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Abstract. We address the problem of user fast revocation in the lattice based

CP-ABE by extending the scheme originally introduced in [A ciphertext policy
attribute-based encryption scheme without pairings. J. Zhang, Z. Zhang -

ICISC 2011]. While a lot of work exists on the construction of revocable

schemes for CP-ABE based on pairings, works based on lattices are not so
common, and – to the best of our knowledge – we introduce the first server-

aided revocation scheme in a lattice based CP-ABE scheme, hence providing

post-quantum safety. In particular, we rely on semi-trusted “mediators” to
provide a multi-step decryption capable of handling mediation without re-

encryption.

We comment on the scheme and its application and we provide performance
experiments on a prototype implementation in the ABE spin-off library of

Palisade to evaluate the overhead compared with the original scheme.

1. Introduction

In this work we tackle the problem of designing a fast key-revoking system in a
Ciphertext Policy Attribute-Based Encryption (CP-ABE) constructed on some pre-
sumed post-quantum resistant algebraic setting. The presented approach involves
a Dual-Regev CP-ABE scheme, which combines the advantages of attribute-based
encryption with the security properties of the Regev encryption scheme [21] and
provides a flexible and secure mechanism for access control and data encryption.

The Regev encryption scheme is a lattice-based encryption scheme based on the
hardness of the Learning with Errors (LWE) problem, which is considered to be
resistant to quantum attacks by the worst case complexity of GapSVP and SIVP
on lattices. It represents messages as vectors and encryption is achieved by adding
noise to those vectors. Decryption, conversely, can only be efficiently done by the
intended recipient who possesses a secret key.

In a Dual-Regev CP-ABE scheme, ciphertexts are associated with access policies
represented as pattern strings, where symbols can be 0, 1, or *. Users possess se-
cret keys corresponding to their attributes (represented as bit strings). Decryption
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succeeds if the user’s attribute matches the policy pattern specified in the cipher-
text. This allows for fine-grained access control, where access to encrypted data is
granted based on attribute matching. Conversely to most of the CP-ABE schemes
that are based on bilinear maps, these schemes do not rely on pairings. The absence
of pairings in such schemes offers advantages in terms of simplicity and efficiency.

To address the issue of user revocation, we propose mRLWE-CP-ABE, a novel
solution that builds upon the Dual Regev CP-ABE scheme introduced in [31] by en-
forcing a security mediated public key encryption. In particular, mRLWE-CP-ABE
shares similarities with the ideas introduced in USENIX 2001 Boneh et al.’s paper,
[8].

The main idea presented in the paper is the use of a (semi)trusted third party,
called the security mediator, to check the user whenever she wants to decrypt a
ciphertext. The user requires assistance of the security mediator because the user
secret key is separated into two (or more) portions during key generation, with one
portion given to the user while the remaining parts are given to (possibly multiple)
security mediators. The user requires the security mediator’s help in order to enable
full user secret key and decrypt or sign messages.

We implement the proposed scheme in Palisade, [17]. In particular, building
such practical testings on the implementation of the Palisade ABE project spin-off,
we implicitly show its effectiveness.

1.1. Related Works. Attribute-Based Encryption (ABE), firstly proposed in [24],
is asymmetric cryptographic primitive for one-to-many encryption that, as high-
lighted by high number of surveys in the last years on it [20, 3, 33, 16], attracted
many interests along the years as provides fine grained access control over data. An
ABE scheme allows a data owner to encrypt some data once and to share them with
many along with a set of required attributes that define an access policy; the set of
valid recipients is not required to be known in advance, all we need is that an autho-
rised user must retain a set of valid attributes that satisfy the access policy. Each
user is identified by the set of attributes his/her owns. Over the years, two variants
of ABE has been proposed in the literature: the Ciphertext Policy Attribute-Based
Encryption (CP-ABE) [6] and the Key Policy Attribute-Based Encryption (KP-
ABE) [12]. In CP-ABE the access policy is applied to the ciphertext, conversely, in
KP-ABE it is associated to the secret key, so usually CP-ABE is preferred as it is
more flexible. Differently from classical public key schemes where a user who wants
to share encrypted data with many others is required to perform many encryptions,
one for each of valid recipient, in ABE schemes the encryption is done only once
for many users, for this reason in cloud environments ABE schemes are a common
choice. However, in this context, usually the set of users change frequently so the
ability to revoke some users is a necessary requirement for any ABE scheme.

In the literature [28], the revocation mechanism was categorised in three classes:
direct, indirect and server-aided.

The direct revocation follows the approach of conventional public key manage-
ment systems (PKMS) where a certificate revocation list (CRL) is distributed. Once
a user needs to be revoked, the key authority in the PKMS adds the user identifier
to the CRL and share the updated list. Some example of ABE schemes that im-
plements direct revocation are [19, 14]. The major drawback of direct revocation
is, of course, related to the distribution of the updated CRL. Any data owner must
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update his/her CRL before encrypting new data to exclude revoked users. Further-
more, as the revoked user set grows, so does the size of the CRL. In [14] authors
proposed a solution to overcome both issues by setting expiration dates on keys, by
embedding the revocation list along with the ciphertext and by removing revoked
keys from the list once expired; however, in such schemes, data owner still needs to
update his/her CRL to be sure not to miss any recently revoked-user.

In indirect revocation, every time a user is revoked, the key authority generates
new keys only for the remaining non-revoked users. The benefit of this approach are
that the server only needs to work on the subset of still active users and does not
need to periodically share the CRL. A few examples of CP-ABE indirect revocable
schemes are [23, 30] and [27]. For instance both in [23] and [30], the authors
proposed to update both the keys for still active users and the older ciphertexts,
stored on the cloud, to not letting a revoked-user to decrypt them anymore. The
approach proposed in [27] is little bit different, they update the keys but each
user has two different keys, an individual and a group keys, both needed for the
decryption.

Server-aided revocation solutions try to avoid the need for key update and the
distribution of the CRL. They required, as the system we propose in this paper,
to leverage third-party cooperation to decrypt. Here, following the approach firstly
proposed in [8] and then applied also in [29] and [10], we rely on key-splitting feature
for the revocation. Differently from the literature, to the best of our knowledge,
mRLWE-CP-ABE is the first application of such a revocation technique to a lattice-
based ABE scheme; we believe this is an important step as our system, uniquely
with respect to all the previous works, provide post-quantum safety.

