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Abstract. In this work, we revisit the severely limited throughput problem of cryptocurrencies and
propose a novel rebalancing approach for Payment Channel Networks (PCNs). PCNs are a popular
solution for increasing the blockchain throughput, however, their benefit depends on the overall users’
liquidity. Rebalancing mechanisms are the state-of-the-art approach to maintaining high liquidity in
PCNs. However, existing opt-in rebalancing mechanisms exclude users that may assist in rebalancing
for small service fees, leading to suboptimal solutions and under-utilization of the PCNs’ bounded
liquidity.
We introduce the first rebalancing approach for PCNs that includes all users, following a “all for one
and one for all” design philosophy that yields optimal throughput. The proposed approach introduces
a double-auction rebalancing problem, which we term Musketeer, where users can participate as
buyers (paying fees to rebalance) or sellers (charging fees to route transactions). The desired properties
tailored to the unique characteristics of PCNs are formally defined, including the novel property of
cyclic budget balance that is a stronger variation of strong budget balance.
Basic results derived from auction theory, including an impossibility and multiple mechanisms that
either achieve all desiderata under a relaxed model or sacrifice one of the properties, are presented.
We also propose a novel mechanism that leverages time delays as an additional cost to users. This
mechanism is provably truthful, cyclic budget balanced, individually rational and economic efficient
but only with respect to liquidity.

1 Introduction

1.1 Motivation

Bitcoin and other cryptocurrencies are significantly transforming the financial landscape [33, 45]. Through
a revolutionary novel distributed data structure, the blockchain, financial transactions can now be securely
executed in a decentralized manner without the need for a trusted intermediary like a bank. However, a
well-known issue of the celebrated Nakamoto consensus introduced with the first blockchain-based cryp-
tocurrency, Bitcoin, is that it inherently prohibits high transaction throughput which in turn hinders the
widespread adoption of blockchain technologies [18]. For example, Bitcoin can process at most 7 transactions
per second [18], while Visa processes tens of thousands of transactions per second. Furthermore, blockchains
are evidently environments for-profit, therefore user-incentive design is critical. Although several works have
studied blockchain-related topics under the lens of game theory, e.g., [13, 14, 16, 21, 26], there is still much
to be explored, particularly concerning scaling protocols. In this work, we model and investigate incentive-
compatible mechanisms that can enhance the limited transaction throughput of blockchains like Bitcoin.

Specifically, we focus on one of the most prominent and well-studied scalability solutions for blockchains,
called payment channels [36]. With payment channels, users can transact off-chain at far lower costs and
faster speeds. The core idea is that any two users can lock their coins in a “joint account” on-chain, namely
the payment channel. Thereby, the channel parties may perform arbitrarily many off-chain transactions with
each other by signing messages with the new distribution of coins in their joint account. To close the payment



channel, the parties can publish on-chain the last update on the distribution of their coins. Naturally, each
channel is limited by the coins locked by each party (liquidity), dictating the maximum amount that can be
sent between them. For example, in a channel with Alice and Bob currently holding 3 and 5 coins respectively,
Alice can send at most 3 coins to Bob, and Bob can send at most 5 coins to Alice. In short, the coins can be
moved on the channel from Alice to Bob or vice versa, much like moving balls from one side of an abacus to
the other.

Multiple payment channels operating on the same underlying blockchain, comprise a payment channel
network (PCN). PCNs allow users, who have at least one payment channel open, to route transactions
through the network to other users with whom they do not share a direct payment channel. To successfully
route a transaction, a path of channels with sufficient liquidity for all senders must exist. For example, if
Alice wants to send 3 coins to Carol through Bob, Alice must have 3 coins available in her channel with
Bob, and Bob must have 3 coins available in his channel with Carol. The intermediaries (e.g., Bob) that
offer to use their channel liquidity to route another user’s transaction typically ask for a routing service fee.
If a channel in the selected path is depleted (i.e., has low liquidity) in the desired direction, all the transfers
in the path will be reverted and the transaction will fail. The liquidity of individual payment channels is,
therefore, a crucial factor in the effectiveness of PCNs as a scaling solution. It determines the ability to
route transactions and impacts the overall efficacy of PCNs in enhancing the transaction throughput.

To maintain high liquidity in payment channels, parties have two options: either lock a significant amount
of coins initially or use an on-chain transaction to top up their channels. However, both options have their
drawbacks. Locking a substantial amount of coins incurs an opportunity cost as these coins cannot be used
for other on-chain operations. On the other hand, using on-chain transactions to top up channels hinders
the scaling capabilities of the underlying blockchain.

Rebalancing mechanisms are an attractive alternative solution to improve liquidity within PCNs [1,10,25].
These mechanisms aim to identify cycles of depleted edges (channels) and route transactions across them in
a way that ensures each node in the network has an equal amount of coins at the end of the process. By
leveraging cycles within the PCN, parties with depleted channels can rebalance their channels by utilizing
two of their channels – one as a source to send coins and another as a destination to receive coins.

However, the currently deployed local rebalancing algorithms [1] may be insufficient in practice due to
two main reasons. Firstly, they only involve parties interested in rebalancing, thereby excluding channels
that may route transactions for low or no routing fees; after all, intermediaries are indifferent to whether the
routed payment concerns a payment (path) or rebalancing (cycle). Secondly, local searching algorithms may
miss optimization opportunities leading to poor outcomes.

To address the latter limitation, Revive [25] proposed globally coordinated channel rebalancing, therefore,
achieving optimal outcomes. Hide & Seek [10] recently improved on Revive by enabling global rebalancing in
a decentralized and privacy-preserving manner. However, in both algorithms, the rebalancing subgraph only
includes the parties that wish to rebalance while the vast majority of channels of the PCN that may route
transactions for low or no fees are neglected. Thus, even with globally coordinated rebalancing, the limited
rebalancing subgraph still impacts the optimality of the overall solution, and subsequently the PCN’s scaling
capability, i.e., how many transactions can succeed off-chain given a bounded overall liquidity.

1.2 Our Contribution

In this work, we propose a novel approach to rebalancing that involves all users of the payment channel
network (PCN) in order to maximize the liquidity utilization and subsequently the transaction throughput.
In particular, we ask all users to submit their liquidity and bid for every one of their channels. The liquidity
in this setting captures the number of coins they are willing to use for routing/rebalancing while the bid
encapsulates how much they are willing to pay per coin for rebalancing the specific channel. So positive
bids express the desire of buyers to rebalance, whereas negative (and zero) bids the desire of sellers to
sell their routing service. Now, modeling this problem reveals a major challenge: how can we design an
incentive-compatible rebalancing mechanism for both buyers and sellers?

