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Abstract. The duplex construction is already well analyzed with many
papers proving its security in the random permutation model. However,
so far, the first phase of the duplex, where the state is initialized with
a secret key and an initialization vector (IV ), is typically analyzed in a
worst case manner. More detailed, it is always assumed that the adver-
sary is allowed to choose the IV on its will. In this paper, we analyze how
the security changes if restrictions on the choice of the IV are imposed,
varying from the global nonce case over the random IV case to the IV
on key case. The last one, in particular, is the duplex analogue of the use
of a nonce masked with a secret in AES-GCM in TLS 1.3. We apply our
findings to duplex-based encryption and authenticated encryption, and
discuss the practical applications of our results.
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1 Introduction

The duplex construction of Bertoni et al. [8], the sibling of the sponge con-
struction [7], lends itself to efficiently fulfill many cryptographic tasks includ-
ing encryption and authenticated encryption. The impact the duplex has on
symmetric cryptography has recently been impressively showcased in the NIST
lightweight standardization process, where 5 (including the winner) [1,2,9,12,16]
out of 10 algorithms follow the duplex construction or are duplex-inspired. Those
schemes are nonce-based authenticated encryption schemes with the property
that their security relies just on the uniqueness of the nonce, but not on how
it is chosen. The same level of nonce formalism is also followed by the various
security proofs of the various different duplex constructions we have seen in lit-
erature [8, 11, 17, 21, 22]: the proofs in large parts assume an attacker-favorable
choice of nonce, or, as called more generally in the duplex, the initialization
vector (IV ).

In this work, we will restrict our focus to the very general duplex construction
of Daemen et al. [11], but with the rephasing suggested by Mennink [21]. (We also
refer to the excellent work of Mennink [21] for a detailed treatment of the duplex



in full generality (in his Section 3.1) and the role and importance of rephasing (in
his Section 3.4).) In a nutshell, the duplex consists of an initialization interface,
where a b-bit state is initialized using a key K and an initialization vector IV .
Then an arbitrary amount of duplexing calls can be made. Each duplexing call
first evaluates a cryptographic b-bit permutation p on the state, then squeezes its
r outermost bits of the state (as digest), and it absorbs a b-bit message. There is
an additional input, namely a flag, that indicates whether the r outermost bits
of the message will be added to the outer part of the state, or will overwrite that
part. A detailed version of this duplex construction — or, in fact, a construction
that generalizes the initialization function as we will discuss shortly — is given
in Section 3.1.

Daemen et al. [11] derived a general security bound of this duplex con-
struction, which gives an indication of the degree at which the construction
is indistinguishable from random depending on a fine-grained set of adversar-
ial resources. Dobraunig and Mennink [17] considered this construction in the
leakage resilience setting. A crucial observation in their security analyses is that,
intuitively, security of the scheme is guaranteed as long as the intermediate in-
ner parts stay unknown to the adversary and never collide. Different keys or
different IV s will give a different initialization, and thus (likely) different and
unpredictable inner parts after evaluation of the permutation. However, current
duplex results assume that the attacker has full control over the IV , and the
influence of initialization calls on the security bound only appears in two terms
of the entire security bound:

µ ·N
2k

+

(
µ
2

)
2k

, (1)

where k is the key size, µ the number of users/keys, and N is the number of
permutation queries that the adversary can make. The terms of (1) are the last
two terms of (5c) of the bound of Theorem 1, where in general Qi ≤ µ. The first
term of (1) comes from the event that the adversary can “guess a key”, i.e., it
makes a permutation query (N attempts) for one of the µ k-bit keys. The second
term comes from “unlucky key collisions”, as they would lead to colliding inner
parts for different users.3

However, as said, these bounds assume that the attacker has fairly full control
over the choice of IV and they are merely dominated by the adversarial power
in guessing one of the µ keys. However, in practice, restrictions on the IV are
quite conceivable. A typical example of this is the idea of masking the IV with
a secret, similar to AES-GCM in TLS 1.3 [23]. In this paper, we investigate how
the security bound of the duplex construction changes if we impose restrictions
on the IV .

3 We remark that there is a third term influenced by initialization calls, namely the first
term of (5c) of Theorem 1. This term is not relevant for the introductory discussion
of our work, but is taken into account in the technical analysis; see also Section 3.5.
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1.1 Improved Bounds for Different IV Usages

The two terms capturing “guessing the key” and “unlucky key collisions” of (1)
are tight in the general case, where the attacker is allowed to repeat IV s under
different keys. However, if this is not the case, these two terms change and can
be significantly improved in some use cases.

To investigate the exact role of the initialization in the duplex, we first con-
sider a generalization of it in Section 3.1. In this generalization, the initialization
does not anymore consist of just a concatenation of the key with the IV , but in-
stead, we consider initialization as a concatenation of two functions that initialize
both parts of the state on input of the key array and an (always unique) index.
The generalization seems subtle but is strictly necessary to capture applications
that rely on random IV s.

Now, using our generalized duplex construction, we consider five different
practical cases to initialize the state of the duplex.

– The first case we consider is the global IV in Section 4.1. This principle is
just the description of the idea of a globally unique key identifier presented
by, e.g., Daemen et al. [9]: the IV is unique over all µ users. Intuitively (but
technically the story is a little bit more involved), this ensures that µ = 1
and we get

N

2k
+

0

2k
;

– For the second case, we consider randomly chosen IV s in Section 4.2. If
it can be ensured that the IV is chosen randomly outside the influence
of an attacker, the collision of IV s for a single user or between different
users becomes probabilistic. On the other hand, contrary to the attacker-
favorable case where all parties may start using as IV an encoding of 0 and
count upwards, a randomly chosen IV does improve the bound, although it
becomes a bit more technical;

– For the third case, we assume that the involved parties agree on a random
offset from which they then count upwards in Section 4.3. Compared to the
previous case, this eliminates IV collisions of a single user, thus improving
the bound further;

– As a fourth scenario, we consider that the IV is masked with additional
key material in Section 4.4. In contrast to all previous scenarios, the actual
choice of the IV does not matter in this case, as long as it is unique. This is
akin to what is done in TLS 1.3 for AES-GCM [23], which is analyzed in [5].
We show that this is also possible for the duplex, with a potential strong
uplift in the security bound, because for the duplex, this has a similar (albeit
a bit weaker) effect than just extending the size of the key;

– Finally, we show that the security can further be improved, by combining the
ideas of a masked IV (fourth case) with a global IV (first case) in Section 4.5.

