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Abstract

The word-oriented feedback shift registers (WFSRs) possess very attrac-
tive properties as they take advantage of modern word-based processors
and thus increase the throughput. We provide a generalized form of the
feedback function of WFSR along with some special cases. Then, a nec-
essary and sufficient condition for nonsingular WFSR is discussed. We
study different word-based cascade systems and the period of sequences
produced by these cascade systems is derived. We provide experimental
results on avalanche property on states of cascade systems and sta-
tistical results of sequences produced by them. Finally, we present a
crypt-analytic attack on cascade systems and suggest its countermeasure.
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1 Introduction

Electronic communications have taken a major key role in the post-pandemic
situation as this is contact-less. In the future, its applications will definitely
take a huge uptrend. Along with the surge in the use of digital technolo-
gies, the rise of online frauds, scams, intrusions, and other security breaches
is also increasing. One of the effective solutions for these security breaches
is the use of cryptography. Pseudo-random numbers are a major compo-
nent in cryptography [20, 25] and feedback shift registers (FSRs) have been
valuable and practical methods for generating cryptographically secure pseudo-
random sequences for cryptographic applications. Linear feedback shift register
(LFSR) [13, 18], nonlinear LFSR (NLFSR), multiple-recursive matrix method
(MRMM) [2, 3, 27], lagged fibonacci generators (LFG) [5, 9] are among the
popular FSRs used in literature. As FSRs have some memory states (resisters),
they can not be used in memoryless cipher-like block ciphers, therefore, are
usually used in stream ciphers. If FSR word size is 1, then it is known as bit-
oriented FSR like LFSR and NLFSR. Mainly, LFSRs are used for keystream
generators for stream cipher applications due to their ease and efficiency in
implementation. The maximum-length LFSR sequences have many good ran-
domness properties. However, they are not cryptographically secure due to
their linear structure. Several methods have been proposed to destroy the
linearity of LFSRs, such as combining the outputs of several LFSRs by a non-
linear function, nonlinearly filtering states of an LFSR, and irregularly clocking
an LFSR. However, the algebraic attacks and fast algebraic attacks, intro-
duced in [10] and [11], seem to threaten LFSR-based stream ciphers [8]. As
an alternative, NFSRs become popular bit-oriented building blocks for stream
ciphers. Many of the candidates in the eSTREAM project [12] and CAESAR
competition [6] utilize NFSRs as one of their main building blocks.

However, bit-oriented FSRs do not take advantage of modern word-based
processors, unlike MRMM and LFG [2, 23, 26]. LFG is a word-oriented
FSR with coefficients of either 0 or 1 and produces bitstreams having many
good randomness properties. Similarly, MRMM is a word-oriented LFSR with
matrices as coefficients, having all statistical properties inherited by LFSR
and significantly improving the throughput of sequence generation. Though
MRMM takes advantage of the word-based processor and the bitstreams gen-
erated by it have good statistical properties, it is vulnerable due to its linear
structure. Like in LFSR, several approaches, including the filter generator,
nonlinear combination generator, and clock-controlled generators, have been
investigated in MRMM to destroy the linear structure. The cascade connection
of FSRs with one nonlinear FSR can be used for this purpose. The hardware-
oriented finalists Trivium [7] and Grain [16] of eSTREAM project, one of the
CAESAR competition finalists ACORN [17] utilize this cascade connection of
bit-oriented FSRs. Stream ciphers such as Lizard [14] and Plantlet [21] also
use the cascaded type of FSRs. In this paper, we have introduced several word-
based cascade systems (CSs) and have studied their periodicity and statistical
properties including the avalanche effect.
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For all FSRs, the execution steps are similar in each iteration or cycle. It
first calculates the feedback value using a feedback function, then shifts the
states and stores the feedback value in the last state. In this paper, we have
introduced a generalized expression for the feedback function of WFSR and
have studied a few particular cases. The remainder of this paper is organized as
follows. In Section 2, we introduce some basic concepts and related results. In
Section 3, we study WFSR and introduce a generalized form for the feedback
function of WFSR and explore nonsingular WFSR. In Section 4 we visit some
special cases of WFSRs. Several cascade systems consisting of MRMM and
LFG are discussed in Section 5. The final section concludes the paper.

2 Preliminaries

Denote by F2 and Fm
2 the finite field with two elements and the m-dimensional

vector space over F2, respectively. The symbol ⊕ denotes the addition in F2

and + represents the addition in the residue class ring Z/2mZ. The set of
all m × m matrices with entries in F2 is denoted by Mm(F2) and GLm(F2)
represents the set of all m × m invertible matrices in Mm(F2). The m × m
identity matrix is denoted by Im. For any matrix C ∈ Mm(F2), det(C) denotes
its determinant. Since two finite dimensional vector spaces F2m and Fm

2 are
isomorphic [22], the element of F2m may be thought of as a column vector of
size m over F2 and hence, for any s ∈ F2m and C ∈ Mm(F2) the matrix-vector
multiplication Cs is a well-defined element of Fm

2 . We use bold letter variable
if it belongs to F2m i.e., x ∈ F2m , whereas the normal letter x as a bit i.e.,
x ∈ F2. Let Wt(x) denote the hamming weight of x.

