. For each j ∈ [1, ℓ], S does the following:

• If V is allowed to obtain a circuit output zj , then run (stj , Fj ,dj) ← SGC(stj−1, fj) where
st0 = ⊥.

• Otherwise, run (stj , Fj)← SGC(stj−1, fj).

Then it sends a garbled circuit Fj to A.
3. From j = 1 to ℓ, S simulates the online evaluation phase.

(a) S emulates functionality FIZK by receiving the keys on [[xj ]] from A.
(b) S emulates functionality FOT by receiving a vector of choice bits yj from A. Then, S sends

yj to functionality FGP2PC as V’s input.
(c) If V is allowed to get an output zj , then S receives zj from functionality FGP2PC. Otherwise,
S sets zj = ⊥. Then, S runs (stℓ+j , Xj , Yj)← SGC(stℓ+j−1,yj , zj).
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(d) S emulates functionality FOT and sends Yj to A as the garbled labels on yj . S also sends
Xj to A as the garbled labels on unknown input xj .

(e) If P will open a vector vj committed in IT-MACs, S receives vj from functionality FGP2PC

and forwards it to A. Then, S emulates the (check) command of FIZK on [[vj ]] − vj by
always sending true to A.

(f) For output processing, S simulates as follows:

• If V will obtain an output zj , S sends dj to A.
• If both parties will obtain the output, then S receives z′

j from A, and sends ej = z′
j ⊕ zj

to FGP2PC.
• If only P will obtain the output, S receives uj from A, and runs z′

j ← Decode(uj ,dj).
Then S computes ej := z′

j ⊕ zj and sends ej to FGP2PC.

4. In the online reveal-and-prove phase, simulator S receives a tuple (y′
1, . . . ,y

′
ℓ, τ) from A. Then,

S computes τ ′ := H(Y1, . . . , Yℓ), and checks that τ = τ ′ and yi = y′
i for all i ∈ [1, ℓ]. If the check

fails, S aborts.

5. Honest P checks the correctness of all its outputs, and sends abort to functionality FGP2PC if the
check fails. If S receives abort from FGP2PC, then S aborts.

6. Following the protocol specification, S emulates FIZK by receiving the keys of IT-MACs from A
and sending true to A for each call of the (check) command.

It is clear that the simulation of functionality FIZK is perfect. From the simulation-based pri-
vacy/obliviousness of the garbling scheme, we have that garbled circuits Fj for j ∈ [1, ℓ] simulated
by SGC are computationally indistinguishable from that sent in the real protocol execution. If V
will obtain an output zj , then zj is received from functionality FGP2PC and the same as the actual
output. Based on the simulation-based privacy/obliviousness, for each j ∈ [1, ℓ], (Xj , Yj) simulated
by SGC is computationally indistinguishable from (L[xj ], L[yj ]) sent in the real protocol execution.
It is easy to see that the vector vj sent to A is simulated perfectly, as it is from functionality
FGP2PC. For j ∈ [1, ℓ], if P will get the output zj , then S extracts an error vector ej from the
message sent by A and sends it to functionality FGP2PC. Therefore, the outputs obtained by honest
prover P have the identical distribution in both worlds.

If there exists some j∗ ∈ [1, ℓ] such that y′
j∗ ̸= yj∗ , the real-world execution does not abort

if τ = H(L[y′
1], . . . , L[y

′
ℓ]) where L[y′

j ] ← Encode(ej ,⊥,y′
j) for j ∈ [1, ℓ], while the ideal-world

execution always aborts. For j ∈ [1, ℓ], y′
j represents the vector sent from A in step 8, while yj

denotes the actual input of V. Below, we show that the probability that there exists some j∗ ∈ [1, ℓ]
such that y′

j∗ ̸= yj∗ and the real protocol execution does not abort is negligible in λ. If A does
not make a query (L[y′

1], . . . , L[y
′
ℓ]) to random oracle H, then τ = H(L[y′

1], . . . , L[y
′
ℓ]) is uniform

in λ. In this case, the probability that A learns τ is at most 1/2λ. Otherwise (i.e., A made a
query (L[y′

1], . . . , L[y
′
ℓ])), we can use A to break the security property of the garbling scheme. In

particular, the reduction could retrieve the queries whose outputs of H are equal to τ , and finds
the query (L[y′

1], . . . , L[y
′
ℓ]) from all queries made by A. Then, the reduction sends (y′

j∗ , L[y
′
j∗ ]) to

its security experiment. Under the assumption that the garbling scheme satisfies simulation-based
privacy, the probability that A made a query (L[y′

1], . . . , L[y
′
ℓ]) is negligible in λ. Therefore, if the

real protocol execution does not abort, then y′
j = yj for all j ∈ [1, ℓ]. Based on the simulation-based

privacy, we further have that using Yj for j ∈ [1, ℓ] to check τ is computationally indistinguishable
from using L[yj ] to check τ , under the condition that y′

j = yj for all j ∈ [1, ℓ].
In both worlds, honest P always checks the correctness of all its outputs. If an error chosen

by A is introduced to P’s output, the protocol execution would abort in both worlds. In other
words, if the protocol execution does not abort, the outputs obtained by P are correct in both
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worlds. If the real protocol execution does not abort, then y′
j = yj for all j ∈ [1, ℓ] as analyzed

above. Therefore, in the real-world execution, V would always receive true when calling the (check)
command of functionality FIZK. Overall, the joint distribution of the outputs of honest P and
A in the real-world execution is computationally indistinguishable from that of P and S in the
ideal-world execution.

E Proof of Security for ΠAuthData

In this section, we give the detailed proof of Theorem 2. Before giving the proof, we recall the
PRF-ODH assumption [JKSS12, KPW13] as follows.

Definition 1. Let F̂ be a PRF that takes as input a key element from G and a message, and then
outputs a string of length λ. We say that the PRF-ODH assumption holds for a function F̂ if all
PPT adversaries A, the A’s advantage in the following experiment is negligible in λ.

Let (G, q, G) be an EC group. Given y ∈ Zq, we define an oracle ODHy(X,m) that outputs

F̂ (y · X,m), where X ∈ G and m is in the domain of F̂ . The PRF-ODH experiment between a
challenger and an adversary A is described as follows.

1. The challenger samples y ← Zq and computes Y := y ·G, and then sends Y to A.
2. For each query (U,m) with U ∈ G from A, the challenger returns ODHy(U,m).

3. At some point, A sends m∗ to the challenger. Then, the challenger samples x ← Zq, z1 ←
{0, 1}λ, b ← {0, 1}, and then computes X := x ·G and z0 := F̂ (x · Y,m∗). the challenger sends
(X, zb) to A.

4. A keeps querying the oracle ODHy via the challenger, except that it is not allowed to query the
pair (X,m∗).

5. At the end, A outputs a bit b′. We say that A wins in the PRF-ODH experiment if b′ = b.

For proving the security of protocol ΠAuthData, we can restrict that A could make at most
two queries to the ODH oracle after the pair (X,m∗) was sent. We can instantiate F̂ (K,m) as
fH

(
Fx(K)⊕m

)
, which is a PRF in the Random Oracle Model (ROM), where Fx maps an EC point

to its x-coordinate. In addition, for the provable security of protocol ΠAuthData, we need to provide
adversary A with the following selective-failure queries:

• A sends a predicate P : G × G → {0, 1} to the challenger, who returns P (X,x · Y ) to A. If
P (X,x · Y ) = 0, the challenger aborts and the experiment outputs a random bit b′.

We restrict that A can make the above selective-failure queries at most three times. Through
querying a predicate, A could guess a few bits of X and x · Y . However, an incorrect guess would
incur that the experiment aborts. Overall, A could learn (on average) one-bit information of X
or x · Y via the selective-failure queries. Therefore, the PRF-ODH assumption still holds, even if
adversary A is allowed to make the selective-failure queries three times.

Theorem 5 (Theorem 2, restated). If the PRF-ODH assumption holds and the underlying signa-
ture scheme is EUF-CMA secure, then protocol ΠAuthData (shown in Figures 17 and 18) securely
realizes functionality FAuthData (shown in Figure 1) in the (FOLEe,FGP2PC,FCom,FIZK,FConv)-hybrid
model, assuming that the compression function fH underlying PRF is a random oracle and AES is
an ideal cipher.

Proof. We first consider the case of a malicious prover P and then consider the case of a malicious
verifier V. In each case, we construct a PPT simulator S given access to functionality FAuthData,
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which runs a PPT adversary A as a subroutine, and emulates functionalities FOLEe,FGP2PC,FCom,
FIZK,FConv. In the proof, we use S to denote a simulator instead of a TLS server, and S plays
the role of the server to interact with A. During the protocol execution, we always consider that
A can intercept and tamper all TLS messages transmitted between P and the server, even if A
only corrupts V and P is honest. Whenever A or the honest party simulated by S will abort, S
sends abort to functionality FAuthData, and then aborts. We construct S to simulate four phases of
protocol ΠAuthData: preprocessing phase, handshake phase, record phase and post-record phase.

