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Abstract. This paper presents the first protocols for Proactive Secret
Sharing (PSS) that only require constant (in the number of parties, n)
communication per party per epoch. By harnessing the power of ex-
pander graphs, we are able to obtain strong guarantees about the security
of the system. We present the following PSS protocols:
– A PSS protocol that provides privacy (but no robustness) against

an adversary controlling O(n) parties per epoch.
– A PSS protocol that provides robustness (but no privacy) against an

adversary controlling O(n) parties per epoch.
– A PSS protocol that provides privacy against an adversary control-

ling O(na) parties per epoch and provides robustness against an
adversary controlling O(n1−a) parties per epoch, for any constant
0 ≤ a ≤ 1. Instantiating this with a = 1

2
gives a PSS protocol

that is proactively secure (private and robust) against an adversary
controlling O(

√
n) parties per epoch.

Additionally, we discuss how secure channels, whose existence is usually
assumed by PSS protocols, are challenging to create in the mobile adver-
sary setting, and we present a method to instantiate them from a weaker
assumption.

1 Introduction

Most multiparty protocols provide security as long as no more than a certain
threshold of the parties are corrupted, e.g. the Shamir secret-sharing provides
security as long as no more than t-out-of-n of the parties are corrupted. These
protocols implicitly assume that adversarial corruptions are static, i.e., the subset
of corrupted parties does not change over time.

The notion of proactive security [OY91], considers a mobile adversary that
can adaptively corrupt different parties, subject to a maximum corruption thresh-
old at a given time. More formally, the model considers a multiparty protocol
with n parties, where time is divided into epochs. In each epoch the adversary
can corrupt up to t of the n parties, learning their state (and in the malicious
model completely controlling their behavior). In the next epoch, the adversary
adaptively chooses a new subset of t parties to corrupt, and this continues in-
definitely. A protocol that can achieve privacy (or robustness) in the face of this
type of mobile adversary is said to be proactively secure.



When considering proactive security, it is sufficient to consider Proactive Se-
cret Sharing (PSS), i.e., secret-sharing schemes that can achieve privacy (and/or
robustness) in the face of a mobile adversary. This is because any MPC protocol
that computes on secret shares can be made proactively secure by simply assum-
ing that each round of the MPC protocol happens within a single epoch. With
this assumption, the adversary is essentially static with respect to the MPC
protocol, and security follows immediately from the proactive security of the
underlying secret sharing scheme together with the (static) security of the MPC
protocol. Thus, previous works focused on building proactive secret sharing pro-
tocols, with the understanding that PSS protocols can be used as the substrate
for general secure multiparty computation secure against mobile adversaries.

In addition to the design of the secret sharing protocol, i.e., the refreshing of
shares, there is an orthogonal issue which needs to be addressed: the creation and
re-establishing of the secure communication channels between the parties after
(potential) adversarial corruptions. Previous works either simply assume that
an infrastructure for secure channels exists, or have solutions to create secure
channels that require (at least) Θ(n) communication per party per epoch, where
n is the number of parties. We detail the prior art in Appendix A with an
abridged version in Section 2.

Our Results

Given the communication complexity of prior constructions, the natural ques-
tion to ask is whether this O(n) communication for PSS is inherent or whether
there exist protocols with sublinear communication. In this work, assuming a
synchronous network, we present the first PSS protocol for single (unbatched)
secrets that achieves sublinear communication. Surprisingly, we show that PSS
is possible against passive mobile adversaries corrupting Θ(n) parties per epoch
with only constant (in n) communication per party! Furthermore, we present a
PSS protocol that is secure against active mobile adversaries corrupting Θ(

√
n)

parties per epoch that also has constant (in n) communication.
Assuming the existence of secure communication channels we show three PSS

protocols with constant communication per party. Our first protocol provides se-
crecy for the shared value, but offers no robustness, i.e. it works only against a
passive adversary (Section 5). The second provides robustness but no privacy,
that is a malicious adversary cannot corrupt the secret (Section 6). Finally, we
combine the first two protocols to provide both secrecy and robustness (Sec-
tion 7). Our first two protocols are secure against an adversary corrupting Θ(n)
parties per epoch while our third is only secure against an adversary corrupt-
ing Θ(

√
n) parties per epoch. We note, however, that because our per-epoch

communication cost is so low, we can set our epoch times to be much shorter
than existing PSS protocols, which would reduce the number of parties that an
adversary can corrupt during an epoch (see Appendix D).

Note that while the number of messages sent per party per epoch is constant,
and the size of each message is independent of n, the message sizes do depend
on two other parameters. Like any other PSS protocol, our message sizes depend
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on the size of the secret, |F|. For notational simplicity we assume |F| = O(1).
Messages sizes may also depend on the computational security parameter, κ.
Assuming secure channels, our first and second protocols do not depend on κ,
while our third protocol has messages of size O(κ). Note that some works use
batching to combine many secrets to obtain low communication cost per secret.
We do not use batching ; our results hold even if there is only a single secret.

Secure communication channels are required for PSS, so we also develop
a method for establishing secure channels between parties that requires only
O(κ) communication per party per epoch (Section 8). Using this protocol to
instantiate secure channels (instead of simply assuming secure channels exist)
increases the communication complexity of our first and second PSS protocols
to O(κ) while our third PSS protocol remains O(κ). Our method requires a
minimal trusted hardware assumption: that each party has access to a secure
signing oracle. The adversary may make the oracle sign arbitrary messages when
the party is corrupted, but cannot learn the secret key. This is a much weaker
assumption than that of secure hardware channels, and is implemented by many
common devices such as Yubikeys or iOS Secure Enclaves.

Our third PSS protocol can be easily modified to achieve a different crypto-
graphic primitive called Proactive Pseudorandomness (PP), that is a protocol
which enables a set of parties to preserve the ability to generate pseudorandom-
ness in the face of a mobile adversary, despite no access to true randomness. Our
protocol requires only O(κ) communication per-party per epoch and maintains
(global) pseudorandomness against a mobile adversary controlling Θ(n) parties
per epoch. While this is an interesting development (previous protocols required
O(n) communication), it is not a core contribution of this work so is presented
in Appendix F.

Our PSS protocols rely on expander graphs and in Section 4 we provide the
properties and theorems for these graphs that we need in our design. Instead
of requiring that each party communicate with every other party, each party
communicates with only a constant number of neighbors, where the assignment
of neighbors is chosen according to an expander graph.

Because each party only communicates with a constant number of other par-
ties, it is possible that an honest party be entirely surrounded by corrupt parties.
As such, the adversary may learn the honest party’s state (by knowing all mes-
sages sent to it) or may cause an honest party to behave incorrectly (by sending
it incorrect messages). Our security guarantees therefore will not be local: they
will not necessarily apply to every honest party. Instead we prove global security
properties that hold over the entire system, e.g. that the adversary is not able
to learn a secret that has been shared between all parties, or that the adversary
cannot cause most parties to behave incorrectly. Intuitively, these global secu-
rity properties will hold because the expansion property of the communication
network ensures that the set of honest parties at different times remain generally
well-connected to each other.
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2 Related Work

A full related work section appears in Appendix A. Table 1 shows the communi-
cation complexity of the works discussed there, as well as our own results. Here
we only provide details of a few of the works.

Work Communication Threshold Synchrony
[HJKY95] O(n) n = 2t+ 1 sync
[CKLS02] O

(
n3

)
n = 3t+ 1 async

[SLL10] O(n) n = 3t+ 1 async
[ZSVR05] exp(n) n = 3t+ 1 async
[BEDLO14] O(n/ℓ) n = 2(t+ ℓ) + 1 sync
[ELL20] O(n2/ℓ) n = t+

√
ℓ+ 1 sync

[MZW+19] O(n2) n = 2t+ 1 sync
[YXD22] O(n2 logn) n = 4t+ 1 async
Protocol 1 (passive adversary) O(1) n = (1 + ϵ)t sync
Protocol 3 O(κ) n = (2 + ϵ)t2 sync

Table 1: PSS schemes. ℓ is the size of a batch, ϵ > 0 is a constant.

Proactive secret sharing considers the problem of maintaining the privacy
and robustness of a shared secret in the presence of a mobile adversary [OY91].
In the mobile-adversary model, time is divided into “epochs,” and the adversary
is allowed to corrupt a new subset of parties in every epoch.

In order for PSS to be feasible, we must assume that parties can be securely
“rebooted,” an operation which leaves them in a fresh (uncorrupted) state. We
must also assume that parties can securely delete information, otherwise an
adversary corrupting a party in one epoch could learn their shares from previous
epochs, which would make it impossible to maintain privacy.

Essentially all PSS protocols are built around the idea of “refreshing” the
parties’ shares at every epoch. One method of refreshing shares is to simply
have all parties generate a random sharing of zero, and then add these shares
to the shares of the original secret [HJKY95]. This effectively re-randomizes
the shares, and ensures that shares the adversary learns from different epochs
cannot be combined. An alternative strategy for refreshing is to have each party
re-share their share, then use the linearity of the secret-sharing protocol to have
each party locally reconstruct a new share of the original secret [CKLS02]. Other
works [ELL20,MZW+19,YXD22] share using bivariate polynomials. To achieve
privacy against malicious adversaries, the underlying secret sharing protocol can
be replaced with a Verifiable Secret Sharing protocol (e.g. [Fel87]).

Some PSS protocols (e.g. [SLL10,BDLO15]) consider dynamic committees,
i.e., they assume that committees in different epochs may contain different (pos-
sibly disjoint) sets of parties, and that the threshold may also change between
epochs. Some PSS protocols (e.g. [CKLS02][ZSVR05][SLL10][YXD22]) consider
an asynchronous model of communication, meaning that although parties are
synchronized across epochs, messages can be arbitrarily delayed by the adver-
sary within an epoch. In this work, we consider synchronous communication.
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The goals of PSS protocols are to tolerate a higher corruption threshold (usu-
ally n/2 or n/3) and to reduce communication complexity. Every previous PSS
protocol requires all-to-all communication during the refresh phase, and thus
every PSS protocol has at least O(n) communication per party per epoch (and
many have O(n2) or even O(n3)). One way to improve amortized communication
complexity is to consider batches of secrets, which can then be refreshed simul-
taneously [BDLO15,BDLO15,ELL20]. By considering batches of O(n) secrets,
some PSS protocols are able to achieve amortized constant in n communication
complexity per party per epoch. This work is the first to achieve communication
complexity that is constant in n without amortization (see Section 7).

One interesting feature of the mobile-adversary model is the problem of how
secure channels are created and maintained between the parties. Essentially all
multiparty protocols assume the parties are connected via secure, authenticated
channels. In most situations, these secure channels can be achieved via a PKI –
each party has a key pair for an authenticated encryption scheme. Unfortunately,
in the mobile-adversary setting the existence of a PKI can no longer create secure
channels, since once an adversary has corrupted a party, they would learn the
party’s long-term secret keys and would be able to impersonate that party and
decrypt all messages to that party in future epochs. This problem was explored in
depth in [CHH97], but their solution is rather cumbersome and re-establishing se-
cure channels every epoch requires at least O(n) communication per party. Many
PSS protocols (e.g. [OY91,CKLS02,BEDLO14,MZW+19,YXD22]) still assume
that all parties are connected via secure channels.

In Section 8 we give a simple solution to the problem of reinstating secure
channels in the mobile adversary model, assuming each party has access to a
lightweight signing oracle (such as can be found in any modern smartphone or
hardware-based cryptocurrency wallet). Our solution for regenerating channel
keys can be used with any existing PSS protocol. It is very light—it only requires
O(κ) communication to establish a channel—so is compatible with our low-
communication PSS protocols.

3 Model

For the full model details see Appendix C.

Secrets and Shares. We assume that there is a single secret, denoted s, from
some group F, that is (honestly) distributed by a trusted dealer before the pro-
tocol begins, resulting in each party holding a share. In addition, we require that
the dealer distributes initial PRG keys.

Epochs. We divide time into epochs consisting of two phases, refresh and retain.
The PSS protocol describes the refresh phase, while the retain phase encom-
passes what parties do with their share outside of the PSS protocol.

