
One-Way Functions vs. TFNP: Simpler and Improved

Lukáš Folwarczný Mika Göös Pavel Hubáček
Czech Academy of Sciences EPFL Czech Academy of Sciences

Charles University Charles University

folwarczny@math.cas.cz mika.goos@epfl.ch hubacek@iuuk.mff.cuni.cz

Gilbert Maystre Weiqiang Yuan
EPFL EPFL

gilbert.maystre@epfl.ch weiqiang.yuan@epfl.ch

June 16, 2023

Abstract. Simon (1998) proved that it is impossible to construct collision-resistant hash
functions from one-way functions using a black-box reduction. It is conjectured more gen-
erally that one-way functions do not imply, via a black-box reduction, the hardness of any
total NP search problem (collision-resistant hash functions being just one such example). We
make progress towards this conjecture by ruling out a large class of “single-query” reduc-
tions. In particular, we improve over the prior work of Hubáček et al. (2020) in two ways:
our result is established via a novel simpler combinatorial technique and applies to a broader
class of semi black-box reductions.

1 Introduction

Simon [Sim98] (see also [MF21, §4.4.2] for exposition) famously proved that there is no black-box
construction of collision-resistant hash functions (CRHFs) from one-way functions (OWFs). In
particular, we may state Simon’s impossibility result (in a slightly weaker form) as proving the
existence of a pair of oracles (f,Solve) satisfying the following.

(1) Random injection. Oracle f : {0, 1}∗ → {0, 1}∗ is an injective black-box function map-
ping n-bit strings to (n+ 1)-bit strings. In fact, f can be chosen as a random injection.

(2) Collision finder. Oracle Solve : {0, 1}∗ → {0, 1}∗ is a black-box function that can find
collisions in any shrinking function. In more detail, if Cf is any circuit with f -gates that
computes a function from n bits to n−1 bits, then Solve(Cf) returns a collision pair (u, v)
such that u ̸= v and Cf (u) = Cf (v).

(3) One-wayness. Oracle f is one-way even in the presence of Solve. That is, given f(x) for
a randomly chosen x ∼ {0, 1}n, no poly(n)-time algorithm Rf,Solve(f(x)) (having oracle
access to both f and Solve) can output x with non-negligible probability.

In summary, (1)–(3) constitute a two-oracle relativised world where injective OWFs exist
but CRHFs do not (every candidate hash function constructed out of f can be broken by Solve).
This rules out any black-box construction of CRHFs from OWFs.

1.1 Our result: Generalisation to TFNP

In this paper we ask: How far can we generalise Simon’s impossibility result? Recent work [RSS21,
HKKS20] has suggested a vast such generalisation. Namely, they have conjectured that it is im-

1

mailto:folwarczny@math.cas.cz
mailto:mika.goos@epfl.ch
mailto:hubacek@iuuk.mff.cuni.cz
mailto:gilbert.maystre@epfl.ch
mailto:weiqiang.yuan@epfl.ch

Algorithm Rf(x)

x

ff(1)=?

f (1)=3

Solve

solve C f

u

Figure 1: Two-oracle model: The reduction algorithm aiming to invert f(x) (for a uniform random x)
has query access to f itself and also the oracle Solve that can solve any given TFNP instance.

possible to base the hardness of any total NP search problem (CRHFs are just one such example)
on injective OWFs in a fully black-box fashion (see also Section 1.2).

Total search problems. An NP search problem is determined by a polynomial-time verifier V .
On input x, the search problem is to find some witness u of polynomial length, |u| ≤ poly(|x|),
that is accepted by the verifier, V (x, u) = 1. The search problem is total if every x admits
some such polynomial-length witness. The theory of total NP search problems (class TFNP)
was pioneered in the works [MP91, JPY88, Pap94]. See also [Das19, Hol21] for more modern
expositions. For example, (worst-case) CRHFs are captured by the TFNP problem where on
input a circuit that computes a shrinking function, the goal is to find a non-trivial collision pair.
The class of all problems that reduce to this collision finding problem forms a subclass of TFNP
called PWPP (“polynomial weak pigeonhole principle”) [Jeř16].

It is believed that TFNP does not have complete problems [Pud15]. However, every problem
in TFNP reduces to the following promise search problem: Given a circuit C : {0, 1}n → {0, 1}
that is promised to be satisfiable, find some satisfying assignment. Indeed, if we want to solve the
total search problem determined by verifier V then, on input x, we can construct the satisfiable
circuit C(u) = V (x, u) whose satisfying assignments correspond to witnesses for x.

Towards extending Simon’s result to cover all TFNP problems, we replace (2) with the
following stronger condition.

(2+) TFNP solver. Oracle Solve : {0, 1}∗ → {0, 1}∗ can find a solution to any TFNP problem.
In more detail, if Cf : {0, 1}n → {0, 1} is any circuit with f -gates that is promised to be
satisfiable (for every f there is u such that Cf (u) = 1), then Solve(Cf) returns some u
with Cf (u) = 1. (If Cf does not satisfy the promise, then Solve(Cf) is undefined.)

Ideally, we would like to exhibit a two-oracle world satisfying (1), (2+), (3). This would
give the desired full generalisation of Simon’s result to all of TFNP. We make progress towards
this goal by establishing the one-wayness of f against a large class of “single-query” algorithms.
Namely, we replace (3) with the following weaker condition.