We embark on a study of rebalancing protocols for PCNs through the lens of mechanism design. To the
best of our knowledge, we are the first to examine user incentives in the context of rebalancing mechanisms.
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Our goal is threefold: First, we wish to shed light on the rebalancing problem as an compelling problem
for blockchains that can benefit from game-theoretic methodologies. Second, we aim to formally model
the problem, capturing the unique characteristics present in PCNs. Third, we wish to discover satisfactory
solutions to our problem, exploring different trade-offs.

To achieve our objectives, we build upon Hide & Seek and extend its setting and its global rebalanc-
ing algorithm to accommodate both buyers and sellers of rebalancing liquidity. This approach leads to a
double-auction problem with several challenges stemming either from traditional auction theory or from the
individual needs of PCNs.

In modeling our problem, we identify channel depletion as its unique characteristic, that makes it qual-
itatively distinct from other mechanism design problems on networks, such as routing games [22]. Channel
depletion means that transactions along an edge can permanently reduce the capacity (here, liquidity) of this
edge until a transaction is transmitted in the opposite direction: flows in the different directions of an edge
can compensate for each other. This is very different from, e.g., railway networks where a train only requires
a rail segment for the time of the traversal. Thus already-known results do not apply to our problem.

To determine the desiderata of our mechanism, we revisit conventional requirements from auction theory:
(1) economic efficiency, i.e., maximizing the social welfare which captures that channels are prioritized for
rebalancing based on their bids, (2) truthfulness, meaning users submit their true value, and (3) individ-
ual rationality, i.e., non-negative utility for rebalancing participants. However, our problem encounters an
idiosyncrasy rooted in the payment channel primitive itself, affecting the budget-balanceness of the mecha-
nism. Specifically, coins cannot be burned in a payment channel because intuitively channel updates must
always benefit one party; if there exists a coin distribution where both parties in the channel can benefit
from changing, then there is no way to enforce it. For instance, we cannot enforce a distribution of 3 coins to
Alice and Bob each and 2 coins burned, because the parties will cooperatively update their channel to hold
4 coins each. This implies that the mechanism cannot have either a surplus or a deficit, rendering weakly
budget-balanced mechanisms infeasible. To add insult to injury, rebalancing itself occurs via individual cycles
in the PCN. As a result, our setting demands a stronger notion of budget balance, which we term (4) cyclic
budget balance, i.e., each cycle must be strongly budget balanced independently.

Unfortunately, the above four desired properties cannot be simultaneously achieved by any mechanism.
We prove this by applying the classic Myerson-Satterthwaite impossibility result for double auctions [32]. We
further emphasize the significance of the distinctive property of cyclic budget balance in shaping potential
solutions. The output of a rebalancing mechanism consists of a set of rebalancing circulations, which are
global solutions where user preferences in one segment of the graph can impact the rebalancing cycles in
distant segments of the graph. While in VCG-type mechanisms users are compensated for the global effects
of their channels, the constraint of cyclic budget balance prevents this approach.

To provide satisfactory solutions, we apply standard techniques such as the renowned VCG mechanism
and first-price auctions to the problem at hand. Additionally, we propose a novel mechanism that introduces
time delays as a natural characteristic of this problem, with the aim of incentivizing users to actively and
truthfully participate in the rebalancing process while optimizing the outcome. The inclusion of time delays
allows us to navigate around the impossibility and maintain our objective of maximizing rebalanced liquidity,
in exchange for losing economic efficiency in terms of time delays and liquidity combined. Through these
proposed solutions, we seek to highlight the inherent challenges involved in rebalancing mechanisms and
encourage further investigation by the algorithmic game theory community.

Summary of Contribution & Organization. We present the first rebalancing approach for PCNs where
all users are encouraged to participate in the global rebalancing mechanism, even those without depleted
edges. We involve incentives of both buyers (users that pay fees to rebalance) and sellers (users that charge
fees to route transactions) in a double auction for rebalancing called Musketeer. We formally define the
setting of Musketeer, and identify the desired properties in Section 2. We stress the unique characteristics
of PCNs that lead to a novel property for Musketeer, called cyclic budget balance.

We present a flurry of results derived from traditional auction theory (see Section 3): first, we show
in Section 3.1 that, similarly to double auctions, our desired properties cannot be satisfied simultaneously
(impossibility). Subsequently, in Section 3.2, we showcase a cyclic budget balance, economically efficient, and
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individually rational mechanism that is applicable when all users are aware of the potential maximum and
minimum fees they might pay or earn for their participation. Later, in Section 3.3, we present a truthful,
cyclic budget balance, economically efficient, and individually rational VCG-type mechanism exclusively for
buyers, under the assumption that sellers are not treated as strategic agents. We then provide a mechanism
that also considers sellers but, similarly to first-price auctions, sacrifices truthfulness (see Section 3.4). Finally,
in Section 3.5, we introduce a novel mechanism that leverages time delays to bypass the impossibility and
achieve all desired properties. Intuitively, this algorithm is a variant of the double auction that achieves
truthfulness by introducing time delays that incur additional costs to users.

Later, in Section 4, we discuss open research challenges and identify future research directions. We present
additional related work in Section 5, and conclude in Section 6.

2 Preliminaries and Model

2.1 Background

In this section, we provide the necessary background on the rebalancing of payment channel networks, which
we subsequently use to introduce our setting and problem definition. For the rest of the paper, we use the
terms users and players interchangeably.

Rebalancing PCNs. Rebalancing mechanisms are currently the only approach that allows users to restore
their channel balances off-chain. In a nutshell, rebalancing mechanisms search the payment network for
depleted channels that users wish to top-up off-chain until they identify a cycle of channels with enough
liquidity. For instance, suppose Alice has one depleted channel with Bob, which she wants to top-up for 3
coins, and another channel with Carol where she has plenty of coins. Now, if Bob and Carol share a channel
with at least 3 coins available for Carol, Alice can send 3 coins to Carol in their channel, Carol 3 coins to
Bob, and Bob 3 coins to Alice. This way all users end up with the same total amount of coins. We stress
that coins locked in a payment channel cannot be transferred to any other channel, much like the balls in
different rows of an abacus.

Rebalancing mechanisms divide into two categories: local and global. Local rebalancing, currently de-
ployed on the Bitcoin Lightning Network [36], has each party searching individually through the network for
other channels that want rebalancing; if a cycle is identified then the party can rebalance its channel. This
approach may not find the optimal solution for rebalancing and it is very inefficient.