For all five cases, the precise details/conditions and improved security bounds
are given in Section 4. We apply the improved bounds to duplex-based stream
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encryption in Section 5 and authenticated encryption in Section 6, and we discuss
the practical meaning and limitations of the results using a typical parameter
set inspired by the NIST Lightweight Cryptography winner Ascon [15, 16] in
Section 7.

1.2 Outline

We describe basic preliminaries in Section 2. The duplex construction, including
our generalization with respect to the initialization interface, is given in Sec-
tion 3. This section also includes the duplex security model and a copy of the
existing security result (adapted to our generalization) of Daemen et al. [11]. We
derive improved security bounds for the five types of initialization in Section 4.
These improved bounds are then applied to stream encryption in Section 5 and
authenticated encryption in Section 6. Afterwards, we discuss practical implica-
tion of our results in Section 7 and conclude in Section 8.

2 Preliminaries

We consider 0 to be a member of N. For a value n ∈ N, the set of bit strings of
length n is defined as {0, 1}n. We denote {0, 1}∗ = ∪n∈N{0, 1}n, and we denote
the set of infinitely long strings by {0, 1}∞. We define by perm(n) the set of
all permutations p on {0, 1}n. For a bit string X ∈ {0, 1}∗, the length of X is
denoted as |X|, and for an additional bit string Y ∈ {0, 1}∗, the concatenation
of X and Y is denoted as X∥Y and their bitwise exclusive or (XOR) as X ⊕ Y

truncated to min{|X|, |Y |} bits. For a finite set S, we denote by S
$←− S the

uniformly random drawing of an element S from a finite set S.
For X ∈ {0, 1}n and for m ≤ n, the function leftm(X) outputs the m leftmost

bits of X and rightm(X) the m rightmost bits of X. For Y ∈ {1, . . . , 2n}, we
denote by encoden[Y ] the encoding of Y as an n-bit string.

2.1 Distinguisher

A distinguisher D is an algorithm. It is given access to a list of oracles, either
O or P, which we denote as DO or DP. It can make queries to its list of oracles,
and in the end it outputs a decision bit b ∈ {0, 1}. We denote by

∆D (O ; P) =
∣∣Pr

(
DO = 1

)
−Pr

(
DP = 1

)∣∣
the advantage that distinguisher D has in distinguishing the lists of oracles O
from P. In our work, distinguishers have unbounded computational power, and
we will measure their success probabilities solely by the number of queries made
(see also Section 3.3).
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2.2 Multicollision Limit Function

We will use the notion of multicollision limit functions from Daemen et al. [11],
which considers a balls-into-bins experiment tailored to sponge constructions.

Definition 1 (multicollision limit function (mulf)). Let Q, c, r ∈ N. Con-
sider the experiment of throwing Q balls uniformly at random in 2r bins, and let
ν be the maximum number of balls in a single bin. We define the multicollision
limit function (mulf) νQr,c as the smallest natural number x that satisfies

Pr (ν > x) ≤ x

2c
.

The mulf appears a bit artificial, but can be easily bounded. In particular, Dae-
men et al. [11, Section 6.5] demonstrated that the value x targeted in Definition 1
satisfies

2be−λλx

(x− λ)x!
≤ 1 . (2)

where λ = Q/2r. We will not dive into detail on how this bound is derived, but
will highlight the core idea as we will use it later on. This bound is obtained
by observing that for any particular bin, the number of balls in that bin follows
the binomial distribution with n = Q trials and probability and p = 1/2r, and
for large enough values it is upper bounded by a Poisson distribution with mean
λ = np = Q/2r. We refer to [11, Section 6.5] for the detailed reasoning behind
(2) and to Mennink [21, Section 4.2] for a more detailed discussion of the mulf
in general.

3 Duplex Construction and Security

We will consider the description of the duplex construction of Daemen et al. [11]
and Dobraunig and Mennink [17]. We will, however, adopt the description of
Mennink [21], who described the duplex in the more convenient permute-squeeze-
absorb phasing (a detailed discussion on the sponge phasing is given in [21, Sec-
tion 3.4]). However, we will not consider this duplex construction as is: we will
consider a generalization to be able to properly and rigorously study the ini-
tialization of the duplex. Our generalized duplex construction is given in Sec-
tion 3.1. We describe the security model in Section 3.2 and an explanation on
how to parametrize distinguishers in Section 3.3. These two sections are based
on [21, Sections 3.2, 3.3, and 4.1], but generalized to reflect the generalization
in the initialization phase. The security result of Daemen et al. [11] for the gen-
eralized duplex construction for the default (baseline) initialization is given in
Section 3.4. Finally, in Section 3.5 we dive into the security proof of Daemen et
al., isolate the parts in the security proof where the initialization plays a role,
and re-describe them for our generalized initialization phase.
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Fig. 1: The duplexing interface of KD. The sole difference with the duplexing
interface of Mennink [21] is in the initialization.

3.1 Construction

Let b, c, r, k, l, µ ∈ N such that c+ r = b and k ≤ b. We describe our generalized
version of the keyed duplex construction KD in Algorithm 1. It operates on a
key array K = (K[1], . . . ,K[µ]) ∈ ({0, 1}k)µ consisting of µ keys, and it is
instantiated using a b-bit permutation p ∈ perm(b). The construction internally
maintains a b-bit state S, and has two interfaces: KD.init and KD.duplex. Typical
interface calls are depicted in Figure 1.

Algorithm 1 Keyed duplex construction KD[p]K

Interface: KD.init
Input: (δ, i) ∈ {1, . . . , µ} × {1, . . . , 2l}
Output: ∅

S ← initL(K, δ, i) ∥ initR(K, δ, i)
return ∅

Interface: KD.duplex
Input: (flag , P ) ∈ {true, false} × {0, 1}b
Output: Z ∈ {0, 1}r

S ← p(S)
Z ← leftr(S)
S ← S ⊕ [flag ] · (Z∥0b−r)⊕ P ▷ if flag , overwrite outer part
return Z

Duplexing Interface. The duplexing interface KD.duplex is identical to that of
Mennink [21]. The duplexing interface is phased in the permute-squeeze-absorb
fashion: first the underlying permutation p is applied on the state S. Then, it
outputs an r-bit block Z ∈ {0, 1}r off the internal state S. Finally, it absorbs
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P ∈ {0, 1}b, where the flag flag ∈ {true, false} indicates whether the outer r
bits of P are XORed to the outer part of the state (if flag = false) or if they
overwrite the outer part of the state (if flag = true).