(3−) Single-query one-wayness. Oracle f is one-way against any single-query algorithm:
Suppose Rf,Solve is a poly(n)-time algorithm (see Figure 1) that on any input y:

− makes a single query to Solve (satisfying the promise), and
− makes no f -queries before calling Solve.

Then, given a challenge y := f(x) where x ∼ {0, 1}n is uniform, the algorithm Rf,Solve(y)
cannot output x with non-negligible probability.

2

Theorem 1 (Main result). There exists a pair of oracles (f,Solve) satisfying (1), (2+), (3−).

1.2 Comparison to [HKKS20] and other related work

Our result directly improves upon the work of Hubáček et al. [HKKS20], who were the first to
rule out the existence of a restricted class of black-box constructions [IR89, RTV04] of hard TFNP
problems from OWFs. Our improvements are two-fold.

1. Ruling out semi black-box reductions. Our results apply to a broader class of semi
black-box reductions. A fully black-box reduction algorithm Rf,Solve must succeed in invert-
ing the challenge y = f(x) given access to any TFNP solver, whereas the weaker notion of a
semi black-box reduction allows the reduction to depend on the behaviour of the solver. The
difference in the order of quantifiers makes ruling out fully black-box reductions conceptu-
ally easier. In particular, when designing a TFNP solver that would make a purported fully
black-box reduction err, one can exploit the code of the reduction. Hubáček et al. [HKKS20]
followed this approach and designed a TFNP solver that exploits the reduction: upon re-
ceiving a TFNP instance, their Solve estimates the set of likely inversion challenges y that
would make the reduction query the received TFNP instance. Their solver then attempts to
return a solution that does not explicitly aid in inverting the challenge y.

2. Simpler TFNP solver and analysis: On the technical level, [HKKS20] employed an in-
formation theoretic incompressibility argument common to various previous works in the
context of black-box separations in cryptography (e.g. [GT00, GGKT05, HHRS15]). In this
work, we take a more direct, combinatorial approach to designing and analysing our solver.
Crucially, this allows us to design Solve independently from the reduction R and extend the
previous results to the weaker notion of semi black-box reductions (thus, proving a stronger
separation result). We note that our techniques might be of independent interest for extend-
ing some of the known black-box separations in cryptography, e.g., towards revisiting the
fully black-box separation of trapdoor predicates from trapdoor functions [GMR01].

Other related work. Our impossibility result can be seen as part of a long line of ongo-
ing research seeking extrinsic evidence explaining the current lack of efficient algorithms for
many subclasses of TFNP. Papadimitriou [Pap94] already pointed out that the existence of
one-way permutations implies the hardness of PPP-complete problems. More recently, similar
conditional lower bounds were shown for other subclasses of TFNP (such as PPAD and CLS)
under various generic [AKV04, BPR15, KS20, HY20, HNY17, KNY19, CHK+19, BG20] or spe-
cific [Jeř16, LV20, KPY20, JKKZ21, BCH+22, KLV23] cryptographic hardness assumptions.
See also [HKKS20, §1.3] for additional discussion and references.

2 Proof Overview

The crux of proving our main result (Theorem 1) is finding a suitable definition of Solve(Cf)
where Cf is a satisfiable circuit: Which satisfying assignment u should we return so that u is
not helpful for inverting f? To understand why this task is tricky, it is instructive to discuss
the common pitfalls associated with natural attempts at defining Solve.

2.1 Common pitfalls

Suppose we define Solve(Cf) as the lexicographically first satisfying assignment of Cf . Then,
with a single query to Solve, we can in fact solve any partial NPf search problem, including
inverting f . For example, consider the canonical search problem where on input a circuit Df

that is not necessarily satisfiable, output either a satisfying assignment of Df or conclude that
none exists. It is easy to transform Df into a satisfiable circuit Cf—namely, modify Df to

3

always accept the all-1 assignment—such that the lexicographically first satisfying assignment
to Cf allows us to deduce a satisfying assignment to Df if one exists.

The same problem arises even if we define Solve(Cf) as a uniformly random satisfying
assignment of Cf . Here we can again solve the partial search problem associated with an n-
bit circuit Df by transforming it into a satisfiable (n + 1)-bit circuit Cf where each satisfying
assignment u of Df gives rise to two satisfying assignments, 0u and 1u, in Cf , and where the
all-1 assignment always satisfies Cf . With probability at least 2/3, the assignment returned
by Solve(Cf) allows us to deduce a satisfying assignment for Df if one exists. (Versions of
these pitfalls were present already in Simon’s special case of CRHFs; see [Bae14] for discussion.)

2.2 Stable oracle Solve

Our goal is to design Solve(Cf) so that it returns a satisfying assignment that leaks little
information about any particular image element. To formalise this property, let us write N := 2n

for short, and let F denote the set of all injective functions from [N] := {1, . . . , N} to [2N].
Moreover, we let Fy ⊆ F for y ∈ [2N] denote the set of all f ∈ F such that y ∈ Im(f) where
Im(f) := f([N]) is the image of f . Similarly, we define F−y := F \ Fy as the set of functions
without y in their image. For f ∈ F−y and x ∈ [N], we write fx→y ∈ Fy for the function that
is obtained from f by re-defining f(x) := y.

The following lemma encapsulates the key property of our solver. The solver’s output is
stable under small perturbations to f : for any image y ∈ [2N], the output rarely changes when
Solve is run on a random function f ∼ F−y compared to a random f ∼ Fy.

