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Abstract. We introduce the QARMAv2 family of tweakable block ciphers. It is a redesign
of QARMA (from FSE 2017) to improve its security bounds and allow for longer tweaks,
while keeping similar latency and area. The wider tweak input caters to both specific
use cases and the design of modes of operation with higher security bounds. This is
achieved through new key and tweak schedules, revised S-Box and linear layer choices,
and a more comprehensive security analysis. QARMAv2 offers competitive latency and
area in fully unrolled hardware implementations.
Some of our results may be of independent interest. These include: new MILP models
of certain classes of diffusion matrices; the comparative analysis of a full reflection
cipher against an iterative half-cipher; our boomerang attack framework; and an
improved approach to doubling the width of a block cipher.
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1 Introduction
An ongoing trend within the industry revolves around implementing robust isolation be-
tween mutually untrusted processes on a shared computing device. Intel’s SGX [Gue16] and
TDX [Int21], AMD’s SEV [KPW16], and Arm’s CCA [MPS+21] offer access control mecha-
nisms to safeguard program execution from attacks from hostile peer and higher-privileged
software. Some of these solutions also protect against physical access threats through cryp-
tographic memory protection like encryption and integrity checks [AMS+22]. This approach
extends cryptographic memory hardening from smart cards, microcontrollers, and secure
processors to address security needs in cloud computing, online gaming, and premium
content distribution. Several 64-bit block ciphers have been proposed for this purpose,
such as PRINCE [BCG+12], MANTIS [BJK+16], QARMA [Ava17], and PRINCEv2 [BEK+20].

One aspect that sets MANTIS and QARMA apart is that they are tweakable block ci-
phers [LRW02] (TBC): In addition to the secret key and a text, they accept a third input,
called the tweak. The tweak, together with the key, selects the permutation computed by
the cipher, but, unlike the key, it is public and may even be under adversarial control.
TBCs ease the design of modes of operation, and in fact one of their first applications has
been to modes for memory encryption [HT13]. QARMA also exists in a version with a block
size of 128 bits and keys up to 256 bits, to meet the needs of general-purpose computing.
The small version of QARMA is also used to implement PAC, i.e. the Pointer Authentication
Code, a control flow integrity mechanism on the Arm architecture [Arm16, Qua17].

QARMAv2 (pronounced “karma vee two”), is a redesign of QARMA to allow for longer
tweaks and tighter security margins. It exists in two general-purpose versions with block
lengths of b = 64 and 128 bits, denoted by QARMAv2-b-s, where s is the bit size of the key
(more correctly, the claimed security level in bits), as well as in a slightly lighter 64-bit
block version to be used for the PAC or memory integrity. For b = 128, the design allows
for key sizes of s = 128, 192 or 256 bits. For b = 64, s is always 128 and can be omitted.

This redesign is not a whim: Since introducing QARMA, years of research and trial
and error have provided a deeper understanding of the design of block ciphers and of the
demands they face in real-world applications. The first understanding led, for instance, to
a different key schedule, and to a rethinking of the relation between the substitution and
diffusion layers. The second one led to the implementation of longer tweaks: We explain
why these are needed in Section 1.1 but, before proceeding, we note that throughout the
remainder of the paper the older cipher QARMA will be called QARMAv1 to avoid ambiguity.

1.1 Rationale for Short Blocks and Longer Tweaks
Let us start by looking at AES in XTS mode [IEE18]. This mode is designed around the
XEX construction [Rog04]. It allows the use of a 128-bit nonce, which is encrypted to
obtain a first mask. The mask is added to plaintext and ciphertext, and then updated via
an LFSR for each block. A longer nonce must be first hashed to 128 bits. Hence, care is
due in order to prevent tweak reuse. Even worse, a counter mode like the GCM [MV04]
uses a 96-bit IV. In these constructions, the block size of the underlying cipher bounds the
space of the permutations that, for a fixed key, are parameterized by the tweak.

Ciphers with 256-bit blocks enable the use of longer uncompressed IVs, whether they
are non-tweakable ciphers incorporated within the aforementioned constructs or bespoke
designs, as long as they support 256-bit tweaks. Nevertheless, opting for a reduced block
size facilitates the creation of designs characterized by smaller area, latency, and energy
usage. Thus, a 128-bit TBC with 256-bit “native” tweaks offers the freedom to employ
random or synthetic nonces/IVs without the concern of encountering repeated permutations.
The sole consideration is that in numerous modes of operation, the necessity for re-keying
or re-tweaking arises well before processing 264 blocks, a concern that a 256-bit block
cipher effectively sidesteps in real-world scenarios. From our perspective, this seems like a
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small price to pay for the ensuing area and performance savings.
Future-proofing memory encryption also supports 256-bit tweaks: Already with 48- to

52-bit addresses, 56-bit counters, and 32-bit process domain IDs in the tweak, more than
128 bits are necessary. For QARMAv2-64, 128-bit tweaks should suffice for most embedded
applications. For PAC, 128-bit tweaks are required for improved versions of the feature.
Remark 1. The NIST, announcing their decision to update SP 800-38A [NIS01], has
expressed interest in standardizing a “tweakable wide encryption technique” [NIS23]. In this
context, wide TBCs have been considered [KLMR16, BLLS22]. We believe that a 128-bit
block cipher with 256-bit keys and tweaks (yielding a 512-bit permutation space), combined
with a two-pass mode of operation represents a strong proposition. However, our design
principles can accommodate even wider designs if needed, as illustrated in Appendix F.

1.2 Use Cases, Security Model, and Their Implications
The goal of the QARMAv2 design is to provide a general-purpose TBC that is also ideally
suitable to cryptographic memory protection, as exemplified in [AMS+22], and fast com-
putation of short-message MACs, for instance for control flow integrity. The design allows
efficient hardware implementations, but at the same time programming optimized software
implementations should be straightforward.

Several constructions of TBCs from non-tweakable block ciphers exist [Rog04, LRW11,
LST12, Men15, JLM+17, Men18, JN20], but they all vastly increase latency. A different
school of thought modifies the design of the cipher itself, such as the TWEAKEY frame-
work [JNP14] or TNT [BGGS20], achieving lower overheads.

Our approach is related to TWEAKEY. We note that the latter unifies key and tweak,
treating them as a single undifferentiated input. This approach may not reflect the very
different real-world security requirements on keys and tweaks. In a system that uses a TBC,
the key is changed infrequently, relatively few keys are used, and they can be generated
by a physically hardened circuit without impacting overall performance. So, it is less
susceptible to manipulation or related-key attacks. Conversely, the tweak changes often, it
is public and the adversary may even be capable to choose its value, forcing consideration
of related-tweak attacks. With a unified schedule, the cryptanalysis may overestimate the
number of rounds required to reach a target security level. (On the other hand, as a result,
TWEAKEY allows flexibility to adjust the relative sizes of key and tweak.)

These considerations prompt us to keep separate key and tweak schedules, as in
QARMAv1. The simple, alternating key schedule employs non-sparse round constants and
orthomorphisms as a first line of defense against structural attacks. Designing the tweak
schedule is the main challenge: it must be designed in a way that does not adversely
impact security while keeping the total area and latency of the cipher contained.

1.3 Results
QARMAv2 is a reflector construction, a design spearheaded by PRINCE where an iterative
sub-cipher is composed with its inverse, and a small involutory function is placed in
between. This allows the use of a single algorithm for both encryption and decryption.
The data path is kept as similar as possible to QARMAv1’s, a structure which has been
proven so far very resistant to cryptanalysis. Still, the new design provides significantly
improved security levels with respect to QARMAv1, as well as better suitability to practical
applications and design of modes of operation due to the longer tweaks.

This is achieved through the introduction of new key and tweak schedules, a re-definition
of the 128-bit version, a deeper analysis of the properties of the building blocks, and more
thorough cryptanalysis in general. Just as QARMAv1 can reuse part of the cryptanalysis of
MIDORI and MANTIS, QARMAv2 reuses parts of the cryptanalysis of QARMAv1.
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While not consistently lighter than QARMAv1 at comparable security levels, we feel that
with QARMAv2 we have improved the usefulness of the design since we increased the tweak
length, while not significantly impacting performance.

The following results may have independent value:

1. We analyze both half-cipher and full-cipher and therefore we can assess the impact
of the reflector construction;

2. The new MILP model for our Almost-MDS matrix can prove useful also in the study
of other ciphers that use a similar matrix;

3. We propose novel MILP models for various attacks, sometimes marking a first to
reflector constructions, for instance for boomerang distinguishers; and

4. We adopt a technique for doubling the width of a block cipher that involves parallel
operation of two instances of the data obfuscation path of the cipher, which we call
layers, with occasional cell swaps between them. While similar to the constructions
of AESQ [KLMR16] and Pholkos [BLLS22], two important aspects of our design are:

• If the key and tweak schedules and the cell swap operation are suitably defined,
this approach can directly leverage existing cryptanalysis of the base design – for
instance cell-wise models of the smaller design apply directly to the wider design.
However, some aspects like full diffusion still require separate consideration.

• We do not shuffle between the layers after each round like in AESQ, but still
before full diffusion has occurred, unlike Pholkos. Thus, with a suitable tweak
schedule we can reduce early self-cancellations arising from the tweak addition.

QARMAv2, just as its predecessor, offers significantly better energy-per-bit values than
most ciphers in fully unrolled implementations, including the AES. This makes it ideal for
always-on applications such as memory encryption or high-bandwidth network links. The
cipher is flexible enough to be deployed for general purpose usage. Finally, we also allow
the use of 128- and 192-bit keys for QARMAv2-128, besides 256-bit keys. This has been done
to align with the AES and to allow deployers to opt for further latency and area savings
while still keeping a solid security level. We expect the quantum security of QARMAv2 to
be equivalent to similar ciphers with block and key of 128 bits, e.g. AES-128 [JNRV20].

We anticipate that QARMAv2 will be deployed in various settings such as for Pointer
Authentication and for cryptographic memory protection [AMS+22].

Outline of the Paper. In Section 2, we present the specification of QARMAv2. In Section 3,
we discuss how the components have been chosen. In Section 4, we evaluate the resistance
of the design to various cryptanalytic approaches. In Section 5, we discuss the versions
of QARMAv2 for PAC and memory integrity, and their security. In Section 6, we provide
hardware implementation results. In Section 7, we conclude and state open questions.

In the appendices, we describe our MILP models of the diffusion matrices (Appendix A),
discuss selected trails and characteristics occurring in our cryptanalysis (Appendices B
to D), and prove the four-round full diffusion property for the large version of QARMAv2
(Appendix E). We also discuss the possibility of wider variants of the cipher (Appendix F),
summarize the published cryptanalysis on QARMAv1 (Appendix G) as well as the properties
of the diffusion matrices used in QARMAv1 and QARMAv2 (Appendix H), before finally
providing test vectors for the various versions of QARMAv2 (Appendix I).
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2 Definition of the Cipher
QARMAv2 follows the reflector construction of PRINCE, MANTIS, and QARMAv1, cf. Figure 1:

K(0) K(1) K(2) K(3) K(4)

P S F = Rr G F = R
r

S C

T (0) T (1)

Figure 1: Reflector structure of QARMAv2.

The design is the composition of a forward function, of a symmetric reflector, also
called central construction, and of a backward function which is the functional inverse
of the forward function. This allows to use the same circuit for both encryption and
decryption with a relatively minor set-up step. In Figure 1, we represent the initial and
final rounds separately: They consist of just a key addition and a substitution layer, and
are not tweaked. The reflector is also not tweaked. The values K(i), resp. T (i) are derived
from the key K, resp. tweak T by simple operations. The function F is a keyed and
tweaked iterated cipher with round function R. Here and elsewhere in the paper, a bar
over a function denotes its inverse, for instance R = R−1.

The operator “+” on keys, tweaks, and states shall always denote the binary XOR.
We present the cipher as pseudo-code in Algorithm 1 and graphically in Figure 2.
The remaining notation is explained next.

2.1 Cells, Blocks, Layers and the Internal State
In Algorithm 1, S is the internal state of the cipher. Its size is b bits. A b-bit value is
called a block and is represented as a three-dimensional array, consisting of ℓ layers, with
ℓ ∈ {1, 2}. A layer is an array of 16 elements, and also a 4 by 4 matrix of 4-bit cells:

L = c0∥c1∥ · · · ∥c14∥c15 =


c0 c1 c2 c3
c4 c5 c6 c7
c8 c9 c10 c11
c12 c13 c14 c15

 .

Thus, b = 64 ℓ. With respect to cell numbering, the b bits of a block are indexed in big
endian order: Hence, bits [b− 1 .. b− 4] are contained in the first cell of layer number 0,
and bits [3 .. 0] are in the fifteenth cell of the last layer. The bits in a cell are indexed in
little endian order. The data obfuscation path is one block wide.

2.2 Permutations and Shuffles
A permutation π on [0 .. 15] acts on a layer as follows:

(π(L ))i = cπ(i) for 0 ≤ i < 16 . (1)

Our choice for the state shuffle τ is MIDORI’s shuffle

τ = [ 0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2 ] (2)
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Algorithm 1: The QARMAv2 Algorithm.

QARMAv2r

[
op, K0, K1, W0, W1, T0, T1, P

]
7→ C

1: t0 ← [ T0, t1 ←[ T1 (Round tweak setup)
2: k0 ←[ K0, k1 ← [ K1 (Round key setup)
3: S ←[ P + k0 (Round # 0)
4: S ←[ S(S )
5: for i = 1 to r do (Rounds from # 1 to # r)
6: S ← [ S + ki mod 2 + ti mod 2 + ci

7: S ← [ (S ◦M ◦ τ)(S )
8: if i ≡ 1 mod 2 then t1 ←[ φ(t1) else t0 ←[ φ(t0)
9: { if i ≡ r mod 2 then S ← [ eXchangeRows(S ) } (Only for ℓ = 2)

10: k0 ←[ o(k0), k1 ←[ o(k1) (Round key transform)
11: if op = enc then (Encryption)
12: k0 ← [ k0 + α, k1 ←[ k1 + β

13: else (Decryption)
14: k0 ←[ k0 + o(β), k1 ←[ k1 + o−1(α)
15: S ←[ τ(S ) (Reflector)
16: S ←[ M · (S + Wr+1 mod 2) + Wr mod 2
17: S ←[ τ(S )
18: for i = r down to 1 do (Rounds from # r + 1 to # 2 r)
19: { if i ≡ r mod 2 then S ← [ eXchangeRows(S ) } (Only for ℓ = 2)
20: S ← [ (τ ◦M ◦ S)(S )
21: S ← [ S + ki+1 mod 2 + ti+1 mod 2 + ci

22: if i > 1 and i ≡ 0 mod 2 then t1 ←[ φ(t1) else t0 ← [ φ(t0)
23: S ←[ S(S ) (Round # 2r + 1)
24: C ←[ S + k1
25: return C

i.e. it acts on each layer as follows

L =


c0 c1 c2 c3
c4 c5 c6 c7
c8 c9 c10 c11
c12 c13 c14 c15

 τ7−→


c0 c11 c6 c13
c10 c1 c12 c7
c5 c14 c3 c8
c15 c4 c9 c2

 = τ(L ) .

For ℓ = 2, the action of a permutation on [0 .. 31] is similarly defined using a 8 by 4
matrix, wherein a permutation on [0 .. 15] acts on the two layers in a block in parallel, i.e.
π(i + 16) := π(i) + 16 for 0 ≤ i < 16, and thus cπ(i+16) = cπ(i)+16.

2.3 The Round Functions
QARMAv2 reuses the QARMAv1 round functions, with a single change for the two layer version.
There are four types of round: the full round and the half round, and their inverses.

A full round has the following structure:

k

x τ M S X y

t

c

i.e.

k

x R X y

t

c

, (3)

where R = S ◦M ◦ τ . The notations k, resp. t, c denote a round key, resp. tweak and
constant: The XOR of these values at the same round is the latter’s round tweakey. τ is
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K0 K1 K0 K1 K0 K0 K1

P S R {X} R R {X} R R R {X}
τ

W0 = o2(K0)

M

L1 L0 L1 L0 L1 L1 L0 W1 = o−2(K1)

τ

C S R {X} R R {X} R R R {X}

(k0) (k1)

(k1) (k0)

o(K0) + αo−1(K1) + β

==

T1 φr−1(T0) φ(T1) φr−2(T0) φ
r+1

2 (T0) φ
r−1

2 (T1)

φ
r−1

2 (T0)φ
r+1

2 (T1)φr−2(T1)φ(T0)φr−1(T1)T0

c2 c3 c4 cr−1 cr

c2 c3 c4 cr−1 cr

Figure 2: QARMAv2 encryption for odd r. If r is even, W0 and W1 are
swapped and the forward function starts with R instead of R {X}.

the MIDORI StateShuffle operation (2). The 4 by 4 matrix M operates column-wise by
left multiplication on each layer of a block. S is the parallel application of 16 ℓ identical
S-Boxes to all cells of the state. All these components are defined later in this section.

