
Testudo: Linear Time Prover SNARKs with Constant Size Proofs
and Square Root Size Universal Setup

Matteo Campanelli1, Nicolas Gailly1, Rosario Gennaro2,
Philipp Jovanovic3, Mara Mihali4⋆, and Justin Thaler5

1 Protocol Labs, {matteo,nikkolasg}@protocol.ai
2 Protocol Labs & CCNY, rosario.gennaro@protocol.ai

3 UCL, p.jovanovic@ucl.ac.uk
4 Aztec Labs mara@aztecprotocol.com

5 Georgetown & a16z crypto research, justin.thaler@georgetown.edu

Abstract. We present Testudo, a new FFT-less SNARK with a near linear-time prover, constant-time
verifier, constant-size proofs and a square-root-size universal setup. Testudo is based on a variant of
Spartan [30]–and hence does not require FFTs–as well as a new, fast multivariate polynomial commitment
scheme (PCS) with a square-root-sized trusted setup that is derived from PST [27] and IPPs [9]. To
achieve constant-size SNARK proofs in Testudo we then combine our PCS openings proofs recursively
with a Groth16 SNARK. We also evaluate Testudo and its building blocks: to compute a PCS opening
proof for a polynomial of size 225, our new scheme opening procedure achieves a 110x speed-up compared
to PST and 3x compared to Gemini [6], since opening computations are heavily parallelizable and operate
on smaller polynomials. Furthermore, a Testudo proof for a witness of size 230(≈ 1GB) requires a setup
of size only 215 (≈ tens of kilobytes). Finally, we show that a Testudo variant for proving data-parallel
computations is almost 10x faster at verifying 210 Poseidon-based Merkle tree opening proofs than the
regular version.

⋆ Work done mainly while the author was affiliated with UCL and Protocol Labs.

Table of Contents

Testudo: Linear Time Prover SNARKs with Constant Size Proofs and Square Root Size Universal Setup 1

Matteo Campanelli, Nicolas Gailly, Rosario Gennaro, Philipp Jovanovic, Mara Mihali, and Justin
Thaler

1 Introduction . 3

1.1 Contributions . 3

1.2 Related Work . 5

2 Preliminaries . 5

2.1 Notation . 5

2.2 Cryptographic Assumptions . 5

2.3 PST Polynomial Commitments . 6

2.4 Sumcheck . 6

2.5 Spartan Overview . 7

3 A Generalized MIPP Protocol . 7

4 Testudo-Comm: Our PCS with Square Root Trusted Setup . 9

5 Testudo: Our Construction . 11

6 Practical considerations . 12

6.1 Parallelization and aggregation of Testudo proofs . 12

7 Implementation and Evaluation . 12

7.1 Implementation . 12

7.2 Testudo Commitment . 13

7.3 Testudo Groth16 Constraints . 13

7.4 Testudo on data-parallel circuits . 13

7.5 Future Work . 15

A The Gemini Transformation . 18

B More on Testudo for Data-Parallel Computations . 18

C Additional Preliminaries . 19

C.1 Rank-1 Constraint Systems (R1CS) . 19

C.2 Polynomial Commitments for Multilinear Polynomials . 19

C.3 Succinct Non-Interactive Arguments of Knowledge . 21

C.4 MIPP Commitments and proofs . 22

D More on Curve Choices . 22

1 Introduction

Succinct Non-Interactive Arguments of Knowledge (SNARKs) have been a prolific area of research in the last
decade: a SNARK allows a prover to prove to a verifier that a certain (non-deterministic) computation F has
been performed correctly, or more specifically that there exists a witness w such that y = F (x,w) where x is a
public input. The crucial property of SNARKs is that the size of the proof and the verification time should be
short, i.e., sublinear in the size of the computation F and of the witness w. Otherwise a simple proof would be
to send w and have the verifier recompute F (x,w). Additionally, SNARKs can be zero-knowledge, i.e., they
do not reveal any information about w.

SNARKs are evaluated according to various performance metrics where the three most important ones are
(1) the time it takes the prover to generate a proof, (2) the size of the proof, and (3) the time it takes the verifier
to validate a proof. There are various design trade-offs that can be explored to optimize those metrics and an
essential distinguishing factor that impacts performance are the preprocessing phases of SNARK systems.

On the one end of the spectrum, there is, for example, the Groth16 SNARK [19] which produces proofs
consisting of only 3 group elements and which has a verification that is independent of the complexity of
F , only requiring the evaluation of a few pairings. This makes Groth16 essentially optimal in terms of proof
size and verifier time but it comes at the expense of a superlinear overhead in prover time and a function-
specific trusted setup, the latter of which is a serious drawback in practice. On the other end are (transparent)
SNARKs that do not require a trusted setup [5, 8, 38] at all but they tend to have larger proofs and verifier
times, e.g., at least logarithmic in the size of the witness. Finally, there are (universal) SNARKS which offer
a compromise, as they permit smaller proofs in comparison to transparent systems at the cost of a single
setup that is universal enabling them to prove any circuit up to a certain size [20]. However, these schemes
are still suboptimal as they have slower provers than Groth16 [12], which becomes particularly evident for
large circuits [40], and they do not have constant size proofs or verification times. Finally, all of the schemes
with a trusted setup produce a linear-size common reference string (CRS) which is particularly problematic
for large circuits (again), as the CRS has to be downloaded, stored, and moved into RAM at proving time.
For example, Filecoin [23] uses Groth16 for circuits of size ≈ 230 but producing a trusted setup for this size
was practically infeasible. As a workaround, provers work with (sub-)circuits of size ≈ 227 and generate ≈ 10
proofs per (large) circuit.

In summary, all of these observations led us to the following research question:

Can we design a SNARK with a small universal trusted setup, constant size proofs and verification
time, and a fast prover? 6

1.1 Contributions

In this section we present our main contributions together with an informal overview of the techniques used
to achieve them.

Testudo: Near-Linear time prover with succinct verification. To achieve this goal, we start our design
from Spartan [30] a sumcheck-based argument requiring only field arithmetic (e.g. much faster that its point
counterpart) and a single multilinear polynomial opening. The original Spartan is a transparent scheme which
relies only on discrete based log curves and transparent polynomial commitment schemes, giving substantially
larger proof sizes and verification times (≈

√
N). To improve on those, the main idea is to have a Groth16

prover verifying the Spartan proof. Below we describe the technical challenges of this approach, but one
important thing to note here is that in order to obtain a ZK-SNARK it is sufficient to run the (much simpler
and more efficient) non-ZK version of Spartan since the outer Groth16 proof will hide any information possibly
leaked by the non-ZK inner Spartan proof.

Embedding the verification of a Spartan-based SNARK in a Groth16 circuit presents various implementation
challenges. The sumcheck component of the proof operates only on field elements and requires the use of a
hash function to make it non-interactive via Fiat Shamir. Field operations can be natively encoded in R1CS

6 To maximize backwards compatibility to already deployed systems, we require that our SNARK system works with
R1CS-based circuits.

3

constraints and we adapted our codebase to use Poseidon, a SNARK friendly hash function, having the
advantage of a more efficient representation in a circuit. However, things get more complicated for writing the
R1CS constraints for the verification of the polynomial commitment opening, since it requires point arithmetic
which, if naively encoded in the circuit, would massively increase the number of constraints by multiple orders
of magnitude. This issue would be amplified by the relative large size of Spartan’s original commitment’s proof
size and verification – O(

√
N) – which can potentially be reduced if we leverage using a different PCS with a

trusted setup.
Why the name Testudo? Testudo was a type of battle formation that ancient Rome adopted, where

its soldiers operated “under the hood” of their shields. Testudo, the proof scheme, is similar: a Spartan prover
woking under the hood of Groth16.

Testudo-Comm: New Multivariate Polynomial Commitment Scheme. To reduce the size of the PCS
opening, we devise a new polynomial commitment scheme based on PST [27] and inner pairing product [9]
that avoids the use of FFTs. Testudo, as Spartan, considers circuits of size N = 2n where the polynomial
representation of the circuit has n variables, n is logarithmic and so N will be linear in the size of the circuit.
The high level idea is to express the coefficients of the witness multivariate polynomial from Spartan as a
square matrix of size

√
N ×
√
N . To commit to this polynomial, the prover commits to each row of the matrix

using PST, leading to a vector A⃗ of size
√
N . Then the prover commits to A⃗ using the MIPP commitment in

[9] (e.g. a pairing product between commitments and random base) to create the final commitment T - a single
group element. To open, the prover carefully performs PST and MIPP opening on

√
N sized polynomials with

many operations in paralell. Both the MIPP and PST part operate on
√
N sized polynomials.