Lemma 2 (Stability Lemma). There exists an oracle Solve satisfying (2+) such that for ev-
ery y ∈ [2N] and every satisfiable circuit Cf of size t,

Pr
f∼F−y

x∼[N]

[Solve(Cf) ̸= Solve(Cfx→y)] ≤ O(t/N1/2).

The Stability Lemma alone is enough for us to prove property (3−) (and, hence, the main
theorem), which we do in Section 4. Next, we sketch the overall strategy for our proof of the
Stability Lemma, which we present in Section 3.

Covering of F by subcubes. When a size-t circuit Cf is run on input u, we can view
its execution as a decision tree Qu of depth t, querying the function f on at most t domain
elements x ∈ [N]. Each leaf of Qu is labelled with an output bit Cf (u) ∈ {0, 1}. We identify
each leaf of Qu with a partial assignment T : [N] → [2N]∪ {∗} that records the query outcomes
leading to that leaf. In particular, the number of non-∗ values in T is |Dom(T)| ≤ t where
Dom(T) := {x ∈ [N] : T (x) ̸= ∗}. We call such T a conjunction of width at most t. We say
that T is consistent with f if T and f agree on the non-∗ values. We also define the subcube
Cube(T) := {f ∈ F : T is consistent with f}.

Consider the set of leaves given by

T :=
⋃
u

{
T : T is a leaf of Qu labelled with output bit 1

}
. (1)

That is, T contains all leaves corresponding to accepting computations of Cf (u) over all u. Note
that if Cf is a satisfiable circuit, then T covers the whole space of injective functions F :⋃

T∈T
Cube(T) = F .

This is because, for each f ∈ F , there is some u such that Cf (u) = 1 and the corresponding leaf
is included in the union above.

4

Solver as a decision list. A width-t decision list over F is a sequence X = (Xi)i∈[m], where
each Xi is a width-t conjunction labelled with an output string ℓ(Xi) ∈ {0, 1}∗. On input a
function f ∈ F , the decision list outputs ℓ(X(f)), where X(f) is the first conjunction Xi in the
sequence (if any) such that f ∈ Cube(Xi). Therefore, a decision list defines a total function if
the conjunctions Xi cover all of F , that is,

⋃
iCube(Xi) = F ; otherwise the decision list defines

a partial function, defined only on a subset of F .
We define Solve(Cf) by choosing a careful ordering X1, . . . , Xm of the conjunctions in T .

This defines the decision list X := (Xi)i and the solver then returns ℓ(X(f)) where we de-
fine ℓ(Xi) as the satisfying assignment of Cf that gave rise to leaf Xi. For simplicity, we often
think of the solver as returning the whole conjunction X(f) rather than merely its output label.
This will only provide more information, and Lemma 2 still holds with this interpretation.

Non-leaky ordering. Which ordering of T should we choose? Recall (Section 2.1) that a
lexicographic or a random ordering cannot work. We say a conjunction T leaks y iff y ∈ Im(T)
(where Im(T) is the image of T understood as a partial function). Our Solve constructs a
decision list X = (Xi)i∈[m] such that each image element is rarely leaked:

∀y ∈ [2N] : Prf∼F [X(f) leaks y] ≤ N−Ω(1). (2)

To this end, we define X iteratively. Initially, X is the empty list whose output is undefined
over the whole space F . We then keep adding conjunctions from T to X in order to increase
its domain of definition. If ever in this process an image element y ∈ [2N] becomes close to
violating (2), we start treating y as protected : in subsequent iterations, we only add conjunctions
to X that do not further leak y. In particular, this requires us to prove a nontrivial lemma
(Lemma 5) that ensures we can always find some T ∈ T that avoids leaking protected elements
and which, when appended to X, increases its domain of definition. Finally, we show that any
decision list with property (2) satisfies the Stability Lemma (Lemma 2).

2.3 Discussion: Challenges in strengthening our result

Despite our simplified proof technique, we have been unable to extend our proof to handle
algorithms in (3−) that query Solve multiple times, or even algorithms that query f before
the single query to Solve. In fact, algorithms that query f before querying the solver comprise
an important class of black-box reductions. This includes, for example, the standard reduction
from CRHFs to OWFs (see, e.g., [MF21, §4.1.3]), where the reduction algorithm first queries
the hash function and only then makes a single query to a preimage finder.

One approach to handling f -queries before a single Solve-query would be to prove a stronger
version of our Stability Lemma. In particular, we would like the stability property to hold even
when the solver is run on a random function from Cube(T), where T is a low-width conjunction
that records the outcomes of the f -queries before the Solve-query. Importantly, the definition
of Solve is not allowed to depend on T (that is, Solve does not know which values of f the
algorithm has decided to query). We leave the following as an open problem.

Conjecture 3 (Stability for subcubes). There is a (perhaps randomised) oracle Solve satis-
fying (2+) such that for every y ∈ [2N], a width-t conjunction T not leaking y, and a size-t
satisfiable circuit Cf ,

Pr
f∼F−y∩Cube(T)

x∼[N]

[Solve(Cf) ̸= Solve(Cfx→y)] ≤ tO(1)/NΩ(1).

3 Oracle Solve: Definition and Stability Lemma

In this section, we first define our oracle Solve in Section 3.1 and then prove the Stability
Lemma in Section 3.3.