We denote by MPm[x 0, . . . ,xn−1] = Mm(F2)[x 0, . . . ,xn−1]/(x 0
2 ⊕

x 0, . . . ,xn−1
2 ⊕ xn−1), the set of all multivariate polynomial F (.) in n vari-

ables x 0, . . . ,xn−1 with coefficients in Mm(F2) such that F (0, . . . ,0) = 0 and
each x i ∈ F2m . If F ∈ MPm[x 0, . . . ,xn−1], then it can be expressed as follows.

F (x 0, . . . ,xn−1) =
∑

I∈P (N)

CI

∏
k∈I

xk (1)

where P (N) denotes the power set of N = {0, . . . , n−1} and CI ∈ Mm(F2).
For example, if N = {0, 1, 2} then the general expression of F (x 0,x 1,x 2) =
C0x 0 +C1x 1 +C2x 2 +C01x 0x 1 +C02x 0x 2 +C12x 1x 2 +C012x 0x 1x 2. In Eq.
(1), X =

∏
k∈I

xk is computed first, which returns an m-bit number and then

CIX is calculated using matrix-vector multiplication. Here the product
∏

can
be either field multiplication or modular integer multiplication ∗ or bitwise
AND operation &. Similarly, the sum

∑
is either modular integer addition +

or bitwise XOR operation ⊕. As field multiplication is an expensive operation
compared to the other two, so we only focus on the other two multiplication
operations ∗ and &. The algebraic degree of F denoted as deg(F) can be defined
as max{|I| : CI ̸= 0}, where |I| denotes the size of I.
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3 Word-oriented FSR

An n-stage word-oriented FSR (WFSR) is an FSR where each stage stores
a word of size m-bits. A state of a WFSR is a vector (x 0, . . . ,xn−1), where
x i indicates the content of stage i. Let S0 = (s0, s1, . . . , sn−1) be the initial
state of WFSR and suppose F ∈ MPm[x 0, . . . ,xn−1] is the feedback function
for WFSR. At every clock pulse, there is a transition from the state St =
(st, st+1, . . . , st+n−1) to the state St+1 = (st+1, st+2, . . . , st+n) for some integer
t ≥ 0, where sn+t = F (st, st+1, . . . , st+n−1). After consecutive clock pulses,
the WFSR outputs a word sequence [s] = {s0, s1, . . . , sn, . . .}. The sequence
[s] is ultimately periodic if there are integers r, n0 with r ≥ 1 and n0 ≥ 0 such
that sj+r = sj for all j ≥ n0. If n0 = 0, then [s] is said to be periodic and in
such case, the least positive integer r is called the period of the sequence [s].
A WFSR is called a linear WFSR if its feedback function F is linear and a
nonlinear WFSR otherwise.

Before discussing WFSR further, we present three WFSRs in the following
example.

Example 1 Consider a three-stage WFSR with word size 2 called WFSR1. The feed-
back functions of WFSR1 is considered as F1(x0, x1, x2) = C0x0 +C12x1x2 where

C0 =

(
1 1
0 1

)
and C12 =

(
1 0
0 1

)
. Here modular integer addition and modular integer

multiplication are used in the feedback value computation. Using the feedback func-
tion, one can compute the next state of a given state. The number of all possible
states for a WFSR of length 3 with word size 2 is 43. Fig. 1 shows a part of the state
diagram of WFSR1 with an initial state (1, 2, 3). For abuse of notation, we use 123
for the state (1, 2, 3). Here each number is converted to a vector and vice-versa dur-
ing the feedback value calculation. For this example, 0 = [0, 0]t, 1 = [0, 1]t, 2 = [1, 0]t

and 3 = [1, 1]t are used. It is easy to verify that the next state of 123 is 231 as
F (1, 2, 3) = 1. In this case, the state 231 is called the successor of 123, and 123 is
called the predecessor of 231.

Consider WFSR2, another three-stage WFSR with word size 2 with feedback
function F2(x0, x1, x2) = C0x0 + C12x0x1x2 where the matrix coefficients C0 and
C12 are same as in WFSR1. Fig. 2 shows a part of the state diagram of WFSR2 with
the same initial state 123. Suppose WFSR3 is another three-stage WFSR with word
size 2 having feedback function F3(x0, x1, x2) = C0x0+C12(x1&x2). The feedback
function is the same as in WFSR1 except the operation & is used in place of ∗. Fig.
3 shows a part of the state diagram of WFSR3 with the same initial state 123.

Fig. 1 The part of state diagrams of WFSR1 with initial state 123

Unlike WFSR1 and WFSR3, distinct vectors do not have distinct successors
in WFSR2. The states 233 and 330 of WFSR2 have common successors 301 i.e.,
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Fig. 2 The part of state diagrams of WFSR2 with initial state 123

Fig. 3 The part of state diagrams of WFSR3 with initial state 123

301 does not have unique predecessors. A WFSR (or its feedback function) is
called nonsingular if each state has a unique predecessor i.e., its state diagram
consists of disjoint cycles. In the case of bit-oriented FSR, it is shown in [13]
that the FSR is nonsingular if and only if its feedback function is of the form

f(x0, x1, . . . , xn−1) = x0 ⊕ g(x1, x2, . . . , xn−1) (2)

where the function g(.) does not depend on the variable x0. Now the natural
question arises, is there any necessary and sufficient condition for WFSR to be
nonsingular? It is easy to show that the WFSR is nonsingular if its feedback
function is of the form as in Eq. (2). There are other WFSRs whose feed-
back functions are in different form as WFSR1. In the following, we provide a
necessary and sufficient condition for which WFSR is nonsingular.

