
Faster TFHE Bootstrapping with Block Binary Keys ⋆

Changmin Lee1, Seonhong Min2, Jinyeong Seo2, and Yongsoo Song2

1 Korea Institute for Advanced Study, Seoul, Republic of Korea
2 changminlee@kias.re.kr

Seoul National University, Seoul, Republic of Korea
3 {minsh, jinyeong.seo, y.song}@snu.ac.kr

Abstract. Fully Homomorphic Encryption over the Torus (TFHE) is a homomorphic encryption
scheme which supports efficient Boolean operations over encrypted bits. TFHE has a unique feature
in that the evaluation of each binary gate is followed by a bootstrapping procedure to refresh the
noise of a ciphertext. In particular, this gate bootstrapping involves two algorithms called the blind
rotation and key-switching.
In this work, we introduce several optimization techniques for the TFHE bootstrapping. We first
define a new key distribution, called the block binary distribution, where the secret key can be
expressed as a concatenation of several vectors of Hamming weight at most one. We analyze the
hardness of (Ring) LWE with a block binary secret and provide candidate parameter sets which are
secure against the best-known attacks. Then, we use the block key structure to simplify the inner
working of blind rotation and reduce its complexity. We also modify the RLWE key generation and
the gadget decomposition method to improve the performance of the key-switching algorithm in
terms of complexity and noise growth.
Finally, we use the TFHE library to implement our algorithms and demonstrate their benchmarks.
Our experimentation shows that the execution time of TFHE bootstrapping is reduced from 10.5ms
down to 6.4ms under the same security level, and the size of the bootstrapping key decreases from
109MB to 60MB.

Keywords: Homomorphic Encryption, Bootstrapping

1 Introduction

Homomorphic encryption (HE) is a cryptosystem that allows us to evaluate arbitrary functions on en-
crypted data without decryption. After the first construction by Gentry [18], this technology has been
considered to be one of the most promising cryptographic primitives for secure computation protocol con-
struction. Currently the best-performing HEs are lattice-based schemes such as BGV [7], B/FV [6, 17],
GSW [19], CKKS [10] and FHEW/TFHE [16, 11] where the security relies on the hardness of the Learn-
ing with Errors (LWE) problem [31] and its ring variant (RLWE) [29]. While most HE schemes support
arithmetic operations over encrypted data such as addition and multiplication, the TFHE cryptosystem
is notable for its differentiated functionality which supports an arbitrary Boolean gate evaluation over en-
crypted bits such as AND, OR, XOR and NAND. In addition to fast evaluation of Boolean circuits, there
have been several follow-up studies to develop TFHE in various directions. For example, programmable
bootstrapping (PBS) [8, 14, 21] enhances the computational capability of TFHE by encrypting multiple
bits in a ciphertext and evaluating a look-up table (LUT) without extra complexity. Meanwhile, multi-key
TFHE schemes [9, 26] can perform homomorphic computation on ciphertexts under different keys. This
enables us to use the cryptosystem in more general scenarios when multiple parties aggregate and analyze
their data without a trusted third party.

Due to its distinctive advantages, TFHE can be a useful toolkit for privacy-preserving machine learning
where a client can obtain an inference result from a server’s machine learning model without revealing
its input data. For example, recent research demonstrates the efficiency of TFHE in secure inference of
deep neural networks, decision trees and clustering algorithms [13, 28, 15].

⋆ This work was supported by Samsung Research Funding & Incubation Center of Samsung Electronics under
Project Number SRFC-TB2103-01.

2 C. Lee et al.

1.1 Our Contribution.

One primary disadvantage of TFHE is that an expensive procedure called the gate bootstrapping is followed
by each gate evaluation. In this work, we improve the efficiency of gate bootstrapping by modifying its
major building blocks, called the blind rotation and the key-switching. We are motivated from the fact that
most HE schemes achieve performance improvements by making additional assumptions on the secret key
distribution (e.g. sparsity) but it remains unknown how this approach can be applied to TFHE. Hence,
we aim to propose a new method of secret key generation that the TFHE scheme can take advantage of.

More specifically, the TFHE scheme has two secret keys for LWE and RLWE. We first propose a new
secret distribution for LWE which outputs a sparse binary vector with a special ‘block’ structure. This
property enables us to reduce the complexity of blind rotation substantially. We also modify the key
generation procedure of RLWE so that the LWE secret is reused as part of the RLWE secret. As a result,
we obtain better performance of key-switching in terms of both time and space complexity.

We provide a formal cryptanalysis on (R)LWE with block binary secrets to ensure the security of our
construction. We consider the state-of-the-art lattice algorithms as well as custom-designed attacks, and
provide parameter sets achieving a security level equivalent to the previous work [11].

We provide a proof-of-concept implementation of our construction based on the TFHE library [12]
and demonstrate its concrete performance. Our experiments show that the latency of gate bootstrapping
is reduced from 10.53ms down to 6.49ms, yielding a speed-up of 1.48x. The size of the bootstrapping key
is also reduced by about a half, from 109MB down to 60MB.

We remark that our optimization techniques can be naturally extended and bring major performance
improvements to the line of research on TFHE [28, 13, 9, 26, 8, 14, 21]. Furthermore, this work may have
a greater impact when combined with hardware accelerators since our method significantly reduces the
number of polynomial operations which are the main bottleneck in hardware implementations [22, 34].

1.2 Technical Overview

The gate bootstrapping consists of two building blocks: blind rotation and key-switching. For the gate
bootstrapping, firstly the blind rotation algorithm iteratively multiplies monomials to the test vector,
which is the LUT in a form of the ring polynomial so that the constant term of the encryption becomes
the value in the LUT corresponding to the message of the input ciphertext. In order to multiply monomials
homomorphically to the test vector, we make use of the external product which is a homomorphic operation
between TRLWE and ring GSW over torus (TRGSW) ciphertexts. By extracting the constant term of
the resulting ciphertext of the blind rotation algorithm, we obtain a TLWE ciphertext under a vectorized
version of the ring key. Finally, the key-switching algorithm switches the secret of this TLWE ciphertext
back to the TLWE key, exploiting the gadget decomposition technique. We aim to reduce the number of
these expensive operations such as external products and gadget operations. The technical overview of
our improvements are given below.

Block Binary Distribution. First, we introduce a binary distribution with a special algebraic structure.
We define the block binary distribution of parameter ℓ and k as the distribution on n = ℓ · k dimensional
binary vectors such that its instance is represented by the concatenation of k sub-vectors of dimension
ℓ each of which has at most one nonzero component. We analyze the LWE problem with block binary
secret and estimate its security level against the best-known attacks such as the meet-in-the-middle
(MitM) algorithm. We conclude that, in terms of the attack complexity, the use of block binary secret
distribution does not affect the hardness of LWE in the usual parameter setup of TFHE. Based on our
analysis, we provide candidate parameter sets which satisfy both security and correctness conditions of
our new bootstrapping method.

Blind Rotation. Next, we propose a faster blind rotation method based on the block binary distribution.
Given a binary secret s = (s0, . . . , sn−1) and a ciphertext c = (b,a) = (b, a0, . . . , an−1) ∈ Tn+1, let

b = ⌊2Nb⌉ and ai = ⌊2Nai⌉ for 0 ≤ i < n. In the blind rotation, we compute v · Xb+
∑n−1

i=0 aisi =

v ·Xb ·
∏n−1
i=0

[
1 + si · (Xai − 1)

]
where v denotes the test vector. This polynomial can be evaluated with

n external products, one per each iteration.

Faster TFHE Bootstrapping with Block Binary Keys 3

However, leveraging the block binary distribution allows us to reduce the number of the external
products. We remark that if the secret key is sampled from the block binary distribution, we can rewrite

the formula as v · Xb ·
∏k−1
j=0

[
1 +

∑(j+1)ℓ−1
i=jℓ si · (Xai − 1)

]
. In a nutshell, we can process ℓ inputs

simultaneously. Then, the blind rotation step can be represented using only k external products and
linear combinations of TRGSW ciphertexts. Therefore, the overall time complexity decreases by a factor
of ℓ compared to the previous work [11]. We also note that the structure of bootstrapping key remains
unchanged, hence the size of the bootstrapping key does not increase as well.