5

3.1 Definition of Solve

Recall our plan from Section 2.2: Given a satisfiable circuit Cf of size t, we consider its associated
width-t covering T of F given by (1). Our Solve then chooses an ordering X1, . . . , Xm of the
elements of T that defines the decision list X := (Xi)i∈[m] computing Solve(Cf). Recall

also that we think of Solve(Cf) as returning the conjunction X(f) rather than its associated
satisfying assignment.

Our goal is to find an ordering that satisfies the following non-leakiness property.

Claim 4. For all Cf of size t, there exists a decision list X := (Xi)i∈[m] such that, for every

y ∈ [2N], it holds that Prf∼F [X(f) leaks y] ≤ 6tN−1/2.

The construction of X consists of two phases. We start with X being the empty decision
list, whose output is undefined over the whole space F . Then, in the first phase, conjunctions
T ∈ T are carefully selected and appended to X to increase its domain of definition, while
ensuring that no y is leaked too often. In the second phase, when X already covers most of F ,
we complete X by adding the remaining conjunctions in T to X in an arbitrary order.

We may assume that T does not contain the empty conjunction, as otherwise we could define
Solve to always return that—this covers all of F while not leaking any image.

Phase I: Greedy coverage. To avoid leaking some y ∈ [2N] too frequently, we keep track
of a “leakage vector” and protect images whose probability of leakage is too high. As long as
the current coverage of X and the number of images to protect are not too large, the following
lemma (proved in Section 3.2 below) will allow us to increase the coverage by adding another
conjunction T ∈ T to X.

Lemma 5 (Next Subcube Lemma). Let T be a width-t covering of F . For any U ⊆ F with
|U | ≥ 2tN−1/2 · |F| and for any set of protected images P ⊆ [2N] with |P | ≤ N1/2/2, there exists
T ⋆ ∈ T such that T ⋆ leaks none of P and Cube(T ⋆) ∩ U ̸= ∅.

For each iteration step i ≥ 0 of the first phase, let X be the current decision list, A(i) :=⋃i
j=1Cube(Xj) ⊆ F be the set of functions already covered and let L(i) ∈ [0, 1]2N be the leakage

vector defined by

L(i)
y := Prf∼F [f ∈ A(i) and X(f) leaks y] where y ∈ [2N].

Note that, in particular, L(0) = 02N as X is initially the empty decision list. Fix α := 2tN−1/2.
The first phase proceeds as long as |A(i)| ≤ (1 − α)|F| and ensures that each image is leaked
with probability at most 2α for a random f ∼ F . More precisely, at step i, the set of images to

be protected is defined as P (i) := {y ∈ [2N] : L
(i)
y ≥ α}. Since each conjunction T ∈ T leaks at

most t different images, it holds that throughout the first phase

|P (i)| ≤ t · |A(i)|
α · |F|

≤ t

α
=

N1/2

2
.

Therefore, Lemma 5 can be invoked with U := F \ A(i) to obtain some T ⋆ which does not leak
any image y ∈ P and finally we set Xi+1 := T ⋆ to extend the coverage of X.

Phase II: Completion. In the second phase, |A(i)| > (1−α)|F|, and hence the fraction of F
yet to be covered is tiny enough that we can afford to complete X arbitrarily: We append all
the so-far unused T ∈ T to X in an arbitrary order. This completes the description of X. It
remains to establish Claim 4.

6

F1 F0

T ⋆

U

Easy case

F1 F0

T ⋆

U

Hard case

Figure 2: In Lemma 5, the goal is to extend the covering U of F by appending a conjunction T ⋆ (green
subcube) with Cube(T ⋆) ∩ U ̸= ∅ that does not leak any protected image y ∈ P . As long as there exists
an f ∈ F1 \U , the easy case applies and one can pick some T ⋆ ∈ T 1 that covers f . If U covers all of F1,
then we rely on a spill-over argument that exploits the small width of the conjunctions in T 1.

Proof of Claim 4. Fix some y ∈ [2N] and let i∗ be the last step of the first phase, that is,
the largest i∗ such that |A(i∗)| ≤ (1 − α)|F|. We first bound the probability that y is leaked
and f ∈ A(i∗+1). Let us first suppose that y ∈ P (i) \ P (i−1) for some i ≤ i∗ and observe that:

Pr
f∼F

[f ∈ A(i∗+1) and X(f) leaks y] ≤ Pr
f∼F

[f ∈ A(i−1) and X(f) leaks y] + Pr
f∼F

[f ∈ Xi]

≤ α+ Pr
f∼F

[f ∈ Xi]

≤ 2α.

The first inequality and second inequalities hold by construction: as soon as Ly ≥ α, y is
protected and not leaked by any upcoming subcube of the first phase. We still need to account
for an extra subcube that might overflow the α-threshold. Note that since Xi is not empty,
Prf∼F [f ∈ Xi] ≤ 1/2N ≤ α using the crude approximation corresponding to Xi having unit
width. A similar calculation can be carried out to get the same bound in the case y /∈ P (i) for
all i ≤ i∗. Finally, note that since the first phase covers most of F , we have:

Pr
f∼F

[X(f) leaks y] ≤ Pr
f∼F

[f ∈ A(i∗+1) and X(f) leaks y] + Pr
f∼F

[f /∈ A(i∗+1)] ≤ 2α+ α =
6t√
N

.