Theorem 1 An n-stage WFSR is nonsingular if and only if its feedback function
F ∈ MPm[x0, . . . , xn−1] can be represented as

F (x0, . . . , xn−1) = f0(x0)⊙ f1(x1, . . . , xn−1) (3)

where f0 is a bijective function and f1 is an arbitrary function Fn−1
2m → F2m . The

operation ⊙ is either + or ⊕.

Proof Suppose WFSR is nonsingular, then distinct vectors have distinct successors.
If the feedback function F does not contain any x0 term, then it is easy to get two
distinct vectors having a common successor. Thus, the expression of F must contains
x0 term and so F (x0, . . . , xn−1) can be expressed as f0(x0)⊙x0f2(x1, . . . , xn−1)⊙
f1(x1, . . . , xn−1) where f0(x0) contains all terms of single variable x0 and both
the functions f1 and f2 are independent of x0. Also f2 does not have any constant
term as all x0 terms are in f0 and so f2(0, . . . , 0) = 0. If f0 is not bijective, then

there exists x
′

0 ̸= x
′′

0 such that f0(x
′

0) = f0(x
′′

0 ). This implies that F (x
′

0, 0, . . . , 0) =

F (x
′′

0 , 0, . . . , 0) and thus (x
′

0, 0, . . . , 0) and (x
′′

0 , 0, . . . , 0) have common successor.
This is a contradiction and so f0 is bijective. Next to prove that f2 = 0. Suppose
f2 has some nonzero terms, then f2(x1, . . . , xn−1) must contain a term of xk for
k ̸= 0. In this case, F (0, 2, . . . , 2) = F (2m−1, 2, . . . , 2). This is not possible as WFSR
is nonsingular and so f2(x1, . . . , xn−1) = 0. This proves the necessary part.

To prove WFSR is nonsingular, we need to show distinct vectors have dis-
tinct successors. If the two vectors (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1) differ
in any component other than the first, then their successors (x1, x2, . . . , xn)
and (y1, y2, . . . , yn) are still distinct. Thus, WFSR is nonsingular if and only if
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(x0, x1, . . . , xn−1) and (y0, x1, . . . , xn−1) have distinct successors for x0 ̸= y0. Sup-
pose WFSR is singular, then there exists x0 ̸= y0 such that f(x0, x1, . . . , xn−1) =
f(y0, y1, . . . , yn−1). This implies that f0(x0) = f0(y0) for x0 ̸= y0. This is a
contradiction as f0 is bijective. This completes the proof.

□

Corollary 2 Bit-oriented FSRs are nonsingular if and only if the feedback function
f(x0, x1, . . . , xn−1) = x0 ⊕ g(x1, x2, . . . , xn−1).

Proof In the case of bit-oriented FSR, m = 1. Thus, there are two bijective functions
from F2 −→ F2. In both cases, the feedback function f is expressed in the desired
form. □

Note that if deg(F ) = 1, then the feedback function F in Eq. (1) satisfies
the criteria of Theorem 1 and so the feedback function is always nonsingular.

4 Some special cases of WFSR

4.1 Bit-oriented FSRs

The WFSR becomes a bit-oriented FSR when m = 1. In this case, the m×m
matrix coefficient Ck of Eq. (1) becomes a scalar ck ∈ F2. If deg(F ) = 1, then

F (x0, . . . , xn−1) =
n−1⊕
k=0

ckxk. This expression is the feedback function of well

known FSR called LFSR [13] and the theory of LFSRs is well-developed. If the
feedback polynomial of LFSR is primitive, then it generates maximal periodic
bitstreams for any nonzero initialization of LFSR states and these bitstreams
have most of the statistical properties.

If deg(F ) > 1 then bit-oriented FSR becomes NLFSR. There is no efficient
way to find a feedback function such that its corresponding NFSR can generate
bitstream with guaranteed long periods. On the other hand, given a feedback
function, it is hard to predict the periods of NFSR sequences. However, Golomb
proved that all sequences generated by an NFSR are periodic if and only if its
feedback function is nonsingular. The maximum period that can achieve by
an n-stage NFSR is 2n and in this case it is known as de Bruijn sequences.
Unlike the well-developed theory of LFSRs, the theory of NFSRs is not well-
understood due to its complexity.

4.2 MRMM

If deg(F ) = 1, word size m > 1 and ⊕ is used in place of ⊙, then the feedback

function as expressed in Eq. (1) becomes F (x0, . . . ,xn−1) =
n−1⊕
k=0

Ckxk where

C0, C1, . . . , Cn−1 ∈ Mm(F2). This is the general expression for the feedback
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function of MRMM [22]. For a periodic word sequence [s], it is always possible
to have a relation called linear recurring relation (LRR) among the elements as

si+n =

n−1∑
k=0

Cksi+k i ≥ 0. (4)

where C0, C1, . . . , Cn−1 ∈ Mm(F2) [22]. The Eq. (4) for [s] can be mapped
to an MRMM of order n over F2m which we denote as MRMM(m,n). The
sequence [s] is referred as the sequence generated by the MRMM(m,n) and the
polynomial associated with Eq. (4) denoted as M(x) = Imxn − Cn−1x

n−1 −
· · · − C1x− C0 with matrix coefficients is called the matrix polynomial of the
MRMM(m,n). The following proposition from [15] tells some basic facts about
MRMMs.