Before describing the simulator S, we first show three sub-simulators SE2F, SPRF and SAEAD
for sub-protocols ΠE2F, ΠPRF and ΠAEAD respectively. Then S would invoke these sub-simulators
as its subroutine. In this way, our proof would be more modular and clear. For the construction
of each sub-simulator, we will use the notation underlying these sub-protocols independently for
ease of comprehension. For the construction of each sub-simulator, we also show the simulated
view against adversary A is computationally indistinguishable from the real view. For a value
in the proof, we use V to denote the actual value that should be computed and V ∗ to represent
the corresponding value used in the ZK proof of the post-record phase. For the simulation of a
sub-protocol, we use V ′ to denote the inconsistent value due to the malicious behavior of adversary
A, and denote by e = V ′ − V the error chosen by A. For the simulation of main protocol, we
straightforwardly use V ⊕ e to denote the inconsistent value for some error e.

Simulation of random oracle and ideal cipher. S simulates a random oracle fH by responding
the queries made by A with uniform strings in {0, 1}256 while keeping the consistency of responses,
where fH is used as the compression function of H. Similarly, S simulates an ideal cipher AES by
responding every key-message query made by A with random strings in {0, 1}128 while keeping the
consistency of responses.

E.1 Proof for Malicious Prover

We first give the constructions of sub-simulators SE2F, SPRF and SAEAD for three sub-protocols,
and then describe the construction of simulator S for main protocol ΠAuthData. These simulators
emulate the same functionalities FOLEe,FGP2PC,FCom,FIZK,FConv, and only S is given access to
functionality FAuthData. For the security analysis of each sub-protocol, we always cast it to the
main protocol ΠAuthData and then analyze its security.

Simulation and analysis of sub-protocol ΠE2F (Figure 13). By emulating functionality
FOLEe, SE2F interacts with a PPT adversary A as follows.

1. SE2F emulates functionality FOLEe by receiving an input tuple (a1, b1, a1, b
′
1, r1), error vec-

tors e1, . . . , e5 and P’s shares of [a1b2]p, [a2b1]p, [a1b
′
2]p, [a2b

′
1]p, [r1r2]p. Then, SE2F samples

a2, b2, b
′
2, r2 ← Zp, and computes e1 = ⟨g ∗ e1, b2⟩, e2 = ⟨g ∗ e2,a2⟩, e3 = ⟨g ∗ e3, b′2⟩, e4 =

⟨g ∗ e4,a2⟩ and e5 = ⟨g ∗ e5, r2⟩, where a2, b2, b
′
2, r2 are the bit-decomposition of field elements

a2, b2, b
′
2, r2 ∈ Zp. Following the definition of FOLEe, S computes V’s shares on [a1b2]p, [a2b1]p,

[a1b
′
2]p, [a2b

′
1]p, [r1r2]p.

2. SE2F computes the shares of [c]p, [c
′]p and [r2]p held by P and V following the protocol specifi-

cation. In addition, SE2F computes ec := e1 + e2, ec′ := e3 + e4 and er := 2e5.

3. On behalf of honest V, SE2F simulates the Open procedure on the values ϵ1, ϵ2, ϵ3, w following
the protocol specification. Note that SE2F could know the point Z2 = (x2, y2) according to the
following simulation of main protocol ΠAuthData. Then SE2F is able to compute V’s shares on all
additive sharings used in protocol ΠE2F.

54



4. During the Open procedure on the values ϵ1, ϵ2, ϵ3, w, SE2F extracts the errors e6, e7, e8, e9 by
computing that the received value minuses the value should be sent.

5. SE2F is able to compute an error ez = f(a, r, ec, ec′ , er, e6, e7, e8, e9), which is added into the
secret on [z]p, where f is a function depending on the definition of z.

Let [z]p = (z1, z2) such that z1+z2 = z mod p where z1 is P’s share and z2 is V’s share. According
to the following analysis of main protocol ΠAuthData, we have that a correct pre-master secret pms
is identical to AddModp(z1 ⊕ e0, z2) for an extra error e0 chosen by A, where z1 (resp., z2) is the
bit-decomposition of z1 (resp., z2). Let e0 ∈ Zp be an error defined by e0. Then we obtain that
z1+z2+e0 = z+e0 = pms ∈ Zp. Furthermore, we know that z = Fx(tP ·TS +E+ tV ·TS)+ez ∈ Zp

for an adversarial-chosen error E ∈ G. This means that z = pms + e′ + ez for some error e′

associated with E and Z2. Therefore, we have ez + e0 + e′ = 0 except with negligible probability.
This makes ec, e6, e7, e8, that are multiplied with a, have to be zero, since a is uniform in Zp and
has a sufficiently high entropy. Note that Z2 = (x2, y2) = tV · TS is computationally hard and
has a sufficiently high entropy, which is implied by the PRF-ODH assumption. This means that
r = η − ϵ3 ∈ Zp with η = (y2 − y1)/(x2 − x1) ∈ Zp has a sufficiently high entropy. Thus, ec′ , er, e9
that are multiplied with r must be zero if the protocol does not abort according to the definition
of f . Overall, we have ez = 0, and thus e0+ e

′ = 0. Since e′ is computed from E and Z2, we obtain
that E = 0 and e′ = 0, which makes e0 = 0.

From ec, ec′ , er = 0, we have ⟨g ∗ e1, b2⟩ + ⟨g ∗ e2,a2⟩ = 0, ⟨g ∗ e3, b′2⟩ + ⟨g ∗ e4,a2⟩ = 0 and
⟨g ∗ e5, r2⟩ = 0. This allows A to guess a few bits of a2, b2, b

′
2, r2, where an incorrect guess would

incur the main protocol aborts. Therefore, A could reveal (on average) one-bit information for
(a2, b2, b

′
2, r2). From x2 = ϵ1+b2+b1+x1, y2 = ϵ2+b

′
2+b

′
1+y1 and η = (y2−y1)/(x2−x1) = ϵ3+r2+r1,

we have that A could reveal one-bit information on (x2, y2) or z = pms. This is harmless as both
of Z2 = (x2, y2) and pms have a sufficiently high entropy.

Simulation and analysis of sub-protocol ΠPRF (Figure 14). In the handshake phase (resp.,
the post-record phase), SPRF is given secret′ (resp., secret∗) from the simulation of main protocol
ΠAuthData. By emulating functionality FGP2PC, SPRF interacts with adversary A as follows.

1. SPRF emulates functionality FGP2PC by receiving a circuit C̃1 fromA and computing (IV ′
1 , IV

′
2) :=

C̃1(secret′). Then, SPRF emulates FGP2PC by sending IV ′
1 to A.

2. From i = 1 to n, SPRF emulates functionality FGP2PC by receiving a circuit C̃2,i from A and com-

putingM ′
i := C̃2,i(IV ′

2), where P’s inputW ′
i is defined in C̃2,i. Then, SPRF emulates functionality

FGP2PC by sending M ′
i to A.

3. SPRF emulates functionality FGP2PC by receiving a circuit C̃3 from A and computing der′ :=
C̃3(IV ′

2) ∈ {0, 1}ℓ, where inputs X ′
1, . . . , X

′
n chosen by A have been defined in C̃3.

4. If type = “open”, SPRF emulates functionality FGP2PC by sending der′ toA. If type = “partial open”,
SPRF emulates FGP2PC by parsing der′ = (key′C , IV

′
C , key

′
S , IV

′
S) and sending (IV ′

C , IV
′
S) to A.

5. In the post-record phase, SPRF emulates functionality FGP2PC by generating IV ∗
2 = fH(IV0, secret

∗⊕
opad), and aborting if IV ′

1 ̸= fH(IV0, secret
∗ ⊕ ipad).

6. For each i ∈ [1, n], SPRF emulates FGP2PC by computing M∗
i = fH(IV

∗
2 ,W

∗
i ), where W ∗

i =
fH(IV

∗
1 ,M

∗
i−1) and M

∗
0 = label∥msg , and aborting if M ′

i ̸=M∗
i for any i ∈ [1, n].