X denotes the eXchangeRows operation, that applies only for ℓ = 2. It swaps the
first two rows between the two layers. It is performed every other full round, where two
eXchangeRows’s always flank the reflector, or, in other words, eXchangeRows is always
included in Rounds r and r + 1. X and S clearly commute with each other.

The half round function consists of just a round key addition and a S-Box layer and is
only used for the first and the last rounds of the cipher.

2.4 The S-Boxes
For the general-purpose versions of QARMAv2, we use the following S-Box

ק =
[

4 7 9 B C 6 E F 0 5 1 D 8 3 2 A
]

. (4)

For the PAC and memory authentication applications we optionally allow the use of
QARMAv1’s σ0

σ0 =
[

0 E 2 A 9 F 8 B 6 4 3 7 D C 1 5
]

. (5)

2.5 The Diffusion Matrix
Let ρ denote the cyclic rotation to the left of the four bits in a cell, i.e. ρ((x3, x2, x1, x0)) =
(x2, x1, x0, x3). It is a linear transformation of F4

2, and ρ4 = 1, the identity map. The
diffusion matrix M is defined as the circulant matrix

M := M4,1 = circ(0, ρ, ρ2, ρ3) =


0 ρ ρ2 ρ3

ρ3 0 ρ ρ2

ρ2 ρ3 0 ρ
ρ ρ2 ρ3 0

 . (6)

For the properties of these matrices and their classification we refer to Appendix H.
Following the QARMAv1 paper, this and other diffusion matrices, such as the MIDORI
circulant M0 := circ(0, 1, 1, 1) and M4,2 = circ(0, ρ, ρ2, ρ), are Almost-MDS (i.e. they have
differential branch number equal to 4) and are grouped into classes depending on their
transition patterns: Class I includes M0 and M4,1; and M4,2 is a Class II matrix. Their
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transition patterns are displayed in Figure 9 in the Appendix, next to a simpler XOR model.
Class I matrices have a slightly better diffusion model, but in QARMAv1 Class II matrix
M4,2 was chosen on the basis of certain heuristics. For QARMAv2 we use Class I matrix
M4,1 instead, validating this choice with a deeper cryptanalysis.

2.6 The Reflector

The reflector (or central construction) is similar to that of QARMAv1:

k0 k1

x τ M τ y , (7)

where k0, k1 are two round keys. This function can be implemented using the original
QARMAv1 central construction, by using the round key M · k0 + k1. Since the reflector does
not contain S-Box layers, it does not count as a round.

2.7 The Round Keys

Let o : Fb
2 → Fb

2 be the orthomorphism

o(w) := (w ≫ 1) + (w ≫ (b− 1)) . (8)

The key schedule, for the forward and backward functions, can be implemented by
two registers k0 and k1, which are alternatingly added to the state. For encryption, they
are initialized with the values K0 and K1, the two halves of the key K = K0∥K1. The
two round keys added in the reflector are W0 = o2(K0) and W1 = o−2(K1). During the
computation of the reflector, K0 and K1 are subject to the transformation

ιe : (K0, K1) 7→ (L0, L1) :=
(
o(K0) + α, o−1(K1) + β

)
.

If k0 and k1 are instead initially set to the values L0 = o(K0)+β and L1 = o−1(K1)+α,
the inverse transformation is given by

ιd : (L1, L0) 7→
(
o(L1)+o(β), o−1(L0)+o−1(α)

)
=

(
o(L1 +β), o−1(L0 +α)

)
=

(
K1, K0

)
.

Thus, for decryption we start with k0 ← [ L1 and k1 ← [ L0 and apply ιd instead of ιe, which
differ only in the constants. In hardware, the latter can be multiplexed.

Remark 2. The circuit would be simpler if β = o−1(α). However, in this case the untweaked
backward function would be the inverse of the untweaked forward function for a relatively
small class of weak keys, namely those with K1 = o(K0) + α.

The following attack would apply: The reflector has 248ℓ fixed points, so for these
values the function would be the identity. Then, an adversary encrypts ≈ 216ℓ plaintexts
before it finds one with equal ciphertext. On the other hand, if the key is not in the weak
set, assuming that the cipher behaves like a random permutation, the adversary would
have to try the whole codebook. A weak key is finally brute-forced in time 264ℓ.

Taking the tweak schedule into account (cf. Section 2.9), the above attack works if the
adversary sets T0 = T1. Therefore, we choose β ̸= o−1(α). This means that, similarly to
PRINCEv2 [BEK+20], QARMAv2 does not enjoy the simple α-reflection property.
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2.8 The Round Constants
The round constants are chosen to be of density approximately 1/2 and to represent
all 4-bit values as homogeneously as possible, within the constraint of being generated
programmatically. To facilitate lightweight SW and round-based HW implementations,
the round constants are generated by a Galois LFSR seeded by the first and second 16
digits of the hexadecimal expansions of the fractional parts of π.

The 64 most significant bits of the round constant c2 (the first non-zero round constant)
are given by 0x243F6A8885A308D3ULL, and each successive value is obtained from the
LFSR’s state after applying the LFSR 23 times. We call this update function Ψ. 128-bit
values are generated by concatenating two consecutive outputs of Ψ, the first one giving
the most significant bits. Round constants are given in big endian order.

The 64 most significant bits of α are given by α0 = 0x13198A2E03707344ULL. The 64
least significant bits if α (for ℓ = 2) and β are generated from this seed in the same way as
the c’s, i.e. β := Ψ(α) for ℓ = 1, and α = α0∥Ψ(α0) β = Ψ2(α0)∥Ψ3(α0) for ℓ = 2.

The LFSR is defined by the primitive polynomial X64 + X50 + X33 + X19 + 1 over F2.
The polynomial was chosen to facilitate software implementations of Ψ, even on 16-bit
microcontrollers. Code is given in Figure 3.

uint64_t PSI(uint64_t in) // Galois LFSR - ticked 23 (13+10) times.
{

uint64_t spill, tmp;
spill = in >> 51;
tmp = (in << 13) ^ (spill << 50) ^ (spill << 33) ^ (spill << 19) ^ spill;
spill = tmp >> 54;
tmp = (tmp << 10) ^ (spill << 50) ^ (spill << 33) ^ (spill << 19) ^ spill;
return tmp;

}

Figure 3: Code for the round constant generating function PSI (Ψ).

In order to use the same circuit for encryption and decryption, it only remains to
address the round tweaks. This is done next.

2.9 The Tweak Schedule
We define an alternating-tweak schedule for a two-block tweak, where the tweak blocks are
independently updated after each use. The update functions are applied during the forward
and backward rounds unchanged, i.e., without reversing the schedule as in QARMAv1. In
this way, any relation between the tweak updates and the round function will have to work
with the inverse round function as well, reducing its likelihood.

Let ti be the round tweak added at round number i. The schedule is the following:
t1 = T1, t2 = φr−1(T0), and for each integer i ≥ 1 we set t2i+1 = φ(t2i−1) and t2i+2 =
= φ−1(t2i) for some function φ. We obtain:[

T1, φr−1(T0), φ(T1), φr−2(T0), φ2(T1), φr−3(T0), . . . , φr−1(T1), T0
]

where each value in the sequence is used in a successive round from Round 1 to Round 2 r.
Swapping T1 and T0 and applying the same sequence of transformations gives the reverse
schedule. Combining this with the inversion of the key schedule, the same circuit can be
used for encryption and decryption. We use the following tweak shuffles:
φ = τf :

[
1, 10, 14, 6, 2, 9, 13, 5, 0, 8, 12, 4, 3, 11, 15, 7

]
for ℓ = 1, and

φ = τF :
[ 1, 10, 14, 22, 18, 25, 29, 21, 0, 8, 12, 4, 19, 27, 31, 23,

17, 26, 30, 6, 2, 9, 13, 5, 16, 24, 28, 20, 3, 11, 15, 7
]

for ℓ = 2 .

The process we followed to arrive at these choices is described in Section 3.3.
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2.10 The Complete Circuit
The circuit, as given in Algorithm 1, has one input bit as well as seven input registers and
one output register. The input bit determines whether the circuit performs encryption
or decryption. The input registers are the two key blocks, the two center key blocks, the
two tweak blocks, and the input text (plaintext PT or ciphertext CT ). The output is the
output text (ciphertext CT or plaintext PT , respectively). For a key K = K1∥K0 and a
tweak T = T1∥T0, where the Ki and the Ti are blocks, we have:

• For encryption, the input vector is set as follows, with W0 = o2(K0), W1 = o−2(K1):[
enc , K0 , K1 , Wr+1 mod 2 , Wr mod 2 , φr−1(T0) , T1 , PT

]
.

• For decryption, the input vector is set to[
dec , o−1(K1) + α , o(K0) + β , Wr mod 2 , Wr+1 mod 2 , φr−1(T1) , T0 , CT

]
.

The input vector can be set up by a simple wrapper circuit.

2.11 Stretching Shorter Keys
For ℓ = 1, the only admissible key size is 128 bits.

For ℓ = 2, we note that the encryption algorithm is always defined with two full
128-bit inputs for the key, i.e. for a key of 256 bits. Only the security margins change,
together with the value of the parameter r, as defined later in Section 4. We recommend
to randomly generate full 256-bit keys, regardless of the targeted security level, similarly
to BipBip [BDD+23]. The test vectors given in Appendix I use full 256-bit key values.

This said, we define procedures to stretch 128 and 192 bit keys to 256 bits, for
interoperability reasons. For a 128-bit key K, set K0 = K1 = K. For a 192-bit key
K, write K = Y0∥Y1∥Y2 where the Yi are 64-bit values, and then put K0 = Y0∥Y1 and
K1 = Y2||

(
MAJ(Y0, Y1, Y2) ≫ 17

)
, where MAJ is the majority function.

2.12 Stretching Single Block Tweaks
QARMAv2 is defined and analyzed in the case where the tweak is formed by two independent
blocks, which we write as T = 2. This said, we also want to understand its security
margins when a single block tweak is used, a case we denote with T = 1, that may be
interesting for some critical applications. For this purpose we need to define how we
“stretch” the b-bit value to a 2 b-bit value, and then repeat part of the cryptanalysis.

For T = 1 we set T1 = φ(T0), where T0 = T . Equivalently, the two tweak blocks just
before the center for encryption (Rounds r − 1 and r) are equal, for both odd and even r.

We tried various approaches to derive the second tweak block from the first, and we
chose the one that gave the simplest expression between the two tweak blocks among those
that gave the best bounds in related tweak cryptanalysis (see Tables 9c and 9d).

3 Choice of the Building Blocks and Their Properties
3.1 The Orthomorphism
A useful property of orthomorphisms is the following one:

Theorem 1. Over characteristic 2 algebras, if o(·) is an orthomorphism, then so is o2(·).
Proof. First, note that o2(·) is clearly a bijective linear map. By definition, p(x) = x + o(x)
is a bijection, and so is its iterate: p2(x) = (x+o(x))+o(x+o(x)) = x+o(x)+o(x)+o2(x) =
= x + o2(x). Hence, o2(·) is an orthomorphism.
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Therefore, o4(·), o8(·), o2i(·) are orthomorphisms as well. In particular, none of these
maps can be the identity map. If they operate on a finite algebra, there are only finitely
many such maps. This implies also that for i ̸= j, o2i(x) 7→ o2j (x) is an orthomorphism or
the identity, and x 7→ o2i(x) + o2j (x) is a linear bijection or the zero map. Such functions
can be used for key derivation to make expected differences between round keys uniform
and collision-free, reducing correlations between similar functions. See also Section 4.9.

3.2 The StateShuffle

The MIDORI StateShuffle [BBI+15] τ (as well as τ) satisfies a very important property
(that we have not found mentioned elsewhere): The four cells in each column are mapped
by τ to pairwise different columns and rows, and the same holds for the four cells in each
row. Thus, the four elements in each row (or column) of a state after applying τ come
from four different columns and from four different rows of the state before τ was applied.
Consequently, a following MixColumns does not mix any two elements from the same
column (or row) of the state before τ was applied. The mapping has order 4.

We observe that the square function of τ ,

τ2 :
[

0, 8, 12, 4, 3, 11, 15, 7, 1, 9, 13, 5, 2, 10, 14, 6
]

,

is the conjugate of the transpose of the state by a permutations of the rows.
In [ABI+18], state shuffles with heavier optimal linear trails than τ are listed. We did

not to switch to one of these shuffles for a few reasons. First, we rely on the above strong
property while studying the interaction of the state and tweak shuffles, for both columns
and rows. Second, we prioritize shuffles that achieve faster full diffusion, specifically those
that take three rounds (for ℓ = 1) in conjunction with the chosen diffusion matrix, instead
of four. For the limited number of rounds considered, τ , i.e. (2), remains optimal in most
cases. Lastly, a slight increase in the weight of optimal linear trails does not necessarily
imply an improvement in related-tweak differential characteristics. To serve our needs, we
would have to recalculate the counts. Thus, we focus on the tweak shuffles instead.

3.3 The Tweak Shuffles
A TBC requires more rounds than a non-tweakable block cipher based on the same round
function to achieve similar security levels. This is because related-tweak attacks must be
taken into account. Estimating the number of active cells in linear trails and differential
characteristics is vital for selecting the key and tweak schedules. Existing evaluations
of ShiftRows alternatives [ABI+18] focus on linear trails and single-key, single-tweak
differential characteristics, using Matsui’s Algorithm 1 [Mat94]. We adapted the latter to
include tweaks, but its efficiency degrades significantly due to the much higher number
of initial states and possible transitions. As a result, MILP solvers [MWGP11] or SAT
solvers like CryptoMiniSAT [SNC09] are much faster.

3.3.1 Single Layer Blocks

The MANTIS/QARMAv1 tweak shuffle was the result of an extended search on a subset
of all permutations. The active cell counts on five and a half rounds of the cipher
were determined using a MILP model for “several thousand choices for the permutation
h” [BJK+16]. Among the shuffles reaching the maximum cell count of 16, one was chosen
maximizing the active cells in MANTIS5 first, and then in MANTIS6, namely

h :
[

6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11
]

, (9)

which is the product of two cycles of lengths 2 and 14 and has a period of 14.
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QARMAv1 and QARMAv2 have very different tweak schedules. QARMAv1’s tweak shuffle is
not necessarily optimal also for QARMAv2, and we may want to pick a better one if not.∗
The search uses a cell-wise MILP model of the cipher. With respect to QARMAv1, QARMAv2’s
longer tweak translates to a higher number of variables and relations in MILP models.
These then take a significantly longer time to solve, and we can only test fewer shuffles in
the same time. So, we have to rely more on heuristics. After running several experiments,
we observe that following types of shuffles seem to lead to higher active cell counts:

1. Shuffles with fewer and longer cycles;

2. Shuffles leading to schedules without structured, fixed or repeated state patterns;
and

3. Shuffles that map aligned groups of cells – i.e. cells that lie either in the same column
or in the same row – to aligned groups as much as possible.

With this intuition we immediately found a promising family of shuffles. These are of
order 16 and are obtained by permuting all rows cyclically, for instance by sending row i
to row i + 1, with the index considered modulo 4, and then applying a simple rotation
to a single row (usually the top one), or three distinct cell swaps involving just two rows,
similarly to h. Of these the following stands out after our lengthy MILP runs:

h4 :
[

13, 14, 15, 12, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
]

. (10)

Table 9a is a comparison of h to this map and to other permutations.
A study of cancellation patterns leads to a better family of shuffles. Because of the

alternating tweak schedule, we consider how a cell affects the state after two rounds. Let
tn be the round tweak added at round n, such that tn+2 = φ(tn) is added at round n + 2.
Suppose the i-th cell of the state is activated by the tweak addition in round n. In order
to avoid self-cancellations, the tweak shuffle should not map the tn’s i-th cell to a position
φ−1(i) that, in the state, is affected by the i-th cell of the state in round n+2. In Figure 4a
we show how an active single cell evolves through two forward rounds, for all sixteen cells
in a layer. We see that after two rounds, seven cells are still unaffected. Ideally, a tweak
shuffle φ should map each cell to one of the seven cells it does not affect.