1. Refresh:
(a) Reboot
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(b) Establish secure channels
(c) Send messages
(d) Securely delete old share (everything except current private key)
(e) Receive messages
(f) Securely delete keys (everything except new share)

2. Retain: Parties may use their share, e.g. in the context of an MPC protocol.

Mobile Adversaries. The set of parties in the protocol is denoted {P}ni=1, and
communication is synchronous.

The adversary, A, is mobile, which means that it can corrupt t (out of n)
parties in each epoch, where t is a function of n. When A corrupts a party, it
is allowed to see all its messages. If A is malicious, it can cause the party to
deviate from the protocol. Furthermore, A is rushing.

We assume parties can securely delete data and have access to fresh ran-
domness. We instantiate secure, authenticated channels between parties using a
(hardware-based) signing oracle. Alternatively, we can simply assume the exis-
tence of secure channels.

Reboots. To handle such an adversary, we assume that it is possible to remove
the adversary’s control of a party by a reboot operation. Rebooting a party will
cause the adversary to lose all access to new information and will cause the party
to return to executing the correct program.

A party is corrupted if it has been corrupted, but not (yet) been rebooted. It
is honest otherwise. By periodically applying reboots, we can limit the number
of parties that are corrupted at any time.

Counting Corruptions. A party which is corrupted during the retain portion
of epoch t is considered corrupt, and counted against the budget of the adversary
in epoch t. As in [HJKY95], we consider that when an adversary corrupts a
party during the refresh phase of epoch t, this counts towards the adversary’s
corruption budget of epoch t and epoch t− 1.

When the committee in epoch t+ 1 is disjoint from the committee in epoch
t, there is no need to double count parties who are corrupted during the refresh
phrase. Thus it is typical, when considering dynamic committees, to give the
adversary the power to corrupt up to k-out-of-n parties in the old committee as
well as k-out-of-n of parties in the new committee.

Security. Most PSS protocols simultaneously achieve both privacy and robust-
ness. Privacy ensures that the adversary gains no advantage in guessing the
secret. Robustness ensures that the adversary cannot cause the reconstructed
value to differ from the secret which was shared. In this work, we will sometimes
consider these two properties separately.

For both private and robust protocols, we will show protocols secure against
malicious (active) adversaries. Our protocols will either provide perfect secu-
rity, ensuring that a property (privacy or robustness) always holds, or they will
provide computationally security, ensuring that a property holds except with
non-negligible probability against a computationally bounded adversary.
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Reconstruction. In our protocols it is impossible to guarantee that every hon-
est party holds a valid share at every step of the protocol. Since this type of
“eclipse attack” is unavoidable in our model, we consider a slightly different form
of correctness in our constructions. We consider a PSS protocol secure if, in any
given epoch, there exists a reconstruction protocol, which would allow the (hon-
est) parties to reconstruct the original secret. The key distinction here is that
the reconstruction procedure may require linear communication (e.g. all parties
send their shares to every other party), but since the reconstruction procedure
is not actually run in each epoch, the amortized communication per epoch can
still be sub-linear.

4 Expander Graphs

The key tool in our protocols is expander graphs. These are graphs which, despite
a small number of edges, remain well connected, for certain metrics of connected-
ness. In particular we will examine bipartite graphs, that is G = (L∪R,E) where
E ⊂ L × R. Our graphs will be balanced, that is |L| = |R| = n. Furthermore,
our graphs will be d-regular, that is every vertex (whether in the “left” side L,
or the “right” side R) will have exactly d neighbors, where d is a constant.1

The metric of connectedness that is most relevant to our work is vertex
expansion, which is formally defined below:2

Definition 1 (Vertex expansion). A bipartite graph G = (L∪R,E), is called
a (γ, α)-expander if for every set S ⊂ L, with |S| ≤ γn, and letting N(S)
represent the set of neighbors of vertices in S, we have

|N(S)| ≥ α |S| (1)

Concretely, we use bipartite d-regular Ramanujan graphs. These are expander
graphs that are essentially optimal according to another metric: spectral expan-
sion. Appendix B contains a more detailed explanation of Ramanujan graphs
and spectral expansion, as well as standard proofs that they have the properties
we require (Theorems 1 and 2 below). Bipartite d-regular Ramanujan graphs
can be constructed in polynomial time for all degrees and sizes [MSS13] [MSS18]
[Coh16]. Since Ramanujan graphs have optimal spectral expansion, they also
have good vertex expansion:

Theorem 1. A Ramanujan graph is a
(
γ, 1

(1−γ) 4
d+γ

)
expander ∀ γ ∈ [0, 1].

Essentially, the property above will be useful when, if a party has one good
neighbor, it will also be good, for some definition of good to be defined later. In
other situations, a party will only be good if it has a majority of good neighbors.
In such cases, we will need the following property of Ramanujan graphs.
1 A d-regular bipartite graph is always balanced since, |E| = d|L| = d|R| ⇒ |L| = |R|.
2 While this definition is valid for the case α ≤ 1, we will only be interested in the

case where α > 1, i.e. there is actual expansion.
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Theorem 2. Ramanujan graphs have the following property. Let S be a set of
size at most δn vertices on the left. Then at most

4δn

( 12 − δ)2d
(2)

right-hand vertices have at least 1
2 of their neighbors in S.

5 O(n)-Private PSS with Constant Communication

In this section we present a PSS protocol that is perfectly private (but not
robust) in the presence of an adversary that can corrupt up to δn parties per
epoch, for some constant 0 < δ < 1.

Remark 1. In the case of passive adversaries, the privacy-only PSS protocol de-
scribed is actually a full-blown PSS protocol, since passive adversaries cannot
modify the shares. In this section, we prove a slightly stronger result, that the
protocol achieves privacy in the face of an active (malicious) adversary.

As a warmup, consider the following simple (private-only) PSS protocol. The
secret, s, is additively distributed among the players. That is, in epoch t, party
Pi holds s

(t)
i where

∑n
i=1 s

(t)
i = s. To refresh each party additively reshares its

share to all other parties. Then, by summing the shares-of-shares it receives,
each party gains a new re-randomized share of the secret original secret.

In our protocol, instead of each party additively resharing its share to all other
parties, it only reshares to a constant number of neighbors. These neighbors are
chosen according to an expander graph.

Definition 2 (Choosing Neighbors according to a Graph). Let G =
(V,E) be a bipartite graph, with parts L = {L1, . . . , Ln} and R = {R1, . . . , Rn}.
If a protocol with parties P1, . . . , Pn, chooses neighbors according to G it means
that Pj is a neighbor of Pi iff (Li, Rj) ∈ E. Note that the neighborhood relation
is not reflexive. Let N(i) return the indices of the neighbors of Pi, and N−1(j)
return the indices of parties that Pj is a neighbor of.

Remark 2 (Fixed graph). The graph G will always be public and fixed. Thus,
the attacker can therefore choose its corruptions with full knowledge of G.

At the beginning of each epoch, each party holds an additive share of the
secret, s ∈ F. Party P

(t)
i will hold a single share s

(t)
i ∈ F, where for every epoch t,∑

1≤i≤n s
(t)
i = s. The secret is reshared according to a constant-degree bipartite

expander. This makes it very efficient, as each party only has to send a constant
number of messages. 3 The expansion property of the underlying graph, G, will
3 In order to instantiate secure channels as described in Section 8, each party will also

have to send messages to its neighboring parties, but this will not change the fact
that each party only communicates with O(1) other parties in each epoch.
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guarantee that a mobile adversary (controlling a constant fraction of the parties
in each epoch) will not learn enough shares to reconstruct the secret.

Protocol 1 describes a scheme that achieves Θ(n) proactive privacy with only
Θ(1) communication per player, yet it does not provide robustness.

Proactively Private Efficient Resharing

Parameters:
Let G = (L ∪ R,E) be a d-regular bipartite Ramanujan (γ, α) expander,
with parts L = {L1, . . . , Ln} and R = {R1, . . . , Rn}. We choose neighbors
according to graph G.

1. Setup:
The dealer divides the secret using an additive secret sharing, i.e., P (1)

i

receives s
(1)
i for 1 ≤ i ≤ n, where s

(1)
i are chosen uniformly at random

from F subject to the constraint that
∑n

i=1 s
(1)
i = s.

2. Resharing:
(a) At the start of epoch t, party Pi generates a share-of-share s

(t)
i,j for

each neighbor Pj and sends the message to Pj . The shares are chosen
uniformly at random subject to the constraint

∑
j∈N(i) s

(t)
i,j = s

(t)
i .

Pi sends s
(t)
i,j to Pj .

(b) Pj receives values s
(t)
i,j for each i ∈ N−1(j). It computes:

s
(t+1)
j =

∑
i∈N−1(j) s

(t)
i,j .

Protocol 1.

Theorem 3. Protocol 1 is a correct resharing, i.e., the constructed secret would
remain the same if all parties follow the protocol.

Proof. By induction. For epoch 1,
∑n

i=1 s
(1)
i = s.

Assume for epoch t,
∑n

i=1 s
(t)
i = s. Then for epoch t+ 1,

n∑
j=1

s
(t+1)
j =

n∑
j=1

∑
i∈N−1(j)

s
(t)
i,j =

∑
(Li,Rj)∈E

s
(t)
i,j =

n∑
i=1

∑
j∈N(i)

s
(t)
i,j =

n∑
i=1

s
(t)
i = s.

We now demonstrate that this protocol maintains privacy against a mobile
adversary who can corrupt O(n) parties per epoch. There are essentially three
ways that a mobile adversary can learn a party’s share in a given epoch: it can
corrupt a party in the current epoch, or it corrupts all the party’s neighbors in
the previous epoch, or all of the party’s neighbors in the subsequent epoch.

9



To prove the privacy of Protocol 1, let us consider the communication graph,
H. We will represent parties as vertices and messages as edges. Since whether a
party is corrupt or honest depends on the epoch, we will actually have a different
vertex for every party in every epoch. Vertex H

(t)
i will represent Pi in epoch t. If

Pi is corrupted in epoch t, we also call vertex H
(t)
i corrupted; otherwise we call

the vertex honest. We let H(t) = {H(t)
1 , . . . ,H

(t)
n }, i.e. all vertices that represent

parties from epoch t. We call H(t), layer t of the graph H. There are therefore
at most δn corrupted vertices in each layer of H.

We put a directed edge4 from H
(t)
i to H

(t+1)
j if Pi sends a message to Pj in

epoch t+1. Since communication is according to expander G, edge (H(t)
i , H

(t+1)
j )

exists in H if and only if (Li, Rj) is an edge in G. To make the graph finite, we
set some arbitrarily large upper limit, T on the number of epochs.

We will be able to prove privacy of Protocol 1 by examining paths in H.
In particular, we are concerned with honest paths, which are paths in which
every vertex is honest. Recall that edges are directed; paths will follow the same
orientation as edges. Since all edges are from a vertex from some layer t to a
vertex in layer t + 1, the vertices in a path will be from contiguous layers. We
call a path ancient if the first vertex in the path is in H(1).

We now prove some properties of the graph H. This will later allow us to
prove the desired security properties of Protocol 1.

Lemma 1. Let γ and α be constants such that G is a (γ, α) expander. Let H
be defined as above. If there are at most δn corrupted vertices per layer, and
δ ≤ γ(α − 1) then for every t, there exist at least γn vertices in H(t) that are
part of ancient honest paths.

Proof. First, note that for any expander, γα ≤ 1, so δ ≤ γ(α− 1) also implies:

δ ≤ γα− γ ⇒ δ ≤ 1− γ ⇒ γ ≤ 1− δ

We show by induction that for any 1 ≤ t ≤ T , there exist at least γn vertices
in layer t that are part of ancient honest paths.

For t = 1, any honest vertex is on an ancient honest path consisting only of
itself. There are at least (1− δ)n honest vertices, and (1− δ) ≥ γ.