7. SPRF emulates functionality FGP2PC by computing der∗ :=
(
fH(IV

∗
2 , X

∗
1 ), . . . , fH(IV

∗
2 , X

∗
n−1),

Truncm(fH(IV
∗
2 , X

∗
n))

)
for every public value X∗

i = fH(IV
∗
1 ,M

∗
i ∥label∥msg). If type = “open”,

then SPRF emulates functionality FGP2PC by aborting if der∗ ̸= der′. If type = “partial open”,
then SPRF emulates functionality FGP2PC by aborting if IV ∗

C ̸= IV ′
C or IV ∗

S ̸= IV ′
S .
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It is clear that the simulation of random oracle fH and the protocol execution in the handshake
phase is perfect. In the post-record phase, it is easy to see that the simulation to check IV ′

1 is
perfect. By induction, we have that the check of M ′

i for all i ∈ [1, n] simulated by SPRF is the
same that in the real protocol execution, where Wi = fH(IV

′
1 ,M

′
i−1) =W ∗

i from the induction and
M ′

0 =M∗
0 = label∥msg . If the protocol execution does not abort, then IV ′

1 andM ′
i for each i ∈ [1, n]

are computed correctly, and thus Xi = fH(IV
′
1 ,M

′
i∥label∥msg) = X∗

i for each i ∈ [1, n]. Therefore,
the simulation of checking der′ if type = “open” and checking IV ′

C , IV
′
S if type = “partial open” is

perfect. Overall, SPRF perfectly simulates the post-record phase of sub-protocol ΠPRF.
If the protocol execution does not abort, all the values opened are correctly computed with

secret∗ (that is a correct secret from the following analysis of main protocol ΠAuthData). In this
case, we show that A cannot learn secret∗ for all three type cases and der∗ if type = “secret” and
(key∗C , key

∗
S) if type = “partial open” in the handshake phase. Based on the analysis in Section 4.1,

A leaks at most one-bit information of secret∗ by sending “malicious” circuits to functionality
FGP2PC. In the ROM, A cannot learn secret∗ from IV ′

1 = IV ∗
1 = fH(IV0, secret

∗ ⊕ ipad) as secret∗

has a sufficiently high entropy. Similarly, A cannot learn IV ∗
2 = fH(IV0, secret

∗ ⊕ opad) from IV ′
1

where ipad ̸= opad. In other worlds, IV ∗
2 ∈ {0, 1}256 is uniform against the adversary’s view.

In the handshake phase, A obtains M ′
i = M∗

i = fH(IV
∗
2 ,W

∗
i ) for i ∈ [1, n]. In addition, A

gets der′ = der∗ =
(
fH(IV

∗
2 , X

∗
1 ), . . . , fH(IV

∗
2 , X

∗
n−1),Truncm(fH(IV

∗
2 , X

∗
n))

)
if type = “open”, or

(IV ′
C , IV

′
S) = (IV ∗

C , IV
∗
S ) that is a part of der∗ if type = “partial open”. All the values do not reveal

IV ∗
2 to A in the ROM. Therefore, if type = “secret”, then der∗ = PRFℓ(secret

∗, label ,msg) is kept
secret against A, as secret∗ and IV ∗

2 are unknown for A, and (label ,msg) is different from that
for other two type cases. If type = “partial open”, A cannot learn (key∗C , key

∗
S) as fH is a random

oracle, and both of secret∗ and IV ∗
2 have sufficiently high entropy. Overall, in the handshake phase,

these secret values are kept unknown against A.
In the following, we show that secret′ = secret∗ and IV ′

2 = IV ∗
2 if the protocol execution

does not abort. If secret′ ̸= secret∗, then IV ∗
1 = fH(IV0, secret

∗ ⊕ ipad) ∈ {0, 1}256 is uniformly
random in the handshake phase as secret∗ has a sufficiently high entropy, and the probability that
IV ′

1 = IV ∗
1 is negligible (i.e., the probability that A succeeds to guess IV ∗

1 is negligible). Similarly,
if IV ′

2 ̸= IV ∗
2 , then for any i ∈ [1, n], M∗

i = fH(IV
∗
2 ,W

∗
i ) is uniform in the handshake phase, and

the probability that M ′
i =M∗

i is negligible. In conclusion, if the protocol execution does not abort,
then secret′ = secret∗ and IV ′

2 = IV ∗
2 .

Simulation and analysis of sub-protocol ΠAEAD (Figures 15 and 16). We construct the
sub-simulator SAEAD for all four cases, even though the case of type1 = “decryption” and type2 =
“secret” is not necessary for the simulation of main protocol ΠAuthData. This case is useful for
security of the extension of multiple query-response sessions shown in Section 5.2. By emulating
functionalities FGP2PC,FOLEe,FCom, the sub-simulator SAEAD interacts with A as follows.

1. In the preprocessing phase, SAEAD emulates FGP2PC by receiving hP , z0,P ∈ {0, 1}128 from A if
type2 = “open” or z0,P , z1,P , . . . , zn,P ∈ {0, 1}128 from A if type2 = “secret”.

2. In the handshake/record phase, given an application key key′ from the simulation of main pro-
tocol ΠAuthData, SAEAD simulates as follows:

• If type2 = “open”, then SAEAD emulates FGP2PC by receiving a “malicious” circuit f
(1)
AES, and

then computing (h′V , z
′
0,V , z

′
1)← f

(1)
AES(key

′) and sending z′1 to A.

• If type2 = “secret”, then SAEAD emulates FGP2PC by receiving a “malicious” circuit f
(2)
AES and a

tuple (z′0,P , . . . , z
′
n,P , st

′
0, . . . , st

′
n) from adversary A. Then, SAEAD computes (z′0,V , . . . , z

′
n,V)←

f
(2)
AES(key

′, z′0,P , . . . , z
′
n,P , st

′
0, . . . , st

′
n).
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3. In the handshake/record phase, SAEAD simulates the AEAD encryption/decryption as follows:

• If type1 = “encryption” and type2 = “open”, then given m1, SAEAD computes C := z′1 ⊕m1.

• If type1 = “decryption” and type2 = “open”, then given c1, SAEAD computes M := z′1 ⊕ c1.

• If type1 = “encryption” and type2 = “secret”, then for i ∈ [1, n], SAEAD receives bi from A,
and extracts mi := bi ⊕ zi,P and sets M := (m1, . . . ,mn). Then, SAEAD sends z′i,V to A and
computes ci := bi ⊕ z′i,V for i ∈ [1, n], and then sets C = (c1, . . . ,cn).

• If type1 = “decryption” and type2 = “secret”, then SAEAD sends z′i,V for all i ∈ [1, n] to A.

4. If type2 = “open”, SAEAD simulates the generation of multiplication sharing (h̃P , h̃V) as follows:

(a) SAEAD emulates functionality FOLEe by receiving h̃′P ∈ F2128 , sP ∈ F2128 and an error vector

e1 ∈ (F2128)
128 from A. Then, SAEAD implicitly defines (h̃′P)

−1 as the P’s input h̃P if

h̃′P ̸= 0, or sets h̃P = 0 otherwise.

(b) SAEAD sets an error e′1 := ⟨g ∗ e1,v1⟩ ∈ F2128 , and computes V’s share sV following the
definition of FOLEe, where v1 is the vector representation of h′P ∈ F2128 .

(c) SAEAD receives d′ ∈ F2128 from A, and computes an error e′0 := d′ − h̃′P · hP − sP ∈ F2128 .

Then, SAEAD computes the V’s share h̃V := d′ + sV ∈ F2128 .

5. If type2 = “open”, for each i ∈ [2,m], SAEAD simulates the generation of
[
hi
]
2128

as follows:

(a) SAEAD emulates functionality FOLEe by receiving h̃P,i ∈ F2128 , ai ∈ F2128 and an error vector
ei ∈ (F2128)

128 from A.
(b) SAEAD defines an error e′i := ⟨g ∗ ei,vi⟩+(h̃P,i−(h̃P)

i) ·(h̃V)i ∈ F2128 , where vi is the vector

representation of (h̃V)
i ∈ F2128 .

(c) SAEAD computes the V’s share on
[
hi
]
2128

as bi := (h̃P · h̃V)i − ai + e′i ∈ F2128 .

6. Following the protocol description, SAEAD computes the shares of P and V on [σ]2128 that are
denoted by σP and σV . Then, SAEAD simulates the generation of a GMAC tag as follows:

• If type1 = “encryption”, SAEAD sends σV toA, and receives σ′P fromA. Then, SAEAD computes
σ := σ′P ⊕ σV and sets ct = (C, σ).

• If type1 = “decryption”, SAEAD emulates functionality FCom by receiving σ′P from A and then
opening σV to A. Then, SAEAD computes σ := σ′P ⊕ σV and uses σ to check validity of an
AEAD ciphertext ct given to SAEAD. If the check fails, SAEAD aborts.

In both cases, SAEAD computes an adversarial-chosen error eσ := σ′P −σP ∈ F2128 . Then, SAEAD
computes an error E := M(h̃V , e

′
0, e

′
1) + L(e′0, e

′
1, . . . , e

′
m) + eσ where M is a polynomial and L

is a linear function depending on the protocol specification.

7. In the post-record phase, given key∗ from the simulation of main protocol ΠAuthData, SAEAD
emulates the (output) command of functionality FGP2PC as follows:

• If type2 = “open”, SAEAD computes h′ := hP ⊕ h′V and z′0 := z0,P ⊕ z′0,V .