Key-switching. We also present a new key-switching method with decreased key size and computational
cost. This can be achieved by re-using the LWE key when generating the RLWE key. More precisely, given
the binary LWE key s = (s0, . . . , sn−1), we set the RLWE key t = s0+· · ·+sN−1X

N−1 where sn, . . . , sN−1

are uniformly sampled bits. This simple yet novel idea allows us to skip the key-switching procedure for
the shared part of the ring key. In consequences, we reduce the computational cost of the process by a
factor of N

N−n . Not only that, this technique also reduces the noise bound and the size of the key-switching
key. In addition, we introduce a new gadget decomposition for the key-switching operation which uses
the concept of the balanced form [23]. This further reduces the size of key-switching key by half.

1.3 Related Work

There have been several studies for improving the performance of TFHE/FHEW style bootstrapping.
Recently, Kim et al. [24] briefly presented an idea of using binary secrets of a small Hamming weight h
in TFHE. The authors modified the gate bootstrapping and reduced the number of external products
from n to h, however, this approach does not lead to a performance improvement since it requires a
huge computational cost to generate h linear combinations of RGSW ciphertexts and the size of the
bootstrapping key is increased by a factor of h.

Bonte et al. [5] and Kluczniak [25] concurrently presented a variant of TFHE enhanced performance
of external product from the NTRU assumption. Lee et al. [27] improved the bootstrapping procedure of
FHEW using homomorphic automorphisms in FHEW-style bootstrapping which enables compact public
key size and faster FHEW-style blind rotation.

2 Background

2.1 Notations

The real torus R/Z is written as T, and T[X]/(XN + 1) is denoted by TN [X] where N is a power of
two. We note that T and TN [X] are not rings, but Z-module and Z[X]-module respectively. Thus inner
product between T (or TN [X])-vector and Z (or Z[X])-vector is well-defined as multiplication between
T (or TN [X]) and Z (or Z[X]) is well-defined. The set {0, 1} is denoted by B and the set of polynomials
whose degrees are less than N and coefficients are in B by BN [X].

For a distribution D, we denote by x ← D to represent a random sampling from D and x ← DN to
represent a polynomial in TN [X] of which coefficients are random samples obtained from D. For a set S,
we write the uniform distribution over S as U(S). A Gaussian distribution of mean 0 and variance α2 is
denoted by Dα. An infinity norm ∥·∥∞ over polynomials is defined as the maximum size of coefficients.
When it is used for a vector or a matrix, it denotes the maximum value among the infinity norm of its
components. We regard vectors as row matrices.

2.2 TLWE and TRLWE

In the following sections, we will describe the TFHE scheme. Its security relies on the hardness of the
T(R)LWE problems. The T(R)LWE problem is a variant of (R)LWE defined over the real torus [11].

Definition 1 (Decisional TLWE). Let n be an integer, α > 0 a real number, and χ a distribution
over Zn. For s ∈ Zn, we define the TLWE distribution, denoted by DTLWE

χ,α (s), is a distribution over Tn+1

obtained as follows: sample a ← U(Tn) and e ← Dα, and output (b,a) where b = −⟨s,a⟩ + e (mod 1).
The decisional TLWE calls for distinguishing DTLWE

χ,α (s) from U(Tn+1) for s← χ.

4 C. Lee et al.

Definition 2 (Decisional TRLWE). Let N be a power of two, β > 0 a real number, and ψ a dis-
tribution over Z[X]/(XN + 1). For t ∈ Z[X]/(XN + 1), we define the TLWE distribution, denoted by
DTRLWE
ψ,β (t), is a distribution over TN [X]2 obtained as follows: sample a ← U(TN [X]) and e ← DNβ , and

output (b, a) where b = −t · a + e (mod 1). The decisional TRLWE calls for distinguishing DTRLWE
ψ,β (t)

from U(TN [X]2) for t← ψ.

Throughout the paper, we use n and N to denote the dimensions of TLWE and TRLWE problems,
respectively. We can construct the T(R)LWE cryptosystems upon the hardness of T(R)LWE problems.
The TLWE ciphertexts and TRLWE ciphertexts are in the form of (b,a) ∈ Tn+1 and (b, a) ∈ TN [X]2.
We denote ηα and ηβ an overwhelming probability upper bound of the distribution Dα,Dβ respectively.
We review the TFHE scheme below.

2.3 TRGSW and External product

We describe the RGSW scheme [19] over the torus (TRGSW) below. First, we define the notion of gadget
decomposition. Let g ∈ Td be so-called gadget vector. Then we call a map h : TN [X] → Z[X]d a gadget
decomposition if the following holds for some small constants ε, δ and for all a ∈ TN [X]:

– ∥⟨h(a),g⟩ − a∥∞ ≤ ε

– ∥h(a)∥∞ ≤ δ

An example of gadget decomposition is the digit decomposition. In the digit decomposition, a gadget
vector is given as g = (B−1, . . . , B−d) and the corresponding gadget decomposition is h(a) = (ã1, · · · ãd)
where B is the base and ãj is the polynomial whose coefficients are the j-th digit of the base-B represen-
tation of a satisfying 0 ≤ ∥ãj∥∞ < B for 1 ≤ j ≤ d. Then, ∥a−

∑
1≤j≤d ãj ·B−j∥∞ ≤ B−d holds, so we

obtain ε = B−d and δ = B.

Now we denote G =

[
g 0
0 g

]
∈ T2d×2. Note that the gadget decomposition can be naturally extended

to a tuple of ring elements. More precisely, h : TN [X]2 7→ TN [X]2d is defined by h(b, a) = (h(b), h(a)) for
a, b ∈ TN [X]. We now present the TRGSW scheme and the external product below.

• TRGSW.Enc(t, µ): Given the TRLWE secret key t and a message µ ∈ ZN [X], sample a← TN [X]2d and

e← D2d
β , and let b = −a ·t+e (mod 1). Return the TRGSW ciphertext C = [b | a]+µ ·G ∈ TN [X]2d×2.

Definition 3 (External Product). Let c be a TRLWE ciphertext and C be a TRGSW ciphertext. The
external product, denoted by c⊡C is defined as (c,C) 7→ c⊡C := h(c)⊤ ·C.

We first introduce some terminology of TLWE and TRLWE ciphertexts. We define the phase of c
with respect to s as φs(b,a) = b+ ⟨s,a⟩ (mod 1). Similarly, for a TRLWE ciphertext (b, a), we define the
phase of (b, a) as φt(b, a) = b+ t · a (mod 1). Now, for a TRGSW encryption C of µ, we have:

φt(c⊡C) = ⟨h(c),C · (1, t)⟩
≈ ⟨h(c), µ ·G · (1, t)⟩ ≈ µ · φt(c) (mod 1).

2.4 Key-switching

Key-switching is one of the major building blokcs of TFHE. It can be used to convert a TLWE ciphertext
under a secret t = (t0, . . . , tN−1) into another ciphertext under a different key s = (s0, . . . , sn−1) while
almost preserving its phase. This process requires a key-swiching key which can be viewed as special
encryptions of ti under s. In the TFHE scheme, we make use of key-switching algorithm to switch the
TRLWE key into the TLWE key.

• SwitchKeyGen(s, t) : Given TLWE secrets s = (s0, . . . , sn−1) and t = (t0, . . . , tN−1), generate the
key-switching key as follows:

Faster TFHE Bootstrapping with Block Binary Keys 5

- Sample ai,j [k] ← Tn and ei,j [k] ← Dα for 0 ≤ i < N, 0 ≤ j < f, 0 ≤ k < D, and set KSKi,j [k] =
[bi,j [k],ai,j [k]] where bi,j [k] = −⟨ai,j [k], s⟩+ k ·D−j−1 · ti + ei,j [k] (mod 1).

- Return KSK = {KSKi,j [k] | 0 ≤ i < N, 0 ≤ j < f, 0 ≤ k < D}.

• KeySwitch(KSK, c) : Given a TLWE ciphertext c = (b,a) ∈ TN+1, let ai,j ∈ Z ∩ [0, D) be the integers

such that |ai −
∑f−1
j=0 ai,j ·D−j−1| ≤ D−f . Return (b, 0, . . . , 0) +

∑N−1
i=0

∑f−1
j=0 KSKi,j [ai,j] ∈ Tn+1.

Note that ai,j is the j-th digit after the decimal point of a base-D representation of ai, i.e., ai =
ai,1 ·D−1 + · · ·+ ai,f ·D−f + . . . for 0 ≤ i < N .

The correctness of key-switching can be shown as follows. For i = 0, . . . , N − 1, we have

φs

(f−1∑
j=0

KSKi,j [ai,j]

)
=

f−1∑
j=0

φs(KSKi,j [ai,j])

≈
f−1∑
j=0

(ai,j ·D−j−1 · ti) ≈ ai · ti (mod 1).