Assume for epoch t. We now show it holds for epoch t + 1. If H
(t+1)
i is

honest, and is a neighbor of some vertex H
(t)
j that is part of an ancient honest

path, then appending H
(t+1)
i to this path results in a path that is still ancient

and honest and includes H
(t+1)
i . By induction, there are at least γn vertices in

epoch H(t) that are part of ancient honest paths. Due to the expansion property,
there must be at least αγn vertices in epoch H(t+1) that are neighbors of these
4 This assumes a secure channel is already established between Pi and Pj . If Protocol

4 is used to re-establish a secure channel, Pj will also need to send messages to Pi,
but we do not represent this on the graph. Also, if a corrupted Pi should send a
message to Pj but doesn’t, we consider this as Pi sending some default message.

10



vertices, at most δn of which are corrupted. Therefore, there are at least (αγ−δ)n
vertices in H(t+1) are part of ancient honest paths. δ ≤ γ(α− 1), so (αγ− δ)n ≥
(αγ − (α − 1)γ)n ≥ γn. Thus, by induction, at least γn vertices in H(t+1) are
part of honest ancient paths.

Note that if vertex H
(t)
i is on an honest ancient path, this does not guarantee

thatA does not learn Pi’s share in epoch t. It guarantees thatA did not learn Pi’s
share directly by corrupting it or by learning all messages it received. However,
if A corrupts all of Pi’s neighbors in epoch t+1 it will learn all messages Pi sent
and thus learn Pi’s share in epoch t.

However, the fact that there are honest paths to all future epochs t′ > t,
implies that there is at least 1 vertex in epoch t which is part of these paths, and
for which A did not learn the outgoing messages. This is essentially sufficient to
show that privacy is preserved. Formally, Lemma 5 implies the following:

Corollary 1. If δ ≤ γ(α− 1) there exists an honest path from H(1) to H(T ).

We will now use this property of H to prove the security of Protocol 1.

Lemma 2. If there exists an honest path from H(1) to H(T ), then for all possible
secrets sA, sB ∈ F, the probability that A guesses output sA when s = sA is the
same as the probability that A guesses sA when s = sB.

Proof. Recall that H represents the communication network of the protocol.
Therefore, the existence of an honest path from H(1) to H(T ) means that there
are a sequence of parties, Pf(1), . . . Pf(T ) such that Pf(t) is honest in epoch t and
that Pf(t+1) is a neighbor of Pf(t). This means that A does not see the shares
that these parties hold in the epochs in which they are honest: s(1)f(1), . . . , s

(T )
f(T ).

Nor does A see the messages sent between these parties in the epochs in which
they are honest: s(1)f(1),f(2), . . . , s

(T−1)
f(T−1),f(T ).

Since A cannot see these messages and shares, it is possible for them to be
modified without A being able to detect it. Clearly, consistency has to be main-
tained: a share must be the sum of all messages received in that epoch. Likewise
the messages sent in an epoch must sum to the share. If these shares and mes-
sages were all incremented by some value ∆, consistency would be maintained.
Each party on the path would receive one message that was ∆ larger, would hold
a share that was ∆ larger and would send one message that was ∆ larger.

We can therefore consider 2 executions. In one, the secret is sA. In another
the secret is sB and all messages and shares along the path are incremented by
∆ = sB − sA. All other messages and shares are the same in both executions.
Therefore, the information available to A is the same in both executions.

The probability of the first execution occurring when s = sA is exactly the
same as the probability of the second execution occurring when s = sB . Most
parties will have the same inputs and outputs in both executions, and so both
events will occur with the same probability. Likewise, A is not able to see any-
thing different in the two executions, so all actions chosen by A, including the
behavior of parties it controls, will be the same in both executions. This is true
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whether A sends correct outputs or not, i.e., it holds true even for a malicious
A. The only parties that receive or send different messages are the dealer and
P

(1)
f(1), . . . , P

(T )
f(T ).

The dealer generates shares randomly subject to the sum being equal to the
secret. Therefore, the probability that it chooses any sequence of initial shares
to send to all parties other than Pf(1) is equal (|F|−(n−1)) in both executions.
The final share, sent to Pf(1) is determined by the other shares chosen. Likewise,
each honest party on the path chooses shares-of-shares randomly subject to the
sum being equal to their secret share. Therefore, the probability of the party
choosing any sequence of shares-of-shares to send to parties that are not on the
path (namely |F|−(d−1)) is the same in both executions. The share-of-share sent
on to the next honest party on the path will be uniquely determined by the other
shares-of-shares.

Therefore, for every execution where s = sA and A outputs sA, there is
another execution that when s = sB causes A to output sB with the same
probability. Summing over the finite set of all possible executions, we have that
for all sA, sB ∈ F, Pr(A outputs sA|s = sA) = Pr(A outputs sA|s = sB).

Lemma 2 implies that A obtains no advantage in determining the secret
by participating in the protocol. This holds provided there is an honest path
from H(1) to H(T ), which from Corollary 1 we know happens if δ ≤ γ(α − 1).
Furthermore, since we instantiate with a Ramanujan graph, Theorem 1 shows
that γ(α − 1) ≥ (1 − γ) d−4

d−4+ 4
γ

. Some basic calculus shows that that this is

maximized by γ = 2
√
d−4

d−4 , for which the value is (
√
d−2)

2

d−4 . This shows that
Protocol 1 provides the following privacy guarantee:

Theorem 4. If δ ≤ (
√
d−2)

2

d−4 , Protocol 1 provides perfect privacy against (mali-
cious) adversaries controlling at most δn parties per epoch.

Table 2 presents some example values of δ and the smallest necessary value of
d that ensures privacy given δn corruptions per epoch. For instance, for d = 22
it is possible to tolerate 40% of parties being corrupted per epoch.

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7
γ 0.45 0.40 0.35 0.30 0.25 0.20 0.15
d 6 9 14 22 36 64 129

Table 2: Corruption threshold, δ, as a function of the bandwidth cost, d for the
privacy-only construction (Theorem 4).

6 O(n)-Robust Only PSS with Constant Communication

The semi-honest construction (Section 5) can be adapted to provide robustness,
but not privacy. In this scheme, the “secret” message, s, is known in the clear.
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The scheme aims to ensure that the message is not changed despite a large
number of malicious parties and a small amount of communication per party.

Recall that time is divided into epochs. As before, the adversary is allowed
to corrupt δn of the parties from each epoch. In this setting, each party Pi, in
each epoch t, holds a value, s(t)i . Our protocol will ensure that the majority of
nodes in a committee hold the correct value.

Note that (as discussed in Section C.7) because of “eclipse attacks” we cannot
guarantee that all honest parties hold s

(t)
i = s in every epoch t. Instead, we

ensure that the majority of parties hold the correct value. This allows the true
value to be reconstructed by a simple majority vote.

We define deceived nodes to be nodes that are honest but hold and send
incorrect values because they have received incorrect values. This is a departure
from standard PSS and Byzantine models. Due to this relaxation, we are able to
obtain asymptotically optimal (Θ(n)) robustness with only O(1) communication
per party. Specifically, we guarantee that the number of compromised nodes, that
is nodes that are either deceived or corrupt, remains a minority.

Since we guarantee that the majority of nodes are always uncompromised,
it is always possible to use an O(n)-communication reconstruction step which
will allow each honest node to receive the correct value. If every node broadcasts
its value to every other node, then the majority of values any node receives will
be correct. If each honest party then sets its value to the most common value
it received then every honest party will have the correct value. This step only
needs to occur when we wish to return to a situation where every honest node
holds the correct value. For the sake of simplicity we omit further discussion of
the standard model and will focus on the model where we only need a majority
of uncompromised nodes.

The scheme is shown in detail in Protocol 2. It achieves Θ(n) proactive ro-
bustness with only Θ(1) communication per player. However, it does not provide
any privacy as the “secret” is seen by every node.

Robust only

Parameters:
Let Ĝ be a d̂-regular Ramanujan bipartite expander graph with n vertices
in each part. Choose neighbors according to Ĝ.

1. Setup: s is the “secret”. Dealer sends each party Pi the value s
(1)
i = s.

2. Resharing:
(a) At the start of epoch t, party Pi sends its share to all of its neighbors.

Let s
(t)
i,j denote the message Pi sends to neighbor Pj in epoch t.

(b) Pj sets its new share to the majority of messages it received, i.e.
s
(t+1)
j = majorityi∈N−1(j)(s

(t)
i,j ). If there is no majority, s(t+1)

j
def
= ⊥.

Protocol 2.
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The fact that the protocol has Θ(1) communication per player is evident from
the fact that each player sends a single message to each of its d̂ neighbors in the
expander and that d̂ is constant. We will now show that the protocol provides
robustness against a malicious proactive adversary controlling δn parties in each
epoch, for any constant 0 < δ < 1

2 .
First we will formalize our terminology. A node Pi is deceived in epoch t if it

is honest in epoch t, but s(t)i ̸= s. A node is compromised if it is either malicious
or deceived.

Theorem 5 (Security of Protocol 2). Protocol 2 guarantees that in each
epoch, there is a majority of uncompromised nodes, provided A corrupts at most
δn nodes in each epoch, for some constant δ < 1

2 .

Proof. Select some constant ϵ such that δ < ϵ < 1
2 . We show there exists some

constant d̂ such that, if Ĝ is a d̂-regular Ramanujan bipartite expander, then the
number of compromised nodes in any epoch is at most ϵn.

By induction. In epoch 1, there are δn corrupt nodes and no deceived nodes,
so there are δn < ϵn compromised nodes.

Assume that the statement holds until epoch t. Let X be the set of compro-
mised nodes in epoch t. By the inductive hypothesis |X| ≤ ϵn. Let Y be the set
of deceived nodes in epoch t+ 1. A node will be deceived only if at least half of
the messages it received were incorrect.

Applying Theorem 2, where S is the nodes that are compromised, we obtain:

|Y | ≤ 4ϵn

d̂
(
1
2 − ϵ

)2
The number of corrupt nodes in epoch t+1 is at most δn, so the total number

of compromised nodes in epoch t+ 1 is at most:

4ϵn

d̂
(
1
2 − ϵ

)2 + δn

If d̂ ≥ 4ϵ
( 1
2−ϵ)2(ϵ−δ)

then the number of compromised nodes in epoch t+1 is at
most (ϵ− δ)n+ δn ≤ ϵn. Thus, by induction there are at most ϵn compromised
nodes in every epoch. Since ϵ < 1

2 , most nodes in each epoch are uncompromised.

The above proof works for every ϵ satisfying δ < ϵ < 1
2 . A simple calculus

proof, delegated to Appendix E, shows that the expression is minimized by
ϵ = 1

4

(
δ +
√
δ2 + 4δ

)
. For instance, for δ = 0.1 this yields the requirement that

d̂ ≥ 88.

7 O(na)-Private, O(n1−a)-Robust PSS with O(κ)
Communication

The PSS protocols presented in Sections 5 and 6 are extremely limited in that
the first protocol does not provide any robustness (a malicious adversary can
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modify the secret) and the second does not provide any privacy (every party
knows the “secret”). In this section we combine the two protocols to create a
protocol that has both privacy and robustness, but still has the desired constant
(in n) communication per party per epoch. Specifically, we present a protocol
that has privacy against a proactive adversary corrupting Θ(na) nodes each
epoch and robustness against a proactive adversary corrupting Θ(n1−a) nodes
per epoch, requiring Θ(κ) communication per party per epoch, where κ is a
security parameter. The protocol is perfectly robust, and computationally pri-
vate, such that the adversary’s advantage in guessing the secret is negligible in
κ. Setting a = 1

2 provides a constant-communication PSS with both privacy and
robustness against a proactive adversary corrupting Θ(

√
n) nodes per epoch.

At a high-level, we start our construction with the private protocol (Protocol
1) and replicate each party, say Pi, of that protocol some number of times. We
consider this set of replicas of Pi as if they are simulating Pi’s actions. However,
they will do it with a twist; they will utilize the robust protocol (Protocol 2)
when they send a message on behalf of Pi. The robust protocol will ensure that
no messages or shares are lost and the underlying private protocol will ensure
that there is privacy for the global secret, delivering the desired result.