• If type2 = “secret”, SAEAD computes z′0 := z0,P ⊕ z′0,V .

8. Given st∗ from the simulation of ΠAuthData, SAEAD emulates the (prove) command of FGP2PC as
follows:

• If type2 = “open”, SAEAD checks that h′ = AES(key∗,0), z′0 = AES(key∗, st∗), and z′1 =
AES(key∗, st∗ + 1).
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• If type2 = “secret”, SAEAD checks z′0 = AES(key∗, st∗) and z′i,V = AES(key∗, st∗ + i)⊕ zi,P for
all i ∈ [1, n].

If the above check fails, SAEAD aborts.

9. If type2 = “secret”, for each i ∈ [1, n], SAEAD emulates the (authinput) command of FIZK by
receiving the MAC tag on [[zi,P ]], and then computes the MAC tag on [[mi]] following the protocol
specification.

From the construction of SAEAD, it is easy to see that the simulation of functionality FGP2PC is
perfect. It is also the case for the simulation of functionality FIZK. During the emulation of
functionality FOLEe, SAEAD receives the values from A and extracts the errors introduced by A.
Thus, this emulation is also perfect. Below, suppose that the main protocol ΠAuthData does not
abort and thus sub-protocol ΠAEAD does not abort as well. Otherwise, the ideal-world execution is
natural to be indistinguishable from the real-world execution.

Since the circuit evaluation is verified correctly, we obtain that h′V = AES(key∗,0)⊕ hP , z′0,V =
AES(key∗, st∗) ⊕ z0,P and z′1 = AES(key∗, st∗ + 1) in the case of type2 = “open”. Here, key∗ is a
correct application key and has a sufficiently high entropy based on the following analysis of main
protocol ΠAuthData. In particular, based on the analysis in Section 4.1, A leaks at most one-bit
information of key∗ by sending a “malicious” circuit to functionality FGP2PC. Furthermore, the
AES blocks sent to A do not reveal key∗ in the ICM. If type2 = “secret”, we also obtain that

z′i,V = AES(key∗, st∗ + i) ⊕ zi,P for each i ∈ [0, n]. If A uses an incorrect circuit f
(1)
AES or f

(2)
AES, or

key′ ̸= key∗, then it has to guess the outputs of ideal cipher AES on the key∗, which happens with
negligible probability in the Ideal Cipher Model (ICM). Note that (hP , z0,P) or (z0,P , z1,P , . . . , zn,P)
has been committed in the preprocessing phase. If the protocol does not abort, then the simulation
w.r.t. the AEAD encryption/decryption is perfect. In particular, SAEAD succeeds to extract the
plaintext query M.

In the following, we analyze the simulation of generating GMAC tags. SAEAD always simulates
the process honestly and extracts the errors introduced by A. In the ICM, we have that h′V is
computationally indistinguishable from a uniform string in {0, 1}128 before checking the correctness
of a GMAC tag. That is, h = AES(key∗,0) is computationally indistinguishable from a uniform
string. From the analysis of main protocol ΠAuthData, we know that the error E added into the
final GMAC tag σ is equal to 0, as the TLS server or V checks the validity of σ. Note that
e′i = ⟨g ∗ ei,vi⟩+ ti · (h̃V)i ∈ F2λ for i ∈ [1,m] and E =M(h̃V , e

′
0, e

′
1) + L(e′0, e

′
1, . . . , e

′
m) + eσ = 0,

where ti = 0 if i = 1 or ti = h̃P,i − (h̃P)
i if i ̸= 1. If h̃′P ̸= 0, then h̃V = h · h̃′P , which is

computationally indistinguishable from a uniform string in {0, 1}128. In this case, we have that
ti = 0 for all i ∈ [1,m], e′0 = 0 and e′1 = 0. Adversary A can obtain only one-bit information on h̃V
from e′1 = 0, L(e′0, e

′
1, . . . , e

′
m) + eσ = 0 and e′i = ⟨g ∗ ei,vi⟩ for i ∈ [1,m], where an incorrect guess

on a few bits of h̃V would incur that the protocol aborts. Equivalently, A leaks at most one-bit
information of h.

If h̃′P = 0, then h̃V is the value learned by A, and thus A can obtain all the V’s shares on[
hi
]
2128

. For the case of type1 = “encryption”, A has to guess the uniform string h ∈ {0, 1}128 in
order to pass the server’s verification, which is negligible. For the case of type1 = “decryption”, the
shares on a GMAC tag σ are first committed and then opened. In this case, before the shares are
opened, z0,V = AES(key∗, st∗)⊕ z0,P is computationally indistinguishable from a uniform string in
{0, 1}128 in the ICM. Adversary A has to guess the value z0,V ∈ {0, 1}128 to pass the V’s verification,
which is also negligible. Overall, in both handshake and record phases, A cannot forge a GMAC
tag on any message different from the original message.

Simulation and analysis of main protocol ΠAuthData (Figures 17 and 18). Simulator S plays
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the roles of both the honest verifier V and server. Given SE2F, SPRF and SAEAD, S emulates the
functionalities used in protocol ΠAuthData, and interacts with adversary A as follows.

1. S invokes SE2F to simulate the preprocessing phase of sub-protocol ΠE2F and SAEAD to simulate
the preprocessing phase of sub-protocol ΠAEAD.

2. Following the TLS specification, on behalf of the server, S receives reqC = rC from A and
sends resS to A, where (rS , TS) is included in resS . Then, on behalf of verifier V, S receives
(reqC ⊕ e1,resS ⊕ e2) from A for two errors e1,e2 chosen by A, and then checks that e1 = 0
and e2 = 0. 8 If the check fails, S aborts.

3. Following the protocol specification, S samples tV ← Zq and computes TV := tV · G, and then
sends TV to A. On behalf of V, S receives resC = TC from A; On behalf of the server, S receives
resC

′ = TC + e3 ∈ G from A for an error e3 chosen by A.
4. S computes Z2 := tV ·TS . Then, S invokes SE2F to simulate the handshake phase of sub-protocol

ΠE2F. With Z2, S also computes p̃ms′V following the specification of sub-protocol ΠE2F.

5. S defines pmsV ⊕ e4 as the bit decomposition of p̃ms′V ∈ Zp. Then, S emulates the (eval)
command of FGP2PC by receiving a “malicious” circuit fADD from A. Besides, S emulates the
(commit) command of FGP2PC by receiving pmsP ⊕e5 ∈ {0, 1}⌈log p⌉ from A. S stores pmsP ⊕e5
and computes pms′ := fADD(pmsV ⊕ e4). Let pms′ = pms⊕ e6. Here, e4,e5,e6 are three errors.

6. Given pms′ and rC∥rS , S invokes SPRF to simulate the handshake phase of sub-protocol execution

Π
(1)
PRF with type = “secret” and obtains a master secret ms′ = ms⊕ e7 for an error e7.

7. Given ms′ and rS∥rC , S invokes SPRF to simulate the handshake phase of sub-protocol exe-

cution Π
(2)
PRF with type = “partial open”. During this execution, S obtains application keys

(key′C , key
′
S) = (keyC , keyS) ⊕ e8 and sends (IV ′

C , IV
′
S) = (IVC , IVS) ⊕ e9 to A for two errors

e8,e9. Then, S initializes (stC , stS) := (IV ′
C , IV

′
S).

8. S computes τC := H(reqC∥resS∥resC). Given ms′ and τC , S invokes SPRF to simulate the

handshake phase of sub-protocol execution Π
(3)
PRF with type = “open”. During this execution, S

sends ufinC ⊕ e10 to A for an error e10.

9. Given (key′C , stC , ℓC ,hC ,ufinC ⊕ e10), S invokes SAEAD to simulate the handshake phase of

sub-protocol execution Π
(1)
AEAD with type1 = “encryption” and type2 = “open”. During the

sub-protocol execution, S (on behalf of V) obtains finC ⊕ e11 ⊕ δ1 for an error e11 and an
adversarial-chosen error δ1, and also makes A obtain finC ⊕ e11. In addition, S gets the shares
of both parties on

[
hiC

]
2128

for i ∈ [1,m]. On behalf of the server, S receives (hC , finC ⊕ e12)
from A for another error e12, and then checks finC ⊕e12 following the TLS specification. If the
check fails, S aborts. Otherwise, S updates stC := stC + 2.

10. S computes τS := H(reqC∥resS∥resC∥ufinC ⊕ e10). Given ms′ and τS , S invokes SPRF to

simulate the handshake phase of sub-protocol execution Π
(4)
PRF with type = “open”. During this

execution, S sends ufinS ⊕ e13 to A for an error e13.