1.2. Contributions. Here in the following we list the main contributions of the
present work

• Inspired by [8], we propose mRLWE-CP-ABE the first, to the best of our
knowledge, CP-ABE revocation scheme based on lattice, a presumed post-
quantum resistant algebraic setting. We start from the CP-ABE scheme
presented in [31] and we extend and modify it to support key revocation. We
rely on (semi)trusted third party, called the security mediator, to perform
fast and efficient user key revocation.
• We provide a formal description of the proposed scheme along with the
analysis of its parameter and its security proof.
• We implement mRLWE-CP-ABE scheme on Palisade, a well known crypto
library, and we experimentally evaluate the overhead introduced by the
revocation mechanism in term of performance.
• We will release the implementation of our scheme to let the community
independently test and evaluate it.

1.3. Paper organisation. The rest of the paper is organised as follows. Section 2
wraps up the notation and the mathematical basics used in what follows. Section 3
formally introduce the definition of CP-ABE and its security model, the system
model of the mediated scheme and its threat model. Section 4 reviews the mathe-
matical background used throughout the paper (a confident reader can safely skip
this section). Section 5 analyse the scheme presented in [31] by reworking its defi-
nition, providing a few small changes in the notation to better prepare the ground
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for the mediated scheme. Section 6 holds the main contribute of the paper, intro-
ducing the mediated scheme (Section 6.1), the parameter analysis (Section 6.2) and
the security proofs (Section 6.3). Section 7 introduces the multi-bit variation on
the original and mediated scheme, following the build from [31]. Section 8 presents
some benchmarks and results on the proposed scheme. Section 9 closes the paper
resuming the paper and providing some hints on future works.

2. Notation

Numeric sets of positive integers, integers, and real numbers are denoted with
blackboard bold letters N, Z, and R respectively. The quotient group modulo q,
q ∈ N, is denoted by Zq = Z/qZ = {0, . . . , q−1}. Probability are defined by capital
letter P[·] and distributions are denoted usually with χ and we say that a is sampled
from it by writing a ←$ χ. In particular, the uniform distribution over a set S is
denoted by U(S).

Matrices are usually denoted by upper-case letters (A,B, . . . ) while vectors
are interpreted as single-column matrices and usually denoted by lower-case let-
ters (a,b, . . . ). Matrices (and vectors) can be transposed (AT ), concatenated by
columns ([A∥B]), or concatenated by rows (A;B). The scalar product is denoted
by ⟨·, ·⟩ while the euclidean and the infinity norm of a vector are denoted by ∥a∥
and ∥a∥∞ respectively. By abuse of notation, we define the norm of a matrix as the
infinity norm over the euclidean norm of its columns, i.e. if A = [a1∥ . . . ∥an] then
∥A∥ = maxi ∥ai∥. Finally, if the columns of a matrix A = [a1∥ . . . ∥an] are linearly

independent, we denote with Ã = [ã1∥ . . . ∥ãn] the Gram-Schmidt orthogonalisation
of vectors a1, . . . , an taken in that order.

We refer to attributes with calligraphic capital letters; in particular R denote
the admissible attributes, S denote user attribute specifications, and W denote
ciphertext access structures. If S is compatible with W we say that it satisfy the
access structure and we write S ⊢ W, otherwise we write S ⊬W.

The security parameter throughout the paper is n, and all other quantities are
implicitly functions it. We use standard notations big-O and small-ω to denote
asymptotic class, we write poly(n) to determine functions f(n) = O(nc) for some
constant c, and we write negl(n) to determine negligible functions f(n), i.e. defini-
tively upper bounded by 1/nc. Finally, we say a probability is overwhelming if it is
1− negl(n).

3. Scheme, system and threat model

In the following we recall the formal definition of a CP-ABE scheme and of its
security model. Then we describe the architecture of mRLWE-CP-ABE, our new
ABE encryption scheme, based on lattice, able to efficiently revoke a target user.
Finally, we define the threat model and we discuss the security of our solution.

3.1. Ciphertext policy attribute-based encryption. A ciphertext policy attribute-
based encryption (CP-ABE) scheme is a framework to perform secure data sharing
where recipients are not specific user – like in classic public key encryption (PKE)
schemes – but rather users with specific attributes. A trusted central authority is
needed for what concerns user key creation, however data encryption and decryp-
tion can be performed without its further collaboration; in particular, also data
owners outside the accredited users can encrypt data.
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More formally, a CP-ABE scheme consists of four algorithms, namely:

• Setup(σ,R) → (msk, pk) Is the initialisation algorithm executed by a cen-
tral authority to setup a pair of public key (pk) and master secret key
(msk) starting from a set of security parameters σ and a set of admissible
attributes R. msk is used for the creation of users key while pk is employed
for message encryption.
• KGen(msk,S) → sk Is the algorithm the authority runs to accredit a user
with an attribute specification S, hence building a private key sk capable
of decrypt ciphertexts only with access structure W such that S ⊢ W.
• Enc(pk,W,M) → C Is the encryption algorithm run by a data owner to
encrypt the message M in a ciphertext C with access structure W. Only
the public key pk is needed to perform this operation.
• Dec(sk, C)→M ′ or ⊥ Is the decryption algorithm run by a user to retrieve
the message M associated to the ciphertext C. The equality M = M ′ is
required with overwhelming probability if the attribute specification S of
the private key pk satisfies the access structure W of the ciphertext C (i.e.
S ⊢ W). On the contrary, if S ⊬W, the output must be ⊥.

Following the structure of the original paper [31], we prove the security of the
CP-ABE scheme by adopting the selective security model with chosen plaintext
(sCPA) where the challenge access structureW is initially specified by the attacker.
In the game, the attacker submits two plaintexts, one of which is randomly chosen
and encrypted by the challenger. The attacker is then required to determine which
plaintext corresponds to the given ciphertext.

More formally, consider the following indistinguishability game (IND-sCPA) be-
tween a challenger C that acts as central authority and an adversary A that acts
as an attacker:

Init. A chooses a challenge access structure W and prompts it to C.
Setup. C performs all the setup tasks and eventually prompts the public key pk

to A.
Key generation queries. A is allowed to make a polynomial number of adaptive
key generation queries on any attribute specification S such that S ⊬W.

Challenge. A submits two messages of equal length M0,M1 to C, who randomly
chooses b ∈ {0, 1} and returns to A the ciphertext associated with Mb, i.e. returns
Enc(pk,W,Mb).

Guess. A is allowed to perform one more round of Key generation queries and
eventually outputs a bit b′.

The advantage of an adversary A w.r.t. the previous game is defined as

AdvIND-sCPA
A (σ) = |P[b = b′]− 1/2| .

We can further define a CP-ABE scheme to be secure against sCPA if, for any
polynomial time adversary A, the advantage AdvIND-sCPA

A (σ) is a negligible function
in the security parameters σ.