Initialization Interface. The initialization interface is structurally different
from that of Mennink [21], both in the actual inputs that it receives as in the
way it processes these inputs. This is done to make it possible to rigorously
define and study different initialization approaches. In detail, the initialization
interface gets two inputs (apart from the implicit key array K), a key index
δ ∈ {1, . . . , µ} and an index i ∈ {1, . . . , 2l} in such a way that (δ, i) is always
unique. The value i may be a global counter, a counter per δ, or anything else,
and this does not yet matter for the specification. Then, KD.init initializes the
state as

S ← initL(K, δ, i) ∥ initR(K, δ, i)

for certain initialization functions

initL : ({0, 1}k)µ × {1, . . . , µ} × {1, . . . , 2l} 7→ {0, 1}k ,
initR : ({0, 1}k)µ × {1, . . . , µ} × {1, . . . , 2l} 7→ {0, 1}b−k .

It outputs nothing.

Comparison With Original Duplex. We remark that this initialization is
different from that of Mennink [21] in the fact that his initialization (just like
that of [11, 17]) got as input the key index δ and an initialization vector IV ∈
{0, 1}b−k, and initialized the state as S ← K[δ] ∥ IV . It can be seen to be
covered by restricting the domain of i to {1, . . . , 2b−k} and by taking initialization
functions

initL(K, δ, i) = K[δ] , (3a)

initR(K, δ, i) = encodeb−k[i] . (3b)

We will refer to this case as the baseline case.

3.2 Security Model

Daemen et al. [11] described the ideal extendable input function (IXIF) as ideal
equivalent for the keyed duplex. We will also consider this function, but adapted
to the superficial changes implemented by Mennink [21] and to our generalized
initialization of Section 3.1. The function is described in Algorithm 2.

The IXIF has the same interface as the keyed duplex. However, it is not
based on a key array K and primitive p, but rather on a random oracle ro :
{0, 1}∗ × N → {0, 1}∗ that is defined as follows. Let ro∞ : {0, 1}∗ → {0, 1}∞
be a random oracle in the sense of Bellare and Rogaway [4]. For P ∈ {0, 1}∗,
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ro(P, r) outputs the first r bits of ro∞(P ). The IXIF additional maintains a
path path. In this path, it stores all data input by the user. It is initialized
by encodelog2 µ[δ] ∥ encodel[i], and upon each duplexing call the new plaintext
block is appended to the path. Duplexing output is generated by evaluating the
random oracle on path.

Algorithm 2 Ideal extendable input function IXIF[ro]

Interface: IXIF.init
Input: (δ, i) ∈ {1, . . . , µ} × {1, . . . , 2l}
Output: ∅

path ← encodelog2 µ[δ] ∥ encodel[i]
return ∅

Interface: IXIF.duplex
Input: (flag , P ) ∈ {true, false} × {0, 1}b
Output: Z ∈ {0, 1}r

Z ← ro(path, r)
path ← path ∥ ([flag ] · (Z∥0b−r)⊕ P )

▷ if flag , overwrite outer part
return Z

The security of the duplex construction is defined as the distance between

KD and IXIF. More formally, let p
$←− perm(b) be a random transformation,

K
$←− ({0, 1}k)µ a random array of keys, and ro be a random oracle. One considers

a distinguisher D that has access to either (KD[p]K , p±) in the real world or
(IXIF[ro], p±) in the ideal world:

AdvKD(D) = ∆D

(
KD[p]K , p, p−1 ; IXIF[ro], p, p−1

)
. (4)

Without loss of generality, the distinguisher always makes at least one duplexing
call after each initialization call.

3.3 Parameterization of Distinguishers

The three main measures to quantify the resources of D are the number of queries
it can make to its oracles:

– Q: the number of distinct initialization queries;
– M : the number of distinct duplexing queries;
– N : the number of distinct primitive queries.

The number of initialization calls are further refined in the maximum number
of calls per δ and per i, and per (δ, i):

– Qδ: the maximum number of initialization queries for a single δ;
– Qi: the maximum number of initialization calls for a single i;

8



– Qδ,i: the maximum number of initialization calls for a single δ, i.

We remark that earlier works [11, 17] used QIV as the maximum number of
initialization calls for a single IV (or more broadly seen, for a single inner part).
This notation is deprecated, as we will consider different inner parts that depend
only on δ, on i, on (δ, i), or on neither of them.

Finally, different evaluations of the duplex can be the same up to a common
prefix, and common subpaths can actually benefit the distinguisher. To measure
the degree in which it could help the distinguisher, we will define a path path
that keeps track of the data that got absorbed in the duplex up to the point
that the cryptographic primitive (p in the real world and ro in the ideal world)
is evaluated. For an initialization call (δ, i) 7→ ∅, the associated path is defined
as path = encodelog2 µ[δ] ∥ encodel[i]. For each duplexing call (flag , P ) 7→ Z, the
value [flag ] · (Z∥0b−r)⊕ P is appended to the path of the previous construction
query. In order to reason about duplexing calls, we will also define a subpath of a
path, which is the path leading to the particular duplexing call. In other words,
for a path path, its subpath is simply path with the last b bits removed. Using
this terminology, we define additional measures:

– L: the number of duplexing calls with repeated subpath, i.e., M minus the
number of distinct subpaths;

– Ω: the number of duplexing queries with flag = true.

3.4 Security of Baseline Case

As the current duplex construction of Section 3.1 has a more general initialization
than that of Daemen et al. [11], we cannot translate their security result to the
current duplex construction. Nevertheless, the duplex construction of Daemen
et al. is in fact the baseline case, i.e., our duplex construction but with the
initialization functions of (3). For this baseline case, we can thus carry over the
result of Daemen et al. [11]:

Theorem 1 (security of duplex construction [11]). Let b, c, r, k, l, µ ∈ N,
with c + r = b, and k ≤ b. Let p

$←− perm(b) be a random permutation, and

K
$←− ({0, 1}k)µ a random array of keys. For any distinguisher D quantified as

in Section 3.3 and with M +N ≤ 0.1 · 2c,

AdvKD(D) ≤
(L+Ω)N

2c
+

2ν
2(M−L)
r,c (N + 1)

2c
+

(
L+Ω+1

2

)
2c

(5a)

+
(M − L−Q)Q

2b −Q
+

M(M − L− 1)

2b
(5b)

+
Q(M − L−Q)

2min{c+k,b} +
QiN

2k
+

(
µ
2

)
2k

. (5c)
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3.5 Role of Initialization Vector

