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Abstract. Practical Identity Based Encryption (IBE) schemes use the costly bilinear pairing com-
putation. Clifford Cock proposed an IBE based on quadratic residuosity in 2001 which does not use
bilinear pairing but was not efficient in practice, due to the large ciphertext size. In 2007, Boneh et al.
proposed the first space efficient IBE that was also based on quadratic residuosity problem. It was an
improvement over Cock’s scheme but still the time required for encryption was quartic in the security
parameter. In this paper, we propose a compact, space and time efficient identity based encryption
scheme without pairing, based on a variant of Paillier Cryptosystem and prove it to be CPA secure. We
have also proposed a CCA secure scheme based on the basic IBE scheme using the Fujisaki-Okamoto
transformation. We have proved both the schemes in the random oracle model.
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1 Introduction

The technique of using the identity of a user as the public key was first introduced by Adi Shamir [28],
who gave a general overview of Identity Based Cryptosystem (IBC) and proposed a possible construction
for Identity Based Signatures (IBS) but left IBE unsolved. Practical IBE appeared in the dawn of the
21st century. Sakai et al. [24, 25], Boneh and Franklin [6], independently proposed two schemes based on
bilinear pairing, following them Cock [12] came out with a completely different construct, based on quadratic
residuosity problem. The above three results in succession came after a comparatively very long pause of
almost two decades from the introduction of IBC. Although, several attempts are made, solutions prior
to the year 2000 were fundamentally inefficient (Tanaka [30], Tsujii and Itoh [31], Maurer and Yacobi [22]
and Steiner et al. [29]). Improvements to the Boneh-Franklin IBE scheme resulted in new schemes and a
few totally new approaches to IBE have evolved since 2001. However, they rely on bilinear pairing, which
is a powerful mathematical construct defined over certain algebraic curves, but are costly operations in
cryptography.

Bilinear pairing (bilinear map), is a function from two cyclic groups into a third group, the algebraic groups
that define its domain and co-domain should have the discrete logarithm and related computational and
decisional problems in-feasibly hard. Bilinear pairings have quickly become very important in cryptographic
protocols [2, 27, 15]. Identity Based Cryptography and IBE in particular can be regarded as a best application
of bilinear pairings in cryptography. There are many practical identity based encryption schemes proved to
be secure in the random oracle model [9, 16, 1, 10, 11, 26] and in the standard model [5, 4, 32, 17, 19, 33, 3].

In this regard, Cock’s IBE is pairing-free and is based on the standard quadratic residuosity problem
modulo an RSA composite N (in the random oracle model). One of the main limitations is that the ciphertext
in this system contain two elements in Z/NZ [7] for every bit of plaintext. Hence, the encryption of an l-bit
message is of size 2l.log2N . In contrast, the pairing-based scheme produced a very small ciphertext (roughly,
thousandth) for comparable security. A long standing open problem solved by Boneh et al. in [7] is the
construction of a space efficient IBE system without pairings. They have used the theory of quadratic forms,
in particular, encryption and decryption are based on an effective version of Legendre’s famous three squares
theorem [7], which can be considered as an extension of Cock’s IBE. Encryption time in [7] is still not ideal,
in the sense that, encryption time in most practical public key systems such as RSA and existing IBE systems
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is cubic in the security parameter but in Boneh’s pairing-free system it is quartic in the security parameter
per message bit. However, decryption is cubic as in other systems. The bottleneck during encryption is the
need to generate primes on the order of N . Barua et al. [18] proposed an improvement for this scheme, which

has an efficient encryption algorithm but the ciphertext size blows up to 2
⌈√

l
⌋

elements of Z/NZ, which

makes it impractical.

A slightly different approach was used by Ding et al. for realizing a pairing free IBE scheme in [13]. They
use another party called security mediator (SEM) to share the responsibilities in the decryption process.
Since the collusion of SEM with any other user may lead to total break of the scheme and the security of
this scheme is not established even for a CPA model (only non-invertibility was proved in [13]), this scheme
also remains impractical and weak.

Our Contribution: In view of the state-of-the-art, the construction of an efficient, pairing free identity based
encryption scheme turns out to be a problem of significant practical and theoretical interest. In 2008, Boneh
et al. [8] proved that it is impossible to base IBE on trapdoor permutations like RSA. They showed that
there is no black-box construction of IBE from trapdoor permutations or even chosen ciphertext secure public
key encryption. In section 6.1 of [8] they have also commented that their oracle separation also rules out
black-box IBE construction from number-theoretic encryption systems such as Paillier system [23]. However,
in this paper, we show that with some appropriate modifications to PE, it is possible to construct a compact
IBE scheme. In sum, our result would expose the richness of mathematical structure underlying Paillier
cryptosystem namely, the number theoretic power of using the square of RSA modulus.

2 Preliminaries

We review the hard problems, facts, concepts which are required in various parts of the paper in this section.

Isomorphism in Z∗n2 : The group Z∗n2 is isomorphic to the direct product of two groups Zn × Z∗n, where
the group Zn is additive modulo n and the group Z∗n is multiplicative modulo n. Thus there exists an
isomorphism of the following form [23]:

ψ : Zn × Z∗n
iso→ Z∗n2 (1)

This isomorphism can be explicitly specified as follows. We fix a u ∈ Z∗n2 , whose order is n. Then g may be
written as:

ψu(x, y) = uxyn, for someunique y ∈ Z∗n (2)

When the details of u is irrelevent, we may write ψu(x, y) simply as ψ(x, y).

If g is an nth residue modulo n2 then g is given by:

g = yn = ψ(0, y), (For someunique y) (3)

Decisional nth Power Residue Problem: Given g, decide if g = yn mod n2 for some y. In other words
decide whether a given element g is of the form ψ(0, y), for some y.

nth Power Residue Distinguishability: Distinguish the distributions µ1 and µ2 where, µ1 is uniform
distribution on Z∗n2 and µ2 is the uniform distribution over nth power residues in Z∗n2 . The distinguishability
property may be stated in terms of the isomorphism function ψ as follows: Given g, determine whether
g = ψ(x, y), for some x 6= 0 or not.

Both the problems stated above are assumed to be hard in the sense that any polynomial time randomized
algorithm will produce correct answer only with negligible probability.

New Factorization Assumption: Let p and q be two primes with |p| = |q| = κ, let n = pq, let g ∈R Z∗n2

and g < n. Given
〈
n, g, gλmodn2

〉
where λ = lcm(p− 1, q − 1), factoring n is hard.