Since the 2 opening operations can be done in parallel we obtain a considerable speedup in practice (about
2 orders of magnitute faster) than PST, even though it requires heavier operations like logN pairings to create
the combined commitment. Moreover, when comparing with Gemini [6], we estimate our opening procedure
to be 3x faster for large N such as 225, where [6] is likely faster for small sizes, with the additional cost that
it requires to perform FFTs for practical deployment.

Usage of 2-chain curves for efficient verification. To enable verifying group operations in a circuit, we
use the standard approach pf running Spartan over a 2-chain curve (such as BLS12-377) where group elements
can be encoded as field elements in a companion curve over which the Groth16 prover is then implemented.
For backwards compatibility reason, we also explored the possibility to run Testudo on curves without a
companion curve (such as BLS12-381, which is currently used by Filecoin proofs).

Aggregation. Additionally, we show how Testudo proofs can be aggregated. Since the outer layer is a
Groth16 proof, we can use standard aggregation tools such as SnarkPack [16] to aggregate several Groth16
proofs together. Another option is to aggregate proofs at the inner level and then run a single Groth16 proof
on top of the aggregated inner proofs.
Note that an interesting point of this design is that the Groth16 prover can be outsourced to more powerful
machines or a ”prover-as-a-service” infrastructure. Indeed, if the ”Spartan” prover ran the sumcheck and the
commitment opening, then resulting proof already hides the witness thanks to the zero knowledge property
of Spartan. As a consequence, more powerful machine can aggregate many of these ”semi” proofs inside one
Groth16 proof, without ever seeing the witness, similar to how Snarkpack works. This settings has practical
implications in terms of deployment that we believe are worth exploring.

Analysis and Experimental Results. As explained in the body of the paper, our SNARK avoids the use
of FFT altogether and obtains a nearly linear-time prover7. In practice, we show that:

– Our polynomial commitment scheme has a commitment time comparable to PST while producing opening
proofs at two order of magnitude faster (at the cost of larger proof sizes).

– Our experimental results show that for data parallel circuits, we can estimate Testudo to run more than
≈ 5x to ≈ 10x faster than the fastest Groth16 implementation (i.e., Bellperson [4]), depending on the size
of the small subcircuit. For example, if the sub-circuit is of size 215, as an upper bound to a circuit verifying

7 Our prover runs N multi-exponentiations of size N , which is roughly O(N λ
logN

) group operations with λ > logN
for security reason.

4

a Poseidon based Merkle Tree opening proofs with 32 layers, then Testudo can verify 210 such proofs ≈ 9.7x
faster than the Groth16 equivalent.

1.2 Related Work

The literature on SNARKs is very large and we refer the reader to Thaler’s monograph [34] for a comprehensive
survey. In this section we focus on a few works that are relevant to Testudo.

We were inspired to use a 1-level recursion with Groth16 verifying a faster inner SNARK by the work of
Belling et al. [3] where the verification of a GKR proof [18] for hash computations is outsourced to a Groth16
prover. Concurrently to our efforts, a similar approach was also taken in the ZKBridge paper [37], where the
verification of a Virgo [38] proof is outsourced to a Groth16 prover. Because Virgo is also GKR-based, the
underlying SNARK in either case is known to be efficient for large “parallel” computations. We believe we are
the first to apply this approach to a general purpose SNARK like Spartan.

When it comes to universal trusted setup proofs, many systems today do not use R1CS but rather “custom
gates” (sometimes also called Plonkish arithmeization), and apply SNARKs such as Plonk [15] (or alternatives
such as Hyperplonk [11]) to the resulting constraint systems. The use of “custom gates” makes a comparison
to pure R1CS-based schemes not immediate. We are still working on achieving meaningful comparisons but
we estimate that Testudo is competitive with approaches that do use custom gates. We point out that many
applications (including our main motivating one – Filecoin proofs) are already encoded as R1CS systems,
and therefore it is very useful to have an efficient SNARK with universal trusted setup that can be used
off-the-shelves.

Our new PCS Testudo-Comm leverages ideas from [16] and [9] to reduce the size of the trusted setup for
the KZG univariate polynomial commitment [21] to square-root size from linear. We adapted them to achieve
the same reduction for the PST commitment. We note that, as far as we know, we are the first to implement
these techniques. We also point out that the reduction of in the trusted setup size comes at the expense of
larger opening proofs: however in our case that drawback is “absorbed” by the outer Groth16 proof, which
compresses the final proof down to constant.

[6] presents a generic transformation to turn a univariate polynomial commitment into a multilinear one.
In Section 4 we discuss why we believe using Testudo-Comm is a better choice for us.

2 Preliminaries

We assume the reader is familiar with the definitions of R1CS, Polynomial Commitment Schemes and SNARKS,
which we however recall in the Appendix.

2.1 Notation

We assume we have cyclic groups G1,G2,GT of order q generated by g and equipped with a bilinear pairing
e : G1 ×G2 → GT . We denote by p(x1, . . . , xn) a multilinear polynomial with n variables. For s1, . . . , sn ∈ Zq

we write s⃗ = (s1, . . . , sn) ∈ Zn
q . Let i ∈ {0, 1}n, we can denote i = (i1 . . . in) as ij ∈ {0, 1}. We denote the

value
∏

j s
ij
j by s⃗ i

2.2 Cryptographic Assumptions

The security of our constructions holds in the Generic Group Model (GGM) [32]. In Section 4 and Section 5
we rely on the security of the underlying building to claim that of our protocols. The security of these building
blocks can be argued from assumptions implied by the GGM. In more detail:

– for PST we require the (µ+1)δ–Strong Diffie-Hellman and the (δ, µ)–Extended Power Knowledge of Expo-
nent assumption (see [39] and discussion in [10, E.1]).

– for MIPP we require a variant of the (q,m)-Auxiliary Structured Single Group Pairing (see [9]).

5

Trusted setup: Let t1, . . . , tn be random values in Zq . The CRS consists of the N values g
χi(t)
1 where

χi(X1, . . . , Xn) = [Πj:ij=1Xj][Πj:ij=0(1 − Xj)] for i ∈ {0, 1}n the multilinear Lagrange polynomial. The CRS

also includes the values g
tj
2 for j = 1, 2, . . . , n.

Commitment: Com(p) = g
p(t⃗)
1 = C which can be evaluated given the values of p on the Boolean hypercube and

the CRS.
Opening: To prove that y = p(⃗a) where a⃗ = (a1, . . . , an) the prover computes the polynomials qi(x⃗) such that

p(x⃗)− y = Σi(xi − ai)qi(x⃗)

by repeated polynomial division (note that in reality qi(x⃗) = qi(xi, . . . , xn), i.e., only of the last n − i variables).

The proof is then the vector w⃗ = (w1, . . . , wn) where wi = g
qi(t⃗)
1 which can be computed given the polynomials qi

and the CRS.
Verification: To verify that y = p(w⃗) given w⃗, the verifier checks that

e(Cg−y, g) = Πie(wi, g
ti−ai
2) .

Fig. 1: The PST commitment scheme in the Lagrange basis.

P sends the polynomial p1(x) =
∑

i∈{0,1}n−1 p(x, i).

V checks that p1(0) + p1(1) = a and sends back r1 ∈R F.
P sends the polynomial p2(x) =

∑
i∈{0,1}n−2 p(r1, x, i).

V checks that p2(0) + p2(1) = p1(r1) and sends back r2 ∈R F.
...

At round j P sends the polynomial pj(x) =
∑

i∈{0,1}n−j p(r1, . . . , rj−1, x, i).

V checks that pj(0) + pj(1) = pj−1(rj−1) and sends back rj ∈R F.
...

At the last round P sends the polynomial pn−1(x) = p(r1, . . . , rn−1, x).

V checks that pn−1(0) + pn−1(1) = pn−2(rn−2), selects rn ∈R F and checks that pn−1(rn) = p(r1, . . . , rn) via a
single query to p.

Fig. 2: The Sumcheck Protocol

2.3 PST Polynomial Commitments

We refer the reader to Section 2.1 for the notation we use in this section. In Fig. 1 we describe the PST
polynomial commitment modified to work over the Lagrange basis [27].

Note that if n = logN where N is the size of the R1CS, then the trusted setup is linear in the size of the
circuit, and that verification of the opening requires O(n) (i.e., logarithmic in the size of the circuit) work.