3.2 Proof of Next Subcube Lemma

Proof of Lemma 5. Let us partition F = F0 ∪ F1 into F0 := {f ∈ F : P ∩ Im(f) ̸= ∅}
and F1 := {f ∈ F : P ∩ Im(f) = ∅} and fix T 1 := {T ∈ T : Cube(T) ∩ F1 ̸= ∅}. Observe that
each T ∈ T 1 covers some f ∈ F1 and, as such, leaks no protected image y ∈ P . To prove the
lemma, it is thus sufficient to exhibit some conjunction T ⋆ ∈ T 1 with T ⋆ ∩ U ̸= ∅. Since T 1

is a covering of F1, the existence of such T ⋆ is immediate if there exists f ∈ U ∩ F1. If this
is not the case, we leverage the fact that subcubes of T 1 have bounded width so that T 1 must
ultimately cover a good portion of F0, too (see Figure 2). To make this intuition formal, we
show how to transform a sample of D1, the uniform distribution on F1, into a sample of D0,
the uniform distribution on F0. Consider the following process:

1. sample g ∼ D1,
2. sample h ∼ D0 and let Q := Im(h) ∩ P ,
3. sample a random subset I ⊆ [N] of size |Q|,

7

4. let f be obtained from g by redefining the values on I by f(I) := Q where the exact
mapping is chosen according to a uniform random bijection π : f(I) → Q.

Observe that the distribution of f is exactly D0 and in particular that Q ̸= ∅ by definition
of F0. We use this alternative way to sample D0 to argue that, with high probability, a random
f ∼ D0 is covered by T 1. Using the notation of the above process,

Pr
f∼D0

[T 1 covers f] = Pr
g,Q,I,π

[T 1 covers f] =
∑
g∈F1

Pr
Q,I,π

[T 1 covers f] ·D1[g].

Fix some g ∈ F1 and let T ∈ T 1 be a width-t conjunction consistent with g (which exists
because T 1 covers F1). We argue that the output of the process, with high probability, remains
consistent with T :

Pr
Q,I,π

[T 1 covers f] ≥ Pr
Q,I,π

[T covers f] ≥ Pr
Q,I,π

[Dom(T) ∩ I = ∅] =
|Q|∑
q=1

(
N−t
q

)(
N
q

) · Pr
Q
[|Q| = q].

Note that the fraction within the sum is minimized for q := |Q|. Indeed, as more images get
re-defined, the probability that T remains consistent with f shrinks. Hence, we get

Pr
Q,I,π

[T 1 covers f] ≥
(
N−t
q

)(
N
q

) =

q−1∏
i=0

N − t− i

N − i
≥

(
1− t

N − q

)q

≥ 1− q · t
N − q

.

As q ≤ N1/2/2, we can bound

q

N − q
=

1
N
q − 1

≤ 1
N

N1/2/2
− 1

=
1

2N1/2 − 1
≤ N−1/2.

Finally, we have Prf∼D0 [T 1 covers f] ≥ 1 − tN−1/2. Since D0 is the uniform distribution over

F0, we thus obtain that T 1 covers at least a (1 − tN−1/2)-fraction of F0 and moreover, as U
covers at least a (2tN−1/2)-fraction of F0 too, there must be some f ∈ U that is indeed covered
by some T ⋆ ∈ T 1.

3.3 Proof of Stability Lemma

Lemma 2 (Stability Lemma). There exists an oracle Solve satisfying (2+) such that for ev-
ery y ∈ [2N] and every satisfiable circuit Cf of size t,

Pr
f∼F−y

x∼[N]

[Solve(Cf) ̸= Solve(Cfx→y)] ≤ O(t/N1/2).

Proof. Fix any y ∈ [2N] and a satisfiable circuit Cf of size t. Recall that Solve(Cf) is computed
by a decision list X = (Xi)i that returns the first conjunction Xi such that f ∈ Cube(Xi).
Writing Xi ≺ Xj (resp. Xi ⪯ Xj) if i < j (resp. i ≤ j) we have

Pr
f∼F−y

x∼[N]

[Solve(Cf) ̸= Solve(Cfx→y)] ≤ Pr
f∼F−y

x∼[N]

[X(f) ≺ X(fx→y)] + Pr
f∼F−y

x∼[N]

[X(fx→y) ≺ X(f)].

We bound the two terms separately (see Figure 3 for an intuition). For the first term, fix any f ∈
F−y and observe that if x /∈ Dom(X(f)) then fx→y ∈ Cube(X(f)) and thus X(fx→y) ⪯ X(f).
As each conjunction ofX has width at most t, we therefore get Prx∼[N][X(f) ≺ X(fx→y)] ≤ t/N .
Finally, by averaging over all f ∈ F−y,

Pr
f∼F−y

x∼[N]

[X(f) ≺ X(fx→y)] ≤ t/N.

8

X4

X3

X1 ∪X2

ffx→y

fx→y

F

Figure 3: The Stability Lemma (Lemma 2) shows that Solve is stable with respect to small random
perturbations: for a random f ∼ F−y and random x, it is unlikely that X(fx→y) ≺ X(f) (filled arrow)
or X(f) ≺ X(fx→y) (dashed arrow). In other words, Solve returns the same answer under f and fx→y

with high probability.

