
Correlated-Output Differential Privacy and
Applications to Dark Pools
James Hsin-yu Chiang #�

Aarhus University, Denmark

Bernardo David #

IT University of Copenhagen, Denmark

Mariana Gama #�

COSIC, KU Leuven, Belgium

Christian Janos Lebeda #�

IT University of Copenhagen, Denmark
Basic Algorithms Research Copenhagen, Denmark

Abstract
In the classical setting of differential privacy, a privacy-preserving query is performed on a private
database, after which the query result is released to the analyst; a differentially private query
ensures that the presence of a single database entry is protected from the analyst’s view. In this
work, we contribute the first definitional framework for differential privacy in the trusted curator
setting (Fig. 1); clients submit private inputs to the trusted curator, which then computes individual
outputs privately returned to each client. The adversary is more powerful than the standard setting;
it can corrupt up to n− 1 clients and subsequently decide inputs and learn outputs of corrupted
parties. In this setting, the adversary also obtains leakage from the honest output that is correlated
with a corrupted output. Standard differentially private mechanisms protect client inputs but do
not mitigate output correlation leaking arbitrary client information, which can forfeit client privacy
completely. We initiate the investigation of a novel notion of correlated-output differential privacy to
bound the leakage from output correlation in the trusted curator setting. We define the satisfaction
of both standard and correlated-output differential privacy as round differential privacy and highlight
the relevance of this novel privacy notion to all application domains in the trusted curator model.

We explore round differential privacy in traditional “dark pool” market venues, which promise
privacy-preserving trade execution to mitigate front-running; privately submitted trade orders and
trade execution are kept private by the trusted venue operator. We observe that dark pools satisfy
neither classic nor correlated-output differential privacy; in markets with low trade activity, the
adversary may trivially observe recurring, honest trading patterns, and anticipate and front-run
future trades. In response, we present the first round differentially private market mechanisms that
formally mitigate information leakage from all trading activity of a user. This is achieved with
fuzzy order matching, inspired by the standard randomized response mechanism; however, this also
introduces a liquidity mismatch as buy and sell orders are not guaranteed to execute pairwise, thereby
weakening output correlation; this mismatch is compensated for by a round differentially private
liquidity provider mechanism, which freezes a noisy amount of assets from the liquidity provider
for the duration of a privacy epoch, but leaves trader balances unaffected. We propose oblivious
algorithms for realizing our proposed market mechanisms with secure multi-party computation
(MPC) and implement these in the Scale-Mamba Framework using Shamir Secret Sharing based
MPC. We demonstrate practical, round differentially private trading with comparable throughput as
prior work implementing (traditional) dark pool algorithms in MPC; our experiments demonstrate
practicality for both traditional finance and decentralized finance settings.

2012 ACM Subject Classification Security and privacy → Privacy-preserving protocols

Keywords and phrases Differential Privacy, Secure Multi-party Computation, Dark Pools, Decent-
ralized Finance

Digital Object Identifier 10.4230/LIPIcs...

© James Hsin-yu Chiang, Bernardo David, Mariana Gama, Christian Janos Lebeda;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jachiang@cs.au.dk
https://orcid.org/0000-0002-5126-9494
mailto:bernardo@bmdavid.com
mailto:mariana.botelhodagama@esat.kuleuven.be
https://orcid.org/0000-0002-2759-043X
mailto:chle@itu.dk
https://orcid.org/0000-0001-9517-8466
https://doi.org/10.4230/LIPIcs...\protect \protect \leavevmode@ifvmode \kern +.2222em\relax
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

:2 Correlated-Output Differential Privacy and Applications to Dark Pools

P1

P2 T A

P3

x1

x2

M(x = x1, x2, x3)x3

P1 P1

P2 C P2

P3 P3

x1

x2

M1(x = (x1, x2, x3))

M2(x)

M3(x)x3

Figure 1 The standard model of differential privacy (L) vs. the trusted curator model (R). In this
work, we contribute the first definitional framework for differential privacy in the trusted curator
model (§3.1).

Related Version Full Version: https://eprint.iacr.org/2023/943

Supplementary Material Software: https://github.com/maargama/CorrOutDP-darkpool

Funding James Hsin-yu Chiang: Part of the work was supported by a DTU Compute scholarship.
Bernardo David: This work was supported by the Independent Research Fund Denmark (IRFD)
grants number 9040-00399B (TrA2C), 9131-00075B (PUMA) and 0165-00079B. Mariana Gama:
This work was supported by CyberSecurity Research Flanders with reference number VR20192203
and by the FWO under an Odysseus project GOH9718N. Christian Janos Lebeda: This work was
supported by the VILLUM Foundation grant 16582.

1 Introduction

In the standard differential privacy setting (Fig. 1, left), a single analyst (A) receives a
query on private inputs from clients (P1, P2, P3) computed by the trusted third party (T). A
differentially private query protects the privacy of an input xi submitted by client Pi. In
the trusted curator model (Fig. 1, right), the curator C evaluates a function on all privately
submitted inputs, (y1, y2, y3)←M(x1, x2, x3), and returns each output yi privately to client
Pi, which may be corrupted by the adversary. A (classically) differentially private mechanism
M will protect the honest input x1. However, if honest output y1 = M1(x1, x2, x3) and
adversarial output yi ̸=1 = M i(x1, x2, x3) are correlated, honest y1 may be trivially inferred
from an adversarial yi ̸=1, breaking client privacy. In this work, we introduce correlated-output
differential privacy (§3.3) to protect against such leakage to achieve client privacy in the
setting of the trusted curator. The conjunction with standard differential privacy protecting
inputs is defined as round differential privacy (§3.4), protecting the entire client transcript
in each interaction round. In this model, the adversary can inject inputs to each round;
round differential privacy insures that such a chosen-input attack has a bounded effect
on the honest user’s output. We highlight the investigation of round differentially private
algorithms for general and specific application domains as a research question of independent
interest. In this work, we investigate round differentially private market applications to
prevent front-running in traditional or decentralized finance.

The term front-running originates from the notion of “getting in front” of pending trades.
A party anticipating a large buy order may purchase the same asset first, as the pending
large buy order will likely drive up the price of the asset; the front-running party can then
sell the asset at a higher price following the execution of the large buy order. Front-running
occurs whenever submitted trade orders that have yet to be executed are observable by the
front-running adversary. In traditional finance, the presence of pending orders may be public
or inferred from market order books. In decentralized finance, pending transactions are

https://eprint.iacr.org/2023/943
https://github.com/maargama/CorrOutDP-darkpool

J. Chiang, B. David, M. Gama and C. Lebeda :3

publicly gossiped across a peer-to-peer network. In both settings, front-running is prevalent.
In traditional finance, Dark Pool venues [24] promise the private execution of trades.

Here, clients submit private orders to the venue operator, who then computes the execution
of trades without leaking pending orders submitted by clients; pre-trade privacy ensures that
pending orders remain private, whilst post-trade privacy protects the privacy of the trade
execution. An initial attempt to provide both pre-trade and post-trade privacy would be to
implement a market venue with a trusted curator role; in each round, parties can submit the
trade orders privately to the curator, which then computes an optimal matching of submitted
trade orders. The trade results are then privately output to each participating client. Since
all communication between individual client and curator is private, no trade orders or trade
outcomes are explicitly leaked. Removing the trusted curator role in dark pools with secure
multi-party computation (MPC) has been recently explored in [6, 7, 11, 12], demonstrating
practical run-times amenable to real-world trading volume.

However, we observe that round differential privacy is violated in classical order-matching
algorithms run by dark pool venues; a trade execution always implies a counter-party, thus
revealing the presence of another trade in the opposing direction (Lemmas 4 and 6); such
leakage occurs because trade execution are necessarily correlated between different parties.
In venues with low trade volume, such inferences may lead to practical attacks. Consider the
Time-Weighted Average Price (TWAP)1 trade, where a larger trade volume is scheduled as
smaller trades over time to minimize price impact. If the periodic execution of such smaller
trades is detected early, the remaining trade schedule can be anticipated and front-run. This
motivates our investigation of market mechanisms with formal, privacy guarantees protecting
the full transcript of interactions between trader and dark pool venue.

In this work, we contribute round-differentially-private (§4) market mechanisms for the
trusted curator model. Here, the actual “trade”, “no-trade” outcome for each order is de-
termined by sampling a Bernoulli distribution biased towards the deterministically computed,
optimal matching. However, since trades are filled or not filled based on independently
sampling trade outcomes, there is no guarantee that each executed trade is matched with an
equivalent volume in the opposing direction; therefore, a liquidity deficit may occur. Here,
market makers or liquidity providers make up for liquidity deficits. To prevent liquidity
providers from learning about the traded volume of a single user from their updated liquidity
balances, a random, yet bounded amount of market maker liquidity is frozen to obtain
round differential privacy; frozen liquidity is returned to the market makers at the end of
each privacy epoch, that is sufficiently long for honest users to complete long-running trade
strategies.

We instantiate our fuzzy order matching market mechanisms with oblivious MPC al-
gorithms (§5) and implement these algorithms using the Scale-Mamba framework [3] with
Shamir Secret Sharing based MPC; history has shown that dark pool venue operators
frequently exploit confidential order flow information [19, 20, 18], thus motivating us to
demonstrate practical feasibility of distributing round differential private market mechanisms
across MPC committees in lieu of a trusted operator. We show that our algorithms not
only satisfy stronger privacy guarantees than considered in previous work, they also achieve
high order throughput appropriate for most real-world settings. In fact, even with the
additional overhead induced by round differentially private algorithms, we obtain runtimes
comparable to the algorithms presented in prior work implementing traditional dark pools
in MPC [11]. Finally, we emphasize that our fair market mechanism designs are applicable

1 https://en.wikipedia.org/wiki/Time-weighted_average_price

https://en.wikipedia.org/wiki/Time-weighted_average_price

:4 Correlated-Output Differential Privacy and Applications to Dark Pools

to both traditional dark pool venue operators and decentralized finance. Our fair markets
can be instantiated in privacy-preserving smart contract frameworks realized by an MPC
committee and privacy-preserving ledger, most recently demonstrated by Baum et al. in [4]
with minimal complexity overhead; here, trade execution is settled in private on a public
ledger.

1.1 Related Work
Differentially private markets. Chitra et al. [10] propose a Uniform Random Execution
algorithm which permutes and splits submitted trades in a randomized, differentially private
manner. We note that [10] does not offer output or post-trade privacy; all executed trades
are seen by the adversary. Thus, this approach does not contribute to our goal of protecting
the privacy of long-running trader strategies performed over multiple rounds.