Note that, even if φ is optimal in this sense, the map φ−1 used to derive tn+3 from
tn+1 is not guaranteed to be optimal. In fact, most likely it will not be, but we conjecture
that φ−1 behaves like a randomly chosen permutation. The tweak schedule progresses
beyond the reflector unmodified, so φ−1 becomes the “optimal” map and φ the “mostly
randomly-behaving” one. As we shall see, this strategy seems to be working.

In Figure 4b, we display how τ transforms entire rows and columns. Beside the remark
already made in Section 3.3 that τ2 maps rows to columns (and vice versa) we note also
that: The square of the composite map M ◦ τ lets each cell of a given row act on only
nine cells of the state, leaving in particular a single entire column always unaffected. Any
two cells in the same row will affect all twelve cells in the three affected columns. The
unaffected column is the very one to which the cells of the row are mapped under τ2.

This seems to suggest to use τ2 as the tweak shuffle. However, this does not work well,
because τ2 is an involution, leading to many fixed states and short iterative characteristics.
Note that we could permute the cells inside each column of τ2 independently, leading to
(4!)4 = 331776 different shuffles for which the no-self-cancellation property still holds. This
is too large a search space. Hence, we proceed as follows:

∗Furthermore, under h two tweak cells are only combined with the two corresponding cells of the key,
creating a partitioning of the tweak and key bits with a very small group, resulting in low weight algebraic
relations between these few bits. Even though we could not find any exploitable such relation, we want to
find alternative shuffles with a single cycle or few cycles of similar length.
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(a) One active cell through two rounds.
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(b) Rows and columns through τ .

Figure 4: Modeling State Transitions for Determining Good Tweak Shuffles.

1. We apply the 24 row permutations to τ2. The order of the resulting shuffles is at
most 8 and only six of them decompose as a product of two cycles of length 8.

2. Among these six shuffles, we select the permutation τ̂ with the highest active cell
counts in related-tweak characteristics for the full-cipher with r = 5 and r = 6.

3. We look at the order 16 cyclic shuffles obtained by composing τ̂ with a single cell
swap within a column. This produces a set of six shuffles, τ1 to τ6 (cf. Table 8).

4. We compute the weights of optimal related-tweak characteristics for the full cipher
with r = 5 and r = 6 for each τi and its inverse, 1 ≤ i ≤ 6. The shuffle

τ4 : [ 2, 10, 14, 6, 1, 9, 13, 5, 0, 8, 12, 4, 3, 11, 15, 7 ]
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maximizes the counts for r = 6 and the sum of values for r = 5 (cf. Table 9a†).

5. Finally, among the order 16 shuffles obtained by applying a single cell swap inside a
column to τ4, we again select one with the best weights in related-tweak differential
characteristics, for full-cipher models with r = 5, then 6. This shuffle is obtained
from τ4 by swapping the topmost two cells in the first column:

τf :
[

1, 10, 14, 6, 2, 9, 13, 5, 0, 8, 12, 4, 3, 11, 15, 7
]

. (11)

3.3.2 Two-Layer Blocks

The chosen function is derived from τ2 as well. We start with τf , acting on each layer in
parallel, then we swap some cells in the same position between the two layers, provided
the order of the resulting shuffle is 32. In our experiments, swapping about a half of the
cells leads to better shuffles, but we must swap an odd number of cells to get an order 32
map. We obtain the best results among the sampled shuffles by exchanging the full second
and fourth rows, and the cells in position 3 and 19:

τF :
[ 1, 10, 14, 22, 18, 25, 29, 21, 0, 8, 12, 4, 19, 27, 31, 23,

17, 26, 30, 6, 2, 9, 13, 5, 16, 24, 28, 20, 3, 11, 15, 7
]

. (12)

3.3.3 Full Diffusion Properties

Theorem 2. In QARMAv2 with ℓ = 1, any input bit nonlinearly affects all bits of the state
after three rounds, intended as the first half round, two full rounds, and the diffusion layer
of the following round.

For ℓ = 2, any input bit nonlinearly affects all bits of the state after four rounds, defined
similarly to the ℓ = 1 case, i.e. the first half round, three full rounds, and the diffusion
layer of the following round.

The first claim is inherited from QARMAv1. The second claim is proved in Appendix E.

3.3.4 Two-Layer Blocks and QARMAv1-128

Remark 3. The two-layer construction of QARMAv2-128 is in fact just a variant of QARMAv1-
128, which has a single layer and 8-bit cells. Upon pairing cell i with cell i + 16 in the state
and tweak blocks, i.e. a cell in the first layer with the corresponding one in the second
layer, we see that all operations work on these 8-bit cells. In particular, τF operates like
τf followed by four bit rotations of nine cells.

QARMAv2-128 achieves full diffusion in four rounds instead of three, making it apparently
less efficient than QARMAv1-128. Note that this fact only impacts how the reach of a
distinguisher can be extended, and our cryptanalysis considers it. By considering linear
trails and differential characteristics involving 32 4-bit cells, instead of 16 8-bit cells –
with the same linear and differential probabilities – we obtain better security estimates,
more than offsetting the round lost to slower diffusion. With QARMAv1-128, improving the
security estimates would have required a prohibitively slow bit-wise MILP model.

Our approach is also similar to the one used to construct AESQ [KLMR16] and
Pholkos [BLLS22]. These methods sit between two common approaches. The first
one doubles the size of a S-Box by placing two copies of the S-Box side by side and mixing
the input and output bits, as in MIDORI and QARMAv1. The second one uses a generic
size-doubling construction on an unmodified cipher [HI19, BCF+22]. The strategy used
here allows a better analysis, and possibly better security, than the first approach, and it
has the potential to perform much better than the second.

†Note that sometimes for a given series of full-cipher runs with a fixed φ, the minimum active cell
count is not a monotonic function of r. The reason for this is explained in Appendix A.2.
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3.4 The S-Boxes
As we have seen in the definition of the general purpose cipher, we do not reuse an S-Box
from QARMAv1. The reason for this is that if we use QARMAv1’s σ1 [Ava17] together with
M4,1, as we did in an early version of QARMAv2, then the unkeyed round function admits a
nonlinear invariant that is invariant under translation by a set of 232 constants, as proved
by Tim Beyne [Bey23]. While this invariant does not seem to threaten the security of the
full cipher, we prefer to avoid such invariants in our design.

Using QARMAv1’s σ0 would have prevented such invariants, but it has less optimal
cryptographic properties and gives integral cryptanalysis one extra round of reach. We
still use it for the PAC and Memory Authentication versions of the cipher. QARMAv1’s σ2
would have worked as well, but it is much larger and slower. An alternative could have
been to keep σ1 and revert to Class II matrix M4,2. However, with M4,2 the differential
properties of the cipher are significantly worse than with M4,1, more so than in QARMAv1.
So, we need a new S-Box to be used with M4,1.

The S-Box ק has the same optimal cryptographic properties as σ1, namely:

(i) The maximal probability of a differential is 1/4 and there are 15 such differentials;

(ii) The maximal absolute bias of a linear approximation is 1/4 and there are 30 such
linear approximations;

(iii) Each of the 15 non-zero component functions has algebraic degree 3;

(iv) Each input bit of the S-Box influences each output bit non-linearly.

The search for ,ק like that for σ1, imposes additional constraints, namely:

(v) For each output bit of the S-Box, and of its inverse, either the SOP (sum-of-products)
or the NOT-SOP of its logic negation are sums of at most four monomials;

For each output bit i, let di be the minimum of the sums of the degrees of the monomials
of the two functions considered in Property (v). Two further conditions are:

(vi) All di’s of the output bits of the S-Box and of its inverse are bounded by 10; and

(vii) The sum of the eight di must be small as possible. The minimum we found was 64.
For S-Boxes attaining this minimum, we sieve according to the total weight of the
ANFs of the eight output bits of the S-Box and of its inverse, barring constant terms,
that we bound by 50.

An additional property is required for :ק

(viii) The S-Box, together with the cipher’s linear layer, should not give any chain of
invariant affine subspace trails as described in Section 4.7.

We also verify that the composition of S-Box and MixColumns has no non-linear
invariants, no closed-loop invariants over two rounds, no closed-loop quadratic invariants
up to four rounds [WYWP18, WRP20], and no joint symmetric invariants following [Bey18].

Testing random S-Boxes yields very few results after the first few of the above conditions.
Hence, we gradually restricted the search to families of potentially good candidates, until
we focused on products of four cycles. The reason is that we want to reduce the maximum
number of non-linear invariants that the S-Box and linear layer may have in common.
Following [Bey18], the number of invariants of the S-Box is related to the number of its
cycles, whence it makes sense to minimize the latter. The search is then further limited
to cycle structures (5, 4, 4, 3) and (5, 5, 3, 3). The cycle structure of ק is (5, 4, 4, 3). With
other four-cycle structures, S-Boxes fulfilling Condition (vii) were found, but they failed
Condition (viii). With fewer cycles we only found markedly larger and slower S-Boxes.
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3.5 Alternative Constructions
We also experimented with a symmetric tweak schedule, similar to QARMAv1’s, where the
tweak schedule is reversed in the backward rounds. It used two distinct “optimal” tweak
shuffles for T0 and T1 that were chosen to minimize repeated mutual cancellations.

For the two-layer version of the cipher, we explored variants with single-row swaps
instead of two, and also with the swaps occurring every round or every three rounds.

Across all these variants, the number of active cells was consistently lower for all tested
parameter choices, meaning that they would be more advantageous for an attacker.

This seems to point towards a general principle that shuffling only after full diffusion
has occurred may result in weaker cryptanalytic properties. Mixing the parallel paths too
early would be also sub-optimal. The base, single layer, QARMAv1/QARMAv2 design requires
three rounds for full diffusion, and thus allows more options than the AES construction,
that requires only two rounds.

4 Security Analysis
In this section, we perform a security analysis of the QARMAv2 design. This leads to the
choices for the number of rounds for each targeted security level, as summarized in Table 1a
for T = 2 and Table 1b for T = 1. There, ε is a small number, such as 2, to absorb simple
optimizations of the attacks, but for the purpose of standardization it may be adjusted
to values such as 16 (cf. the NIST requirements for lightweight primitives [NIS] and the
corresponding call for algorithms [NIS18]). The rounds are counted as S-Box layers.

Table 1: Security claims and parameter choices.

(a) With two independent tweak blocks (T = 2).

Variant Block Size Key Size Time Data Parameter Rounds

QARMAv2-64-128 64 bits 128 bits 2128−ε 256 r = 9 20
QARMAv2-128-128 128 bits 128 bits 2128−ε 280 r = 11 24
QARMAv2-128-192 128 bits 192 bits 2192−ε 280 r = 13 28
QARMAv2-128-256 128 bits 256 bits 2256−ε 280 r = 15 32

(b) With a single block tweak (T = 1).

Variant Block Size Key Size Time Data Parameter Rounds

QARMAv2-64-128 64 bits 128 bits 2128−ε 256 r = 7 16
QARMAv2-128-128 128 bits 128 bits 2128−ε 280 r = 9 20
QARMAv2-128-192 128 bits 192 bits 2192−ε 280 r = 11 24
QARMAv2-128-256 128 bits 256 bits 2256−ε 280 r = 13 28

We propose one 64-bit block variant and three 128-bit block variants with differing key
sizes. Notably, we set data limits of 256 blocks per key for the small block size and 280

blocks per key for the large block size. This is consistent with existing calls for algorithms
like the NIST call for lightweight cryptographic algorithms. We believe that these limits
are ample for real world applications. The complexities of an attack include any offline
precomputations, as without them the attack itself would not be feasible in the first place.

The rest of this section contains the cryptanalysis that supports our choice of parameters.
All the cryptanalysis is performed for the version of the cipher with T = 2, unless explicitly
noted. Note that any lower bound obtained for T = 2 applies a fortiori to T = 1, as
the latter has more restrictions. Table 2 summarizes the results of the various types of
cryptanalysis. The parameters for T = 1 are optional.
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Figure 5: Differential properties of the S-Box ק and of MixColumns.

The cryptanalysis is also for the most part performed cell-wise, necessitating only
a subset of S-Box properties. While employing a specific S-Box structure, the default
assumption is that the S-Box is ,ק unless explicitly stated otherwise.

The small version of QARMAv2 is always analyzed first. If the analysis is purely cell-wise,
it can be directly extended to the large version of the cipher, with possible adjustments to
the number of rounds for full diffusion or to the active cell counts.

We always assess attacks favorably for the attacker. For instance, we assume that
bounds for forward round-only distinguishers hold for symmetric ones as well (except for
boomerang distinguishers), and extend any distinguisher by the maximal number of rounds
that does not ensure full diffusion.

Finally, we do not claim security in the related-key model, so related keys need to be
avoided at the protocol or implementation level. Analyzing related-key attacks on QARMAv2
may shed light on the necessary level of hardening for protocols or key management.

Table 2: Estimated reach of various types of cryptanalysis.
Values are for T = 2, except numbers in parentheses, which are specific for T = 1.

QARMAv2-64 QARMAv2-128
Attack Parameter r Rounds Parameter r Rounds Section

Differential 6 (5) 14 (12) 9 (8) 20 (18) 4.1
Boomerang (Sandwich) 7 (5) 16 (12) 10 (8) 22 (18) 4.2
Linear 5 12 7 16 4.3
Impossible-Differential 3 8 4 10 4.4
Zero-Correlation 3 8 4 10 4.4
Integral (Division Property) – 5 – – 4.5
Meet-in-the-Middle – 10 – 12 4.6
Invariant Subspaces – 5 – 6 4.7
Algebraic (Quadratic Equations) – 6 – 7 4.8

4.1 Differential Cryptanalysis
4.1.1 Basic Properties and Cell-Level Bounds

The maximum differential probability (MDP) of QARMAv2’s 4-bit S-Box ק is 2−2, and it is
reached by 15 differential transitions (18 for σ0). The complete difference distribution table
(DDT) is illustrated in Figure 5a. The boomerang connectivity table (BCT) [CHP+18] in
Figure 5b has a maximum probability of 10/16.

We bound the maximum probability of differential characteristics for QARMAv2 with the
help of a MILP model of the cell-wise differential behavior of M . For a detailed description
of the modeling approach, we refer to Appendix A.1. The bounds for all variants are
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Table 3: Minimum number of active S-Boxes for related-tweak differential characteristics
and linear characteristics for QARMAv2. A bound of s active S-Boxes implies a maximum

probability (or squared correlation) of 2−2s for differential (or linear) characteristics.

(a) With two independent tweak blocks (T = 2).

Half-Cipher Full-Cipher
r = 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6

ℓ Rounds = 4 5 6 7 8 9 10 11 12 13 6 8 10 12 14

1 Diff. 2 4 8 12 16 22 24 27 32 36 5 12 24 32 41
Linear 16 23 30 35 38 41 50 57 62 67 5 32 50 64 72

2 Diff. 2 6 11 17 26 34 44 50 55 59 5 16 32 52 61
Linear 16 25 36 48 58 68 72 80 88 100 24 44 56 80 96

(b) With a single block tweak (T = 1).

1 Diff. 5 9 14 19 23 28 31 36 40 45 6 24 32 39 47

2 Diff. 5 12 20 29 41 49 59 67 – – 6 26 44 67 –

summarized in Table 3. We list both results for the simple iterated round function with
an additional initial half round (“half-cipher”, where r corresponds to r + 1 S-Box layers)
and for the full reflective construction (“full-cipher”, where r corresponds to 2 r + 2 S-Box
layers). The differential bounds are in a related-tweak setting, while the linear bounds are
identical to single-key, single-tweak differential bounds (this is proved in Section 4.3.1).

With the same “good” shuffle, a 2 r+2 rounds half-cipher and a 2 r+2 rounds full-cipher
have a similar number of active cells for sufficiently large r (refer to Table 9a). This implies
that the reflector construction per se does not significantly change security with respect to
linear or differential cryptanalysis. Nevertheless, especially for smaller numbers of rounds,
the weights initially ramp up faster in the full-cipher. This may provide an advantage for
round-reduced versions for special applications that require security compromises.

4.1.2 Key Recovery

To estimate the amount of rounds an attacker can append to a distinguisher, we analyze the
differential distinguisher for QARMAv2-64 and r = 4 in Figure 11. While this distinguisher
has 26 active cells, which is two more than the optimum of 24, it has no active cells in
the state which allows us to append more rounds. If we assume that for this truncated
differential pattern an optimal characteristic with p = 2−52 exists, we are able to sketch a
key-recovery attack for r = 6 by appending two rounds each at the beginning and end of
the distinguisher.