2.4 Sumcheck

Let p(x1 . . . , xn) be a multilinear8 polynomial in n variables defined over a field F. Consider the value a =∑
i∈{0,1}n p(i), i.e., the sum of the value of p on all the vertices of the Boolean hypercube. This computation

takes N = 2n time and the sumcheck protocol [24] described in Figure 2, is a way for a Prover to convince a
Verifier that a is correct in O(n) time, plus a single query to the polynomial p on a random point in Fn.

8 We only care about multilinear polynomials for Testudo but the sumcheck protocol can be run on any multivariate
polynomial.

6

2.5 Spartan Overview

In this section we review Spartan [30], a transparent SNARK for R1CS. For space reasons, ours is a very high
level review and the reader is referred to [30] for details.

Recall that a R1CS instance (F, A,B,C, x,N,m) is satisfiable if there exists a witness w ∈ FN−|x|−1 such
that

(A · z) ◦ (B · z) = (C · z)
where z = (x, 1, w), · is the matrix-vector product, and ◦ is the Hadamard (entry-wise) product.

The first step in Spartan is to encode the matrices A,B,C and the vector z via their multilinear polyno-
mial extensions. Let n = logN . For the matrix A consider the unique multilinear polynomial in 2n variable
Ã(t1, . . . , tn, u1, . . . , un) such that Ã(i1, . . . , in, j1, . . . , jn) = A(i, j) where (i1, . . . , in) is the binary expansion
of i and (j1, . . . , jn) is the binary expansion of j. The polynomials B̃, C̃ are defined similarly, as well as the
polynomial Z̃(u1, . . . , un) where Z(i1, . . . , in) = z(i).

The satisfiability condition is then equivalent to the following polynomial F (t1, . . . , tn) being zero on all
the points of the Boolean hypercube

F (⃗t) =

 ∑
u⃗∈{0,1}n

Ã(⃗t, u⃗)Z̃(u⃗)

 ·
 ∑

u⃗∈{0,1}n

B̃(⃗t, u⃗)Z̃(u⃗)

− ∑
u⃗∈{0,1}n

C̃ (⃗t, u⃗)Z̃(u⃗)

Consider now the multilinear extension 9of F (·), that is the polynomial Q(s⃗) =
∑

t⃗∈{0,1}n F (⃗t)eq(⃗t, s⃗)

where eq(⃗t, s⃗) =
∏n

i=1 siti + (1 − si)(1 − ti) is the multilinear polynomial which is equal to 1 if and only if
t⃗ = s⃗ and otherwise is equal to 0.

Since F (⃗t) is zero on the Boolean hypercube, Q(s⃗) is then identical to the zero polynomial by Schwartz-
Zippel lemma. This condition can be verified by testing Q(s⃗) on a random point. Spartan is a way to check this
evaluation in an efficient way. More precisely, to verify the satisfiability of the original R1CS Spartan performs
the following steps:

1. Proves that Q(r⃗) = 0 for a random point r⃗ ∈ Fn. Note that due to the definition of Q(·) this can be done
via a sumcheck protocol.

2. The above sumcheck protocol reduces to proving that σ = F (ρ⃗) for a random ρ⃗ ∈ Fn. Due to the definition
of F this reduces to proving the value of three summations

∑
u⃗∈{0,1}n Ã(ρ⃗, u⃗)Z̃(u⃗),

∑
u⃗∈{0,1}n B̃(⃗t, u⃗)Z̃(u⃗),

and
∑

u⃗∈{0,1}n C̃ (⃗t, u⃗)Z̃(u⃗). Each one of them can also be proven via a sumcheck, and in Spartan these 3
sumchecks are aggregated into a single one.

3. Finally the above sumchecks reduce to proving the values of the multilinear extensions on random points,
i.e., the values of Ã(r⃗x, r⃗y), B̃(r⃗x, r⃗y), C̃(r⃗x, r⃗y), and Z̃(r⃗y).

The final point is achieved via the use of polynomial commitments. The prover commits to the polynomials
Ã, B̃, C̃ (these are called computation commitments since they encode the computation), and Z̃ (witness
commitment, since it encodes the witness).

A major contribution of Spartan is to show how to efficiently commit to Ã, B̃, C̃ to leverage their sparseness
(recall that in R1CS matrices have N2 entries but only m are non-zero). This requires a non-trivial use of
memory checking techniques, and introduces a substantial overhead which can be avoided in practice for
uniform circuits where the Verifier can evaluate Ã, B̃, C̃ on their own.

Spartan’s focus was to obtain a transparent SNARK, and therefore it uses a multidimensional Pedersen’s
commitment together with an inner product proof to implement the polynomial commitment. Because we are
already using a trusted setup for the Groth16 layer, we changed the polynomial commitment to a different
one which also has a trusted setup.

3 A Generalized MIPP Protocol

In order to obtain a multilinear PCS with O(
√
N) trusted setup, in this section we show how to adapt ideas

from Section 6 of [9] which were applied to the KZG univariate PCS. We generalize it to work with multivariate
polynomials and the PST commitment.

9 Such a polynomial of degree at most 1 in each variable always exists for any function f mapping {0, 1} → F [34].

7

– If M = 1, the Prover sends A1, y1, and the verifier checks that T = e(A1, h1) and U = Ay1
1 .

– Assume now that M ≥ 2 and is a power of 2. Let M ′ = M/2.
• The prover sets the following:

– A⃗L = [A1 . . . AM′] and A⃗R = [AM′+1 . . . AM]

– y⃗L = [y1 . . . yM′] and y⃗R = [yM′+1 . . . yM]

– h⃗L = [h1 . . . hM′] and h⃗R = [hM′+1 . . . hM]

• The Prover computes and sends to the Verifier the following values UL = ⟨A⃗L, y⃗R⟩; UR = ⟨A⃗R, y⃗L⟩; TL =

CM(A⃗L, h⃗R); TR = CM(A⃗R, h⃗L)

• The Verifier chooses a random field element x and sends it to the prover

• They recurse on the following values (note that the vectors have now size M ′ = M/2): A⃗′ = A⃗L ∗ A⃗R
x
;y⃗′ =

y⃗L ∗ y⃗Rx−1; h⃗′ = h⃗L ∗ h⃗R
x−1

;T ′ = T ∗ T x−1

L ∗ T x
R;U

′ = U ∗ Ux−1

L ∗ Ux
R

Fig. 3: Generalized MIPP Protocol.

Changes from original MIPP. The protocol in this section has two changes when compared to the one
in [9] (we are referring specifically to MIPPk which we recall in Appendix C.4). First, we generalize MIPP to
work on multivariate rather than univariate polynomials. Second, we show that the techniques also work when
the polynomial is represented in the Lagrangian basis.

The Generalized MIPP protocol: Given a vector A⃗ = [A1, . . . , AM] of group elements in G1, the IPP

commitment to A⃗ with a CRS h⃗ = [h1, . . . , hM] of group elements in G2 is

T = CM(A⃗, h⃗) =

M∏
i=1

e(Ai, hi).

Let m = logM . In our case, hi = hχi(t⃗) for i ∈ {0, 1}m, where t⃗ = [t1, . . . , tm] is a random secret vector of
field elements and h is a generator of G2.

Our generalized MIPP protocol allows a prover to prove that given a public vector of field elements
b⃗ = [b1, . . . , bm], we have that

U = ⟨A⃗, y⃗⟩ = A⃗ y⃗ =

M∏
i=1

Ayi

i ,

where the vector y⃗ is defined as y⃗ = [y1, . . . , yM] with yi = χi(⃗b) for i ∈ {0, 1}m, where χi(X) is the ith

Lagrange polynomial defined as

χi(X1, . . . , Xm) =
∏

j:ij=1

Xj ·
∏

j:ij=0

(1−Xj).

This proof has size and verification time O(m), which means that the verifier needs only to read the vector b⃗
and not construct the entire vector y⃗, which is only implicitly defined.

The protocol is described in Fig. 3.
Note that there will be m levels of recursion. Also note that the Verifier cannot compute the vectors

A⃗′, y⃗′, h⃗′ since they are too big. Only the prover will compute those and provide the final value at the end of
the recursion to the Verifier. We show later how the Verifier can check that they are correct. The Verifier can
compute T ′, U ′.

Properties of the construction We make the following claims about the construction above which are
easily proven by induction.