Dark pool markets. Recent proposals [6, 7, 11, 12] have convincingly demonstrated that the
role distribution of the dark pool operator can be instantiated in practice with multi-party
computation (MPC) to prevent abuse of private order information. Still, these works also do
not consider the entirety of information flow leaking from all honest trader activity; Firstly,
adversarial outputs reveal information about privately submitted honest inputs (Lemma 4)
and secondly, outputs are correlated, such that an adversary also obtains information about
honest outputs (Lemma 6). In the decentralized finance setting, homomorphic encryption has
been proposed to aggregate orders obliviously [23]; however, since all inputs are encrypted to
the same public key, any subsequent decryption to reveal the aggregated order will leak the
privacy of any single trade, if all but one client has been corrupted.

Differential privacy and MPC. Whilst differentially private mechanisms have been implemen-
ted in MPC, these works do not consider privacy over the full, individual transcript in the
trusted curator model (§3.1), where clients submit private inputs and receive private outputs.
Instead, the MPC output is a single query result computed over inputs from a private
database. Here, the returned query is not considered private. The main use-case is generating
differentially private machine learning models over private data with MPC [21, 1, 26, 22].

2 Preliminaries

Differential privacy. Differential privacy was introduced in [13] as a technique for quantifying
the privacy guarantees of a mechanism. A central concept is the definition of neighbouring
datasets which are denoted x ∼ x′. Intuitively, this definition is used to capture the
information we want to protect. Typically x and x′ are identical except for the data about
one individual. We formally define neighbouring inputs in our setting of the trusted curator
in Section 3.1. Differential privacy is a restriction on how much the output distribution of a
mechanism can change between any neighbouring input datasets.

▶ Definition 1 ((ε, δ)-DP). A randomized mechanism M satisfies (ε, δ)-differential privacy
if for all pairs of neighbouring datasets x ∼ x′ and all sets of outputs S we have:

Pr[M(x) ∈ S] ≤ exp(ε) · Pr[M(x′) ∈ S] + δ

Multi-party computation. Multi-party computation is a cryptographic technique that allows
a set of n mistrustful parties to calculate a function of their own private inputs without
revealing them. We consider an MPC protocol based on Shamir secret sharing, where a
secret value s is shared by giving each party i the evaluation f(i) of a polynomial f of degree

J. Chiang, B. David, M. Gama and C. Lebeda :5

t and coefficients in Fp such that f(0) = s. The protocol assumes an honest majority, i.e.,
t < n/2, and it is actively secure with an abort, meaning that a malicious party deviating
from the protocol is caught with overwhelming probability and the honest parties abort
the protocol when this happens. In this work, we use Scale-Mamba [3], a framework that
implements various MPC protocols in the preprocessing model. In this methodology, the
computation has a preprocessing phase where input independent data is generated. This
data is then used in the input dependent online phase, where the desired computation over
private inputs is performed.

3 Round differential privacy in the trusted curator model

In this section, we first formalize the round-based trusted curator model (§3.1). Round
differential privacy is defined over two distinct notions: (1) Input differential privacy (§3.2)
protects the honest input, and mirrors the classic notion of differential privacy over a
private database. (2) Correlated output differential privacy (§3.3) protects leakage from
correlated outputs, and represents a novel privacy notion of general interest for all application
domains. Round differential privacy (§3.4) is defined over (1) and (2); here, we also form-
alize multi-round differential privacy, to protect the entire honest transcript over multiple
interaction rounds in the trusted curator model.

3.1 The trusted curator
We first define our proposed notions of privacy in the “trusted curator” model (Fig. 1), which
can then seamlessly be applied to the setting of secure multi-party computation. The trusted
curator C interacts with parties P1, ..., Pn, which are assumed to have established private,
authenticated communication links with the trusted curator. Interaction proceeds in rounds,
each consisting of the following phases.

1. Input phase All parties send their individual inputs to the trusted curator C, which
obtains the input set x1, ..., xn from parties P1, ..., Pn respectively.

2. Evaluation phase Upon receiving all inputs, the trusted curator locally computes a
known algorithm M over inputs received in the input phase: namely y←M(x), where
x = (x1, ..., xn) and y = (y1, ..., yn). Further, curator C is assumed to have access to
randomness to evaluate randomized algorithms.

3. Output phase The trusted curator privately sends each output element yi in y to
party Pi, and enters the input phase again. Any “public output” ypub is encoded in each
individual output; ∀i ∈ [n] : ypub ∈ yi.

Client corruption. The adversary A can statically corrupt up to n−1 clients, upon which
it decides what inputs the corrupted clients submit in each interaction round. The adversary
decides corrupted inputs and observes the output for each corrupted client returned from the
trusted curator; the adversary cannot corrupt the curator itself. We denote the adversarial
output view from a round evaluating mechanism M on round inputs x as MA(x).

Public outputs. We permit the trusted curator to also return public outputs; naturally,
any public output is part of the adversarial output view MA(x).

Privacy against the network adversary. We assume that the physical presence of a
party in each round is observable by the network adversary. Since obfuscating the active
participation across the network may be challenging, we assume parties to be physically
online and to participate in each round, but permit them to submit dummy inputs, allowing
for passive participation and obfuscating the logical presence of a party in a given round.

:6 Correlated-Output Differential Privacy and Applications to Dark Pools

Without dummy inputs, the physical presence of a party will always leak the presence of
a logical input contributed by a party to the computation by the trusted curator; in the
setting of privacy-preserving markets, for example, the network adversary would learn that a
party is submitting some trade in a given round.

Further, we assume that parties can anonymously submit inputs to the trusted curator via
techniques such as mixnets [9, 8], thereby hiding their identity from the network adversary.
In practice, parties can delegate the physical interaction with the trusted curator model in
each round to trusted servers, and only need to come online when they wish to forward a
valid, non-dummy input.

Group privacy. We highlight that individual differential privacy guarantees introduced in
the subsequent section naturally imply group privacy; a mechanism protecting the presence
of a single client can do so for multiple clients, consuming equal privacy budget amounts for
each additional group member.

3.2 Differential privacy for inputs
In the standard setting of differential privacy, an analyst performs a query on a private
database and the result of the query is released to the analyst; a differentially private query
bounds how much the analyst output distribution changes, upon adding or removing an
entry in the private database.

We adapt the classic notion of differential privacy to the setting of the trusted curator.
Instead of protecting private database entries, we first wish to protect inputs submitted by
honest clients. We introduce a dummy value that allows clients to have no impact on a given
round. Thus, the following definition of neighbouring input vectors follows directly from the
standard definition of neighbouring databases under the add/remove relation in the classic
setting.

▶ Definition 2 (neighboring input vectors). Input vectors x = (x1, ..., xn) and x′ =
(x′

1, ..., x′
n) of equal length are neighboring, denoted as x ∼ x′, if the following holds true;

∃i ∈ [n] : xj = x′
j for all j ̸= i and (xi = dummy or x′

i = dummy)

For a randomized algorithm M evaluated on input vector x, let MA(x) = {Yj}j∈A denote
output distributions observed by corrupted clients. Then, the following definition follows
directly from the standard notion [14] of differential privacy where we consider the input
vector as the private database on which the query M is performed and the adversary obtains
the output view MA(x) of all corrupted parties. Note that there is no restriction on the
output distribution seen only by the honest user.

▶ Definition 3 ((ε, δ)-input DP). For an evaluation of (ε, δ)-input differentially private
algorithm M in the trusted curator model over neighboring private input vectors x ∼ x′, the
following must hold for any adversarially observable output event SA.

Pr[MA(x) ∈ SA] ≤ exp(ε) · Pr[MA(x′) ∈ SA] + δ

As we will see in Section 3.3, input differential privacy is necessary, but insufficient
to protect both in- and output of an honest client in the trusted curator round. Whilst
Definition 3 protects the privacy of a user input, it does not guarantee that the honest
output remains private. This motivates correlated-output differential privacy, introduced in
the subsequent section Section 3.3. Again, the standard setting of differential privacy does
not consider the privacy of the query output, as there is only a single query result released
publicly or to the adversarial analyst.

J. Chiang, B. David, M. Gama and C. Lebeda :7

▶ Lemma 4. Dark Pools violate (ε, δ)-input differential-privacy for any δ < 1.

Proof. (Sketch) A dark pool venue operator can be idealized as a trusted curator which
privately receives trade orders from clients. Upon evaluating the market algorithm in private,
it privately outputs trade executions to clients. Assume an honest user submits the only
buy order and the corrupted client submitting a sell order observes that its trade order is
executed. Any change in the honest counter-party’s privately submitted buy order cancels
the matching of this order pair, observable to the adversary with probability 1, thereby
violating Definition 3. ◀

Adversarially chosen inputs Note that input differential privacy in Definition 3 naturally
protects against chosen input attacks; informally, such an attack permits the adversary to
change its inputs and observe induced effects on its output distributions to learn something
about honest inputs. However, note that (ε, δ)-input DP applies equal privacy guarantees to
any input submitted to the trusted curator. Thus, for appropriately chosen privacy parameters,
a chosen input attack on an (ε, δ)-input DP mechanism will not reveal meaningful information
to the adversary, as its chosen input perturbation will not induce a sufficiently observable
effect on its output distributions.

3.3 Differential privacy for correlated outputs
In contrast to prior work, where a single output is returned from a differentially-private
mechanism, we must protect the privacy of outputs that are returned from the trusted
curator to individual clients over private channels. Even if input differential privacy protects
honest inputs, the individual outputs returned to clients may still be strongly correlated,
potentially allowing honest outputs to be inferred from corrupted ones.

▶ Definition 5 ((ε, δ)-correlated-output DP). For an evaluation of (ε, δ)-correlated output
differentially private algorithm M in the trusted curator model over fixed input vector x, the
following must hold for any adversarial output event SA and any honest output event Sh.

Pr[MA(x) ∈ SA |Mh(x) ∈ Sh] ≤ exp(ε) · Pr[MA(x) ∈ SA |Mh(x) ̸∈ Sh] + δ

Definition 5 is interpreted as follows; for any set of inputs and two different honest output
events (Mh(x) ∈ Sh vs. Mh(x) ̸∈ Sh), the output distribution MA(x) of the adversary
remains (ε, δ)-similar. In other words, any change in the honest output can only have a
bounded effect on the adversarially observable output distribution.

We highlight an immediate consequence of Definition 5 for economic applications; a
correlated-output DP mechanism cannot distribute funds to all clients where the supply of
output funds is known or public; an adversary corrupting n− 1 clients can trivially infer the
funds privately output to the single honest client by just aggregating its own outputs and
observing the difference to the total supply. Thus;

▶ Lemma 6. Economic mechanisms evaluated in the trusted curator model which allocate a
fixed supply of “assets” over client outputs violate (ε, δ)-correlated-output differential privacy
for any δ < 1.

Overcoming this is not straight-forward, as financial applications cannot be allowed to arbit-
rarily mint or create funds out of thin air. We overcome these constraints by performing fuzzy
matching of orders and temporarily freezing funds to achieve correlated-output differential
privacy in rDP-volume-match (Section 4.1) and rDP-double-auction (Section 4.2).