11. On behalf of the server, S generates (hS , finS) following the TLS specification and sends it to
A. On behalf of the verifier, S receives (hS , finS ⊕ e14) from A for an adversarial-chosen error
e14. Given (key′S , stS , ℓS ,hS , finS ⊕ e14), S invokes SAEAD to simulate the handshake phase of

sub-protocol execution Π
(2)
AEAD with type1 = “decryption” and type2 = “open”. During this sub-

protocol execution, S checks the correctness of finS ⊕ e14 and sends ufinS
′ to A. Simulator S

8Without loss of generality, we assume that the error e2 only changes the messages that have been signed, but
does not modify the signatures. That is, we do not require strong unforgeability of the signature scheme.
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checks ufinS ⊕ e13 = ufinS
′. If any check fails, S aborts. S also gets the shares of both parties

on
[
hiS

]
2128

for i ∈ [1,m]. Then, S updates stS := stS + 2.

12. Given (key′C , stC , ℓQ,hQ) and the shares of both parties on
[
hiC

]
2128

for i ∈ [1,m], S invokes

SAEAD to simulate the record phase of sub-protocol execution Π
(3)
AEAD with type1 = “encryption”

and type2 = “secret”. During this execution, S extracts a query Q and computes an AEAD
ciphertext encQ ⊕ e15 for an error e15. Then, S sends Q to functionality FAuthData and receives
a response R from FAuthData.

13. On behalf of the server, S receives (hQ,encQ⊕ e15⊕ δ2) from A for an adversarial-chosen error
δ2, and then checks correctness of the pair following the TLS specification and aborts if the check
fails. On behalf of the server, S generates (hR,encR) with R following the TLS specification,
and sends it to A. On behalf of honest verifier V, S receives (hR,encR ⊕ e16) from A for an
adversarial-chosen error e16.

14. S invokes SAEAD to simulate the post-record phase of sub-protocol executions Π
(1)
AEAD, Π

(2)
AEAD

and Π
(3)
AEAD. During this execution, S obtains (hC , hS , zC , zS , zQ).

15. S emulates the (revealandprove) command of FGP2PC by sending pmsV ⊕ e4 to A. In parallel, S
sends tV to A.

16. S emulates the (prove) command of functionality FGP2PC on pmsP ⊕ e5 stored previously and
circuit AddModp to compute pms∗ = AddModp(pmsP ⊕ e5, pmsV ⊕ e4).

17. Given pms∗, simulator S invokes SPRF and SAEAD for the post-record phase of sub-protocol

executions Π
(1)
PRF, Π

(2)
PRF, Π

(3)
PRF, Π

(4)
PRF, Π

(1)
AEAD, Π

(2)
AEAD and Π

(3)
AEAD to check the correctness of all

values obtained by V. If the check fails, then S aborts. During these executions, S computes
ms∗ and (key∗C , st

∗
C , key

∗
S , st

∗
S).

18. S emulates the (zkauth) command of functionality FIZK by computing zR := AES(key∗S , st
∗
S) and

receiving the MAC tags on [[zR]] from A. After receiving z′R from A, S emulates the (check)
command of FIZK on [[zR]]−z′R by checking z′R = zR. Then, S checks the correctness of all GMAC
tags in the AEAD ciphertexts finC ⊕ e11⊕ δ1, finS ⊕ e14,encQ⊕ e15,encR ⊕ e16 following the
protocol specification. If any check fails, S aborts.

19. S emulates the (zkauth) command of functionality FIZK by receiving MAC tags on [[R]].

20. S emulates functionality FConv to convert ([[Q]], [[R]]) into additively homomorphic commitments
by sending commitment identifiers to A.

The following analysis builds upon the analyses of sub-protocols ΠE2F, ΠPRF and ΠAEAD. From
the above simulation, it is clear that all functionalities emulated by S behave just like as that in
the real protocol execution. Based on the EUF-CMA security of signature scheme, we have that
e1 = 0 and e2 = 0. Thus, the simulation of checking reqC ⊕ e1 and resS ⊕ e2 is computationally
indistinguishable from that in the real protocol execution. From the simulation and analysis of sub-
protocol ΠE2F, we have that A can only add an error into V’s share pmsV , but cannot change V’s
share to a known value in the handshake phase. The (prove) command of FGP2PC guarantees that all
values obtained by V are computed correctly, and the valid and high-entropy share pmsV is involved
in the computation of pms∗ and subsequent computation. If e3 ̸= 0, then A has to guess the value
finS

′ = Func1(AddModp(pmsP ⊕ e5, pmsV ⊕ e4)) before V receives the server finished message,
where Func1 is a function to compute the server finished message from scratch based on PRF and
AES. Note that pmsV ∈ {0, 1}256 has the same entropy as pms = Fx(tV · TS + tP · TS). According
to the analysis of sub-protocol ΠE2F along with the analysis in Section 4.1, pms ∈ {0, 1}256 leaks
one-bit information in the handshake and record phases, but has still a sufficiently high entropy.
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In this case, finS
′ is unpredictable under the PRF-ODH assumption in the ROM. Therefore, the

probability that e3 ̸= 0 is negligible.
Since e1,e2,e3 are 0 with overwhelming probability based on the above analysis, we have that

the client finished message is always computed correctly by the server. In the following analysis, we
always assume that the protocol execution does not abort. Otherwise, the simulation is natural to
be indistinguishable from the real protocol execution. Therefore, finC ⊕ e12 received by the server
is identical to the client finished message computed with the valid pre-master secret pms. This
means that e12 = 0. Let finC ⊕ e11 = Func2(pms⊕ e6) where Func2 is a function to compute the
client finished message using PRF and AES. Furthermore, according to the server’s computation,
we have finC = Func2(pms), meaning that Func2(pms ⊕ e6) ⊕ e11 = Func2(pms). Note that A
knows the value finC as it gets finC ⊕ e12 and e12 = 0, and thus it knows e11 as it also obtains
finC ⊕e11. Based on the analysis of sub-protocols ΠE2F and ΠPRF, we obtain that pms reveals only
one-bit information and still have a sufficiently high entropy in the handshake phase. In the ROM
and ICM, we obtain e6 = 0 and e11 = 0, except with negligible probability. Thus, the equality
pms = AddModp(pmsP ⊕ e5, pmsV ⊕ e4) holds. According to the analysis of sub-protocol ΠE2F,
we obtain that both e4 and e5 are identical to zero. Based on the fact that all values obtained
by V are proven via calling functionality FGP2PC, we further have that all of e7,e8,e9,e10,e13 are
equal to zero. Furthermore, we also have that the AES blocks hC , hS , zC , zS , zQ, zR obtained by V
are correct, where these blocks are proved by calling functionality FGP2PC. The GMAC tags in all
AEAD ciphertexts obtained by V are verified using these AES blocks. Hence, we have that δ = 0.
Besides, the value finS ⊕ e14 received by V is identical to finS , meaning that e14 = 0.

Note that all AES blocks, related to encQ ⊕ e15 and encR ⊕ e16, are valid based on the above
analysis. According to the analysis of sub-protocol ΠAEAD, the query Q is extracted successfully
and in turn sent to functionality FAuthData. Together with that V checks the correctness of GMAC
tag in encQ, we have e15 = 0. Following the analysis of sub-protocol ΠAEAD, we know that both
of keyC , hC leak only one-bit information in the handshake and record phases. In the ICM, it is
infeasible that A forges a GMAC tag in the record phase, which means that δ2 = 0. Furthermore,
we also have that keyS and hS leak at most one-bit information, and the corresponding GMAC tags
are unforgeable, in the handshake and record phases. Therefore, A cannot tamper the response
R encrypted in encR, where the correctness of encR is verified by V. In other words, we have
e15 = 0. The IT-MACs on the query Q and response R are obtained by calling the (prove) command
of functionality FGP2PC. Thus, these IT-MACs commit to the consistent Q and R. Furthermore, by
calling functionality FConv, the values Q and R involved in additively homomorphic commitments
are consistent. Overall, the output of honest V and adversary A in the real-world execution
is computationally indistinguishable from that of honest V and simulator S in the ideal-world
execution.

E.2 Proof for Malicious Verifier

We first show the constructions of sub-simulators SE2F, SPRF and SAEAD for three sub-protocols, and
then give the construction of simulator S for main protocol ΠAuthData. As such, these simulators
emulate the same functionalities FOLEe,FGP2PC,FCom,FIZK,FConv, and only S is given access to
functionality FAuthData. Similarly, to analyze the security of each sub-protocol, we always cast it to
the main protocol ΠAuthData.

Simulation and analysis of sub-protocol ΠE2F (Figure 13). SE2F emulates functionality
FOLEe, and interacts with adversary A as follows.

1. SE2F emulates functionality FOLEe by receiving an input tuple (b2, a2, b
′
2, a2, r2) and V’s shares
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on [a1b2]p, [a2b1]p, [a1b
′
2]p, [a2b

′
1]p and [r1r2]p.