For this attack, we generate two structures of size 253 with 252 pairs each. Then for
each structure, we sort the ciphertext based on the 12 inactive bits into buckets. For each
pair in each bucket we generate the set of keys compatible with the required difference at
the end of the distinguisher. As guessing all involved key-bits would require more than
2128 operations, we instead iterate over the ≤ 215 differences after one round was appended
and then generate the keys that are compatible with these differences. The number of
differences is at most 215 because there are five active cells and after the S-Box each active
cell can have at most 8 = 23 differences. After we fix this difference one round past the
distinguisher, we expect on average one candidate for the 13 active cells in o(K1) and
on average 25.7 candidates for the five active cells in M · o(K0). The expected number
of candidates for o(K0) is higher because we fixed the difference to a known good value.
Then, for the rounds added before the distinguisher, we need to guess 35 extra bits of K0
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∆1

∆1

∆2

∆2

∇3 ∇3 ∇4 ∇4

P1 E0 x1 Em y1 E1 C1

P2 E0 x2 Em y2 E1 C2

P3 E0 x3 Em y3 E1 C3

P4 E0 x4 Em y4 E1 C4

Figure 6: Boomerang/sandwich distinguisher.

and three extra bits of M ·K1. By independently verifying the guess in each column, we
can keep the complexity below 2128. Finally, after the guesses have been verified, we can
increase a counter for each surviving key candidate and then pick the candidate with the
highest counter. We estimate that this attack needs 254 encryption queries and 2124 time.
While the time complexity of this sketched attack could be slightly decreased and also
depends on the specifics differences in the distinguisher, we believe that is not possible to
add more than two rounds on each end to a differential distinguisher.

For the two-layer version, adding three rounds on each end might be possible because
full diffusion is only reached after four rounds.

In conclusion, we expect that QARMAv2-64 with r = 7 resists differential attacks when
data is limited to 256 blocks. For 128-bit blocks with ℓ = 2, we expect that no differential
distinguisher exists for r = 7 when data is limited to 280 blocks, and thus that the block
cipher with r = 11 is secure against differential attacks with data ≤ 280 and time ≤ 2256.
The parameters in Table 1 are thus significantly conservative, to take optimizations such
as clustering into account [DEKM16, EK18]. In fact, extrapolating the number of active
cells in optimal related-tweak differential characteristics with T = 2, we see that for
QARMAv2-128 with r ≥ 7 this number most likely exceeds 64, and thus no attack would be
possible for r = 10 even if the data limit were set to 2128 without considering clustering.
We posit that an attack with r = 11 should then be unfeasible.

4.2 Boomerang Attacks
We bound the probability of characteristics for sandwich distinguishers with the help of a
MILP model for ℓ = 1. The case ℓ = 2 seems currently unfeasible except for very small
values of r. We consider sandwich distinguishers where the cipher is decomposed into three
parts E1 ◦ Em ◦ E0, as illustrated in Figure 6. Since Em covers many rounds, we assume
that the reflector G is part of Em.

For the MILP model, we roughly follow the approach from [HNE22]: The outer parts
E0, E1 are modeled with the same cell-wise probabilistic differential model as above,
while the inner part Em models deterministic differential propagation (i.e., truncated
propagation with probability 1) in both directions to identify jointly active S-Boxes. The
overall probability p2 v q2 of the sandwich distinguisher can then be derived based on the
differential probability of the S-Boxes in the outer rounds (bounded by the MDP of 4/16)
for p, q and the boomerang probability of the jointly active S-Boxes in the inner rounds
(bounded by the maximum nontrivial entries in the BCT of 10/16) for v.

For simplicity, instead of weights 2 · 2 = 4 in the outer part and 10/16 in the inner part,
we scale the weights to 6 in the outer part and 1 in the inner part, so the final bounds in
Table 4 need to be scaled by a factor of about 2/3 to get the boomerang probability. Since
we are analysing a reflector cipher, we not only have to evaluate different combinations for
the round number of E0, Em, E1, but also configurations that differ on where the reflector
is located. We also optimize the position of the split between E0, Em, E1 to be in the
middle of a round, since this yields higher probabilities. Our results are given in Table 4.
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Table 4: Bounds for sandwich characteristics for QARMAv2-64 with rF forward and rB
backward rounds. An entry x corresponds to a boomerang probability of about 2−(2/3)x.
A likelihood of 2−56, resp. 2−80 is reached when the entry is equal to 84, resp. 120 or
higher. Numbers in italics are linearly extrapolated. Note that for rF = rB we can assume
r = rF − 1 and extend the reach of a symmetric distinguisher by four, resp. six rounds for
ℓ = 1, resp. 2, and progressively less with the increase of the difference between rF and rB.

(a) With two independent tweak blocks.

rF\
rB 1 2 3 4 5 6 7 8 9 10

1 6 6 6 6 6 15 21 32 44
2 6 6 6 6 7 15 21 32 44 60
3 6 6 6 8 18 24 35 47 62 76
4 6 9 15 28 30 38 48 63 76 92
5 10 12 18 30 46 58 73 76 90 107
6 12 15 26 38 51 82 85 94 107 123
7 15 21 35 48 73 97 105 115 122
8 21 32 49 63 81 104 116 126
9 32 46 62 75 93 114 126
10 46 60 78 93 109 120

(b) With a single block tweak.

rF\
rB 1 2 3 4 5 6 7 8 9 10

1 6 6 10 15 24 36 50 64 80
2 6 12 18 22 27 35 48 59 75 89
3 6 21 33 42 54 68 85 100 115
4 10 22 45 60 76 90 106 121
5 15 36 57 76 92 108 126
6 23 35 65 92 108 126
7 36 60 88 108 126
8 47 59 89 110
9 67 91 107
10 79 101

In Figures 13 to 15 in the Appendix, we provide selected characteristics. Each entry in
Table 4 is the minimum over all possible boomerang configurations for the given round
configuration. Optimal outcomes often arise from unbalanced round setups, where the
forward or backward parts significantly differ in length: However, they are unlikely to
effectively target the full cipher. These bounds rely on cell-wise differential bounds for
individual characteristics for the outer boomerang rounds; exploiting a potential clustering
effect for specific bitwise differences may slightly increase the resulting probabilities.
Conversely, the bound for the inner part Em is likely too optimistic, and we expect
the actual probabilities for conforming characteristics to be lower. Without a separate
switching layer, deriving bounds instead as p2 q2, we anticipate boomerang attacks to be
less effective than differential ones due to the roughly linear growth of differential bounds.

For ℓ = 2, the bounds must be extrapolated. From Table 3, we can expect that
differential characteristics for ℓ = 2 have roughly 50% more active S-Boxes than those for
ℓ = 1 for the same number of rounds. Extrapolating the growth of the values in Table 4 to
reach the value 120 (corresponding to a boomerang probability of ≈ 2−80), we expect that
usable boomerang distinguishers will exist for values of r higher by 2 than the values for
ℓ = 1. Considering the additional round for full diffusion with respect to ℓ = 1, we bound
r for ℓ = 2 by adding 3 to the bounds for ℓ = 1.

4.3 Linear Cryptanalysis
4.3.1 Basic Properties and Cell-Level Bounds

The maximum squared correlation of the 4-bit S-Box ק of QARMAv2 is 2−2, which is reached
by 30 linear approximations (32 for σ0).

The chosen MixColumns matrix M = circ(0, ρ, ρ2, ρ3) is involutory and symmetric when
viewed as a 16 × 16 matrix of bits. Since we need to analyze the inverse of the bitwise
transpose of the matrix which equals the original matrix, we can reuse the existing model.

Furthermore, since the tweak schedule is completely known by the attacker, it does
not contribute any linear bias, and we do not need to model it. Thus, the linear model
is equivalent to the differential single-key, single-tweak model. In particular, the linear
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branch number is 4 and the cell-wise linear behavior is the same as in Figure 5c. The
resulting bounds are summarized in Table 3.

For ℓ = 1, at least 32 active S-Boxes, corresponding to a squared correlation of at most
2−64, are reached after seven rounds of the half-cipher (parameter r = 6) or eight rounds
of the full-cipher (r = 3). For ℓ = 2, at least 64 active S-Boxes are reached after nine
rounds of the half-cipher (r = 8) or twelve rounds of the full-cipher (r = 5).

4.3.2 Key Recovery

Efficient key recovery for linear distinguishers can take advantage of the FFT technique
[CSQ07]. This technique was recently improved further to define an optimized framework
[BCFG+21, FGNP20]. Taking the number of rounds for full diffusion (3 rounds for ℓ = 1,
4 rounds for ℓ = 2) as a bound for key-recovery rounds in the beginning and end of the
cipher, we expect a solid security margin for linear cryptanalysis.

4.4 Impossible-Differential and Zero-Correlation Cryptanalysis
The resistance of QARMAv2 against impossible-differential and zero-correlation cryptanalysis
is evaluated using an automated model inspired by the framework in [HSE23].

We split our cipher in two halves: the upper and the lower half. Then, we model
propagation with probability 1 in forward/backward direction for the upper/lower half,
respectively. As we want to find contradictions, where the two halves meet, we model
each cell of the block cipher to be in one of four states: inactive, active with a single
difference/mask, active with nonzero difference/mask, and active with unknown (possibly
zero) difference. This representation allows us to find contradictions where a cell that is
inactive in one half is active with a single or any nonzero difference in the other half.

When running this model for ℓ = 1, we find that the longest impossible differential
distinguisher spans nine rounds as depicted in Figure 12, namely: one half round, four full
forward rounds, the reflector, three full backwards rounds and one backward half round.
This implies that for r = 4 no impossible differential distinguisher exists.

When considering ℓ = 2, four rounds provide full diffusion; so with r = 5, no impossible
differential distinguisher exists. This is because we can skip the initial half round and one
of the full rounds by leaving the plaintext and one of the tweaks inactive. Due to the full
diffusion, when the two halves meet, no miss-in-the-middle is possible.

When analysing the zero-correlation setting with ℓ = 1 a fixed tweak, the longest
distinguisher we can find covers six rounds, i.e. QARMAv2 with r = 2.

In the case of a variable tweak with ℓ = 1, we need to consider that a contradiction
might also arise in the tweak schedule. However, for r = 4, no zero-correlation distinguisher
exists. This is because after three applications of the state shuffle and MixColumns, all
linear masks must be active with unknown masks. Then, with another round this implies
the same unknown masks in the tweak. As our cipher is symmetric this holds for T0 and
T1. For ℓ = 2, the same argument applies for r = 5 due to the slower diffusion.

Considering the number of rounds for full diffusion (three rounds for ℓ = 1, four rounds
for ℓ = 2) as a bound for key-recovery rounds in the beginning and end of the cipher, we
expect a solid security margin for impossible-differential and zero-correlation cryptanalysis.

4.5 Integral Cryptanalysis and the Division Property
Integral cryptanalysis operates by identifying properties of a collection of ciphertexts
corresponding to predetermined sets of plaintexts with a specific structure. It can be
viewed as a generalization of differential cryptanalysis, which uses sets of cardinality two.

The attacker typically assembles a collection of N chosen plaintexts and generates the
corresponding ciphertexts using the target block cipher. By observing the XOR of the
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ciphertexts in specific word positions, if the result is 0, it indicates the presence of an
integral characteristic within the block cipher when subjected to the N chosen plaintexts.

Essentially, integral cryptanalysis exploits low algebraic degrees of a cryptographic
primitive, and countering it starts with the proper choice of S-Box, for instance by making
sure that all its outputs have sufficiently large degree (see Section 3.4).

The Division property is a generalization of the integral property that was proposed by
Todo [Tod15]. This tool allows for a more systematic way of ascertaining the existence of
integral characteristics by tracing their propagation across the diverse operations within
a cipher. While the original division property was word-based, Todo and Morii [TM16]
introduced the bit-based variant, to enable a more precise analysis.

Definition 1. (Bit-based Division Property [TM16]) A multi-set X ⊆ Fn
2 is said to have

the division property K for some set of n-dimensional vectors K if for all u ∈ Fn
2 , it fulfills

⊕
x∈X

xu =
{

unknown, if there is k ∈ K s.t. u ⪰ k
0, otherwise

Definition 2. (Balanced Position) Let Y ⊆ Fn
2 be a multi-set of vectors. A coordinate

position 0 ≤ i < n is called balanced position if
⊕

y∈Y yi = 0.

The bit-based division property is an effective technique for determining whether
a particular monomial is present (the unknown case) or absent (the zero case) in the
polynomial representation of the product of output bits. Once we have successfully
identified a set of balanced positions that correspond to a specific input division property
k, we can use this property to distinguish a cipher E from a randomly chosen permutation.
To accomplish this, we first construct a set X of plaintexts that form an affine subspace,
aligning with the input division property k. For each vector x = (x0, x1, · · · , xn−1) within
the set X, we set the i-th coordinate to a fixed constant ci from the binary set {0, 1} if
the i-th coordinate of k is 0. If the i-th coordinate of k is 1, we allow xi to take on any
value within the binary set {0, 1}. The size of X is 2wt(k), where wt(k) is the Hamming
weight of k.

While originally a direct programming approach was used to find bit-based division
properties for 32-bit block ciphers [Tod17], this is impractical for larger block sizes. Instead,
the propagation rules can be encoded for solving with automatic tools, as proposed by
Xiang et al. using MILP [XZBL16], and Sun et al. using SAT/SMT [SWW17].

We apply the SAT/SMT approach to QARMAv2-64 and convert the propagation rules
into Conjunctive Normal Form (CNF) to be solved using CryptoMiniSAT [SNC09]. The
longest integral characteristic found covers five forward rounds of the cipher. We did not
find any integral distinguishers over six forward rounds. If we use the S-Box σ0 we find
integral characteristics for up to six rounds and none on seven rounds.

4.6 Slide, Meet-in-the-Middle and other Structural Attacks
Slide attacks [BW99] and variants [Kar07] exploit similarity between sequences of rounds.
The main idea behind these attacks is that once sequences of rounds induce the same
permutation, then one can attack the rounds around the similar permutation by using slid
pairs, i.e., pairs of values that have the same input to the same permutation.

For QARMAv2 the issue is mitigated by several components. The cipher uses four different
types of rounds beside the reflector. The round constants are different at each round, and
since they are not light nor dense, one cannot find complementation properties or slide
properties that hold with significant probability. Finally, even if one succeeds to find a
combination of (key, tweak) and round constants such that some forward rounds are the
same (in a related-tweak settings), then the cipher’s design implies that this similarity
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should hold through the reflector and the inverse rounds. However, both reflector and
inverse rounds use different keys and the reflector is untweaked.

The best MitM attacks on QARMAv1 [ZD16, LZG+20] can possibly be adapted to
QARMAv2 and we do not expect them to be more successful. The authors of [ZD16] do
not include the time to prepare the data tables in their time complexity. Therefore their
10-round key recovery attack on QARMAv1-64 has data complexity of 253 chosen plaintexts
and time complexity of 2116. The MitM attack in [LZG+20] has time, data, and memory
respectively 2156.06, 288 CP, and 2154. Since there is a large gap between the number of
attacked rounds and the parameters given in Table 1, we posit that similar attacks are not
a threat to the security of QARMAv2.

4.7 Invariant Subspace Cryptanalysis and Non-Linear Invariants

To determine whether QARMAv2-64 amd QARMAv2-128 have invariant subspaces, we can
repeat the arguments in [Ava17] or in [LMR15] and conclude that the forward functions of
QARMAv2-64, resp. QARMAv2-128, do not have non-trivial invariant subspaces as soon as we
consider three, resp. four, full rounds. The problem with this approach is that it does not
properly account for the tweak parameter.

Besides the steps taken in the S-Box choice (Property (viii) in Section 3.4) to avoid
symmetric non-linear invariants, we can go further and consider arbitrary invariants. Since
invariants are support functions of sets of points, we consider their enveloping subspaces.

We start by giving a slight generalization of subspace trail cryptanalysis [GRR16].
Subspace trail cryptanalysis keeps track of subspaces of the state space – in our case

V = (F4
2)d =

∏d−1
j=0 Vj where all Vj

∼= F4
2 and d = 16 ℓ – that remain invariant up to

translation under the action of the unkeyed round function.

Definition 3. Let F : V → V be a round function, and r a natural number. A sequence
of r + 1 linear subspaces Z(0), Z(1), . . . , Z(r) ⊆ V is called a r-round subspace coset trail
if for each i = 1, 2, . . . r there is at least one pair of elements (ai, bi) ∈ V 2 such that
F (Z(i−1) + ai) ⊆ Z(i) + bi. The points ai, bi are called input and output offsets.