To bound the second term, let us describe an alternative way of generating the distribu-
tion (f, fx→y). First, we sample a uniform g ∼ Fy. Let w := g−1(y) denote the preimage
of y and sample a uniform z ∈ [2N] \ Im(g) in the complement of g’s image. Observe that
(f, fx→y) and (gw→z, g) are identically distributed. Thus, using the above notation, the second
term can be equivalently expressed as

Pr
f∼F−y

x∼[N]

[X(fx→y) ≺ X(f)] = Pr
g,z

[X(g) ≺ X(gw→z)].

Observe that, as long as X(g) does not leak y, X(gw→z) ∈ Cube(X(g)) for any z ∈ [2N] \ Im(g)
and so X(gw→z) ⪯ X(g). Therefore, since decision list X defining our Solve satisfies Claim 4,
we get the desired bound for the second term

Pr
g,z

[X(g) ≺ X(gw→z)] ≤ Pr
g∼Fy

[X(g) leaks y] ≤ 2 Pr
g∼F

[X(g) leaks y] ≤ 12tN−1/2,

where the second inequality follows from |F| = 2|Fy|.

4 Proof of Main Theorem

In this section, we prove Theorem 1 by establishing the properties (1), (2+), (3−). The first two
hold by construction, so we only need to prove (3−), which we do using the Stability Lemma.

Lemma 6. Suppose Rf,Solve : [2N] → [N] is a t-time algorithm that

− makes a single query to Solve (satisfying the promise), and
− makes no f -queries before calling Solve.

Then the probability that Rf,Solve successfully inverts f is bounded by

Pr
f∼F
x∼[N]

[Rf,Solve(f(x)) = x] ≤ O(t/N1/2).

Proof. We phrase our proof in the standard game hopping language (see, e.g., [MF21, §3.2.1]).
In short, we argue that, compared to a real execution of Rf,Solve, the transcript of the oracle
query/response pairs does not significantly change when R is given an input challenge y inde-
pendent of x—in which case it is near-impossible for the algorithm to output x based on its
input y (see Claim 7).

To capture the above intuition, we define three hybrid games summarised in Table 1 (Ba-
sically the same sequence of hybrid games was analysed in [BDV21] when separating injective

9

H1 H2 H3

Function f ∼ F
Preimage x ∼ [N]

Planted Image y ∼ [2N] \ Im(f)

Challenge f(x) y y

Oracle f,Solve fx→y,Solve f,Solve

Table 1: The three hybrid games used in our proof of Lemma 6.

OWFs and NP∩coNP. However, with a significantly less complex “decider” oracle for languages
in NP ∩ coNP.) In all three games, we first sample a function f ∼ F and a preimage x ∼ [N]
uniformly and independently at random.

The “real” game H1: The first hybrid corresponds to the standard inversion game w.r.t. f .
Namely, the algorithm is given f(x) as the input challenge and access to the oracle pair
(f,Solve).

The “intermediate” game H2: In the second hybrid, we sample a uniformly random planted
image y ∼ [2N] \ Im(f), and consider the perturbed oracle fx→y. The algorithm is given y
as the input challenge and access to the oracle pair (fx→y,Solve).

The “ideal” game H3: In the third hybrid, the algorithm is given a uniformly random planted
image y ∼ [2N]\Im(f) as the input challenge and access to the original oracle pair (f,Solve).

In all games, the adversary R wins iff it outputs x. Next, we relate the winning probability
of R in the three hybrids.

Claim 7. For any algorithm R:

1. Prf,x[R wins in H1] = Prf,x,y[R wins in H2],

2. |Prf,x,y[R wins in H2]− Prf,x,y[R wins in H3]| ≤ O(t/N1/2) and

3. Prf,x,y[R wins in H3] = 1/N .

Proof. Proof of the first and the third item is trivial. The first item is due to the fact that
the distribution of challenge, oracle and pre-image are identical in H1 and H2. The third item
is due to the independence of x from y in H3. For the second item, we rely on the Stability
Lemma (Lemma 2), as we explain next. Due to the bound

| Pr
f,x,y

[R wins in H2]− Pr
f,x,y

[R wins in H3]| ≤ Pr
f,x,y

[R(fx→y ,Solve)(y) ̸= R(f,Solve)(y)],

it is sufficient to analyse the changes in the output of R induced by small perturbations in f .
Now, fix any internal random coins used by R and the planted image y, i.e., the remaining
randomness is only over x and f . Let Ei for i ∈ [t] denote the event that R receives the same
response to the i-th oracle query w.r.t. fx→y and f and recall that the first query of R is a
Solve-query and the remaining ones are f -queries. If all events Ei occur, the algorithm cannot
distinguish between having access to fx→y or f , and, hence, it produces the same output. Thus,
it is sufficient to bound the following:

Pr[¬E1 ∨ · · · ∨ ¬Et] = Pr[¬E1] +

t∑
i=2

Pr[¬Ei ∧ E1 ∧ · · · ∧ Ei−1]. (3)

10

Observe that the satisfiable TFNP circuit submitted by R as its Solve-query is of size at
most t. Hence, by the Stability Lemma (Lemma 2), we have Pr[¬E1] ≤ O(t/N1/2). Consider
then the i-th query for i ≥ 2 and fix any f ∈ F−y. Conditioned on E1∧· · ·∧Ei−1, the algorithm
makes the same i-th query given access to both fx→y and f . Moreover, it receives different
answers only if the query is x, which happens with probability 1/N . Combining these bounds,
we conclude that (3) ≤ O(t/N1/2) + t/N ≤ O(t/N1/2) and the claim follows by averaging over
all choices of randomness of R and images y.