3.2. System model of mRLWE-CP-ABE. We rely on new server-aided ap-
proach to provide fast and reliable solution in order to avoid some inefficiently
intrinsically derived by direct and indirect revocation mechanisms. Our system is
logically composed by four kinds of entities:
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• the Key Generation Server (KGS): a trusted server that is able to generate
a public key and, for each user, the corresponding secret keys.
• A set of k security mediators (SM): each SM is a semi-trusted entity that
has access to the mediator keys of a (sub)set of users.
• The data owner: someone who wants to encrypt some data for a set of,
possibly unknown, users.
• A set of users that belong to the system: each user has an attribute spec-
ification that specifies his/her access rights. The attributes are associated
to the secret user key generated by the KGS.

We defined our scheme on top of the one introduced in [31]; namely, for each user
the KGS generates a tuple of keys, (sk, mk1, . . . , mkk); the sk is the user key and it
is given to the user while the keys mkj , with 1 ≤ j ≤ k, are the mediator keys which
are distributed one for each SM involved. In order for a user to successfully decrypt
a ciphertext two conditions are required: first, as usually in CP-ABE, the user must
have an attribute specification S that satisfy the ciphertext policy; secondly, all the
k SMs must contribute in the decryption.

More formally, our revocable CP-ABE scheme consists of 5 algorithms:

• Setup(σ,R) → (msk, pk) Is the initialisation algorithm executed by the
KGS. It behaves like in regular CP-ABE.
• MKGen(msk,S, k) → (sk, {mkj}kj=1) Is the algorithm the KGS runs to ac-
credit a user with an attribute specification S. Conversely to regular CP-
ABE, the key is segmented in k + 1 parts, k of which are provided to k
SMs. The specified access structure W is stored with the user private key
sk only, making mediators unaware of users capabilities.
• Enc(pk,W,M) → C Is the encryption algorithm the data owner runs to
encrypt the message M . It behaves like in regular CP-ABE schemes.
• MDec(C, sk)→M or ⊥ Is the decryption algorithm a user runs to retrieve
the message M associated to the ciphertext C. It requires the cooperation
of all the k SMs which should return the result of PDec (see below) in order
to make the user able to evaluate M ′ = M with overwhelming probability
(if S ⊢ W). Like in regular CP-ABE schemes, if S ⊬ W, the output must
be ⊥ (regardless the possible collusion with SMs).
• PDec(y, mk)→ a Is the algorithm run by SMs that allows them to produce
a partial decryption information a from y and the mediator key mk. Here, y
is derived from the ciphertext C by the user requiring the partial decryption
within MDec function.

If a user is revoked, the KGS only needs to send this information to the SMs that
have a mediator key for that user and they will stop to collaborate in the decryption
process. In particular, it is sufficient that just one SM refuses to cooperate to defeat
the decryption process. This guarantees that if at least one SM follows the protocol,
a revoked user cannot decrypt anymore.

Please notice that, differently from previous schemes in the literature, we do not
require to update keys or re-encrypt ciphertexts in order to revoke a user, we just
need to notify the SMs. Furthermore, already encrypted ciphertexts that have not
been decrypt before revoke occurs, are evenly secure against the revoked user. This
is also different from direct revocation where the CRL, as this revocation process
does, does not involve the encryption process. In order to support fast and secure
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revocation, our system incurs of course in some overhead compared to [31]. For
instance,

• the KGS has to generate k + 1 keys for each user;
• the decryption process of a ciphertext C requires k + 1 partial decryption
plus k error generation that is added by each SM to protect their mediator
keys.

To experimentally evaluate the impact of revocation we report some experiments
in Section 8.

It is important to highlight that, despite SM need to be reachable at decryption
time, hence making the protocol interactive, the approach preserves the advan-
tages of CP-ABE over classical PKE schemes. In fact, data owners still produce
encrypted data off-line and without suffering any overhead w.r.t. non-mediated CP-
ABE schemes. Furthermore, access to data is still preserved to data owners and
final users only, since SMs have blind-access to data.

3.3. Threat model to mRLWE-CP-ABE. We now describe the threat model of
our system; the security and correctness proofs are reported in Section 6. In the
threat model we define five entities: the KGS, the set of SMs, the data owner, the set
of users, and an external attacker. We remember that the KGS is a trusted entity
whereas the SMs are semi-trusted. The data owner is also trusted whereas the
users and, of course, the external attacker are untrusted. We identify the following
possible threats that may affect our system:

• SMs collusion: multiple SMs involved in the decryption of the same cipher-
text may collude together to decrypt without the user aid;
• Users collusion: multiple users may collude to decrypt a ciphertext they
are not authorised to;
• Ineffective revocation: a revoked-user is still able to decrypt.
• DOS-decryption: an attacker who compromise at least on SM can prevent
legitimate users to decrypt

We formally analyse the security of SMs and users collusion and the ineffective
revocation in Theorem 1.

The DOS-decryption attack indeed can be mitigated by providing redundant
mediated keys to SM.

4. Prerequisites on lattices

A n-dimensional lattice of rank m ≤ n is a subset of Rn given by the span of m
linear independent vectors b1, . . . ,bm ∈ Rn. In formulas, we have

Λ = L(B) =

{
⟨B, c⟩

∣∣∣∣ c ∈ Zm

}
,

where B ∈ Rn×m = [b1∥ . . . ∥bm] is called basis of the lattice.
The set of linear functionals that take integer values on each point of Λ is called

dual lattice and it is denoted by

Λ∗ =

{
x ∈ Rn

∣∣∣∣ ⟨x,v⟩ ∈ Z, for all v ∈ Λ

}
.
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Given a matrix A ∈ Zn×m, the set of vectors that nullifies A is a m-dimensional
lattice called orthogonal lattice of A and it is denoted by

Λ⊥(A) =

{
e ∈ Zm

∣∣∣∣ ⟨A, e⟩ = 0

}
.

Orthogonal lattices are particularly useful when working in modular arithmetic;
given a matrix A ∈ Zn×m

q , we analogously define

Λ⊥q (A) =

{
e ∈ Zm

∣∣∣∣ ⟨A, e⟩ ≡q 0

}
.

We further observe that, for any square matrix B ∈ Zn×n
q we have ⟨A,x⟩ = 0 ⇐⇒

⟨B, ⟨A,x⟩⟩ = 0, hence Λ⊥q (A) = Λ⊥q (⟨B,A⟩).

4.1. Hard problems. Many cryptographic primitives have been constructed whose
security is based on the (worst-case) hardness of SIVP or closely related lattice
problems. In particular, the (worst-case) hardness of Shortest Independent Vec-
tors Problem (SIVP) for poly(n) approximation factors implies the existence of
several fundamental cryptographic primitives. Blömer and Seifert [7] showed that
the Shortest Independent Vectors Problem (SIVP) is NP-hard to approximate for
any constant approximation factor γ. Their result is shown only for the Euclidean
norm, and their proofs were extended to arbitrary norms by [1].