Claim: T ′ = CM(A⃗′, h⃗′)

Claim: U ′ = ⟨A⃗′, y⃗′⟩
Claim: The Verifier will work only in O(m) = O(logM) time

8

Table 1: Comparison of Prover Efficiency

Scheme Setup Size Committing Opening

Testudo
O(
√
N),G1,

O(
√
N)G2

O(
√
N)G1,

O(
√
N) pairings,

O(
√
N)Gt

6
√
NG1,

O(
√
N)G2,

4
√
N pairings,

4
√
NGt

PST O(N)G1 O(N)G1
2NG1

O(N) poly division

Gemini O(N)G1 O(N)G1 4NG1

Table 2: Comparison of Verifier Efficiency

Scheme Proof Size Verification Time

Testudo ≈ log(N)/2(Gt +G1 +G2) ≈ log(N)/2(Gt +G1 +G2)

PST O(logN)G2 O(logN)

Gemini 3nG2 8n pairings, 3nG2, 3nG1

How can the verifier compute the vectors y⃗′, h⃗′ without reading them? The trick is that they are “struc-
tured”. It is easy to see by induction that at the end of the recursion the value ŷ (the collapsed version of y⃗′

at the end of the recursion) is equal to (1− b1 + x−1
1 b1), . . . , (1− bm + x−1

m bm) which the verifier can compute
in O(m) time on their own.

Similarly the value ĥ (the collapsed version of h⃗′ at the end of the recursion) can be seen to be equal to

ĥ = h
∏

i(1−ti+x−1
i ti).

Note that ĥ is a PST commitment of a multilinear polynomial inm variables. The Verifier does not compute
it itself (it would be too expensive) but receives it at the end of the recursion from the Prover. To check that
it is correct, the verifier computes the polynomial in a random point and it asks the prover to open this PST
commitment. The verification time of this construction is O(m).

4 Testudo-Comm: Our PCS with Square Root Trusted Setup

Now we show how to reduce the size of the PST trusted setup to O(
√
N) using the generalized MIPP in

Section 3. See Fig. 4.

Theorem 1. Testudo-Comm (Fig. 4) is secure in the GGM.

Efficiency. Our commitment scheme improves in proving time trading against proof size and verification time.
The key observation for proving efficiency is that, even though prover has to do more expensive operations
(pairings, Gt multiplications etc), it does them on a

√
N sized polynomial, which makes a large difference in

practice for large N . For example, in Gemini [6] (see Appendix A), for 225, it takes at least 36s to create an
opening proof[25] while we evaluate it takes only 11s using Testudo’s commitment (see evaluation section7.1).
However, on smaller N , the Gemini transformation is likely to outperform Testudo’s commitment because of
the time required to perform the pairings and Gt comutations in our case.

We summarize the efficiency properties of the prover in Table 1 assuming a circuit of size N = 2n and
security parameter λ. We then compare the efficiency for the verifier in Table 2.

– PST: To open, the prover computes for each of the n rounds, a polynomial division of size 2n−1 leading to
a O(2n−1)-sized polynomial division complexity. While this operates on field elements, we found out that
this division, because it doesn’t use FFTs, is actually a bottleneck on large sizes (such as 225).

9

Trusted Setup We perform the PST trusted setup for m = n/2 variables. Let t1, . . . , tm be random values in Zq

. The CRS consists of the M =
√
N values g

χi(t⃗)
1 .

There is also the trusted setup to generate the vector h⃗ for the MIPP proof also of size M =
√
N .

Commitment Let p(x1, . . . , xn) be a multilinear polynomial with n variables. We split the variables in two sets

X and Y each of size m = n/2, and denote p(X,Y) accordingly. Let pi(X) =
(∑

j∈{0,1}m p(j, i) · χj(X)
)
, so that

p(X,Y) =
∑

i∈{0,1}m

 ∑
j∈{0,1}m

p(j, i) · χj(X)

χi(Y)

The prover “in its own head” PST-commits to each pi(X) (it can do this because each pi is multilinear and in
m = n/2 variables). This yields a vector of M group elements in G1, say A = (A1, ..., AM), one commitment Ai

for each pi.
The actual commitment the prover sends to the verifier is a MIPP commitment T to the vector A, defined as
above i.e. T = CM(A⃗, h⃗) = Πie(Ai, hi)

Opening Now suppose the verifier asks for p(⃗a, b⃗) where a⃗, b⃗ ∈ Fm. This can be written as:

p(⃗a, b⃗) =
∑

i∈{0,1}m
pi(⃗a) ∗ χi(⃗b)

Let us define the m-variate multilinear polynomial

q(X) :=
∑

i∈{0,1}m
pi(X)χi(⃗b)

Note that q is multilinear, and p(⃗a, b⃗) = q(⃗a).
Let y⃗ denote the length

√
N vector consisting of yi = χi(⃗a) ∈ Fr as i ranges over {0, 1}m.

To prove that v = p(⃗a, b⃗) the prover proceeds in three steps as in Section 6 of the IPP paper [9]:
1. P sends U a PST-commitment to q using the same SRS as that used to commit to each pi. Note that U is the

inner product of A⃗ and y⃗ i.e., U = ΠiA
yi
i .

2. Second, P proves using the generalized MIPP protocol that U is indeed the inner product of the vector A⃗ and
the vector y⃗, where A⃗ is the opening vector to T .

3. Third, P uses the PST-evaluation protocol to prove that given the commitment U the opening polynomial q
evaluated at a⃗ yields v (i.e. q(⃗a) = v).

Verification The verifier receives v claimed to be v = p(⃗a, b⃗) , the value U , the generalized MIPP proof π1

and the PST proof π2 and it performs the MIPP and PST verifications. Note that all verification steps are
O(m) = O(logN).

Fig. 4: Testudo-Comm

10

– Gemini: To open, the prover computes for each of the n rounds, 1 KZG openings of size 2n−i and 2 of size
2n−i−1, leading to a complexity of O(2N +N +N) = O(4N)G1 scalar multiplications. For verification, it
therefore requires perfoming O(8n) pairings (or 4n pairing checks).

– Testudo: To open, the prover must compute:
• A PST commitment to the q(X) polynomial, so O(

√
N)G1

• A MIPP opening proof, consisting of n rounds where prover computes (a) O(2
√
N/2i)G1 scalar multipli-

cation to compute the reduced vectors, and (b) O(2
√
N/2i)Gt and pairings operations to compute the

commitment to each reduced vectors. This leads to O(4
√
N)G1 and O(4

√
N)Gt + pairings.

• Two PST opening proofs, each of size O(
√
N), one on G1 and one on G2

Remark 1 (Distributed trusted setup). Our construction requires a trusted setup for the polynomial commit-
ment of a specific form. It needs to encode in particular a secret tuple of points and their (multivariate)
monomial evaluation. We can obtain an MPC for such a setup by straightforwardly adapting the techniques
from [7]. We will detail these techniques in the full version of the paper.

Remark 2 (Proof Size). The proof size for our commitment scheme are 8x bigger at 225 than PST. To reduce
the size, we can compress the Gt elements on the torus as in [26]. This could potentially reduce by half the
proof size, bringing it to the same order of magnitude as a PST opening proof. Note however, proof size don’t
matter much in the Testudo SNARK as they are verified by another Groth16 proof on top.

5 Testudo: Our Construction

At this point we recap the general structure of Testudo. Let A,B,C be the input R1CS of size N .

Trusted Setup. We assume that a trusted party (or a distributed multiparty computation protocol, aka
ceremony) generates the trusted setup for Testudo-Comm (which is of size

√
N) and the Groth16 trusted

setup for an R1CS correspoding to the verification algorithm of the Spartan sumchecks and the Testudo-Comm
opening proofs (this R1CS has size O(logN). This trusted setup is independent of A,B,C and therefore
universal.

Computation Commitments. As in Spartan, in a preprocessing stage, the prover encodes A,B,C as sparse
polynomials Ã, B̃, C̃ and commits to them via polynomial commitments (computational commitments). We
note that for uniform circuits (e.g., data-parallel, with many sub-circuits repeating in regular patterns), this
step is not necessary or much reduced in complexity, since the verifier can efficiently compute Ã, B̃, C̃ on their
own or is only required to compute the computational commitment for the subcircuit.

Witness Commitments. In the online phase, the prover computes w̃, a multilinear extension of the witness
w and commits to it using Testudo-Comm. Note that the polynomials are of size O(N) here, corresponding to
the number of R1CS constraints.

Prover. The Testudo prover:

– Executes the Spartan prover to prove the satisfiability of A,B,C (see Section 2.5), with the only difference
that it uses Testudo-Comm as the underlying polynomial commitment.

– Produces the appropriate openings of the Testudo-Comm PCS.
– Produces and outputs a Groth16 proof that it knows the above modified Spartan proof.

Verifier. The verifier checks the output Groth16 proof and accept/rejects accordingly.

Theorem 2. Assuming that Testudo-Comm is an extractable PCS, and Groth16 is a SNARK, then Testudo
is a SNARK.