In order to determine conditions on the round tweakeys, we must consider each subspace
together with an offset. We call such a (subspace, offset) pair a coset for brevity. If a round
tweakey is contained in Z(i) + bi + ai+1, then it can be added to the state and the property
for a given state value to belong to Z(i) + bi propagates one more round. Conversely, by
observing the input and output values, it can be determined whether the round tweakeys
belong to a set of weak tweakeys – the sets Z(i) + bi + ai+1, with (hopefully) only a small
chance of false positives. Thus, we want to study how subspaces and their cosets propagate
through the cipher. Trivial trails where all Z(i) = {0} or that end with Z(i) = V are not
useful. So, we assume that trails do not start with the zero space and do not end with V .

Our goal is now to prove that such trails cannot extend to distinguishers over more
than a few rounds.

Put Z(i) =
⊗15

j=0 Z
(i)
j with Z

(i)
j ⊆ Vj for all j. If one Z

(i)
j
∼= F4

2, then Z(i′) = V for
some i′ ≤ 3 + i (for ℓ = 1) or i′ ≤ 4 + i (for ℓ = 2). So we can assume that all Z

(i)
j ⊊ Vj .

The dimension 0 and 1 cosets are individual values and pairs of values, respectively.
Tracking trails of only these coset types is analyzed more generally, i.e. with likelihoods
not necessarily equal to 1, by linear and differential cryptanalysis. Thus, we focus on
trails with at least one cell having a coset of dimension at least 2. Using a sage script, we
can list the images of the cosets in F4

2 under .ק No dimension 3 coset maps to another
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dimension 3 coset, and only following dimension 2 cosets map to other dimension 2 cosets:

2 + ⟨4, 9⟩ →−−7ק 9 + ⟨3, 4⟩

0 + ⟨4, 8⟩ →−−7ק 0 + ⟨4, 8⟩

5 + ⟨2, 8⟩ →−−7ק 3 + ⟨5, 9⟩

1 + ⟨5, B⟩ →−−7ק 1 + ⟨6, B⟩

3 + ⟨7, A⟩ →−−7ק 2 + ⟨7, 9⟩

The fact that a coset Z(i) is mapped by the round function to a coset Z(i+1), i.e.
Z(i+1) = (S ◦M ◦ τ)

(
Z(i)), can be expressed via a set of relations on the cells such as

Z
(i+1)
0 = ק

(
ρ
(
Z

(i)
10

)
+ ρ2(

Z
(i)
5

)
+ ρ3(

Z
(i)
15

))
. (13)

Let us take a closer look at this relation. As we are chaining states that contain dimension
two cosets, Z

(i+1)
0 and at least one of the Z

(i)
j on the r.h.s. have cardinality four. If, say,

#Z
(i)
10 = 4, we have Z

(i+1)
0 = ק

(
ρ
(
Z

(i)
10

)
+ δ

)
where δ is the sum of an element of ρ2(

Z
(i)
5

)
and one of ρ3(

Z
(i)
15

)
. In other words, a cell Z

(i)
j contributes to Z(i+1) through ק only after

a rotation by one to three bits. The corresponding mapping of subspaces is:

⟨2, C⟩, ⟨1, 6⟩, ⟨3, 8⟩ ρ{1,2,3}

7−−−−−→ ⟨4, 9⟩ →−−7ק ⟨3, 4⟩

⟨2, 4⟩, ⟨1, 2⟩, ⟨1, 8⟩ ρ{1,2,3}

7−−−−−→ ⟨4, 8⟩ →−−7ק ⟨4, 8⟩

⟨1, 4⟩, ⟨2, 8⟩, ⟨1, 4⟩ ρ{1,2,3}

7−−−−−→ ⟨2, 8⟩ →−−7ק ⟨5, 9⟩

⟨7, A⟩, ⟨5, B⟩, ⟨7, A⟩ ρ{1,2,3}

7−−−−−→ ⟨5, B⟩ →−−7ק ⟨6, B⟩

⟨5, B⟩, ⟨7, A⟩, ⟨5, B⟩ ρ{1,2,3}

7−−−−−→ ⟨7, A⟩ →−−7ק ⟨7, 9⟩

(14)

This means, for instance, that if a cell contains a coset of ⟨2, C⟩, ⟨1, 6⟩, or ⟨3, 8⟩ in a
given round of a coset trail, in the following round it only contributes to cells containing
a cosets of ⟨3, 4⟩. In fact, this coset must be 9 + ⟨3, 4⟩ before the addition of any round
tweakey. This also explains why the fact that ,4⟩+0)ק 8⟩) = 0+⟨4, 8⟩ is not a problem: this
set is only used under rotation, and the underlying vector subspace is not invariant under
rotations by one, two, or three bits. It is easy to see that the relations in Equation (14)
cannot be chained. This means that, at the following round, we have cosets of dimension
at least 3, and since these do not map to other dimension 3 cosets, in the third round
there is at least one cell with its full dimension 4 space in the subspace trail. Then, after
at most three (for ℓ = 1) or four (for ℓ = 2) rounds, the trail ends in the whole space V .
Hence, no useful trail can extend for more than five, resp. six rounds.

4.8 Algebraic Attacks
We consider the applicability of algebraic attacks [CP02] on QARMAv2-b.

As in [Ava17, Section 4.2], QARMAv2-b has sufficiently many rounds to reach maximum
algebraic degree b − 1. In fact, the exact same argument holds, and QARMAv2-64, resp.
QARMAv2-128 reach the upper bound b − 1 after seven, resp. eight rounds. QARMAv2-64
and QARMAv2-128 have at least 16 and 20 rounds in their most aggressive general purpose
versions, hence they should have sufficiently many rounds to reach maximum degree.

Let us now count how many quadratic equations and variables are necessary to describe
the two variants of QARMAv2. Following [CP02], it is straightforward to verify that both
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σ0 and ק are described by e = 21 quadratic equations in the eight input and output
variables over F2. Hence, the entire system for a fixed-key QARMAv2-b permutation consists
of b

4 · (2r + 2) · e quadratic equations in b
4 · (2r + 2) · v variables. For QARMAv2-64 with

r = 9 this translates to 6720 equations in 2560 variables, and for QARMAv2-128 with r = 11
to 16128 equations in 6144 variables. For comparison, a fixed-key AES-128 (resp. AES-256)
permutation consists of 6400 (resp. 8960) equations in 2560 (resp. 3584) variables.

The same conclusions as in [Ava17] should stand, i.e. that QARMAv2-64 and QARMAv2-128
should offer good resistance against algebraic cryptanalysis if also the AES does.

4.9 Security Implications of the Reflector
The arguments in [Ava17] hold in a stronger form. For each addition of K0 (resp. K1)
on the forward path, o(K0) (resp. o−1(K1)) is added in the backward path. Hence, any
reflection-like relation encompassing the reflector G and any (odd) number of rounds on
each of the two sides would be disrupted (i.e. its likelihood reduced) in a similar way as
described in [Ava17]. This means that for each i ∈ {0, 1}, the map Ki 7→ Ki + o1−2i(Ki)
is bijective (we can ignore the constant α), and thus it does not give rise to potentially
equivalent or weak classes of keys. The fact that we add o2(K0) and o−2(K1) at the center
allows to apply the same argument with an odd number of rounds at a single side of the
reflector. This should reduce the effectiveness of reflection attacks [Kar08, SBY+15].

We also have observed that key recovery is more difficult with the application of
orthomorphisms to the keys than without.

4.10 Comparison to QARMAv1

QARMAv2’s parameter r seems, superficially, larger than QARMAv1’s at the same security level.
When we will later compare the latencies directly, indeed we lose a bit to QARMAv1, but we
posit that this seems worthy since we get a longer tweak size in exchange. Furthermore,
we have more robust security margins in the sense that the 128, 192, and 256 bit levels are
defined as time (T ) 2128−ε, 2192−ε, and 2256−ε, respectively, to mount a successful attack
on the cipher, with the data (D) limits for QARMAv2 having been chosen conservatively.

With the same data limits, the 128-bit security level for QARMAv1-64 corresponds to
time T = 272−ε, and the security levels of 256 bits for QARMAv1-128 translate to time
T = 2176−ε. These values are actually lower bounds. They are established by noting that
QARMAv1, while formally a three-round Even-Mansour construction [EM91], is quite close
to being single-round due to the simplicity of the reflector. Nevertheless, it is crucial not to
dismiss the reflector completely: Taking into account the likelihood of guessing a difference
at the sides of the reflector, the complexity may be increased by 2b/2, hence T = 2104−ε

and T = 2208−ε. In the QARMAv1 paper, it is shown that an attack to QARMAv1-b exist with
T = 27b/4, D = 23b/4−1 and memory M = D, resulting in T = 2112 with D = 247 for
QARMAv1-64 and T = 2224 with D = 295 for QARMAv1-128.

In Appendix G we report the published cryptanalysis of QARMAv1. No attack so far has
broken the security claims for full-round versions of the cipher. We expect that QARMAv2,
with its improved structure, will be similarly resistant to cryptanalysis, despite the stronger
security claims.

5 Version for Pointer Authentication and Memory Integrity
QARMAv2 can be used as a short-message MAC by simply truncating its output: If m < b
bits are removed, the construction is secure up to about 2(b+m)/2 queries [BI99].

For the PAC feature and the computation of memory integrity tags (following [JLK+23]),
we instantiate QARMAv2-64 with either ק (see Equation (4)) or QARMAv1’s S-Box σ0 (see
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Equation (5)). If the tweak has a length of only one block, or, in the PAC instruction set
terminology, only one “salt” is used, then we put T1 = φ(T0), where T0 = T . The value of
the parameter r is 6 for memory integrity and for pointer authentication. σ0 is to be used
in case the latency with ק is too high.

If r = 6 cannot be reached for pointer authentication without significant performance
penalties, for instance on small in-order cores, then it is admissible to use r = 5 or r = 4.

5.1 Usage
We now describe how to use QARMAv2-64 for memory integrity. Let us partition a cache
line M in 64-bit blocks M = M0|M1| · · · |Mr−1. We say that a function provides temporal
uniqueness – or freshness – when repeated writes of the function computed on the same
plaintext in the same memory location result in different outputs. Freshness is usually
achieved by including a counter as an input to the function. Now, depending on whether
the memory encryption algorithm offers freshness or not, we can use one of two integrity
algorithms in Figures 7 and 8. They are “tPMACs”, i.e. tweakable Parallelizable MACs.
The first one is for the case where the system does not provide freshness, and the second
one is to be used when it does. αi is the physical address of the block that is being
encrypted as a contribution to the memory region’s tag, and ν is a nonce or counter.

M0 M1 M2 · · · Mr−1

K

α0
E α1

E α2
E · · ·

αr−1
E

tag

Figure 7: PMAC computed with a
TBC when freshness is not provided.

M0 M1 M2 · · · Mr−1 ν

K
1∥α0

E

0∥α0
E 0∥α1

E 0∥α2
E · · · 0∥αr−1

E

tag

Figure 8: PMAC computed with a TBC
when freshness is provided.

The output of the QARMAv2 function needs to be truncated to be used as a PAC. To
generate a z-bit tag with 1 ≤ z ≤ 32, first reorder the output bits as follows:

[0, 8, 16, 24, 32, 40, 48, 56] , 4 + [0, 8, . . . , 56] , 1 + [0, 8, . . . , 56] , 5 + [0, 8, . . . , 56] .

Then, pick the first z bits in this sequence.

5.2 Security
Note that QARMAv2-64’s output for both PAC and memory integrity is truncated to 32 or
fewer bits. The purpose of these features is to deter attacks, not to prevent them with
absolute certainty. For instance, a 32-bit memory integrity tag should not be guessable
with likelihood higher than 2−32. This applies to the two most common deployments:

1. Encryption and integrity do not provide temporal uniqueness. This prevents memory
corruption but does not address replay attacks, forgery, or semantic security violations.
An example is Intel’s TDX [Int21] (which uses 28-bit integrity tags).

2. Encryption and integrity provide temporal uniqueness by including counters in the
inputs. The counters must be themselves protected, for example by an integrity tree
as in Intel’s SGX [Gue16]. This offers semantic security, and prevents replay attacks.

For a full-cipher with r = 6, we can take a differential characteristic for r = 4, which
has at least 24 active cells, and we (optimistically) extend it by two rounds on each side
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to cover the whole full-cipher with r = 6. However, for an output of 32 bits or less, any
distinguishable characteristic must have likelihood higher than 2−32.

For a full-cipher with r = 5 (resp. r = 4), we need to consider the active cells with r = 3
(resp. r = 2), which is just just 12 (resp. 5), so differential cryptanalysis cannot be mounted
if the tag is truncated to 24 bits (resp. 10 bits) or less. Therefore, any cryptographic attack
is here made more difficult only by the fact that it would likely be a known plaintext
attack, or that the control that an adversary can have on the input is quite limited. The
PAC feature is thus only effective if in these cases the pointer tag is truncated to at most
24, resp. 10 bits. This prevents differential cryptanalysis, and the adversary can only guess
the tag bits or try to recover the key by brute force.

Considering linear attacks, for r = 4, we already have 50 active S-boxes, hence a 2100

data complexity which is even above the data limits for the normal cipher.

6 Hardware Implementation and Evaluation
Our target construction is a low-latency block cipher, hence we evaluate the metrics of
a fully unrolled circuit from the input to output ports. We compare our design with
the following ciphers: AES-{128|192|256}, MANTIS-{7|8}, QARMAv1-{64|128}, PRINCE,
Orthros, SPEEDY-{6|7}, MIDORI-{64|128}, PRESENT-{80|128}, SKINNY-{64|128}, and
BipBip. We also consider the ASCON-p12 permutation used in a single key Even-Mansour
mode. We skip PRINCEv2 as latency and area are almost identical to the original PRINCE.

We included also MANTIS, a 64-bit only precursor to QARMAv1, supporting single-block
tweaks. The {0,1}-diffusion matrix and the simpler reflector are significant weaknesses of
the design. It has been broken for r ≤ 6 [EK18], but the attacks do not extend to QARMAv1.

Finally, we consider BipBip [BDD+23], a 24-bit block cipher with a 256-bit key and
40-bit tweak support. It is designed to encrypt the least significant 24 bits of a 64-bit
pointer while using the top 40 bits as the tweak, to safeguard against pointer forgery.

In order to guarantee a fair comparison to SKINNY [BJK+16], we use the more recent
parameters that are used in Romulus for the NIST Lightweight Cryptography Com-
petition [IKMP20, IKMP19]. We observe that in related-tweakey characteristics for
SKINNY-128-384, a probability not exceeding 2−128 is reached first with 26 rounds. If we
add then 10 rounds because of the six-round full-diffusion we reach 36 rounds and this
means that the 40 rounds used in Romulus represent a margin of 10%. Applying the same
reasoning to SKINNY-64-192, we see that probability 2−64 is achieved after 18 rounds.
Adding 10 rounds and a margin of 10% we reach 31 rounds, which we round up to 32,
since this is the minimum suggested in the SKINNY paper anyway.

6.1 Methodology
We follow the evaluation framework outlined in [BIL+21]. The relative area and latency
advantages between different primitives may vary considerably with the manufacturing
processes. As a results, a company’s or standardization body’s business decision of “betting”
on a primitive over another cannot be based on a single data point. Hence, we compare
our choice of ciphers at three different processes:

1. At 90nm lithography with the STM cell library CORE90GPSVT.CMOS090LP;

2. At 15nm lithography with the Nangate 15nm Open Cell Library [MMR+15]; and

3. At the TSMC 5nm lithography with the tsmc_sch280pp57_cln05fb41001 library,
courtesy of the Arm implementation team.

For a fair evaluation we adhered to the following design flow for all the ciphers:
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1. The ciphers have been implemented in VHDL, and a functional simulation was done
using the Modelsim software. Correctness has been verified against test vectors.

2. For the 90nm and 15nm processes we synthesize the circuits with Synopsys Design
Compiler. For the 5nm process, the VHDL code is first converted to Verilog using
GHDL with the yosys plugin (available at https://github.com/ghdl/ghdl-yosys-
plugin), and then compiled using Cadence Genus.

3. Optimizing for area is a computationally heavy stage that outputs a circuit with,
usually, near minimal area. We use this as the datapoint for the area-optimized
circuit. This step also outputs the total critical path of the circuit.

4. Timing simulations have then been performed on the synthesized netlist. Correctness
was again verified against test vectors.

5. For the 90nm and 15nm processes, the switching activity of each gate of the circuit
was collected during post-synthesis simulation. The average power was obtained
using Synopsys Design Compiler, using the back annotated switching activity.