The length of vector x, denoted by ∥x∥, is defined with respect to integer p:

∥x∥p :=

(
n∑

i=1

|xi|p
)1/p

.

We write SIVPp as a notation respective of p. Hence, SIVP2 is the case considered
in [7].

Hereinafter we suppose fixed p = 2 and we omit from explicitly mentioning it in
the norm.

A basic parameter of the lattice Λ is the length of the shortest non-zero vector
in the lattice. The parameter λ1 is also indicated as the first successive of Λ and
denoted by λ1. It is important to know lower and upper bounds for λ1, which of
course depends on p: a lower bound is given by the length of the shortest vector
in the Gram-Schmidt reduced form of the basis: λ1 ≤ mini ∥b̃i∥. Similarly, for
i = 1, . . . , n, the i-th successive minimum, denoted by λi(Λ), is the smallest l such
that there are i non-zero linearly independent lattice vectors that have length at
most l.

The (SIVP) consists in finding n independent and “short” vectors: given a basis
B ∈ Zn×n find independent vectors u1, . . . ,un such that ||ui|| ≤ λn for i = 1, . . . , n.
[5]

Proposition 1 (Theorem 2 from [1]). Under the (randomised) Gap Exponential
Time Hypothesis, for any p ≥ 1, there exists γ > 1, ϵ > 0 such that γ-SIVPp with
rank n is not solvable in 2ϵn time.

The Gap-Exponential Time Hypothesis (Gap-ETH) is a fine-grained complexity-
theoretic hypothesis introduced in [13] and it is required to exclude sub-exponential
algorithms.
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4.2. Discrete Gaussians. We recall the definition of Gaussian function centred
in c and scaled by a factor of s to be

ρs,c(x) = exp

(
−π ∥x− c∥2

s2

)
, x ∈ Rn.

A Gaussian function is typically used to build (continuous) probability distributions
as

Ds,c(x) =
ρs,c(x)

sN
, x ∈ Rn ,

being sN =

∫
x∈Rn

ρs,c(x) dx the total measure associated to ρs,c.

Given a lattice Λ ⊂ Zn, we can discretise the distributions Ds,c on it by dis-
tributing x ∈ Rn according to Ds,c and conditioning x ∈ Λ, hence obtaining

DΛ,s,c(x) =
Ds,c(x)

Ds,c(Λ)
=

ρs,c(x)

ρs,c(Λ)
,

where ρs,c(Λ) is the proper normalisation constant given by ρs,c(Λ) =
∑

y∈Λ ρs,c(y).
We call such distribution a Discrete Gaussian function with centre c and parameter
s and we omit the subscripts s and c if equal respectively to 1 and to the origin 0.

Given a parameter ϵ ∈ R+, we further recall from [15] the definition of smoothing
parameter ηϵ as

ηϵ = min

{
s ∈ R+

∣∣∣∣ ρ1/s(Λ
∗\{0}) ≤ ϵ

}
.

In particular, if s ≥ ηϵ, we can bound the dispersion of the gaussian as per the
following

Lemma 1 (Lemma 4.4 from [15]). For any n-dimensional lattice Λ, for any centre
c ∈ Rn, and for any ϵ ∈ (0, 1) we have that if s ≥ ηϵ(Λ) then

Px←$DΛ,s,c

[
∥x− c∥ > s

√
n

]
≤ 1− ϵ

1 + ϵ
· 2−n .

4.3. Learning with errors. Originally presented in [21] and later extended in [22],
Learning with Errors (LWE) is a hard lattice problem founding in Fully Homomor-
phic Encryption. Its hardness has been proven in [21] via a quantum reduction to
SIVP and GapSVP and in [18] via a classical reduction to a variation of GapSVP.

Let q ∈ N and let χ be a probability distribution on Zq. For any s ∈ Zn
q , LWE

instances with secret s are defined as samples from

As,χ =

{
(a,y) ∈ Zn

q × Zq

∣∣∣∣ y = aT s+ x, with a←$ U(Zq)
n, x←$ χ

}
.

LWE can be either formulated as search or decision problem, being the first to
recover s given multiple samples of As,χ and the second to distinguish between
As,χ and U(Zq)

n × U(Zq). In particular, if q = poly(n) the two problems are
polynomially equivalent (see [22]).

Let us denote by Ψα, a periodisation of the normal distribution with mean 0 and

variance β2

2π and by Ψ̄α its discretisation, then we have:

Proposition 2 (Theorem 1.1 from [22]). Let α = α(n) ∈ (0, 1) and let q ∈ N
be such that αq > 2

√
n holds. Assuming we have access to an oracle that solves



10 M. CIANFRIGLIA, E. ONOFRI, AND M. PEDICINI

LWEq,Ψ̄α
given a polynomial number of samples, then there exists an efficient quan-

tum algorithm for solving SIVP and GapSVP. The decision version of GapSVP and
SIVP to within Õ(n/α) in the worst case.

More formally, for r ∈ [0, 1) we have

Ψα(r) =

∞∑
k=−∞

1

α
· exp

(
−π
(
r − k

α

)2
)

mod 1

and
Ψ̄α(r) = ⌊q ·Ψα(r)⌉ mod q .

In particular, we can characterise the distribution Ψ̄m
α as follows:

Lemma 2 (Lemma 12 from [2]). Let e ∈ Zm and y ←$ Ψ̄m
α . Then the following

relation in Zq holds (but for negligible probability in m)

|eTy| ≤ ∥e∥ · qα · ω(
√
logm) + ∥e∥√m/2 .

In particular, for x←$ Ψ̄α, it holds in Zq (but for negligible probability in m)

|x| ≤ qα · ω(
√

logm) + 1/2 .

4.4. Literature algorithms on lattices. In the following we recall four algo-
rithms from literature that are later used both in the original CP-ABE scheme and
in mRLWE-CP-ABE.

Function 1 (SampleGaussian, Theorem 4.1 from [11]). Let Λ = L(B) ⊂ Rm be
a m-dimensional lattice with basis B. Given a gaussian parameter s ∈ R+ such
that s ≥ ∥B̃∥ · ω(

√
logm) and for any centre c ∈ Rm, there exists a probabilistic

polynomial-time algorithm SampleGaussian (B, s, c) that samples a vector x ∈ Λ
with a distribution statistically close to the discrete gaussian DΛ,s,c.

Function 2 (TrapGen, Algorithm 1 from [4]). Let q ∈ N be an odd prime associated
with a security parameter n and let m ∈ N be a dimension such that m ≥ (5 +
3δ0)n log q, for any δ0 ∈ R+. There exists a probabilistic polynomial-time algorithm
TrapGen (n,m, q) that generates a statistically (mq−δ0

n/2)-close to uniform matrix
A ∈ Zn×m

q and a with-overwhelming-probability-short basis TA of the orthogonal

lattice Λ⊥q (A), i.e. such that ∥TA∥ ≤ O(n log q) and ∥T̃A∥ ≤ O(
√
n log q).