Global rebalancing, introduced with Revive [25] and subsequently optimized with Hide & Seek [10], finds
the globally optimal solution for the users that directly and personally benefit from rebalancing their channels
by leveraging coordination. Our solution builds on this approach and extends it to include also users that are
indifferent to rebalancing or may be willing to participate for a very small service routing fee. Indeed, given
that routing fees are orders of magnitude smaller than the typical fee paid to the blockchain to top-up the
channel coins, it may be attractive for users to pay intermediaries to facilitate their rebalancing, similarly
to transaction routing in PCNs - instead of paths, they route in cycles. We detail below the mechanism
proposed in Hide & Seek which we later utilize in our solutions.

Hide & Seek [10]. In Hide & Seek, the users submit their rebalancing requests, i.e., how many coins
they wish to rebalance, to designated delegates, using secret sharing. Thereafter, the delegates compute the
optimal flow on the network using multi-party computation for privacy. The flow is subsequently decomposed
into simple sign-consistent cycles, i.e., each channel participates only in cycles where the coins will be routed
in the same direction such that each user is incentivized to execute all the individual cycles. The execution
along the cycles occurs atomically, i.e., either all users in the cycle send the coins or all transactions fail,
using known techniques [36].

2.2 Musketeer Overview

Each channel of the PCN may participate in the rebalancing process either as a depleted or as an indifferent
edge. Depleted edges are channels owned by players that wish to rebalance their channels (i.e., act as buyers),
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while indifferent edges are owned by players that sell their routing services (i.e., act as sellers). We model this
problem as a double auction: each player submits their (non-negative or non-positive) bid for each channel
they are part of, which indicates the maximum or minimum amount they are willing to pay or receive per
unit coin for rebalancing or routing through that channel, respectively.

Additionally, for each channel, the users submit their liquidity, i.e., the number of coins available to the
rebalancing mechanism. These coins may be available because buyers want to rebalance their channels or
because sellers may want to earn fees for their service. With this knowledge, we extract the rebalancing
subgraph which is a directed graph with capacities capturing the liquidity of each channel.

The resulting combinatorial problem can be modeled as a max-flow problem, where the goal is to maximize
the total number of coins (flow) weighted by the buyer’s bids. In other words, we calculate the flow that
maximizes social welfare, respecting the channel capacities. We then leverage the cycle decomposition of Hide
& Seek in order to generate simple cycles that may be executed atomically. Our main problem is pricing
each cycle separately, awarding fees to sellers paid by the buyers.

We note that, in contrast to Hide & Seek, participants in Musketeer are required to pre-lock the
coins intended for rebalancing prior to the mechanism revealing the individual cycles. This design decision
is primarily to prevent buyers from choosing whether to proceed with rebalancing after the output of the
mechanism is known, as this could potentially incentivize dishonest strategies. From a different perspective,
if buyers have the option to abort the mechanism hindsight, this may severally hinder the effectiveness of
the mechanism as a cycle can only be executed only if all players choose to participate and lock their coins.

2.3 Model and Notation

Payment Channel Network (PCN). A payment channel network can be modeled as an undirected graph,
with a vertex for every user and an edge connecting users u, v whenever they jointly own a payment channel,
as depicted in Figure 1a. At any point in time, the (bidirectional) capacities of the payment channel and its
current distribution of coins can be encoded as follows: the capacity of edge e = (u, v) in the direction from u
to v is the maximum amount of money that can be transferred given the channel’s current coin distribution.

Rebalancing amounts as network flows. First, all users submit capacities for their channels in both
directions. These requests from both buyers and sellers are encoded as a directed capacitated graph G =
(V,E). For a node u, the outgoing edges express the channels that u wishes to send coins to its counterparty
– either because the counterparty wishes to rebalance their channel or because u wants to gain routing fees
as a seller. Symmetrically, the incoming edges express the channels that node u wishes to receive coins –
either because u wishes to rebalance its channel as a buyer or because its counterparty wants to gain routing
fees as a seller. We note that it is, therefore, possible to have both directed edges (u, v) and (v, u) in E.
The capacities of each edge c(e), e ∈ E, represent the maximum amount of flow that the owners of the
channel are willing to dedicate to rebalancing. Consequently, the rebalancing problem is now transformed
into a network flow problem, e.g., maximizing the rebalancing liquidity is equivalent to maximizing the flow
in G, as illustrated in Figure 1b.

From the perspective of one user, rebalancing simply transfers their liquidity from one channel to another,
possibly depleted, channel. Rebalancing by itself must not result in any monetary gain or loss for any user,
a property also known as balance conservation [10]. This does not include the fees associated with rebal-
ancing, which may very well lead to a surplus or deficit for users. This requirement of balance conservation
characterizes possible rebalancing flows as circulations. A circulation is a flow f = (f(u, v))(u,v)∈E such that
the net flow through each vertex is zero:∑

v∈V
f(u, v) =

∑
v∈V

f(v, u),∀u ∈ V.

Two circulations f1, f2 can be added to get yet another circulation: f1 + f2 = (f1(u, v) + f2(u, v))(u,v)∈E .
A cycle is a sequence of vertices v1, v2 . . . vk such that (vi, vi+1) ∈ E,∀1 ≤ i ≤ k − 1 and (vk, v1) ∈ E as
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well. We may equivalently refer to this cycle as (e1, e2 . . . ek) where ei = (vi, vi+1),∀1 ≤ i ≤ k − 1 and
ek = (vk, v1). We call k the length of this cycle. A cycle flow f of weight w on cycle C is a circulation where
f(e) = w,∀e ∈ C and f(e) = 0 otherwise (see Figure 1c).

Although all circulations represent possible rebalancings, rebalancing in practice is executed through cycle
flows. First, a so-called sign-consistent cycle decomposition of a circulation is computed, and these cycles
are individually executed [10]. A sign consistent cycle decomposition of a circulation f is a set of cycles
f1, f2 . . . fk such that f =

∑
i fi and all the cycles share the same orientation (see Figure 1d). To be precise,

if two cycles fi, fj route non-zero flow through an edge (u, v), they do so in the same direction: fi(u, v) > 0
and fj(v, u) > 0 cannot hold simultaneously. A standard result of network flow theory is that any circulation
may be expressed as a sum of at most |E| sign-consistent cycles [2]. We are only interested in the space of
feasible circulations f that satisfy every capacity constraint: f ≤ c.

User valuations. In a payment channel owned jointly by two users, rebalancing is not symmetrically
beneficial. We define the utilities resulting from rebalancing flows below.

Associated with each user u ∈ V is a valuation function vu on the set of flows in G. We first assume this
valuation to be a linear function of f , so that by abuse of notation we may treat vu as a function as well as
a vector: vu(f) = vu · f . For an edge e, we denote by vu(e) the e-th coordinate of the vector vu.