Proof Sketch: Let us assume that there exists an adversary A, who is given
〈
n, g, gλ

〉
could factor n. If such

an adversary exists, then MPE scheme is not secure. Since theorem 1 proves that MPE is as secure as the



Compact Identity Based Encryption Based on nth−Residuosity Assumption 3

Decision nth-Residuosity assumption, we assume that the New Factorization Assumption is hard to break
by any polynomial time adversary A.

Digital Signature: Let KeyGen be an algorithm that generates a secret signing key sk and a public
verification key pk via 〈sk, pk〉 = KeyGen(1λ). Then, the value σ = Sign(sk,m) is a digital signature for
the message m generated by a signing algorithm Sign. The signature σ is verified by a public function
V erify(pk,m, σ) → {0, 1} in binary corresponds to whether or not σ is a valid signature for m using the
signing key sk.

Identity Based Encryption: An identity based encryption scheme consists of four algorithms, namely:
Setup, Key Extract, Encryption and Decryption:

Setup(κ): This algorithm is executed by the Private Key Generator (PKG), a trusted authority in the system.
This algorithm takes the security parameter κ as input and returns the system parameters paramsIBE and
the master private key mskIBE . The system parameters are the description of the message space, and the
description of the ciphertext space. The system parameters paramsIBE is publicly known, while the master
private key mskIBE is known only to the PKG.

Key Extract(paramsIBE ,mskIBE , IDX): This algorithm is executed by the PKG to generate the private
key of a user with identity IDX . It takes as input the system parameters paramsIBE , the master private key
mskIBE and an arbitrary identity IDX ∈ {0, 1}∗ as input, and returns a private key SKX corresponding to
the identity IDX . Here IDX is an arbitrary string that will be used as a public key. In sum the Key Extract
algorithm extracts a private key from a given identity.

Encrypt(paramsIBE , IDX ,m): This algorithm is executed by the sender to encrypt the message m. It takes
paramsIBE , IDX and the message m as input and returns the ciphertext C.

Decrypt(paramsIBE , SKX , C): This algorithm is executed by the receiver. It takes paramsIBE , the cipher-
text C and a private key SKX as input. The output of this algorithm is the message m.

EUF-CMA Security Notion: A signature scheme is EUF-CMA (Existentially Forgeable under Chosen
Message Attack) secure if no polynomially bounded adversary A has a non-negligible advantage against a
challenger C in the following EUF-CMA game:

KeyGen: C runs the key generation algorithm 〈sk, pk〉 = KeyGen(1λ) and sends the public verification key
pk to A.

Training Phase: A makes any number of signing queries to C by sending message m. C sends the signature
on m by executing the signing algorithm σ = Sign(sk,m) and send σ to A

Forgery: A forges a new message/signature pair (m∗, σ∗) and sends it to C. The challenger accepts the
message/signature pair only if σ∗ was not the output of the signing oracle for message m∗ during the
training phase and V erify(pk,m∗, σ∗)→ 1.

The signature scheme is said to be EUF-CMA secure if for all probabilistic polynomial time adversary
A, there exists a negligible function ε such that:

AdvA(λ) < ε(λ)

CPA Security Notion: An identity based encryption scheme is semantically secure against chosen plaintext
attack (IND-CPA) if no polynomially bounded adversary A has a non-negligible advantage against the
challenger C in the following IND-CPA game:

Setup: C takes a security parameter κ and runs the Setup algorithm. C gives A the system parameters
paramsIBE and keeps the master key private.

Phase 1: The adversary is allowed to query the following oracle:

– Key Extract Oracle(IDX): C responds by running the Key Extract algorithm to generate the private
key SKX corresponding to the identity IDX . C sends SKX to A.
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Challenge: Once the Phase 1 is over (which is decided by A), A gives to C two plaintexts m0, m1 of equal
length and an identity IDT on which A wishes to be challenged. The only constraint is that the private
Key Extract oracle should not have been queried with IDT as input during Phase 1. C picks a random bit
b ∈R {0, 1} and sets C∗ = Encryption(paramsIBE , IDT ,mb). C sends C∗ as the challenge to A.

Phase 2: A issues more queries as in Phase 1.

Guess: Finally, A outputs a guess b′ ∈ {0, 1} and wins the game if b′ = b.
The adversary A′s advantage in attacking the identity based encryption scheme is the following function

of the security parameter κ

AdvA(κ) = |Pr[b = b′]− 1

2
|

CCA Security Notion: An identity based encryption scheme is semantically secure against adaptive chosen
ciphertext attack (IND-CCA) if no polynomially bounded adversary A has a non-negligible advantage against
the challenger C in the following IND-CCA game:

Setup: C takes a security parameter κ and runs the Setup algorithm. C gives A the system parameters
paramsIBE and keeps the master key private.

Phase 1: The adversary issues queries to the following oracles:

– Key Extract Oracle(IDX): C responds by running the Key Extract algorithm to generate the private
key SKX corresponding to the identity IDX . C sends SKX to A.

– Decryption Oracle(IDX , C): C responds by sending the resulting plaintext m to A. These queries are
asked adaptively, that is, each query may depend on the replies to previous queries.

Challenge: Once the Phase 1 is over, A outputs two plaintexts m0, m1 of equal length and an identity
IDT on which A wishes to be challenged. The only constraint is that the private Key Extract oracle should
not have been queried with IDT as input during Phase 1. C picks a random bit b ∈R {0, 1} and sets
C∗ = Encryption(paramsIBE , IDT ,mb). C sends C∗ as the challenge to A.

Phase 2: A issues more queries as in Phase 1. These queries may be asked adaptively as in Phase 1. The
restrictions on A are that A should not query the decryption oracle with C∗ as input and A should not
query the private key corresponding to IDT .

Guess: Finally, A outputs a guess b′ ∈ {0, 1} and wins the game if b′ = b.
The adversary A′s advantage in attacking the identity based encryption scheme is the following function

of the security parameter κ

AdvA(κ) = |Pr[b = b′]− 1

2
|

The Paillier Encryption Scheme (PE): Here we describe the basic Paillier encryption scheme. The
security of the PE scheme is based on the composite nth-residuosity class problem. This scheme was proved
to be IND-CPA secure in the standard model. More details on the scheme can be found in [23].

Key generation(κ): Choose two large prime numbers p and q randomly and independently of each other such
that gcd(pq, (p− 1)(q − 1)) = 1. Compute n = pq and λ = lcm(p− 1, q − 1). Let:

G = {x : x ∈ Zn2 : xnmodn2 = 1} (4)

Choose g ∈R G. L is a function defined as L(u) =
u− 1

n
. Here u ∈ G and L : G → Z is computed over

integers. The public (encryption) key is pk = 〈n, g〉. The private (decryption) key is sk = 〈λ, p, q〉.
Encryption(m, pk): Let m be a message to be encrypted, where m < n. Choose a random integer r, where
r < n. Compute the ciphertext as: C = gmrn mod n2.