:8 Correlated-Output Differential Privacy and Applications to Dark Pools

Applications with correlated outputs. We argue there exist many applications in the
trusted curator setting which require correlated outputs; most closely related to this work are
economic applications which govern the private allocation of finite resources, which include
auctions, markets, financial derivatives and other economic contracts.

3.4 Single-round & Multi-round privacy
Since (ε, δ)-input DP and (ε, δ)-correlated-output DP protect different parts of the honest
round transcript, we must formally consider two separate privacy budgets which are consumed
with each interaction round in the trusted curator model. We define differential privacy for
each interaction round with the trusted curator as follows.

▶ Definition 7 (Round-DP). The evaluation of a mechanism that satisfies (εin, δin)-input
DP and (εout, δout)-correlated-output DP is (εin, δin)-(εout, δout)-round differentially private.

Definition 7 implies that the privacy of input and outputs may be parameterized independ-
ently. Indeed, this permits the trade-off between utility and privacy for different parts of the
honest transcript to be decided separately; the input to an evaluation round may require a
higher degree of privacy than the returned output or vice versa.

Multi-round privacy When applying differential privacy to queries on a static database, m

instances of (εi, δi)-differentially private queries taken together are (ε1 + ... + εm, δ1 + ... + δm)
differentially private using basic composition [14] with tighter bounds known using advanced
composition [16]. However, in the trusted curator model, the curator accepts fresh inputs in
each interaction round, allowing us to consider each round input as disjoint, private data.
We define multi-round differential privacy as the sensitivity of the adversarial output view
over m rounds to changes in inputs submitted and outputs received by a single client.

▶ Definition 8 (m-round-DP). Let the adversarial output view over m interaction rounds
between n-clients and the trusted curator be given as MA

1 (x1), ... , MA
m(xm). Then, we define

this m-round transcript as;

MA
mul(x̄) = (MA

1 (x1), ... , MA
m(xm)) where x̄ = (x1, ... , xm) are round-specific client inputs.

Let m-round client inputs x̄ = (x1, ..., xm) and x̄′ = (x′
1, ..., x′

m) be neighboring if they only
differ in inputs submitted by a single client throughout the m rounds;

∃!client i : ∀round r ∈ [m] :
(

xr = x′
r

)
or

(
xr ∼ x′

r where xr(i) ̸= x′
r(i)

)
Further, we denote an m-round output event for the adversary and honest client as SA

mul =
SA

1 , ...,SA
m and Sh

mul = Sh
1 , ...,Sh

m respectively.
The m-round interaction is (εin, δin)-(εout, δout)-m-round differentially private if for any

two neighbouring m-round inputs x̄ and x̄′, any adversarial and honest m-round events SA
mul

and Sh
mul, the following holds true;

Pr[MA
mul(x̄) ∈ SA

mul]
≤ exp(εin) · Pr[MA

mul(x̄′) ∈ SA
mul] + δin (a)

Pr[MA
mul(x̄) ∈ SA

mul |Mh
mul(x̄) = Sh

mul]
≤ exp(εout) · Pr[MA

mul(x̄) ∈ SA
mul |Mh

mul(x̄) ̸= Sh
mul] + δout (b)

The following theorem relates single-round DP (def. 7) with m-round DP (def. 8),
allowing us to achieve multi-round privacy from sequential interaction rounds between clients
and the trusted curator.

J. Chiang, B. David, M. Gama and C. Lebeda :9

▶ Theorem 9 (m-round composition (updated 2)). Let there be m consecutive inter-
action rounds with n clients and the trusted curator. In each round, the trusted cur-
ator evaluates round-specific algorithms M1, ..., Mm that are run independently and are
(εin

1 , δin
1)-(εout

1 , δout
1) , ... , (εin

m, δin
m)-(εout

m , δout
m) round differentially private and evaluated on

round-specific input vectors x1, ... , xm. Then, the m-round evaluation is(∑
j∈[m]

εin
j ,

∑
j∈[m]

δin
j

)
−

(∑
j∈[m]

εout
j ,

∑
j∈[m]

δout
j

)
m-round differentially private.

Proof. We use the basic version of the adaptive composition theorem for the proof. Since
the inputs in each round are either equal or neighboring, the m-round notion of input DP
(Eq. (a) in Def. 8) follows directly from applying the Composition Theorem for approximate
DP (see [25, Theorem 22]).

Towards satisfying the m-round notion of correlated-output DP (Eq. (b) in Def. 8) notice
that for each round we can define the event Sh that the honest output agrees with Sh

mul.
Definition 5 then tells us that each round is (εj , δj)-indistinguishable. Similar to the input DP
we can use the Composition Theorem to get guarantees for the m-round correlated-output
DP. ◀

4 Round differentially private market mechanisms

We propose round differentially private market mechanisms in the trusted curator model.
These include volume matching of orders, where a batch of buy and sell orders (§4.1) are
matched at a given exchange rate determined at an external reference market, and double
auctions (§4.2), where buy and sell orders also feature price limits, such that a clearing price
must first be computed for each round before orders can be matched. Following a gentle
introduction, each algorithm is formally proven to satisfy round differential-privacy.

To realize any meaningful notion of privacy in practice, we later distribute the trusted
curator by means of secure multi-party computation (MPC) in section §5.

4.1 Round-DP volume matching
In volume matching, the exchange rate is pre-determined by an external reference rate. A
trader only chooses to submit a sell, buy or to abstain from the round with a dummy order.
We introduce a (εin, δin)-(εout, δout)-round differentially private volume matching algorithm
named rDP-Volume-match, overcoming the privacy limitations of the traditional dark pool
setting, where a matched buy and sell order pair implies leaking the presence of an order
execution to the counter-party and thereby violates both input- and correlated-output
differential privacy (Lemmas 4 and 6). We overcome this privacy challenge with the following
two phases in the rDP-Volume-match algorithm (Fig. 2).

1. Fuzzy order matching. In the first phase of rDP-volume-match, orders are matched in a
“fuzzy” manner; following a preliminary, deterministic matching step which maximizes number
of trades, each final trade output (trade/no-trade) for each client is sampled independently
from a distribution parameterized by εin and biased towards the preliminary matching result;
we adapt this technique from the standard randomized response mechanism [14, 27], that is
both (εin, 0)-input and (0, 0)-correlated output differentially private; the latter property arises
naturally from the independent sampling of outputs which occurs in randomized response.
Randomized, fuzzy matching of orders also implies that the final aggregate exchange of assets

:10 Correlated-Output Differential Privacy and Applications to Dark Pools

may not sum to zero; in any given round, the total buy volume may not equal the total sell
volume. We handle this mismatch in the second phase of rDP-volume-match.

2. Liquidity compensation. We introduce a liquidity provider, which compensates for
the mismatch between buy and sell volume; however, without any additional treatment, the
adversary corrupting n− 1 traders and the liquidity provider can trivially learn the honest
output from the implied flow of assets between corrupt and honest parties (e.g. output
correlation). To ensure that the corrupt liquidity provider’s output is correlated-output
differentially private, a randomized amount of its liquidity is frozen; here, the parameteriza-
tion of rDP-Volume-match permits the choice of an upper limit (ρmax) on frozen volumes of
both the risky and numeraire asset types, thereby bounding the opportunity cost imposed
on the liquidity provider. We define a privacy epoch over multiple rounds in Definition 10,
during which the privacy guarantees of rDP-volume-match hold; if the frozen liquidity is later
returned to the liquidity provider, round differential privacy is no longer guaranteed. In
practice, we argue that it is acceptable to guarantee round differential privacy for a bounded
number of rounds, during which honest users can complete their multi-round trading strategy
without front-running interference. For privacy guarantees to hold indefinitely, assets would
have to burned. Note that assets are never minted, preserving the integrity of their supply.
We also note that, in principle, multiple liquidity providers could participate in each round
of rDP-Volume-Match; we model a single liquidity provider to simplify exposition and formal
proofs.

Next, we detail and motivate steps of rDP-volume-match and refer to Fig. 2 for a formal
description of the algorithm.

Orders in rDP-Volume-match. Let a valid, privately submitted trade order be the tuple
(b, s, id), where b and s represent buy and sell bits respectively, and id is the trader identifier.
Thus, let (b, s) ∈ [(1, 0), (0, 1), (0, 0)] represent a buy, sell and dummy order respectively. We
fix buy and sell unit volumes such that a single sell and buy order always match in exchanged
asset value.

1a. Deterministic matching (1a. in Fig. 2). Let the number of orders sent to the trusted
curator by n clients be x = {(b, s, id1), ..., (b, s, idn)}. Then, the maximum possible number
of matches between buy (b, s) = (1, 0) and sell (b, s) = (0, 1) orders is computed, which is
simply the smaller of the number of buy b and sell s orders. Let the result of the deterministic
matching phase be the bit array match = (match1, ..., matchn), where bit matchi indicates if
the i’th submitted order was matched (1) or not (0). Once the total number of preliminary
matched pairs is computed, they are assigned randomly to the non-dummy orders; dummy
orders are never matched.

1b. Randomized response over matches (1b. in Fig. 2). Here, we apply the standard
randomized response mechanism [14, 27] to determine whether a trade or no-trade is returned
to the trader who submitted a valid trade order; for each bit in array match where matchi = 1,
the probability of the final tradei bit equaling 1 or 0 is given by;

Pr[tradei = 1 |matchi = 1] = eεin
/(1 + eεin

) (1)

Pr[tradei = 0 |matchi = 1] = 1/(1 + eεin
)

Conversely, for each bit matchi = 0 in match and in the case that party i did not submit a
dummy order, the probability of the final tradei outcome being sampled as 1 or 0 is given by;

Pr[tradei = 1 |matchi = 0] = 1/(1 + eεin
) (2)

Pr[tradei = 0 |matchi = 0] = eεin
/(1 + eεin

)

J. Chiang, B. David, M. Gama and C. Lebeda :11

rDP-Volume-match. Following inputs are assumed to be well-formed for simplicity.
- Each trader P trd

i ∈ (P trd
1 , ...,P trd

n) inputs trade order (bi, si, idi).
- The liquidity provider P liq inputs liquidity amounts (xliq

0 , xliq
1).

- The privacy parameters εin, εout, δout > 0 and ρmax.

1. Fuzzy order matching

1a. Deterministic matching of buy & sell orders
- Aggregate number of buy and sells; ∀i: B ← B + bi, and S ← S + si

- Determine the number of matched pairs; u← min(B, S).
- Match u pairs of buy and sell orders;

Let matchi ∈ {0, 1} indicate a match for party Pi for i ∈ [n].