If a channel e = (u, v) is depleted in the direction from u to v, it means rebalancing should occur from
v to u. This would benefit user u, and u thus has a positive valuation for flow along e: vu(e) > 0. Any
incurred fees are also paid by u, making u the buyer in this case. However, if a channel is not depleted, it is
termed indifferent. Flow in either direction is allowed to aid in rebalancing the network, but has non-positive
valuation for the channel owners: vu(e) ≤ 0. Flow from u to v requires the authorization of the u, and thus,
fees earned through this flow are paid to u. We term u the seller in this case.

We also assume locality of these valuations are local, meaning that the utility of users isn’t impacted by
the flow along non-adjacent channels: vu(v, w) = 0 for distinct users u, v, w. Finally, we also assume vu as
‖vu‖∞ < 0.1, based on the practical assumption that the utility derived from rebalancing by unit flow along
any channel is bounded. In other words, no user is willing to pay a fee rate greater than 10%, nor can a user
demand greater fees for its indifferent edges. Our mechanisms function with any maximum fee rate lower
than 100%, though we choose 10% as an arbitrary but intuitive bound.

User bids. Similarly to traditional auctions, user valuations are private, and they may submit a different
bid. Indeed, we assume all players are rational utility-maximizing agents. We call the bids valid when they
satisfy the above assumptions on valuations.

In our problem, users submit bids bu for their channels reflecting their self-interests, as shown in our
example in Figure 1b. Buyers submit positive bids while sellers submit negative ones, expressing the maxi-
mum/minimum amount of fees they are willing to pay/receive, respectively, per unit flow along their channels
during the rebalancing process.

Both users in an indifferent channel may participate as sellers. In depleted channels, however, one party
can serve as a buyer while the counterparty is precluded from being a seller to avoid necessitating payment
from u to v for routing flow. Although we distinguish between buyers and sellers for simplicity, note that
users may possess multiple depleted and indifferent channels simultaneously. It is more precise to view each
user as a strategic agent with specific utilities derived from their edges.

Social welfare and utility functions. Individual user valuations vu are local by assumption and are
nonzero only for adjacent directed edges. Let v be the aggregate valuation function

∑
u∈V vu. Given a

feasible circulation f , the social welfare generated by f under v is defined as SW(v, f) := v · f .
Finally, we have the standard assumption that user utilities are quasi-linear: if u is charged price p for

participation in a circulation f of valuation vu(f), then the player’s utility is uu(f ,p) := vu(f) − pu. An
example of pricing a circulation can be seen in Figure 1d.

For a vertex v, we use the subscript “−v” to denote the situation where v is removed from consideration.
G−v refers to the subgraph of G with v and all edges adjacent to v removed. v−v,b−v denote valuation and
bid vectors with coordinates for edges adjacent to v removed. Finally, u−v,p−v denote utilities and prices
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of all players except v. These vectors may also be considered as elements of the larger class when it is clear
from the context.
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Fig. 1: We illustrate the rebalancing process of Musketeer: Given a PCN with specific liquidity per channel
(a), the players may submit capacities and bids (b). Then, the rebalancing circulation is calculated (c), and
subsequently decomposed to sign-consistent cycles which are then priced (d). Depleted edges are shown in
red and indifferent edges in blue. All numbers are indicative.

2.4 The Rebalancing Game

We now define the rebalancing problem, termed Musketeer, without any PCN-related technicalities.

Definition 1 (Musketeer). Consider a game consisting of n players, one for each of the vertices of a
capacitated directed graph G(V,E) each with valuation (vector) vv, v ∈ V . The coordinates corresponds to
the channels of player u. A Rebalancing Mechanism

M : (G, c,b) 7→ (fi,pi)1≤i≤k

receives edge capacities c(e) and valid valuations bv as bids from each player. M computes a feasible circu-
lation f as a sign-consistent cycle decomposition f1, . . . fk. For each cycle flow fi, it computes a price vector
pi = (pi(v))(v∈V ) that each user must pay. Each cycle fi yields a utility of uv(fi,pi) for player v as given
by uv(fi,pi) = vv(fi)− pi(v), and the total utility for player v is uv(f) =

∑
i uv(fi).

The following properties should hold:

1. Economic Efficiency: The cycle decomposition f maximizes the social welfare under the given bids,
f = arg max SW(b, f).

2. Cyclic Budget Balance: The prices per cycle must sum to zero,
∑

v pi(v) = 0.
3. Individual Rationality: Any cycle flow fi yields non-negative utility to every truthful player, uu(fi) ≥ 0.
4. Truthfulness: Regardless of other players’ actions, the best response for utility-maximizing players is

to bid truthfully, bv = vv.

In the context of our problem, optimality or economic efficiency, refers to the maximization of the
total flow weighted by users’ bids, resulting in the most beneficial effect of rebalancing. Additionally, this
property encompasses the prioritization of channels for rebalancing based on their respective bids. Individual
rationality, on the other hand, demands that each user pays no more than their bid for each channel. By
adhering to rationality, users ensure that every rebalancing cycle yields non-negative utility for all players.
Therefore, executing all suggested cycles, rather than selectively performing only those that are optimal to
their self-interest, is necessary to achieve the maximal beneficial effect of rebalancing.

Truthfulness is another crucial aspect of the mechanism, whereby each player should bid their truthful
valuation for each channel to ensure that no one can benefit from misreporting their valuations. Lastly,
cyclic budget balance is a novel property tailored to our problem. Cyclic budget balance is a more restrictive
variation of the strong budget balance property and demands that there is no deficit or surplus for each
cycle produced by the mechanism. There are two reasons we opt for the cyclic budget balance, both of which
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stem from PCN technicalities: Firstly, the rebalancing circulation is preferably decomposed into cycles.
As posited in Hide & Seek, executing small cycles is faster, more robust and requires less communication
among nodes [10]. In contrast, executing the entire circulation simultaneously demands complex protocols
(such as that of [3]) with high network overhead, which are more likely to fail. Secondly, payment channel
constructions do not allow burning of coins (in other words, a surplus for the mechanism). This is because
the two users may cooperatively update the channel state later in order to split the burned coins, effectively
reversing the “burn”. Therefore, each cycle must be priced in a way that all coins are distributed among the
players in the cycle.

u

1,
0.
1

1,0.1

A

10
,0

10,0

1
1
,
0
.1

B

Fig. 2: Depleted edges are
shown in red and indifferent
edges in blue.