Decryption(C, sk): To decrypt a ciphertext C ∈ Z∗n2 , compute

m =
L(Cλ mod n2)

L(gλ mod n2)
mod n (5)
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3 Modified Paillier Encryption Scheme (MPE)

In this section, we suggest a modification to PE and prove its security. The difference between PE and
MPE are:

– In PE, g ∈R G and note that by (5), discrete logarithm in the restricted group G is easy. In MPE,
g ∈R Z∗n2 .

– In MPE, we provide (g, gλ) as the public key. We need to show that giving access to the pair (g, gλ)
with g ∈ Zn2 does not compromise the security properties. It should be noted that providing (g, gλ) with

g ∈ G in PE will lead to total break of PE because
L(gλ mod n2)

L(g)
mod n = λ. However in MPE,

though we give 〈g, gλ〉, g ∈ Z∗n2 it does not lead to any security violation.

The modified scheme makes use of an RSA Instance Generator algorithm described below.
RSA-Instance-Generator(κ): This algorithm chooses two large prime numbers p and q randomly and

independently such that p′ = (p − 1)/2 and q′ = (q − 1)/2 are also primes and gcd(pq, (p − 1)(q − 1)) = 1.
Compute n = pq and λ = lcm(p− 1, q − 1). Output 〈p, q, λ, n〉.
λ-RSA-Sampler: This algorithm executes 〈p, q, λ, n〉 ←RSA-Instance-Generator(κ) and outputs a
tuple 〈n, g, gλ〉, where g ∈R Z∗n2 . We denote the output distribution by ∆1. We remark that given only n,
without knowing the factors of n, it is infeasible to produce triples of the form 〈n, g, gλ〉 and hence ∆1 is not
polynomial time sample-able.

Fake-λ-RSA-Sampler: This algorithm executes 〈p, q, λ, n〉 ←RSA-Instance-Generator(κ) and outputs
a tuple 〈n, g, hλ〉, where g, h ∈R Z∗n2 . We denote the output distribution by ∆2. It should be noted that given
only n, without knowing the factors of n, it is easy to sample the triple 〈n, g, hλ〉. This is performed by just
outputting a triple of the form 〈n, g, 1 + αn〉 for some α < n and hence ∆2 is polynomial time sample-able.

Note that in MPE, to generate the public keys, we need triples that follow the ∆1 distribution but in the
proof we use the triple distributed with respect to ∆2. Therefore, we have to prove the following lemma.

Lemma 1. Distinguishing the outputs of λ-RSA-Sampler and Fake-λ-RSA-Sampler is as hard as dis-
tinguishing nth - Residues from random elements in Z∗n2

Proof: We show that if there exists a distinguisher who can distinguish the two tuples 〈g, gλ〉 and 〈g, hλ〉
generated by the algorithms λ-RSA-Sampler and Fake-λ-RSA-Sampler, then it is possible to construct
an algorithm which can solve the nth Power Residue Distinguishability problem.

Since g, h ∈R Z∗n2 , for some y1 and y2, we have g = ux1yn1 and h = ux2yn2 from (2). We can rewrite the
tuples 〈g, gλ〉 and 〈g, hλ〉 as:

〈g, gλ〉 = 〈ux1yn1 , (u
x1yn1 )λ〉 = 〈ux1yn1 , u

x1λ〉 (6)

and

〈g, hλ〉 = 〈ux1yn1 , (u
x2yn2 )λ〉 = 〈ux1yn1 , u

x2λ〉 (7)

Consider that there is an algorithm C which generates samples of the two distributions ∆1 and ∆2 using
samplers S1 and S2. Let {0, 1} ← A(x, y) be an adversarial algorithm which is capable of distinguishing the
tuples given in equations (6) and (7) following the distributions ∆1 and ∆2 respectively. Therefore we can
write,

Pr[(A(x, y) = 1)|(x, y) ← ∆i] = Pi , 1 ≤ i ≤ 2 (8)

Adv(A(x, y)) = |P1 − P2| ≥ ε (9)

Now, we can construct an algorithm {0, 1} ← B(δ) that uses A as an oracle to distinguish an element δ,
as a random element in Z∗n2 or a nth power residue in Z∗n2 , i.e, distinguish whether δ follows the distribution
µ1 or µ2. Therefore we can write,

Pr[(B(δ) = 1)|δ ← µi] = P ′i , 1 ≤ i ≤ 2 (10)

Adv(B(δ)) = |P ′1 − P ′2| ≥ ε (11)



6 S. Sree Vivek1, S. Sharmila Deva Selvi1, Ramarathnam Venkatesan2, C. Pandu Rangan1

B receives a tuple 〈n, g, gλ〉 ←λ-RSA-Sampler, which follows distribution ∆1, computes a new tuple
〈gδ, gλ〉 and sends it to A and returns the value A(gδ, gλ)

Since 〈g, gλ〉 follows the distribution ∆1, 〈gδ, gλ〉=〈ux1yn1 δ, u
x1λ〉. The output of B is correct with advan-

tage ε due to the argument that follows:

– If δ follows the distribution µ1 then, δ = ux
′
y′n (from (2)). Therefore, A(ux1yn1 δ, u

x1λ)= A(ux1yn1 u
x′y′n,

ux1λ)= A(ux1+x′(y1y
′)n, ux1λ), which clearly follows the distribution ∆2.

– If δ follows the distribution µ2 then, δ = y′n (from (3)). Therefore, A(ux1yn1 δ, u
x1λ)=A(ux1yn1 y

′n, ux1λ)=
A(ux1(y1y

′)n, ux1λ), which clearly follows the distribution ∆1.

This shows that distinguishing the outputs of λ-RSA-Sampler and Fake-λ-RSA-Sampler is as hard
as distinguishing nth - Residues from random elements in Z∗n2 . �

3.1 The MPE Scheme

Key generation(κ): This algorithm executes 〈n, g, gλ〉 ← λ-RSA Sampler . The public (encryption) key
is pk = 〈n, g, gλ〉. The private (decryption) key is sk = 〈λ, p, q〉.
Encryption(m, pk): Let m be a message to be encrypted, where m < n. Choose r ∈R Zn and compute the
ciphertext C = gmgrn mod n2.

Decryption(C, sk): The decryption is same as in PE (Refer (5)).

Lemma 2. The decryption algorithm of the modified encryption scheme works for a well formed ciphertext.