We conclude the proof of Lemma 6 by combining all three items of Claim 7:

Pr[Rf,Solve(f(x)) = x] = Pr[R wins in H1]

= Pr[R wins in H2]

≤ Pr[R wins in H3] + |Pr[R wins in H2]− Pr[R wins in H3]|
≤ 1/N +O(t/N1/2)

= O(t/N1/2).

Acknowledgements

L.F. and P.H. were supported by the Academy of Sciences of the Czech Republic (RVO 67985840)
and by the Grant Agency of the Czech Republic (19-27871X). M.G. and G.M. were supported
by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract
number MB22.00026. W.Y. was supported by the Swiss National Science Foundation project
200021-184656.

References

[AKV04] Tim Abbot, Daniel Kane, and Paul Valiant. On algorithms for Nash equilibria.
Unpublished manuscript, 2004. http://web.mit.edu/tabbott/Public/final.pdf.

[Bae14] Paul Baecher. Simon’s circuit. Cryptology ePrint Archive, Paper 2014/476, 2014.
URL: https://eprint.iacr.org/2014/476.

[BCH+22] Nir Bitansky, Arka Rai Choudhuri, Justin Holmgren, Chethan Kamath, Alex Lom-
bardi, Omer Paneth, and Ron D. Rothblum. PPAD is as hard as LWE and iterated
squaring. In Eike Kiltz and Vinod Vaikuntanathan, editors, Theory of Cryptogra-
phy - 20th International Conference, TCC 2022, Chicago, IL, USA, November 7-10,
2022, Proceedings, Part II, volume 13748 of Lecture Notes in Computer Science,
pages 593–622. Springer, 2022. doi:10.1007/978-3-031-22365-5\ 21.

[BDV21] Nir Bitansky, Akshay Degwekar, and Vinod Vaikuntanathan. Structure versus
hardness through the obfuscation lens. SIAM J. Comput., 50(1):98–144, 2021.
doi:10.1137/17M1136559.

[BG20] Nir Bitansky and Idan Gerichter. On the cryptographic hardness of local search.
In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Con-
ference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151
of LIPIcs, pages 6:1–6:29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ITCS.2020.6.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of
finding a Nash equilibrium. In Venkatesan Guruswami, editor, IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 1480–1498. IEEE Computer Society, 2015. doi:10.1109/

FOCS.2015.94.

11

http://web.mit.edu/tabbott/Public/final.pdf
https://eprint.iacr.org/2014/476
https://doi.org/10.1007/978-3-031-22365-5_21
https://doi.org/10.1137/17M1136559
https://doi.org/10.4230/LIPIcs.ITCS.2020.6
https://doi.org/10.1109/FOCS.2015.94
https://doi.org/10.1109/FOCS.2015.94

[CHK+19] Arka Rai Choudhuri, Pavel Hubáček, Chethan Kamath, Krzysztof Pietrzak, Alon
Rosen, and Guy N. Rothblum. Finding a Nash equilibrium is no easier than breaking
Fiat-Shamir. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019, pages 1103–1114. ACM, 2019. doi:10.1145/3313276.

3316400.

[Das19] Constantinos Daskalakis. Equilibria, fixed points, and computational complexity. In
Proceedings of the International Congress of Mathematicians (ICM). World Scien-
tific, 2019. doi:10.1142/9789813272880 0009.

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the
efficiency of generic cryptographic constructions. SIAM J. Comput., 35(1):217–246,
2005.

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trap-
door functions on trapdoor predicates. In 42nd Annual Symposium on Foundations
of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA,
pages 126–135. IEEE Computer Society, 2001. doi:10.1109/SFCS.2001.959887.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In FOCS, pages 305–313. IEEE Computer Society,
2000.

[HHRS15] Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding colli-
sions in interactive protocols - tight lower bounds on the round and communication
complexities of statistically hiding commitments. SIAM J. Comput., 44(1):193–242,
2015.

[HKKS20] Pavel Hubáček, Chethan Kamath, Karel Král, and Veronika Sĺıvová. On average-
case hardness in TFNP from one-way functions. In Rafael Pass and Krzysztof
Pietrzak, editors, Theory of Cryptography - 18th International Conference, TCC
2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part III, volume
12552 of Lecture Notes in Computer Science, pages 614–638. Springer, 2020. doi:

10.1007/978-3-030-64381-2\ 22.

[HNY17] Pavel Hubáček, Moni Naor, and Eylon Yogev. The journey from NP to TFNP hard-
ness. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer
Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67
of LIPIcs, pages 60:1–60:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ITCS.2017.60.

[Hol21] Alexandros Hollender. Structural results for total search complexity classes with
applications to game theory and optimisation. PhD thesis, University of Oxford,
2021. URL: https://ora.ox.ac.uk/objects/uuid:67e2d80b-76bf-4b49-9b7d-8bbd91633dd7.

[HY20] Pavel Hubáček and Eylon Yogev. Hardness of continuous local search: Query com-
plexity and cryptographic lower bounds. SIAM J. Comput., 49(6):1128–1172, 2020.
doi:10.1137/17M1118014.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 44–61. ACM, 1989.