However, things are not straightforward; there are two obstacles which need
to be overcome. The first is that for this general idea to work we need to guaran-
tee that the replicas in fact work as replicas. That is, if they are not compromised
(i.e. not corrupted or deceived) then they will execute the same steps with the
same inputs and randomness, otherwise the replicas will be sending different
messages. This is a challenging requirement to satisfy in the proactive setting.
The second issue is that we cannot have a replica of one party send message to
all the replicas of another party as this will increase the communication com-
plexity beyond our goals. Thus, to deliver a solution we need to address these
two problems.

Recall that in Protocol 1, the parties use fresh randomness to generate the
shares-of-shares. As described the fresh randomness is unique to each party and
is generated locally at the time it is needed. Note that we cannot generate
randomness from long-term shared PRG keys, as a proactive adversary can learn
all such keys and know the pseudorandomness being used by every party. Thus,
it seems that, as we require fresh randomness and at the same time need replicas
to have the same randomness, we are stuck in a bind.

To solve this, parties refresh the PRG keys of their neighbors in every epoch.
That is, each party, each epoch, sends their neighbors both a share-of-share, and
a string, called a re-randomizer. A party combines the re-randomizers it receives
to generate a new PRG key. How does a party generate these re-randomizers? It
uses its own PRG key for that epoch. This may seem circular since an adversary
who corrupts a party will learn the re-randomizers that it sends. Security comes
from combining multiple re-randomizers to create the new key, and choosing
neighbors using an expander graph. Like Protocol 1 ensured a constant fraction
of shares remained private each epoch, this will ensure a constant fraction of
keys remain private. Our solution is therefore also Proactive Pseudorandomness
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(PP) protocol, that is a protocol that generates pseudorandomness in a way
that is indistinguishable from random to a mobile adversary. See Section F for
more details on PP and a simplified version of our protocol that just provides
Proactive Pseudorandomness.

Since pseudorandomness is generated according to PRG keys, we can consider
a correct execution in which parties always generate their messages according
to the keys. This execution is deterministic given the dealer’s initial distribu-
tion of keys and secret shares. We can consider the shares and messages of this
correct execution as the correct shares and messages. To show the robustness of
the protocol, we will show that, every epoch, for any party in the privacy-only
protocol, most of its replicas hold the correct share.

Having resolved the randomness issue, we have made a step forward towards
making replication possible. Now we need to address the issue of not having a
replica send messages to all the replicas of its neighbor. To attain robustness,
at a low communication cost we will have a replica of a party send its messages
only to a small subset of its neighbor’s replicas. We will show that robustness is
maintained despite this dramatically lower communication.

Concretely, we instantiate Protocol 1 with na parties, but in our protocol
each of these will be simulated by n1−a replicas. These replicas will be the actual
parties running the protocol; the fact that they are simulating an execution of
Protocol 1 is a useful abstraction. We label the parties as if they were in a na by
n1−a grid, with row i holding the replicas of Pi from Protocol 1. Pi,j denotes the
party in row i and column j. We denote the set of parties in row i as rowi and
the set of parties in column j as colj . If we wish to specify that we are referring
to a row (resp. column) in a specific epoch t, we use the notation row

(t)
i (resp.

col
(t)
j ).
In more detail, examine party Pi from the private protocol that is replicated

some number of times. If Pi sent Pi′ share-of-share s
(t)
i,i′ in epoch t in Protocol 1,

then each uncompromised replica of Pi will also send replicas of Pi′ , the share
s
(t)
i,i′ in epoch t of the new protocol. We will ensure the majority of replicas of
Pi will send the correct share-of-share. Thus, the replicas of Pi in rowi will send
messages to the replicas of Pi′ in rowi′ . Unfortunately, making every party in
rowi communicate to every party in rowi′ causes the communication complexity
to scale linearly in the amount of replication.

How many parties do they need to communicate to in order to ensure that
the majority of parties in any row always hold the correct share? Surprisingly,
a constant number suffices. The argument is almost identical to that of the
robustness of Protocol 2. To explain this, let’s restrict our view to one replica
of Pi, say Pi.ℓ. Examine the replicas of party Pi′ of which it needs to choose a
subset to communicate with. The expander graph of the robust protocol will tell
us with which replicas of Pi′ the replica Pi,ℓ should talk to, i.e. the columns that
identify the subset of the replicas of Pi′ . We state two important points that will
aid in the proofs. The replica of Pi also needs to talk to replicas of a party Pi′′ , as
Pi communicates with Pi′′ in the private protocol. The subset of replicas of Pi′′

will be in exactly the same columns as the replicas of Pi′ . Furthermore, assume
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that Pj also communicates with Pi′ in the private protocol. Then, the replica Pj,ℓ

of Pj will talk to the subset of the same columns as the replica Pi,ℓ. Saying this
abstractly we have that column colj will only communicate with column colj′ if,
in an instantiation of Protocol 2 with n1−a parties Pj would communicate with
Pj′ . Pi,j only communicates with Pi′,j′ if row rowi communicates with rowi′ and
column colj communications with colj′ .

One final challenge is that malicious adversaries can choose to send incorrect
randomness in an attempt to create related keys for a Related-Key Attack (RKA)
on the PRG. To solve this, we use a PRF that is secure against additive RKAs
to securely combine the randomness sent to a party. This ensures that if any of
the messages is unknown to the adversary, it will be unable to distinguish the
PRG seeds from ones that were truly generated at random. We instantiate with
the additive-RKA-secure PRF of Bellare and Cash [BC10], which was proven
secure under DDH by [ABPP14]. This PRF is a variant of the Naor-Reingold
PRF, and like Naor-Reingold it has Θ(κ2) bits per key (Θ(κ) values from a
group where DDH is hard). A simple solution would be for each party to send
Θ(κ2)-bit rerandomizers which would be added to form a key for an additive-
RKA-secure PRF. However, it is not actually necessary for each party to send
Θ(κ2) bits. In our protocol each party instead sends a κ-bit PRG seed, which
the recipient expands to generate the Θ(κ2)-bit rerandomizers, which are then
added to create the key for the additive-RKA-secure PRF.

We set the parameters of the protocol as follows: a is a constant such that
0 < a < 1. n is the number of parties, and na and n1−a are both integers. The
parties are arranged in an na by n1−a grid, and are labeled Pi,j for 1 ≤ i ≤ na

and 1 ≤ j ≤ n1−a, such that Pi,j is in row i and column j. Pi,j in epoch t is
represented as P

(t)
i,j . The labels are public.

There are two bipartite expanders of constant degree, G which has na nodes
in each part and will be used for the private portion, and H which has n1−a nodes
in each part and will be used for the robust portion. dG (dH) is the degree of G
(H), respectively. GRi (HRj) represent the sets of indices of right-neighbors of
Li (Lj) in G (H) respectively. Likewise GLi (HLj) represent the sets of indices of
left-neighbors of Ri (Rj) in G (H) respectively. Expanders are fixed and public.

F is a group from which the secret is chosen. K1 is a group from which PRG
seeds are chosen, |K1| = 2κ. K2 is a group from which PRG re-randomizers are
chosen, |K1| = 2Θ(κ2). F : K2 ×X → K1 is a Φadd-RKA-PRF where X can be
any PRF input set.

Proactively Private and Robust Efficient Resharing

1. Setup:
The dealer picks s

(1)
1 , . . . , s

(1)
na uniformly at random from F subject to∑na

i=1 si = s, where s is the secret.
The dealer picks k

(1)
1 , . . . , k

(1)
na uniformly at random from K1.
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The dealer sends (s
(1)
i , k

(1)
i ) to P

(1)
i,j for all 1 ≤ i ≤ na, 1 ≤ j ≤ n1−a.

P
(1)
i,j sets (s

(1)
i,j , k

(1)
i,j ) to the received value.

2. Resharing:
(a) At the start of epoch t each party Pi,j does the following:

Uses k
(t)
i,j as a PRG seed to pseudorandomly generate r

(t)
i,i′,j ← K1,

s
(t)
i,i′,j ← F, for all i′ ∈ GRi, chosen uniformly at random, subject

only to
∑

i′∈GRi
s
(t)
i,i′,j = s

(t)
i,j .

Sets r
(t)
i,i′,j,j′ = r

(t)
i,i′,j , s

(t)
i,i′,j,j′ = s

(t)
i,i′,j for all i′ ∈ GRi, j′ ∈ HRj .

Sends (r
(t)
i,i′,j,j′ , s

(t)
i,i′,j,j′) to Pi′,j′ for all i′ ∈ GRi, j′ ∈ HRj .

(b) Each party Pi′,j′ then does the following:
Receives (r

(t)
i,i′,j,j′ , s

(t)
i,i′,j,j′) from all i ∈ GLi′ , j ∈ HLj′ .

Sets r
(t)
i,i′,j′ = majorityj∈HLj′

r
(t)
i,i′,j,j′

Sets ŝ
(t)
i,i′,j′ = majorityj∈HLj′

s
(t)
i,i′,j,j′ .

Use r
(t)
i,i′,j′ as a PRG seed to generate rerandomizers k̂

(t)
i,i′,j′ ← K2

for all i ∈ GLi′ .
Computes a new PRG seed from the provided randomness:
k̂
(t)
i′,j′ =

∑
i∈GLi′

k̂
(t)
i,i′,j′

k
(t+1)
i′,j′ = F (k̂

(t)
i′,j′ , 1).

Combines shares-of-shares to get a new share of the secret:
s
(t+1)
i′,j′ =

∑
i∈GLi′

s
(t)
i,i′,j′ .

Protocol 3.

Before proving properties of the protocol, we provide some definitions. A
corrupted row is one in which there is at least one corrupted party, i.e. row
row

(t)
i is corrupted if there exists j ∈ {1, . . . , n1−a} such that P

(t)
i,j is corrupted.

Two rows row(t)
i and row

(t+1)
i′ are neighbors if there exist P (t)

i,j ∈ row
(t)
i , P (t+1)

i′,j′ ∈
row

(t+1)
i′ such that P

(t)
i,j sends a message to P

(t+1)
i′,j′ . This happens exactly when

(i, i′) ∈ G. We say that row
(w)
iw

, row
(w+1)
iw+1

, . . . , row
(w+x)
iw+x

is a row path if row(y)
iy

and row
(y+1)
iy+1

are neighbors for all w ≤ y ≤ w+x−1. If a row path consists only
of rows that are not corrupted, we say that it is an honest row path. Lastly, we
call a row path full if it stretches from the first epoch (epoch 1) to the last epoch
(epoch T ), i.e. row(1)

i1
, . . . , row

(T )
iT

is a full row path for any length-T index set,
i1, . . . , iT , where it ∈ {1, . . . , na} for 1 ≤ t ≤ T . We sometimes refer to a full row
path row

(1)
i1

, . . . , row
(T )
iT

simply by the sequence of indices it uses: i1, . . . , iT .
These definitions are intentionally analogous to those in the proof of privacy

for Protocol 1. The proof of security will also be similar, in that it will be shown
that if an honest row path exists throughout the entire protocol execution, then
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the privacy is preserved. However, the proof first needs to demonstrate that the
adversary is not able to undermine security by using the fact that resharings are
generated pseudorandomly.

We prove this by first comparing the adversary’s view in two different exe-
cutions. The first is an execution of Protocol 3. The second is an execution in
which all PRG seeds in a full row path are generated truly at random. Now,
they cannot be all generated independently. If A is a passive adversary the PRG
seeds in a row will all be the same, but if A is malicious, the PRG seeds may
differ, since A may provide nodes in the row with different randomness. Thus,
we want the alternative execution to have nodes use the same PRG seeds exactly
when they would have the same seeds in the original execution. We thus define
the executions, or games, as follows.

Let GameReal denote an execution of Protocol 3. Given a full row path R =

row
(1)
R1

, . . . , row
(T )
RT

, Game1,R denotes an execution almost identical to Protocol
3 except for the way k

(t+1)
i′,j′ is generated in part (b) of the Resharing step. If

P
(t+1)
i′,j′ /∈ row

(t+1)
Rt+1

, it generates k
(t+1)
i′,j′ in the normal way. However, if P (t+1)

i′,j′ ∈
row

(t+1)
Rt+1

, it communicates with all other parties in row
(t+1)
Rt+1

to identify the set of

parties which have the same value for k̂(t)i′,j′ . It then collaborates with the parties
in this set to generate a new truly random value which all parties in this set
then use for their PRG seeds k

(t+1)
i′,j′ .