6. To generate latency-optimized circuits, we constrain the total signal delay between
the input/output ports to an impossibly low value, like 1ps. The compiler of course
fails, but it still outputs a circuit with a critical path as small as it can find.

We coded the S-Boxes as LUTs, except for the AES. Synthesis software can often
generate better RTL involving 4-bit S-Boxes starting from LUTs than from ad-hoc code
(even if, say, hand-optimized or generated with software like PEIGEN). Larger S-Boxes are
a different matter, because of their higher intrinsic complexity. For the AES we used the
Maximov-Ekdahl circuit [ME19]. For SKINNY-128 and BipBip we tried both tables and
the circuits from the designers, and the table yielded significantly better area and latency.

6.2 Results
All results are presented in Tables 5 to 7. We include an energy-related Figure of Merit
(FoM), namely the product of Delay and Power, divided by block size, normalized as a
percentage of the AES-128 value. With this definition, lower values are better. This is just
one of the many possible Figures of Merit that can be associated to a circuit: For instance,
in [BDN+10], the FoM is defined as throughput over the square of the area.

We are not allowed to report power consumption at 5nm. Hence, we use area times
delay over block size as a FoM. Note that power depends not only on area but also on
the specific gates used; a cipher with an 8-bit S-Box will use a different mix of gates than
a cipher with a 4-bit S-Box, and their power consumption profiles are ignored when just
using the area. Hence, the two definitions of FoM cannot be directly compared.

Note that this FoM only applies to the primitive, not to a mode of operation. Since
in XEX we need two invocations of the same circuit of a non-tweakable block cipher to
encrypt a block, we may want to double the latter’s FoM for comparison to a TBC.

Our results prove that QARMAv2 offers advantages with respect to all other ciphers
we tested in fully unrolled implementations. At the 64-bit block level, it is consistently
faster than tweaked XEX constructions based on MIDORI-64, PRINCE, while allowing longer
tweaks. At the 128-bit block level, the advantage is even more significant. QARMAv2-128 is
both smaller and faster than the corresponding AES at all security levels, with a Power-
Delay-per-bit FoM advantage ranging from 3 to 10. Although MIDORI-128 is slightly smaller
and faster, it lacks tweakability. PRESENT-128 shows mixed results, being sometimes faster
or slower, sometimes larger or smaller, but it is also not tweakable. SPEEDY is faster, but
its security margins need to be re-calculated, its block size is unusual for most applications,
and its inverse is slower. SKINNY is designed for small round-based implementations, and

https://github.com/ghdl/ghdl-yosys-plugin
https://github.com/ghdl/ghdl-yosys-plugin


28 The QARMAv2 Family of Tweakable Block Ciphers

Table 5: Comparative Evaluation Metrics for the STM 90nm Process and Library.

Area optimized Latency optimized
Area Delay Power FoM Area Delay Power FoM

Cipher Rounds µm2 GE ns mW % AES µm2 GE ns mW % AES
AES-128 10 392477 89199 42.11 87.12 100 1007463 228969 7.24 220.57 100
AES-192 12 466704 106069 49.54 112.22 151 1174522 266937 8.66 306.05 166
AES-256 14 388858 88377 75.79 151.61 313 1013796 230408 11.86 396.29 294
PRESENT-80 31 65059 14786 24.15 9.93 13.1 204429 46461 4.84 38.05 23.0
PRESENT-128 31 68532 15575 23.63 10.49 13.5 209871 47698 4.87 37.32 22.8
MIDORI-64 16 32531 7394 13.94 2.72 2.06 96172 21857 3.08 12.69 4.90
MIDORI-128 20 85308 19388 18.82 10.09 5.18 284115 64572 4.09 46.78 12.0
PRINCE 12 27898 6340 11.35 1.70 1.06 89210 20275 2.56 12.25 3.92
Orthros 12 98151 22307 10.60 6.57 1.90 299910 68162 2.41 26.06 3.93
SPEEDY-6 6 112098 25477 12.36 9.82 2.20 340428 77370 2.54 26.17 2.77
SPEEDY-7 7 107958 24536 15.02 9.45 2.58 333465 75788 2.95 27.67 3.41
ASCON-p12 12 133855 30421 12.85 5.45 1.91 416723 94710 3.07 17.57 3.38
SKINNY-64-192 32 68966 15674 42.76 15.07 17.6 217367 49402 6.06 48.91 18.6
SKINNY-128-128 40 335075 76153 102.71 148.94 417 966836 219735 12.37 358.79 278
SKINNY-128-384 40 377083 85700 102.72 167.62 470 991088 225247 12.49 376.99 295
MANTIS-7 16 41408 9411 15.66 3.34 2.85 125087 28429 3.26 13.11 5.35
MANTIS-8 18 46443 10555 17.37 4.07 3.85 136300 30977 3.67 16.40 7.54
BIPBIP-Dec 11 91747 20852 14.98 5.05 11.0 177407 40320 2.26 9.25 6.98
BIPBIP-Enc 11 120880 27473 33.47 11.43 55.6 297645 67647 4.79 29.87 47.8
QARMAv1-64-σ0 (r = 5, PAC) 12 32762 7446 12.44 2.21 1.50 112636 25599 2.68 9.93 3.34
QARMAv1-64 (r = 7) 16 45023 10232 18.25 4.22 4.12 152671 34698 3.79 19.81 9.40
QARMAv1-128 (r = 9) 20 111569 25357 23.01 13.18 8.27 383538 87168 4.81 66.63 20.0
QARMAv1-128 (r = 11) 24 121448 27602 25.82 26.90 18.9 396003 90001 5.71 84.10 30.0
QARMAv2-64-σ0 (r = 4) 10 26390 5998 9.12 1.18 0.59 85513 19435 2.11 6.41 1.69
QARMAv2-64-σ0 (r = 5) 12 31670 7198 11.24 1.77 1.08 99035 22508 2.57 8.78 2.83
QARMAv2-64-σ0 (r = 6) 14 36818 8368 13.21 2.43 1.75 117655 26740 2.97 12.22 4.55
QARMAv2-64 (r = 7) 16 43857 9968 16.91 3.66 3.37 134419 30550 3.56 16.70 7.45
QARMAv2-64 (r = 9) 20 54996 12499 21.14 5.89 6.79 168483 38292 4.44 26.34 14.6
QARMAv2-128-128 (r = 9) 20 107474 24426 21.25 11.59 6.71 336499 76477 4.56 54.83 15.7
QARMAv2-128-128 (r = 11) 24 126193 28680 24.25 27.32 18.1 372749 84716 5.26 69.01 22.7
QARMAv2-128-192 (r = 13) 28 147408 33502 28.28 37.50 28.9 434831 98825 6.14 96.15 37.0
QARMAv2-128-256 (r = 15) 32 168622 38323 32.48 49.57 43.9 494968 112493 7.02 125.05 55.0

its performance and area suffer significantly in fully unrolled implementations. On the
other hand, although round-based implementations of QARMAv1 and QARMAv2 may not be
overtly large or slow, they probably not compare favorably to SKINNY.

For the same value of r, MANTIS-r has the same number of rounds as QARMAv1 and
QARMAv2, while lighter and faster. For single block tweaks QARMAv2-64 with r = 7 has
similar area and latency to MANTIS-7 while likely offering a larger security margin.

For BipBip, our area synthesis results contrast with those in [BDD+23], possibly due
to a different GE baseline. BipBip outperforms QARMAv2-64-r-σ0, even at r = 5.

Some recent wide block constructions are not presented in the performance tables, like
AESQ [KLMR16] and Pholkos [BLLS22]. They are obviously not lightweight primitives,
however comparing them to, say QARMAv2-128, may still be of interest. First, Pholkos
supports only 128-bit tweaks, which we argued to be too short in the Introduction. Secondly,
the area of Pholkos-128 n with s steps (one step is two unkeyed AES rounds) is roughly
ns/5 times and its latency s/5 times those of AES-128. The FoMs are thus approximately
equal to (s/5)2 × 100 %. Since s is 8 for Pholkos-256 and 10 for Pholkos-512, we have
FoMs of 256% and 400%. AESQ has the same FoM as Pholkos-512. The only advantage
of these primitives is that they can be accelerated in software using architectural AES
instructions. In Appendix F we show how our design philosophy (together with ideas from
QARMAv1) can be used to provide lightweight alternatives to AESQ and Pholkos.

Remark 4. The synthesis step occasionally yields unusual outcomes, like the area of AES-256
being smaller than AES-192 in the 90nm process. Ideally, the FoMs of AES-192 and AES-256
should be approximately (12/10)2 = 144 % and (14/10)2 = 196 %. This simply means
that the synthesis step selected a circuit which it deemed best according to an internal
objective function among the wide – but not comprehensive – space of explored options.
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Table 6: Comparative Evaluation Metrics for the Nangate 15nm Process and Library.

Area optimized Latency optimized
Area Delay Power FoM Area Delay Power FoM

Cipher Rounds µm2 GE ps mW % AES µm2 GE ps mW % AES
AES-128 10 22478 114329 1728 26.63 100 28071 142777 1026 31.14 100
AES-192 12 26698 135796 2061 34.96 157 34025 173063 1221 36.39 139
AES-256 14 31744 161459 2319 47.64 240 41601 211594 1422 49.12 219
PRESENT-80 31 3808 19370 1001 2.87 11.2 6261 31846 711 4.63 20.2
PRESENT-128 31 3953 20105 960 2.67 12.5 6446 32787 706 4.56 20.6
MIDORI-64 16 1929 9814 629 0.96 2.61 2567 13054 455 1.31 3.76
MIDORI-128 20 5102 25952 851 3.35 6.20 6976 35484 604 4.47 8.44
PRINCE 12 1664 8465 536 0.67 1.56 2338 11891 372 0.89 2.08
Orthros 12 5766 29329 486 2.33 2.46 7439 37838 352 2.64 2.90
SPEEDY-6 6 5220 26551 545 2.06 1.63 7539 38346 355 2.37 1.76
SPEEDY-7 7 6610 33618 659 3.18 3.02 8875 45139 419 3.51 3.06
ASCON-p12 12 8562 43545 568 2.07 1.63 10408 52939 436 1.82 2.48
SKINNY-64-192 32 4069 20693 1953 5.03 42.6 6162 31332 892 5.30 29.6
SKINNY-128-128 40 18520 94200 3862 40.89 343 29643 150777 1763 49.47 196
SKINNY-128-384 40 20480 104172 4098 45.18 402 30896 157148 1751 47.32 186
MANTIS-7 16 2412 12268 723 1.23 3.87 3364 17110 474 1.32 3.92
MANTIS-8 18 2703 13749 814 1.56 5.52 3759 19121 529 1.66 5.50
BIPBIP-Dec 11 5344 27180 710 2.01 16.5 6554 33843 327 1.42 7.75
BIPBIP-Enc 11 7031 35760 1520 3.99 70.3 10334 52561 683 3.86 44.0
QARMAv1-64-σ0 (r = 5, PAC) 12 1879 9555 550 0.72 1.10 2771 14091 354 0.92 2.02
QARMAv1-64 (r = 7) 16 2688 13672 828 1.36 3.12 3863 19649 513 1.67 5.36
QARMAv1-128 (r = 9) 20 6465 32889 1042 5.73 13.0 9681 49236 649 5.50 11.2
QARMAv1-128 (r = 11) 24 7765 39493 1244 6.87 18.6 11633 59169 780 8.17 19.9
QARMAv2-64-σ0 (r = 4) 10 1583 8053 447 0.48 0.93 2381 12110 305 0.59 1.13
QARMAv2-64-σ0 (r = 5) 12 1897 9650 530 0.70 1.61 2839 14439 371 0.90 2.09
QARMAv2-64-σ0 (r = 6) 14 2202 11201 620 0.95 2.56 3349 17031 426 1.24 3.30
QARMAv2-64 (r = 7) 16 2580 13122 752 1.36 4.45 3754 19095 497 1.59 4.95
QARMAv2-64 (r = 9) 20 3231 16887 952 2.13 8.74 4738 24100 618 2.58 9.98
QARMAv2-128-128 (r = 9) 20 6336 32226 909 4.39 8.67 9292 47261 623 4.96 9.67
QARMAv2-128-128 (r = 11) 24 7585 38580 1140 6.24 15.5 11142 56674 749 7.19 16.9
QARMAv2-128-192 (r = 13) 28 8842 44975 1330 8.47 24.5 12991 66074 877 10.09 27.7
QARMAv2-128-256 (r = 15) 32 10107 51411 1516 11.08 36.5 14734 74941 1002 13.00 40.8

Remark 5. An important remark concerns the measurement of circuit area as Gate
Equivalence (GE) i.e. relative to the area of a NAND gate. Each gate exists in several
versions, differing in arity, fanout, and voltage, and in the literature it is uncommon to find
which version of NAND2 is used as the baseline. Therefore, GE comparisons hold only with
the same process and (version of the) library. Comparison across different papers do not
necessarily apply, unless they are using the exact same tools. As a results, area-optimized
SKINNY-128-128 (r = 40) has GE values of 76153, 94200, and 49553 in the three processes,
which are higher than the value 32415 in [BJK+16].

7 Conclusions and Open Questions
We have introduced the tweakable block cipher family QARMAv2, an update to the QARMAv1
design. Like its predecessor, QARMAv2 targets low-latency fully unrolled implementations
for memory encryption and constructing timing critical MACs. However, it is clearly
suitable for general purpose use, except possibly when the smallest possible round-based
implementation is required. Two significant enhancements in the new cipher include
the accommodation of longer tweaks and the shift away from basing security levels on
time/data tradeoffs. All the building blocks and their composition have been extensively
analyzed. We took a cautious stance, opting to keep solid security margins rather than
decreasing the number of rounds or employing a lighter S-Box. Despite this, QARMAv2 is a
competitive lightweight design, as confirmed by our hardware implementations.

Some techniques used in this paper may be of independent interest, such as: our MILP
models for diffusion matrices; a comparative analysis of a full reflection cipher versus an
iterative half-cipher; our boomerang attack framework that includes the reflector; and our



30 The QARMAv2 Family of Tweakable Block Ciphers

Table 7: Comparative Evaluation Metrics for the TSMC 5nm Process and Library.

Area optimized Latency optimized
Area Delay FoM Area Delay FoM

Cipher Rounds µm2 GE ps % AES µm2 GE ps % AES
AES-128 10 2304.1 28873 3064 100 4520.6 56648 1791 100
AES-192 12 2635.4 33025 3686 138 5023.6 62952 2153 134
AES-256 14 3238.7 40585 4290 197 6191.5 77587 2513 192
PRESENT-80 31 812.0 10175 1836 42.2 1815.7 22752 953 42.8
PRESENT-128 31 848.8 10636 1841 44.2 1824.1 22858 958 43.2
MIDORI-64 16 443.5 5557 921 10.6 761.8 9546 678 12.7
MIDORI-128 20 1085.1 13597 1156 17.8 1954.5 24492 840 40.6
PRINCE 12 334.6 4193 710 6.74 672.1 8422 534 8.86
Orthros 12 1262.5 15820 681 12.2 2284.3 28624 497 14.0
SPEEDY-6 6 1795.5 22499 787 13.3 3133.8 39270 468 12.1
SPEEDY-7 7 2109.2 26431 924 18.4 3599.6 45107 552 16.2
ASCON-p12 12 2228.3 27923 826 26.1 2766.8 34671 507 17.3
SKINNY-64-192 32 918.3 11507 1951 25.4 1682.0 21078 1254 26.0
SKINNY-128-128 40 3986.3 49953 4371 247 9241.0 115800 2164 247
SKINNY-128-384 40 4513.6 56560 4348 278 9527.5 119391 2177 256
MANTIS-7 16 485.6 6085 854 11.8 788.4 9879 683 13.3
MANTIS-8 18 545.8 6839 974 15.1 861.0 10789 774 16.5
BIPBIP-Dec 11 303.7 3806 647 14.8 381.1 4776 436 11.0
BIPBIP-Enc 11 514.7 6450 1480 57.6 1090.3 13662 909 65.3
QARMAv1-64-σ0 (r = 5, PAC) 12 394.7 4946 728 8.14 707.0 8860 525 9.16
QARMAv1-64 (r = 7) 16 551.7 6913 1030 16.1 996.6 12489 731 18.0
QARMAv1-128 (r = 9) 20 1422.3 17823 1290 26 2535.8 31776 912 28.6
QARMAv1-128 (r = 11) 24 1635.6 20496 1561 36.2 3078.3 38575 1091 41.5
QARMAv2-64-σ0 (r = 4) 10 309.7 3881 606 5.32 495.9 6214 430 5.27
QARMAv2-64-σ0 (r = 5) 12 374.6 4694 721 7.65 600.8 7529 514 7.63
QARMAv2-64-σ0 (r = 6) 14 435.4 5456 829 10.2 721.2 9038 600 10.7
QARMAv2-64 (r = 7) 16 537.0 6729 936 14.2 954.4 11959 706 16.6
QARMAv2-64 (r = 9) 20 675.2 8461 1173 22.4 1187.3 14879 885 26.0
QARMAv2-128-128 (r = 9) 20 1347.5 16886 1170 22.3 2337.5 29292 890 25.7
QARMAv2-128-128 (r = 11) 24 1620.3 20305 1409 32.3 2875.8 36037 1068 37.9
QARMAv2-128-192 (r = 13) 28 1893.5 23727 1645 44.1 3333.0 41778 1248 51.4
QARMAv2-128-256 (r = 15) 32 2166.8 27152 1879 57.7 3797.8 47592 1425 66.8

approach to block size doubling, which goes to greater length than the approaches used
for AESQ and Pholkos to re-use the cryptographic properties of the base design.