Then, the phase of output ciphertext under s is approximately b+
∑N−1
i=0 aiti, as desired.

2.5 The TFHE Scheme

In this subsection, we briefly review the TFHE scheme [11]. We remark that we represent a bit m as an
element of {±1} instead of {0, 1}.

• Setup(1λ): Take the security parameter λ as input and generate the following parameters: TLWE
dimension n, TRLWE dimension N , error parameters α, β > 0, the gadget decomposition base and
dimension B and d, and the key-switching base D.

• KeyGen(1λ):

- Sample si ← U(B) for 0 ≤ i < n. Return the TLWE key s = (s0, . . . , sn−1).
- Sample ti ← U(B). Return the TRLWE key t = t0 + · · ·+ tN−1X

N−1. Write t = (t0, . . . , tN−1).
- Set BRKi ← TRGSW.Enc(t, si) for 0 ≤ i < n. Return the blind rotation key BRK = {BRKi}0≤i<n.
- KSK← SwitchKeyGen(s, t) and return KSK.

• Enc(s,m): Given the secret key s = (s0, . . . , sn−1) and a messagem ∈ {±1}, sample a = (a0, . . . , an−1)←
U(Tn) and e← Dα. Return c = (b,a) ∈ Tn+1 where b = −⟨s,a⟩+ 1

8m+ e (mod 1).

• Dec(s, c): Given the secret key s and a ciphertext c = (b,a) ∈ Tn+1, let µ = b+ ⟨s,a⟩ (mod 1). Output
1 if µ > 0, 0 otherwise.

• Boot(BRK,KSK, c): Given the blind rotation key BRK, the key-switching key KSK and a TLWE cipher-

text c ∈ Tn+1, run Alg. 1 and output the ciphertext c′ ∈ Tn+1.

• HomNAND(BRK,KSK, c1, c2):Given the blind rotation key BRK, the key-switching key KSK and TLWE

ciphertexts c1, c2 ∈ Tn+1, return Boot(BRK,KSK, (18 ,0)− c1 − c2) ∈ Tn+1.

We briefly explain the correctness of the homomorphic NAND operation as follows. Suppose that c1
and c2 are TLWE ciphertexts such that φs(ci) =

1
8mi+ ei (mod 1) for some small ei. Then, it is easy to

show that c := (18 ,0)− c1 − c2 satisfies that φs(c) =
1
4m+ e (mod 1) for the message m = m1∧m2 and

the error |e| ≤ 1
8 + |e1|+ |e2|.

Then, it is followed by the bootstrapping procedure (Alg. 1), which consists of three steps called
blind rotation (Lines 1-6), sample extraction (Lines 7-8) and key-switching (Line 9) and outputs a TLWE
ciphertext c′ ← Boot(BRK,KSK, c) such that φs(c

′) = 1
8m+ e′ (mod 1) for some small e′. Below we give

a brief overview on these procedures.

6 C. Lee et al.

Algorithm 1 TFHE Bootstrapping

Input: The blind rotation key BRK, the key-switching key KSK and a TLWE ciphertext c = (b,a) =
(b, a0, . . . , an−1) ∈ Tn+1

Output: A TLWE ciphertext c′′ ∈ Tn+1

1: v := − 1
8 · (1 +X + · · ·+XN−1) ∈ TN [X]

2: Let b = ⌊2Nb⌉ and ai = ⌊2Nai⌉ for 0 ≤ i < n

3: ACC← (Xb · v, 0) ∈ TN [X]2

4: for 0 ≤ j < n do
5: ACC← ACC+

[
(Xaj − 1) · ACC

]
⊡ BRKj

6: end for
7: Parse ACC as

(∑N−1
i=0 b′iX

i,
∑N−1
i=0 a′iX

i
)

8: a′ ← (a′0,−a′N−1, . . . ,−a′1)
9: c′ ← KeySwitch(KSK, (b′0,a

′))

In the blind rotation step, we homomorphically compute X⟨c,(1,s)⟩ ·v ∈ TN [X] for the scaled ciphertext
c = ⌊2N · c⌉ ∈ Zn+1

2N where v is a fixed polynomial called the test vector. We initialize the coefficients
of the test vector as v = − 1

8 · (1 + X + · · · + XN−1) so that the constant term of X⟨c,(1,s)⟩ · v is 1
8

if ⟨c, (1, s)⟩ > 0, or − 1
8 otherwise. In the sample extraction step, we convert the TRLWE ciphertext

obtained from the blind rotation step to a TLWE ciphertext whose phase is approximately 1
8m. Lastly,

the key-switching procedure switches the TLWE secret from t into s and returns the ciphertext c′ such
that φs(c

′) ≈ 1
8m (mod 1), as desired.

Finally, we note that every Boolean gate can be instantiated in a similar manner. We refer the reader
to [11] for further details.

3 Block Binary Distribution

In this section, we introduce a key distribution for TLWE and provide a formal cryptanalysis to esti-
mate its concrete security against state-of-the-art attacks. In one aspect, the bottleneck hindering the
performance of TFHE bootstrapping is the blind rotation that involves n iterative external products. We
observe that multiple external products can be consolidated into a single operation if the corresponding
secret components have a Hamming weight of at most one (more details will be explained in the next
section). Hence, we propose a new key distribution, called the block binary distribution, to improve the
performance of TFHE bootstrapping.

Block Binary Distribution. Let ℓ and k be positive integers. We first define Bℓ as a distribution on Zℓ
which samples one of the standard unit vectors in Zℓ or the zero vector with the equal probability. In other
words, it returns one of the (ℓ+1) vectors (0, 0, . . . , 0), (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1) ∈ Bℓ with
probability 1

ℓ+1 each. We then extend Bℓ and define the block binary distribution over Zn for n = ℓ · k
by concatenating k instances of Bℓ. That is, we denote by Bℓ,k the distribution over Zn which samples
a1, . . . ,ak independently from Bℓ and returns (a0, . . . ,ak−1) ∈ Zn.

Note that a vector from the block binary distribution has at most one nonzero component in each
block of length ℓ. In addition, the block binary distribution can be regarded as a generalization of a
uniform binary distribution since Bℓ,k is identical to U(Bn) when ℓ = 1.

There has been a series of work studying the hardness of LWE with various key distributions. For
example, Goldwasser et al. [20] showed that the LWE problem with binary secrets is secure. Furthermore,
they stated that the security proof holds for LWE with an arbitrary binary key distribution with a
sufficiently large min-entropy.

Theorem 1 ([20]). Let n, q ≥ 1 be integers, let D be any distribution over {0, 1}n having min-entropy

at least k, and let α, β > 0 be such that α/β = negl(n). Then for any ℓ ≤ k−ω(logn)
log q , there is a PPT

reduction from DLWEℓ,q,α(U(Zℓq)) to DLWEn,q,β(D).

Faster TFHE Bootstrapping with Block Binary Keys 7

From this perspective, the hardness of LWE with a block binary distribution can be guaranteed if its
min-entropy is larger than what is required in the proof.

On the other hand, the security level is estimated by concrete attacks rather than security reduction
to choose optimal parameter sets in practice. Indeed, the existing schemes based on the binary secret
LWE problem even consider tailor-made attacks [1, 2, 4, 32] to ensure that they achieve a desired security
level (e.g. 128-bit). We also follow the same approach to provide a secure parameter set.

3.1 Security Analysis

To justify whether our parameter regime for the LWE problem with block binary secret is appropriate or
not, we basically intend to measure the security level using a well-known lattice estimator [1]. Although
the lattice estimator considers most of the known lattice algorithms to date, it may be insufficient to
say that valid security levels have been measured, given that it does not actively take advantage of the
distribution characteristics we use. To overcome this, we introduce how to utilize the specificity of the
secret to previously known attacks. We then present a lattice estimator to measure the security level that
takes into account this approach. Moreover, we also consider the recent combinatorial attack algorithm
proposed by May [30], which is not involved in lattice estimator as it is highly effective when the secret
distribution size is small. Lastly, we provide block binary specific attacks.

Analysis SetupWe first clarify the security goal corresponding our scheme. When the following (R)LWE
samples are given to the attacker

(bi,ai)← DTLWE
Bℓ,k,α

(s) for s← Bℓ,k

(bi, ai)← DTRLWE
ψ,β (t) for t← Bℓ,k × U(BN−n),

We intend to count the time complexity of algorithms that distinguish these pairs from random pairs.
We consider each problem as an independent LWE problem and RLWE problem and have measured the
security level using a (modified) lattice estimator, respectively. The whole security level of our scheme is
then estimated as a lower value of them.