Proof: The analysis in the proof of this lemma is similar to PE. In the modified scheme, we have g ∈R Z∗n2 .
From (2), we can write g = ψ(x, y) = uxyn. From the encryption process of the modified scheme, we have

C = gmgrn= (uxyn)m(uxyn)rn = uxmurxnyn(m+rn)

The decryption of the ciphertext C is performed as in (5).

L(Cλ mod n2)

L(gλ mod n2)
mod n=

L((uxmuxrnyn(m+rn))λ mod n2)

L((uxyn)λ mod n2)
mod n

=
L(umxλ)

L(uxλ)
mod n, (since ynλ = unλ = 1 mod n2)

Since uxλ is an element of order n in Z∗n2 and (p − 1)|λ and (q − 1)|λ, due to Fermat’s Little Theorem we
have uxλ = 1mod p and uxλ = 1mod q. Due to Chinese Reminder Theorem (CRT), we have uxλ = 1modn.
Therefore, uxλ = 1 + βn for some unknown β. Hence we have uxλ = 1 + βn and (uxλ)m = (1 + βn)m. Using
Binomial Theorem, we have uxλm = 1 +mβnmodn2. Hence,[
L(uxmλmodn2)

L(uxλmodn2)

]
mod n=

[
mβ

β

]
mod n=m mod n,

(
sinceL(u) =

u− 1

n

)
This proves that the decryption of a well-formed ciphertext outputs the correct message, when m < n. �

3.2 Security Proof

Theorem 1. The MPE scheme is IND-CPA secure.

Proof: We prove that MPE scheme is IND-CPA secure. If there exists an adversarial algorithm who can
distinguish the ciphertext of MPE scheme, then we show that it is possible to construct another algorithm
that can distinguish the nth power residue with the same advantage.

In order to show this we construct a fake MPE scheme (FMPE). The parameters of FMPE are con-
structed as follows:

Key generation(κ): This algorithm executes 〈n, g, hλ〉 ← FAKE-λ-RSA Sampler . The public (encryption)
key is pk = 〈n, g, hλ〉. The private (decryption) key is sk = 〈λ, p, q〉. The encryption and decryption algorithm
are same as MPE.
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Lemma 3. The public key of MPE pkMPE = 〈n, g, gλ〉 and FMPE pkFMPE = 〈n, g, hλ〉 are indistinguish-
able.

Proof: The proof is similar to lemma 1. �

Lemma 4. The ciphertexts of MPE and FMPE are indistinguishable.

Proof: Let us consider that there are two worlds, one is the MPE world and the other is the FMPE world.
Let C be an algorithm which takes a set of transcripts 〈mi, Ci〉 for i = 1 to k as input, where mi, Ci are the
set of message/ciphertext pairs and distinguishes a fresh pair (m∗, C∗) as whether it is generated by MPE
or FMPE . It should be noted that gλ and hλ are identical and are also not used for encrypting the messages
in either MPE or FMPE respectively. Let π2(∆) represent the second component of the distribution ∆, we
can write:

π2(∆1) ≈ π2(∆2) (12)

Where ≈ represents identical distribution. If C is capable of distinguishing (m∗, C∗) then it is possible to
construct another algorithm D who can make use of C and distinguish the outputs of λ-RSA-Sampler
and Fake-λ-RSA-Sampler which is as hard as distinguishing nth - Residues from random elements in Z∗n2

due to lemma 1.
�

Consider that there exists an adversarial algorithm A who is capable of distinguishing the ciphertext of
MPE. We construct another algorithm B which is capable of deciding whether an element g1 is nth residue
modulo n2 (i.e. g1 = ψ(0, y) for some y or not). The construction follows:

B sets the public key pk = pkFMPE = 〈n, g, hλ〉 and gives them to A. Note that the pk given to A is
the public key of FMPE, but A cannot distinguish pk from pkMPE due to lemma 3.

Note: For a given 〈n, g〉 finding gλ is hard without the knowledge of λ however finding hλ, for some h can
be done indirectly by choosing an α < n and computing 1 +αn. Note that (1 +αn) = hλ for some h but we
do not know h. Thus a pair of the form 〈g, hλ〉 is generated by computing 〈g, 1 + αn〉, for some α < n.

A gives two messages m0 and m1 of equal length to B. B chooses b ∈R {0, 1} and constructs C∗ = gmbg1

mod n2 and sends it to A.

Now, there are two cases to be addressed:

– Case 1: The case where g1 ∈R Z∗n2 . In this case g1 = ψ(x, y). Therefore, C∗ = ψ(mb + x, y).
– Case 2: The case where g1 is an nth residue mod n2. In this case g1 = ψ(0, y) and hence C∗ = ψ(mb, y).

|Pr [A(ψ(mb + x), y)]− Pr [A(ψ(mb), y)] | ≤ ε (13)

A sends b′ as an educated guess for bit b to B. If A outputs b = b′ with a non-negligible probability ε over
guessing, then B outputs that g1 is an nth residue modulo n2 with the same probability. Else outputs g1 is
a random element in Z∗n2 . �

4 A New Digital Signature Scheme

An IBE requires a digital signature scheme for extracting the secret keys for the users. The secret key of an
IBE scheme could be viewed as a digital signature on the idebtity of the user using the master private key
of the PKG. In this section, we propose a novel digital signature scheme whose security is based on the New
Factoring Assumption presented in section 2.

4.1 The Scheme

KeyGen(κ): This algorithm is executed by the signer to generate the private key for signing and public
key for verification. Let k be an integer such that the hash functions G and H defined below are collision
resistant with k bit output and performing 2k computations is hard in polynomial time. Typical value of
k = 160. The signer performs the following to generate the signing/verification key pair:
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– Choose two primes p and q with |p| = |q| = κ
– Compute n = pq and n2

– Choose g ∈R Z∗n2 and g < n
– Compute λ = lcm(p− 1, q − 1), φ(n) = (p− 1)(q − 1) and φ(n2) = n(p− 1)(q − 1)
– Choose two cryptographic hash function G : {0, 1}∗ → {0, 1}k and H : {0, 1}∗ → {0, 1}k
– Choose xi, yi ∈R {0, 1}k, for i = 0 to k
– For i = 0 to k compute
• Xi = gxi mod n2 and
• Yi = gyi mod n2

The public key pk = 〈g, n, n2, X0, X1, . . . , Xk, Y0, Y1, . . . , Yk,G,H〉. The private key is sk = 〈p, q, λ, φ(n)〉.
Sign(κ, m, sk): To sign the message m using the private key sk, the signer performs the following:

– Choose rA, rA1, rA2, sA1, sA2 ∈R Z∗n
– Compute Gm = G(m) = g1g2 . . . gk, where g1g2 . . . gk is the binary of Gm and Hm = H(m) = h1h2 . . . hk,

where h1h2 . . . hk is the binary of Hm. Let Im = {i|1 ≤ i ≤ k, gi = 1} and Jm = {i|1 ≤ i ≤ k, hi = 1}
– Compute xm = x0 +

∑
i∈Im

xi and ym = y0 +
∑
i∈Jm

yi

– Compute

dm1 = rmλ+ rm1xm + rm2yAmodφ(n2) (14)

dm2 = rm1 + sm1λmodφ(n2) (15)

dm3 = rm2 + sm2λmodφ(n2) (16)

Dm4 = (grmg−xmsm1g−ymsm2)λmodn2 (17)

The signature on m using the private key sk is σ = 〈dm1, dm2, dm3, Dm4〉
Verify(κ, m, σ, pk): The signature σ = 〈dm1, dm2, dm3, Dm4〉 on message m is verified using the public key
pk by computing

Xm =

[
X0.

∏
i∈Im

Xi

]
modn2 (18)

Ym =

[
Y0.

∏
i∈Jm

Yi

]
modn2 (19)

and checking whether:

Dm4
?
=

[
gdm1

Xdm2
m Y dm3

m

]
mod n2 (20)

(Dm4)nmod n2 ?
= 1 (21)

4.2 Security Proof

Theorem 2. The proposed signature scheme is EUF-CMA secure in the random oracle model, if the New
Factoring Assumption holds.

Proof: We show that if there exists an adversary who can break the EUF-CMA security of the signature
scheme, then it is possible to break the New Factoring Assumption with almost the same probability as the
attacker forging a signature.

KeyGen: C obtains the hard problem instance
〈
n, g, gλ

〉
as input and sets the public key of the user in the

following way:

– C takes n and g from the hard problem instance.
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– Chooses xi, yi ∈R {0, 1}k, for i = 0 to k
– For i = 0 to k compute:
• Xi = gxi mod n2 and
• Yi = gyi mod n2

– Chooses two cryptographic hash functions G and H
– C sets the public key pk = 〈g, n, n2, X0, . . . , Xk, Y0, . . . , Yk,G,H〉
– C uses the gλ value obtained from the hard problem instance for the training phase.

Training Phase: A makes any number of signing queries to C by sending message m. C generates σ in the
following way and sends it to A:

– Choose dm1, dm2, dm3 ∈R |φ(n)|.
– Compute Gm = G(m) = g1g2 . . . gk, where g1g2 . . . gk is the binary of Gm and Hm = H(m) = h1h2 . . . hk,

where h1h2 . . . hk is the binary of Hm. Let Im = {i|1 ≤ i ≤ k, gi = 1} and Jm = {i|1 ≤ i ≤ k, hi = 1}
– Compute xm = x0 +

∑
i∈Im

xi and ym = y0 +
∑
i∈Jm

yi

– Compute Dm4 =

[
(gλ)dm1

(gλ)xmdA2(gλ)ymdA3

]
mod n2

Forgery: A forges a new message/signature pair (m∗, σ∗) and sends it to C. The forgery is of the following
form:

d∗m1 = rmλ+ rm1xm + rm2yAmodφ(n2)
d∗m2 = rm1 + sm1λmodφ(n2)
d∗m3 = rm2 + sm2λmodφ(n2)
D∗m4 = (grmg−xmsm1g−ymsm2)λmodn2

C performs the following to obtain the solution to the hard problem.

– Compute D∗ =

[
(gλ)d

∗
m1

(gλ)xmd∗A2(gλ)ymd
∗
A3

]
mod n2

– Computes λ =

[
L (D∗)

L(D∗m4)

]
mod n

5 The New IBE Scheme

In this section, we propose the new basic IBE scheme. The Key Extract algorithm is a novel contribution.
Here the encryption algorithm is based on PE. We use a Waters type hash function [32] to extract the private
key of the users. The scheme is proved to be secure by showing a polynomial time reduction to MPE. In
the modified version, gλmodn2 is also made public along with g. We have supported this modification with
a proof showing that revealing gλmodn2 does not affect the security of MPE. It should be noticed that gλ

is not used in the scheme for any public computation but it plays a crucial role in the security proof.

5.1 The Scheme

Setup(κ): This algorithm is executed by the PKG to generate the public system parameters and the master
private key of the IBE scheme. Let k be an integer such that the hash function G and H defined below are
collision resistant with k bit output and performing 2k computations is hard in polynomial time. Typical
value of k = 160. PKG performs the following to generate the public parameters and the master private key
of the system:

– Choose two primes p and q with |p| = |q| = κ
– Compute n = pq and n2

– Choose g ∈R Z∗n2 and g < n
– Compute λ = lcm(p− 1, q − 1), φ(n) = (p− 1)(q − 1) and φ(n2) = n(p− 1)(q − 1)
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– Choose two cryptographic hash function G : {0, 1}∗ → {0, 1}k and H : {0, 1}∗ → {0, 1}k
– Choose xi, yi ∈R {0, 1}k, for i = 0 to k
– For i = 0 to k compute
• Xi = gxi mod n2 and
• Yi = gyi mod n2

The public system parameter paramsIBE = 〈g, n, n2, X0, X1, . . . , Xk, Y0, Y1, . . . , Yk,G,H〉. The master pri-
vate key is mskIBE = 〈p, q, λ, φ(n)〉.
Key Extract(IDA): The user A submits his identity IDA to the PKG and requests for the corresponding
private key. The PKG performs the following to provide the private key to the user:

– Choose rA, rA1, rA2, sA1, sA2 ∈R Z∗n
– Compute GA = G(IDA) = g1g2 . . . gk, where g1g2 . . . gk is the binary of GA and HA = H(IDA) =
h1h2 . . . hk, where h1h2 . . . hk is the binary of HA. Let IA = {i|1 ≤ i ≤ k, gi = 1} and JA = {i|1 ≤ i ≤
k, hi = 1}

– Compute xA = x0 +
∑
i∈IA

xi and yA = y0 +
∑
i∈JA

yi

– Compute

dA1 = rAλ+ rA1xA + rA2yAmodφ(n2) (22)

dA2 = rA1 + sA1λmodφ(n2) (23)

dA3 = rA2 + sA2λmodφ(n2) (24)

DA4 = (grAg−xAsA1g−yAsA2)λmodn2 (25)

The private key of the user with identity IDA, SKA = 〈dA1, dA2, dA3, DA4〉 is sent to the user through a
secure channel. To verify the correctness of the private key SKA, compute

XA =

[
X0.