2. SE2F computes the shares of [c]p, [c
′]p and [r2]p held by V following the protocol specification.

3. On behalf of honest P, SE2F sends random elements in Zp to simulate the Open procedure on
the values ϵ1, ϵ2, ϵ3, w, and receives the values sent by A during the Open procedure. Following
the protocol specification, SE2F computes all V’s shares in the handshake phase.

4. During the Open procedure on the values ϵ1, ϵ2, ϵ3, w, SE2F extracts the errors e6, e7, e8, e9 in the
way similar to the simulation shown in Section E.1.

5. SE2F computes an error ez = g(a, r, e6, e7, e8, e9), which is added into the secret on [z]p, where g
is a function depending on the definition of z.

In the following analysis, suppose that the main-protocol execution does not abort and thus sub-
protocol ΠE2F does not abort. Let [z]p = (z1, z2) such that z1 + z2 = z mod p, and z1 (resp., z2)
be the bit-decomposition of z1 (resp., z2). According to the following analysis of main protocol
ΠAuthData, we have that pms = AddModp(z1, z2 ⊕ e0) for an extra error e0 chosen by A. Then we
obtain that z1+z2+e0 = z+e0 = pms ∈ Zp where e0 ∈ Zp is an error defined by e0. Furthermore, we
know that z = Fx(tP ·TS+ tV ·TS+E)+ez ∈ Zp for an adversarial-chosen error E ∈ G. This means
that z = pms+e′+ez for some error e′ associated with E and Z1. Therefore, we have ez+e0+e

′ = 0
except with negligible probability. This makes e6, e7, e8, which are multiplied with a, have to be
zero, since a is uniform in Zp. Note that Z1 = (x1, y1) = tP · TS is computationally hard and has a
sufficiently high entropy under the PRF-ODH assumption. This means that r = η − ϵ3 ∈ Zp with
η = (y2 − y1)/(x2 − x1) ∈ Zp has a sufficiently high entropy. Thus, e9 multiplied with r has to be
zero. Overall, we have ez = 0, and thus e0+ e

′ = 0. Since e′ is computed from E and Z1, we obtain
that E = 0 and e′ = 0, which makes e0 = 0. In the real protocol execution, P’s shares a1, b1, b′1, r1
are uniformly random in Zp, and thus the values sent by P during the Open procedure are random.
Thus, the simulation for the Open procedure is perfect. It means that sub-protocol ΠE2F does not
reveal any information on Z1.

Simulation and analysis of sub-protocol ΠPRF (Figure 14). SPRF is given a possible incorrect
secret′ (resp., a correct secret∗) from the simulation of main protocol ΠAuthData in the handshake
phase (resp., the post-record phase). SPRF emulates functionality FGP2PC, and interacts with A.
1. SPRF emulates the (eval) command of functionality FGP2PC by computing IV2 = fH(IV0, secret

′⊕
opad), receiving an error e1 from A and sending IV1 = fH(IV0, secret

′ ⊕ ipad) to A. Then SPRF
sets IV ′

1 := IV1 ⊕ e1 that is implicitly opened to honest P.
2. From i = 1 to n, SPRF emulates the (eval) command of functionality FGP2PC by receiving an

error e2,i from A, setting M ′
i := fH(IV2,W

′
i ) ⊕ e2,i and sending Mi = fH(IV2,W

′
i ) to A where

W ′
i = fH(IV

′
1 ,M

′
i−1) and M

′
0 = label∥msg . Here M ′

i is implicitly opened to honest P.
3. SPRF computes X ′

i := fH(IV
′
1 ,M

′
i∥label∥msg) for each i ∈ [1, n]. Then, SPRF emulates the (eval)

command of functionality FGP2PC by computing an output der :=
(
fH(IV2, X

′
1), . . . , fH(IV2, X

′
n−1),

Truncm(fH(IV2, X
′
n))

)
.

4. If type = “open”, SPRF emulates the (output) command of functionality FGP2PC by receiving
an error e3 from A and sending der to A. In this case, SPRF also computes der′ = der ⊕ e3
that is implicitly opened to honest prover P. If type = “partial open”, SPRF emulates the
(output) command of FGP2PC by parsing der = (keyC , IVC , keyS , IVS), sending (IVC , IVS) to A
and receiving an error (e4, e5) from A. In this case, SPRF also computes IV ′

C = IVC ⊕ e4 and
IV ′

S = IVS ⊕ e5 that are implicitly opened to honest P.
5. In the post-record phase, in the simulation of main protocol ΠAuthData, the simulator S computes
IV ∗

2 = fH(IV0, secret
∗⊕opad), and checks the following values that are computed correctly with
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secret∗ and IV ∗
2 .

IV ′
1 = fH(IV0, secret

∗ ⊕ ipad);

M ′
i = fH(IV

∗
2 ,W

′
i ) where W

′
i = fH(IV

′
1 ,M

′
i−1);

If type=“open”, der′ =
(
fH(IV

∗
2 , X

′
1), . . . , fH(IV

∗
2 , X

′
n−1),

Truncm(fH(IV
∗
2 , X

′
n))

)
where X ′

i = fH(IV
′
1 ,M

′
i∥label∥msg);

If type=“partial open”, IV ′
C = IV ∗

C and IV ′
S = IV ∗

S , where

IV ∗
C , IV

∗
S are computed with IV ∗

2 , X
′
1, . . . , X

′
n.

If any check fails, S aborts. In this case, SPRF aborts.

6. SPRF emulates the (prove) command of functionality FGP2PC by always sending true to A.
Clearly, the simulation for the (eval) command of functionality FGP2PC is perfect. If the execution
of main protocol ΠAuthData does not abort, then secret′ = secret∗ and thus IV2 = IV ∗

2 , based on the
following analysis of ΠAuthData. Furthermore, in this case, the values opened are correctly computed
with secret∗, i.e., any errors introduced by A to these values would incur abort. Therefore, due to
the local check performed by P, all of the errors e1, e2,1, . . . , e2,n, e3, e4, e5 are equal to zero, where
the analysis is easy to be done by induction. In the real protocol execution, if honest P does not
abort, then functionality FGP2PC always outputs true to V. Therefore, the simulation for the (prove)
command of functionality FGP2PC is also perfect.

Below, we show that A cannot learn any information on secret∗ for all three type cases and
der∗ if type = “secret” and (key∗C , key

∗
S) if type = “partial open”. In the ROM, A cannot learn

secret∗ from IV1 = fH(IV0, secret
∗ ⊕ ipad) as secret∗ has a sufficiently high entropy. Similarly, A

cannot learn IV ∗
2 = fH(IV0, secret

∗ ⊕ opad) from IV1 in the ROM, where ipad ̸= opad. That is,
IV ∗

2 ∈ {0, 1}256 is uniform. In the handshake phase, A obtains Mi = fH(IV
∗
2 ,W

′
i ) for i ∈ [1, n]. In

addition, A gets der =
(
fH(IV

∗
2 , X

′
1), . . . , fH(IV

∗
2 , X

′
n−1),Truncm(fH(IV

∗
2 , X

′
n))

)
if type = “open”,

or (IV ∗
C , IV

∗
S ) that is a part of der if type = “partial open”. All the values do not reveal IV ∗

2 to
A in the ROM. Therefore, if type = “secret”, then der∗ = PRFℓ(secret

∗, label ,msg) is kept secret
against A, as secret∗ and IV ∗

2 are unknown for A, and (label ,msg) is different from that for other
two type cases. If type = “partial open”, A cannot learn (key∗C , key

∗
S) as fH is a random oracle,

and both of secret∗ and IV ∗
2 have sufficiently high entropy. Overall, these secret values are kept

unknown against A.
Simulation and analysis of sub-protocol ΠAEAD (Figures 15 and 16). Similarly, we construct
the sub-simulator SAEAD for all four cases related to type1 and type2. Specifically, SAEAD emulates
functionalities FGP2PC,FOLEe,FCom, and interacts with adversary A as follows.

1. In the handshake/record phase, given an application key key′ and an AEAD state st′ from the
simulation of main protocol ΠAuthData, SAEAD simulates as follows:

• If type2 = “open”, then SAEAD emulates the (eval) command of functionality FGP2PC by
computing (hV , z0,V , z1) ← Caes(key′, hP , z0,P , st′, st′ + 1), where hP , z0,P ∈ F2128 are sampled
uniformly by SAEAD. Then, SAEAD emulates the (output) command of FGP2PC by sending
(hV , z0,V , z1) to A, and receiving an error ez ∈ F2128 from A and setting z′1 := z1 + ez ∈ F2128 .

• If type2 = “secret”, then SAEAD emulates the (eval) command of FGP2PC by computing
(z0,V , . . . , zn,V)← Daes(key

′, z0,P , . . . , zn,P , st
′, st′ + 1, . . . , st′ + n) where z0,P , . . . , zn,P ∈ F2128

are sampled at random by SAEAD. Then, SAEAD emulates the (output) command of FGP2PC

by sending zi,V for i ∈ [0, n] to A.