1b. Randomized response over order matches
- ∀i: If matchi, sample tradei ←$ eεin

/(1 + eεin
), otherwise tradei ←$ 1/(1 + eεin

)
- If tradei is true and (bi, si) ̸= (0, 0);

- Return (bout
i = 1, sout

i = 0, idi) to P trd
i for a buy order (bi = 1, si = 0)

- Return (bout
i = 0, sout

i = 1, idi) to P trd
i for a sell order (bi = 0, si = 1)

- Else return (bout
i = 0, sout

i = 0, idi) to P trd
i

2. Liquidity compensation

2a. Liquidity compensation for sampled trades
- Aggregate final buy and sell volumes; ∀i: ob ← ob + bout

i , and os ← os + sout
i

- Determine the liquidity mismatch; ∆0 ← (os − ob) and ∆1 ← −∆0

2b. Randomized liquidity freezing
- Sample frozen volumes; ∀t ∈ {0, 1} : ρt ←$ Pfrz (Param. by ρmax, εout, δout in Eq. 4).
- Return liquidity amounts (yliq

0 , yliq
1)← (xliq

0 + ∆0 − ρ0 , xliq
1 + ∆1 − ρ1) to P liq.

- Freeze (ρ0, ρ1), return to P liq at the end of the privacy epoch.

Figure 2 RDP-Volume-match algorithm.

Thus, for parties submitting valid, non-dummy trades, each of the final trading results in
array trade = [trade1, ..., traden] is obtained from independently sampling from distributions
Eq. 1 or 2 according to the matchi bit output from the deterministic matching subroutine
[1a]. Trader outputs are given by the array [(bout

1 , sout
1 , id1), ..., (bout

n , sout
n , idn)], where each

entry (bout
i , sout

i , idi) returned to party i indicates whether a buy (bout
i , sout

i) = (1, 0), sell
(bout

i , sout
i) = (0, 1) or no trade (bout

i , sout
i) = (0, 0) was executed;

We emphasize that a trade can only be executed if a non-dummy order was submitted
at the beginning of the round, and in the same direction (sell or buy) as intended by the
trader. Dummy orders always return (bout, sout) = (0, 0) as output; the fuzzy matching is
only applied to valid, non-dummy orders only, and thus the trading “interface” remains the
same as in traditional volume matching algorithms; a trade order is either filled or not at all.

2a. Liquidity compensation for sampled trades (2a. Fig. 2). Fuzzy matching of orders
via randomized response implies that traded volumes from step [1b] in rDP-volume-match do
not match precisely; for the trade outputs [(bout

1 , sout
1 , id1), ..., (bout

n , sout
n , idn)], the following

can occur;∑
i∈[n]

sout
i ̸=

∑
i∈[n]

bout
i

Since sells and buys may not cancel out, we introduce the presence of a liquidity provider,

:12 Correlated-Output Differential Privacy and Applications to Dark Pools

which compensates for this mismatch in traded asset liquidity. Then, the amount of the
numeraire asset (∆0) and risky asset (∆1) provided (∆ < 0) or received (∆ > 0) by the
liquidity provider is given as;

∆0 = −
∑
i∈[n]

sout
i − bout

i ∆1 =
∑
i∈[n]

sout
i − bout

i (3)

The liquidity provider compensates for this liquidity imbalance resulting from fuzzy
matching; its initial balances (xliq

0 , xliq
1) are updated to (xliq

0 + ∆0, xliq
1 + ∆1); however, note

that any change in the honest user’s trade execution will affect ∆0, ∆1 with probability 1,
observable by the corrupted liquidity provider and violating correlated-output differential
privacy (Def. 5); relaxing the correlation between the final exchange of assets and the update
in funds observed by the liquidity provider can only imply the minting or removal of funds
in the round outputs.

We propose a compromise, which is a randomized mechanism to freeze liquidity, protecting
the privacy of traders for the m-round duration that the liquidity remains frozen; we call this
a privacy epoch (Def. 10). Our algorithm DP-volume-match refrains from minting, preserving
the integrity of the underlying asset types.

2b. Randomized liquidity freezing (2b. in Fig. 2). (L8 in Figure 6). The liquidity
provider inputs (xliq

0 , xliq
1) amounts of numeraire (0) and risky (1) asset to a given round,

and is returned updated reserve balances (yliq
0 , yliq

1) = (xliq
0 + ∆0 − ρ0, xliq

1 + ∆1 − ρ1), where
(ρ0, ρ1) is the volume of assets (0) and (1) frozen in the given round and returned at the end
of the privacy epoch, chosen to be sufficiently long to protect a common trading strategies
executed over multiple rounds.

Note that it would be easy to freeze liquidity with perfect privacy if we had unbounded
liquidity. The liquidity provider could provide n units of each asset in every round and
liquidity would be frozen such that (yliq

0 , yliq
1) = (xliq

0 − n, xliq
1 − n). However, the required

liquidity would not be feasible for large n. Our mechanism instead provides a trade-off
between privacy and frozen liquidity. In each round we sample ρ0 ∈ [0, ρmax] and set
ρ1 = ρmax − ρ0. We give the probability mass function Pfrz from which ρ0 is sampled in
Equation (4); this distribution is parameterized by a maximum amount of frozen liquidity
ρmax ≥ 1 in the round, and correlated-output differential privacy parameters εout, δout.

Pfrz(ρ0) =


δout · exp(εout · ρ0) ρ0 ∈ [0 : ⌈ρmax−1

2 ⌉]
δout · exp(εout · (ρmax − ρ0)) ρ0 ∈ [⌈ρmax−1

2 ⌉+ 1 : ρmax]
0 otherwise

(4)

The sensitivity of ρ0 +∆0 and ρ1 +∆1 to the execution of a single trade is ±1. Distribution
frz allocates probability mass across multiples of unit trade volume; neighbouring freezing
events ρt and ρt ± 1 are allocated probabilities which differ by factor exp(εout). Since we
limit the amount of frozen tokens to the range [0 : ρmax], we must accept a non-zero δout

probability of violating (εout)-correlated-output differential privacy (See Lemma 13).
Parameterization of Pfrz. The freeze distribution is parameterized by (εout, δout, ρmax),

but we note that these cannot be chosen independently; parameters are set so the aggregate
probability mass of the Pfrz is 1. We illustrate various parameterizations of εout, δout and
ρmax in Fig. 3. To achieve (2.5, 4.5 · 10−4)-correlated-output differential privacy, ρmax must
be set to 6, implying that up to 6 unit volumes of each asset type provided by the liquidity
provider will be frozen. Lowering the ρmax reduces frozen liquidity, but implies higher privacy
parameters δout or εout. For ρmax = 6 and rounds exceeding 103 number of submitted orders

J. Chiang, B. David, M. Gama and C. Lebeda :13

(as benchmarked in §5.3), we argue the opportunity cost of freezing up to 6 unit volumes of
each asset represents an acceptable cost for round-differential-privacy.

0 2 4 6 8 10 12

10−6

10−5

10−4

10−3

10−2

10−1

100

ρmax

δou
t

εout = 0.0
εout = 0.5
εout = 1.0
εout = 1.5
εout = 2.0
εout = 2.5

Figure 3 We plot selected parameterizations of
Pfrz in Eq. 4. The choice of parameters represents
a trade-off between degree of privacy (εout, δout)
and frozen funds (ρmax).

Cost of liquidity provisioning. In fuzzy
order matching, the worst case liquidity mis-
match occurs when all submitted orders are
in the equal direction and are all executed
or fulfilled. Here, the maximum mismatch
in liquidity is exactly the number of clients
submitting orders in the round. Thus, the
liquidity provider has to provide as much
liquidity as number of clients (xliq

0,1 = n), in
addition to ρmax of each asset type in each
round. However, in rDP-Volume-match, the
exchange rate is decided apriori according to
an external reference price; we argue that the
vast majority of the liquidity can be sourced
directly from the external market trading at
the reference price. In the blockchain con-
text, this could be a large Automatic Market
Maker with sufficient liquidity, thereby reducing the amount of liquidity required from the
liquidity provider to just ρmax of each asset type. We leave the detailed analysis of effective
incentivization of liquidity provisioning to future work; we imagine traders submitting trade
fees in each round, but do not model this explicitly.

▶ Definition 10 (Privacy epoch). We define a privacy epoch over the repeated execution of
rDP-Volume-match for m rounds, during which the participating liquidity provider contributes
amounts of risky and numéraire assets to be frozen in each round; all frozen funds are
returned when the m rounds of the privacy epoch are completed.

We emphasize that the following privacy properties hold for client in- and outputs during
the duration of a single private epoch; once the frozen funds are returned, round differential
privacy no longer holds. For purposes of mitigating front-running, we argue that the epoch
duration should be chosen to be sufficiently long permit the execution of common, long-
running honest user strategies. Alternatively, if the frozen funds provided by the liquidity
provider are never returned or burnt, the following privacy properties hold absolutely.

We refer to Appendix A for formal proofs of the following theorem and lemmas which
demonstrate round differential privacy for rDP-Volume-matching.

▶ Theorem 11. rDP-Volume-matching is (εin + εout, δout)-(εout, δout)-m-round-differentially-
private.

Theorem 11 follows directly from Lemmas 13 and 14, while the latter is demonstrated by
leveraging bounds from Lemmas 12 and 13; we refer to the proof strategy in Appendix A.

▶ Lemma 12. rDP-Volume-matching is (εin, 0)-input differentially private against an ad-
versary that sees the adversarial trade outputs.

▶ Lemma 13. rDP-Volume-matching is (εout, δout)-correlated-output differentially private.

▶ Lemma 14. rDP-Volume-matching is (εin + εout, δout)-input differentially private.

:14 Correlated-Output Differential Privacy and Applications to Dark Pools

4.2 Round DP double auctions
We propose a round differentially private double auction algorithm, called DP-double-auction
for the trusted curator setting. Here, we introduce an initial sub-routine to compute an (εin

1 , 0)-
input differentially-private clearing price from trade orders input to the round. Subsequently,
rDP-volume-match (§4.1) is performed on the subset of trade orders with price limits consistent
with the clearing price.

For each round, we assume a discrete price range r = [r1, ..., rl]; without differentially
privacy, the discrete price maximizing the number of order matches would be selected; to
preserve input differential privacy, the exponential mechanism is applied to determine the
clearing price.

Orders in rDP-double-auction. Inputs submitted to DP-double-auction are input in
the form of x = [(w1, dir1, id1), ..., (wn, dirn, idn)], where each valid trade order (wi, diri, idi),
contains bit array wi = [wi1, ..., wil], where each bit wij indicates whether user i is willing to
buy (diri = 0) or sell (diri = 1) at price rj ∈ r.