The bound of Theorem 1 is rather involved, but the part that matters for our
analysis is only (5c). In detail, these three terms are related to key guessing or
key hitting problems that may occur in a security game and that involve the
initialization of the duplex. These three terms correspond to three bad events
in the analysis of Daemen et al., namely (in this order) [11, (22)], [11, (20)],
and [11, (23)]. We will restate those (and exactly those) bad events, but updated4

for the initialization interface of our duplex of Section 3.1:

[11, (22)] There exists an initialization call (δ, i) to KD.init and a duplex eval-
uation (s, t) of p within KD.duplex such that initL(K, δ, i) ∥ initR(K, δ, i) =
s⊕ 0r∥κ, where κ is a random c-bit dummy key;

[11, (20)] There exists an initialization call (δ, i) to KD.init and a primitive
evaluation (x, y) of p such that initL(K, δ, i) ∥ initR(K, δ, i) = x;

[11, (23)] There exist two distinct initialization calls (δ, i), (δ′, i′) to KD.init
such that initL(K, δ, i) ∥ initR(K, δ, i) = initL(K, δ′, i′) ∥ initR(K, δ′, i′).

We recall from Section 3.3 that the distinguisher makes at most Q initialization
calls, where at most Qi are made for a single i, at most M − Q duplex calls,
and at most N primitive calls. Using this, we can easily obtain that [11, (20)]
happens with probability at most QiN

2k
and [11, (23)] with probability at most

(µ2)
2k

. Event [11, (22)], finally, occurs with probability at most Q(M−L−Q)
2min{c+k,b} , where

the presence of −L in the numerator is for technical reasons that are irrelevant
for the remainder of the work.

4 Improvements Under Specific IV Generation

We will discuss improvements of the security bound of Theorem 1, and in par-
ticular the terms in equation (5c), in case of various types of IV conventions,
as outlined in Table 1. Here, RIV is an independently drawn random IV each
evaluation and RIV δ is a random IV independently drawn per user.

4.1 Global IV

A global IV , in this context, means that different users never employ the same
IV . In Table 1, this is formally defined by using an encoding function for initR
that encodes both the δ ∈ {1, . . . , µ} and the i ∈ {1, . . . , 2l}, where we require
that log2 µ + l ≤ b − k. As KD is never initialized twice for the same (δ, i), the
rightmost b− k bits of the initialization will always be distinct.

This use case is in fact the easiest one to consider, as it allows to derive
quite strong improved bounds on the relevant bad events of [11] as outlined in
Section 3.5:

4 The update is fairly straightforward, merely replacing K[δ] ∥ IV with initL(K, δ, i) ∥
initR(K, δ, i).
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Table 1: Different types of IV generation cases considered in this work, and
a reference to their security analyses. Here, RIV stands for “random IV ” each
evaluation, and RIV δ is a unique random IV per user (independently distributed
for each user). They are of length n bits, and 0-padded.
case initL(K, δ, i) initR(K, δ, i) restriction reference

baseline K[δ] encodeb−k[i] l ≤ b− k Section 3.4

global IV K[δ] encodeb−k[(δ, i)] log2 µ+ l ≤ b− k Section 4.1

random IV K[δ] RIV ∥0b−k−n — Section 4.2

quasi-random IV K[δ] (RIV δ ⊕ encoden[i])∥0b−k−n i counter, l ≤ n Section 4.3

IV on key K[δ]⊕ encodek[i] 0b−k l ≤ k Section 4.4

global IV on key K[δ]⊕ encodek[i] encodeb−k[δ] l ≤ k, log2 µ ≤ b− k Section 4.5

ad [11, (22)] The analysis of this event remains mostly unchanged. The reason
is that the dummy key κ “blinds” the rightmost c bits of initR(K, δ, i) =
encodeb−k[(δ, i)] anyway. A small improvement may be possible in case the
blinding is incomplete, i.e., if |initR(K, δ, i)| = b−k > c, but the improvement
is negligible as, even though initR(K, δ, i) is distinct for each input (δ, i), they
may collide on their left b−k−c bits and we cannot rely on their uniqueness;

ad [11, (20)] Consider any primitive evaluation (x, y). In case of a global IV ,
initR(K, δ, i) = encodeb−k[(δ, i)] is distinct for each input (δ, i). This means
that there is only 1 initialization call (δ, i) that satisfies rightb−k(x) =
initR(K, δ, i). For this initialization call, we have leftk(x) = initL(K, δ, i)
with probability 1/2k. (For inverse queries, the probability is strictly smaller
as also rightb−k(x) = initR(K, δ, i) needs to hold, and it holds only with a
probability at most 1.) Summing over all initialization calls, we obtain that
this bad event occurs with probability at most N/2k;

ad [11, (23)] In the case of a global IV , we will have initR(K, δ, i) ̸= initR(K, δ′, i′)
for any two distinct initialization calls, and hence this bad event occurs with
probability 0.

In the case of a global IV , we can thus replace (5c) of Theorem 1 by:

Q(M − L−Q)

2min{c+k,b} +
N

2k
. (6)

4.2 Random IV

In the case of random IV generation, we will consider a setting where each user
will always select the right part of the state, initR(K, δ, i) uniformly randomly
from {0, 1}n with n ≤ b− k, denoted as RIV in Table 1.

The analysis is a bit different to that of Section 4.1. To wit, for the case of a
global IV , event [11, (20)] was very similar to the original analysis of [11], and
for event [11, (23)] it sufficed to observe that [11] made the assumption that
the IV is always chosen in favor of the attacker. Now, in the case of random
IV s, the situation changes in that (i) IV s may repeat, and (ii) there is no clear
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bound on the maximum occurrence of a single IV . The latter issue is partic-
ularly problematic as we cannot claim a clear upper bound on the maximum
number of initialization calls for a single inner part (formally known as QIV (cf.,
Section 3.3)). Instead, we will have to employ a probabilistic argument using the
mulf (Definition 1). In detail, we will obtain the following improved bounds on
the three relevant bad events of [11] as outlined in Section 3.5:

ad [11, (22)] This event remains mostly unchanged, for the same reason as in
Section 4.1;

ad [11, (20)] Consider any primitive evaluation (x, y). As the RIV s are chosen

uniformly at random, we can use the mulf νQn,k on the maximum multicol-
lision on RIV (note that the RIV is of size n ≤ b − k bits). More detailed,
assume the highest occurrence of an inner part of RIV is ν, then there are
at most ν initialization calls (δ, i) that satisfy rightb−k(x) = initR(K, δ, i).
For those specific initialization calls, we have leftk(x) = initL(K, δ, i) with
probability ν/2k. (As before, for inverse queries, the probability is strictly
smaller.) Summing over all initialization calls, we obtain that this bad event
occurs with probability at most νN/2k. We then select the term ν so that
the sum of this term and the probability of a ν-collision is small, and this
minimum is achieved for the mulf νQn,k:

min
ν

νN

2k
+Pr

(
ν > νQn,k

)
≤

νQn,k · (N + 1)