Informally the proof follows from the fact that if Groth16 is a SNARK we can extract a ”modified Spartan”
proof – modified to use Testudo-Comm ass the underlying PCS. But if Testudo-Comm is extractable, then we
know that we can extract the witness (Spartan is a SNARK as long as the underlying PCS is extractable).

As with all recursive SNARKs we have to heuristically assume that we can instantiate the random oracle
in Spartan to a very specific hash function (in our case Poseidon) and not lose security. This is because the
code of the hash function has to be embedded in the outer Groth16 proof.

11

6 Practical considerations

Choice of curves. The original version of Spartan (the starting point for the Testudo) uses a custom version
of curve25519-dalek, which provides an efficient implementation of a prime-order Ristretto group [28], an
abstraction that facilitates implementations of prime-order groups with strong security guarantees. However,
as this elliptic curve does not support pairings, composing the original Spartan with Groth16 is not possible
and, thus, we had to find a pairing-friendly alternative. We opted for BLS12-377 combined with BW6-761
because they represent the most efficient pair that further supports 2-chaining of pairing-equipped elliptic
curves [13, 14, 1] which is required for our design. See Appendix D for more details.

Testudo for data-parallel computation. We can make Testudo particularly efficient for data-parallel
computation. Consider a relation R∗ composed of several repetitions of the same relation R(x⃗(1), w⃗(1))∧ · · · ∧
R(x⃗(K), w⃗(K))

(
x⃗(1), . . . , x⃗(K)

)
We are able to amortize the proving costs related to the wiring of the circuit

whenever the circuit is of this form.
In the Spartan lingo the building block for proving the wiring of the circuit refers to a computation commit-

ment. A computation commitment is a polynomial commitment opening to polynomials encoding the structure
of the circuit. If we apply Testudo naively to such a relation we would need to open a computation commit-
ment of size roughly K|w|.Instead, we modify our building blocks appropriately to leverage the structure of
the circuit and we require computation commitments whose opening grows only linearly in the size of the
small subrelation R. We expand on this construction in Appendix B.

6.1 Parallelization and aggregation of Testudo proofs

We observe that this framework enables aggregation of proofs at different levels, each with their pros and cons,
but all being compatible with each other, resulting in a system that can scale to large instances in practice
because it enables parallelization of the proof generation.

Aggregation at Spartan level: Assume a prover is running different sumchecks + PCS openings in
parallel using different witnesses, on different machines (otherwise, the prover should use the data parallel
version that requires the whole witness to be present). In this setting, aggregating the verification of the
sumcheck can be done either via (a) aggregating the different Groth16 sumcheck-verifier proofs together using
Snarkpack like constructions, or (b) having one Groth16 proof that verifies multiple instances of the sumcheck.
Aggregation for the polynomial commitment scheme could be done by the prover (a) at the beginning, by
committing to a random linear combination of the different multilinear extensions of the witnesses and (b)
by opening at a random point this combined polynomial. This would require communication between the
machines to aggregate the polynomials together; given it’s a single round of communication, we believe it can
still be a useful for a practical deployement inside a cluster of machines.

Aggregation at the Groth16 level: Instead of verifying a single sumcheck instance Groth16 proof and
a single PCS opening proof, the outer proof can verify multiple of those. We need further work to estimate the
complexity of the final outer circuit but our current estimation (4M constraints for the outer circuit) seem to
indicate that it is possible to verify in the order of 5-10 proofs together in a reasonable timeframe, depending
on the application.
Note that this aggregation does not require knowledge of the witness and therefore can be done by more
expensive prover machines.

Aggregation on top: Because Testudo’s final proof is a Groth16 proof, one can simply use snarkpack to
efficiently pack thousands of such proofs together. Similar to previous category, this aggregation level does not
require knowledge of the witness and therefore can be done by more expensive prover machines.

7 Implementation and Evaluation

7.1 Implementation

We have a working Testudo implementation10 that features the sumcheck verifier proof and our Testudo
commitment scheme. We based our work on the Spartan [30] codebase, which has been adapted to use the

10 The current version of the repository is available at https://github.com/cryptonetlab/testudo .

12

https://github.com/cryptonetlab/testudo

Arkworks [2] framework to enable support for any pairing based curves. We also have started an effort on
parallelizing the Spartan codebase, although there are still many low hanging fruits to optimize for. On top
of this, we implemented a wrapper around a BLS12-381 library that supports GPU operations and released it
open source on Github at https://github.com/nikkolasg/ark-blst.

7.2 Testudo Commitment

We first evaluate our new multivariate commitment scheme compared to the standard PST algorithm. This
has been ran over a c5a.12xlarge AWS instance, i.e., 48 cores with 96 threads. We note that the structure of
the commitment allows for heavy use of parallelism, which we exploited in our implementation.

Figure 5 shows that the Testudo commitment maintains the performance of the PST commitment and,
for large circuit instances, it is 2 orders of magnitude faster for opening by significantly reducing the
size of the MSM required. Indeed, it operates on

√
N size MSM. However, verification is slower, due to the

logarithmic number of pairings required to verify the inner pairing product argument proof. There are still
many low-hanging fruits in the codebase to speed up verification such as batching the pairing operations in
MIPP and PST. Moreover, we continue to avoid the use of FFT due to the usage of multilinear polynomials
Verification speed: As mentionned above, there are many low hanging fruits for optimizing the codebase.
For example, to speed up verification, one can bundle the MIPP and the PST part together (e.g. run the
pairings check all at once). Currently both MIPP and PST codebase are quite separate.

Proof Size: The Testudo Commitment brings an increase to the proof size in comparison to the simple
PST by a factor of 3 but we ensure this is not an issue for the communication cost through recursion. Using
the BLS12-377, we are able to efficiently verify commitment openings inside a Groth16 circuit as outlined in
section 6.1.

7.3 Testudo Groth16 Constraints

In this section, we estimate the number of R1CS constraints necessary to verify the core of Testudo (the
sumchecks, the PCS opening and the computation commitment). Figure 6 shows the number of constraints
for each parts according to the user circuit size (e.g. the circuit that the user writes on Testudo). In this
estimation, we:

– Use Testudo Commitment as the multilinear PCS scheme for the computation commitment part of Spartan.
In the original design, it uses Hyrax.

– Thanks to the previous point, we can now do a random linear combination of all the polynomials the prover
must perform and having the prover only compute a single Testudo Commitment opening proof

– We verify the core Spartan sumchecks (steps 2 and 3 in Section 2.5) and the grand product sumchecks
([29, bottom of pg. 27]) from the computation commitment inside the same Groth16 verifier that checks the
sumcheck in the satisfiability proof. This is possible since both are operating on the same fields.

– Note that we need to verify a PST opening both on G1 and G2 during the Testudo commitment (for the
PST part and for the MIPP part respectively).

The biggest contributor of the R1CS constraints number is the MIPP part, because it requires to compute
log(N) Gt operations (exponentiation is almost 40k in the library we used). We expect this number to drasti-
cally go down by roughly 30–50% with optimizations on Gt computations, such as using the torus arithmetic
version and endomorphisms optimizations [26].

7.4 Testudo on data-parallel circuits

We have the necessary building blocks to estimate accurately the proving time of a uniform circuits (even
though the implementation does not yet offer that feature). Specifically, to estimate the time of proving for
uniform circuits, we need to add the time for

– The first sumcheck on the full R1CS matrix (SC1)

– The second sumcheck on the small subcircuit (SC2)

– The Testudo commitment (TC) times on the full witness size - commitment and opening combined

13

https://github.com/nikkolasg/ark-blst

5 10 15 20 25
100

101

102

103

104

Circuit size [powers of 2]

T
im

e
[s
]

Testudo

PST

(a) Commitment computation time

5 10 15 20 25
100

101

102

103

104

105

Circuit size [powers of 2]
T
im

e
[s
]

Testudo

PST

(b) Commitment opening time

5 10 15 20 25

10

20

30

40

Circuit size [powers of 2]

T
im

e
[m

s]

Testudo

PST

(c) Opening proof verification time

5 10 15 20 25

103

104

105

Circuit size [powers of 2]

P
ro
o
f
si
ze

[b
y
te
s]

Testudo

PST

(d) Opening proof sizes

Fig. 5: Comparison between the Testudo and PST commitment schemes. While the time to compute a commit-
ment is similar for Testudo and PST, see (a), we can see in (b) that Testudo outperforms PST when opening
a commitment for large circuit sizes by almost two orders of magnitude. On the other hand, graph (c) shows
that PST is faster than Testudo by a factor of 2x which, however, can likely be addressed as there are various
straightforward ways to further optimize the Testudo code. Finally, graph (d) shows that Testudo opening
proofs are about one order of magnitude larger than PST proofs, which, however, will not have any practical
impact on the overall sizes of Testudo SNARK proofs, as the opening proof will be ultimately verified by a
constant-size Groth16 proof.