Let us demonstrate the increased complexity of attaining cyclic budget
balance in comparison to strong budget balance (in conjunction with indi-
vidual rationality). The following example (Figure 2) shows that the feasible
region for strong budget balance exceeds that of cyclic budget balance: Sup-
pose player u submits a bid of 0.1 per unit flow for his depleted channel e
with a rebalancing capacity of 11. u participates in two cycles, A and B. A
consists of two indifferent edges bidding -0.1 each (total -0.2 per unit flow)
with capacity 1, while B is composed of two indifferent edges with 0 bids
and capacity 10. Regardless of the chosen budget balance property, cycle B
can be selected. However, cycle A fails to satisfy cyclic budget balance as
any rational pricing would result in a deficit of -0.1 per unit flow. However,
strong budget balanced solutions may include both cycles A and B, having u
pay 0.2/11 < 0.1 fees per unit flow on average. Thus, cyclic budget balance
restricts the solution space more than strong budget balance.

3 Towards Truthful Rebalancing

In this section, we explore how to provide incentive-compatible rebalancing in various settings using auction
theory, yielding a flurry of results. In particular, we first prove that satisfying all the desired properties of
the Musketeer is impossible by applying the classic Myerson-Satterthwaite impossibility result for double
auctions (cf. Section 3.1). To circumvent the impossibility, we present a variety of mechanisms, all of which
relax the notion of economic efficiency by restricting the set of possible bids we consider when maximizing
the social welfare. In particular, we first consider the limited setting where buyers and sellers choose to
participate in the mechanism knowing upfront the maximum and minimum fees they would potentially pay
or gain, respectively (cf. Section 3.2). The presented algorithm is fairly simple but restricts the choices for
participants. To expand our results to the broader context where players are allowed to submit bids, we relax
our model to a single auction, solely considering the buyer’s incentives. In particular, we assume players are
willing to forward flow through their indifferent edges hoping to earn some fees in the process, but without
a guarantee on the fees. Under this assumption, we present a VCG-type mechanism, satisfying incentive
compatibility for buyers (cf. Section 3.3). Next, we present a double-auction mechanism that takes into
account the bids of both buyers and sellers, albeit sacrificing truthfulness, similarly to a first price auction
(cf. Section 3.4). Finally, we leverage time delays to navigate around the impossibility result and design a
novel double auction that satisfies all the desiderata in exchange for some costs that users incur in the form
of time delays (cf. Section 3.5).

3.1 Impossibility Result

In the following, we show that Musketeer falls under the classic impossibility of double auctions by
Myerson-Satterthwaite.

Theorem 1. No mechanism can simultaneously satisfy all the desired properties of Musketeer, namely
economic efficiency, individual rationality, truthfulness, and cyclic budget balance.
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Proof. We formulate the double auction problem as a rebalancing game, thus showing that if all properties are
satisfied in Musketeer then that would be true also for the double auction problem, hence the impossibility
of Myerson-Satterthwaite does not hold.

Suppose A wishes to sell an item and B wishes to buy it, with individual valuations Va, Vb respectively.
Each agent knows their own valuation with certainty, but knows the valuation of the other agent only
probabilistically. Without loss of generality, we normalize the valuations to lie in [0, 1].

Now construct the following instance of Musketeer: the graph G = (V,E) consists of V = {a, b, c}, E =
{(a, c), (c, b), (b, a)} and with c(e) = 1,∀e ∈ E. For a flow f = (f1, f2, f3) - that is, f1 units going from a to c,
f2 from c to b, and f3 from b to a - set the valuations va(f) = −Vaf1,vb(f) = Vbf2, vc(f) = 0. We suppose
that the players submitted bids ba,bb,bc respectively, and in particular that c was honest: bc = vc = 0.

The only non-zero feasible circulation is f := (1, 1, 1), so that the mechanism must solely decide between
f and 0. Further, the mechanism must also choose a price vector p satisfying cyclic budget balance: pa +
pb + pc = 0.

We interpret choosing f as a trade occurring between A and B, and choosing 0 as no trade. An efficient
mechanism must output f if Vb > Va (the buyer values the commodity more than the seller). This corresponds
to Pareto Efficiency. Individual rationality of players a, b directly corresponds to individual rationality of A
and B. Next, individual rationality of c (the “auctioneer”) demands that pc ≤ bc = 0, which corresponds to
Weak Budget Balance. The notion of truthfulness in our setting matches that of Myerson-Satterthwaite: in
both cases, we require the truthful bid to be the best response.

In this manner, a solution to Musketeer can be used to simulate a single buyer single seller trade as
studied by Myerson and Satterthwaite [32]. As a result, all four desired properties cannot be concurrently
realized without additional assumptions.

3.2 M1: A Mechanism for Fixed Fees

In this section, we present a straightforward approach for incorporating fees into rebalancing. To circumvent
the aforementioned impossibility, the input to the mechanism is restricted. Users do not submit bids. Instead,
a predetermined fee rate of p̂ is made publicly known (such as the most commonly chosen fee rate4). All flow
through indifferent channels will be paid at this fee rate. There is an additional parameter k that bounds
the maximum fee rate for buyers: flow through depleted edges will be charged at a fee rate ≤ kp̂.

Given these parameters, users can decide upfront if they want to participate in the mechanism. Instead
of bidding, they specify which of their channels are depleted. D ⊆ E denotes the set of depleted edges, and
the rest are considered indifferent edges, denoted by I = E \D.

The rebalancing flow is chosen to optimize:
∑

e∈D kf(e)−
∑

e∈I f(e). The rebalancing is then decomposed
into sign-consistent cycles, and a separate price vector is computed for each cycles that achieves cyclic budget
balance. This way we achieve all the desiderata but under a restricted setting.

This structure leads to a simple mechanism (MechanismM1), which can be viewed as a natural extension
of Hide & Seek that involve fees. The rebalancing flows differ from Hide & Seek in that certain rebalancing
cycles are not considered: given the parameter k, we see that any rebalancing cycle must contain at least
one depleted edge for every k indifferent edges.

Theorem 2. Mechanism M1 : (G, c, D) 7→ (fi,pi)1≤i≤k, where D ⊆ E represents the set of depleted edges,
satisfies economic efficiency, individual rationality, and cyclic budget balance. It also provides sellers with a
fee of q̂ per unit flow along their edges.

Proof. This mechanism assumes bids of kp̂, p̂ for depleted and indifferent edges respectively, and selects a
circulation maximizing social welfare under these bids, thus achieving economic efficiency.