Round differentially private clearing price. In the spirit of the round differentially
private mechanisms introduced thus far, rDP-double-auction first computes a deterministic
clearing price, and then applies a randomized, mechanism to determine the final, (εin

1 , 0)-input
differentially private clearing price. Note that since the clearing price is “publicly” released,
there is no private client output privacy to protect. For each discrete price index j ∈ [l], we
aggregate trade orders willing to sell or buy at price rj ∈ r. Let Sj denote all sell orders
willing to sell at price rj ∈ [r] and Bj denote all buy orders willing to buy at price rj ∈ [r].
Then, the number of matched pairs at price rj is given by uj = min(Bj , Sj), resulting in
ux = {u1, ..., uj}. Here, we interpret (ux : Z≤l → Z≤n/2) as the utility function for sampling
the final clearing price with the exponential mechanism.

The exponential mechanism, first introduced by McSherry and Talwar [17], realizes
a probability distribution over a range of events, for which the mechanism designer can
express a utility score function ux applicable to each event; thus, events can be allocated
probability mass proportional to exp

(
εin

1 · ux(r)/(2∆u)
)
, where ∆u denotes the sensitivity

of the utility function to a change to a single input. In other words, the mechanism designer
can influence the probability distribution over events by allocating higher utility scores to
preferred outcomes.

In DP-double-auction, the sensitivity of ux(j) at any discrete price index j ∈ [l] is simply
1; thus ∆u = 1. A change in an honest input from valid to a dummy order or from a dummy
order to valid affects at most one match per price. Therefore,

∆u = max
x,x′

max
j∈[l]

| ux(j)− ux′(j) |≤ 1

Then, the probability distribution over which the clearing price is sampled is given by the
exponential mechanism parameterized by utility function ux, which in turn is determined
from the submitted trade orders x. Thus, the probability of each discrete price rj ∈ r is
given by;

Pr[j] = exp(εin
1 · ux(j)/2)∑

i∈[|r|] exp(εin
1 · ux(i)/2)

(5)

Since the exponential mechanism is (εin
1 , 0)-input differentially-private over all inputs

([17]), we consume εin
1 of our (εin, 0)-input differential-privacy budget when outputting the

clearing price computed over x, leaving another εin
2 for the subsequent rDP-volume-match at

price r, such that εin = εin
1 + εin

2 .

J. Chiang, B. David, M. Gama and C. Lebeda :15

rDP-Volume matching at clearing price. We subsequently apply rDP-volume-match
from Section 4.1 at sampled clearing price from the preceding exponential mechanism step,
returning the trade outputs from DP-volume-match privately to each trading client and frozen
liquidity amounts to the liquidity provider.

▶ Theorem 15. rDP-double auction is m-round-differentially-private.

We refer to Appendix A for the formal proof of Theorem 15.

5 Round-DP market mechanisms with MPC

To obtain a fair market in practice, we instantiate the trusted curator with a set of MPC
parties who execute the market mechanisms described in Sections 4.1 and 4.2 using an MPC
protocol. In Sections 5.1 and 5.2, we present a formal description of the proposed market
mechanisms, as well as some textual explanation for the steps of the algorithms where some
care is required to ensure the efficiency of the MPC execution.

We implement our oblivious algorithms in the online/offline preprocessing paradigm;
during a preceding (off-line) preprocessing phase, secret-shared data is generated which is
independent of secret client inputs. When running experiments, we focus on benchmarking
online phases, as pre-processing phase can be outsourced or parallelized. Thus, in Section 5.3,
we present online runtimes for both the rDP-volume-match algorithm and the rDP-double-
auction algorithm. We show that, even though these algorithms satisfy stronger privacy
guarantees than those in previous works on dark pools using MPC, high order throughput is
still achieved. Indeed, the runtimes of our rDP-volume-match algorithm are in the same order
of magnitude as those of the Bucket Match algorithm from [11], which provides a similar
functionality but without round-differential-privacy. The rDP-double-auction algorithm, on
the other hand, has a more expensive input correctness check, becoming more expensive as
we consider more price points. Even so, it can process around one thousand orders in just
2 seconds when considering 100 price points. Thus, we introduce the possibility for users
to choose the prices at which they wish to trade while achieving practical throughput and
satisfying round-differential-privacy.

5.1 rDP-volume-match with MPC
The formal description of the rDP-volume-match algorithm instantiated with MPC is presented
in Figures 5 and 6. Note that both the order format and the InputCheckVM procedure in
Figure 5, as well as the first 2 steps of the MatchVol procedure in Figure 6 are identical to
the ones in the Bucket Match algorithm from [11].

Randomness sampling. We note that distributions sampled during the randomized
matching response and the liquidity compensation are independent of the input orders, and
can thus be obliviously sampled ahead of time by running the procedure NoiseGen in Figure 6
together during the preprocessing phase of the MPC algorithm. The sampling, described in
Figure 4, is performed using the inverse transform sampling method, adapted from [15]. To
sample a random value from a distribution given by probability mass function P , we start
by taking the corresponding cumulative distribution function, FX(x) =

∑
xi≤x P (X = xi).

We then sample a secret shared value ⟨z⟩ ∈ (0, 1] uniformly at random, which can be derived
from a randomly generated integer as shown in [15]. The desired distribution can now be
obtained by taking the first x such that FX(x) is greater or equal to ⟨z⟩.

Input format check. Since the orders are secret shared among the MPC parties, a
format verification step is required. I.e., we need to check that every order i is such that

:16 Correlated-Output Differential Privacy and Applications to Dark Pools

Sample: On input P , the probability distribution of a discrete random variable X that may
take k different values x1, ...xk:

1. Sample ⟨z⟩ ∈ (0, 1] uniformly at random.
2. For all i: Fi ←

∑i

j=1 P (X = xj)
3. For all i: ⟨ci⟩ ← (Fi ≥ ⟨z⟩).
4. For all i: ci ← Open(⟨ci⟩).
5. Return xj for the lowest j such that cj = 1.

Figure 4 Sampling from a probability distribution P with MPC.

(bi, si) ∈ {(1, 0), (0, 1), (0, 0)}. To do so, we run the InputCheckVM procedure in Figure 5,
where orders without the correct format are rejected.

InputCheckVM: On input x′ = [x′
1, ..., x′

n], where x′
i = (⟨bi⟩, ⟨si⟩, ⟨idi⟩) and bi, si, idi ∈ Fp:

Check validity of inputs bits: (0, 0) ∨ (0, 1) ∨ (1, 0).
1. Sample αi, βi, γi uniformly at random.
2. ⟨ti⟩ ← αi · (⟨bi⟩ · ⟨bi⟩ − ⟨bi⟩) + βi · (⟨si⟩ · ⟨si⟩ − ⟨si⟩) + γi · (⟨bi⟩ · ⟨si⟩)
3. ti ← Open(⟨ti⟩)
4. If ti = 0 then add x′

i to a list x, otherwise reject x′
i.

5. Return x.

Figure 5 Input correctness check for the rDP-volume-match algorithm (from [11], Figure 3).

Fuzzy order matching. To achieve the desired differential privacy guarantees, we avoid
revealing any of the secret shared values throughout the computation. This is unlike the
Bucket Match mechanism from [11], where the trading direction with the most total volume
was revealed, and the matching procedure was simplified by opening successful orders as soon
as they were matched. As a consequence, we obtain a more complex, oblivious procedure,
described in MatchVol in Figure 6. Here, we calculate the cumulative total volume for each
i and for each direction, thus obtaining ⟨σb

i ⟩ and ⟨σs
i ⟩ (note that we need to perform the

calculations in both directions to hide which direction has more total volume). We then
compare ⟨u⟩ (the total matched volume in each direction) with the cumulative volume at
each index i, and accept every order i until ⟨u⟩ is exceeded. A randomized response over the
matches is obtained by using the randomness ⟨πi⟩ sampled during MPC pre-processing.

Liquidity compensation. This phase of the oblivious algorithm, realized in step 12 of the
MatchVol procedure (Fig. 6), is identical to the liquidity compensation procedure described
in Section 4.1, except that we are now operating over secret shared values.

5.2 rDP-double-auction with MPC
The formal description of the rDP-double-auction algorithm instantiated with MPC is presented
in Figures 7 and 8.

Input format check. The correctness of the inputs is verified by the procedure InputCheckDA
in Figure 7, which checks that ⟨diri⟩ as well as every ⟨wij⟩ are bits and rejects order i if that
is not the case. For the orders in the correct format, this procedure additionally converts
⟨wij⟩ and ⟨diri⟩ into a sequence of pairs (⟨bij⟩, ⟨sij⟩), where ⟨bij⟩ and ⟨sij⟩ represents whether
order i is a buy, sell or a dummy for price j (i.e., ⟨bij⟩ and ⟨sij⟩ have the same meaning as
in Section 5.1, but are now associated with a specific price rj).

Exponential mechanism. We obliviously determine how many orders can be matched
at each price point by calculating ⟨uj⟩ for each price rj the same way as ⟨u⟩ was calculated

J. Chiang, B. David, M. Gama and C. Lebeda :17

NoiseGen: Use Sample from Figure 4 to compute the noise for steps 5 and 9:
- For all i: ⟨πi⟩ ← Sample(Prr) (def. in Eq. 1).
- ⟨ρ0⟩, ⟨ρ1⟩ ← Sample(Pfrz) (def. in Eq. 4)

rDP-volume-matching: On input x′, xliq, submitted by (P trd
1 , ...,P trd

n) and P liq, respectively,
where x′ = [x′

1, ..., x′
n], x′

i = (⟨bi⟩, ⟨si⟩, ⟨idi⟩), xliq = (⟨xliq
0 ⟩, ⟨x

liq
1 ⟩) and bi, si, idi, xliq

0 , xliq
1 ∈ Fp:

1. Let x← InputCheckVM(x′)
2. Let y, yliq ← MatchVol(x, xliq)
3. Return y = [y1, ..., yn], yliq to (P trd

1 , ...,P trd
n) and P liq, respectively.

Subroutines invoked by rDP-volume-matching

MatchVol: On input x = [x1, ..., xn] and xliq = (⟨xliq
0 ⟩, ⟨x

liq
1 ⟩):

Step [1a] Deterministic matching of buy & sell orders
1. For all i: ⟨B⟩ ← ⟨B⟩+ ⟨bi⟩, and ⟨S⟩ ← ⟨S⟩+ ⟨si⟩
2. Let ⟨c⟩ ← (⟨S⟩ > ⟨B⟩) and ⟨u⟩ ← ⟨c⟩ · ⟨B⟩+ (1− ⟨c⟩) · ⟨S⟩.
3. For all i: ⟨bigi⟩ ← ⟨c⟩ · ⟨si⟩+ (1− ⟨c⟩) · ⟨bi⟩.
4. For all i, let ⟨σb

i ⟩ ←
∑i

h=1⟨bh⟩ and ⟨σs
i ⟩ ←

∑i

h=1⟨sh⟩.
5. For all i, let ⟨σ′

i⟩ ← ⟨c⟩ · ⟨σs
i ⟩+ (1− ⟨c⟩) · ⟨σb

i ⟩
6. For all i, let ⟨match′

i⟩ ← (⟨σ′
i⟩ ≤ ⟨u⟩) · ⟨bigi⟩

7. For all i: ⟨matchi⟩ ← (1− ⟨c⟩) · ⟨si⟩+ ⟨c⟩ · ⟨bi⟩+ ⟨match′
i⟩

8. Set match = [⟨match1⟩, ..., ⟨matchn⟩]
Step [1b] Randomized response over order matches

9. For all i:
- Let ⟨tradei⟩ ← ⟨πi⟩ · ⟨matchi⟩+ (1− ⟨πi⟩) · (1− ⟨matchi⟩)
- Let ⟨bout

i ⟩ ← ⟨bi⟩ · ⟨tradei⟩
- Let ⟨sout

i ⟩ ← ⟨si⟩ · ⟨tradei⟩
- Add yi = (⟨bout

i ⟩, ⟨sout
i ⟩, ⟨idi⟩) to the output list y.