To determine the parameters, we fix the α and β as 2−15 and 2−25, respectively. To apply the known
algorithms, we also regard the TLWE samples (resp. TRLWE) as usual LWE samples over a discrete
modulus space Zq by scaling up 1/α2 (resp. 1/β2).

We now briefly describe algorithms that leverage block secret distributions in this setting.

Hybrid lattice reduction algorithm Currently, a lattice based algorithm such as primal and dual
attacks are known to be competitive for solving the LWE problem. Since these attacks are very sensitive
to the secret dimension, such a significant dimension reduction allows the attacker to maximize the effect
of the existing attacks. We explain how both algorithms can be improved for the block binary secret
(R)LWE. For simplicity, we only describe dual attacks on LWE samples, but the same strategy applies
to primal attacks.

By concatenating, the given LWE samples, it can be written as a matrix form: b = −As+ e. Writing

s =

[
s0
s1

]
and A = [A0|A1] with s0 ∈ Zn−kq , s1 ∈ Zkq A0 ∈ Zm×(n−k)

q , and A1 ∈ Zm×k
q , it holds that

b+A0s0 = −A1s1 + e.

Then, the dual lattice attack finds a short vector (x,y) in the lattice

L = {(x,y) ∈ Zm × Zk | x⊤A1 = y⊤ (mod q)},

which gives an (n − k) dimensional LWE sample such that x⊤(b + A0s0) = −⟨y, s1⟩ + ⟨x, e⟩ := e′.
Applying the combinatorial approach such as an exhaustive search or meet-in-the-middle algorithm, one
can recover the secret s0.

Since the current combinatorial part of the lattice estimator is designed to count against the binary
distribution, we consider two different ”guess” algorithms in the hybrid lattice attack to measure the

8 C. Lee et al.

security level of LWE with block binary secrets more precisely. The original hybrid algorithm considered
reducing the dimension by taking a zero position. In the case of block binary distribution, through
one guessing instead of zero, more dimension (exactly ℓ) can be reduced compared to a normal binary
distribution. Let si ∈ Bℓ be the i-th sub-vector of s with regard to each block. By the setup, each si
equals to one of the (ℓ + 1) candidates - a zero vector or ℓ different vectors with Hamming weight 1. It
implies that one can recover ℓ-dimensions of the secret vector via guessing (ℓ+1)-cases. This modification
has the potential to make the dual hybrid attack more competitive. While guessing one in the block
might appear to be a more effective attack, we will demonstrate in the following paragraph that the block
binary specific guessing is less successful for a broader range of large parameter sets. Consequently, this
guessing strategy is only useful in reducing small dimensions.

Meet-in-the-Middle Algorithm Recently, May [30] shows that a standard MitM algorithm for LWE
problems can be improved. Because the attack heavily depends on the size of secret space and the
LWE with block binary distribution only has fewer candidates for the secret key compared to the entire
dimension, the advanced MitM may be the most effective for the LWE problem.

A main strategy of the standard MitM algorithm is that: split the secret vector s into s = s0+s1 with
s0 ∈ {0, 1}n and s1 ∈ {0, 1}n such that ∥s0∥1 and ∥s1∥1 are (approximately) equal to the half of ∥s∥1.
Since bi + ⟨s,ai⟩ is small, bi + ⟨s0,ai⟩ is approximately equal to −⟨s1,ai⟩ for s = s0 + s1. The algorithm
thus builds up two sets;

R0 = {bi + ⟨x0,ai⟩ | x0 ∈ Bn ∧ ∥x0∥1 = ∥s∥1/2}
R1 = {−⟨x1,ai⟩ | x1 ∈ Bn ∧ ∥x1∥1 = ∥s∥1/2}.

One may expect that a collision from these sets happens with a correct pair (s0, s1). Namely, this collision
enables to recover the secret s as s0+s1. With this idea, the standard MitM can recover the secret vector
s in time S0.5 where S is the cardinality of key space for s.

A key idea to improve the former MitM thanks to May [30] is to split both target vectors s0 and
s1 inductively. To be precise, both vectors are divided into si = si,0 + si,1 with a vector si,j of fewer
Hamming weights. At a high level, this can be viewed as a generalization of tree-based search, and secret
vectors are further decomposed repeatedly until they have sufficiently small Hamming weights and can
be found easily.

Based on the improved MitM algorithms, the secret vector s can be obtained in time (asymptotically)
S0.25, however, this asymptotic result ignores the guessing part. According to the paper [30], when the
algorithm is applied to the concrete instantiation such as NTRU, BLISS, and GLP, the overall cost
including the guessing part is in the range [S0.28,S0.3]. We therefore estimate the time complexity of
MitM algorithm as S0.28. Plugging a fact that the size of key space S for the block binary distribution
Bℓ,k is equal to (ℓ+ 1)k into the complexity, one can recover the secret in time O(20.28k log(ℓ+1)).

Block binary specific analysis. One property of the block binary distribution is that each block has a
Hamming weight at most 1. Thus, there are two ways to reduce the dimension of the secret vector in the
block binary LWE problem. The first one is to use the block structure and guess the location of the 1 in
each block, which reduces ℓ dimensions with probability 1/(ℓ+ 1). By repeating this process k times, we
can reduce ℓ · k dimensions at a cost of (ℓ+ 1)k = 2O(k log(ℓ+1)).

Another way is to treat the given distribution as a binary distribution with low Hamming weights, and
reduce one dimension with probability 1− 1/ℓ. By guessing several zeros, we can reduce ℓ · k dimensions
at a cost of 1/

(
(1 − 1/ℓ)ℓ·k

)
. It can be (asymptotically) represented by 2O(k) applying the equality

limℓ→∞(1 − 1/ℓ)ℓ = 1/e, where e is an Euler constant. This method is more efficient than the first
one, while it does not utilize the block structure. Nevertheless, we consider both algorithms for concrete
cryptanalysis.

As another block binary specific attack, suppose that we are given an LWE instance (A,b) ∈ Zn×nq ×Znq
satisfying b+Ae = s, which can be obtained by converting the usual LWE samples. Here the secret key
s plays a role of “noise vector” of LWE. Our goal is then to recover e by eliminating the noise vector. To

Faster TFHE Bootstrapping with Block Binary Keys 9

do this, we consider the multivariate polynomials Fi and Gi,j defined as follows:

Fi(x) = (bi + ⟨ai,x⟩) · (bi + ⟨ai,x⟩ − 1)

Gi,j(x) = (bi + ⟨ai,x⟩) · (bj + ⟨aj ,x⟩) ,

where ai (resp. bi) is the i-th row of A (resp. b). Note that each Fi(e) is equal to zero since si is binary.
In addition, if the indices i ̸= j are in the same block, then either si or sj is zero and consequently
Gi,j(e) = 0. Thus, this polynomial system has a root e, which we call a “noise-free polynomial”.

Sun, Tibouchi, and Abe [33] presented a refined result on the hardness of binary error LWE showing

that the common root can be found in a subexponential time 2Õ(n1−α), given n1+α-algebraic independent
noise-free polynomials. For our purposes, we assume that all given polynomials {Fi, Gi,j} are algebraic

independent. Note that there are n polynomials Fi, and there are
(
ℓ
2

)
≈ ℓ2

2 pairs (i, j) of distinct indices

in each block. In total, we have approximately n·ℓ
2 noise-free polynomials for Gi,j . Putting it together,

the total number of noise-free polynomials is approximately ℓ+2
2 ·n, which we denote by n1+α. From [33],

the common root e can be found in a subexponential time 2Õ(n1−α) = 2Õ(2n
ℓ+2).

3.2 Parameter setup

We provide our concrete parameter setup and their expected security level. For comparison, we consider
1) Esti: the original lattice estimator [3], 2) Modified Est: the modified lattice estimator and 3) MitM:
May’s advanced MitM algorithm.

To determine the parameters, we fix the α as 2−15. We next compute the minimized n such that
20.28k log(ℓ+1) ≈ 2128 at each ℓ ≥ 2. Even though the constraint holds, if the concrete parameter setup
does not achieve the desired security level against a modified lattice attack, we raise n up until the security
level measured from the guessing algorithm is around 128.