Lemma 3. If R = R1, . . . , RT is a full honest row path then any probabilistic
polytime adversary, A, is unable to distinguish GameReal from Game1,R except
with negligible probability.

Proof. By induction on the epoch t. The induction invariant is that A will know,
at most, which parties from a row in the given epoch use the same PRG seeds,
but will have a negligible advantage at guessing these values.

The setup does not differ between GameReal and Game1,R. So initially the
views are identical. Note that A knows that all values of k(1)R1,j

are identical, but
the value was chosen truly at random by the dealer, so A has no advantage in
guessing it.

We now show that a Resharing step followed by a Reconstruct step preserves
the invariant. We have that A knows which parties in row

(t)
Rt

have identical PRG
keys. At worst, she learns the result of all messages sent by row

(t)
Rt

except those
that are sent to row

(t+1)
Rt+1

. However, by the security of the PRG, the portion
of the PRG output A observes will give A negligible advantage in learning the
seed. Therefore, this information provides negligible assistance in allowing A to
distinguish the case where the PRG seed, k(t+1)

i′,j′ was generated using the PRF
(GameReal) and the case where it was generated truly at random (Game1,R).

Additionally, the security of the PRG provides her no advantage in guessing
the randomness sent from parties in row

(t)
Rt

to those in row
(t+1)
Rt+1

. Specifically

k̂
(t)
Rt,Rt+1,j′

is generated from a PRG seeded with r
(t)
Rt,Rt+1,j′

. This, in turn was
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taken as the most common value of r(t)Rt,Rt+1,j,j′
for j ∈ HLj′ . In GameReal, these

are generated by a PRG on k
(t)
Rt,j

, whereas in Game1,R these are generated using

a fresh random value (which is the same for any party holding an identical k(t)Rt,j
).

By our inductive hypothesis, these cases are indistinguishable to A. Therefore,
by the security of the PRG, the outputs r

(t)
Rt,Rt+1,j,j′

are indistinguishable from
uniformly random to A except that A knows (at worst) which are identical, and
likewise are the computed values r

(t)
Rt,Rt+1,j′

. Therefore, again by the security

of the PRG, the rerandomizer k̂
(t)
Rt,Rt+1,j′

is indistinguishable from uniformly
random (except that A may learn which parties hold the same value).

Note that A may, in the worst case, know and be able to influence all other
rerandomizers that a given party in row

(t+1)
Rt+1

receives. Thus, P (t)
Rt+1,j′

computes

k̂
(t)
Rt+1,j′

= k̂
(t)
Rt,Rt+1,j′

+
∑

i∈GLi′/{Rt}

k̂
(t)
i,Rt+1,j′

The second term is, at worst, known and controllable by A. However, we have
shown that the first term is indistinguishable from uniformly at random to A.
Multiple parties in row

(t+1)
Rt+1

may receive the same value as the first term, but
A could introduce different values for the second term. This is equivalent to
a Related-Key Attack, where the first term is the original key and the second
term is an additive modification to the key chosen by A. However, since F is a
Φadd-RKA-PRF, the outputs of F on different, additively-related keys are indis-
tinguishable from random outputs. Thus, A will not be able to distinguish the
seeds k

(t+1)
i′,j′ in GameReal from the truly randomly generated seeds in Game1,R.

The outputs of F on identical keys will be the same, and again in Game1,R,
parties that received the same values of k̂(t)Rt+1,j′

will generate and use the same
PRG seeds. Thus the indistinguishability of the two games is preserved after an
epoch, and in particular the adversary may learn (at worst) which parties in the
honest row path in that epoch have the same PRG seeds, but has no advantage
in learning the seeds themselves.

Now, let Game2,R be equivalent to Game1,R except that rather than choosing
a truly random seed for the PRG, parties that have the same value for k̂

(t)
i′,j′

generate a truly random string in place of the PRG output.

Lemma 4. A probabilistic polytime adversary is unable to distinguish Game2,R
from Game1,R, except with negligible probability.

Proof. This follows immediately from the definition of a PRG. In Game1,R the
PRG seeds are chosen truly at random, and the outputs generated from this seed.
A PRG has the property that an output of such a PRG is computationally indis-
tinguishable from a truly random output, and thus Game1,R is computationally
indistinguishable from Game2,R.
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We are now essentially in the same position as the proof of Protocol 1. The
only difference is that replicas in an honest row may not agree on the same ran-
domness to generate their messages (if A sends them inconsistent randomizers).
Nevertheless, this does not undermine privacy, and we can proceed to prove pri-
vacy similar to as for Protocol 1 by considering the case that the secret-shares
on the honest path, and all secret-share messages on the honest path, are incre-
mented by some value sB − sA.

Lemma 5. If there exists a full honest row path, R, then in Game2,R, for all
possible secrets sA, sB ∈ F, the probability that A guesses output sA when s = sA
is the same as the probability that A guesses sA when s = sB.

Proof. For every execution of Game2,R in which A outputs sA when s = sA,
there is an execution in which A outputs sA when s = sB that occurs with equal
probability.

Let us examine an execution in which A outputs sA when s = sA. Now we
will examine another execution in which:

– The true secret is sB , not sA.
– The initial share sent to row

(1)
R1

by the dealer was incremented by sB − sA.
– For all nodes not on path row

(1)
R1

, . . . , row
(T )
RT

, the messages received, data
held, and messages sent are the same as the original execution. (This means
that the data seen by A and its behavior are identical in the two executions.)

– All secret-shares held by parties in path R are incremented by sB − sA.
– All shares of secret-shares sent from parties in R to other parties in R are

incremented by sB − sA.

All parties except for the dealer and those in path R view the same thing in both
executions and make the same choices, so the probability of them doing so is the
same in both executions. This includes A. It remains to show that this is a valid
execution for honest parties on the path. The sum of the messages sent by the
dealer is equal to the true secret, so this is a valid execution by the dealer. For
each party in R, all of the messages they receive from parties in R is incremented
by sB − sA, so, even if these messages disagree, the message they choose as the
“correct” message will also be incremented by sB − sA. Thus the secret share
they compute will be incremented by sB − sA as required. Lastly, all output
messages are the same except those sent to parties in R, and shares-of-shares
sent to R are incremented by sB − sA, so the sum of shares-of-shares output
will still equal the share held by the parties. Thus this is a valid execution by
honest parties. Since each valid execution by honest parties is equally likely, the
probability that this execution occurs is just as likely as the original. Finally,
the random choices of all parties on the path R are made independently of all
parties not on the path, and in particular of A, so the combined probability of
the modified execution occurring is the same as that of the original.

Theorem 6. If a full honest row path exists, then A has negligible advantage in
guessing the secret.
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Proof. If such a path, R, exists, then there is some game Game1,R which, by
Lemma 3 is indistinguishable from GameReal to A. By Lemma 4 this, in turn,
is indistinguishable from Game2,R to A. Now, A’s behavior in Game2,R has the
same probability if the secret is modified. Thus, Game2,R is (perfectly) indis-
tinguishable to A from an execution of Game2,R with a modified secret. This
in turn is indistinguishable from an execution of Game1,R with a modified se-
cret, which in turn is indistinguishable from an execution of GameReal with a
modified secret. Since the indistinguishable relation is transitive, this means that
any real execution is indistinguishable to A from another real execution with a
modified secret. Thus, A has negligible advantage in guessing the secret.

Finally, the proofs about the existence of honest paths for Protocol 1 apply
immediately to the case of honest row paths. In particular, as has already been
proven in Corollary 1, if a fixed portion δ of the rows are honest, and δ ≤ γ(α−1),
(where constants γ and α depend on G) then a full honest row-path exists. Since
a dishonest row requires at least one dishonest party, and there are na rows, we
get the following result:

Corollary 2. If there are at most δna malicious nodes, then there exists a full
honest row path.

Theorem 7. There exists some constant δ, such that the protocol is computationally-
private against a malicious proactive adversary corruption at most δna nodes per
epoch.

Now we show that the protocol also has robustness. The approach is very sim-
ilar to that of Protocol 2, though in this case we show that a constant proportion
of columns in the grid are holding and sending correct values.

Again, before proceeding we need to introduce some terminology. A column
is a set of nodes in a given time-step that are in the same column in the grid,
i.e. column col

(t)
j = ∪na

i=1P
(t)
i,j . If the adversary corrupts any party in a column

(in a given time step), then the column is corrupt. Otherwise a column is honest.
Note that, except for the dealer, all (honest) parties’ actions are deterministic.
Therefore, given a certain setup by the dealer, we can consider the correct value
for a data element held, or for a message sent, to be the value that would be sent
if all parties follow the protocol. A column is correct if all of the data held and
messages sent by all parties in the column are correct, and incorrect otherwise.
Column col

(t)
j is a before-neighbor of column col

(t+1)
j′ exactly if there exists i, i′

such that P
(t)
i,j is meant to send a message to P

(t+1)
i′,j′ . This occurs exactly when

(j, j′) ∈ H.

Lemma 6. If the majority of an honest column’s before-neighbors are correct,
then the column will also be correct.

Proof. Let col
(t+1)
j′ be a column with a majority of correct before-neighbors.

Then, for every node P
(t+1)
i′,j′ ∈ col

(t+1)
j′ , for every i ∈ GLi′ , the majority of
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messages s
(t)
i,i′,j,j′ it receives are correct. Thus it will compute the correct value

for ŝ
(t)
i,i′,j′ for all i ∈ GLi′ and thus it will also compute the correct value for

s
(t+1)
i′,j′ . Likewise, for every i ∈ GLi′ , the majority of messages k̂

(t)
i,i′,j,j′ that it

receives will be correct, so it will compute the correct value for k̂
(t)
i,i′,j for every

i ∈ GLi′ and thus compute the correct value for k
(t+1)
i′,j′ . Thus all data held by

P
(t+1)
i′,j′ is correct. Since s

(t+1)
i′,j′ and k

(t+1)
i′,j′ are both correct, the messages that

P
(t+1)
i′,j′ sends in the next resharing step will also be correct. Since this is true for

all P (t+1)
i′,j′ ∈ col

(t+1)
j′ , then column col

(t+1)
j′ is itself correct.

Theorem 8. If A corrupts δn1−a nodes in each epoch, for some constant δ <
1
2 , then for any constant ϵ satisfying δ < ϵ < 1

2 there exists some constant d
such that if H is a d-regular Ramanujan bipartite expander, then at most ϵn1−a

columns in every epoch are not correct.

Proof. By induction. For the first epoch, there are at most δn1−a corrupt columns.
The remaining nodes are correct, since they received messages only from the
dealer, who is honest. Therefore, the total number of incorrect columns is δn1−a <
ϵn1−a.

Now, assume at most ϵn1−a columns are incorrect in epoch t. By Lemma
8, the definition of a Ramanujan d-regular expander and Lemma 6, this means
that the number of honest columns in epoch t+ 1 that are incorrect is at most:

4ϵn1−a

d
(
1
2 − ϵ

)2
A further δn1−a columns may be corrupt. Therefore, the total number of

incorrect columns in epoch t+ 1 is at most

4ϵn1−a

d
(
1
2 − ϵ

)2 + δn1−a =

(
δ +

4ϵ

d
(
1
2 − ϵ

)2
)
n1−a

If d ≥ 4ϵ

( 1
2−ϵ)

2
(ϵ−δ)

then this is at most ϵn1−a.

Setting a concrete value of ϵ leads immediately to the robust security guar-
antee for Protocol 3.

Theorem 9. Protocol 3 provides robustness against a proactive adversary cor-
ruption Θ(n1−a) nodes in each epoch.

8 Securing Channels Using Signing Oracles

Our solution for establishing secure channels requires a simple piece of trusted
hardware, a secure signing oracle. The secure signing oracle has a (persistent)
public verification key, and can be used to sign arbitrary messages. The only
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trust assumption is that the private key cannot be extracted from the device. In
addition to the signing oracle, we assume that each party has a trusted random
number generator, i.e., every party that is not corrupted in the current epoch
can generate random numbers that are unpredictable to the adversary.