14

Fig. 6: Constraints for Groth16 verifier of Testudo Proof

5 10 15 20 25 30
0

2

4

6

User Circuit Constraints [log2]

R
1
C
S
co
n
st
ra
in
ts

[1
0
6
]

PST G1 PST G2 MIPP CC

Fig. 7: Individual cost of data parallel version of Testudo

Constraints 215 220 225

Commit (s) 0.072 0.723 11
Sumcheck 1 (s) 0.04 0.903 28
Sumcheck 2 (s) 0.036 0.941 29
TC Opening (s) 0.134 0.471 1.5
CC Opening (s) 2 32 939

– The computation commitment time on the small subcircuit (CC)

We have benchmarked these data for two different subcircuit of size (a) 215 and (b) 220. The subcircuit
corresponds roughly to the size of a Merkle Tree proof verification circuit for 32 layers using either (a) Poseidon
for 215 or (b) SHA256 for 220 as the hash function. We’re estimating the proving time to repeat these circuits
to achieve overall a circuit of 225 constraints: subcircuit (a) is repeated 1024 times (i.e. verify 1024 Merkle Tree
proofs), and subcircuit (b) is repeated 32 times. For these parameters, we show that our data parallel Testudo
version can be 9.7x faster for (a) and 4.3x faster for (b) than their Groth16 equivalent. The improvement
is expected to be even larger as the gap of constraints between the subcircuit and the bigger circuit grows. As
further work, we will compare these improvement to SNARKs based on plonkish arithmetization, although
we are not aware of such speedups for other proof systems at this time.

7.5 Future Work

Here we list additional points of improvement to make Testudo even more practical. Some of these points are
implementation-related, some are more cryptographically-flavored design choices.

– Circuit building: The original codebase did not feature an API to build circuits, and was constructing
the R1CS manually for testing. By having an API for transforming circuits in the R1CS representation,
we could make ”product oriented” comparison with other proof system in a meaningful way. For example,
answering ”what is the proving time to verify a Merkle Tree opening proof using SHA256 on 32 layers”.

– Data Parallel Circuits: The performance of Testudo on data parallel circuits can be easily estimated
with our codebase, however we plan to make it an off-the-shelf feature which mainly requires modifying
sumcheck according to the construction described in section 6.2. This would further provide directions for
future improvements of the codebase.

15

Fig. 8: Cost of the data parallel version of Testudo vs Groth16

Subcircuit Size Proving Time Speed up vs Groth16

215 constraints (1024 repetitions) 33s 9.7x
220 constraints (32 repetitions) 73s 4.3x

Groth16 Proving (225) 322s —

– Computation Commitment: The computation commitment is the biggest bottleneck in the codebase
currently, by far. While such cost is expected from this type of SNARK constructions, we note that the
Spartan Computational Commitment and implementation is constructed with a transparent setup in mind.
We plan to revisit this part using better polynomial commitment scheme e.g., the curve we run our SNARK
on supports pairings and a trusted setup is acceptable in our setting. Another way to alleviate the costs is
changing the polynomial batching strategy for commitment and proving evaluation in the CC.

– CCS language and recursion: CCS [31] is a generalization of R1CS, Plonkish and AIR languages. This
work further leads to Hypernova [22], a folding scheme which could efficiently be used for recursion in such
based languages. Implementing the CCS generalization and the folding scheme could show Testudo to be
a viable framework for various optimization down the line. For example, integrating lookup table is also
described in this paper, and they could provide great improvement speed for some computation.

Acknowledgements.

References

1. D. F. Aranha, Y. El Housni, and A. Guillevic. A survey of elliptic curves for proof systems. Cryptology ePrint
Archive, Report 2022/586, 2022. https://eprint.iacr.org/2022/586.

2. arkworks contributors. arkworks zksnark ecosystem, 2023.
3. A. Belling, A. Soleimanian, and O. Bégassat. Recursion over public-coin interactive proof systems; faster hash

verification. Cryptology ePrint Archive, Report 2022/1072, 2022. https://eprint.iacr.org/2022/1072.
4. bellperson contributors. The bellperson zk-SNARK library, 2023.
5. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and post-quantum secure computa-

tional integrity. Cryptology ePrint Archive, Report 2018/046, 2018. https://eprint.iacr.org/2018/046.
6. J. Bootle, A. Chiesa, Y. Hu, and M. Orrù. Gemini: Elastic SNARKs for diverse environments. In EURO-

CRYPT 2022, Part II, LNCS. Springer, Heidelberg, May / June 2022.
7. S. Bowe, A. Gabizon, and I. Miers. Scalable multi-party computation for zk-SNARK parameters in the random

beacon model. Cryptology ePrint Archive, Report 2017/1050, 2017. https://eprint.iacr.org/2017/1050.
8. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs for confidential

transactions and more. In 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May
2018.

9. B. Bünz, M. Maller, P. Mishra, N. Tyagi, and P. Vesely. Proofs for inner pairing products and applications. In
ASIACRYPT 2021, Part III, LNCS. Springer, Heidelberg, Dec. 2021.

10. M. Campanelli, D. Fiore, and A. Querol. LegoSNARK: Modular design and composition of succinct zero-knowledge
proofs. In ACM CCS 2019. ACM Press, Nov. 2019.

11. B. Chen, B. Bünz, D. Boneh, and Z. Zhang. HyperPlonk: Plonk with linear-time prover and high-degree custom
gates. Cryptology ePrint Archive, Report 2022/1355, 2022. https://eprint.iacr.org/2022/1355.

12. A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin: Preprocessing zkSNARKs with
universal and updatable SRS. In EUROCRYPT 2020, Part I, LNCS. Springer, Heidelberg, May 2020.

13. Y. El Housni and A. Guillevic. Optimized and secure pairing-friendly elliptic curves suitable for one layer proof
composition. In CANS 20, LNCS. Springer, Heidelberg, Dec. 2020.

14. Y. El Housni and A. Guillevic. Families of SNARK-friendly 2-chains of elliptic curves. In EUROCRYPT 2022,
Part II, LNCS. Springer, Heidelberg, May / June 2022.

15. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over lagrange-bases for oecumenical
noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https://eprint.

iacr.org/2019/953.
16. N. Gailly, M. Maller, and A. Nitulescu. SnarkPack: Practical SNARK aggregation. In FC 2022, LNCS. Springer,

Heidelberg, May 2022.
17. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs without PCPs.

In EUROCRYPT 2013, LNCS. Springer, Heidelberg, May 2013.

16

https://eprint.iacr.org/2022/586
https://arkworks.rs
https://eprint.iacr.org/2022/1072
https://github.com/filecoin-project/bellperson
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953

18. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive proofs for muggles. In 40th
ACM STOC. ACM Press, May 2008.

19. J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT 2016, Part II, LNCS. Springer,
Heidelberg, May 2016.

20. J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updatable and universal common reference strings
with applications to zk-SNARKs. In CRYPTO 2018, Part III, LNCS. Springer, Heidelberg, Aug. 2018.

21. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their applications. In
ASIACRYPT 2010, LNCS. Springer, Heidelberg, Dec. 2010.

22. A. Kothapalli and S. Setty. HyperNova: Recursive arguments for customizable constraint systems. Cryptology
ePrint Archive, Paper 2023/573, 2023.

23. P. Labs. Filecoin: A Decentralized Storage Network, 2023.
24. C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. In 31st FOCS.

IEEE Computer Society Press, Oct. 1990.
25. G. K. Michele Orrù. zka.lc, 2023.
26. M. Naehrig, P. S. L. M. Barreto, and P. Schwabe. On compressible pairings and their computation. In

AFRICACRYPT 08, LNCS. Springer, Heidelberg, June 2008.
27. C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In TCC 2013, LNCS. Springer,

Heidelberg, Mar. 2013.
28. ristretto contributors. The Ristretto Group, 2023.
29. S. Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. Cryptology ePrint Archive,

Report 2019/550, 2019. https://eprint.iacr.org/2019/550.
30. S. Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In CRYPTO 2020, Part III,

LNCS. Springer, Heidelberg, Aug. 2020.
31. S. Setty, J. Thaler, and R. Wahby. Customizable constraint systems for succinct arguments. Cryptology ePrint

Archive, Paper 2023/552, 2023.
32. V. Shoup. Lower bounds for discrete logarithms and related problems. In EUROCRYPT’97, LNCS. Springer,

Heidelberg, May 1997.
33. J. Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO 2013, Part II, LNCS. Springer,

Heidelberg, Aug. 2013.
34. J. Thaler. Proofs, Arguments, and Zero-Knowledge, 2015–2023.
35. I. Tzialla, A. Kothapalli, B. Parno, and S. Setty. Transparency dictionaries with succinct proofs of correct operation.