Regarding the comparison between purely iterative ciphers and reflection ciphers, our
Boomerang cryptanalysis (Section 4.2) shows that lopsided distinguishers exhibit greater
reach or higher probability than symmetric ones. This echoes findings in the cryptanalysis
of QARMAv1 (Appendix G), where asymmetric attacks target more rounds. Additionally,
in reflector constructions, the faster ramp-up of the number of active cells in linear trails
and related-tweak differential characteristics suggests higher security compared to pure
iterative designs. However, the lesson from Remark 2 in Section 2.7 cautions that any
added structure may come with its own pitfalls.

In Section 4.7 we proved that certain forms of subspace trail analysis do not threaten
the security of QARMAv2, regardless of the round constants. In fact, the constants play
no role at all in our proof. While the constants harden against slide attacks, the mix of
different round types may suffice. We kept the round constants dense due to the design
philosophy inherited from QARMAv1, i.e. a conservative, “defense-in-depth” approach. This
said, we could even envision a “QARMAzero” version of QARMAv2 with the round constants
set to 0, except for α and β. If secure, it would be an enticing alternative for software and
round-based hardware implementations. Hence, properly determining the security margins
of such a variant is an interesting problem in its own right.

Our research raises some intriguing questions: Can the cycle structure of an S-Box as
a permutation be linked to its complexity (e.g., multiplicative complexity, depth, or area)?
Can we find more effective tweak schedules that still admit a compact description?
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Appendices

A MILP Modeling

A.1 Modeling MixColumns

In this section, we only consider the action of a matrix on a single column of the state,
viewed as a vector. Let xi, resp. yi for 0 ≤ i < 4 be the cells in a column vector, resp. the
cells in the image of said column under MixColumns. The weight of a vector is the number
of active cells in it. The weight of a transition y = M · x is the sum of the weights of x and
y. In Figure 9 we show the admissible transitions of Class I and II matrices. We now set
to turn them into MILP models.
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Figure 9: Differential properties of MixColumns.

A.1.1 Relations for both Class I and Class II Matrices

To model the fact that Class I and Class II matrices have branch number 4, including
that an inactive input vector cannot map to an active output vector and vice versa, we
introduce an integer auxiliary variable d and add relations

xi , yi ≤ d for 0 ≤ i < 4 , and
∑

i

xi+
∑

i

yi ≥ 4 d ,
∑

i

xi ≥ d and
∑

i

yi ≥ d .

(15)
The simple XOR model of MixColumns is given by the following relations for 0 ≤ i < 4:

yi +
∑
j ̸=i

xj ≥ 2 yi and yi +
∑
j ̸=i

xj ≥ 2 xj′ for all j′ ̸= i

xi +
∑
j ̸=i

yj ≥ 2 xi and xi +
∑
j ̸=i

yj ≥ 2 yj′ for all j′ ̸= i .
(16)
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If the input cell in row k is active, then at least one of the three output cells in the
rows ̸= k is active (and the reverse direction is also true). This can be expressed as:∑

i ̸=k

yi ≥ xk and
∑
i ̸=k

xi ≥ yk for 0 ≤ k < 4 . (17)

A further property, that follows directly from the XOR model, is: For an active input
cell in row i, and any output cell in a different row j, at least one among that output cell
and the input cells in rows ̸= i, j must be active. In equations:

yj +
∑

k ̸=i,j

xk ≥ xi and xj +
∑

k ̸=i,j

yk ≥ yi for all i ̸= j , 0 ≤ i, j < 4 . (18)

A.1.2 Class I Specific Relations

It can also easily be seen that a Class I matrix satisfies

xi + xj ≥ yi − yj and yi + yi ≥ xj − xj for all i ̸= j , 0 ≤ i, j < 4 , (19)

i.e. For any two rows i, j, if output cell i is active and j is not, then at least one of the
input cells in rows i and j must be active.

We can even express the fact that Class I matrices have no weight five transitions in a
very compact way. To do this, we introduce an integer auxiliary variable di for each i and
the constraints:∑

i

xi +
∑

i

yi ≤ 4 + 4 di and
∑

i

xi +
∑

i

yi ≥ 6 di for 0 ≤ i < 4 . (20)

Indeed, if the total weight of an active transition is not four, then it must be at least five
and d ≥ 1 by the first relation, and by the second relation the total weight is at least six.
If the total weight of the transition is four, then d must be 0 by the second relation.

Weight two columns only map to columns with the same active cells or to fully active
columns. This is achieved by forcing the same cells to be active in this case and the fact
that weight five transitions are not possible (cf. Relation (20)). Let dij , d′

ij be distinct
integer auxiliary variables. Then, for all i, j with 0 ≤ i < j < 4, the following relations
must be satisfied:

dij ≥ xi + xj −
∑

k ̸=i,j

xk − 1 , yi ≥ dij and yj ≥ dij

d′
ij ≥ yi + yj −

∑
k ̸=i,j

yk − 1 , xi ≥ d′
ij and xj ≥ d′

ij .
(21)

A.1.3 Class II Specific Relations

Relation (19) becomes a constraint for Class II matrices by replacing i ̸= j with |i− j| = 2.

A.1.4 Explicitly Excluding Transitions

Models for any diffusion matrix can be obtained by simply listing the relations for each
forbidden transition. In order to model that a transition cannot occur, the corresponding
relation is created as follows. Let I ⊆ {0, 1, 2, 3}, resp. J ⊆ {0, 1, 2, 3} be the sets of
the indices of the cells that are active in an input, resp. output column. We forbid the
transition from

⋃
i∈I

xi to
⋃

j∈J

yj by adding the following relation( ∑
i∈I

xi +
∑
i ̸∈I

(1− xi)
)

+
( ∑

j∈J

yj +
∑
j ̸∈J

(1− yj)
)
≤ 7 . (22)
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A diffusion matrix should not be modeled by this approach only, as the resulting model
would be quite large and probably very slow to solve. Usually, the XOR model and the
branch number are modeled first, then any other non-occurring transition is forbidden.

A.1.5 Models for Class I and Class II Matrices

Various equivalent models for Class I matrices can be obtained by combining various
subsets of the above relations, for instance in the original MANTIS and QARMAv1 papers the
matrix was defined by Relations (15), (17), (19) and (18) – in particular the XOR model
is not used. We can reason as in Appendix A.1.3 to turn sets of relations into a model for
Class II matrices. These models can be slightly accelerated by adding Relation (21).

A starting point consists of the XOR Relations (16) and the branch number Condition
(15), removing the inadmissible transitions as described in Appendix A.1.4. For Class II
matrices, we exclude eight transitions, producing a compact and fast model. However, for
Class I matrices we must exclude 24 transitions, leading to a large, slow model.

For Class I matrices, the smallest model consists of Relations (15), (16), and (20).
When used with Gurobi’s parameters MIPFocus and Cuts both set to 2 this model results
in the fastest solving times, especially for the largest problems.

A.2 Extending Solutions Inductively
For ℓ = 1 and half-cipher, a MILP program for r is just an extension at the end of the
corresponding program for r − 1. This ensures that the minimum active cell count in
characteristics is an increasing function of r all other parameters being equal.

For ℓ = 1 and full-cipher, it is clear that a MILP program for r is not an extension
of the program for r − 1. This explains why sometimes the minimum active cell count
in characteristics decreases for increasing r. However, the program for r is an extension
of the program for r − 2, where the two additional rounds are added at each end of the
cipher. Therefore, the minimum active cell count is a monotonic function of r restricted
to the even or to the odd r. Furthermore, a MILP program for r is an extension of the
corresponding program for r − 1 and φ replaced by its inverse φ−1 (and the roles of the
two tweak blocks exchanged). So if one merges the counts for a given φ with, say, even r
with the counts for φ−1 for odd r we obtain a monotonic sequence.

For ℓ = 2, because of the eXchangeRows operations every other round, a MILP program
for r is an extension of the corresponding program for r − 2.

We exploit these properties to provide initial starting solutions to the MILP solvers.

B Tables of Trail Weights
In Table 9, we tabulate the weights of optimal linear trails and related-tweak differential
characteristics for both half-cipher and full-cipher QARMAv2-64, resp. QARMAv2-128 for
various values of r, various choices of the tweak shuffle, and for T = 2 and 1. Table 8 lists
the shuffle τ1 to τ6, which are defined in Section 3.3 and measured in Table 9a.

Table 8: The six shuffles τ1 to τ6.

τ1 : [ 2, 10, 14, 6, 0, 8, 12, 4, 3, 11, 15, 7, 1, 9, 13, 5 ]
τ2 : [ 1, 9, 13, 5, 0, 8, 12, 4, 2, 10, 14, 6, 3, 11, 15, 7 ]
τ3 : [ 3, 11, 15, 7, 2, 10, 14, 6, 0, 8, 12, 4, 1, 9, 13, 5 ]
τ4 : [ 2, 10, 14, 6, 1, 9, 13, 5, 0, 8, 12, 4, 3, 11, 15, 7 ]
τ5 : [ 3, 11, 15, 7, 1, 9, 13, 5, 2, 10, 14, 6, 0, 8, 12, 4 ]
τ6 : [ 1, 9, 13, 5, 2, 10, 14, 6, 3, 11, 15, 7, 0, 8, 12, 4 ]
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Table 9: Minimum number of active S-Boxes in related-tweak differential characteristics
and in linear trails/non-related-value differential characteristics.

(a) Single layer cipher (ℓ = 1, QARMAv2-64) with two independent tweak blocks (T = 2).

Half-Cipher Full-Cipher
r = 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6

rounds = 4 5 6 7 8 9 10 11 12 13 6 8 10 12 14

R
el

at
ed

-t
w

ea
k

D
iff

er
en

tia
lf

or
gi

ve
n

φ

1 2 2 3 3 4 4 5 5 6 6 5 12 16 19 22
τ 2 4 7 7 16 16 20 20 24 24 5 14 16 19 31
τ2 2 6 8 10 12 12 14 16 18 18 5 12 20 24 32
h 2 3 7 11 14 19 25 30 34 38 5 12 23 28 41
h4 2 4 7 12 17 21 22 24 29 34 5 10 22 32 36
τ1 2 4 6 12 16 20 24 27 31 34 5 12 24 22 38
τ2 2 5 8 12 17 19 25 28 28 32 4 12 24 30 38
τ3 2 5 8 12 17 19 25 28 28 32 5 12 24 30 38
τ4 2 4 9 12 16 20 25 27 30 32 5 16 24 32 39
τ5 2 4 6 12 16 20 24 27 31 34 5 12 24 22 38
τ6 2 4 9 12 16 20 25 27 30 32 5 16 24 28 38

τ−1
1 2 4 6 11 15 21 24 28 30 33 5 14 16 34 32

τ−1
2 2 5 8 12 16 21 24 26 30 33 5 14 24 30 38

τ−1
3 2 5 8 12 16 21 24 26 30 33 5 14 24 30 38

τ−1
4 2 4 7 12 16 20 25 28 28 32 5 16 24 28 40

τ−1
5 2 4 6 11 15 21 24 28 30 33 5 14 16 31 32

τ−1
6 2 4 7 12 16 20 25 28 28 32 5 16 24 28 36
τf 2 4 8 12 16 22 24 27 32 36 5 12 24 32 41

Linear Trails 16 23 30 35 38 41 50 57 62 67 5 32 50 64 72

(b) Two layer cipher (ℓ = 2, QARMAv2-128) with two independent tweak blocks (T = 2).

R
el

.-t
w

ea
k

D
iff

er
en

tia
l h 2 3 7 12 19 24 28 35 35 43 5 14 28 40 51

h4 2 4 9 14 18 25 27 33 37 42 5 14 28 38 49
τf 2 4 9 14 20 24 28 32 36 40 5 12 24 40 51

τF 2 6 11 16 26 34 44 50 55 63 5 16 32 52 67

Linear Trails 16 25 36 48 58 68 72 80 88 100 24 44 56 80 104

(c) Single layer cipher (ℓ = 1, QARMAv2-64) with a single block tweak (T = 1).

R
el

.-t
w

.
D

iff
. h 5 10 14 17 24 27 31 36 39 45 8 20 31 38 47

h4 5 8 12 19 21 26 30 34 39 43 6 22 23 38 45
τf 5 9 14 19 23 28 31 36 40 45 6 24 32 39 47

(d) Two layer cipher (ℓ = 2, QARMAv2-128) with a single block tweak (T = 1).

R
el

.-t
w

ea
k

D
iff

er
en

tia
l h 5 11 17 22 29 32 38 43 49 51 10 16 30 47 56

h4 5 8 18 21 29 32 39 43 49 51 6 26 31 47 53
τf 5 11 14 23 27 32 37 40 47 48 6 28 32 47 48
τF 5 12 20 29 41 49 59 67 – – 6 26 44 67 –

rounds = 4 5 6 7 8 9 10 11 12 13 6 8 10 12 14
r = 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6

Half-Cipher Full-Cipher
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C A Remark on Minimal Weight Linear Trails
In Figure 10, we display a low weight iterative cell-based linear trail for single-layer QARMAv2.
It involves 34 active cells across six rounds. On a full trail, the total weight could be
reduced by up to eight cells if the first or last round have a weight of nine, allowing at each
end of the trail the replacement of up to two weight nine rounds with weight seven rounds.

τ M, S τ M, S τ M, S

τ M, S τ M, S τ M, S τ M, S

Round 1 Round 2 Round 3

Round 4 Round 5 Round 6

Figure 10: Example of minimal weight iterative linear trail.

This results in an asymptotic average of around 5.67 cells per round. In contrast, an
MDS matrix-based approach has a minimum of 25 cells over four rounds, averaging 6.25
cells per round. To achieve a similar minimal active cell count, using a Class I Almost
MDS matrix and the MIDORI StateShuffle would need about 10% more rounds than an
MDS matrix with an AES-like ShiftRows. However, the former diffusion matrix is lighter,
potentially leading to a more compact and faster design.

D Characteristics for Differential, Impossible Differential,
and Boomerang Attacks

We provide detailed characteristics for selected cryptanalytic results of Section 4: Figure 11
illustrates how a key-recovery attack on r = 6 rounds of QARMAv2-64 could be designed
based on a characteristics following the optimal truncated differential pattern for r = 4.
Figure 12 illustrates the longest impossible differential distinguisher for QARMAv2-64 under
a cell-based miss-in-the-middle approach. Figures 13 to 15 show some potential boomerang
distinguishers identified by a cell-wise model for a total of 12 rounds. The more balanced
setups yield lower bounds.

E Full Diffusion Property for the Two-Layer Version
In the following (as well as in Appendix F), it is understood that “perturbed” means
“influenced non-linearly” (by a fixed input bit). A cell is perturbed if at least one of its
output bits is perturbed.

The four-round full diffusion property for the cipher with ℓ = 2 can be easily proved
with the aid of a simple computer program. The program starts with just one perturbed
state cell, and keeps track of which cells are perturbed after each round operation. We
display in Figure 16 the trails corresponding to the four cells in the first row of the state
in the case where eXchangeRows occurs after the second full round, and in the case where
eXchangeRows occurs after the first full round. These two cases correspond to the initial
structure of the cipher for even and odd r, respectively. Note that eXchangeRows and the
S-Box layer commute. The trails which have been omitted are very similar to the displayed
ones, and all end with 32 perturbed cells.
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Figure 16: Selected trails from the proof of the four-round full diffusion property for ℓ = 2.

In order to verify whether all bits of the state are perturbed after four rounds, we now
count how many bits in each cell are perturbed after each S-Box layer.