Such devices are commonly available as external devices (e.g. Yubikeys, or
cryptocurrency wallets like the Ledger or Trezor), and are implemented by Ap-
ple’s Secure Enclave on the iOS.5. Suppose, in addition, that the verification keys
corresponding to these signing oracles are baked into the read-only memory of
every other party.

When a party is corrupted by the adversary, we assume that the adversary
has unfettered access to the signing oracle, and can sign arbitrary messages of
their choosing.

Secure signing oracles do not immediately yield persistent secure channels
on their own, since (1) they do not provide private channels, and (2) since the
adversary (with access to a signing oracle), can always sign additional messages
and inject them into the channels at a later date.

In our solution, we use the persistent key in the signing oracle to bootstrap
new keys for each epoch of the protocol. It is not sufficient to simply use the
signing oracle to sign new epoch-specific keys, because if an adversary corrupts
a party at time t (and gains access to the signing oracle), the adversary can sign
new key material, and hold onto these signed keys until after a reboot.

We can eliminate this attack vector with a simple challenge-response proto-
col. In epoch t, party i will reboot, and generate a new key, pki,t, ski,t. At the
beginning of epoch t, party j will send a challenge ri,j,t, to party i. Party i will
then sign the pair (pki,t, ri,j,t), using their signing oracle, and then return the
signed key to party j. This allows party j to ensure that the new key pki,t was
generated by party i in epoch t (or later).

The formal protocol is described in Protocol 4.

Establishing Secure Channels

Party i holds a secure signing oracle SOi(·), and verification keys
{VKj}j∈[N ].

– Challenge:
• Peer-to-peer messaging: Player i generates a random challenge

ri,j,t ←r {0, 1}κ for each party, j, with whom they plan to commu-
nicate in epoch t.

• Randomness beacon: In the presence of a trusted randomness
beacon that generates a random nonce, rt ←r {0, 1}κ every epoch,
can use this to avoid communication. Instead, every players sets
ri,j,t = rt, and players do not need to exchange challenges. Thus the

5 https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/
web
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presence of a trusted randomness beacon can reduce the communica-
tion and round complexity. The rest of protocol proceeds in the same
way, whether the challenges ri,j,t were generated and exchanged by
the players or provided by the randomness beacon.

– Key generation: Player i uses its random number generator to gener-
ate a key pair, pki,t, ski,t, for an authenticated encryption scheme.

– Signing: Player i uses their trusted signing oracle, SOi to produce the
signature σi,j,t = SOi(i||pki,t||ri,j,t)

– Communication: Player i sends pki,t, σi,j,t to every player j that the
wish to communicate with in epoch t.

– Verification: Player j checks that the signature σi,j,t is a valid signature
on the message i||pki,t||ri,j,t using the (persistent) verification key VKi.

Protocol 4.

Theorem 10. Protocol 4 is a secure method for establishing channel keys in the
mobile adversary model. Specifically, consider a PPT mobile adversary who is
allowed to corrupt a (possibly) different subset of parties at every epoch. Then
if j is an uncorrupted party in epoch t, and j accepts pki,t, then (with all but
negligible probability) pki,t was generated by party i in epoch t.

Proof. If party j is honest, and accepts a public key, pki,t from party i in epoch t,
then the signature σi,j,t is valid signature of pki,t||ri,j,t under party i’s persistent
verification key, VKi.

If pki,t, was not generated in epoch t, then either (i) the signature σi,j,t was
generated by an adversary with access to the signing oracle in a prior epoch,
or (ii) the signature σi,j,t was generated by an adversary without access to the
signing oracle in the current epoch.

For case (i), an adversary with access to the signing oracle, would have to
guess the challenge ri,j,t (which was generated uniformly at random from {0, 1}κ
in epoch t. Any polynomial-time adversary can make at most a polynomial
number of queries to the signing oracle (and store the resulting signatures until
epoch t), and thus has at most a negligible probability of querying the oracle
with the challenge ri,j,t.

For case (ii), an adversary who never had access to the signing oracle would
have to guess the signature σi,j,t. A polynomial-time adversary can guess at most
a polynomial number of signatures σ′

i,j,t and check (using the public verification
key VKi) whether the signature is valid on pk′||ri,j,t. Since the adversary can
only make a polynomial number of guesses, the adversary’s success probability
in this scenario is also negligible.

Thus an adversary (who has not corrupted party i in epoch t) has only a
negligible probability of getting party j to accept a public key.
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Supplemental Material
A Previous Work

The Mobile adversary model is particularly challenging, because eventually a
mobile adversary will have corrupted all the parties (but not all simultaneously).
This means that an adversary who corrupts a party should (1) not be able to
read the party’s historical state, and (2) should not be able to predict the party’s
randomness in the future.

This means that at minimum parties need secure deletes, since otherwise
an adversary who corrupted a party at time t, could read all of the messages
received by the party during all previous rounds of the protocol, as well as fresh
randomness, so that an adversary cannot predict the behavior of parties it has
corrupted in the past.

In the original work introducing the mobile adversary [OY91], they imagined
removing and adversary (and securely deleting previous state) by imagining a
“clean” version of the program sitting in read-only memory, a piece of trusted
hardware that would periodically “reboot” the machine to remove the adver-
sary (as well as the history). They also assumed that either “each coin-flip is
generated online (which is the practical assumption on generating randomness
from physical devices), or, more abstractly, that the entire random tape of the
machine is replaced with a new one during reboot.”

Our works, like essentially all prior works in the PSS literature assume parties
can securely delete state variables, and can be securely “rebooted” to obtain a
clean copy of the PSS program.

A.1 PSS Protocols

The mobile-adversary model was introduced in [OY91], where they provided an
information-theoretic protocol for secure computation. Proactive secret sharing
has been widely studied e.g. [OY91,HJKY95,FGMY97,Rab98,CKLS02,ZSVR05]
[BHNS99,SLL10,BEDLO14,MZW+19,YXD22] and some works (e.g. [FGMY97,Rab98])
focused on proactive secret sharing of keys for specific cryptosystems (e.g. RSA).

The main challenge in developing a PSS protocol is how to refresh the shares.
In the semi-honest model, the linearity of secret sharing schemes like Shamir’s
scheme [Sha79] make it straightforward to re-randomize shares when parties are
semi-honest. One method is to have each party generate a fresh sharing of zero,
then each party locally adds all the shares they received. So the secret, s, can be
shared according to a polynomial f(x), where party i holds f(i), and f(0) = s.
In this method of refreshing, party i generates a polynomial gi(x), such that
gi(0) = 0, and gives gi(j) to party j, and party j calculates their new share as
f(j) +

∑
i gi(j). This is the refresh method laid out in [HJKY95].

Another method is to have party i re-share their share, i.e., party i generates
a new polynomial gi(x) such that gi(0) = f(i), and gives gi(j) to party j. This
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re-sharing technique is widely used in Secure Multiparty Computation [GRR98].
Since polynomial interpolation is a linear operation, party j can compute a new
sharing of the original secret, s, by doing local, linear operations on the shares
{gj}i. This is the refresh method laid out in [CKLS02].

Other works [ELL20,MZW+19,YXD22] share using bivariate polynomials.
To obtain security against malicious adversaries (instead of semi-honest adver-
saries), these simple refresh protocols were combined with Verifiable Secret Shar-
ing (like Feldman VSS [Fel87]), as well as BFT consensus.

The mobile adversary model relies on “epochs” – the adversary is static within
an epoch – and this introduces some amount of synchrony into the model. It is
possible to consider an asynchronous model of PSS, where there is still a global
notion of epochs, but communication within an epoch is asynchronous (and
adversarially controlled). PSS protocols that can tolerate asynchronous commu-
nication within an epoch include [CKLS02,ZSVR05,SLL10,YXD22]. Some PSS
schemes have been implemented [SLL10,MZW+19,YXD22].

As is evident from the brief description of prior works, they all require for each
party to carry out a secret sharing in the refresh phase, even in the semi-honest
model. This results in an all-to-all communication between the parties during the
share refresh. In our work, parties do not have all-to-all communication every
epoch, instead they communicate according to an expander graph. Expander
graphs have been used to build Robust Secret Sharing schemes [HO18], but
those constructions only consider a static adversary.

To reduce communication, some protocols can handle batches of independent
secrets, which can reduce amortized communication complexity. Batched PSS
protocols include [BEDLO14,BDLO15,ELL20].

A.2 Refreshing Secure Channels

Most secure multiparty protocols assume that parties can communicate using
“secure, authenticated channels.” In practice, however, these secure channels are
usually secured using public-key encryption, and authenticated using digital sig-
natures. This works well in the static adversary model.

In the mobile adversary model, parties cannot use persistent keys to secure
and authenticate their channels, because once an adversary corrupted a party
(and in doing so learned their private keys), the adversary could read all mes-
sages sent to that party during future rounds of the protocol (using the party’s
decryption key) and impersonate the party in all future rounds of the protocol
(using the party’s signing key).

This problem is not readily solved. If a party is securely rebooted (and gener-
ates new key material), how can they communicate their new public encryption
and verification keys to the other parties? They cannot simply sign their new
key using their old key, since an adversary (who had corrupted the party in the
previous round) could generate a competing key, and sign it using the party’s
old, valid key.

One way to side-step this problem is to assume that parties are connected
via persistent, secure authenticated channels (e.g. secure hardware channels),
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thus eliminating the need for key management. This is the approach taken
in [OY91] as well as many subsequent works including [CKLS02,BEDLO14],
[MZW+19,YXD22].

In [HJKY95] they addressed this problem by assuming that all parties had
access to an uncensorable broadcast channel. When a party was rebooted, they
would generate new key material, and sign the new key using their old key, and
broadcast their new (signed) key. As noted above, the adversary could do the
same, by generating a new (adversarially controlled) key, and signing this key
with the old key. In this case, however, since the broadcast channel is uncen-
sorable, honest parties would see two new keys broadcast after the reboot. They
would not be able to distinguish which one was valid, but they could refuse to use
either key until the offending party was rebooted again. This provides a method
whereby an adversary could halt the network (by continually broadcasting false
keys after a reboot), but could never violate security.

This problem was explored in depth in [CHH97], where they propose a solu-
tion involving proactive, threshold signature schemes. Essentially, the construc-
tion of [CHH97] works as follows: At the start of the protocol, it is assumed
that all parties hold a share of private signing key, and the corresponding ver-
ification key is baked into their read-only memory. This persistent verification
key will then be used to authenticate all short term secrets as follows. When a
party reboots, and generates new key material, they will send their new public
keys to all parties, at which point the parties will run a byzantine agreement
protocol to agree on the party’s public key. Then they will use their long-term
key shares to generate a threshold signature on the party’s new signing key. Un-
fortunately, this construction rests on a proactive threshold signature scheme,
to avoid circularity, they show how to convert any proactive threshold signa-
ture scheme (that requires authenticated channels) to one that does not require
authenticated channels, using byzantine agreement.

Some PSS protocols (e.g. [SLL10]) consider a dynamic committee model,
where there is a completely new committee in each epoch (and the public keys
of all the new committee members are known in advance), so there is no need
to refresh channel keys. This model does allow members from old committees
to be corrupted (even after their role on a committee is done), so parties use
a forward-secure cryptosystem [CHK03]. This means that an adversary who
corrupts a party cannot decrypt ciphertexts sent to that party in previous epochs.
Unfortunately, forward-secure cryptosystems do not prevent the adversary from
learning messages sent in future epochs.

[ZSVR05] suggests a few possible approaches for creating persistent secure
channels between parties. One approach is to use trusted hardware to implement
a signing oracle with a monotonically increasing counter. Every time the oracle
signs a message, it would include the counter (that is incremented every epoch),
that ensures that the message was sent during the current epoch. They also sug-
gest an alternative approach with a trusted administrator (with a static public
key), who can identify each party and sign their new keys after each refresh.
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They do not, however, describe how a party can authenticate themself to the
trusted administrator after a reboot.