Table 1. Recommended Parameter Sets and Security Estimates. The error parameters of TLWE and TRLWE
are fixed by α = 2−15 and β = 2−25, respectively.

n N ℓ Esti Modified Est MitM

630 1024 2 128.8 128.8 139.793

687 1024 3 128.3 126.7 128.24

788 1024 4 128.6 127.4 128.078

885 1024 5 127.8 126.2 128.111

978 1024 6 127.2 125.4 128.128

4 A Faster Bootstrapping of TFHE

In this section, we modify the bootstrapping algorithm of TFHE to obtain better efficiency. We first
recall that there are two main building blocks in the bootstrapping algorithm, namely blind rotation
and key-switching. Both of two operations require a considerably large number of polynomial arithmetic,
bit operations and scalar additions. We achieve a better performance by reducing the number of these
operations.

Firstly, we reduce the number of external products in the blind rotation. Our improvement is mostly
based on the observation that the number of iterations in the blind rotation can be reduced if the TLWE
key is sampled according to the block binary distribution. More precisely, we compress iterations of the
previous blind rotation corresponding to each block of the secret key so that it involves only one external

10 C. Lee et al.

product operation. In consequences, we can reduce the number of the external products from n, the length
of the ciphertext to k, the number of the blocks.

Secondly, we improve the key-switching in terms of both the key size and the speed of key-switching
procedure by re-using the TLWE key when generating the TRLWE secret. More precisely, given a TLWE
key s = (s0, . . . , sn−1) ∈ Bn, we randomly sample sn, . . . , sN−1 from B and set the ring key as t =
s0 + · · · + sN−1X

N−1 ∈ BN [X]. Then, we can omit generating key-switching key components for the
shared part, which reduces the size of the key-switching key by a factor of N

N−n compared to the previous
construction. Furthermore, we can skip the switching operations for the shared part, which also reduces
computational cost.

We will elaborate on these techniques in the following sections, and then describe the full scheme in
Sec 4.3.

4.1 Blind Rotation

We first present a new blind rotation method with better complexity leveraging the block binary distri-
bution. Let us first briefly review the functionality the blind rotation algorithm. Let c = (b,a) ∈ Tn+1

be a TLWE ciphertext under secret s ∈ Bn and v = v(X) be a test vector. Recall that the blind rotation

procedure aims to generate an RLWE encryption of v ·Xφs(b,a) where φs(b,a) = b+ ⟨s,a⟩ (mod 2N) is
the phase of (b,a) = ⌊2N · (b,a)⌉ with respect to s. In the original scheme, this computation is done by

initializing the accumulator ACC as the trivial TRLWE encryption of Xb · v, then homomorphically mul-
tiplying Xa0·s0 , . . . , Xan−1·sn−1 recursively. In particular, each multiplication is expressed as one external
product with BRKi from the equation Xai·si = 1 + (Xai − 1) · si.

Now let us suppose that the TLWE key s = (s0, . . . , sn−1) is sampled according to Bℓ,k so that there
is at most one nonzero component in each block (si)i∈Ij where Ij = {jℓ, jℓ + 1, . . . , j(ℓ + 1) − 1} for
0 ≤ j < k. Then, it holds that

X
∑

i∈Ij
ai·si = 1 +

∑
i∈Ij

(Xai − 1) · si

since both sides of the equation equal Xai if there exists i ∈ Ij such that si = 1; otherwise they are equal
to 1 when si = 0 for all i ∈ Ij .

Fig. 1. Generalized Multiplexer Gate

Faster TFHE Bootstrapping with Block Binary Keys 11

Algorithm 2 NewBlindRotate

Input: The blind rotation key BRK and a TLWE ciphertext c = (b,a) ∈ Tn+1

Output: A TRLWE ciphertext ACC ∈ TN [X]2

1: v ← − 1
8 · (1 +X + · · ·+XN−1) ∈ TN [X]

2: Let b = ⌊2Nb⌉ and ai = ⌊2Nai⌉ for 0 ≤ i < n

3: ACC← (Xb · v, 0) ∈ TN [X]2

4: for 0 ≤ j < k do

5: ACC← ACC+ ACC⊡
[∑

i∈Ij (X
ai − 1) · BRKi

]
6: end for
7: return ACC

Our algorithm is derived from the previous blind rotation by replacing the accumulator with k itera-

tions which homomorphically multiply X
∑

i∈Ij
ai·si to ACC for 0 ≤ j < k using the equation above. The

new algorithm takes k external products, n scalar multiplications and additions on TRGSW ciphertexts,
while the original blind rotation requires n external products. The overall performance improvement of
our blind rotation is due to the reduction of external products and FFT conversions for gadget decom-
position. More discussions on optimization and implementation techniques will be given in Sec. 5.1.

Lemma 1 (New Blind Rotation). Given a TLWE ciphertext (b,a) ∈ Tn+1 under secret s sampled
from Bℓ,k, let b = ⌊2Nb⌉, ai = ⌊2Nai⌉ for 0 ≤ i < n and φs(b,a) = b + ⟨s,a⟩ (mod 2N). Then, the

output of Alg. 2 is an TRLWE ciphertext (b′, a′) ∈ TN [X]2 whose phase is Xb+
∑

0≤i<n ai·si ·v+e (mod 1)
for some ∥e∥∞ ≤ 2k(1 +N)ε+ 4δηβndN .

Proof. Let ACCj be the TRLWE ciphertext obtained from the j-th iteration of the accumulator. In other

words, ACC0 = (Xb · v, 0) and ACCj+1 = ACCj +ACCj ⊡
[∑

i∈Ij (X
ai − 1) · BRKi

]
for 0 ≤ j < k. We also

denote by εj = ⟨h(ACCj) · g − ACCj , (1, t)⟩. Note that
∑
i∈Ij (X

ai − 1) · BRKi is a TRGSW encryption

of mj :=
∑
i∈Ij (X

ai − 1) · si =

{
Xai − 1, if si = 1 for some i ∈ Ij
0, otherwise si = 0 for all i ∈ Ij

, and its noise term will be

denoted by ej .

Then, we obtain the following recurrence relation:

φt(ACCj+1) = φt(ACCj) + φt

(
ACCj ⊡

[∑
i∈Ij

(Xai − 1) · BRKi
])

= (mj + 1) · φt(ACCj) +mj · εj + ⟨h(ACCj), ej⟩

= X
∑

i∈Ij
aisi · φt(ACCj) + Errj (mod 1)

where Errj = mj · εj + ⟨h(ACCj), ej⟩.
By combining the above equations for 0 ≤ j < k, we obtain

φt(ACCk) = X
∑n−1

i=0 aisi · φt(ACC0) + e (mod 1)

= Xb+
∑n−1

i=0 aisi · v + e (mod 1)

for some e ∈ R[X] which is bounded by ∥e∥∞ ≤
∑k−1
j=0 ∥Errj∥∞ ≤ 2k(1 +N)ε+ 4δηβndN .

One disadvantage of our blind rotation is that its error bound is slightly larger than that of the prior
method. In practical terms, it is not much of an issue since the total bootstrapping noise heavily depends
on the key-switching error in the usual parameter setting of TFHE. Nevertheless, if we need to minimize
the noise growth under certain circumstance, then this issue can be addressed simply by generating one

12 C. Lee et al.

more bootstrapping key for each block which indicates where secret components in the interval Ij are all
zero or not. Specifically, we define s′j = 1−

∑
i∈Ij si and obtain

1 +
∑
i∈Ij

si(X
ai − 1) = s′j +

∑
i∈Ij

siX
ai .

Then, each iteration of the blind rotation can be written as ACC ← ACC ⊡
[
BRK′

j +
∑
i∈Ij X

ai · BRKi
]

where BRK′
j is a TRGSW encryption of s′j under t.

We remark that our idea is naturally applicable to homomorphic multiplexer [11] and extend its
functionality from 2-to-1 gate to (ℓ+1)-to-1 multiplexer. The previous 2-to-1 multiplexer gate takes two
inputs m0,m1 and a selector µ ∈ {0, 1}, and outputs mµ. This gate can be evaluated homomorphically
with formula (1− µ) ·m0 +m1. In a similar manner, one can also design a (ℓ+ 1)-to-1 multiplexer gate,
which takes (ℓ + 1) inputs m0,m1, . . . ,mℓ and ℓ selectors µ1, . . . , µℓ ∈ {0, 1}, at most one of which is
nonzero. Then, it outputs mi if µi = 1 for some i, and m0 when µi = 0 for all i, as described in Fig. 1.
Similar to 2-to-1 MUX, this generalized multiplexer gate also can be evaluated homomorphically using
the formula (1−

∑ℓ
i=1 µi) ·m0 +

∑ℓ
i=1 µimi.