Proposition 3 For the sequence [s] generated by the MRMM(m,n), we have

(i) [s] is ultimately periodic and its period is no more than 2mn − 1.
(ii) if C0 is invertible, then [s] is periodic. Conversely, if [s] is periodic whenever

the initial state is of the form (b, 0, . . . , 0), where b ∈ F2m with b ̸= 0, then
C0 is invertible.

An MRMM(m,n) is called primitive if, for any choice of the nonzero initial
state, the sequence generated by that MRMM is periodic with period 2mn−1. It
is shown in [2] that the MRMM(m,n) is primitive if and only if the determinant
of the matrix polynomial M(x) of MRMM(m,n) is a primitive polynomial of
degree mn over F2.

4.3 LFG

If deg(F ) = 1, word size m > 1 and + is used in place of ⊙, then
F (x0, . . . ,xn−1) = C0x 0 + C1x 1 + . . . + Cn−1xn−1. If all Ck ∈ {Im, 0},
then F (x0, . . . ,xn−1) is the general expression of the feedback function of an
additive LFG. If f(x) = xn−cn−1x

n−1−. . .−c1x−c0 is the corresponding char-
acteristic primitive polynomial of LFG, then it is proved by R. P. Brent [5] that
the period of the recurrence relation is 2m−1(2n − 1) for all m ≥ 1 if and only
if f(x)2 + f(−x)2 ̸= 2f(x2) (modulo 8) and f(x)2 + f(−x)2 ̸= 2(−1)nf(−x2)
(modulo 8). Using matrix theory, George Marsaglia et al. [19] also showed in
their paper that the recurrence relation has the maximal period (2n − 1)2m−1

for all m ≥ 1 and for every initial state with at least one odd number if and
only if the transition matrix A corresponding to the characteristic primitive
polynomial has the following three properties:

• order j = 2n − 1 in the group of nonsingular matrices for mod 2,
• order 2j for mod 22,
• order 4j for mod 23.
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When an LFG has a maximal period, it is known as a primitive LFG.

5 Cascade connection of WFSRs

The word-oriented cascade connection of FSRs was discussed in [4], where the
cascade connection of MRMMs was analyzed. For the sake of completeness,
we revisit the word-oriented cascade connection again. In this paper, we focus
on a cascade system (CS) comprises of two WFSRs only. Suppose WFSR1

and WFSR2 are those two WFSRs where WFSR1 is cascaded into WFSR2 as
depicted in Fig. 4.

Fig. 4 The cascade connection of WFSR1 into WFSR2.

Consider the orders of WFSR1 and WFSR2 be n1 and n2, respectively. Let
S0 = {s0, s1, . . . , sn1−1} and T0 = {t0, t1, . . . , tn2−1} be the initial states of
WFSR1 and WFSR2. Suppose F1(x 0,x 1, . . . ,xn1−1) is the feedback function
for WFSR1, mapping from Fn1

2m to F2m . Similarly, let F2 : Fn2
2m → F2m be the

feedback function for WFSR2. Let g : F2m → F2m be a bijective function.
Consider the word sequence [s] is generated by WFSR1 in free running mode
and [t] is generated by the cascade connection of WFSR1 into WFSR2. We
say WFSR2 is running in scrambler mode and the feedback value of WFSR2

is modified as follows

ti+n2
= g(si)⊙ F2(ti, ti+1, . . . , ti+n2−1), for i ≥ 0, (5)

where the operation ⊙ can be either ⊕ or modular addition. Let Ps and Pt be
the period of the sequences [s] and [t], respectively. Then we have the following
relation between Ps and Pt.

Theorem 4 If WFSR1 is periodic and WFSR2 is nonsingular, then [t] is periodic
and Ps divides Pt.

Proof It is obvious that the sequence [t] will be ultimately periodic and let Qt

be the preperiod of [t]. Then, ti = ti+Pt
for any i ≥ Qt and so ti+n2

=
ti+n2+Pt

for any i ≥ Qt. So by Eq. (5), g(si) + F2(ti, . . . , ti+n2−1) = g(si+Pt
) +

F2(ti+Pt
, . . . , ti+Pt+n2−1). But Pt is the period of [t] and thus, g(si) = g(si+Pt

) for
all i ≥ Qt. As g is bijective, si = si+Pt

for i ≥ Qt. This implies that si = si+Pt
for

any i ≥ 0 as [s] is periodic. But, the period of [s] is Ps and so Ps divides Pt.
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Suppose, [t] is not periodic i.e., Qt > 0. Then, tQt+n2−1 = tQt+n2−1+Pt

as Pt is the period of [t] and Qt + n2 − 1 ≥ Qt. This implies, g(sQt−1) ⊙
F2(tQt−1, . . . , tQt+n2−2) = g(sQt−1+Pt