Step [2a] Liquidity compensation for sampled trades
10. For all i: ⟨ob⟩ ← ⟨ob⟩+ ⟨bout

i ⟩, and ⟨os⟩ ← ⟨os⟩+ ⟨sout
i ⟩

11. Let ⟨∆0⟩ ← (⟨os⟩ − ⟨ob⟩) and ⟨∆1⟩ ← −⟨∆0⟩
Step [2b] Randomized liquidity freezing

12. yliq = (⟨yliq
0 ⟩, ⟨y

liq
1 ⟩)← (⟨xliq

0 ⟩+ ⟨∆0⟩ − ⟨ρ0⟩ , ⟨xliq
1 ⟩+ ⟨∆1⟩ − ⟨ρ1⟩)

13. Update (⟨ρfrz
0 ⟩, ⟨ρfrz

1 ⟩)← (⟨ρfrz
0 ⟩, ⟨ρfrz

1 ⟩) + (⟨ρ0⟩, ⟨ρ1⟩)
14. Return y = [y1, ..., yn], yliq.

Figure 6 rDP-volume-matching algorithm with MPC

InputCheckDA: On input x′ = [x′
1, ..., x′

n], where x′
i = (wi, ⟨diri⟩, ⟨idi⟩), wi = [⟨wi1⟩, ..., ⟨wil⟩]

and wij , diri, idi ∈ Fp:
Check all inputs are bits.

1. For all j: sample αij uniformly at random.
2. Sample βi uniformly at random.
3. ⟨ti⟩ ← αi1 · (⟨wi1⟩ · ⟨wi1⟩ − ⟨wi1⟩) + ... + αil · (⟨wil⟩ · ⟨wil⟩ − ⟨wil⟩)
4. ⟨ti⟩ ← ⟨ti⟩+ βi · (⟨diri⟩ · ⟨diri⟩ − ⟨diri⟩)
5. ti ← Open(⟨ti⟩)
6. If ti ̸= 0 then reject x′

i. Otherwise, continue to the next step.
7. For all j, let ⟨bij⟩ = ⟨wij⟩ · (1− ⟨diri⟩) and ⟨sij⟩ = ⟨wij⟩ · ⟨diri⟩.
8. Add xi = (⟨bi1⟩, ⟨si1⟩, ..., ⟨bil⟩, ⟨sil⟩, ⟨idi⟩) to a list x.
9. Return x.

Figure 7 Input correctness check for rDP-double-auction.

:18 Correlated-Output Differential Privacy and Applications to Dark Pools

in the rDP-volume-matching algorithm. The exponential mechanism can now be used to
select the best trading price. The probability Pr[j] associated with price point rj depends
on the corresponding utility value ⟨uj⟩, and since the utility must remain private, the
calculated probabilities Pr[j] will also be secret shared values. While this does not affect the
sampling procedure (the algorithm in Figure 4 remains unchanged if the probability mass
function is private), computing each Pr[j] will require the expensive evaluation of a secure
exponentiation.

To avoid exponentiation and efficiently compute the selection probabilities with MPC, we
use the techniques proposed in [5]. Firstly, instead of considering the selection probabilities
as given in Eq. 5, we reduce the complexity by calculating unnormalized probabilities ⟨Wj⟩
(called weights), where ⟨Wj⟩ = exp(ε · ⟨uj⟩/2). The clearing price sampling can later be
performed using these weights by multiplying ⟨z⟩ with

∑l
j=1 exp(ε · ⟨uj⟩/2), as shown in

steps 4-8 of FindPrice in Figure 8. Secondly, there are two possible solutions for computing
the weights according to the value of εin

1 (recall that εin
1 is the input privacy budget consumed

when executing the exponential mechanism; εin
1 is public and fixed beforehand):

(i) For εin
1 = 2 · ln(2), we get ⟨Wj⟩ = 2⟨uj⟩. This value can be directly written as

(⟨0⟩, ⟨0⟩, ⟨2⟩, ⟨uj⟩) by using the floating-point notation introduced in [2]. With this nota-
tion, a secret shared floating-point value ⟨f⟩ is represented as a tuple (⟨s⟩, ⟨o⟩, ⟨v⟩, ⟨p⟩)
with f = (1− 2 · s) · (1− o) · v · 2p, where s is the sign bit (set to 1 when f is negative), o

is the zero bit (set to 1 when f is zero), v is the mantissa and p the exponent.
(ii) For εin

1 = 2 · ln(2)/2d, where d ∈ N, we get ⟨Wj⟩ = 2⟨uj⟩/2d = 2⌊⟨uj⟩/2d⌋ · 2(⟨uj⟩ mod 2d)/2d .
The weight ⟨Wj⟩ can thus be obtained by calculating the exponentiation with base 2
on the integer part of ⟨uj⟩/2d, and multiplying it by a corrective term 2(⟨uj⟩ mod 2d)/2d

which takes one out of 2d possible values depending on uj . The 2d possible terms are
publicly pre-computed and the correct one is obliviously selected using ⟨uj⟩.

There is an additional procedure in [5] for calculating the weights for arbitrary values of
εin

1 . This procedure relies on the decomposability of the considered utility function, meaning
that clients can locally calculate the weights associated with their own inputs and these can
later be combined to obtain a correct global weight using MPC. Since our utility function is
not decomposable, this method is not applicable. An alternative for computing the weights
for arbitrary εin

1 would be to first publicly calculate all the possible weights according to the
amount of submitted orders, and then obliviously select the correct weight for each price
point. This would however imply several secure comparisons and become inefficient for large
amounts of submitted orders and available price points. It is therefore preferable to choose
εin

1 according to the formats in (i) or (ii), which already provide considerable flexibility.
After a price is selected, we can run the rDP-volume-matching algorithm in Figure 6,

starting from step 3 of the MatchVol procedure. Note that since we do not know which orders
accept the selected price, every order submitted to the double auction will also be considered
when subsequently executing the volume matching. Orders that did not accept the select
price will appear as dummies during the matching.

5.3 Experiments
To benchmark the performance of our MPC algorithms, we implemented and executed them
using Scale-Mamba [3] with Shamir secret sharing between 3 parties. All the parties are run
on identical machines with an Intel i-9900 CPU and 128GB of RAM. The ping time between
all the machines is 1.003 ms. Precise numerical values for the results presented here are given
in Appendix B.

J. Chiang, B. David, M. Gama and C. Lebeda :19

rDP-double-auction: On input x′, xliq, submitted by (P trd
1 , ...,P trd

n) and P liq, respectively,
where x′ = [x′

1, ..., x′
n], x′

i = (wi, ⟨diri⟩, ⟨idi⟩), wi = [⟨wi1⟩, ..., ⟨wil⟩], xliq = (⟨xliq
0 ⟩, ⟨x

liq
1 ⟩) and

wij , diri, idi, xliq
0 , xliq

1 ∈ Fp, as well as a list of prices r = [r1, ..., rl]:
1. Let x← InputCheckDA(x′)
2. xmatch, ⟨cR⟩, ⟨uR⟩ ← FindPrice(x)
3. Execute MatchVol from Figure 6 from step 3 with inputs xmatch = [xmatch

1 , ..., xmatch
n], xliq, ⟨cR⟩

and ⟨uR⟩.
Subroutine invoked by rDP-double-auction

FindPrice: On input x = [x1, ..., xn], where xi = (⟨bi1⟩, ⟨si1⟩, ..., ⟨bil⟩, ⟨sil⟩, ⟨idi⟩):
1. For all j: ⟨Bj⟩ ← ⟨Bj⟩+ ⟨b1j⟩+ ... + ⟨bnj⟩, and ⟨Sj⟩ ← ⟨Sj⟩+ ⟨s1j⟩+ ... + ⟨snj⟩.
2. For all j, let ⟨cj⟩ ← (⟨Sj⟩ > ⟨Bj⟩) and ⟨uj⟩ ← ⟨cj⟩ · ⟨Bj⟩+ (1− ⟨cj⟩) · ⟨Sj⟩.
3. Calculate weights ⟨W1⟩, ..., ⟨Wl⟩ using Algorithm 3 from [5] on input ⟨u1⟩, ..., ⟨ul⟩.
4. For all j: ⟨Fj⟩ ←

∑j

h=1⟨Wh⟩
5. Sample ⟨z′⟩ ∈ (0, 1] uniformly at random and let ⟨z⟩ ← ⟨z′⟩ · ⟨Fl⟩.
6. For all j: ⟨qj⟩ ← (⟨Fj⟩ ≥ ⟨z⟩).
7. For all j: qj ← Open(⟨qj⟩).
8. R← rj for the lowest j such that qj = 1.
9. Set xmatch

i = [⟨biR⟩, ⟨siR⟩, ⟨idi⟩].
10. Return xmatch = [xmatch

1 , ..., xmatch
n], ⟨cR⟩ and ⟨uR⟩.

Figure 8 rDP-double-auction algorithm with MPC

Figure 9 Runtimes in seconds (with logarithmic
scale on the x-axis) for the online phase of the rDP-
volume-match algorithm.