In this point of view, the previous blind rotation algorithm homomorphically evaluates 2-to-1 multi-
plexer gates for n times. In the new algorithm, we squash each ℓmultiplexer gates into a single (ℓ+1)−to−1
multiplexer gate. As a result, our algorithm evalutes only k multiplexer gates in total.

4.2 Key-Switching

In this section, we present our improved key-switching procedure. Recall that given a TLWE ciphertext
(b,a) = (b, a0, . . . , aN−1) under secret t, the key-switching operation of TFHE aims to generate a TLWE
ciphertext (b′,a′) = (b′, a′0, . . . , a

′
n−1) under secret s such that b+⟨a, t⟩ ≈ b′+⟨a′, s⟩ (mod 1). To accelerate

this algorithm, we use TLWE secret as a part of TRLWE secret. More precisely, the vectorized TRLWE
key t = (s0, . . . , sN−1) has the TLWE secret s = (s0, . . . , sn−1) as a part of it. Then, we can write it as
a concatenation of s and some binary vector s′ = (sn, sn+1, . . . , sN−1), i.e., t = (s, s′). This allows us
to skip computations for the shared part during the key-switching procedure, resulting in a speed-up of
N

N−n . Additionally, it reduces the size of the key-switching key by a factor of N
N−n .

Fig. 2. New Key-Switching Algorithm

Faster TFHE Bootstrapping with Block Binary Keys 13

The comparison between the previous and our key-switching algorithms is described in Fig. 2. As a
result, our approach has advantages in terms of both space and time complexity, as well as the smaller
noise growth. A formal description of our key-switching algorithm is given below.

• NewSwitchKeyGen(t): Given the TLWE secret t = (s0, . . . , sN−1) ∈ BN , we generate the key-switching
key as follows:

– Sample ai,j [k] ← Tn and ei,j [k] ← Dα for 0 ≤ i < N − n, 0 ≤ j < f, 0 ≤ k < D, and set
KSKi,j [k] = (bi,j [k],ai,j [k]) where bi,j [k] = −⟨ai,j [k], s⟩+ k ·D−j−1 · sn+i + ei,j [k] (mod 1).

– Return KSK = {KSKi,j [k] | 0 ≤ i < N − n, 0 ≤ j < f, 0 ≤ k < D}.

• NewKeySwitch(KSK, c): Given a TLWE ciphertext c = (b,a) ∈ TN+1, let ai,j ∈ Z ∩ [0, D) be the

integers such that |ai−
∑f−1
j=0 ai,j ·D−j−1| ≤ D−f (n ≤ i < N). Return the ciphertext (b, a0, . . . , an−1)+∑N−n−1

i=0

∑f−1
j=0 KSKi,j [an+i,j] ∈ Tn+1.

Lemma 2. Given a TLWE ciphertext c ∈ TN+1, our key-switching algorithm outputs a TLWE ciphertext
c′ ∈ Tn+1 with |φs(c

′)− φt(c)| ≤ (N − n)fηα + (N − n)D−f .

Proof. Let us use the same notation as the explanation of idea and the algorithm above. First, note that

φs(

f−1∑
j=0

KSKi,j [an+i,j]) =

f−1∑
j=0

φs(KSKi,j [an+i,j])

=

f−1∑
j=0

(an+i,j ·D−j−1 · sn+i + ei,j [an+i,j])

= an+i · sn+i + ei · sn+i +
f−1∑
j=0

ei,j [an+i,j]

where ei = ⟨(ai,0, . . . , ai,f−1), (D
−1, . . . , D−f)⟩ − ai. Then we obtain

∣∣φs(

f−1∑
j=0

KSKi,j [an+i,j])− an+i · sn+i
∣∣ = |ei + f−1∑

j=0

ei,j [an+i,j]|

≤ D−f + f · ηα

for 0 ≤ i < N − n. Consequently, we have

|φs(c
′)− φt(c)| = |

N−n−1∑
i=0

an+isn+i −
N−n−1∑
i=0

φs(

f−1∑
j=0

KSKi,j [an+i,j])|

=
∣∣N−n−1∑

i=0

(ei +

f−1∑
j=0

ei,j [an+i, j])
∣∣ ≤ (N − n) · (fηα +D−f).

We note that our key-switching method reduces the key size, computational cost, and noise bound by
a factor of N

N−n since it requires (N −n) iterations compared to N of the previous approach. In addition,
we can further improve the performance of key-switching by making a trade-off between key size and
computational cost, which will be described in detail in the next section.

4.3 Scheme description

Finally, we combine new building blocks for blind rotation and key-switching to demonstrate the gate
bootstrapping with better efficiency. The exact scheme description of our scheme is as follows.

14 C. Lee et al.

Algorithm 3 New TFHE Bootstrapping

Input: The blind rotation key BRK, the key-switching key KSK and a TLWE ciphertext c = (b,a) =
(b, a0, . . . , an−1) ∈ Tn+1

Output: A TLWE ciphertext c′ ∈ Tn+1

1: ACC← NewBlindRotate(BRK, c)

2: Parse ACC as
(∑N−1

i=0 b′iX
i,
∑N−1
i=0 a′iX

i
)

3: c′ ← NewKeySwitch(KSK, (b′0, a
′
0,−a′N−1, . . . ,−a′1))

• Setup(1λ):

– Take the security parameter λ as input and generate the following parameters: the block length ℓ, the
number of blocks k, TLWE dimension n = ℓ · k, TRLWE dimension N , error parameters α, β > 0,
the gadget decomposition base and dimension B and d, and the key-switching parameters D and f .

• KeyGen(1λ):

– Sample (s0, . . . , sn−1) ← Bℓ,k and si ← U(B) for n ≤ i < N . Set the TLWE secret as s =
(s0, . . . , sn−1) ∈ Bn and the TRLWE key as t = s0 + · · ·+ sN−1X

N−1. Write t = (s0, . . . , sN−1).
– Generate BRKi ← TRGSW.Enc(t, si) for 0 ≤ i < n. Return the blind rotation key BRK = {BRKi}0≤i<n.
– Generate a key-switching key KSK← NewSwitchKeyGen(t).

• Enc(s,m): Given the secret key s = (s0, . . . , sn−1) and a message bitm ∈ {±1}, sample a = (a0, . . . , an−1)←
U(Tn) and e← Dα. Return c = (b,a) ∈ Tn+1 where b = −⟨s,a⟩+ 1

8m+ e (mod 1).

• Dec(s, c): Given the secret key s and a ciphertext c = (b,a) ∈ Tn+1, let µ = b+ ⟨s,a⟩ (mod 1). Output
1 if µ > 0, 0 otherwise.

• NewBoot(BRK,KSK, c): Given the blind rotation key BRK, the key-switching key KSK and a TLWE

ciphertext c ∈ Tn+1, run Alg. 3 and return c′ ∈ Tn+1.

• NewHomNAND(BRK,KSK, c1, c2): Given the blind rotation key BRK, the key-switching key KSK and

TLWE ciphertexts c1, c2 ∈ Tn+1, return NewBoot(BRK,KSK, (18 ,0)− c1 − c2) ∈ Tn+1.

Correctness. Similar to the original TFHE, c := (18 ,0) − c1 − c2 is a TLWE ciphertext such that
φs(c) ≈ 1

4m (mod 1) if φs(ci) ≈ 1
8mi (mod 1) and m = m1∧m2. Below we prove the correctness of our

new bootstrapping procedure by showing that if c is an input TLWE ciphertext such that φs(c) ≈ 1
4m

(mod 1), then the output ciphertext c′ satisfies φs(c
′) ≈ 1

8m (mod 1).

From Lem. 1, the phase of ACC in Line 1 of Alg. 3 is approximately Xb+⟨a,s⟩ · v, where b = ⌊2Nb⌉,
a = ⌊2Na⌉, and v = − 1

8 (1 + X + · · · + XN−1). If m = 1, then it holds that 0 < b + ⟨a, s⟩ ≤ N , and
the constant term of the phase of ACC is close to 1/8. Conversely, if m = −1, then the constant term is
close to −1/8. Therefore, the extracted TLWE ciphertext in Line 2 of Alg. 3 has a phase close to either
1/8 or −1/8 depending on the sign of m. Finally, when we apply the key-switching operation in Line
3, we obtain the output ciphertext c′, and its phase is still close to either 1/8 or −1/8 due to Lem. 2.
Consequently, our bootstrapping algorithm NewBoot works correctly.

Security. Our scheme is IND-CPA secure under the decisional TLWE assumption of parameter (n, α)
with a block binary distribution Bℓ,k since the usual LWE encryption is used. It requires an additional
assumption that our scheme remains to be secure even if the bootstrapping key is given to an adversary.