) ⊙ F2(tQt−1+Pt
, . . . , tQt+n2−2+Pt

). Since
Ps divides Pt, it implies sQt−1 = sQt−1+Pt

and so g(sQt−1) = g(sQt−1+Pt
). Thus,

F2(tQt−1, . . . , tQt+n2−2) = F2(tQt−1+Pt
, . . . , tQt+n2−2+Pt

). Again FSR2 is non-
singular and so by Theorem 1, F2 can be expressed as F2(x0, . . . ,xn−1) = f20(x0)⊙
f21(x1, . . . ,xn−1) with f20 is one-one. This results f20(tQt−1) = f20(tQt−1+Pt

) and
so tQt−1 = tQt−1+Pt

. Thus, ti = ti+Pt
for any i ≥ Qt−1. This is a contradiction to

the fact that Qt is the preperiod of [t]. Hence Qt = 0 and this completes the proof.
□

With ⊙ as ⊕ and the function g(.) as the identity function, the above result
is proved in [4, Theorem 9]. In the following section, we study the statistical
properties of the bitstream generated by different CSs using different values of
⊙ and later analyze the avalanche effect on states of CSs.

5.1 Cascade connection of two MRMMs

In this section, we analyze the randomness properties of the bitstreams gener-
ated by three MRMM-based CSs. We call CS as CS1 (or CS2) when ⊕ (or +)
is used for ⊙ in Eq.(5). The CS1 and CS2 are depicted in Fig. 5 and Fig. 6. In
both cases, g is taken as an identity map. The third cascade system CS3 is the
same as CS1 with g(.) as a nonlinear bijection function S box. The S box is
given in Appendix A. For experimental study in each CS, both FSRs are taken
primitive MRMMs defined over F216 i.e., m = 16. The order of MRMM1 and
MRMM2 is 10 and 7, respectively. The matrix polynomial of MRMM1 and
MRMM2 are x10 +R6x

8 +LCS8x
7 +R8x

6 +62924x5 +R9x
4 +R4x

1 +LCS1

and x7 +R11x
4 + LCS8x

3 + L9x
2 +R5x

1 + LCS14, respectively i.e., n1 = 10
and n2 = 7. Here Ra is the right shift operator defined as Ra(X) = X >> a
whereas Lb is the left shift operator defined as Lb(X) = X << b and the left
circular shift of X by c-bit is denoted as LCSc(X). As MRMM1 runs in free
running mode, we avoid all zero-state initialization situations in MRMM1. It
is observed that the results of the statistical test suite are similar for several
random initializations of the states of MRMM2 including all zero initialization
states. This occurs as the states of MRMM1 are injected into the states of
MRMM2 through its feedback calculation. Thus, the states of MRMM2 can be
initialized with any random values, but for our experimental set up we always
initialize with zero values.

Fig. 5 CS1 Fig. 6 CS2
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5.1.1 Comparison of statistical properties of CS1, CS2 and
CS3

Many statistical test suites have been developed to study and analyze the
randomness properties of a bitstream. In our experiment, we use NIST sta-
tistical test suite SP 800-22 Rev.1a [1]. To see the randomness properties of
the word sequences generated by CS1 and CS2, we first convert word sequence
[t] to bit sequence. By Theorem 4, (2160 − 1) is a factor of the period of the
word sequence, so the period of the corresponding bit sequence will be at
least 16(2160 − 1) as each word is 16-bit wide. We investigate the randomness
properties of the bitstream of CS1 as follows:

1. Initialize of states S0 and T0: Initialize all the states of MRMM1 and
MRMM2 to 0 except s0 = 1 i.e., sk = 0 for 0 < k ≤ n1 − 1 and tk = 0
for 0 ≤ k ≤ n2 − 1. Run for 48 iterations without collecting any bitstream.
The reason for the selection of 48 rounds is explained in Section 5.1.2.

2. Then for each iteration end, collect 16-bit keystream as t0. In this experi-
ment, it generates 100 bitstream files and each file consists of a bitstream
of length 1000000. For this, CS1 runs 6250048 times to generate these 100
files.

3. Then, NIST statistical test suite is performed on all those 100 bitstream
files. For this experiment, the significant value α is taken 0.05.

Similar to CS1, 100 bitstream files are generated for CS2 and CS3, then
NIST statistical test suite is performed. Note that both CS1 and CS2 are
the same except for different operations ⊙ used in Eq.(5). The comparative
statistical results are provided in Table 1. The first column tells the name
of each statistical test of the NIST test suite. The second, third, and fourth
columns show the number of passed files out of 100 in the case of CS1, CS2,
and CS3, respectively.