Cryptology ePrint Archive, Report 2021/1263, 2021. https://eprint.iacr.org/2021/1263.
36. R. S. Wahby, I. Tzialla, a. shelat, J. Thaler, and M. Walfish. Doubly-efficient zkSNARKs without trusted setup.

In 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May 2018.
37. T. Xie, J. Zhang, Z. Cheng, F. Zhang, Y. Zhang, Y. Jia, D. Boneh, and D. Song. zkBridge: Trustless cross-chain

bridges made practical. In ACM CCS 2022. ACM Press, Nov. 2022.
38. J. Zhang, T. Xie, Y. Zhang, and D. Song. Transparent polynomial delegation and its applications to zero knowledge

proof. In 2020 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May 2020.
39. Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. A zero-knowledge version of vSQL.

Cryptology ePrint Archive, Report 2017/1146, 2017. https://eprint.iacr.org/2017/1146.
40. zk Harness contributors. zk-Harness, 2023.

17

https://eprint.iacr.org/2023/573
https://filecoin.io/
https://zka.lc/
https://ristretto.group/
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2023/552
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK
https://eprint.iacr.org/2021/1263
https://eprint.iacr.org/2017/1146
https://www.zk-bench.org/circuit

Supplementary Material

A The Gemini Transformation

Here we review the Gemini transformation [6] that allows to commit to a multilinear polynomial using a
commitment to a univariate polynomial in a black-box fashion.

Let F (x1, . . . , xn) be a multilinear polynomial with F (x⃗) =
∑2n−1

i=0 ϕi x⃗i where x⃗i = xi1
1 xi2

2 . . . xin
n and

[i1, . . . , in] is the binary representation of i.

We can associate to F the univariate polynomial f(z) =
∑2n−1

i=0 ϕi z
i which has the same coefficients as F

Assume we want to prove that F (α1, . . . , αn) = y. The first step is to show how to express y as O(n) points
on univariate polynomials. Define polynomials f0, . . . , fn recursively as follows

– f0 = f

– fi(z) = gi−1(z) + αihi−1(z) where gi−1, hi−1 are polynomial defined as

fi−1(z) = gi−1(z
2) + z hi−1(z

2)

that is gi−1(z) [resp. hi−1(z)] is the polynomial with the even [resp. odd] degree terms in fi−1 – the same
decomposition used in the recursive FFT algorithm

– Note that fi has degree half that of fi−1 and therefore fn is a constant

Claim: F (α1, . . . , αn) = y = fn.
Easily seen by induction.

To commit to F we use any univariate polynomial commitment to commit to f = f0
To open F (α1, . . . , αn) = y:

– the prover sends commitments to f1, . . . , fn (the polynomials fi are a function of α1, . . . , αn)

– The verifier asks for a random β

– The prover opens ai = fi(β), bi = fi(−β), ci = fi+1(β
2) for the univariate poly commitments.

Note that

ci = fi(β
2) = gi−1(β

2) + αihi−1(β
2)

by definition of fi+1 and

ai = fi(β) = gi(β
2) + βhi(β

2)

bi = fi(−β) = gi(β
2)− βhi(β

2)

by definition of gi, hi.

Therefore

ci =
ai + bi

2
+ αi

ai − bi
2β

The verifier checks all the above equations for i = 0, . . . , n and that fn = y

To make this non-interactive compute β via Fiat-Shamir on the commitments of the fi.

B More on Testudo for Data-Parallel Computations

Additional formal details See figure Fig. 9.

Below are adaptations of some of the equations in Spartan for the data-parallel setting. For further reference
on these equations, see Spartan paper, page 20, and our figure for reference. Below s, u, t are formal (tuples
of) variables.

F̃ (s, u) :=

︷ ︸︸ ︷(∑
v

Ã(u, v) · Z̃(s, v)

)
·

︷ ︸︸ ︷(∑
v

B̃(u, v) · Z̃(s, v)

)
−
︷ ︸︸ ︷∑
v

C̃(u, v) · Z̃(s, v)

= Ā(s, u) · B̄(s, u)− C̄(s, u)

Q∗(t) :=
∑
s,u

χt(s||u) · F̃(s, u)

At the end of the first sumcheck we “fix” (s, u) on a random challenge point rx = (ν, ρ). Second sumcheck
is on the following claim:

y∗ =
∑
v

Z̃tot(ρ, v) ·
(
rA · Ã(ν, v) + rB ·B(ν, v) + rC · C(ν, v)

)
(1)

At the end of the second sumcheck we “fix” v on a random challenge point ry.
Notice that the protocol in Fig. 9 does not include checks for public input; these checks are straightforward

and are being ignored here for simplicity only.

Comparison with Phalanx Our approach for data-parallel Spartan has in common with the approached used
in Phalanx [35]. Both works, ours and Phalanx, observe that the starting equation of the Spartan IOP can
roughly retain the same shape (see (1)) and thus can be proved as in the original Spartan, simply incurring
checks for additional variables (logarithmic in the number of circuit repetitions). The second observations
both works use is that proper terms rearrangement allows us to amortize the cost of many computational
commitments into a constant number (three).

Our approach was developed independently of that in Phalanx and took explicit inspiration from the
observations in [33] and [36] which even predate Spartan. The Phalanx and the Testudo approach, moreover,
differ in that our current protocol for data-parallelism deals with a “simpler” setting: (i) we do not require
any input/output consistency; (ii) Phalanx additionally requires to include some “folding”-related polynomials
which are helpful for their “running instance” setting.

C Additional Preliminaries

C.1 Rank-1 Constraint Systems (R1CS)

As mentioned earlier, Rank-1 Constrained Systems (R1CS) is a popular way to encode computations to be
proven via a SNARK. R1CS were implicitly defined as Quadratic Arithmetic Programs in [17] where it is
proven that they are NP-complete (and therefore can express any arbitrary non-deterministic polynomial
computation).

An R1CS instance is a tuple (F, A,B,C, x,N,m) where x denotes the public input of the instance, A,B,C ∈
FN×N are matrices defined over a field F, with N ≥ |x|+ 1, and there are at most m non-zero entries in each
matrix.

An R1CS instance (F, A,B,C, x,N,m) is satisfiable if there exists a witness w ∈ FN−|x|−1 such that

(A · z) ◦ (B · z) = (C · z)

where z = (x, 1, w), · is the matrix-vector product, and ◦ is the Hadamard (entry-wise) product.

C.2 Polynomial Commitments for Multilinear Polynomials

A polynomial commitment scheme [27] for multilinear polynomials is a tuple of four algorithms PC =
(Setup,Commit,Eval,VerEval):

– pp ← Setup(1, λ, n): takes as input the number of variables in a multilinear polynomial n and produces
public parameters pp.

19

S
et
u
p
(1

λ
,1

ℓ
,1

N
s
u
b
,1

K
)

P
((x⃗

(1
)
,.
..
,x⃗

(K
)
) ,(w⃗

(1
)
,.
..
,w⃗

(K
)
))

V
((x⃗

(1
)
,.
..
,x⃗

(K
)
))

L
et

Z
to

t
=

(x⃗
(1

)
,w⃗

(1
)
,.
..
,x⃗

(K
)
,w⃗

(K
)
)

C
to

t,
z
←

M
ip
p
P
S
T
.C
o
m
m
it
(Z̃

to
t
)

C
to

t,
Z

τ
←

$
Fl

o
g
K

+
lo
g
N

s
u
b

τ

/
/
C
la
im

Q
∗
(τ
)
=

∑ s
,u

χ
τ
(s
||u

)
·F̃

(s
,u

)
=

0

In
v
o
k
e
S
C

fo
r
∑ s
,u

χ
τ
(s
||u

)
·F̃

(s
,u

)
=

0

(S
a
m
p
le

S
C

ch
a
ll
en

g
e
r x

=
(ν
,ρ
)
∈
Fl

o
g
K

+
lo
g
N

s
u
b
)

[I
n
v
o
k
e
st
ep

6
-1
1
in

S
p
a
rt
a
n
,
p
g
2
0
,

in
cl
u
d
in
g
S
C

o
n
E
q
.
(1
)
a
n
d
sa
m
p
li
n
g
o
f
r y
]

v
←

Z̃
to

t
(ν
||r

y
)

S
a
m
e
fi
n
a
l
st
ep

s
a
s
in

S
p
a
rt
a
n
,
b
u
t:

•
u
se

M
ip
p
P
S
T
o
p
en

in
g
fo
rZ̃

to
t
(o
n
(ν
||r

y
))

•
ea
ch

co
m
p
u
ta
ti
o
n
co
m
m
it
m
en

t
M̃

is
ev
a
lu
a
te
d
o
n
(ρ
||r

y
)

Fig. 9: Interactive version of our protocol for batch (data-parallel) relations. Given sub-relation R, above we
prove batch relation R(x⃗(1), w⃗(1)) ∧ · · · ∧ R(x⃗(K), w⃗(K))

(
x⃗(1), . . . , x⃗(K)

)
are the public inputs, each of size ℓ.(

w⃗(1), . . . , w⃗(K)
)
are the witnesses, each of size Nsub. We define the total witness size Ntot as Ntot := Nsub ·K.