2. In the handshake/record phase, depending on type1 and type2, SAEAD simulates the AEAD
encryption/decryption as follows:
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• If type1 = “encryption” and type2 = “open”, then given m1, SAEAD computes C := z′1 ⊕m1.

• If type1 = “decryption” and type2 = “open”, then given c1, SAEAD computes M := z′1 ⊕ c1.

• If type1 = “encryption” and type2 = “secret”, for each i ∈ [1, n], SAEAD samples bi ← F2128

and sends bi to A. Then, for each i ∈ [1, n], SAEAD receives z′i,V = zi,V ⊕ ez,i from A, where
ez,i is an adversarial-chosen error, and then computes the ciphertext C′ following the protocol
specification.

• If type1 = “decryption” and type2 = “secret”, then given C = (c1, . . . ,cn), SAEAD receives
z′i,V = zi,V ⊕ ez,i for all i ∈ [1, n] from A.

3. If type2 = “open”, SAEAD simulates the computation of multiplication sharing (h̃P , h̃V) as follows:

(a) SAEAD emulates functionality FOLEe by receiving h′V ∈ F2128 and sV ∈ F2128 from A. Then,
SAEAD sets an error e1 := h′V − hV ∈ F2128 , where h̃P ∈ F2128 is sampled at random by

SAEAD. Next, SAEAD computes the P’s share sP := (h̃P)
−1 · hV − sV + e1 · (h̃P)−1 ∈ F2128 .

(b) SAEAD samples d ← F2128 , and sends d + e1 · (h̃P)−1 ∈ F2128 to A, and then computes the
V’s share h̃V following the protocol specification.

4. If type2 = “open”, for each i ∈ [2,m], SAEAD simulates the computation of
[
hi
]
2128

as follows:

(a) SAEAD emulates functionality FOLEe by receiving h̃V,i ∈ {0, 1}128 and bi ∈ {0, 1}128 from A.
Then, SAEAD defines an error ei := h̃V,i − (h̃V)

i ∈ F2128 .

(b) SAEAD computes the P’s share on
[
hi
]
2128

as ai := (h̃P · h̃V)i − bi + ei · (h̃P)i ∈ F2128 .

5. Following the protocol specification, SAEAD computes the shares of P and V on [σ]2128 that are
denoted by σP and σV . Then, SAEAD simulates the generation of a GMAC tag as follows:

• If type1 = “encryption”, SAEAD sends σP toA, and receives σ′V fromA. Then, SAEAD computes
σ := σP ⊕ σ′V and sets ct = (C, σ).

• If type1 = “decryption”, SAEAD emulates functionality FCom by receiving σ′V from A and then
opening σP to A. Then, SAEAD computes σ := σP ⊕ σ′V and uses σ to check validity of an
AEAD ciphertext ct given to SAEAD. If the check fails, SAEAD aborts.

In both cases, SAEAD computes an adversarial-chosen error eσ := σ′V − σV ∈ F2128 . Then, SAEAD
computes an error E :=

∑
i∈[2,m] pi(e1, ei) · (h̃P)i + eσ, where pi is a polynomial depending on

the protocol specification. The error E is added into the resulting GMAC tag.

6. In the post-record phase, given key∗ from the simulation of main protocol ΠAuthData, SAEAD
emulates the (output) command of functionality FGP2PC as follows:

• If type2 = “open”, then SAEAD sends (hP , z0,P) to A, and computes h := hP ⊕ hV and
z0 := z0,P ⊕ z0,V .

• If type2 = “secret”, then SAEAD sends z0,P to A, and computes z0 := z0,P ⊕ z0,V .

7. After obtaining (key∗, st∗), the simulator S towards main protocol ΠAuthData performs the local
verification to check the correctness of all AEAD ciphertexts. If the check fails, S aborts. This
step would be done in the simulation of main protocol ΠAuthData.

8. If type2 = “secret”, SAEAD
9. If type2 = “secret”, for each i ∈ [1, n], SAEAD emulates the (authinput) command of functionality
FIZK by receiving the key on [[zi,P ]], and then computes the key on [[mi]] following the protocol
specification.
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For the emulation of functionality FOLEe, SAEAD simply receives the values from A and extracts the
errors chosen by A, which means that the emulation is perfect. From the construction of SAEAD,
it is clear that functionality FGP2PC is emulated perfectly, as SAEAD emulates functionality FGP2PC

following the definition of FGP2PC and using the actual values. It is straightforward to see that the
simulation of functionality FIZK is perfect. As such, suppose that the main protocol ΠAuthData does
not abort and thus sub-protocol ΠAEAD does not abort as well.

According to the local verification (step 14) in main protocol ΠAuthData, we have that key′ =
key∗ and st′ = st∗ except with negligible probability, since key∗ ∈ {0, 1}128 is computationally
indistinguishable from a uniform string and AES is an ideal cipher. Therefore, with overwhelming
probability, ez = 0 if type2 = “open” and ez,i = 0 for all i ∈ [1, n] if type2 = “secret”. Furthermore,
we have that h, z0, z1 computed by SAEAD are valid if type2 = “open”, and zi,V for all i ∈ [0, n]
sent to A are computed correctly with key∗ and st∗ if type2 = “secret”. It is easy to see that
the AEAD encryption/decryption simulated by SAEAD is perfect, except that bi ∈ {0, 1}128 for
each i ∈ [1, n] is sampled uniformly for type1 = “encryption” and type2 = “secret”. In the real
protocol execution, for each i ∈ [1, n], bi is masked by zi,P . For each i ∈ [1, n], we have that
zi,P = AES(key∗, st∗ + i)⊕ zi,V , which is computationally indistinguishable from a uniform string,
since key∗ is uniform and AES is an ideal cipher. Therefore, bi for all i ∈ [1, n] simulated by S are
computationally indistinguishable from that in the real protocol execution.

Below, we analyze the simulation of GMAC tags. SAEAD always simulates the process honestly
and extracts the errors chosen by A. In the ICM, we have that hP = AES(key∗,0) ⊕ hV is com-
putationally indistinguishable from a uniform string in {0, 1}128. Together with that h̃P ∈ F2128 is
sampled at random, we have that d = (h̃P)

−1 · hP + sP is computationally indistinguishable from
a uniform element in F2128 , even though A learns sP by setting h′V = 0. Thus, the simulation of d
is computationally indistinguishable from the real protocol execution. Since the protocol execution
does not abort, we obtain that the error E =

∑
i∈[2,m] pi(e1, ei) · (h̃P)i + eσ = 0, where e1, ei are

the errors chosen by A. Even if A obtains d + e1, we still have that h̃P is computationally indis-
tinguishable from a uniform element in F2128 , due to the uniformity of hP . Therefore, we have that
pi(e1, ei) = 0 for all i ∈ [2,m] and eσ = 0. Based on the fact that both h and z0 are computationally
indistinguishable from uniform strings in {0, 1}128, it is infeasible that A forges a GMAC tag.

Simulation and analysis of main protocol ΠAuthData (Figures 17 and 18). Simulator S plays
the roles of both the honest prover P and server. By invoking SE2F, SPRF and SAEAD constructed
as above, S emulates the functionalities used in protocol ΠAuthData, and interacts with A as follows.

1. S invokes SE2F (resp., SAEAD) to simulate the preprocessing phase of sub-protocol ΠE2F (resp.,
ΠAEAD). S also emulates functionality FIZK by receiving a global key ∆ ∈ {0, 1}λ from A.

2. Following the protocol specification, S (on behalf of P) sends reqC to A. Then, on behalf of
the server, S receives reqC ⊕ e1 from A where e1 is an adversarial-chosen error. Following the
protocol specification, S (on behalf of the server) computes resS according to reqC ⊕ e1 and
sends it to A, where S records tS ∈ Zq for TS = tS · G contained in resS . Then, on behalf of
P, S receives resS ⊕ e2 from A, and forwards it to the verifier controlled by A, where e2 is an
error chosen by A. Then S checks that e1 = 0 and e2 = 0 and aborts if the check fails.

3. After receiving TV ∈ G, S samples tP ← Zq, computes TP := tP · G and sends resC = TC =
TP + TV to A. On behalf of the server, S receives resC + e3 ∈ G from A for an error e3 chosen
by A.

4. S computes Z1 := tP ·TS . Then, S invokes SE2F to simulate the handshake phase of sub-protocol
ΠE2F. With Z1, S computes p̃ms′P ∈ Zp following the specification of sub-protocol ΠE2F.
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5. S emulates functionality FGP2PC by receiving pmsV ⊕ e4 ∈ {0, 1}⌈log p⌉ from A. Then, S defines
pmsP ⊕ e5 as the bit-decomposition of p̃ms′P ∈ Zp, and computes pms′ := AddModp(pmsP ⊕
e5, pmsV ⊕ e4). Let pms′ = pms⊕ e6 for an error e6.