In the following we choose δ0 = 1/3 so that we obtain m ≥ ⌈6n log q⌉.
Function 3 (SamplePre, Section 5.2 from [11]). Let q ∈ N be an odd prime associ-
ated with a security parameter n, let m ∈ N be a dimension such that m ≥ 2n log q,
and let s ∈ R be a gaussian parameter such that s ≥ ω(

√
logm). In general,

for all (but a 2q−n fraction of) A ∈ Zn×m
q , the distribution of the syndrome

u = Ae mod q yielded by e←$ DZm,s is statistically close to U(Zn
q ). In particular,

for such values, there exists a probabilistic polynomial time algorithm SamplePre

(A,TA, s,u) that samples e given a short basis TA of the orthogonal lattice Λ⊥q (A),

conditioned on s being such that s ≥ ∥T̃A∥ · ω(
√
logm).

Function 4 (GenSamplePre, Theorem 3.4 from [9]). Let q ∈ N be an odd prime
associated with a security parameter n and let m ∈ N be a dimension such that
m ≥ 2n log q. Assume A = [A1∥ . . . ∥Ak] ∈ Zn×mk

q and consider J = {j1, . . . j|J|} ⊂
{1, . . . , k} be a set of indices of the Ai matrices1. Let AJ = [Aj1∥ . . . ∥Aj|J| ] and let

1More in general, at least n columns of the matrix A are required, however, for the sake of

simplicity, we consider only blocks Ai
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TAJ
be a basis of the orthogonal lattice Λ⊥q (AJ). There exists a probabilistic poly-

nomial time algorithm GenSamplePre (A,TAJ
, J, s,u) that samples e ←$ DZmk,s

condition on ⟨A, e⟩ = u, with s ≥ ∥T̃AJ
∥ · ω(

√
log km) (hence independent on the

choice and size of J).
In particular, to build such an algorithm, consider J̄ = {1, . . . , k}\J . We can

retrieve ei for i ∈ J̄ directly from eJ̄ ←$ DZm·(k−∥J∥),s while ej for j ∈ J can
be retrieved from eJ = SamplePre(B,TB, s,u − ⟨A, eJ̄⟩), so building e such that
⟨A, e⟩ = u.

5. CP-ABE scheme on lattices

In this section we review the CP-ABE scheme presented in [31] we extend later in
Section 6. The scheme is somehow inspired by Shamir Secret Sharing [26] technique,
where a randomly chosen shared secret s ←$ Zn

q is hidden trough multiple LWE
samples and it is used in a LWE-PKE [11] fashion to build a ciphertext.

The main idea is to provide a given user with a fixed attribute (say 0) and a set
of variable attributes R = {1, . . . , |R|} that can either be assigned (say i+) or not
(say i−) for a total of r = |R|+1 attributes. Then, access structures W can either
specify a given attribute (both in a positive or a negative way) or not (actually
providing them both).

More formally, a user attribute specification is a 2-partition S = (S+, S−) of R
(i.e., S+ ∪ S− = R and S+ ∩ S− = ∅) while an access structure is a 2-covering
W = (W+,W−) of R (i.e. W+ ∪W− = R, but W+ ∩W− = ∅ is not required)
where S+ and W+ represent sets of positive attributes, moreover, S− and W− are
sets of negative attributes. In particular, we say that user attributes S satisfies the
access structure W if S+ ⊆ W+ and S− ⊆ W−: in such case we write S ⊢ W,
otherwise we write S ⊬W.

The advantage of providing user-attribute specifications as 2-partition consists
in always having the same number of attributes, hence being able to build a matrix
D ∈ Zn×mr

q to be used in GenSamplePre. At the same time, the fixed attribute
0, provides an excellent point to evaluate the short basis needed by GenSamplePre

(hence assuming J = {0}): in fact, it is fixed amongst all the possible user attribute
specifications and it can be pre-evaluated efficiently via TrapGen algorithm.

5.1. The scheme. The scheme is parametrised on the modulus q, the dimension
m, the security parameter n, the gaussian parameter s and the error distribution
χ with parameter α. Requirements on these parameters are analysed later in the
next section.

The definition of the four functions defining the CP-ABE scheme followsin Al-
gorithms 1–4.

5.2. Parameters requirements and security. We can analyse the scheme pa-
rameters considering the requirement for a correct decryption (Algorithm 4) to the
condition required by Proposition 2 and from Functions 1–4; we obtain:

(i) m ≥ ⌈6n log q⌉ as required by TrapGen (see Function 2);

(ii) s ≥ ∥T̃B0∥ · ω(
√
log(mr)) as required by GenSamplePre (see Function 4)

and by the security proof;
(iii) |xz − x′| ≤ q/ℓ, with ℓ > 4, for correct decryption (see Algorithm 4).
(iv) αq ≥ 2

√
n for LWE hardness (see Proposition 2);
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Algorithm 1: Setup(n,m, q,R)→ (pk, msk)

Input: the parameters n,m, q ∈ N and the set of attributes
R = {1, . . . , r − 1}

Output: the public key pk and the master secret key msk

1 (B0,TB0)← TrapGen(n,m, q);

2 for each i ∈ R do
3 B+

i ,B
−
i ←$ U(Zn×m

q );

4 u←$ U(Zn
q );

5 pk← (B0, {B+
i ,B

−
i }i∈R,u);

6 msk← (pk,TB0)

Algorithm 2: KGen(msk,S)→ sk

Input: the master secret key msk and a user attribute spec. S = (S+, S−)
Output: the user secret key sk holding the attribute specification S and

the private secret e←$ DZmr,s

1 for each i ∈ R do

2 Ai ←

{
B+

i if i ∈ S+

B−i if i ∈ S−
;

3 A← [B0∥A1∥ . . . ∥A|R|];
4 e← GenSamplePre(A,TB0

, {0}, s,u);
5 sk← (S, e);

Algorithm 3: Enc(pk,W,M)→ C

Input: the public key pk, an access structure W = (W+,W−) and a
message M ∈ {0, 1}

Output: the ciphertext structure C holding the LWE-PKE encrypted
message z ∈ Zq and the coefficients c±i to allow the random secret
retrieval (if the access structure is satisfied)

1 s←$ U(Zn
q );

2 xz ←$ χ;

3 z ← ⟨uT , s⟩+ xz +M⌊q/2⌋;
4 x←$ χm;

5 c0 ← ⟨BT
0 , s⟩+ x;

6 for each i ∈W+ do
7 x←$ χm;

8 c+i ← ⟨B
+
i

T
, s⟩+ x;

9 for each i ∈W− do
10 x←$ χm;