∏
i∈IA

Xi

]
modn2 (26)

YA =

[
Y0.

∏
i∈JA

Yi

]
modn2 (27)

Check whether:

DA4
?
=

[
gdA1

XdA2

A Y dA3

A

]
mod n2 (28)

(DA4)nmod n2 ?
= 1 (29)

Lemma 5. If the private key SKA is correctly generated as per the key extract algorithm, the values in SKA

satisfies (28)

We show that the above equality holds if the private key is correctly generated as per the key extract
algorithm.

RHS=

[
gdA1

XdA2

A Y dA3

A

]
mod n2 =

[
grAλ+rA1xA+rA2yA

XrA1+sA1λ
A Y rA2+sA2λ

A

]
mod n2

=

[
grAλ+rA1xA+rA2yA

(gxA)rA1+sA1λ(gyA)rA2+sA2λ

]
mod n2

=

[
grAλgrA1xAgrA2yA

(grA1xA)(gxAsA1λ)(grA2yA)(gyAsA2λ)

]
mod n2

=

[
grAλ

(gxAsA1λ)(gyAsA2λ)

]
mod n2

= grAλg−xAsA1λg−yAsA2λmod n2

= (grAg−xAsA1g−yAsA2)λmod n2

= DA4 = LHS
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�

Encryption(m, IDA): In order to encrypt a message m (m < n) with the public key (identity) IDA of the
receiver A, the sender performs the following:

– Choose r ∈R Zn
– Compute HA = H(IDA)

– Compute XA =

[
X0.

∏
i∈IA

Xi

]
mod n2 and YA =

[
Y0.

∏
i∈JA

Yi

]
mod n2

– Compute

C1 = gmgrnmodn2 (30)

C2 = Xm
AX

rn
A modn2 (31)

C3 = Y mA Y rnA modn2 (32)

The ciphertext is C = 〈C1, C2, C3〉.

Decryption(C, SKA): Let L(x) be defined as L(x) =

[
x− 1

n

]
. The receiver with identity IDA and private

key SKA = 〈dA1, dA2, dA3, DA4〉 decrypts the ciphertext C by performing the following:

– Compute Ĉ =

(
CdA1

1

CdA2
2 CdA3

3

)
modn2

– Compute m =

 L
(
Ĉ
)

L(DA4)

 mod n
Lemma 6. The Decryption Algorithm outputs the correct message for a well-formed ciphertext.

Proof: From equations (22) and (30) we have,

CdA1
1 modn2 = (gmgrn)rAλ+xArA1+yArA2 modn2 (33)

From equations (23), (24), (31) and (32) we have,

CdA2
2 CdA3

3 modn2= (Xm
AX

rn
A )(rA1+sA1λ)(Y mA Y rnA )(rA2+sA2λ)modn2

= (gxAmgxArn)(rA1+sA1λ)(gyAmgyArn)(rA2+sA2λ)modn2

= (gxAmgxArn)rA1(gxAmgxArn)sA1λ(gyAmgyArn)rA2

(gyAmgyArn)sA2λmodn2

Therefore,
CdA2

2 CdA3
3 modn2 =(gxAmgxArn)rA1(gxAmgxArn)sA1λ(gyAmgyArn)rA2

(gyAmgyArn)sA2λmodn2
(34)

From equations (33) and (34) we have,

Ĉ=

(
CdA1

1

CdA2
2 CdA3

3

)
modn2

=
(gmgrn)rAλ+xArA1+yArA2

(gxAmgxArn)rA1(gxAmgxArn)sA1λ(gyAmgyArn)rA2(gyAmgyArn)sA2λ
modn2

=
(gmgrn)rAλ(gmgrn)xArA1(gmgrn)yArA2

(gmgrn)xArA1(gxAmgxArn)sA1λ(gmgrn)yArA2(gyAmgyArn)sA2λ
modn2

= (gmgrn)rAλ(gxAmgxArn)−sA1λ(gyAmgyArn)−sA2λmodn2

= (gmgrn)rAλ−xAsA1λ−yAsA2λmodn2

= (gm)rAλ−xAsA1λ−yAsA2λ(grn)rAλ−xAsA1λ−yAsA2λmodn2

= (gm)rAλ−xAsA1λ−yAsA2λ(grn)λ(rA−xAsA1−yAsA2)modn2

= (gm)rAλ−xAsA1λ−yAsA2λmodn2, Since (grn)λ = 1 mod n2

= (gmrAg−mxAsA1g−myAsA2)λmodn2

= (grAg−xAsA1g−yAsA2)mλmodn2
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Thus, we have

Ĉ = (grAg−xAsA1g−yAsA2)mλmodn2 (35)

The private key component DA4 can be written as DA4 = (grAg−xAsA1g−yAsA2)λ mod n2=hλmodn2, where
h = (grAg−xAsA1g−yAsA2) ∈ Z∗n2 . Hence, we can write Ĉ = hmλ, where hλ mod n2 is an element of order n
in Z∗n2 .

Now,

 L
(
Ĉ
)

L(DA4)

 mod n=

[
L(hmλ)

L(hλ)

]
mod n.

Since hλ is an element of order n in Z∗n2 and (p − 1)|λ and (q − 1)|λ, due to Fermat’s Little Theorem we
have hλ = 1mod p and hλ = 1mod q. Due to Chinese Reminder Theorem (CRT), we have hλ = 1modn.
Therefore, hλ = 1 + βn for some unknown β. Hence we have hλ = 1 + βn and (hλ)m = (1 + βn)m. Using
Binomial Theorem, we have hλm = 1 +mβnmodn2. Hence,[
L(hxλmodn2)

L(hλmodn2)

]
mod n=

[
mβ

β

]
mod n=m mod n,

(
sinceL(u) =

u− 1

n

)
This proves that the decryption of a well-formed ciphertext outputs the correct message when m < n. �

5.2 Security Proof

Theorem 3. The proposed IBE scheme is IND-CPA secure in the random oracle model, if MPE is IND-
CPA secure.

Proof: We show that if there exists an adversary who can break the IND-CPA security of our IBE scheme,
then it is possible to construct another adversary who interacts with the former one and breaks the IND-CPA
security of MPE.

– Let A be the adversary of the IBE scheme.
– Let C be the challenger of the IBE scheme and also act as an adversary to the underlying MPE.
– Let B be the challenger to MPE.