Online phase of rDP-volume-match.
The runtimes for the online phase of one
round of the rDP-volume-match algorithm
for an increasing number of submitted orders
can be found in Figure 9. These runtimes in-
clude the InputCheckVM procedure described
in Figure 5 which, is identical to the one in
the “Bucket Match” dark pool algorithm
from [11], and has an average runtime of
0.00013 seconds (0.13 ms) per order. The
randomness sampling for the randomized
matching response and the frozen liquidity
can be done in the preprocessing phase of
the MPC, and is thus not considered for the
presented results. The runtimes increase ap-
proximately linearly with the number of orders (note the logarithmic scale on the horizontal
axis), and we see that our algorithm achieves a high order throughput, taking just under
4 seconds to process 10 thousand orders. While InputCheckVM is identical to the input
correctness check of the Bucket Match algorithm from [11], our matching procedure MatchVol
is slower than the one in Bucket Match. Because of the stronger privacy guarantees we want
to satisfy, we cannot reveal intermediary computation results such as which direction has
larger total volume or which orders are already matched, as in the Bucket Match. This
results in a more complex (and thus more expensive) matching phase. Nonetheless, we note
that our runtimes are in the same order of magnitude as the ones presented in [11]. Our
rDP-volume-match algorithm can process 10 thousand orders in 3.94 seconds. The Bucket
Match algorithm, on the other hand, processes 26838 orders in 4.14 seconds, i.e., it processes
around 2.5 times as many orders in a similar amount of time. The slightly lower throughput

:20 Correlated-Output Differential Privacy and Applications to Dark Pools

of rDP-volume-match should still be high enough for most real-world applications, especially
considering the improved privacy it provides.

Online phase of rDP-double-auction. The runtimes for the online phase of the rDP-
double-auction algorithm for an increasing number of submitted orders and different values of
εin

1 can be found in Figure 9. These runtimes include the InputCheckDA procedure described
in Figure 7, as well as the FindPrice procedure from Figure 8 and the MatchVol from Figure
6 starting from step 3.

Figure 10 Runtimes in seconds (with logarithmic scale on the x-axis) for the online phase of
the rDP-double-auction algorithm with different values of εin

1 , showing: (left) selection between 10
different price points; (right) selection between 100 different price points. εin

1 is the amount of input
privacy budget consumed when executing the exponential mechanism to find the clearing price.

The average runtime of InputCheckDA is of 0.00030 seconds (0.30 ms) per order when
considering 10 price points and 0.00145 seconds (1.45 ms) per order when considering 100
price points. The percent contribution of this part of the algorithm to the total runtime
becomes more significant as the number of orders increases, constituting around 50% of the
total runtime across all εin

1 values when considering 10 thousand orders with 10 price points,
and 70% to 80% when considering 10 thousand orders with 100 price points, depending on
the choice of εin

1 . The FindPrice procedure, on the other hand, does not get significantly
slower with the increase in the number of orders. This is also the only part of the algorithm
that depends on the choice of εin

1 , since the method for calculating the weights associated
with each price point changes depending on εin

1 , as described in Section 5.2. As expected,
the difference in runtime for different εin

1 ’s becomes more noticeable when considering more
price points, with FindPrice taking around 2.2 seconds more with εin

1 = ln(2)/2 than with
εin

1 = 2 ln(2). Nonetheless, this increase remains comparatively small when we consider large
numbers of orders.

6 Future work

In this work, we have initiated the study of differential privacy in the trusted curator model,
resulting in a definitional framework of round differential privacy, which protects both
private inputs and private, yet correlated-outputs. We argue this setting applies to many
economic or financial application domains. We introduce round differentially private market
mechanisms for traditional finance, but also decentralized finance when instantiated with
privacy-preserving smart contracts [4].

We highlight the investigation of general correlated-output differentially private mechan-
isms for common output correlation classes as an interesting avenue for future work. In the

J. Chiang, B. David, M. Gama and C. Lebeda :21

setting of standard differential privacy, the Laplace, Gaussian or exponential mechanisms
provide “plug-and-play” techniques to transform query algorithms into differentially privacy
mechanisms. The investigation of similarly general techniques to achieve correlated-output
differential privacy would represent a useful toolkit in the trusted curator setting. Achiev-
ing efficiency for such generalized mechanisms with custom MPC protocols would greatly
facilitate the deployment of round-differentially-private mechanisms in practice.

References
1 Abbas Acar, Z Berkay Celik, Hidayet Aksu, A Selcuk Uluagac, and Patrick McDaniel. Achieving

secure and differentially private computations in multiparty settings. In 2017 IEEE Symposium
on Privacy-Aware Computing (PAC), pages 49–59. IEEE, 2017. https://doi.org/10.1109/
PAC.2017.12.

2 Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure computation on
floating point numbers. 20th Annual Network and Distributed System Security Symposium,
NDSS 2013, San Diego, California, USA, 2013.

3 Abdelrahaman Aly, Kelong Cong, Daniele Cozzo, Marcel Keller, Emmanuela Orsini, Dragos
Rotaru, Oliver Scherer, Peter Scholl, Nigel P. Smart, Titouan Tanguy, and Tim Wood. SCALE-
MAMBA v1.12: Documentation, 2021. URL: https://homes.esat.kuleuven.be/~nsmart/
SCALE/Documentation.pdf.

4 Carsten Baum, James Hsin-yu Chiang, Bernardo David, and Tore Kasper Frederiksen. Eagle:
Efficient Privacy Preserving Smart Contracts. Cryptology ePrint Archive, 2022. https:
//eprint.iacr.org/2022/1435.

5 Jonas Böhler and Florian Kerschbaum. Secure multi-party computation of differentially
private median. In 29th USENIX Security Symposium (USENIX Security 20), pages 2147–
2164. USENIX Association, August 2020. URL: https://www.usenix.org/conference/
usenixsecurity20/presentation/boehler.

6 John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. MPC joins the dark side. In
Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security,
pages 148–159, 2019. https://doi.org/10.1145/3321705.3329809.

7 John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. Multi-party computation mechanism
for anonymous equity block trading: A secure implementation of turquoise plato uncross.
Intelligent Systems in Accounting, Finance and Management, 28(4):239–267, 2021. https:
//doi.org/10.1002/isaf.1502.

8 David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova, Joeri De Ruiter,
and Alan T Sherman. cmix: Mixing with minimal real-time asymmetric cryptographic
operations. In Applied Cryptography and Network Security: 15th International Conference,
ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings 15, pages 557–578. Springer,
2017. https://doi.org/10.1007/978-3-319-61204-1_28.

9 David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981. https://www.doi.org/10.1145/358549.
358563.

10 Tarun Chitra, Guillermo Angeris, and Alex Evans. Differential privacy in constant function
market makers. Cryptology ePrint Archive, 2021. https://eprint.iacr.org/2021/1101.

11 Mariana Botelho da Gama, John Cartlidge, Antigoni Polychroniadou, Nigel P Smart, and
Younes Talibi Alaoui. Kicking-the-bucket: Fast privacy-preserving trading using buckets.
Cryptology ePrint Archive, 2021. To appear at FC’22. https://eprint.iacr.org/2021/1549.

12 Mariana Botelho da Gama, John Cartlidge, Nigel P. Smart, and Younes Talibi Alaoui. All for
one and one for all: Fully decentralised privacy-preserving dark pool trading using multi-party
computation. Cryptology ePrint Archive, Paper 2022/923, 2022. https://eprint.iacr.org/
2022/923. URL: https://eprint.iacr.org/2022/923.

https://doi.org/10.1109/PAC.2017.12
https://doi.org/10.1109/PAC.2017.12
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
https://eprint.iacr.org/2022/1435
https://eprint.iacr.org/2022/1435
https://www.usenix.org/conference/usenixsecurity20/presentation/boehler
https://www.usenix.org/conference/usenixsecurity20/presentation/boehler
https://doi.org/10.1145/3321705.3329809
https://doi.org/10.1002/isaf.1502
https://doi.org/10.1002/isaf.1502
https://doi.org/10.1007/978-3-319-61204-1_28
https://www.doi.org/10.1145/358549.358563
https://www.doi.org/10.1145/358549.358563
https://eprint.iacr.org/2021/1101
https://eprint.iacr.org/2021/1549
https://eprint.iacr.org/2022/923
https://eprint.iacr.org/2022/923
https://eprint.iacr.org/2022/923

:22 Correlated-Output Differential Privacy and Applications to Dark Pools

13 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of cryptography conference, pages 265–284.
Springer, 2006. https://doi.org/10.1007/11681878_14.

14 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014. http:
//dx.doi.org/10.1561/0400000042.

15 Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca Pampaloni, and Ivan Pryvalov.
Differentially private data aggregation with optimal utility. ACSAC ’14, page 316–325, New
York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2664243.2664263.

16 Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential
privacy. In ICML, volume 37 of JMLR Workshop and Conference Proceedings, pages 1376–1385.
JMLR.org, 2015.

17 Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 94–103. IEEE, 2007.
https://doi.org/10.1109/FOCS.2007.66.

18 United States of America before the Securities and Exchange Commission. In the matter of
itg inc. and alternet securities, inc., exchange act release no. 75672. https://www.sec.gov/
litigation/admin/2015/33-9887.pdf, 12 Aug 2015.

19 United States of America before the Securities and Exchange Commission. In the matter of
pipeline trading systems llc, et al., exchange act release no. 65609. https://www.sec.gov/
litigation/admin/2011/33-9271.pdf, 24 Oct 2011.

20 United States of America before the Securities and Exchange Commission. In the matter
of liquidnet, inc., exchange act release no. 72339. https://www.sec.gov/litigation/admin/
2014/33-9596.pdf, 6 Jun 2014.

21 Manas Pathak, Shantanu Rane, and Bhiksha Raj. Multiparty differential privacy via
aggregation of locally trained classifiers. Advances in neural information processing
systems, 23, 2010. https://proceedings.neurips.cc/paper_files/paper/2010/file/
0d0fd7c6e093f7b804fa0150b875b868-Paper.pdf.

22 Sikha Pentyala, Davis Railsback, Ricardo Maia, Rafael Dowsley, David Melanson, Anderson
Nascimento, and Martine De Cock. Training differentially private models with secure multiparty
computation. arXiv preprint arXiv:2202.02625, 2022. https://arxiv.org/abs/2202.02625.

23 Penumbra. ZSwap documentation. https://protocol.penumbra.zone/main/zswap.html,
2023.

24 Monica Petrescu and Michael Wedow. Dark pools in european equity markets: emergence,
competition and implications. ECB Occasional Paper, (193), 2017. https://doi.org/10.
2866/555710.

25 Thomas Steinke. Composition of differential privacy & privacy amplification by subsampling.
CoRR, abs/2210.00597, 2022.

26 Sameer Wagh, Xi He, Ashwin Machanavajjhala, and Prateek Mittal. Dp-cryptography:
marrying differential privacy and cryptography in emerging applications. Communications of
the ACM, 64(2):84–93, 2021. https://doi.org/10.1145/3418290.