11 c−i ← ⟨B
−
i

T
, s⟩+ x;

12 C ← (W, z, c0, {c+i }i∈W+ , {c−i }i∈W−);
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Algorithm 4: Dec(C, sk)→M or ⊥
Input: a ciphertext structure C and a secret key sk

Output: the message M ′ ∈ {0, 1} which corresponds to the original
message M if |xz − x′| < q/4 (say ≤ q/ℓ for each ℓ > 4)

1 if S ⊬W
2 return ⊥;
3 for each i ∈ R do

4 yi ←

{
c+i if i ∈ S+

c−i if i ∈ S−
;

5 y← [c0;y1; . . . ;y|R|];

6 a← ⟨eT ,y⟩; // ⟨eT ,y⟩ = ⟨eT , ⟨AT , s⟩⟩+ ⟨eT ,x⟩ = ⟨uT , s⟩+ x′

7 b← z − a; // z − a = xz − x′ +M⌊q/2⌋

8 M ′ ←

{
1 if ⌊q/4⌋ ≤ b ≤ ⌊3q/4⌋
0 otherwise

;

(i) suggests us to parametrise m over a value δ ∈ R being such that nδ > ⌈log q⌉,
hence obtaining

m = 6n1+δ .

Furthermore, we know from Function 2 that ∥T̃B0
∥ ≤ O(

√
n log q), or, in other

terms, that∥T̃B0∥ ≤ O(
√
m); hence, from the second condition, we obtain

s =
√
m · ω

(√
log(mr)

)
.

In order to tackle (iii), we recall from Lemma 2 that |xz| ≤ qα ·ω(
√
logm) + 1/2

and |x′| = |⟨eT ,x⟩| ≤ ∥e∥ · qα · ω(
√
logm) + ∥e∥√m/2 and from Lemma 1 that

∥e∥ ≤ s
√
mr; hence, due to triangular inequality, we obtain

|xz − x′| = |xz|+ |x′|

≤ qα ·
(
ω
(√

logm
)
+ ∥e∥ · ω

(√
log(mr)

))
+

1

2

(
1 + ∥e∥

√
m

)
≤ qα · s

√
mr · ω

(√
log(mr)

)
+

1

2
(1 + sm

√
r)

≤ sqα
√
mr · ω

(√
log(mr)

)
+ smr .

Plugging the inequality in (iii) and letting ω̂ = ω
(√

log(mr)
)
we obtain

ℓsqα ·
√
mr · ω̂ + ℓsmr ≤ q

q · (ℓsα ·
√
mr · ω̂ − 1) ≤ ℓsmr

which suggests us to require

α =

(
s ·
√
mr · ω

(√
log(mr)

))−1
hence obtaining from the previous inequality that

q · (ℓ · ω(1)− 1) ≤ ℓsmr .
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Furthermore, in order to satisfy (iv) and recalling we obtain

q > 2
√
n · α−1 = s ·

√
4nmr · ω̂ .

Recalling from (i) that m > 4n, a suitable solution is given by

q = smr · ω
(√

log(mr)
)

,

solution yet still satisfying the sequence of inequalities we built for (iii).
We can resume the above stated conditions as follows

m = 6n1+δ, with δ ∈ R | nδ > ⌈log q⌉

s =
√
m · ω

(√
log(mr)

)
q = smr · ω

(√
log(mr)

)
α =

(
s ·
√
mr · ω

(√
log(mr)

))−1
(†)

in order to provide the scheme security claim

Proposition 3 (Theorem 1 from [31]). Let χ = Ψ̄α and let m, s, q, and α be as
from (†). The, if LWEq,χ is hard, the CP-ABE scheme (Setup, KGen, Enc, Dec)
defined by Algorithms 1, 2, 3, and 4 is secure against selective chosen plaintext
attack (sCPA).

In particular, if there exists an adversary A that breaks its sCPA security with
advantage ϵ, then there exists an algorithm B solving LWEq,χ with probability ϵ.

6. mRLWE-CP-ABE

In this section we formally describe the mediated scheme mRLWE-CP-ABE, the
analysis of its parameter and the security proofs.

6.1. The scheme. mRLWE-CP-ABE shares the same parameter structure with
regular CP-ABE scheme presented in Section 5. Requirements on these parameters
are very similar too and are discussed in the next section. For this reason, Setup
function is defined as in Algorithm 1 without any particular changes.

Concurrently, as described in Section 3.2, encryption procedure is not modified
by the mediation process, hence Enc function is defined as in Algorithm 3.

The definition of the three remaining functions defining a revocable CP-ABE
scheme follows in Algorithm 5–7.

6.2. Parameter requirements. Requirements introduced in Section 5.2 still hold.
However, error grows higher in MDec if compared to the lattice based CP-ABE
scheme Dec. In fact, the requirement for a correct decryption is

|xz −
k∑

j=0

x′j −
k∑

j=1

xj | ≤
q

ℓ̂
.

Do note that {xj}kj=1 are sampled from the same distribution as xz and {x′j}kj=1

are obtained as it was for x′ in the original algorithm, hence Lemma 2 still applies.
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Algorithm 5: MKGen(msk,S, k)→ (sk, {mkj}kj=1)

Input: the master secret key msk, a user attribute specification
S = (S+, S−), and the number of mediators k

Output: the user secret key sk holding the attribute specification S and
the private secret e←$ DZmr,s

Output: the mediator secret key mkj holding the private secret
mkj ←$ DZmr,s, for each 0 < j ≤ k

1 for each i ∈ R do

2 Ai ←

{
B+

i if i ∈ S+

B−i if i ∈ S−
;

3 A← [B0∥A1∥ . . . ∥A|R|];
4 for j = 1, . . . , k
5 uj ←$ U(Zn

q );

6 mkj ← GenSamplePre(A,TB0 , {0}, s,uj);

7 u0 ← u−
∑k

j=1 uj ;

8 e← GenSamplePre(A,TB0
, {0}, s,u0);

9 sk← (S, e);
10 mkj ← (mkj);

Algorithm 6: PDec(y, mkj)→ aj

Input: a vector y holding the information about the shared secret of a
ciphertext and a mediator key mkj

Output: the decryption information aj

1 xj ←$ χ;

2 aj ← ⟨mkT
j ,y⟩+ xj ;

// ⟨mkT
j ,y⟩+ xj = ⟨mkT

j , ⟨AT , s⟩⟩+ ⟨mkT
j ,x⟩+ xj = ⟨uT

j , s⟩+ x′j + xj

Due to triangular inequality and following the same reductions as before, we obtain

|xz −
k∑

j=0

x′j −
k∑

j=1

xj | ≤ |xz| −
k∑

j=0

|x′j | −
k∑

j=1

|xj |

≤ (k + 1)sqα
√
mr · ω̂ + (k + 1)smr .