2k
;

ad [11, (23)] In the original proof, the authors simply assumed that the IV was
always chosen in favor of the attacker, and the bad event simplified to a sim-
ple key collision in initL(K, δ, i). Now, not only the k-bit keys initL(K, δ, i) =
K[δ] and initL(K, δ′, i′) = K[δ′] are randomly distributed but also the n-bit
IV s initR(K, δ, i) = RIV ∥0b−k−n and initR(K, δ′, i′) = RIV ′∥0b−k−n (here,
the accent is put in RIV ′ to make the distinction clear). This leads to a
more complex analysis of [11, (23)], and we have to distinguish depending
on whether δ = δ′ or not:
– δ = δ′: in this case, K[δ] = K[δ′] by default, but RIV = RIV ′ with

probability 1/2n;
– δ ̸= δ′: in this case K[δ]∥RIV = K[δ′]∥RIV ′ with probability at most

1/2k+n.5

There are at most µ
(
Qδ

2

)
tuples {(δ, i), (δ′, i′)} of the former category and

at most
(
Q
2

)
tuples of the second category. The bad event is thus set with

probability at most µ
(
Qδ

2

)
/2n +

(
Q
2

)
/2k+n.

In the case of a random IV , we can thus replace (5c) of Theorem 1 by:

Q(M − L−Q)

2min{c+k,b} +
νQb−k,k · (N + 1)

2k
+

µ
(
Qδ

2

)
2n

+

(
Q
2

)
2k+n

. (7)

5 This could be improved by conditioning on which keys in K actually collide, but
the gain in following this avenue is negligible as this is not the main term anyway.
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4.3 Quasi-Random IV

The case of a quasi-random IV is a subtle combination of the global IV and a
random IV . In detail, we consider a setting where each user δ uses a counter
starting from a random offset RIV δ. For example, in a simplified case of two users

Alice and Bob, Alice will be assigned a random initialization vector RIV A
$←−

{0, 1}n and will use {RIV A⊕ encoden[1],RIV A⊕ encoden[2]), . . .} padded with

0b−k−n, whereas Bob will be assigned a random initialization vector RIV B
$←−

{0, 1}n and will use {RIV B ⊕ encoden[1],RIV B ⊕ encoden[2], . . .} padded with
0b−k−n.

The security analysis, for this case, becomes much more subtle. Indeed, the
initialization vectors (RIV A and RIV B in above use case) are random, but the
following IV s have no randomness given the initial ones. To resolve the issue, we
need to define a variant of the mulf of Definition 1, namely one that considers
collisions in sets.

Definition 2 (sequence multicollision limit function (smulf)). Let Qi, Qδ,
c, r ∈ N. Consider the experiment of throwing Qi balls uniformly at random in
2r bins and for each of the randomly thrown balls, throwing a ball in the Qδ

subsequent bins, and let ν be the maximum number of balls in a single bin. We
define the sequence multicollision limit function (smulf) ν̄Qi,Qδ

r,c as the smallest
natural number x that satisfies

Pr (ν > x) ≤ x

2c
.

Intuitively, the smulf on parameters Qi, Qδ is at most the mulf on parameter
QiQδ. As a matter of fact, it can be argued that the value x targeted in Defini-
tion 2 also satisfies (2), but with adjusted λ. The reason is almost identical to
that of [11, Section 6.5]. In detail, they observe that Pr (ν > x) ≤ 2rPr (X > x),
where Pr (X > x) is the probability that any particular bin has more than x
balls, then they observe that the number of balls in a particular bin is binomi-
ally distributed with n = Q trials and success probability p = 1/2r, and finally
they observe that for sufficiently large parameters this is upper bounded by a
Poisson distribution with mean λ = np = Q/2r. In the case of the smulf of
Definition 2, the same story applies with the difference that the number of balls
in a particular bin is now binomially distributed with n = Qi trials and success
probability p = Qδ/2

r, which can be upper bounded by a Poisson distribution
with mean λ = np = QiQδ/2

r.
Using the definition of the smulf, can derive the following improved bounds

on the three relevant bad events of [11] as outlined in Section 3.5:

ad [11, (22)] This event remains mostly unchanged, for the same reason as in
Section 4.1;

ad [11, (20)] The first part of the analysis is identical to that of Section 4.2.
Consider any primitive evaluation (x, y). Denoting the highest occurrence of
an inner part of RIV δ⊕encoden[i] by ν, then there are at most ν initialization
calls (δ, i) that satisfy rightb−k(x) = initR(K, δ, i), and the bad event occurs
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with probability at most νN/2k. We then select the term ν so that the sum
of this term and the probability of a ν-collision is small, and this minimum
is achieved for the smulf ν̄Qi,Qδ

n,k on sets defined by RIV δ for δ ∈ {1, . . . , µ}:

min
ν

νN

2k
+Pr

(
ν > ν̄Qi,Qδ

n,k

)
≤

ν̄Qi,Qδ

n,k · (N + 1)

2k
;

ad [11, (23)] The analysis of Section 4.2 mostly carries over, a difficulty occurs
in that we have to investigate the probability that two sets (with specific
distributions) collide or not. Note that the k-bit keys initL(K, δ, i) = K[δ]
and initL(K, δ′, i′) = K[δ′] are randomly distributed but the n-bit IV s satisfy
initR(K, δ, i) = (RIV δ ⊕ encoden[i])∥0b−k−n and initR(K, δ′, i′) = (RIV δ′ ⊕
encoden[i

′])∥0b−k−n for counters i, i′ ≤ Qδ. We again distinguish depending
on whether δ = δ′ or not:
– δ = δ′: in this case, K[δ] = K[δ′] by default, but RIV δ = RIV δ′ and

encoden[i] ̸= encoden[i
′], so the initializations collide with probability 0;

– δ ̸= δ′: in this case K[δ] = K[δ′] with probability 1/2k. For RIV δ ⊕
encoden[i] = RIV δ′⊕encoden[i′], we can observe that any pair (δ, i), (δ′, i′)
fixes encoden[i] and encoden[i

′] and thus collides with probability 1/2n.
We can tighten this by only focusing on δ and δ′. Per δ, there are at
most Qδ consecutive values i. Thus, the sets

{RIV δ ⊕ encoden[1],RIV δ ⊕ encoden[2], . . .} ,
{RIV δ′ ⊕ encoden[1],RIV δ′ ⊕ encoden[2], . . .}

overlap with probability at most (2Qδ − 1)/2n.
There are at most

(
µ
2

)
different choices {δ, δ′} for bounding the second cate-

gory. The bad event thus occurs with probability at most
(
µ
2

)
(2Qδ−1)/2k+n.