6. Given pms′ and rC∥rS where rC is included in reqC and rS is involved in resS ⊕ e2, S invokes

SPRF to simulate the handshake phase of sub-protocol execution Π
(1)
PRF with type = “secret” and

obtains a master secret ms′ = ms⊕ e7 for an error e7.

7. Given ms′ and rS∥rC , S invokes SPRF to simulate the handshake phase of sub-protocol execution

Π
(2)
PRF with type = “partial open”. During this execution, S obtains (key′C , key

′
S) = (keyC , keyS)⊕

e8, and receives (IV ′
C , IV

′
S) = (IVC , IVS) ⊕ e9 from A where e8,e9 are two errors. Then, S

initializes (stC , stS) = (IVC
′, IVS

′).

8. S computes τC := H(reqC∥resS∥resC). Given ms′ and τC , S invokes SPRF to simulate the

handshake phase of sub-protocol execution Π
(3)
PRF with type = “open”. During this execution, by

emulating functionality FGP2PC, S receives ufinC ⊕ e10 from A for an error e10.

9. Given (key′C , stC , ℓC ,hC ,ufinC ⊕ e10), S invokes SAEAD to simulate the handshake phase of

sub-protocol execution Π
(1)
AEAD with type1 = “encryption” and type2 = “open”. During this

execution, S obtains finC ⊕ e11 for an error e11 and the shares of both parties on
[
hiC

]
2128

for
i ∈ [1,m]. On behalf of the server, S receives (hC , finC ⊕ e12) from A for another error e12,
and checks its correctness following the TLS specification. If the check fails, S aborts. Then, S
updates stC := stC + 2.

10. S computes τS := H(reqC∥resS∥resC∥ufinC ⊕ e10). Given ms′ and τS , S invokes SPRF to

simulate the handshake phase of sub-protocol execution Π
(4)
PRF with type = “open”. During this

execution, by emulating functionality FGP2PC, S receives ufinS ⊕ e13 from A for an error e13.

11. On behalf of the server, S sends (hS , finS) to A following the TLS specification. Then, on behalf
of P, S receives (hS , finS ⊕ e14) from A for an adversarial-chosen error e14, and forwards it to
the verifier controlled by A. Given (key′S , stS , ℓS ,hS , finS ⊕ e14), S invokes SAEAD to simulate

the sub-protocol execution Π
(2)
AEAD towards type1 = “decryption” and type2 = “open”. During

this execution, S (on behalf of P) checks the correctness of finS ⊕ e14 and obtains ufinS
′.

Simulator S checks ufinS ⊕e13 = ufinS
′. If any check fails, S aborts. S also obtains the shares

of both parties on
[
hiS

]
2128

for i ∈ [1,m]. Then, S updates stS := stS + 2.

12. Given (key′C , stC , ℓQ,hQ) and the shares of both parties on
[
hiC

]
2128

for i ∈ [1,m], S invokes

SAEAD to simulate the record phase of sub-protocol execution Π
(3)
AEAD with type1 = “encryption”

and type2 = “secret”. During this execution, an AEAD ciphertext (CQ, σQ)⊕ e15 on the query
is generated where CQ is uniform and e15 is an error. Then, S sends (hQ,encQ ⊕ e15) to A
where encQ = (CQ, σQ).

13. On behalf of the server, S receives (hQ,encQ⊕e15⊕δ) from A for an adversarial-chosen error δ,
and then checks its correctness following the protocol specification and aborts if the check fails.
Then, S samples CR uniformly at random without knowing R, and then generates a GMAC tag
σR with keyS following the AEAD specification, where keyS is computed by S via simulating
the server honestly. Then, S sets encR = (CR, σR) and sends (hR,encR) to A. On behalf of
P, S receives (hR,encR ⊕ e16) from A for an error e16 chosen by A.

14. S invokes SAEAD to simulate the post-record phase of sub-protocol executions Π
(1)
AEAD, Π

(2)
AEAD

and Π
(3)
AEAD. During this execution, S makes A obtain (hC , hS , zC , zS , zQ).
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15. In the post-record phase, S emulates the (revealandprove) command of functionality FGP2PC by
receiving pmsV ⊕e4 from A. In parallel, S receives tV ∈ Zq from A and checks that TV = tV ·G.
On behalf of P, S performs the local check on all opened values and AEAD ciphertexts sent in
the handshake phase (step 14) following the protocol specification. Then S checks that e15 = 0
and e16 = 0. If any check fails, S aborts.

16. S emulates the (prove) command of functionality FGP2PC by computing pms∗ := AddModp(pmsP⊕
e5, pmsV ⊕ e4).

17. Given pms∗, S invokes SPRF and SAEAD to simulate the post-record phase of sub-protocol exe-

cutions Π
(1)
PRF, Π

(2)
PRF, Π

(3)
PRF, Π

(4)
PRF, Π

(1)
AEAD, Π

(2)
AEAD and Π

(3)
AEAD. In the process, S obtains key∗S as

well as the local keys on [[Q]].

18. S emulates the (zkauth) command of functionality FIZK by computing zR := AES(key∗S , stS) and
receiving the local keys on [[zR]] from A. Then, S sends zR to A, and emulates the (check)
command of functionality FIZK on [[zR]]− zR by always sending true to A.

19. S emulates the (zkauth) command of functionality FIZK by receiving the local keys on [[R]] from
adversary A.

20. S emulates functionality FConv to convert ([[Q]], [[R]]) into additively homomorphic commitments
by sending commitment identifiers to A.

The following analysis builds upon the analyses of sub-protocols ΠE2F, ΠPRF and ΠAEAD. From the
above simulation, it is clear that all functionalities emulated by S behave just like as that in the
real protocol execution. If one of the errors e1 and e2 is not zero, then the protocol would abort,
as the signature scheme is EUF-CMA secure. Therefore, the simulation of checking reqC ⊕e1 and
resS ⊕ e2 is computationally indistinguishable from that in the real protocol execution. In the
following analysis, we always assume that the protocol execution does not abort. Otherwise, the
simulation is natural to be indistinguishable from the real protocol execution.

The local check performed by P guarantees that all values obtained by P are computed cor-
rectly, and pms = pms∗ = AddModp(pmsP ⊕ e5, pmsV ⊕ e4) meaning that e6 = 0. Based on the
analysis of sub-protocol ΠE2F, we obtain that both e4 and e5 are identical to zero. Besides, we
have that all of e7,e8,e9,e10,e13 are equal to zero, due to the local check by P. If e3 ̸= 0, then
A has to guess the value finS = Func1(ms) before P receives the server finished message, where
Func1 is a function to compute a server finished message with a master secret ms based on PRF and
AES. Combining the analysis of sub-protocol ΠE2F with that of sub-protocol PRF, ms ∈ {0, 1}384 is
computationally indistinguishable from a uniform string under the PRF-ODH assumption. There-
fore, finS is computationally indistinguishable from a random value in the ROM. Therefore, the
probability that e3 ̸= 0 is negligible.

Due to the local check on finC ⊕ e11 performed by P, we have that e11 = 0. Since e1,e2,e3
are 0 with overwhelming probability based on the above analysis, we have that the client finished
message is always computed correctly by the server. Therefore, finC ⊕ e12 received by the server
is identical to the client finished message computed with the correct pms, meaning that e12 = 0.
From the local check on finS ⊕ e14 performed by P, we obtain that e14 = 0. In the real protocol
execution, the correctness of encQ is checked by P using the application key keyC and real query
Q. However, S does not know the query Q and instead checks that the error e15 = 0. Based on
the analysis of sub-protocol ΠAEAD, all of keyC , hC , zQ are computationally indistinguishable from
uniform strings and A cannot forge any GMAC tag with keyC in the record phase. Therefore, two
methods to check encQ are equivalent. Similarly, checking e16 = 0 is equivalent to checking encR

with keyS , where A cannot forge any GMAC tag with keyS . Therefore, the IT-MACs ([[Q]], [[R]])
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commit to the consistent Q and R in the real protocol execution. Furthermore, by calling FConv,
the values Q and R involved in additively homomorphic commitments are also consistent.

In the ideal-world execution, S generates the AES ciphertexts CQ and CR on the query Q and
response R by sampling them uniformly. In the real protocol execution, Q and R are encrypted
using the masks in the form of AES(key, st+ i). We know that keyC , keyS are computationally indis-
tinguishable from uniform strings based on the analysis of sub-protocol ΠAEAD. Thus, in the ICM,
CQ and CR are computationally indistinguishable from random strings in the real protocol execu-
tion. This means that the simulation of CQ and CR is indistinguishable from the real ciphertexts.
Overall, the output of honest P and simulator S in the ideal-world execution is computationally
indistinguishable from the output of honest P and adversary A in the real-world execution.
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