Plugging the inequality in the requirement for decryption we obtain

(k + 1)ℓ̂sqα ·
√
mr · ω̂ + (k + 1)ℓ̂smr ≤ q

q · ((k + 1)ℓ̂sα ·
√
mr · ω̂ − 1) ≤ (k + 1)ℓ̂smr ,

whose solution is comparable to the one of the original scheme if we consider ℓ =

ℓ̂ · (k + 1) since the only requirement imposed on ℓ is ℓ > 4 which still holds.

6.3. Security of mRLWE-CP-ABE. The here presented mediated scheme is
equivalent to the original scheme from the point of view of an external attacker. In
fact, the encryption and decryption functions behaves the same as in the original
scheme but for the addition of more noise (the more the mediators, the higher the
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Algorithm 7: MDec(C, sk)→M or ⊥
Input: a ciphertext structure C and a user secret key sk

Output: the message M ′ ∈ {0, 1} which corresponds to the original

message M if |xz −
∑k

j=0 x
′
j −

∑k
j=1 xj | < q/4 (say ≤ q/ℓ̂ for each

ℓ̂ > 4)

1 if S ⊬W
2 return ⊥;
3 for each i ∈ R do

4 yi ←

{
c+i if i ∈ S+

c−i if i ∈ S−
;

5 y← [c0∥y1∥ . . . ∥y|R|];
6 a0 ← ⟨eT ,y⟩; // ⟨eT ,y⟩ = ⟨eT , ⟨AT , s⟩⟩+ ⟨eT ,x⟩ = ⟨uT

0 , s⟩+ x′0
7 for j = 1, . . . , k
8 Request to the j-th mediator aj ← PDec(y, ◦);

9 a←
∑k

j=0 aj ; //
∑k

j=0 aj =
∑k

j=0

(
⟨uT

j , s⟩+ x′j
)
+
∑k

j=1 xj =

⟨uT , s⟩+
∑k

j=0 x
′
j +

∑k
j=1 xj

10 b← z − a; // z − a = xz −
∑k

j=0 x
′
j −

∑k
j=1 xj +M⌊q/2⌋

11 M ′ ←

{
1 if ⌊q/4⌋ ≤ b ≤ ⌊3q/4⌋
0 otherwise

;

noise). We can further claim, analogously to Proposition 3, the security of the
scheme under sCPA:

Theorem 1 (Security of mRLWE-CP-ABE (external)). Let χ = Ψ̄α and let m, s,
q, and α be as from (†). Then, if LWEq,χ is hard, the revocable CP-ABE scheme
(Setup, MKGen, Enc, PDec, MDec) defined by Algorithms 1, 5, 3, 6, and 7 is secure
against selective chosen plaintext attack (sCPA).

In particular, if there exists an adversary A that breaks its sCPA security, then
there exists an adversary B that solves the LWEq,χ decision problem.

The proof of the theorem is analogous to the one from [31]; however, we report
it for completeness.

Proof. Assume there exists a polynomial-time adversary A capable of breaking
IND-sCPA for the mediated scheme with advantage ϵ by using at most q key gen-
eration queries by obtaining both user and mediator keys.

Let O(◦) be an oracle that either samples always from As,χ or from uniform
distribution U(Zq). Let B be an attacker who cooperate with A and wants to
decide whether of the two distributions O(◦) is sampling from.

The idea of the cooperation is to build a CP-ABE game – with A as the attacker
and B as the challenger – that can be won with probability noticeably grater than
1/2 if and only if O(◦) is sampling from s,χ. Assuming such a game exists, then B
can discriminate between the two distributions.

We recall that, in order to run the game, the challenger B is only required to
be able to (i) provide a public key to A, (ii) encrypt a message and (iii) make q
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generations of valid keys (with respect to the provided public key) on attribute
specifications that does not satisfies the challenged access structure; decryption
is hence not required as well as being able to generate secret keys for attribute
specification satisfying the challenged access structure.

Let us formally define the game:

Init. A chooses a challenge W = (W+,W−) and prompts it to B.
Setup. B samples (a, y) ∈ Zn

q ×Zq pairs multiple times from O(◦) in order to build

the matrices B0 and B±i needed by the chosen access structure (out of the vectors
ai) and to save (potentially) LWE-valid vectors ci for the ciphertext creation. The
total number of samples required are (|S+|+ |S−|+1) ·m+1 and they are used to
build the following couples:

• (B0,v0) ∈ Zn×m
q × Zm

q ;
• (u, vu) ∈ Zn

q × Zq;

• (B+
i ,v

+
i ) ∈ Zn×m

q × Zm
q for each i ∈ S+;

• (B−i ,v
−
i ) ∈ Zn×m

q × Zm
q for each i ∈ S−.

Then, in order to create the missing matrices B+
i and B−i (respectively for i ̸∈ S+

and i ̸∈ S−) and coherently being able to run MKGen algorithm on S such that
S ⊬W, the challenger B computes:

• (B+
i ,TB+

i
)← TrapGen(n,m, q) for each i ̸∈ S+;

• (B−i ,TB−
i
)← TrapGen(n,m, q) for each i ̸∈ S−.

Finally, the challenger stores ({TB+
i
}i∈S+ , {TB+

i
}i∈S+) for the key generation,

stores (v0, vu, {v+
i }i∈S+ , {v−i }i∈S−) for the ciphertext creation, and outputs the

public key pk = (B0, {B+
i ,B

−
i }i∈R,u) to the attacker A.

Keygen query. Upon receiving a user attribute specification S from A, if S ⊢ W
then B outputs ⊥. Otherwise, there exists at least one attribute i ∈ S+ such that
i ̸∈ W+ or i ∈ S− such that i ̸∈ W−; let T̂ be the short basis generated by
TrapGen during setup associated to such an attribute. B finally runs and outputs

MKGen((pk, T̂),S) to A. Do note that the so-formed master secret key is valid
for S (and for all the user specifications containing i as does S) since, according
Function 4, GenSamplePre requires whatever short basis generated from a subset of
m linearly independent vectors of A (the matrix in Zn×mk

q defined in Algorithm 5).

Challenge. The attacker A submits M0,M1 ∈ {0, 1} to the challenger B, who
randomly chooses b ∈ {0, 1} and returns the (possibly valid) ciphertext associated
with Mb. However, since B wants to output a valid ciphertext only if O(◦) is
sampling from Ac,s, the idea is to use the stored values from the setup in order to
emulate the LWE instances of the Enc function. Therefore B computes and outputs
C = (W, z, c0, {c+i }i∈W+ , {c−i }i∈W−) with:

• z ← vu +Mb⌊q/2⌋, where vu emulates ⟨uT , s⟩+ xz;
• c0 ← v0 to emulate ⟨BT

0 , s⟩+ x;

• c+i ← v+
i to emulate ⟨B+

i

T
, s⟩+ x, for each i ∈W+;

• c−i ← c−i to emulate ⟨B−i
T
, s⟩+ x, for each i ∈W−.