As [s] is generated by a primitive MRMM, it has good randomness proper-
ties. But it has low linear complexity due to linear structure. These randomness
properties will be inherited by CS1 as [s] is xored in the generation of [t]. This
fact is reflected in the second column of Table 1. It is checked that the linear
complexity of all files of CS1 is 4352 = m2(n1 + n2) as expected. Thus, none
of the bitstreams of length 1000000 passes the linear complexity test as the
expected linear complexity is 500000. Table 1 shows that statistical results on
the bitstream of CS1 and CS2 are very close except for the linear complexity.
In the case of the bitstream of CS2, it is tested that linear complexity is around
500000 for all 100 bitstreams of length 1000000. This is due to use of one mod-
ular addition1. Due to the presence of a nonlinear S box in CS3, the bitstreams
of CS3 have also good statistical properties like CS2. Therefore, both CS2 and
CS3 have an advantage over CS1 with respect to randomness property. The S

1It is known that if a =
∑m−1

i=0 ai2
i, b =

∑m−1
i=0 bi2

i and c = a + b =
∑m−1

i=0 ci2
i, with

ai, bi, ci ∈ {0, 1}, then c0 = a0⊕b0, and for 1 ≤ k < m, ck = ak⊕bk⊕
∑k−1

i=0 aibi
∏k−1

j=i+1(aj⊕bj).

As the value of word size m is 16, the nonlinear degree of the expression of c15 will be 16.
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No. of No. of No. of
Name of the test passed files passed test passed test

CS1 CS2 CS3

Frequency 95 95 97
BlockFrequency 96 99 99

Runs 98 94 97
LongestRunOfOnes 98 97 94

Rank 93 94 92
DiscreteFourierTransform 92 90 94

NonOverlappingTemplateMatchings 100 100 100
OverlappingTemplateMatchings 93 95 94

Universal 94 97 94
LinearComplexity 0 100 100

Serial 98 94 97
ApproximateEntropy 97 93 95
CumulativeSums 95 96 96

RandomExcursions 60 59 64
RandomExcursionsVariant 60 58 62

Table 1 Comparative statistical results of CS1 and CS2

box used in CS3 is generated by the S box construction method applied in the
AES block cipher.

5.1.2 Avalanche analysis on state registers of CS1, CS2 and
CS3

In this section, we analyze the avalanche effect on the states of three CSs. For
the avalanche analysis study, we kept the same MRMMs used in the previous
section for statistical analysis. After initialization of S0 and T0, we compute
experimentally the number of iterations needed to achieve avalanche property,
i.e., 50% bit changes in the states of each of three CSs separately. It is observed
that number of iterations to achieve 50% avalanche in the case of CS1 and CS2
is very close for any random initialization of S0 and T0. However, depending
upon the total weight of the initial states of CS, the number of iterations varies
to achieve 50% avalanche effect as shown in Table 2 and Table 3. The layout
of the experiment to generate Table 2 is as follows.

1. Set count = 0.
2. Initialize the states of MRMM1 and MRMM2: sk = ini-sk = 0 for 0 < k ≤

n1 − 1 and s0 = ini-s0 = 1. Here ini-sk is the initial state of sk. Initialize
tk = ini-sk = 0 for 0 ≤ k ≤ n2 − 1

3. Run MRMM1 for one iteration. Here one iteration means it calculates the
feedback value fb1 of MRMM1, then shift the states i.e., sk = sk+1 for
0 ≤ k < n1 − 1 and sn1−1 = fb1.

4. Run MRMM2 for one iteration i.e., it calculates the feedback value fb2 of
MRMM2, then shift the states i.e., tk = tk+1 for 0 ≤ k < n2 − 1 and
tn2−1 = fb2 ⊙ s0.

5. Calculate weight =
∑n1−1

k=0 Wt(sk ⊕ ini-sk) +
∑n2−1

k=0 Wt(tk ⊕ ini-tk).
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6. If | weight−m(n1+n2)
2 |≥ 3, increase count by 1 and go to step-3. Otherwise,

return count. Here 3 is the approximation value of 1% of the total size of
memory states i.e., m(n1 + n2).

Table 2 Avalanche effects Vs iteration numbers when all states except s0 are 0

CS1 CS2 CS3
Iter. Wt. of avalanche Wt. of avalanche Wt. of avalanche
No. states effect % states effect % states effect %
0 3 1.10 3 1.10 9 3.31
1 3 1.10 3 1.10 17 6.25
5 7 2.57 7 2.57 47 17.28
10 18 6.62 18 6.62 66 24.26
15 35 12.87 36 13.24 71 26.10
20 62 22.79 62 22.79 94 34.56
30 119 43.75 120 44.12 123 45.22
40 124 45.59 120 44.12 124 45.59

Table 3 Avalanche effects Vs iteration numbers when all states of MRMM1 are 0xFFFF
and all states of MRMM2 are 0

CS1 CS2 CS3
Iter. Wt. of avalanche Wt. of avalanche Wt. of avalanche
No. states effect % states effect % states effect %
0 23 8.46 23 8.46 17 6.25
1 46 16.91 46 16.91 34 12.50
2 68 25.00 68 25.00 50 18.38
3 90 33.09 83 30.51 68 25.00
4 104 38.24 107 39.34 80 29.41
5 125 45.96 124 45.59 97 35.66
6 144 52.94 144 52.94 115 42.28

Table 2 shows the total weight of the states and the percentage of total
states size of CS1, CS2, and CS3, respectively with respect to the iteration
number. Here the percentage of avalanche effect is calculated as (total weight
of the states of CS)/(total size of CS in bits) × 100. In this case, the total size
of CS in bits is 272. It is observed experimentally that both CS1 and CS2 take
almost the same number of iterations to achieve 50% avalanche effect for the
same nonzero random initialization of states.