Step 3 clearly indicates that sellers receive a fixed fee for each unit of flow. The parameters p̂, k are
publicly known in advance, hence a user can decide a priori whether it is beneficial to participate in M1

4 Bitcoin Lightning fees: https://www.reddit.com/r/lightningnetwork/comments/tmn1kc/bmonthly ln fee report/
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Mechanism M1: Fixed fees
Input: Channel capacities c and the set of depleted edges D ⊆ E .

1. Let I = E \D be the set of indifferent edges.
2. Compute the optimal rebalancing f := arg maxG

∑
e∈D

p̂f(e)−
∑

e∈I q̂f(e).

3. For this flow, the total cost incurred is C = q̂
∑
e∈I

f(e).

4. Consider a sign-consistent cycle decomposition f1, f2 . . . fk of f , and define the cost incurred per cycle as
Ci = q̂

∑
e∈I

fi(e).

5. Ci is distributed to the depleted edges in fi. Notice that every cycle fi must contain at least one depleted
edge per k − 1 indifferent edges, otherwise remove fi from f∗ to get a more optimal solution.

6. If the ith cycle fi contains ni depleted edges, then each depleted edge is charged at fee rate Ci/ni during the
execution of fi. All indifferent edges earn fees at rate p̂.

Output: A list (fi,pi) of cycle flows with their prices, each of which is released only to involved players.

based on their private valuations. Individual rationality of player is thus implicit in their participation in the
mechanism, along with the fact that all indifferent edges earn fees at rate p̂, and depleted edges are charged
at rate ≤ kp̂.

The fee computation in Step 4 is cyclic budget balanced by design: since we consider the cycle decompo-
sition of f∗ and charge fees per cycle, the fees charged to depleted edges are identical to the fees levied by
the indifferent edges.

3.3 M2: A Truthful Single Auction

The impossibility of Section 3.1 indicates that achieving all the desiderata is not possible for both buyers
and sellers in the original setting. In particular, in our setting, the cyclic budget balance property is critical
since burning coins is not possible in payment channels. For this reason, the most straightforward way to
circumvent the aforementioned impossibility is to either restrict our setting, as in Section 3.2 where the bids
were fixed and known a priori, or revert to a single auction by assuming that sellers will accept any reward
that is non-negative.

We, thereby, present here a single auction mechanism where only non-negative bids are permitted: positive
bids for depleted channels, and zero for indifferent channels. Instead, all the users of a PCN may participate
in the rebalancing process hoping to receive some fees from the mechanism.

We construct a VCG-type mechanism to determine the price vector of buyers based on their impact
on social welfare, achieving incentive compatibility for buyers. Charging these prices would result in some
surplus for the mechanism, which is instead redistributed to owners of indifferent channels to achieve cyclic
budget balance.

Theorem 3. Mechanism M2 : (G, c,b) 7→ (fi,pi)1≤i≤k assuming b ≥ 0, satisfies economical efficiency,
individual rationality, and cyclic budget balance. Users’ bids for depleted edges are truthful.

Proof. A feasible circulation f that maximizes social welfare under b achieves economic efficiency. For a
player v, let f−v be a feasible circulation on G maximizing social welfare under bids b−v. We set

p(v) := SW(b−v, f−v)− SW(b−v, f)

It is sufficient to show truthfulness under the pricing p′(v) := −SW(b−v, f), since p and p′ are revenue
equivalent: meaning that their difference p − p′ is a function of b−v and G−v, and this function crucially
does not depend on player v’s bid or valuation.

Under p′, player v is incentivized to bid truthfully regardless of every other player’s action. Consider
b = (vv,b−v),b′ = (v′v,b−v) for any other valuation v′v 6= vv. When v reports valuation honestly, the
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Mechanism M2: A VCG-type single auction
Input: Channel capacities c and non-negative player bids bv ≥ 0.

1. Compute the optimal rebalancing f := arg maxG SW(b, f).

2. Compute an alternative rebalancing for every player v, f−v := arg maxG SW(b−v, f).

3. Charge v the price p(v) := SW(b−v, f−v)− SW(b−v, f).

4. Let f1, . . . fk be a sign-consistent cycle decomposition of f . Non-zero prices p(v) are split into pi(v) for each
fi proportional to v’s valuation of fi:

pi(v) := p(v)
SW(bv, fi)

SW(bv, f)
.

5. The total fees per cycle fi are qi =
∑

pi(v) for every buyer in fi.
6. If fi has m sellers u1, u2, . . . um, then

pi(uj) := −
∑

qi

m
.

Output: A list (fi,pi) of cycle flows with their prices, each of which is released only to involved players.

mechanism selects f maximizing social welfare under b, and player v’s utility is given by

vv(f)− p′(v) = vv(f) + SW(b−v, f) = SW(b, f).

In the second case, the mechanism selects a possibly different f ′ maximizing social welfare under b′ and the
utility for player v is:

vv(f ′) + SW(b−v, f
′) = SW(b, f ′),

Since SW(b, f ′) ≤ SW(b, f) by definition of f , we have that bidding honestly always achieves the maximum
possible utility regardless of other players’ actions. In other words, both pricings p,p′ are Nash-equilibrium
incentive-compatible.

Finally, let us show individual rationality, or that buyer utilities are non-negative under price p. Buyer
v’s utility is

uv = SW(b, f)− SW(b−v, f−v)

which must be non-negative as SW(b−v, f−v) ≤ SW(b, f−v) ≤ SW(b, f) by definition of f . We note that the
first inequality only holds for non-negative bids bv.

By the computation in Step 5, the fees charged to depleted edges are equally distributed to all indifferent
edges for each cycle. In other words, mechanism M3 satisfies cyclic budget balance.

3.4 M3: A non-truthful Double Auction

As a stepping stone to Section 3.5, we present a straightforward double-auction mechanism (MechanismM3)
that accepts both positive and negative bids, and satisfies all properties but truthfulness. The rationale of
Algorithm 3 resembles that of a first-price auction.

Theorem 4. Mechanism M3 : (G, c,b) 7→ (fi,pi)1≤i≤k satisfies economical efficiency, individually ratio-
nality, and cyclic budget balance, but not truthfulness.

Proof. The feasible circulation f maximizes social welfare under b and thus achieves economic efficiency. The
social welfare of each cycle fi under b must be non-negative, else the circulation f − fi would have greater
social welfare than f , contradicting its optimality. Intuitively, the social welfare per cycle is shared uniformly
by all involved vertices.

For a truthful player v, their utility under a cycle fi of length ni is given by

ui,v(fi) = vi,v(fi)− pi,v(fi) =
SW(b, fi)

ni
≥ 0.
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Mechanism M3 A Double Auction
Input: Channel capacities c and player bids bv.