[CKLS02] suggests that if each party has a trusted co-processor (e.g. Intel
SGX [MAA+16]), then the co-processor can have a trusted clock (that is timed
to the epochs), as well as a persistent signing key. Then the co-processor can
generate new session keys every epoch, and sign these new epoch-keys together
with the epoch number (from its trusted clock), using its persistent signing key.
Now that these trusted co-processors are prevalent in commodity hardware, this
is a promising approach. Below (Section 8) we show how to eliminate the need
for a full-blown trusted co-processor with a tamper-proof clock.

The assumption that persistent, trusted channels exist (e.g. [OY91,CKLS02],
[BEDLO14,MZW+19,YXD22]) is an extremely strong assumption, which we
would like to avoid. Weaker assumptions, assuming a censorship resistant broad-
cast channel as in [HJKY95], or byzantine agreement and threshold secret shar-
ing (as in [CHH97]) are unsatisfactory in our setting because they require all-
to-all O(n) communication per-party, something that we wish to avoid in our
protocol.

In Section 8, we outline a novel solution for re-establishing secure, authenti-
cated channels in the presence of a mobile adversary. Our solution is compatible
with any other proactive secret sharing scheme that requires secure channels and
has the added benefit that it is compatible with essentially any communication
pattern, i.e., it only requires communication between the sender and receiver in
order to set up a secure channel between the two parties.

B Ramanujan Expanders

Ramanujan expanders are expanders with essentially optimal spectral expansion.
The spectral expansion of a graph is the largest absolute value of an eigenvalue of
the adjacency matrix (apart from the trivial eigenvalues ±d). Ramanujan graphs
have spectral expansion at most 2

√
d− 1. This is optimal in the sense that for

any ϵ > 0, any infinite family of d-regular graphs contains at least some graphs
with spectral expansion greater than (2

√
d− 1− ϵ) [Nil91].

Definition 3. A d-regular graph, G, is called a Ramanujan Graph if the spectral
radius of G is bounded by 2

√
d− 1, i.e., for every eigenvalue λ of the adjacency

matrix of G, if |λ| < d, then |λ| < 2
√
d− 1.

In particular, we use balanced bipartite Ramanujan expanders. Balanced
bipartite Ramanujan graphs can be efficiently computed for all degrees and sizes
[MSS13] [MSS18] [Coh16].

Ramanujan graphs do not necessarily have optimal vertex expansion. It is
an open problem to find explicit general constructions of bipartite graphs with
near-optimal vertex expansion (see Open Question 6 of Paredes [Par21]). Con-
structing such graphs would improve the concrete results of this paper. Never-
theless, Ramanujan graphs provide good vertex expansion, which is sufficient for
the purposes of this paper.
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Below we demonstrate that Ramanujan graphs have the properties our pro-
tocols require. Concretely, we prove Theorems 1 and 2. We start with a standard
theorem relating spectral and vertex expansion:

Theorem 11 (Spectral expansion implies vertex expansion [Vad12][Theorem
4.6] ). If G is a d-regular graph with second largest eigenvalue λ, then for every
γ ∈ [0, 1], G is a (γ, α) expander where

α =
1

(1− γ)λ
2

d2 + γ
(3)

Combining Definition 3 and Theorem 11 gives our first required property:

Theorem 1. A Ramanujan graph is a
(
γ, 1

(1−γ) 4
d+γ

)
expander ∀ γ ∈ [0, 1].

We now prove the second property. We are given a d-regular, bipartite ex-
pander graph with two sets L and R each of size n. We have a subset S ⊂ L
of nodes of size δn on the left and a value ϵ1. We want to calculate how many
nodes on the right have more that ϵ1 fraction of their edges connected to the set
S.

Lemma 7 (Bipartite Expander Mixing [Hae95][Theorem 5.1]). Let G be
a d-regular bipartite graph with spectral radius λ. Suppose, S ⊂ L, and T ⊂ R,
with |S| = α |L|, and |T | = β |R|. Let e(X,Y )

def
= |{(x, y) ∈ E | x ∈ X, y ∈ Y }|

then ∣∣∣∣ e(S, T )e(L,R)
− αβ

∣∣∣∣ ≤ λ

d

√
αβ (4)

Note, that e(L,R) are all the edges in the graph, i.e. d|L|.

Lemma 8. Given a d-regular bipartite expander with spectral radius λ, suppose
a set of δn vertices on the left are in S then at most

λ2δn

(ϵ1 − δ)2d2
(5)

right vertices have at least an ϵ1 fraction of left-neighbors in S.

Proof. Let T denote the set of right-hand vertices that have at least an ϵ1-fraction
of left-neighbors in S. Since G has right-degree d, we have e(S, T ) ≥ dϵ1 |T |.

On the other hand, the expander mixing lemma (Lemma 7) tells us that for
α = |T |/n and β = δ,∣∣∣∣e(S, T )nd

− δ
|T |
n

∣∣∣∣ ≤ λ

d

√
δ
|T |
n

⇒ e(S, T )

d
− δ |T | ≤ λ

d

√
nδ |T | (6)

On the other hand, e(S, T ) ≥ dϵ1 |T |, so we have

ϵ1 |T | − δ |T | ≤ λ

d

√
nδ |T | ⇒ |T | ≤ λ2δn

(ϵ1 − δ)2d2
(7)
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Since Ramanujan graphs have spectral radius at most 2
√
d− 1, this implies

our required property:

Theorem 2. Ramanujan graphs have the following property. Let S be a set of
size at most δn vertices on the left. Then at most

4δn

( 12 − δ)2d
(2)

right-hand vertices have at least 1
2 of their neighbors in S.

C Model

C.1 Secrets and Shares

In our PSS protocols, we assume that there is a single secret, denoted s, that is
(honestly) distributed by a trusted dealer before the protocol begins, resulting
in each party holding a share. Our private and robust protocol (Protocol 3) also
requires the dealer to distribute initial PRG keys. When we describe the life-
cycle of an epoch in this section, such keys are also considered part of a party’s
share.

C.2 Mobile Adversaries

The set of parties in the protocol is denoted {P}ni=1, and communication between
parties is assumed to be synchronous. The protocol is divided into epochs, which
are fixed time intervals. Each epoch is comprised of two phases, a refresh phase
and a retain phase (described in Section C.4).

The adversary, A , is assumed to be mobile, which means that the adversary
is allowed to corrupt t (out of n) parties in each epoch. There is, however, no
limit on the cumulative number of parties that the adversary has ever corrupted
(across multiple epochs). When an adversary corrupts a party, it is allowed to
see all messages that are sent and received by that party. If the adversary is
malicious, the adversary can also cause the party to deviate from the protocol
(e.g. by sending fraudulent messages). Furthermore, the adversary is rushing
which means it can wait to receive all incoming messages before sending any
messages.

We make the following assumptions that are standard for mobile adversaries.
We assume parties can securely delete data. We assume parties have access to
fresh randomness. We instantiate secure, authenticated channels between parties
using a (hardware-based) signing oracle. See Section 8 for more details about our
proposed method for instantiating secure channels. Alternatively, if we simply
assume the existence of secure channels, we can drop the assumption that parties
can generate fresh randomness.
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C.3 Reboots

To handle such an adversary, we assume that it is possible to remove the ad-
versary’s control of a party by a reboot operation. Rebooting a party will cause
the adversary to lose all access to new information (e.g. fresh randomness gen-
erated, messages received) and will cause the party to return to executing the
correct program. (For instance, the program may be stored in some ROM and
reloaded following a reboot.) Although rebooting refreshes the party’s program,
it does not delete certain state information, specifically the party’s share. This
means that if a party’s share is corrupted (incorrect) before the reboot, it will
be incorrect after the reboot.

A party is corrupted if it has been corrupted, but not (yet) been rebooted. It
is honest otherwise. By periodically applying reboots, we can limit the number
of parties that are corrupted at any time.

C.4 Epochs

Epochs. Following the standard models of proactive secret sharing, we divide
time into epochs. Each epoch consists of two phases, refresh and retain. The
PSS protocol describes the refresh phase, while the retain phase encompasses
anything the parties do with their share outside of the PSS protocol.

1. Refresh:
(a) Reboot
(b) Establish secure channels
(c) Send messages
(d) Securely delete old share (everything except current private key)
(e) Receive messages
(f) Securely delete keys (everything except new share)

2. Retain: Parties may use their share, e.g. in the context of an MPC protocol.

All of our protocols follow the structure above. The protocols will only differ
in how a share is used to generate messages to send, and how messages received
are combined to form a new share. Therefore, we will only describe the send
message and receive message steps in our protocol; all other steps are implicit.

C.5 Counting Corruptions

A party which is corrupted during the retain portion of epoch t is considered
corrupt, and counted against the budget of the adversary in epoch t.

It is important to note that an adversary who corrupts a party during the
refresh phase of epoch t learns both the party’s share from the epoch t, as well
as the party’s share from the previous epoch, i.e. t−1. In fact, an adversary who
corrupts a party during the refresh phase of epoch t has slightly more power than
an adversary who corrupts the same party in both the retain phases of epoch
t− 1 and epoch t because the adversary who corrupts during the refresh phase
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can see (and potentially modify) the messages sent during the refresh phase in
epoch t.

For this reason, as is standard [HJKY95], we consider that when an adversary
corrupts a party during the refresh phase of epoch t, this counts towards the
adversary’s corruption budget of epoch t and epoch t− 1.

Some PSS protocols consider dynamic committees (e.g. [ZSVR05,SLL10],
[BDLO15,MZW+19]). In this dynamic-committee PSS the set of parties (and
possibly the corruption threshold) can change from epoch to epoch. One of the
key differences between a static-committee and dynamic committee PSS pro-
tocol is the way corruptions are counted. When the committee in epoch t + 1
is different from the committee in epoch t, there is no need to double count
parties who are committed during the refresh phrase. Thus it is typical, when
considering dynamic committees, to give the adversary the power to corrupt up
to k-out-of-n parties in the old committee as well as k-out-of-n of parties in the
new commiteee. This means that in the dynamic committee model a security
threshold of k-out-of-n is actually stronger than in the static committee model
where the adversary can only corrupt k/2 parties (in the refresh phase) of every
epoch. Our protocols work for either method of counting corruptions.

C.6 Security

Most PSS protocols simultaneously achieve both privacy and robustness. Privacy
ensures that the secret is not learned by the adversary. Robustness ensures that
the adversary cannot cause the reconstructed value to differ from the secret
which was shared. In this work, we will sometimes consider these two properties
separately. Note that in the case of passive adversaries, every protocol is robust
since the adversary cannot introduce corruptions into the shares.

For both private and robust protocols, we will show protocols secure against
malicious (active) adversaries who may cause parties that they corrupt to behave
arbitrarily during the epoch in which they were corrupted. The number of parties
that the adversary can corrupt in an epoch will be some function of the number
of parties, n. For instance, O(n) security means that a security property holds
if the adversary corrupts at most δn parties in an epoch for some constant δ.

We will be concerned with two types of security. Our protocols that just en-
sures privacy (Section 5) or robustness (Section 6) will provide perfect security
which means that the security guarantees always hold, regardless of the compu-
tational resources of the adversary. Our protocol that ensures both privacy and
robustness (Section 7) provides computational security, that is, an adversary with
bounded computational power has an insignificant probability of undermining
the security guarantees.

C.7 Reconstruction

In this work, we are focused on building PSS protocols with sublinear commu-
nication. In particular, this means that parties in our protocols typically do not
communicate with every other party in every epoch. This makes it impossible
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to guarantee that every honest party holds a valid share at every step of the
protocol. To see this, consider an honest party in epoch t, an adversary (who
can corrupt a constant fraction of parties in each epoch) could have corrupted
all of the target party’s communication partners in the previous epoch. In which
case, the target party would not have communicated with a single honest party
(since its last reboot) and could not be have an uncorrupted state.