Table 3 tells that around 6 iterations are needed to achieve the desired
effect. In this case, data are generated after all states of MRMM1 are initialized
with 0xFFFF i.e., all bits of MRMM1 are 1, and all states of MRMM2 are kept
0. It is also noticed that if the states of MRMM1 and MRMM2 are balanced,
then CS takes around 9 iterations to achieve 50% avalanche effect. Except s0,
if all states of CS1 and CS2 are in zero states, both CS1 and CS2 achieve the
avalanche property after 48 iterations. Therefore, during the study of statistical
properties of CS1 and CS2 in Section 5.1.1 we have collected bitstream after
48 iterations.
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5.2 Cascade connection of MRMM and LFG

In the previous section, we studied cascade systems comprised of MRMMs
only. In this section, we focus on two more cascade systems. One is CS4 consists
of two LFGs and the other is CS5 where one FSR is MRMM and the other is
LFG. Consider both the LFGs used in CS4 are two primitive additive LFGs
where LFG1 is cascaded into LFG2. If [t] is a nonzero sequence generated by
this cascade system, then we have the following result.

Theorem 5 Let the order of LFG1 and LFG2 be n1 and n2, respectively having
common word size m. If gcd(n1, n2) = 1, then Per[t] = (2n1 − 1)(2n2 − 1)2m−1.

Proof Suppose [s] is the word sequence generated by LFG1. Then [s] is periodic as
LFG1 is primitive and Per[s] = (2n1 − 1)2m−1. Again the feedback function f2(.) of

LFG2 is nonsingular and so (2n1 − 1)2m−1 divides Per[t] by Theorem (4). Let [t(1)]
be the bit sequence consisting of the first least significant bit (LSB) of each word of

[t]. Then, it can be visualized that [t(1)] is generated by the cascade connection of

two primitive LFSRs. Thus Per[t(1)] = (2n1 − 1)(2n2 − 1) by [4, Corollary 14]. This

implies (2n1 − 1)(2n2 − 1)2m−1 divides Per[t] as Per[t(1)] divides Per[t].
Again, it is obvious that Per[t] divides lcm((2n1−1)2m−1, (2n2−1)2m−1) as both

the LFGs are primitive. As gcd(n1, n2) = 1, lcm((2n1 − 1)2m−1, (2n2 − 1)2m−1) =
(2n1 − 1)(2n2 − 1)2m−1. This proves the desired result. □

Since the period of CS4 is (2n1 − 1)(2n2 − 1)2m−1, the lower bound for
linear complexity of any nonzero bitstream of CS4 is n1n22

m−2. In CS5 LFG
cascades into MRMM. Then using similar arguments, the following theorem
can be proved.

Theorem 6 Let the order of LFG and MRMM be n1 and n2, respectively having
common word size m. If gcd(n1,mn2) = 1, then Per[t] = (2n1 − 1)(2mn2 − 1)2m−1.

5.3 Cryptanalysis of word-based CSs

In the previous section, we studied cascade systems comprise of MRMMs and
LFGs, then some of their statistical properties. In this section, we discuss
a cryptanalytic attack and its complexity. We start with a general method
for reconstructing the original sequence from a known portion of the output
word sequence. Assume that [t] is the known output word sequence of the
cascade system of Eq. (5) where the function g(.) is the Identity function. Thus,
ti+n2 = si⊙F2(ti, ti+1, . . . , ti+n2−1), for i ≥ 0. Our aim is to reconstruct the
initial states of both the FSRs (i.e., s0, . . . , sn1−1 and t0, . . . , tn2−1). Since the
procedure of cryptanalytic attack is similar for all discussed cascade systems
comprised of MRMMs and LFGs except CS3, we only focus on CSs of LFGs
i.e., CS4. Consider LFG1 is cascaded into LFG2 in the CS and both LFGs
are primitive. Let [t(1)] be the bit sequence consisting of the first LSB of each
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word of [t]. Then, [t(1)] is a bit sequence generated by a cascade system of two
primitive LFSRs. If n1 and n2 are the order of LFG1 and LFG2, then from
any 2(n1 + n2) consecutive bits of [t(1)], it is possible by Berlekamp-Massey
algorithm, to get the feedback polynomials of both LFSRs and so for LFGs.
Now from Eq. (5), si = (tn2+i − F2(ti, ti+1, . . . , tn2−1+i)) mod 2m, for i ≥ 0
and so the initial states s0, . . . , sn1−1 can be computed, once [t] is known.

Since t0, . . . , tn2−1 are assumed to be part of the secret key, they should not
be used as keystream words. Let us assume the keystream words {tn2+i}i≥0

are known. Then using the Berlekamp-Massey algorithm on [t(1)], it is again
possible to find the feedback polynomial of both the LFGs. Now sn2+i can be
computed as sn2+i = (t2n2+i − F2(tn2+i, . . . , t2n2−1+i)) mod 2m, for i ≥ 0.
Again sn2+n1−1 = F1(sn2−1, sn2

, . . . , sn2+n1−2) and F1(.) is linear, thus sn2−1

can be calculated from it. Using the same procedure, it is possible to retrieve
all initial states of LFG1. Here also same 2(n1 + n2) consecutive words of [t]
is sufficient to mount this attack. This attack is summarized as follows.