In the case of a quasi-random IV , we can thus replace (5c) of Theorem 1 by:

Q(M − L−Q)

2min{c+k,b} +
ν̄Qi,Qδ

n,k · (N + 1)

2k
+

(
µ
2

)
(2Qδ − 1)

2k+n
. (8)

4.4 IV on Key

The case of a IV added to the key is structurally different from previous ones.
In detail, we will consider a setting where an IV is added to a user’s key K[δ]:
initL(K, δ, i) = K[δ]⊕encodek[i]. The right part of the initialization stays blank.

The analysis is a bit different to the previous ones, but not necessarily harder,
simply as it leads to a similar query trade-off that can already be observed in the
Even-Mansour construction [19]. We will see that event [11, (20)] introduces
a multiplicative term between initialization and primitive queries. Event [11,
(23)] corresponds to two different initializations for which K[δ] ⊕ encodek[i]
and K[δ′] ⊕ encodek[i

′] collide (looking ahead, in the case of Section 4.5 the
latter case is avoided by encoding the user index in the right part of the initial
state). In detail, we will obtain the following bounds on the three relevant bad
events of [11] as outlined in Section 3.5:
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ad [11, (22)] This event remains mostly unchanged, for the same reason as in
Section 4.1;

ad [11, (20)] Consider any primitive evaluation (x, y), without loss of gener-
ality satisfying rightb−k(x) = 0b−k. For any initialization query, the proba-
bility that leftk(x) = K[δ] ⊕ encodek[i] is the same as the probability that
leftk(x) ⊕ encodek[i] = K[δ], which entirely depends on the randomness of
the key and is 1/2k. (As before, for inverse queries, the probability is strictly
smaller.) Summing over all primitive queries and all initialization queries,
the bad event is set with probability at most QN/2k;

ad [11, (23)] For any two initialization calls, the (b−k)-bit outer parts initR(K, δ, i)
always equal 0b−k. For any two initialization queries, we have to consider
collisions between initL(K, δ, i) = K[δ] ⊕ encodek[i] and initL(K, δ′, i′) =
K[δ′]⊕ encodek[i

′]. Again, the probability that K[δ]⊕ encodek[i] = K[δ′]⊕
encodek[i

′] is the same to the probability that K[δ]⊕K[δ′] = encodek[i]⊕
encodek[i

′]. This probability 1/2k due to K[δ] and K[δ′] being randomly
chosen. The bad event is thus set with probability at most

(
Q
2

)
/2k.

In the case of a IV on the key, we can thus replace (5c) of Theorem 1 by:

Q(M − L−Q)

2min{c+k,b} +
QN

2k
+

(
Q
2

)
2k

. (9)

4.5 Global IV on Key

In this section, we extend the case of Section 4.4 to a global IV on the key, where
“global” refers to the fact that the inner part of the initialization is an encoding
of the user: initL(K, δ, i) = K[δ] ⊕ encodek[i] as before but initR(K, δ, i) =
encodeb−k[δ].

By encoding the user index into the outer part, key collisions among different
users do not matter anymore for the security, only colliding IV ’s for a fixed user.
This affects the analysis of both [11, (20)] and [11, (23)]. In detail, we will
obtain the following improved bounds on the three relevant bad events of [11]
as outlined in Section 3.5:

ad [11, (22)] This event remains mostly unchanged, for the same reason as in
Section 4.1;

ad [11, (20)] Consider any primitive evaluation (x, y). Let δ be such that rightb−k(x) =
encodeb−k[δ]. By assumption, there are at most Qδ initialization queries for
this particular δ. For any of those queries, the probability that leftk(x) =
initL(K, δ, i) = K[δ]⊕ encodek[i] is 1/2

k. (As before, for inverse queries, the
probability is strictly smaller.) Summing over all primitive queries and all Qδ

initialization queries, the bad event is set with probability at most QδN/2k;
ad [11, (23)] Clearly, if δ ̸= δ′, then initR(K, δ, i) ̸= initR(K, δ′, i′) and the

bad event cannot be set. On the other hand, if δ = δ′, the right part of the
initial states are equal, and the left parts initL(K, δ, i) = K[δ] ⊕ encodek[i]
and initL(K, δ′, i′) = K[δ′]⊕encodek[i

′] collide with probability 1/2k. There
are at most µ

(
Qδ

2

)
tuples {(δ, i), (δ′, i′)} such that δ = δ′. Summing over all

these queries, the bad event is set with probability at most µ
(
Qδ

2

)
/2k.
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In the case of a global IV on the key, we can thus replace (5c) of Theorem 1
by:

Q(M − L−Q)

2min{c+k,b} +
QδN

2k
+

µ
(
Qδ

2

)
2k

. (10)

5 Stream Encryption

We will consider one of the most elementary use case of the duplex, namely (se-
quential) stream encryption, following Mennink [21, Section 7]. The construction
and its security model are outlined in Section 5.1, and we discuss its security
under different types of initialization in Section 5.2.

5.1 Construction and Security Model

Consider the stream cipher SC : {0, 1}k × {1, . . . , 2l} × N → {0, 1}∗, that gets
as input a k-bit key K, an index value i ∈ {1, . . . , 2l}, and a requested output
length ℓ, and that outputs a key stream S of length ℓ bits. It is defined using
the duplex as follows:

– Initialize the keyed duplex of Algorithm 1 with permutation p and key array
K = (K);

– Evaluate KD.init(1, i);
– Evaluate KD.duplex(false, 0b) for exactly ⌈ℓ/r⌉ times, concatenate their out-

puts, and truncate this string to ℓ bits to obtain S.

The scheme is depicted in the multi-user setting in Figure 2. We note that this
is a very natural way of duplex-based stream generation; a variant of it (with a
significantly more involved initialization to suit side-channel resilience) can be
observed in ISAP v2 [12–14] and in Asakey [18].