The figure shows the interaction between A, B and C. B generates the system parameters of MPE and
challenges C to break the IND-CPA security of the scheme. C in turn makes use of A, who claims to be
capable of breaking the IND-CPA security of the IBE scheme to do so. The details of the game follows.

Fig. 1. Reduction
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Setup: B gives the public key pkMPE = 〈n, n2, EncMPE, g, g
λ〉 of MPE to C. Since |p| = |q| = κ, |n| = 2κ,

|n2| = 4κ, |φ(n)| = |(p− 1)(q − 1)| = 2κ and |φ(n2)| = |nφ(n)| = 4κ.

C generates the public parameters paramsIBE of the IBE scheme as follows:

– Compute l = 2qE , where qE is the maximum number of Key Extract oracle queries. Let kl < n for a
sufficiently large k (k corresponds to the size of the output of the function H).

– Choose x0 ∈R {−kl, . . . , 0}.
– Choose x̂i,∈R {0, . . . , l}, for i = 1, . . . , k.
– Choose x̄i ∈R {0, 1}k, for i = 1, . . . , k.
– Choose yi ∈R {0, 1}k, for i = 1, . . . , k.

• Compute Xi = gλx̂ig−x̄i and Yi = gyi . Thus, xi = λx̂i − x̄i (implicitly).

• Define functions F̂ (m)
Def
= x0 +

k∑
i=1

mix̂i and Ĝ(m)
Def
=

k∑
i=1

mix̄i, where mi represents the ith bit of

the input m.

C provides paramsIBE = 〈n, n2, g,Xi, Yi,G,H〉, for i = 0 to k, to A and provides access to the key extract
oracle.

Phase I: In this phase, C provides oracle access to the key extract algorithm of the IBE scheme to A. The
description of the Key Extract oracle follows:

Key Extract(IDA) Oracle: A gives the identity (IDA) of a user as input to this oracle and C gives the private
key corresponding to the identity IDA to A. In order to respond to this query consistently, A performs the
following:

– Compute HA = H(IDA) = h1h2 . . . hk, where hi’s are bits in the binary representation of HA and
IA = {i|1 ≤ i ≤ k, hi = 1}. Let |IA| (the total number of hi’s that are 1) be denoted by αA.

– Compute x̂A =
∑
i∈IA

x̂i, x̄A =
∑
i∈IA x̄i and yA =

∑
i∈IA yi, where all computations are performed over

integers.
– If F̂ (HA) = 0 then abort.
– Else,
• Choose dA1, dA2, dA3 ∈R {0, 1}4κ.
• Find integer solutions for the following set of linear equations for the unknown values r, s and t.

dA1 = yAs− x̄Ar (36)

dA2 = yAt+ r (37)

dA3 = x̄At+ s (38)

• Compute
DA4 = g−λx̂AyAtg−λx̂Armodn2 (39)

– If F̂ (HA) = 0 then abort.
– Else, output 〈da1, dA2, dA3, DA4〉 as the private key corresponding to IDA.

Correctness of the Key Extract Oracle: According to (28), a valid private key should satisfy:DA4
?
=

[
gdA1

XdA2

A Y dA3

A

]
.

The simulated private key also passes this verification as shown below:

RHS=

[
gdA1

XdA2

A Y dA3

A

]
=

g(yAs−x̄Ar)

(gxA)(yAt+r)(gyA)(x̄At+s)

=
g(yAs−x̄Ar)

(gλx̂A−x̄A)(yAt+r)(gyA)(x̄At+s)
(Since xA = λx̂A − x̄A)

=
gyAsg−x̄Ar

gλx̂AyAtg−x̄AyAtgλx̂Arg−x̄Argx̄AyAtgyAs

= g−λx̂AyAtg−λx̂Ar = DA4 = LHS
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Challenge: At the end of Phase I, A gives two messages m0 and m1 of equal length to C. It also gives an
identity IDT as the target identity on which A would like to be challenged. C submits the messages m0

and m1 received from A to B. B chooses a random bit b ∈R {0, 1} computes C∗MPE = gmbrn mod n2 and
gives it back to C. C computes the challenge ciphertext with respect to the target identity (IDT for which
F̂ (HT ) = 0) as follows:

– Set C∗1 = C∗

– Compute C∗2 = (C∗)xT modn2. It should be noted that C will be able to compute xT , because when
F̂ (HT ) = 0, xT =

∑
i∈IA

x̄T , where C knows all x̄i’s. Further note that if F̂ (HT ) 6= 0, xT = λ
∑
i∈IA

x̂T −∑
i∈IA

x̄T but C does not know λ and cannot compute xT .

– Compute C∗3 = (C∗)yT modn2

C gives C∗IBE = 〈C∗1 , C∗2 , C∗3 〉 to A as the challenge ciphertext of the IBE scheme.

Guess: In this phase, A outputs b′ to C as the guess for the IBE scheme. Now, C outputs b′ to B as the
guess to MPE. �

6 CCA Security in the Random Oracle Model

We now propose a CCA secure IBE scheme based on the basic CPA secure IBE scheme presented in the
previous section. The scheme is proved to be secure in the random oracle model by showing a polynomial
time reduction to MPE. We make use of the well known Fujisaki-Okamoto transformation to achieve CCA
security [14].

6.1 The Scheme

Setup: This algorithm is similar to that of the setup algorithm in section 5.1. Apart from the parameters of
the CPA secure scheme, this scheme has two more hash functions, defined as, H1 : {0, 1}|m|×{0, 1}k → {0, 1}k
and H2 : {0, 1}k × Z∗n2 × Z∗n2 × Z∗n2 → {0, 1}|m| .

The public parameters paramsIBE = 〈g, n, n2, X0, X1, . . . , Xk, Y0, Y1, . . . , Yk,H, H1,H2〉. The master pri-
vate key is mskIBE = 〈p, q, λ, φ(n)〉.
Key Extract(IDA): This algorithm is similar to that of the key extract algorithm in section 5.1. The
private key of the user with identity IDA, SKA = 〈dA1, dA2, dA3, DA4〉.
Encryption(m, IDA): In order to encrypt a message m (m < n) with the public key (identity) IDA, perform
the following:

– Choose s ∈R {0, 1}k
– Compute r = H1(m‖s)
– Compute HA = H(IDA) = h1h2 . . . hk, where h1h2 . . . hk is the binary of HA. Let IA = {i|1 ≤ i ≤
k, hi = 1}

– Compute XA =

[
X0

∏
i∈IA

Xi

]
mod n2 and YA =

[
Y0

∏
i∈IA

Yi

]
mod n2

– Compute

C1 = gsgrnmodn2 (40)

C2 = Xs
AX

rn
A modn2 (41)