27 Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965. https://doi.org/
10.1080/01621459.1965.10480775.

https://doi.org/10.1007/11681878_14
http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1561/0400000042
https://doi.org/10.1145/2664243.2664263
https://doi.org/10.1109/FOCS.2007.66
https://www.sec.gov/litigation/admin/2015/33-9887.pdf
https://www.sec.gov/litigation/admin/2015/33-9887.pdf
https://www.sec.gov/litigation/admin/2011/33-9271.pdf
https://www.sec.gov/litigation/admin/2011/33-9271.pdf
https://www.sec.gov/litigation/admin/2014/33-9596.pdf
https://www.sec.gov/litigation/admin/2014/33-9596.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/0d0fd7c6e093f7b804fa0150b875b868-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/0d0fd7c6e093f7b804fa0150b875b868-Paper.pdf
https://arxiv.org/abs/2202.02625
https://protocol.penumbra.zone/main/zswap.html
https://doi.org/10.2866/555710
https://doi.org/10.2866/555710
https://doi.org/10.1145/3418290
https://doi.org/10.1080/01621459.1965.10480775
https://doi.org/10.1080/01621459.1965.10480775

J. Chiang, B. David, M. Gama and C. Lebeda :23

A Proofs

▶ Theorem 11. rDP-Volume-matching is (εin + εout, δout)-(εout, δout)-m-round-differentially-
private.

Proof. (Theorem 11) Follows directly from Lemma 13, and Lemma 14, stated and proven
below, for the duration of the privacy epoch.

We note that round differential privacy must be analyzed in the presence of corrupted
traders and a corrupted liquidity provider; even if the liquidity provider only interacts with
the “outputs” of clients by compensating for liquidity mismatch, it can also potentially infer
knowledge about honest inputs from its output, complicating the proof.

Thus, our proof strategy is summarized as follows; we first state and prove Lemma 12 to
demonstrate input differential privacy against corrupted traders; correlated-output differential
privacy against corrupted traders holds trivially, as trader outputs are independently sampled.
Then we first demonstrate correlated output differential privacy against corrupted liquidity
providers in Lemma 13 (in isolation); finally, input differential privacy against both corrupted
traders and corrupted liquidity provider is considered in Lemma 14, which leverages privacy
bounds from both Lemmas 12 and 13. ◀

▶ Lemma 12. rDP-Volume-matching is (εin, 0)-input differentially private against an ad-
versary that sees the adversarial trade outputs.

Proof. (Lemma 12) Let x, x′ be neighboring vectors of trade orders (Definition 2) submitted
to the DP-volume matching algorithm. Suppose for the rest of the proof that the honest
user submits a buy order in one of x, x′ and a dummy order in the other. The proof is the
same in the case of a sell order. The key to the proof is that at most one adversarial order is
affected in the deterministic matching by changing the honest user’s trade order.

Let bA and sA denote the number of adversarial buy and sell orders, respectively. If
bA < sA the number of matches increases by 1 by changing the honest user’s trade from a
dummy to a buy order. Here, the (bA + 1)’th adversarial sell order changes from unmatched
to matched and all other orders are unaffected. For bA ≥ sA the number of matches is the
same for both inputs. If the honest user’s buy order is not matched changing the input has
no impact on any matches. However, if it is matched the sA’th adversarial buy order changes
from matched to unmatched. All other adversarial trades are unaffected.

We need to show that the probability of the adversaries observing any trade output
changing by at most a factor of at most eεin between the two inputs. It is easy to see that
this holds for the case where no adversarial trades are changed in step [1a] so it remains to
show this for the case when one trade is changed. Let j be the index of the trader whose
trade was changed between match and unmatched in the deterministic phase and let t denote
a binary vector of trade outcomes. From the independence of the samples in step [1b] and
equations 1 & 2 we have for any t:

∏
i∈A

Pr[tradei = ti | x]
Pr[tradei = ti | x′] = Pr[tradej = tj | x]

Pr[tradej = tj | x′] ≤
eεin · (1 + eεin)

(1 + eεin)
= eεin

◀

▶ Lemma 13. rDP-Volume-matching is (εout, δout)-correlated-output differentially private.

Proof. (Lemma 13) As per Definition 5, we must demonstrate that adversary output event
probability distributions are (εout, δout)-indistinguishable to a change in the honest user’s

:24 Correlated-Output Differential Privacy and Applications to Dark Pools

output; the adversarial output view is composed of corrupted trader outputs and the view of
the corrupted liquidity provider.

Note that inputs are fixed in correlated-output differential privacy. Thus, the output
match = [match1, ..., matchn] of deterministic matching in step [1a] remains unaffected;
the distribution of trader outputs also remain unchanged in step [1b]. Correlated-output
differential privacy holds trivially for the adversarial trader output view.

The corrupted liquidity provider provides reserves (xliq
0 , xliq

1) and observes the updated
reserves (yliq

0 , yliq
1) =

(
xliq

0 + ∆0− ρ0 , xliq
1 + ∆1− ρ1

)
, where ∆0 and ∆1 := −∆0 are based on

the liquidity mismatch from step [1b] and ρ0 and ρ1 are noisy values as described in step [2b].
The sensitivity of ∆0 to the honest output is 1. An adversary who knows the adversarial
trade outputs can compute the mismatch between them and therefore knows ∆0 to an error
of at most 1. For simplicity of presentation we assume that there is no mismatch between
adversarial sell and buy orders. For the rest of the proof we assume that the honest user
issued a buy order and Sh is the event where the order was not fulfilled. That is, ∆0 = 0
and ∆′

0 = 1. The other cases follow from symmetric proofs.
We split the outputs into two categories. For any event where yliq

0 < xliq
0 we know that

ρ0 > 0 liquidity was frozen when conditioning on Sh. At the same time ρ0 − 1 liquidity was
frozen when conditioning on Sh not happening. We can see directly from the probability
mass in Equation (4) that the conditional probabilities of observing any such output differ
by a factor eεout . The probability of observing the special case of yliq

0 = xliq
0 is 0 when the

buy order was fulfilled because it implies that ρ0 = −1. In contrast, the probability is δout

when conditioning on Sh. Therefore, the algorithm satisfies (εout, δout)-correlated-output
differential privacy, since for any event SA we have

Pr[MA(x) ∈ SA |Mh(x) ∈ Sh] ≤ exp(ε) · Pr[MA(x) ∈ SA |Mh(x) ̸∈ Sh] + δ.

◀

▶ Lemma 14. rDP-Volume-matching is (εin + εout, δout)-input differentially private.

Proof. (Lemma 14) We can consider rDP-Volume-matching as consisting of two separate
algorithms. The first algorithm runs only the fuzzy order matching and reveals the trade
outcomes to each trader. We know from Lemma 12 that this algorithm is (εin, 0)-DP. The
second algorithm takes the trade outcomes as input and runs the liquidity compensation step
of the rDP-Volume-matching. The same proof as in Lemma 13 shows that this algorithm
(εout, δout)-DP if we change honest input between a dummy order and a (possible fulfilled)
valid order. By composition, running the two algorithms satisfies (εin + εout, δout)-input
differentially privacy and the output distribution is equivalent to rDP-Volume-matching. ◀

▶ Theorem 15. rDP-double auction is m-round-differentially-private.

Proof. (Theorem 15) DP-double auction receives private trade orders and subsequently
releases (1) a public clearing price r ∈ r from an (εin

1)-input differentially private exponential
mechanism, and (2) private trade outputs to each of the n clients from a (εin

2 , δin)-(εout, δout)-
round differentially private DP-volume-match mechanism.

To establish round differential privacy, we must argue correlated-output differential
privacy for (1). This holds trivially, as trader outputs are determined by the DP-volume
matching subroutine, where all trade outcomes are sampled independently of the clearing
price. Thus, DP-double auction is (εin

1 + εin
2 , δin)-(εout, δout)-round differentially-private. m-

round differential-privacy is implied as long as liquidity frozen in each rDP-volume-match
execution remains secretly locked. ◀

J. Chiang, B. David, M. Gama and C. Lebeda :25

B Experimental Results

Here we provide the precise numerical values for the results presented in Section 5.3.

Table 1 Runtimes in seconds for the online phase of the rDP-volume-match algorithm.

Orders InputCheckVM MatchVol Total
10 0.001 0.003 0.004
50 0.007 0.010 0.016
100 0.013 0.030 0.033
500 0.065 0.092 0.157
1000 0.130 0.184 0.314
5000 0.650 1.137 1.787
10000 1.300 2.638 3.938

Table 2 Runtimes in seconds for the online phase of the rDP-double-auction algorithm with
εin

1 = 2 ln(2). Note that the FindPrice procedure includes both price determination and order
matching.

Price points Orders InputCheckDA FindPrice + MatchVol Total

10

10 0.003 0.043 0.046
50 0.015 0.051 0.066
100 0.030 0.062 0.092
500 0.148 0.137 0.285
1000 0.296 0.232 0.528
5000 1.479 1.222 2.701
10000 2.957 2.757 5.714

100

10 0.015 0.391 0.405
50 0.073 0.390 0.462
100 0.145 0.404 0.550
500 0.727 0.509 1.236
1000 1.454 0.622 2.076
5000 7.270 1.886 9.156
10000 14.541 3.783 18.324

:26 Correlated-Output Differential Privacy and Applications to Dark Pools

Table 3 Runtimes in seconds for the online phase of the rDP-double-auction algorithm with
εin

1 = ln(2). Note that the FindPrice procedure includes both price determination and order matching.

Price points Orders InputCheckDA FindPrice + MatchVol Total

10

10 0.003 0.149 0.152
50 0.015 0.157 0.172
100 0.030 0.168 0.198
500 0.148 0.243 0.391
1000 0.296 0.338 0.634
5000 1.479 1.328 2.807
10000 2.957 2.862 5.820

100

10 0.015 1.359 1.373
50 0.073 1.358 1.430
100 0.145 1.372 1.518
500 0.727 1.447 2.204
1000 1.454 1.590 3.044
5000 7.270 2.854 10.124
10000 14.541 4.751 19.292

Table 4 Runtimes in seconds for the online phase of the rDP-double-auction algorithm with
εin

1 = ln(2)/2. Note that the FindPrice procedure includes both price determination and order
matching.

Price points Orders InputCheckDA FindPrice + MatchVol Total

10

10 0.003 0.279 0.282
50 0.015 0.286 0.301
100 0.030 0.298 0.327
500 0.148 0.373 0.521
1000 0.296 0.468 0.764
5000 1.479 1.457 2.936
10000 2.957 2.992 5.949

100

10 0.015 2.566 2.580
50 0.073 2.565 2.638
100 0.145 2.580 2.725
500 0.727 2.684 3.411
1000 1.454 2.797 4.251
5000 7.270 4.061 11.331
10000 14.541 5.958 20.499

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Round differential privacy in the trusted curator model
	3.1 The trusted curator
	3.2 Differential privacy for inputs
	3.3 Differential privacy for correlated outputs
	3.4 Single-round & Multi-round privacy

	4 Round differentially private market mechanisms
	4.1 Round-DP volume matching
	4.2 Round DP double auctions

	5 Round-DP market mechanisms with MPC
	5.1 rDP-volume-match with MPC
	5.2 rDP-double-auction with MPC
	5.3 Experiments

	6 Future work
	A Proofs
	B Experimental Results