We will consider its security as indistinguishability from a random function

in the multi-user setting. Let p
$←− perm(b) be a random permutation. Let K

$←−
({0, 1}k)µ be a random array of keys and ($j)

µ
j=1 be functions that for each

input i ∈ {1, . . . , 2l} define a random string of infinite length and on input of
a tuple (i, ℓ) return the first ℓ bits of the string related to input i. Let case ∈
{baseline, global, random, quasirandom, onkey, globalonkey} describe the type of
initialization, corresponding to the six cases outlined in Table 1.

We define the multi-user security of SC under initialization type case as

Advµ-prf-case
SC = ∆D

(
(SC[p]Kj )

µ
j=1, p

± ; ($j)
µ
j=1, p

±) . (11)

5.2 Security Under Different Initializations

We will consider a distinguisher that can make Q initialization queries (i.e., Q
queries to its construction oracle), M duplexing queries (i.e., the Q queries are
of total length M duplexing calls), and N primitive queries, in accordance with
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Fig. 2: Stream cipher SC in the multi-user setting. The function gets as input a
key array K, key index δ, and index i. It outputs keystream blocks (S1, S2, . . .).
The actual number of output blocks is determined by an additional input param-
eter ℓ. The sole difference with the sequential keystream generation construction
of Mennink [21] is in the initialization.

Section 3.3. For the refined values of Q, we have that Qδ ≤ min{2l, Q}, Qi ≤ µ,
and Qδ,i = 1. Finally, just like in [21, Section 7], all queries start with a new i
(so L = 0) and all duplexing calls are for flag = false (so Ω = 0).

We obtain the following general bound over all cases:

Advµ-prf-case
SC (D) ≤

2ν2Mr,c (N + 1)

2c
+

(M −Q)Q

2b −Q
+

M(M − 1)

2b
(12a)

+
Q(M −Q)

2min{c+k,b} +Ξcase . (12b)

The first part (12a) is the same for all different initializations and corresponds
to (5a) and (5b). Part (12b) corresponds to (5c), which is actually improved for
the specific cases:

Ξcase =



µN
2k

+
(µ2)
2k

(case = baseline) ,
N
2k

(case = global) ,

νQ
n,k·(N+1)

2k
+

µ(min{2l,Q}
2 )

2n +
(Q2)
2k+n (case = random) ,

ν̄
µ,min{2l,Q}
n,k ·(N+1)

2k
+

(µ2)(2min{2l,Q}−1)

2k+n (case = quasirandom) ,

QN
2k

+
(Q2)
2k

(case = onkey) ,

min{2l,Q}N
2k

+
µ(min{2l,Q}

2 )
2k

(case = globalonkey) ,

(13)

which are based on (5c), (6), (7), (8), (9), and (10), respectively.
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6 Authenticated Encryption

The main raison d’être of the duplex construction is authenticated encryption.
We will consider the MonkeySpongeWrap construction as described by Men-
nink [21, Section 9], which generalizes the original SpongeWrap construction [8].
However, we do so including our generalized initialization. The construction and
its security model are outlined in Section 6.1, and we discuss its security under
different types of initialization in Section 6.2.

6.1 Construction and Security Model

Consider the authenticated encryption scheme AE : {0, 1}k×{1, . . . , 2l}×{0, 1}∗×
{0, 1}∗ → {0, 1}∗ × {0, 1}t, that gets as input a k-bit key K, an index value
i ∈ {1, . . . , 2l}, arbitrary length associated data A, and arbitrary length message
P , and that outputs a ciphertext C of size |P | bits and a tag T of size t bits. It
is defined using the duplex as follows:

– Initialize the keyed duplex of Algorithm 1 with permutation p and key array
K = (K);

– Evaluate KD.init(1, i);
– Perform 10∗-padding onA to obtain r-bit associated data blocks (A1, . . . , Av),

and for each block, evaluate KD.duplex(false, Ai∥0∥0c−1) and discard the out-
put;

– Perform 10∗-padding onM to obtain r-bit plaintext blocks (P1, . . . , Pw), and,
for each block, evaluate KD.duplex(false, Pi∥1∥0c−1) and XOR the output
with Pi to obtain Ci;

– Evaluate KD.duplex(false, 0b) for exactly ⌈t/r⌉ times, concatenate their out-
puts, and truncate this string to t bits to obtain T .

The scheme is depicted in the multi-user setting in Figure 2. This variant of
authenticated encryption can be observed in various NIST candidates, most
notably Xoodyak [9, 10] and Gimli [6]. We refer to [21, Section 9] for a more
detailed algorithmic description as well as a discussion of the inverse AE−1.

We will consider its security as indistinguishability from ideal in the multi-
user setting. Here, we consider the ideal setting as the scheme that upon en-
cryption, always outputs random strings, and upon decryption always outputs
the failure symbol ⊥, assuming that the distinguisher never relays an encryption

output to the decryption oracle. Let p
$←− perm(b) be a random permutation.

Let K
$←− ({0, 1}k)µ be a random array of keys and ($j)

µ
j=1 be functions that

for each input i ∈ {1, . . . , 2l} define a random string of infinite length and on
input of a tuple (i, A, P ) return the first |P | + t bits of the string related to
input i. Let ⊥ be the function that always returns the failure symbol ⊥. Let
case ∈ {baseline, global, random, quasirandom, onkey, globalonkey} describe the
type of initialization, corresponding to the six cases outlined in Table 1.

We define the multi-user security of AE under initialization type case as

Advµ-ae-case
AE = ∆D

(
(AE[p]Kj ,AE[p]

−1
Kj

)µj=1, p
± ; ($j ,⊥)µj=1, p

±
)
. (14)
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Fig. 3: Authenticated encryption scheme AE in the multi-user setting. The func-
tion gets as input a key array K, key index δ, index i, associated data blocks
(A1, A2, . . . , Av), and plaintext blocks (P1, P2, . . . , Pw) (the last blocks of as-
sociated data and plaintext may be partial). It outputs a ciphertext C =
(C1, C2, . . . , Cw) of size |P | bits and tag blocks (T1, T2, . . .) truncated to t bits
(the last blocks of ciphertext and tag may be partial). The sole difference with
the MonkeySpongeWrap construction of Mennink [21] is in the initialization.

Distinguisher D is not allowed to repeat an index for encryption queries but it
may do so for decryption queries. In the (quasi-)random IV case we assume that
the oracle maintains a table to re-use earlier RIV or RIV δ in case of repeated
indices. It is not allowed to relay an encryption output to the decryption oracle.