C3 = Y sAY
rn
A modn2 (42)

C4 = m⊕H2(s, C1, C2, C3)modn2 (43)

The ciphertext is C = 〈C1, C2, C3, C4〉.
Decryption(C, SKA): The receiver with identity IDA and private key SKA = 〈dA1, dA2, dA3, DA4〉 decrypts
the ciphertext C by performing the following decryption process:
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– Compute Ĉ =

(
CdA1

1

CdA2
2 CdA3

3

)
modn2

– Compute s′ =

 L
(
Ĉ
)

L(DA3)

 mod n
– Compute m′ = C4 ⊕H2(s′, C1, C2, C3)

– Check whether:

C1
?
= gs

′
gH1(m′‖s′)nmodn2 (44)

C2
?
= Xs′

AX
H1(m′‖s′)n
A modn2 (45)

C3
?
= Y s

′

A Y
H1(m′‖s′)n
A modn2 (46)

6.2 Security Proof

Theorem 4. The identity based encryption scheme is IND-CCA secure in the random oracle model if MPE
is IND-CPA secure.

Proof: Similar to the proof of the IND-CPA secure scheme, we show that, if there exists an adversary who
can break the IND-CCA security of our IBE scheme, then it is possible to construct another adversary who
interacts with the former one and breaks the IND-CPA security of MPE. Let A be the adversary of the
IBE scheme. Let C be the challenger to the IBE and adversary to the underlying Paillier cryptosystem. Let
B be the challenger to the Paillier Cryptosystem.

Setup: The setup phase is similar to that of the setup in theorem 3. The hash functions H,H1 and H2 are
defined as random oracles OH(.), OH1

(.) and OH2
(.).

C gives A the public parameters paramsIBE = 〈n, n2, g,Xi, Yi〉 and oracle access to OH(.), OH1
(.), OH2

(.)
oracles.

Phase I: In this phase, C provides oracle access to OH(.), OH1
(.), OH2

(.) oracles, the key extract oracle
and the decryption oracle. C maintains three lists LH, LH1

and LH2
to maintain consistency in responding

to the queries. The description of these oracles follow:

OH(IDi ∈ {0, 1}∗): If a tuple of the form 〈IDi, Hi〉 exists in the list LH then return Hi. If a tuple of this

form does not exist then, choose Hi ∈R {0, 1}k, store the tuple 〈IDi, Hi〉 in the list LH and return Hi to A.

OH1(m||s): To respond to this query, C checks whether a tuple of the form 〈m||s, h1〉 exists in the list LH1 .

If a tuple of this form exists, C returns the corresponding h1, else chooses h1 ∈R {0, 1}k, adds the tuple
〈m||s, h1〉 to the list LH1 and returns h1 to A.

OH2
(s, C1, C2, C3): To respond to this query, C checks whether a tuple of the form 〈s, C1, C2, C3, h2〉 exists

in the list LH2
. If a tuple of this form exists, C returns the corresponding h2, else chooses h2 ∈R {0, 1}|m|,

adds the tuple 〈s, C1, C2, C3, h2〉 to the list LH2
and returns h2 to A.

Key Extract(IDA) Oracle: The description of this oracle is same as the key extract oracle in theorem 3.

ODecryption(C, IDi): C performs the following to decrypt the ciphertext C = 〈C1, C2, C3, C4〉:

If F̂ (Hi) 6= 0 then C performs the decryption as per the decryption algorithm. If F̂ (Hi) = 0, C performs
the following:

– Retrieve the tuple of the form 〈s, C1, C2, C3, h2〉 from list LH2 . If a tuple does not exist, then return ⊥
(to represent invalid ciphertext). If it exists then choose the corresponding s.

– Check whether a tuple of the form 〈m||s, h1〉 exist in list LH1
. If a tuple does not exist, then return ⊥,

else retrieve the corresponding m and h1, and perform the checks defined in equations (44), (45) and
(46).

– If all the checks hold good then return the m retrieved in the previous step as the decryption of C.
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Challenge: At the end of the Phase I, A gives two messages m0 and m1 of equal length to C and an
identity IDT , C aborts the game if F̂ (HT ) 6= 0. C chooses s0, s1 ∈R {0, 1}k and gives them to B. B chooses
a random bit b ∈R {0, 1}, computes C∗MPE = gsbgrn mod n2 and gives it back to C. C computes the

challenge ciphertext with respect to the target identity (IDT for which F̂ (HT ) = 0, where HT = H(IDT ))
as follows:

– Set C∗1 = C∗MPE

– Compute C∗2 = (C∗MPE)xT modn2

– Compute C∗3 = (C∗MPE)yT modn2

– Choose a random bit b ∈R {0, 1}. Add the tuple 〈m0‖s0,−〉, 〈m0‖s1,−〉, 〈m1‖s0,−〉 and 〈m1‖s1,−〉 to
the LH1 list.

– Choose h∗2 ∈R {0, 1}|m| and add the tuple 〈−, C∗1 , C∗2 , C∗3 , h∗2〉 to the LH2
list. The first entry is marked

with ′−′ because, C does not know whether s0 or s1 is encrypted in C∗MPE

– Compute C∗4 = mb ⊕ h∗2
C gives C∗IBE = 〈C∗1 , C∗2 , C∗3 , C∗4 〉 to A as the challenge ciphertext of the IBE scheme.

Phase II: A performs the second phase of interaction, where it makes polynomial number of queries to the
oracles provided by C with the following condition:

– A should not query the ODecryption oracle with C∗IBE as input.
– A should not query the private key SKT corresponding to the identity IDT .

All the oracle simulations are similar to Phase I.

Guess: In this phase, A outputs b′ to C as the guess for the IBE scheme. Now, C performs the following to
output a guess for the bit b.

– Find out the tuple of the form 〈sb, C∗1 , C∗2 , C∗3 , h∗2〉 from the list LH2
.

– Check whether a query with input mb′‖sb or mb̄′‖sb was asked to the OH1
oracle during the Phase II.

– If sb appears in list LH2
and a query was made as mentioned in the previous step then output b as the

guess for MPE. �

7 Conclusion

In this paper, we have shown the existence of practical, space and time efficient identity based encryption
without pairing which does not involve a security mediator. The IBE scheme is based on the Paillier en-
cryption scheme and hence theoretically based on the Composite nth−Residuosity Assumption. The key
generation is the novelty of the scheme and the encryption is based on the newly proposed modified Paillier
encryption scheme (MPE). We have proposed two IBE schemes where the first scheme is CPA secure and
the second one is CCA secure. We have proved both the schemes in the random oracle model.
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