1. Compute the optimal rebalancing f := arg maxG SW(b, f).

2. Let f1, . . . fk be a sign-consistent cycle decomposition of f .

3. Suppose fi is a cycle flow of length ni. The price pi(v) for v’s participation in fi is:

pi(v) := bv(fi)−
SW(b, fi)

ni

(pi(v) = 0 when v is not part of fi).

Output: A list (fi,pi) of cycle flows with their prices, each of which is released only to involved players.

This proves individual rationality per cycle. From the price calculation in Step 3, we can readily confirm
that the sum of the prices along each cycle is zero:

ni∑
j=1

pi,vj (fi) :=

ni∑
j=1

bvj (fi)− SW(b, fi) = 0.

Remark. The incentives of players are comparable to that of first-price auctions. Players are incentivized to
bid higher to ensure their participation in the rebalancing circulation over other competing players. But for
a given rebalancing circulation, players are incentivized to bid lower to maximize utility.

3.5 M4: A Truthful Double Auction with Time Delays

Mechanism M3 is straightforward but lacks the crucial property of truthfulness. To mitigate this issue,
we introduce time delays into the rebalancing cycles (Mechanism M4). The basic concept is that cycles
with lower social welfare will be released later in time. Consequently, users who attempt to save on fees by
underbidding will experience an undesirable delay in rebalancing.

As in M3, M4 first computes an optimal rebalancing circulation and decomposes into sign-consistent
cycle flows with prices (fi,pi). Additionally, M4 also selects a time ti ∈ [0, 1] for every along with prices
(e.g., t = 1 represents an 1 hour delay). We assume delaying execution until time ti ≤ 1 gives player v a
utility of uv = vv(f)−pv +d(1− t). Users join the mechanism with the implicit assumption that rebalancing
cycles are released at time t = 1. Any earlier rebalancing improves the utility of a player at the rate d, a
configurable parameter of our mechanism.

Theorem 5. MechanismM4 : (G, c,b, d) 7→ (fi,pi)1≤i≤k where d is an additional delay parameter, satisfies
economic efficiency, truthfulness, cyclic budget balance and individual rationality.

Proof. Cyclic budget balance and economic efficiency follows as in Mechanism M3 since Steps 1 − 3 are
identical in bothM3 andM4. To analyze individual rationality and truthfulness, let us compute the utility
of a player v. Due to sign-consistency of cycles, v’s utility can be expressed as the sum of utilities induced
by each of the k cycles: uv =

∑
i uv(fi).

The utility of v per cycle fi is:

uv(fi) = vv(fi)−
(

bv(fi)−
SW(b, fi)

ni

)
+ d(1− ti) = vv(fi)− bv(fi) +

SW(bv, fi)

ni
+

(
1− 1

ni

)
SW(b, fi)

which simplifies to SW ((vv,b−v), fi). Since v’s utility is independent of their bid, M4 is truthful.
In fact, this utility matches the social welfare if bids were honest: ui(fi) = SW(b, fi). The social welfare

of fi cannot be negative. If SW(b, fi) < 0, then f is not an optimal solution: as f1, . . . fk is a sign consistent
cycle decomposition, removal of fi from the circulation f leads to a feasible solution that is strictly better.
This proves individual rationality.
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Mechanism M4: A Double Auction with delays
Input: Channel capacities c, player bids bv, and global delay factor d.

1. Compute the optimal rebalancing f := arg maxG SW(b, f).

2. Let f1, . . . fk be a sign-consistent cycle decomposition of f .

3. Suppose fi is a cycle flow of length ni. The price pi(v) for v’s participation in fi is:

pi(v) := bv(fi)−
SW(b, fi)

ni
.

pi(v) is set to zero when v is not part of the cycle flow.

4. Let ni be the length of the cycle flow fi. Define the delay of fi as

ti = 1−
(

1− 1

ni

)
SW(b, fi)

d
.

Output: The ith pair (fi,pi) is released to involved players at time ti.

Remark: To guarantee both truthfulness and individual rationality, the users lock their coins to the mecha-
nism a priori for the maximum time delay. Otherwise, buyers may benefit from participating in the mechanism
even when the maximum time delay supersedes their true valuations: buyers might only participate in the
execution phase (i.e., the sale) if they are quoted a favorable price. This is undesirable behavior as it affects
all other users in the cycle. Hence, we enforce the execution of cycles according to the mechanism [36].
However, this hinders economic efficiency, as there may be buyers with ex-ante utility (i.e., utility of player
before the output of the mechanism is known) less than their ex-post utility (i.e., utility of player after the
output of the mechanism is known). As a result, there may be buyers that would have participated in the
mechanism but chose not to, therefore leading to suboptimal outcomes.

4 Limitations, Extension, and Future Work

Our work leaves open several interesting avenues for future research, which we identify and list below.

Minimum Fees for Sellers in Mechanism M2. The primary limitation of mechanism M2 is that the
price paid by buyers depends on the underlying graph structure, resulting in the fees earned by sellers being
contingent on the number of possible rebalancing cycles available in the graph. Specifically, if the graph has
only one feasible cycle, then the sellers earn no fees.

A relevant question is whether it is viable to guarantee a minimum fee per unit flow through indifferent
edges in the mechanism. For a seller, rebalancing is comparable to a typical transaction in the PCN, wherein
the seller forwards coins through their channels and earns service fees. Thus, a seller’s earnings generally
rely on their highly connected position in the network and the amount of capital they have invested. The
fee per unit flow (i.e, transfer of one coin) is determined by the intermediary, i.e., the node that sends the
coin to the counterparty in their channel. As mentioned earlier, most intermediaries select the same fee per
unit flow for forwarding transactions. We thus inquire whether it is feasible to design a novel VCG-style
mechanism based on Mechanism M2, where the graph is modified to guarantee a sufficiently large surplus.
Note that the fee earned by sellers is essentially a redistribution of the surplus, and a surplus that is large
enough guarantees a minimum fee for every seller.

Finer Analysis of Incentives. The binary classification of truthfulness is an oversimplification. Future
research could aim to quantify the potential benefits of misrepresenting bids, such as the gains achieved by
underbidding a certain amount instead of truthfully reporting one’s valuation. Can we prove lower bounds
on these gains from misreporting?
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Variable Delay Costs. In our primary mechanism M4, we assume a uniform time delay factor for all
players. However, this assumption may not be realistic since different players may experience time delays
differently, leading to distinct levels of utility loss. Our model can incorporate this variation by allowing for
different delay factors (d) for each player. The delay factor can also be construed as the opportunity cost of
unused capital in depleted edges, i.e., the potential gain from fees had the player rebalanced his channel. We
conjecture that this opportunity cost is quantifiable if buyers furnish their proposed fees for routing since
these fees are typically determined by evaluating this loss. Therefore, we can expand our model and require
all players, including both buyers and sellers, to submit their anticipated fees.