Since this type of “eclipse attack” is unavoidable in our model, we consider
a slightly different form of correctness in our constructions. We consider a PSS
protocol secure if, in any given epoch, there exists a reconstruction protocol,
which would allow the (honest) parties to reconstruct the original secret. The
key distinction here is that the reconstruction procedure may require linear com-
munication (e.g. all parties send their shares to every other party), but since the
reconstruction procedure is not actually run in each epoch, the amortized com-
munication per epoch can still be sub-linear.

D Epoch length

We present a maliciously-secure PSS protocol in Section 7 that can only tolerate
Θ(
√
n) corruptions per epoch, which may seem low compared to existing PSS

protocols (e.g. [HJKY95] and [SLL10]) that can tolerate Θ(n) corruptions per
epoch.

What this comparison hides is we are free to choose the length of an epoch
by choosing how frequently we run the refresh protocol. Decreasing the length
of an epoch will increase the communication cost (per unit time), but should
decrease the number of parties an adversary can corrupt in a given epoch.

To see this in play, imagine that instead of allowing the adversary to corrupt
δ · n parties per epoch (as is standard in the PSS literature), we assumed the
adversary had a fixed corruption rate, i.e., the adversary could corrupt one party
every t(n) units of time. A traditional PSS protocol (tolerating δn corruptions
per epoch), would be secure in this model by setting the epoch length T =
δ · n · t(n).

But now, consider the communication cost. A traditional PSS protocol, tol-
erating δn corruptions per epoch, and requiring Θ(n) communication per re-
fresh, would have amortized communication cost of Θ

(
1

t(n)

)
per unit time.

By contrast, our protocol, which requires only Θ (κ) communication per epoch,
but can “only” tolerate Θ(

√
n) corruptions could set a much lower epoch time,

T = Θ(t(n) ·
√
n), which would make the amortized communication cost of our

protocol Θ
(

κ
t(n)

√
n

)
per unit time, which is much lower for sufficiently large n.

Furthermore, this ignores the costs of establishing secure channels in the
(normal) case that secure hardware channels do not exist. Authentication be-
tween parties requires Ω(κ) communication (see Section 8 for our instantiation).
This would increase the amortized communication cost of traditional protocols
to Θ

(
κ

t(n)

)
per unit time, but the amortized cost of our maliciously-secure PSS

protocol would remain Θ
(

κ
t(n)

√
n

)
.
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What this means is that (for sufficiently large n) we can achieve a lower
amortized communication cost per unit time, while achieving the same level of
security.

E Proof of Lemma 9

Lemma 9. The equation f(x) = 4x
( 1
2−x)2(x−a)

where 0 < a < 1
2 is minimized

over the range a < x < 1
2 by x = 1

4 (a+
√
a2 + 4a).

Proof. First, observe that over the range a < x < 1
2 , f(x) is continuous, differ-

entiable and positive. Therefore, any minimum point of f(x) over a < x < 1
2

is also a maximum point of g(x) = 4
f(x) over the same range. So we will now

instead find the maximum point(s) of g(x) over this range.

g(x) =
( 12 − x)2(x− a)

x
=

x3 − ax2 − x2 + ax+ 1
4x−

1
4a

x
= x2−(a+1)x+(a+

1

4
)−1

4

a

x

Now g(a) = 0, g( 12 ) = 0 and g(x) is positive over a < x < 1
2 , so g(x) is not

maximized over a < x < 1
2 at the end-points. It must be maximum at a point,

v, where the first derivative is 0.

g′(v) = 2v−(a+1)+
a

4v2
= 0⇒ 2v3−(a+1)v2+

a

4
= 0⇒ (v− 1

2
)(2v2−a−a

2
) = 0

The solutions are v = 1
2 , and v = a±

√
a2+4a
4 . Only v = a+

√
a2+4a
4 is in the

range a < x < 1
2 , so this value minimizes g(x) and maximizes f(x) over this

range.

F O(n)-secure Proactive Pseudorandomness with O(κ)
Communication

In Section 7, we required replicas to have local PRG keys which were generally
indistinguishable from random to A. Using pseudorandomness rather than fresh,
local randomness was necessary to allow replicas to send identical messages.

A simplified version of Protocol 3 can instead be used for a different ob-
jective, replacing the need for fresh, local randomness altogether. In [CH94],
Canetti and Herzberg presented the problem of generating Proactive Pseudo-
randomness. They argued that sometimes a source of fresh, local randomness is
not available. They presented a protocol that replaces randomness by pseudo-
randomness generated by PRGs. In order to ensure that the pseudorandomness
remains indistinguishable from random to a mobile adversary, each party, every
epoch, sends every other party a randomizer. Each party combines the randomiz-
ers it receives to construct a new PRG seed. As long as the adversary is unaware
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of any one of these randomizers, a party’s new PRG key will be indistinguish-
able from random to A. [CH94] argue that this removes the need for local, fresh
randomness in Proactive protocols.

Like [CH94] we present a protocol that removes the need for fresh, local ran-
domness in proactive protocols provided secure hardware channels exist. Unlike
[CH94], each party communicates with only O(1) parties per epoch rather than
all n parties. Since each party only communicates with a constant number of
other parties in each epoch, honest parties are susceptible to “eclipse attacks,”
where the adversary corrupts all of the party’s communication partners. Thus,
we consider a slightly more relaxed notion of PP security than [CH94]. The orig-
inal PP protocol guarantees that every party that is honest in a given epoch
has pseudorandomness that is unpredictable to the adversary. Our protocol will
instead guarantee that in every epoch, at least γn parties will have pseudoran-
domness that is unpredictable to the adversary, where γ is a constant.

The protocol is obtained by simplifying Protocol 3 as follows. We no longer
need replication, so we set a = 1. We are concerned only with keys and key
re-randomizers, so we remove all messages and variables related to shares. Addi-
tionally, since there are no replicas, we do not need to worry about related-key
attacks. We therefore do not need a Φadd-RKA secure PRF to combine the re-
randomizers, simply adding the re-randomizers to generate a new key suffices.
The resulting protocol is presented in Protocol 5.

Proactive Pseudorandomness

Parameters:
Let G = (L ∪ R,E) be a d-regular bipartite (γ, α) expander, with parts
L = {L1, . . . , Ln} and R = {R1, . . . , Rn}. We choose neighbors according
to graph G. (See Section 5 for the definition of choosing neighbors.)

1. Setup:
Each party, Pi, is provided an initial truly random seed k1i from a trusted
source.

2. Re-randomizing:

(a) At the start of epoch t, each party Pi, for each of its neighbors Pj ,
generates re-randomizer rti,j = PRFkt−1

i
(j) and sends it to Pj .

(b) Pj receives a re-randomizer from each party of which it is a neighbor.
It computes its new key as:
ktj =

⊕
i∈N−1(j)

rti,j .

Protocol 5.

To prove the security of this protocol, we first observe that the communica-
tion pattern in Protocol 5 is identical to that of Protocol 1. Thus as in the proof
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of security of Protocol 1, we can define a layered graph H, where vertex H
(t)
i

represents Pi at epoch t. Recall that vertex H
(t)
i is considered honest if Pi is hon-

est in epoch t. Recall that the edges of H exactly represent the communication
pattern of the protocol.

With these definitions, we can prove the following lemma.

Lemma 10. If H(t)
i has an honest backward path to H(1), then kti is indistin-

guishable from random to A.

Proof. Now, if there exists an honest forward path to H
(t)
i , there is a sequence

of parties, Pf(1), . . . , Pf(t), where f(t) = i, such that Pf(u) is honest in epoch
u, for all 1 ≤ u ≤ t, and Pf(u+1) is a neighbor of Pf(u) for 1 ≤ u ≤ t − 1. We
can now show that this implies that kti is indistinguishable from random to the
adversary.

By induction. k1f(1) is given by a trusted dealer, so is truly random. Pf(1) is
honest in epoch 1, and k1f(1) is deleted at the start of epoch 2, so the adversary
could only learn k1f(1) based on messages sent by Pf(1) in epoch 2. However, all
of the messages sent are outputs of a PRF, and by the security of the PRF, these
leak no information about the key. Thus, k1f(1) is indistinguishable from random
to the adversary (not only in epoch 2, but at any point in the future).

Assume that kuf(u) is indistinguishable from random to A. This means that
ru+1
f(u),f(u+1) is also indistinguishable from random when it is generated. (Recall

P
(u)
f(u) is honest.) It is sent to Pf(u+1) at the start of epoch u + 1, and then

promptly deleted. Thus A cannot learn the value of ru+1
f(u),f(u+1) by later cor-

rupting Pf(u). P
(u+1)
f(u+1) is honest, so A does not learn ru+1

f(u),f(u+1) from it. The
message is sent over an encrypted, authenticated channel, so A cannot make
any of the other re-randomizers sent to P

(u+1)
f(u+1) be correlated with ru+1

f(u),f(u+1).

Thus,
⊕

i∈N−1(f(u+1))
ru+1
i,f(u+1) is also indistinguishable from random to A.

This now allows us to prove the security of our Proactive Pseudorandomness
protocol:

Theorem 12. Let there be a malicious mobile adversary that controls at most δn
parties per epoch, where δ ≤ γ(α−1). Protocol 5 ensures that each epoch contains
γn parties whose keys are indistinguishable from random to the adversary.

Proof. Lemma 5 in Section 5 that if δ ≤ γ(α − 1) then for every t, there exist
at least γn nodes in H(t) that have honest backward-paths to H(1).

Combining Lemma 5 and Lemma 10 gives the desired security property.

Remark 3 (Malicious adversaries). Recall that since our first PSS protocol (Pro-
tocol 1) provided privacy but no robustness, an adversary, A , could change the
secret by sending an incorrect message, but it could not learn the secret.

In our PP protocol, a corrupted party can similarly send incorrect re-randomizers.
This will change the PRF keys generated in later epochs, however it will not help
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A learn these keys. This will mean that the state of the system is not simulatable
based on its initial keys, but it does not undermine the pseudorandomness gen-
erated. Therefore, our PP protocol has security guarantees that are still useful
in practice against malicious, mobile adversaries.

Remark 4 (Secure channels). As discussed in Section A.2, the secure channels
required by PSS (and PP) protocols cannot be instantiated with static crypto-
graphic keys, since a mobile adversary could learn the channel keys in one epoch,
and then continue to read messages on the channel in future epochs.

In Section 8 we gave a simple solution for re-generating channel keys (as-
suming trusted signing oracle). Unfortunately, PP protocols are not sufficient to
instantiate secure channels in the mobile adversary model.

To see this, note that A is able to see all (potentially encrypted) messages
sent to a party Pi (even when Pi is not corrupted). Now, suppose Pi corrupted,
and A learns the complete state of Pi, and then Pi is rebooted.

At this point, the protocol needs to do two things: (1) Pi needs to generate
(and authenticate) new channel keys and (2) the other parties need to send
Pi new re-randomizers. Unfortunately, we cannot do either first. If we try to
generate a new random encryption public key before the re-randomizers are
sent, A will continue be able to simulate Pi and can learn the corresponding
secret key. If we try to send the re-randomizers to Pi, the adversary will be able
to decrypt them and will continue to know the full state of Pi.

In short, if there are no secure hardware channels and no internal sources of
fresh randomness, once A corrupts a party, A will always be able to continue
simulating a party. This is true even if there are hardware channels that are
authenticated but not private. As long as A is able to see all (potentially en-
crypted) messages sent to a party, once the party is corrupted, A will always
be able to simulate the party’s state. Note that this is not just an issue with
our protocol: this inherent limitation applies to all proactive protocols. Thus,
without secure (hardware) channels or fresh local randomness, it is impossible
to attain any privacy in the mobile adversary model.

Furthermore, even if parties do have access to fresh local randomness, if there
are no trusted hardware or authenticated hardware channels, once A corrupts
a party, that party will never be able to authenticate itself. When A corrupts
a party, it learns the entire state of the party at that point in time, and can
therefore pretend to be the party in all future interactions. While the party may
generate fresh local randomness, A can choose randomness from an identical dis-
tribution. Other parties will thus be unable to distinguish A from the real party.
Therefore, without (hardware) authenticated channels or local secure hardware,
it is impossible to authenticate parties in the mobile adversary model.
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