6.2 Security Under Different Initializations

We will consider a distinguisher that can make Q initialization queries (i.e., Q
queries to its construction oracle), split into Qe encryption and Qd decryption
queries, M duplexing queries (i.e., the Q queries are of total length M duplexing
calls), again split intoMe encryption andMd decryption queries, andN primitive
queries, in accordance with Section 3.3. For the refined values of Q, we have that
Qδ ≤ min{2l, Q}, Qi ≤ µ, and Qδ,i = 1. Finally, just like in [21, Section 9], all
encryption queries start with a new i, but decryption queries may repeat i (so
L ≤ Qd) and all duplexing encryption calls are for flag = false but duplexing
decryption calls may be for flag = true (so Ω ≤Md − 2Qd).
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We obtain the following general bound over all cases:

Advµ-ae-case
AE (D) ≤

2ν2Mr,c (N + 1)

2c
+

(M −Q)Q

2b −Q
+

M(M − 1)

2b
(15a)

+
MdN +

(
Md

2

)
2c

+
Qd

2t
(15b)

+
Q(M −Q)

2min{c+k,b} +Ξcase . (15c)

The first part (15a) is identical to what we saw for stream encryption in (12a)
as derived from (5a) and (5b). The second part (15b) has an additional fraction
coming from (5a) due to the fact that now L+ Ω may be as high as Md −Qd,
and an additional term Qd/2

t corresponding to random tag guesses (refer to [21,
Theorem 7]). The third part (15c) corresponds to (5c) and is identical to (12b).
As such, the term Ξcase is actually the same as for encryption, i.e., as in (13).

7 Practical Implications

Given the improved bounds of Section 4 and its generic application to duplex-
based stream encryption in Section 5 and authenticated encryption in Section 6,
we next discuss the practical implications (and limitations) of the different strate-
gies to choose the IV /nonce. We will perform this discussion using a typical
parameters set, namely b = 320, r = 64, c = 256, k = 128, and a 128-bit IV .
This parameter set is analogue to the NIST Lightweight Cryptography winner
Ascon-128 [15,16].

Note that, in practice, we can assume that the entity that performs the en-
cryption chooses the IV outside the influence of a potential adversary. However,
for decryption, an adversary can potentially manipulate the transmitted IV .

7.1 Baseline

For the baseline version, we assume that an attacker can manipulate the IV
anyway. In this case, we get as a bound following Section 5.2 (similar for au-
thenticated encryption following Section 6.2):

2ν2Mr,c (N + 1)

2256
+

(M −Q)Q

2320 −Q
+

M(M − 1)

2320
+

Q(M −Q)

2320
+Ξbaseline , (16)

with

Ξbaseline =
µN

2128
+

(
µ
2

)
2128

.

For practical settings, Ξbaseline likely dominates the bound.
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7.2 Global IV

If a global IV is used, the bound is independent of the number of users and we
get (16) but instead with

Ξglobal =
N

2128
.

However, in practice, the question is how to ensure the use of a global IV .
Ensuring a global IV with just 128 bits seems to be unrealistic. One way would
be to allocate a bit more space and separate the IV into a unique identifier
per key and an actual nonce per transmission akin to [9]. Assuming the unique
identifier is randomly chosen like the key during the key setup, it also does not
have to be transmitted. To be sure that the identifier is unique, it is probably
wise to use a 256-bit value. Combined with a 128-bit key and a 128-bit actual
nonce, relying on a global IV seems to be a viable choice for permutations with
b ≥ 512 bits.

7.3 Random IV

Considering a random IV , we get (16) but instead with

Ξrandom =
νQ128,128 · (N + 1)

2128
+

µ
(
min{2l,Q}

2

)
2128

+

(
Q
2

)
2256

.

Here, we must ensure the decryption party has authentic access to the random
IV chosen by the encrypting party. This is in practice often not the case for
single-pass (authenticated) encryption schemes. In some two-pass schemes like
encrypt-then-MAC [3, 20], the authenticity of the random IV can be verified
before decryption starts as it is done for, e.g., ISAP v2 [12–14]. However, in this
case the MAC verification cannot rely on the randomness of the IV for security
reasons.

7.4 Quasi-Random IV

With the quasi-random IV we get (16) but instead with

Ξquasirandom =
ν̄
µ,min{2l,Q}
128,128 · (N + 1)

2128
+

(
µ
2

)
(2min{2l, Q} − 1)

2256
.

In practice, such a scheme could be realized by setting up the random start-
ing point of the IV during the setup of the keys and then counting upwards.
In essence, this then works similarly to the method described in Section 7.2.
However, it can be easily realized with smaller permutations.
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7.5 IV on Key

With the IV on key scheme, we want to essentially picture what happens in TLS
1.3 for AES-GCM [23] which is analyzed in [5]. In principle, we have additional
key material that masks the IV . When doing this in a duplex-based scheme, one
can potentially profit more from having this additional key material compared
to AES-GCM since it effectively extends the key. In our example, we would move
from a 128-bit key and a 128-bit IV to a 128-bit IV on 256-bit key scheme, and
we get (16) but instead with

Ξonkey =
QN

2256
+

(
Q
2

)
2256

.

One may wonder why to define the IV usage this way and not just concatenate
a larger key with the IV . First, having an additional key to mask the IV can
be agreed on protocol level without changing the underlying scheme. Second,
for small permutations, like in our 320-bit example, there must be some overlap
between a 256-bit key and a 128-bit IV .

7.6 Global IV on Key

This is the extension of Section 7.5, which in practice would require additional
space to fit a unique partial IV . This would then lead to (16) but instead with

Ξglobalonkey =
min{2l, Q}N

2256
+

µ
(
min{2l,Q}

2

)
2256

.

8 Conclusion

In this paper, we have shown that different ways to initialize the state of a duplex
can lead to a significant improvement in the security bound considering multi-
user setting. What is even more interesting is that many approaches we discuss,
like masking the IV with an additional key, can be retrofitted on protocol level
without changing the specification of the underlying algorithm. However, one
still has to consider that the proofs are done in the random permutation model.
Concretely, this means that for an actual instantiation of the duplex, assuming
that it uses a permutation designed for 128-bit security, using the IV on key
method (of Section 4.4) with a 256-bit key might not necessarily result in 256-
bit security. Overall, care must be taken when instantiating a permutation-based
cryptographic construction with any actual permutation.
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