Notation ṽ(X⃗) is the multi-linear extension of vector v⃗, i.e., ṽ(X⃗) :=
∑

i vi · χ(X⃗)(X⃗)(i). “SC” stands for

sumcheck. We use commas and concatenation interchangeably.

20

– (C;D) ← Commit(pp;P): takes as input a n-variate multilinear polynomial P over a finite field F and
produces a public commitment C and a secret decommitment information D.

– y, π ← Eval(pp, x⃗, C,D): takes as input the commitment/decommitment information for a polynomial P
and an input point x⃗ ∈ Fn and returns y = P (x⃗) and a proof π that y is correct.

– b ← VerEval(pp, C, x⃗, y, π) takes as input a commitment C, an input value x⃗ ∈ Fn an output value y ∈ F
and a proof π and returns a bit b ∈ {0, 1}.

Correctness. There is an obvious correctness condition which says that if C,D are generated correctly using
Commit on input P , and y, π are generated correctly on input C,D, x⃗ using Eval, then VerEval accepts on input
C, x⃗, y, π.

Binding. A polynomial commitment is binding if for every efficient adversary A we have that

Pr

pp← Setup(1, λ, n)

(C, x⃗, y, π, y′, π′)← A(pp)
VerEval(pp, C, x⃗, y, π) = 1

VerEval(pp, C, x⃗, y′, π′) = 1

: y ̸= y′

 = ϵ(λ) (2)

where ϵ(·) is a negligible function.

Extractability. We describe this property only informally. The complete formal definition is quite involved;
we refer the reader, e.g., to [12, Definition 6.2] for details. This property states that from any adversary that
can satisfactorily prove evaluations (x⃗, y) over polynomial commitments C we should be able to extract a
polynomial p consistent with the proofs.

C.3 Succinct Non-Interactive Arguments of Knowledge

A SNARK with universal trusted setup is a tuple of algorithms (KGen,Derive,Prove,Verify) that work as
described below.

– KGen(1λ, 1N) → srsuniv is a probabilistic algorithm that takes as input a security parameter and a bound
N and outputs a universal structured reference string srsuniv.

– Derive(srsuniv,R) → (ek, vk) is a deterministic algorithm that takes as input a universal SRS srsuniv and a
specific relation R and outputs an evaluation key ek and a verification key vk.

– Prove(ek, x, w)→ π takes as input an evaluation key ek, a statement x, and a witness w such that R(x,w)
holds, and returns a proof π.

– Verify(vk, x, π) → b takes as input a verification key vk, a statement x, and a proof π and either accepts
(b = 1) or rejects (b = 0) the proof π.

A SNARK satisfies the following properties: Completeness and Succinctness. For all λ,N ∈ N for all
relations R (described as an R1CS of at most N constraints), for all x,w such that R(x,w) = 1 it holds that
Verify(vk, x,Prove(ek, x, w)) = 1 where (ek, vk) ← Derive(KGen(1λ, 1N),R). Succinctness holds if the running
time of Verify is poly(λ)(1 + |x| + log |w|) and the proof size is poly(λ)(1 + log |w|). Extractability. This
property11 states we can efficiently “extract” a valid witness from a proof that passes verification. This is
modeled through the existence of an efficient machine, an extractor, returning the witness. As done in other
works, we assume that the code of the extractor may depend on that of the adversary. Zero-knowledge.
This property states that a proof leaks nothing about the witness. This is modeled through a simulator that
can output a valid proof for an input in the language without knowing the witness.

11 We describe extractability and zero-knowledge only informally. We refer the reader to [12] for a formal definition.

21

C.4 MIPP Commitments and proofs

Given a vector A⃗ = [A1, . . . , AM] of group elements in G1, the IPP commitment to A⃗ with a CRS h⃗ =
[h1, . . . , hM] of group elements in G2 is

T = CM(A⃗, h⃗) =

M∏
i=1

e(Ai, hi).

In [9] a suite of Inner Pairing Product Proofs are presented and we are interested specifically in MIPPk which
allows to efficiently prove the following statement:

– Assume the CRS is defined as hi = hsi for a random secret element in s ∈R Zq

– Given T defined as above for an arbitrary vector of G1 group elements A⃗ and the above structured CRS

– Given a vector b⃗ = [b1, b2, ...bM] with bi = bi mod q for an arbitrary b ∈ Zq

– Prove that

U = ⟨A⃗, b⃗⟩ = A⃗ b⃗ =

M∏
i=1

Abi
i ,

The MIPPk proof has size and verification time O(logM), which means that the verifier needs only to read the

value b and not construct the entire vector b⃗, which is only implicitly defined. We do not describe the protocol
here since we describe a generalization of it in Section 3.

D More on Curve Choices

Recall how an elliptic curve has both a scalar field and a base field. In the case of BLS12-377, we denote the
scalar field as Fr, the base field as Fq and |E(Fq)| = r. On the other hand, BW6-761 has scalar field Fq (where
this corresponds exactly to the base field of BLS12-377) and base field Ft with |E(Ft)| = q. Normally, if we
want to design a constraint system using BLS12-377, this is built on the scalar field Fr and then proven by
Groth16 in Fq through an application of the billinear map e to points in base groups G0 and G1. However, this
approach does not work if the constraint system includes operations on points (which is the case in Testudo

for the polynomial commitment). This is where 2-chaining of pairing-equipped elliptic curves aid our design
because they allow us to write a constraint system in Fq, including point operations, and produce a Groth16
proof using BW6-761 on Ft. This way, the Testudo Verifier only has to perform the verification of a Groth16
proof which is constant. We name this Testudo77.

On the other hand, Filecoin proof are constructed using BLS12-381 which is arguably a more popular curve
in the ecosystem. We were interested to see how Testudo can be adapted to work in this setting, which has the
additional advantage that Filecoin storage provider would not have to re-encode their storage but rather can
use Testudo off-the-shelf. One main reason why the re-encoding is required is because the hash functions usrf
in Filecoin is Poseidon which, unlike SHA256, requires field operations and produces outputs depending on the
field. The main issue with this curve is that it has no ”outer curve” sister with high 2-adicity in its scalar field,
required to enable efficient Fast-Fourier Transforms which is one of the most expensive operations in Groth16.
Hence, we cannot use Groth16 naively as for Testudo77. We considered several theoretical alternatives to also
enable Testudo81; one example is considering a dlog-based SNARK system, such as Spartan (!) building on a
curve whose order would match the one of BLS12-381. This is however left as future work.

22

	Testudo: Linear Time Prover SNARKs with Constant Size Proofs and Square Root Size Universal Setup
	Introduction
	Contributions
	Related Work

	Preliminaries
	Notation
	Cryptographic Assumptions
	PST Polynomial Commitments
	Sumcheck
	Spartan Overview

	A Generalized MIPP Protocol
	Testudo-Comm: Our PCS with Square Root Trusted Setup
	Testudo: Our Construction
	Practical considerations
	Parallelization and aggregation of Testudo proofs

	Implementation and Evaluation
	Implementation
	Testudo Commitment
	Testudo Groth16 Constraints
	Testudo on data-parallel circuits
	Future Work

	The Gemini Transformation
	More on Testudo for Data-Parallel Computations
	Additional Preliminaries
	Rank-1 Constraint Systems (R1CS)
	Polynomial Commitments for Multilinear Polynomials
	Succinct Non-Interactive Arguments of Knowledge
	MIPP Commitments and proofs

	More on Curve Choices