Recall that the bootstrapping key consists of the blind rotation key and key-switching keys. Roughly
speaking, the key-switching key is a collection of special TLWE encryptions of sn, . . . , sN−1 under s,
which are indistinguishable from uniformly random samples over Tn+1 from the same decisional TLWE
assumption.

Meanwhile, our TRLWE key t = s0 + · · · + sN−1X
N−1 (or its vector form t = (s0, . . . , sN−1))

is obtained by concatenating s = (s0, . . . , sn−1) with a random binary vector s′ = (sn, . . . , sN−1) ←

Faster TFHE Bootstrapping with Block Binary Keys 15

U(BN−n). In addition, the blind rotation key is a collection of TRGSW encryptions of s1, . . . , sn under
the TRLWE key t. Hence, our scheme also requires the decisional TRLWE assumption of the parameter
(N, β) and the key distribution Bℓ,k × U(BN−n). We conduct a similar cryptanalysis as in Sec. 3.1 to
estimate the concrete security level of this hardness assumption problem. After analyzing various lattice
attacks, we conclude that there is no efficient attack which exploits the dependency of TLWE and TRLWE
keys.

Finally, we note that our construction requires an additional circular security assumption similar to
the original TFHE scheme since the blind rotation and key-switching keys can be viewed as encryptions
of s under t and vice versa.

Below we summarize the changes in our construction and compare it with the previous scheme [11].

– We sample the TLWE key from a block binary distribution and reuse it when generating the RLWE
key. As a result, the size of the key-switching key is reduced by a factor of N

N−n compared to the
original bootstrapping method proposed in [11]. The TLWE dimension n is increased to ensure the
hardness of the TLWE problem under block binary distribution, so the size of the bootstrapping key
is also increased by a small factor.

– In blind rotation, we reduce the number of required external products by a factor of ℓ using the block
structure of the TLWE secret. For each block, we compute a linear combination of ℓ bootstrapping
keys and perform only one external product between this linear combination and the accumulator.
Consequently, we reduce the number of external products from n to k. However, this change yields
a larger noise growth by a factor of at most two, from the multiplication of the coefficients Xai − 1
and the bootstrapping key.

– In the key-switching procedure, the number of scalar multiplications between torus elements and the
TLWE ciphertexts is reduced to f(N − n) times. This gives us a speed up on the key-switching step
by a factor of N

N−n , and the error bound is also reduced by the same factor. In consequence, the extra
margin for the key-switching error complements the increased error from blind rotation, and thus we
can use the error parameter settings that is analogous to those in [11]. In the usual parameter setting
with N = 1024, n ≥ 630, the key-switching procedure becomes at least three times faster.

With all these improvements throughout the bootstrapping procedure, we have reduced the time
complexity of the bootstrapping. Moreover, space complexity is also decreased compared to the original
TFHE scheme since we reduced the size of key-switching key. Thorough analysis of the result with concrete
parameters and the optimization techniques that can be used for better performance will be presented in
the following section.

5 Implementation

In this section, we implement our scheme and demonstrate its performance. We present optimization
techniques used in our implementation, concrete parameter sets, and benchmark results of our scheme.
Our implementation is based on the TFHE library ver 1.1 [12] with SPQLIOS FFT processor. All bench-
marks are conducted on a single-core of a desktop machine with Intel(R) i5-12400 @ 2.50GHz CPU and
8GB memory. Our source code is available at https://github.com/SNUCP/blockkey-tfhe.

5.1 Optimization techniques

We notice that there is a room for improvement when it comes to actual implementation. We present
how to optimize blind rotation and key-switching operation in our bootstrapping algorithm Alg. 3.

Blind Rotation. We first review implementation of external product in the TFHE library [12]. The im-
plementation consists of gadget decomposition, scalar multiplications, and Fast Fourier Transform (FFT)
operations. We use the coefficient representation of polynomials by default, but they are transformed into

https://github.com/SNUCP/blockkey-tfhe

16 C. Lee et al.

#FFT #Mult

TFHE [12] (2d+ 2)n (4d+ 2)nN

Ours (2d+ 2)k (4d+ 2)nN
Table 2. Complexity of blind rotation algorithms

the FFT form and vice versa before and after polynomial multiplications for the efficiency. In particu-
lar, we exploit FFT conversions for homomorphic operations of TRLWE or TRGSW ciphertexts such as
external product.

We first analyze the complexity of previous bootstrapping procedure (Alg. 1) in terms of FFT oper-
ations and scalar multiplications. At each iteration of the blind rotation

ACC← ACC+
[
(Xaj − 1) · ACC

]
⊡ BRKj ,

we first compute (Xaj−1)·ACC and its gadget decomposition h((Xaj−1)·ACC)) without FFT operations.
After converting its components into the FFT form using 2d FFT operations, we compute h((Xaj − 1) ·
ACC))·BRKj and transform the result back to the coefficient form, which takes 4dN scalar multiplications
and 2 FFT-operations. Note that no FFT operation is required for BRKj since their FFT form can be
precomputed. Therefore, the blind rotation of Alg. 1 takes (4d+2)nN multiplications and (2d+2)n FFT
operations as the blind rotation algorithm has n iterations.

Meanwhile, our blind rotation algorithm has only k iterations so reduces the number of external prod-
ucts (and FFT operations) by a factor of ℓ. To be precise, Alg. 2 takes (2d+2)k FFT operations. On the
other hand, our algorithm may require more scalar multiplications since it computes linear combinations
of TRGSW ciphertexts. We observe that this issue can be addressed using an optimization technique of
reusing the FFT of an accumulator during the blind rotation. Our blind rotation algorithm computes

ACC← ACC+ ACC⊡

∑
i∈Ij

(Xai − 1) · BRKi

in Line 5 of Alg. 2. It can be rewritten as

ACC← ACC+

∑
i∈Ij

(Xai − 1) · (ACC⊡ BRKi)

which does not involve linear combination of TRGSW ciphertexts but requires the same number of scalar
multiplications as in Alg. 1. Furthermore, since the term h(ACC) commonly appears in the external
products ACC ⊡ BRKi = h(ACC) · BRKi for all i ∈ Ij , we can precompute and reuse its FFT form. As
a result, the number of FFT operations remains unchanged. In conclusion, the total complexity of our
blind rotation algorithm is (4d+ 2)nN scalar multiplications and (2d+ 2)k FFT operations (see Table 2
for comparison).

Key-switching. We now present some optimization techniques on the key-switching procedure. Recall
that to perform key-switching, the algorithm constructs an encryption of aiti for 0 ≤ i < N via encryp-
tions of D−j · k(1 ≤ j ≤ f, 0 ≤ k < D). Note that it is unnecessary to consider the case k = 0, one has to
publish f(D − 1)N TLWE ciphertexts as the key-switching key in the original TFHE scheme. Although
our new key-switching method reduces the key-switching key size by a factor of N

N−n , there is still a room
for further optimizations with respect to the size of the key-switching key.

Recently, Joye [23] presented the balanced non-adjacent form and its advantages which can be
leveraged to the key-switching technique. We shall adopt the idea of balanced representation to fur-
ther reduce the storage of key-switching key. We remark that the balanced base-D representation takes
−⌊D/2⌋,−⌊D/2⌋+ 1, . . . , ⌊D/2⌋ as a possible digit values and therefore one requires TLWE encryptions
of D−j · k(1 ≤ j ≤ f,−⌊D/2⌋ ≤ k ≤ ⌊D/2⌋). However, we can simply convert an encryption of D−j · k

Faster TFHE Bootstrapping with Block Binary Keys 17

#Add #TLWE

TFHE [12] fnN f(D − 1)N

Ours fn(N − n) f⌊D/2⌋(N − n)
Table 3. Relation between key switching cost and key-switching key size. # Add and # TLWE represent the
computational cost and size of the key-switching key, respectively.

ℓ α n N f D

[12] · 2−15 630 1024 8 22

Ours

2 2−15 630 1024 4 24

3 2−15 687 1024 4 24

4 2−15 788 1024 4 24

5 2−15 885 1024 4 24

6 2−15 978 1024 4 24

Table 4. Parameters for TLWE

ℓ n Blind rotation Key-switching Total

[12] · 630 9.40 ms 1.13 ms 10.53 ms

Ours

2 630 6.82 ms 0.23 ms 7.05 ms

3 687 6.29 ms 0.20 ms 6.49 ms

4 788 6.56 ms 0.14 ms 6.70 ms

5 885 6.75 ms 0.07 ms 6.82 ms

6 978 7.10 ms 0.02 ms 7.12 ms
Table 5. Bootstrapping performance

to D−j · (−k) by multiplying −1 to the encryption. Hence, the key-switching key can be represented by
TLWE encryptions of D−j · k(1 ≤ j ≤ f, 1 < k ≤ ⌊D/2⌋, only f⌊D/2⌋(N − n) total.