Nevertheless, incorporating this alteration into our model is not a straightforward task. Buyers could
potentially manipulate their combined bid by taking into account both the maximum time delay and fees
they are willing to incur, consequently violating incentive-compatibility. Exploring this extension of the
model is an area of great interest for future research.

Repeated Games. A pertinent inquiry stemming from the repeated utilization of rebalancing in PCNs is
whether the expected behavior of players would be altered if they are aware that the rebalancing mechanism
will occur frequently. Specifically, we ask how would the mechanism design be impacted if we shift our game to
a repeated setting. We hypothesize that if the rebalancing game occurs with sufficient frequency, underbidding
may be beneficial as the opportunity to rebalance would be reduced but not entirely eliminated. Conversely,
if the rebalancing game is infrequent, players may miss their chance to rebalance. We thus anticipate that
integrating frequency-dependent utility losses may significant alter the results of the rebalancing game.

Group Strategy-Proof Mechanisms. Our mechanisms M2 and M4 are strategy-proof but not group
strategy-proof. While a single user’s misreported bids cannot improve their utility, in certain cases, two users
can manipulate their bids to jointly increase their utilities. Consider for instance the parties u, v of a depleted
channel in mechanismM2. If the channel is depleted from u to v, then an honest u would truthfully report a
positive bid from v to u, thereby prohibiting v from gaining routing fees for the u, v channel. However, both u
and v may gain by u misreporting a zero bid for the channel. This misrepresentation converts the channel’s
status from depleted to indifferent, enabling the potential for v to gain routing fees while precluding the
possibility that u pays any fees. Given this example, an intriguing open problem is designing group strategy-
proof mechanisms specifically tailored to counter collusion between the joint owners of a payment channel.

5 Additional Related Work

In this section, we contextualize our work in the broader related fields of blockchain scalability, payment
channel networks, incentives on blockchains, and mechanism design on networks.

Blockchain Scalability & Payment Channel Networks. Improving the blockchain transaction through-
put has garnered interest since the inception of Bitcoin [33]. Proposed solutions include increasing the block
size, sharding the blockchain, or moving the workload off-chain leveraging the so-called layer-2 protocols
such as sidechains, channels, plasma, and rollups (see [23, 24] for recent surveys). Among these solutions,
payment channel networks, such as the Bitcoin Lightning Network [36], have attracted substantial attention
due to their ability to enable low-cost, fast, off-chain transactions.

A large body of research has emerged focusing on various aspects of PCNs, such as efficient and privacy-
preserving routing, e.g. [4, 30, 35, 37, 41, 43], and algorithmic analysis of the PCN topology [5, 6]. In the
intersection of PCNs and game theory, there are several works, mainly focusing on network topology lever-
aging network creation games [5, 7, 19], and incentive-compatible outsourcing of channels’ dispute resolu-
tion [8,9,29,31]. All these works are orthogonal and complementary to ours as they ignore channel depletion.

Perhaps the most relevant work to ours is Merchant [44], which employs fee functions as a mechanism
to avert channel depletion by guiding routing paths. By allowing intermediaries to impose varying fees for
distinct routes, users are incentivized to prefer specific routes over others, ultimately mitigating channel
depletion. This method presents an alternative and complementary approach to our work, in which we
propose an opt-in rebalancing protocol to address channel depletion.
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The problem of channel rebalancing has been studied in several recent works [1, 10, 25], which we build
upon and extend in this paper. Our work is the first to consider user incentives in the context of rebalancing
mechanisms for PCNs.

Game-theoretic Analysis of Blockchains. Numerous studies have investigated incentives in the con-
text of the consensus layer of blockchains. For instance, Pass and Shi introduced an innovative incentive-
compatible consensus protocol called FruitChains [34]. Additionally, several works focused on a rational
analysis of Bitcoin’s consensus: exploring when rational miners follow the protocol [13, 26], devising attacks
that showcase Bitcoin is not incentive-compatible, e.g., [21, 28, 39, 42], investigating the impact of block re-
wards and mining pools, e.g., [15,16,20,40]. On the other hand, Babaioff et al. [12] explored the network layer
of blockchains and proposed an incentive-compatible scheme for information propagation within Bitcoin’s
peer-to-peer network. However, these works address different issues from ours, as they focus on the consensus
and network layers of blockchains, while our research investigates incentives on layer-2 networks that build
upon the other layers.

Mechanism Design on Networks. The rebalancing problem fits into the well-established research area
of mechanism design on networks, which has numerous connections to computer science, economics, and
operations research. The most relevant examples to our problem include Stackelberg routing, selfish routing
in capacitated networks, and optimal oblivious routing, e.g., [11,17,27,38]. Our work differs from the existing
literature in several ways. First, we focus on a novel problem domain – rebalancing mechanisms for PCNs –
which has not been previously studied from a game-theoretic perspective. Second, we deal with a unique set
of constraints due to the nature of payment channels and PCNs, such as channel depletion and cyclic budget
balance. These constraints lead to novel challenges in the design of incentive-compatible mechanisms, which
we address in this work.

6 Conclusion

In this paper, we have presented a comprehensive study of the rebalancing problem in payment channel
networks (PCNs) through the lens of mechanism design and offered novel approaches to address this crit-
ical issue. By incorporating both buyers and sellers in our proposed rebalancing mechanism, we introduce
the double-auction rebalancing problem Musketeer, which aims to achieve optimal throughput in PCNs.
Our work demonstrates that the unique characteristics of PCNs, particularly cyclic budget balance, pose
significant challenges in designing a mechanism that simultaneously satisfies all desired properties.

We derived several results based on auction theory, presenting an impossibility result and subsequently
proposing solutions that achieve various combinations of desired properties. Importantly, we introduced
a novel mechanism that leverages time delays to bypass the impossibility, enabling the achievement of all
desired properties, albeit at the expense of economic efficiency in terms of time delays and liquidity combined.

Our findings pave the way for further investigation by the algorithmic game theory community, as well
as the practical implementation of these mechanisms to enhance the scalability of blockchain technologies.
Our work contributes to the understanding of the rebalancing problem in PCNs while also presenting a
mechanism design problem that may be of independent interest. As the adoption of blockchain technologies
continues to grow, addressing scalability and incentive-related challenges through mechanisms like the ones
presented in this work will be crucial for their long-term success and widespread use.
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