[Jeř16] Emil Jeřábek. Integer factoring and modular square roots. Journal of Computer
and System Sciences, 82(2):380–394, mar 2016. doi:10.1016/j.jcss.2015.08.001.

12

https://doi.org/10.1145/3313276.3316400
https://doi.org/10.1145/3313276.3316400
https://doi.org/10.1142/9789813272880_0009
https://doi.org/10.1109/SFCS.2001.959887
https://doi.org/10.1007/978-3-030-64381-2_22
https://doi.org/10.1007/978-3-030-64381-2_22
https://doi.org/10.4230/LIPIcs.ITCS.2017.60
https://ora.ox.ac.uk/objects/uuid:67e2d80b-76bf-4b49-9b7d-8bbd91633dd7
https://doi.org/10.1137/17M1118014
https://doi.org/10.1016/j.jcss.2015.08.001

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang.
SNARGs for bounded depth computations and PPAD hardness from sub-exponential
LWE. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
June 21-25, 2021, pages 708–721. ACM, 2021. doi:10.1145/3406325.3451055.

[JPY88] David Johnson, Christos Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988. doi:10.1016/
0022-0000(88)90046-3.

[KLV23] Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. SNARGs and
PPAD hardness from the decisional Diffie-Hellman assumption. In Carmit Hazay
and Martijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part II, volume 14005
of Lecture Notes in Computer Science, pages 470–498. Springer, 2023. doi:10.1007/

978-3-031-30617-4\ 16.

[KNY19] Ilan Komargodski, Moni Naor, and Eylon Yogev. White-box vs. black-box complex-
ity of search problems: Ramsey and graph property testing. J. ACM, 66(5):34:1–
34:28, 2019.

[KPY20] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. Delegation with updatable unam-
biguous proofs and PPAD-hardness. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryp-
tology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020,
Proceedings, Part III, volume 12172 of Lecture Notes in Computer Science, pages
652–673. Springer, 2020. doi:10.1007/978-3-030-56877-1\ 23.

[KS20] Ilan Komargodski and Gil Segev. FromMinicrypt to Obfustopia via private-key func-
tional encryption. J. Cryptol., 33(2):406–458, 2020. doi:10.1007/s00145-019-09327-x.

[LV20] Alex Lombardi and Vinod Vaikuntanathan. Fiat-Shamir for repeated squaring with
applications to PPAD-hardness and VDFs. In Daniele Micciancio and Thomas Ris-
tenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual Interna-
tional Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17-21, 2020, Proceedings, Part III, volume 12172 of Lecture Notes in Computer
Science, pages 632–651. Springer, 2020. doi:10.1007/978-3-030-56877-1\ 22.

[MF21] Arno Mittelbach and Marc Fischlin. The Theory of Hash Functions and Random
Oracles - An Approach to Modern Cryptography. Information Security and Cryp-
tography. Springer, 2021. doi:10.1007/978-3-030-63287-8.

[MP91] Nimrod Megiddo and Christos Papadimitriou. On total functions, existence theorems
and computational complexity. Theoretical Computer Science, 81(2):317–324, 1991.
doi:10.1016/0304-3975(91)90200-L.

[Pap94] Christos Papadimitriou. On the complexity of the parity argument and other ineffi-
cient proofs of existence. Journal of Computer and System Sciences, 48(3):498–532,
1994. doi:10.1016/s0022-0000(05)80063-7.

[Pud15] Pavel Pudlák. On the complexity of finding falsifying assignments for Herbrand
disjunctions. Archive for Mathematical Logic, 54(7-8):769–783, 2015. doi:10.1007/

s00153-015-0439-6.

13

https://doi.org/10.1145/3406325.3451055
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1007/978-3-031-30617-4_16
https://doi.org/10.1007/978-3-031-30617-4_16
https://doi.org/10.1007/978-3-030-56877-1_23
https://doi.org/10.1007/s00145-019-09327-x
https://doi.org/10.1007/978-3-030-56877-1_22
https://doi.org/10.1007/978-3-030-63287-8
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1016/s0022-0000(05)80063-7
https://doi.org/10.1007/s00153-015-0439-6
https://doi.org/10.1007/s00153-015-0439-6

[RSS21] Alon Rosen, Gil Segev, and Ido Shahaf. Can PPAD hardness be based on
standard cryptographic assumptions? J. Cryptol., 34(1):8, 2021. doi:10.1007/

s00145-020-09369-6.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In Theory of Cryptography, First Theory of Cryptography
Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings,
pages 1–20, 2004.

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In Kaisa Nyberg, editor, Advances in Cryptol-
ogy - EUROCRYPT ’98, International Conference on the Theory and Application
of Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding,
volume 1403 of Lecture Notes in Computer Science, pages 334–345. Springer, 1998.
doi:10.1007/BFb0054137.

14

https://doi.org/10.1007/s00145-020-09369-6
https://doi.org/10.1007/s00145-020-09369-6
https://doi.org/10.1007/BFb0054137

	Introduction
	Our result: Generalisation to TFNP
	Comparison to HubacekK0S20 and other related work

	Proof Overview
	Common pitfalls
	Stable oracle Solve
	Discussion: Challenges in strengthening our result

	Oracle Solve: Definition and Stability Lemma
	Definition of Solve
	Proof of Next Subcube Lemma
	Proof of Stability Lemma

	Proof of Main Theorem