The performance of key-switching procedure is summarized in Table 3. In our implementation, we
choose a smaller f by taking a larger D with similar error to obtain better computational cost while
maintaining similar unit key size to the existing implementation.

5.2 Parameters and Benchmarks

We present some recommended parameter sets in Table 4, which achieve at least 128-bit security level
(see Sec. 3.2 for security analysis). For TRLWE gadget decomposition, our implementation uses the same
digit decomposition parameter sets B = 27, d = 3 as in the TFHE library [12]. For TRLWE and TRGSW
schemes, we use the error parameter β = 2−25 which is also the same as in the TFHE library.

We measure the performance of blind rotation and key-switching operation, and the experimental
results are summarized in Table 5. As shown in the table, the execution time of blind rotation does not
necessarily decrease as ℓ increases even if the number of FFT operations is reduced. This is due to the
cost of scalar multiplications which grows linearly with n. For the key-switching operation, its complexity
mainly depends on the value of (N − n) as expected from our analysis. In terms of the total execution
time of gate bootstrapping, our implementation achieves 1.48 to 1.62x speed-up compared to the previous
implementation [12]. While we reduce the number of FFT operations by a factor of ℓ, the complexity of
scalar multiplications is unchanged so it takes about 45% of blind rotation in our experiments.

We also measure the size of public keys for our parameter sets in Table 6. We note that the key-
switching key consists of N −n TLWE ciphertext so it gets smaller as n increases when other parameters
are fixed. Compared to [12], we require about half the size of the bootstrapping and key-switching keys.

18 C. Lee et al.

ℓ n Blind rotation Key-switching Total

[12] · 630 30 MB 79 MB 109 MB

Ours

2 630 30 MB 30 MB 60 MB

3 687 32 MB 28 MB 60 MB

4 788 37 MB 23 MB 60 MB

5 885 41 MB 15 MB 56 MB

6 978 46 MB 6 MB 52 MB
Table 6. Size of bootstrapping key

References

1. Albrecht, M.R.: On dual lattice attacks against small-secret lwe and parameter choices in helib and seal.
In: Advances in Cryptology–EUROCRYPT 2017: 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30–May 4, 2017, Proceedings, Part II. pp.
103–129. Springer (2017)

2. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost of solving usvp and
applications to lwe. In: International Conference on the Theory and Application of Cryptology and Information
Security. pp. 297–322. Springer (2017)

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. Journal of Mathematical
Cryptology 9(3), 169–203 (2015)

4. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary lwe. In: Australasian Conference on Information
Security and Privacy. pp. 322–337. Springer (2014)

5. Bonte, C., Iliashenko, I., Park, J., Pereira, H.V., Smart, N.P.: Final: Faster FHE instantiated with NTRU
and LWE. In: Advances in Cryptology–ASIACRYPT 2022: 28th International Conference on the Theory and
Application of Cryptology and Information Security, Taipei, Taiwan, December 5–9, 2022, Proceedings, Part
II. pp. 188–215. Springer (2023)

6. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical gapsvp. In: Annual
Cryptology Conference. pp. 868–886. Springer (2012)

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping.
ACM Transactions on Computation Theory (TOCT) 6(3), 1–36 (2014)

8. Carpov, S., Izabachène, M., Mollimard, V.: New techniques for multi-value input homomorphic evaluation
and applications. In: Topics in Cryptology–CT-RSA 2019: The Cryptographers’ Track at the RSA Conference
2019. pp. 106–126. Springer (2019)

9. Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from tfhe. In: Advances in Cryptology–
ASIACRYPT 2019: 25th International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kobe, Japan, December 8–12, 2019, Proceedings, Part II 25. pp. 446–472. Springer (2019)

10. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers.
In: International Conference on the Theory and Application of Cryptology and Information Security. pp.
409–437. Springer (2017)

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully homomorphic encryption over the
torus. Journal of Cryptology 33(1), 34–91 (2020)

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homomorphic encryption library
(August 2016), https://tfhe.github.io/tfhe/

13. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient homomorphic inference of
deep neural networks. In: Cyber Security Cryptography and Machine Learning: 5th International Symposium,
CSCML 2021, Be’er Sheva, Israel, July 8–9, 2021, Proceedings 5. pp. 1–19. Springer (2021)

14. Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved programmable bootstrapping with larger precision
and efficient arithmetic circuits for tfhe. In: Advances in Cryptology–ASIACRYPT 2021: 27th International
Conference on the Theory and Application of Cryptology and Information Security, Singapore, December
6–10, 2021, Proceedings, Part III 27. pp. 670–699. Springer (2021)

15. Cong, K., Das, D., Park, J., Pereira, H.V.: Sortinghat: Efficient private decision tree evaluation via homo-
morphic encryption and transciphering. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. pp. 563–577 (2022)

Faster TFHE Bootstrapping with Block Binary Keys 19

16. Ducas, L., Micciancio, D.: Fhew: bootstrapping homomorphic encryption in less than a second. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques. pp. 617–640. Springer
(2015)

17. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive (2012)
18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the forty-first annual ACM

symposium on Theory of computing. pp. 169–178 (2009)
19. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: Conceptually-simpler,

asymptotically-faster, attribute-based. In: Annual Cryptology Conference. pp. 75–92. Springer (2013)
20. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assump-

tion. In: International Conference on Supercomputing (2010)
21. Guimarães, A., Borin, E., Aranha, D.F.: Revisiting the functional bootstrap in tfhe. IACR Transactions on

Cryptographic Hardware and Embedded Systems pp. 229–253 (2021)
22. Jiang, L., Lou, Q., Joshi, N.: Matcha: A fast and energy-efficient accelerator for fully homomorphic encryption

over the torus. In: Proceedings of the 59th ACM/IEEE Design Automation Conference. pp. 235–240 (2022)
23. Joye, M.: Balanced non-adjacent forms. In: International Conference on the Theory and Application of Cryp-

tology and Information Security. pp. 553–576. Springer (2021)
24. Kim, A., Deryabin, M., Eom, J., Choi, R., Lee, Y., Ghang, W., Yoo, D.: General bootstrapping approach for

rlwe-based homomorphic encryption. Cryptology ePrint Archive (2021)
25. Kluczniak, K.: Ntru-\nu-um: Secure fully homomorphic encryption from ntru with small modulus. Cryptology

ePrint Archive (2022)
26. Kwak, H., Min, S., Song, Y.: Towards practical multi-key tfhe: Parallelizable, key-compatible, quasi-linear

complexity. Cryptology ePrint Archive (2022)
27. Lee, Y., Micciancio, D., Kim, A., Choi, R., Deryabin, M., Eom, J., Yoo, D.: Efficient FHEW bootstrapping with

small evaluation keys, and applications to threshold homomorphic encryption. In: Advances in Cryptology–
EUROCRYPT 2023: 42nd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part III. pp. 227–256. Springer (2023)

28. Lu, W.j., Huang, Z., Hong, C., Ma, Y., Qu, H.: Pegasus: Bridging polynomial and non-polynomial evaluations
in homomorphic encryption. In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 1057–1073. IEEE
(2021)

29. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Annual
international conference on the theory and applications of cryptographic techniques. pp. 1–23. Springer (2010)

30. May, A.: How to meet ternary lwe keys. In: Annual International Cryptology Conference. pp. 701–731. Springer
(2021)

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM
(JACM) 56(6), 1–40 (2009)

32. Son, Y., Cheon, J.H.: Revisiting the hybrid attack on sparse secret lwe and application to he parameters. p.
11–20. WAHC’19, Association for Computing Machinery (2019)

33. Sun, C., Tibouchi, M., Abe, M.: Revisiting the hardness of binary error lwe. In: Information Security and
Privacy: 25th Australasian Conference, ACISP 2020, Perth, WA, Australia, November 30–December 2, 2020,
Proceedings. pp. 425–444. Springer (2020)

34. Van Beirendonck, M., D’Anvers, J.P., Verbauwhede, I.: Fpt: a fixed-point accelerator for torus fully homo-
morphic encryption. arXiv preprint arXiv:2211.13696 (2022)

	Faster TFHE Bootstrapping with Block Binary Keys