Algorithm 1 Attack on LFG-based cascade systems

Input: The output word sequence [t]
Output: Recover the initial states of LFGs

1 if [t] ̸= 0 then

2 Collect [t(1)], the first LSB of each word of [t] Apply the Berlekamp-Massy
algorithm on [t] and get the feedback polynomial of LFGs.

3 Using Eq. (5), calculate initial states of LFGs

4 else
5 All states of LFGs are 0

This attack is applicable as long as the bits of [t(1)] satisfy the linear
recurring relation of order (n1 + n2) or less. One easy solution is to use a
nonlinear bijective function g(.) to destroy the linear structure of [t(1)] such as
the use of an S box. Thus, this cryptanalytic attack is not applicable to CS3.
In the case of an LFG-based cascade system, simply rotation by a nonzero
value will also destroy linear relation in the 1st LSB of [t].

6 Conclusion

WFSRs are useful as pseudorandom sequence generation. In this paper, we
have given a general expression for WFSRs. In Table 4, some well-known FSRs
are shown as the special case of WFSR by putting different restrictions. Col-
umn 1 of Table 4 tells the name of the FSR. Columns 2 and 3 give the value
of the degree of feedback function F and the word size m, respectively. Col-
umn 4 tells which operation is used for ⊙ in Eq. (5) and column 5 says, the
multiplication operation used when deg(F ) > 1.



Springer Nature 2021 LATEX template

Generalized WFSR 15

FSR deg(F ) m ⊙
∏

LFSR 1 1 ⊕
NLFSR > 1 1 ⊕ &
LFG 1 > 1 +

MRMM 1 > 1 ⊕

Table 4 Special cases of different WFSRs

Appendix A

S[256] = [ 0x9A, 0x85, 0xAF, 0xBC, 0x00, 0xAB, 0x89, 0xC1, 0x6D, 0x7F,
0xB8, 0x1C, 0x13, 0x30, 0x37, 0xA6, 0xDB, 0x71, 0xD2, 0x54, 0x31, 0x32,
0xD9, 0xFC, 0xE4, 0x99, 0xCF, 0x15, 0xF6, 0x34, 0x84, 0xBF, 0x3A, 0xAA,
0x6F, 0xB3, 0xBE, 0xEE, 0xFD, 0xD3, 0x4F, 0x23, 0xCE, 0x9B, 0x3B, 0xCC,
0xA9, 0x04, 0xA5, 0xF2, 0x1B, 0xC3, 0x8A, 0xF3, 0x5D, 0x16, 0xAC, 0x47,
0x77, 0x11, 0x2F, 0x1E, 0x08, 0x2E, 0xCA, 0x09, 0x38, 0x40, 0xDA, 0xE7,
0xB4, 0xE6, 0x88, 0xED, 0xA0, 0xD1, 0x29, 0xE3, 0x3E, 0xC5, 0x70, 0x58,
0x46, 0x91, 0x0A, 0xAD, 0x1A, 0xA1, 0x4A, 0xCD, 0x0B, 0x9F, 0xB9, 0x20,
0xD5, 0x42, 0x05, 0xF1, 0x14, 0x75, 0xE0, 0xAE, 0x36, 0xC6, 0x92, 0x8E,
0x94, 0x26, 0x79, 0xB5, 0xDC, 0xB6, 0x81, 0x3C, 0x74, 0xC4, 0xD6, 0x19,
0xE5, 0xA8, 0xFA, 0x12, 0xD8, 0xDE, 0x69, 0x49, 0x7A, 0x44, 0xB2, 0xD0,
0xE9, 0xF0, 0xCB, 0x56, 0x4D, 0x07, 0xBA, 0x97, 0x24, 0xE2, 0x8D, 0x59,
0xA4, 0xA3, 0x93, 0x86, 0x21, 0xF8, 0x3D, 0x83, 0x3F, 0x28, 0x43, 0xA7,
0x9C, 0x98, 0x72, 0x7D, 0x8F, 0xC8, 0xEF, 0x2B, 0x41, 0x90, 0xF4, 0xEC,
0x1F, 0xF9, 0x68, 0x51, 0x01, 0x0C, 0x60, 0x62, 0xBD, 0x5A, 0x48, 0x52,
0x8B, 0x67, 0xE8, 0xFE, 0xA2, 0x53, 0xB1, 0xC2, 0xC7, 0x96, 0x87, 0x22,
0x4C, 0x45, 0x55, 0x4B, 0x95, 0xEB, 0xDD, 0xFF, 0xD7, 0x5E, 0x1D, 0x9D,
0x80, 0x6A, 0x76, 0xD4, 0x0E, 0x4E, 0x9E, 0x50, 0x2A, 0x82, 0x27, 0x7C,
0x7E, 0x61, 0x6B, 0x6E, 0x0D, 0xB7, 0x03, 0x5C, 0x8C, 0xFB, 0x17, 0x2D,
0x73, 0xC0, 0x57, 0x18, 0x0F, 0xDF, 0x06, 0x33, 0xE1, 0x7B, 0x25, 0x66,
0x39, 0x78, 0x10, 0x6C, 0x64, 0xF7, 0xBB, 0xB0, 0x02, 0x35, 0x63, 0x5F,
0xC9, 0x2C, 0xEA, 0x65, 0xF5, 0x5B]
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