Recall from [Ava17] that σ0 satisfies a weaker form of Property (iv) in Section 3.4,
namely: There is one input bit that perturbs only three output bits, and all other three
input bits perturb all four output bits. It is now easy to prove that full diffusion after
four rounds holds with σ0: After the first, resp. second, S-Box layer, at least three, resp.
four bits of each perturbed cell are individually perturbed. With ,ק all four bits in each
perturbed cell are perturbed already after the first S-Box layer.

The property holds also for the 8-bit S-Box construction from QARMAv1 [Ava17]: after
the first, second and third S-Box layer, the number of perturbed bits in the perturbed cells
is at least three, seven, and eight. In Appendix F a 16-bit S-Box is discussed.
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F Wide Block Versions

In the introduction, we justified the choice of designing a TBC with short blocks of just
64 and 128 bits, but with a long “native” tweak to express a larger permutation space.
However, the ideas in this paper are more general, and we showcase their flexibility by
sketching 256-bit and 512-bit block versions of QARMAv2. These are just concepts and
should not be taken for mature proposals – for instance, a full cryptanalysis is missing.
However, we believe that discussing them is timely, because of the NIST’s recent interest
in tweakable wide block encryption techniques [NIS23].

The two examples have two layers, and use 8-bit and 16-bit S-Boxes in place of the
4-bit S-Boxes used by QARMAv2-64 and QARMAv2-128. The 8-bit S-Box follows QARMAv1’s
design, cf. Figure 17. The 16-bit S-Box similarly consists of four parallel S-Boxes with
interwoven outputs, cf. Figure 18. We can assume that keys and tweaks are single blocks,
and everything else is easily adapted from the main design. We expected that these
variants will have over AESQ and Pholkos roughly the same advantage (in the sense of
Section 6) that QARMAv2-128 enjoys over the AES.

σ⟨2⟩ :
σ

σ

x0

x7

x′
0

x′
7

σ⟨4⟩ :

σ

σ

σ

σ

x0

x15

x′
0

x′
15

Figure 17: The eight-bit S-Box. Figure 18: The sixteen-bit S-Box.

For the 16-bit S-Box σ
⟨4⟩
0 (four copies of σ0), in Table 10 we show the minimal counts

of the perturbed bits in each cell, up to reordering of the four 4-bit subcells. Therefore,
with σ

⟨4⟩
0 , the four-round full diffusion property for ℓ = 2 holds, but the three-round full

diffusion property for ℓ = 1 does not (a fourth round is needed). With ,⟨4⟩ק all 16 bits are
perturbed already after the second S-Box layer, whence Theorem 2 holds in full generality.

Table 10: Lower bounds for the number of perturbed bits per perturbed
cell in the composite 16-bit S-Box σ

⟨4⟩
0 , after each S-Box layer, with the values

after the 4-bit S-Boxes and the bit interweaving (“Weave”) given separately.

St
ar

t First Layer Second Layer Third Layer Fourth Layer
S-Box Weave S-Box � Weave � S-Box Weave S-Box
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1
1
1
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3
3
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3
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,

3
3
2
1
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3
2
2
2

4
4
4
0

3
3
3
3

4
4
4
4

Total 1 3 9 12 16

Regarding the diffusion matrix, it can be proved that circ(0, ρ4, ρ8, ρ12) on (F16
2 )4 is a

Class I matrix (see Section 2.5 and Appendix H).



Avanzi, Banik, Dunkelman, Eichlseder, Ghosh, Nageler, and Regazzoni 49

G Cryptanalysis of QARMAv1

For the reader’s convenience, we collect the published cryptanalysis of QARMAv1 in Table 11,
including time, memory, and data information. Some of the attacks break the security
claims for QARMAv1 on reduced round versions of the cipher, but the residual security
margin is quite ample, at least 4, resp. 12 rounds for QARMAv1-647, resp. QARMAv1-128.

Table 11: Cryptanalysis of QARMAv1. The number of rounds is given as x + y,
where x, resp. y is the number of S-Box layers before, resp. after the reflector.
An asterisk near the size means that M4,1 is the diffusion matrix, not M4,2.

Size Rounds Outer � Attack Complexity � Technique Referenceattacked whitening Time Data Memory

64 4 + 6 N 2116 + 270.1 253 CP 2116 MITM [ZD16]
64 3 + 8 N 269 258.38 CP 263.38 Imp. Diff. [LZG+20]
64 4 + 4 Y 233 + 290 216 CP 290 MITM [LJ18]
64 4 + 5 Y 248 + 289 216 CP 289 MITM [LJ18]
64 4 + 6 Y 272 261 CP 278.2 bits Trunc. Imp. Diff. [YQC18]
64 4 + 6 Y 259 259 KP 229.6 bits Rel-Tweak Stat. Sat. [LHW19]
64 4 + 6 Y 275.13 247.12 CP 272 Rel-Tweak Trunc. Diff. [SII23]
64 5 + 5 Y Time × Data (CP) = 2125.8 237 bits Rel-Tweak Imp. Diff. [ZD19]
64 5 + 5 Y 283.53 247.06 CP 280 Rel-Tweak Trunc. Diff. [SII23]
64 3 + 8 Y 264.4 + 280 261 CP 261 Imp. Diff. [ZDW18]
64 4 + 7 Y 2120.4 261 CP 2116 Trunc. Imp. Diff. [YQC18]
64 5 + 6 Y 2111.16 234.26 CP 2108 Rel-Tweak Trunc. Diff. [SII23]
64 4 + 8 Y 266.2 248.4 CP 253.70 Zero Corr./Integral [ADG+19]

128 4 + 6 N 2232 + 2141.7 2105 CP 2232 MITM [ZD16]
128 3 + 8 N 2137 2111.38 CP 2120.38 Imp. Diff. [LZG+20]
128 3 + 8 N 2145.98 2102.54 CP 2135.54 Rel-Tweak Imp. Diff. [DWLW22]
128∗ 4 + 6 Y 2237.3 2122 CP 2144 Trunc. Imp. Diff. [YQC18]
128∗ 4 + 7 Y 2241.8 2122 CP 2232 Trunc. Imp. Diff. [YQC18]
128 2 + 8 Y 2120.94 2104.02 CP 294.50 Rel-Tweak Imp. Diff . [DWLW22]
128 5 + 5 Y 2156 288 CP 2152 bits MITM [LJ18]
128 5 + 5 Y 2164.48 288 CP 297 MITM [LZG+20]
128 4 + 7 Y 2126.1 2126.1 KP 271 bits Rel-Tweak Stat. Sat. [LHW19]
128 4 + 8 Y 2156.06 288 CP 2154 MITM [LZG+20]
128 8 + 3 Y 2104.60 2124.05 CP 248 Rel-Tweak Trunc. Diff. [SII23]
128 8 + 4 Y 2154.53 2108.52 CP 2144 Rel-Tweak Trunc. Diff. [SII23]
128 9 + 4 Y 2238.02 2106.63 CP 2240 Rel-Tweak Trunc. Diff. [SII23]

In light of the changes made to QARMAv2, we expect that the same attacks on the new
design will have higher complexities.

H Properties of the Diffusion Matrices
This Appendix is an abridged version of Section 3.1 of [Ava17], with some additional remarks.
For the reader’s convenience, we report without proofs the theorems on the classification
of the Almost-MDS matrices used in QARMAv1 and QARMAv2, and their properties.

The complexity of QARMAv1’s and QARMAv2’s diffusion layers comes from the matrix.
Roughly speaking, the usual requirements on a diffusion matrix are:

1. It should guarantee mathematically provable good diffusion; and

2. It should be as lightweight as possible.

The first requirement is usually quantified by the branch number [DR02]. MDS matrices,
which are those with maximal branch number, i.e. equal to their dimension plus one, have
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been used for decades in symmetric primitive design [SV94, Vau94]. However, recent
designs have focused on lighter matrices, such as the Almost MDS ones, with branch
number equal to their dimension. Using such matrices, achieving similar security as designs
using MDS matrices may require more rounds, but, with a suitable choice of components,
the Almost MDS-based design can also be smaller and faster.

The second requirement is often seen as minimizing the matrix weight. This reading of
the requirement is aimed at software implementations and immediately leads, for instance,
to the search for matrices with many ones [JV04]. However, for latency-critical hardware
implementations, we want to obtain the smallest circuit depth instead. This is equivalent
to minimizing the maximum of the weights of the rows of the binary matrix describing the
action of the original r by r matrix as a linear operator over Fmr

2 , m being the S-Box size.
Matrices whose entries are all either 0 or 1, i.e. {0, 1}-matrices, are clearly optimal

according to the second requirement. Since a MDS matrix cannot have vanishing entries,
a MDS {0, 1}-matrix would have to be an all-ones matrix, which is absurd. Hence {0, 1}-
matrices cannot be MDS. On the other hand, Almost MDS examples can be found, but in
dimensions 2, 3, and 4 only [CK08]. Examples are given by matrices that have zeros on
the main diagonal and ones everywhere else. However, they must be used with care: In
MIDORI-64, they enable the propagation of iterative characteristics rooted in the fixed-point
structure of the S-Box by creating parallel copies of the same characteristics. We must
look for diffusion layers that prevent this phenomenon.

If the S-Box outputs undergo suitable distinct linear transformations for each target cell
prior to begin added together, the resulting characteristics will differ. This differentiation
reduces the likelihood of both characteristics propagating through the subsequent S-Box
layer. Consequently, we explore options beyond {0, 1}-matrices. This is usually entails
considering matrices over binary extension fields.

A problem with matrices over binary extension fields is that multiplication by any
element different from 0 and 1 needs a modular reduction step, which adds latency.
However, we can consider the quotient ring Rm = F2[X]/(Xm + 1). The image ρ of X in
the ring Rm satisfies ρm = 1, and {ρm−1, . . . , ρ2, ρ, 1} is a basis for Rm as a F2-algebra.
The multiplication by ρ in the ring Rm with respect to this basis is just a simple circular
left rotation of the coordinates. Since these coordinates are elements of F2, i.e. bits, an
action of ρ on m-bit cells is immediately defined. Since Rm contains zero divisors (for
m ≥ 2), care shall be taken when constructing invertible matrices. However, if the search
is restricted to the circulants of the form

M = circ(0, ρa, ρb, ρc) =


0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 , (23)

then Almost MDS matrices are not exceedingly difficult to find, as shown by the following
Theorem.

Theorem 3. Let Rm = F2[ρ] be the quotient ring F2[X]/(Xm + 1) where ρ is the image
of X in R, m ≥ 2. The Almost MDS matrices M of the form (23) over the ring Rm are
precisely the invertible ones, i.e. are those for which ρ4a + ρ4b + ρ4c ∈ R∗

m.

Remark 6. If m = 4 or 8, then all matrices (23) are invertible. In fact, for m = 4 the
determinant ρ4a + ρ4b + ρ4c is always 1 and for m = 8 it is equal to either 1 or ρ4.

Now let us consider the matrices of type (23) with equally lightweight inverse.

Theorem 4. Let Rm = F2[X]/(Xm + 1) = F2[ρ] be defined as in Theorem 3. The
Almost MDS matrices M = circ(0, ρa, ρb, ρc) that admit an inverse of the same form
M = circ(0, ρd, ρe, ρf ), i.e. with entries of weight at most one, are those that satisfy
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a ≡ c + t where 2 t ≡ 0 mod m (for odd m this implies t = 0, for even m it can be t = 0
or m/2). In this case, the parameters of the matrix M are: d ≡ a − 2 b, e ≡ −b, and
f ≡ d + t mod m.

Such a matrix M is involutory if and only if 2 b ≡ 0.

Remark 7. An analogue of Theorem 3 holds over fields F2m as well. A matrix M =
= circ(0, A, B, C) with ABC ̸= 0 is invertible if and only if its determinant A4+B4+C4 ̸= 0,
in which case it is Almost MDS. However, the multiplications by A, B, or C are circuits
of non-negligible depth, unless they are equal to 1.

Besides the MIDORI circulant M0 := circ(0, 1, 1, 1) several other matrices have been
considered. For QARMAv1-64, and both versions of QARMAv2, these include

M4,1 = Q4,1 = circ(0, ρ, ρ2, ρ3) ,

M4,2 = Q4,2 = circ(0, ρ, ρ2, ρ) , and
M4,3 = Q4,3 = circ(0, 1, ρ2, 1) .

For QARMAv1-128 the considered matrices were

M8,1 = Q8,1 = circ(0, ρ2, ρ4, ρ6) ,

M8,2 = Q8,2 = circ(0, ρ, ρ4, ρ5) ,

M8,3 = Q8,3 = circ(0, 1, ρ4, 1) , and
M8,4 = circ(0, ρ, ρ2, ρ5) with Q8,4 = circ(0, ρ, ρ4, ρ) .

Note that M8,1, M8,2, M8,3, and Q8,4 are involutory, whereas M8,4 = circ(0, ρ5, ρ6, ρ) =
= ρ4 ·M8,4. The matrices M∗ and their inverses are used in the forward and backward
functions, and the Q∗’s are used in the reflector. These matrices fall into two classes:

1. Class I includes M0, M4,1 and M8,1; and

2. Class II includes M4,2, M4,3, M8,2, M8,3, M8,4 and Q8,4.

Class I matrices have 51 possible active column-to-column state transitions, of which
the 67 transitions of Class II matrices are a superset. These transitions are displayed
in Figure 9. Exhaustive enumeration yields the following result.

Proposition 1. All the matrices over R4 and R8 characterised in Theorem 4 (i.e. the
circulants M = circ(0, ρa, ρb, ρc) with an inverse of the same form) admit only the column-
to-column transitions shown in Figure 9.

Remark 8. As noted in Section 2.5, Class I matrices offer improved diffusion over Class
II matrices: This advantage applies to both linear trails and related-tweak differential
characteristics using both QARMAv1’s and QARMAv2’s tweak schedules. In QARMAv1, the
selection of the Class II matrix shifted from M4,1 to M4,2 in early design, despite the
higher active cell counts of the former matrices. This was done because the four selection
criteria were evaluated together:

(i) The number of fixed points of the matrix used in the reflector;

(ii) The number of active S-Boxes in linear and related-tweak differential trails, which
depends on the matrix class;

(iii) The differential uniformity of the construction consisting of an S-Box layer, the
diffusion matrix, and a second S-Box layer, where only two input cells are active; and

(iv) The applicability of the analysis of invariant subspace attacks in [Ava17, Section 4.3].
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For QARMAv1, a much better result in the third criterion motivated the choice of M4,2, the
relative improvement being larger than in the first two criteria: With hindsight, these
heuristics are explained by Tim Beyne’s observation in [Bey23]. For QARMAv2, the choice
of Class I matrix M4,1 was backed by a more comprehensive cryptanalysis, and the study
performed for QARMAv2 supersedes Criterion (i) and improves on Criteria (ii) to (iv). This
analysis in turn required the selection a different S-Box compared to QARMAv1 in order
to reap the benefits of improved active cell counts without losing in terms of potentially
unbound subspace trails.

I Test Vectors
I.1 QARMAv2-64
P = 0000000000000000

K0,K1 = 0123456789abcdef,fedcba9876543210
T0,T1 = 7e5c3a18f6d4b290,1eb852fc9630da74

For r = 4: C = 2cc660354929f2ca
For r = 5: C = 76d5422b082e32ad
For r = 6: C = ca1ad3689c2b8e8d
For r = 7: C = 24b73800025aa50f
For r = 8: C = a3990d50099ef616
For r = 9: C = d459510ab82c66fc

I.2 QARMAv2-128
P = 00000000000000000000000000000000

K0,K1 = 00102030405060708090a0b0c0d0e0f0,0f0e0d0c0b0a09080706050403020100
T0,T1 = 7e5c3a18f6d4b290e5c3a18f6d4b2907,1eb852fc630da741b852fc960da741eb

For r = 9: C = 361262e2ecf88f03f4ea898d6a4f412f
For r = 11: C = a874291a195606e17805e5bd05f8d066
For r = 13: C = 5f514df8ac6cd2c51c23b8e62e6a2d6a
For r = 15: C = 8c3471d4ebb28b6ecb4ed28586c77f8e

I.3 QARMAv2-64-σ0

P = 0000000000000000

K0,K1 = 0123456789abcdef,fedcba9876543210
T0,T1 = 7e5c3a18f6d4b290,1eb852fc9630da74

For r = 4: C = 88f2efe5b4e8a4fc
For r = 5: C = 5eba5ebd2ebc06e3
For r = 6: C = ad6ca9c3f2bdd37e
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