A is allowed to make more key generation queries after the challenge has been
set. Eventually, it outputs a guess b′ for b that is correct either with probability
1/2 + ϵ if O(◦) is sampling from Ac,s or with probability 1/2 if it is sampling from
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U(Zn
q ×Zq). Hence B guesses Ac,s if b = b′ (i.e. A is correct) or guesses U(Zn

q ×Zq)
if b ̸= b′ (i.e. A is wrong).

Do note that if O(◦) is sampling from Ac,s, then B guesses right with the same
non-negligible advantage as A does. So, if such A do exists, B can solve LWE
problems, which yields the claim. □

However, due to the revocation requirement, security must be also ensured if the
attacker is one or more users, in the sense that

(i-u) a user is not able to decrypt as far as at least a SM denies its cooperation;
(ii-u) a user can not reject a revocation in polynomial time, even after a polyno-

mial number of correct decryptions (meaning that he can neither break nor
forge a SM key);

(iii-u) multiple user can not collude to retrieve a SM key or to decrypt a message;

and if the attacker is one or more SMs, in the sense that:

(i-m) one or more SM can not collude to decrypt a message, even upon receiving
many mediator keys from different users;

(ii-m) one or more SM can not collude to retrieve a user secret e.

We do note that mediator keys and user keys are complementary in decryption
phase and they are generated all starting from ui distributed uniformly at random:
u0 is given by the difference of vector distributed uniformly at random, hence it
is still distributed uniformly at random. Since ui are generated randomly for each
user, it follows that different users e are independent one from the other, hence
combining information from different keys ensure no further knowledge, ensuring
(iii-u).

A similar outcome can be derived for SMs holding mediator keys related to
different users. Moreover SM and users receive no information about mutual keys
by-design and mediator keys, if equipped with S, are equivalent to the user ones
(i.e. SM keys are weaker than user ones), we have that (i-u) implies (i-m) (i.e. if
user is not able to decrypt without even a single SM, then decryption can not occur
without the collaboration of k parties out of the k + 1, no matters which one is
missing).

We claim the following theorem to prove (i-u):

Theorem 2 (Security of PDec algorithm (break)). Let χ = Ψ̄α and let m, s, q, and
α be as from (†). Then, if LWEq,χ is hard, the CP-ABE scheme (Setup, MKGen,
Enc, PDec, MDec) defined by Algorithms 1, 5, 3, 6, and 7 is secure against selective
chosen plaintext attack (sCPA) carried out by a user if at least one mediator does
not participate in the decryption.

In particular, if there exists an adversary A that breaks its sCPA security, then
there exists an adversary B that solves the LWEq,χ decision problem.

Proof. If at least a mediator (say ĵ) does not take part to the decryption proce-
dure, from the client perspective the problem resemble to solve the non-mediated
version of the scheme with higher noise on z. In fact, he can compute z′ ←
z −

∑k
j=0,j ̸=ĵ aj and C ′ = (W, z′, c0, {c+i }i∈W+ , {c−i }i∈W−) is a valid ciphertext

(apart from the potentially higher noise) for the non-mediated scheme with public
key pk = (B0, {B+

i ,B
−
i }i∈R,uĵ).
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The only advantage the client has is the knowledge of its e that, however, does
not reveal further information neither about the short basis TB0 nor about other
keys2 since they are obtained from GenSamplePre applied to uniformly random u.

It follows that if there exists an adversary A that breaks sCPA for the mediated
scheme under these assumptions, then there exists an adversary A′ that breaks
sCPA for the non-mediated scheme and hence, by Proposition 3, there exists an
adversary B that solves the LWEq,χ decision problem. □

Furthermore, by design, SMs receive no information about the decryption pro-
cedure when a request is submitted by a user; hence, they can not learn anything
about the user secret neither from the query itself nor from other sources. Analo-
gously, (ii-m) follows.

Do also consider that mediators receive no information about the attribute spec-
ification S as well; however, if mediator do have access to the database of cipher-
texts and can guess which ciphertext was delivered by the user, they can guess the
attribute specification by matching vector y with the allowed c±i . In particular,
guessing the correct match between delivered y and ciphertext is mainly a combi-
natorial matter that has not received many attention in literature. However, we
point out that, whenever it would get important to preserve the privacy between
which users required which ciphertext (e.g. to prevent user profiling), a possible
solution for the user would be to protect y by adding a noise x ←$ χmr. It is out
of the scope of this paper showing the complete proof of correctness, however do
note that y+x would still be considered as a valid LWE sample (see also later the
proof of Theorem 3) with higher noise and decryption would still be correct with
some correction on total noise size.

Finally we claim the following theorem that tackles (ii-u):

Theorem 3 (Security of PDec algorithm). Let χ = Ψ̄α and let m, s, q, and α be
as from (†). Then, if LWEq,χ is hard, the function PDec defined by Algorithm 6 is
hard to

• break, in the sense that there exists no polynomial-time algorithm to re-
trieve mk from a polynomially bounded number of pair (y, a), where a ←
PDec(y, mk).
• forge, in the sense that there exists no polynomial-time algorithm to evaluate
a∗ from an arbitrary y∗, where a∗ ← PDec(y∗, mk), without knowing mk

from a priorly obtained polynomially bounded number of pair (yi, ai), where
ai ← PDec(yi, mk).

In particular, if there exists an adversary A that breaks (forges) PDec, then there
exists an adversary B that breaks the LWEq,χ search (decision) problem.

Proof. We recall y←$ As,χ since y = ⟨A, s⟩+ x, hence y is indistinguishable from
the uniform distribution for the LWEq,χ hardness.

It is easy to see that a ∈ Amk,s, in fact a = ⟨mkT ,y⟩+x where y is statistically
uniform to random and x ←$ χ. It follows that PDec is an actual instance of
LWEq,χ, hence proving the claim. □

2If this was the case, do note also that users could forge other users keys at first glance
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7. Multiple bit encryption

The original CP-ABE scheme introduced in Section 5 was also proposed as a
N -bit encryption scheme (with N ∈ N), where the same shared secret s was used
to encrypt a vector of message bits M ∈ {0, 1}N .

The authors introduced a public matrix U ∈ Zn×N
q and a user secret matrix E of

size mr×N , where each of the N columns is generated by applying GenSamplePre

to a different column of U. Here, encryption works analogously, with the only
difference within the evaluation of z, now being a vector z:

z← ⟨UT , s⟩+ xz +M⌊q/2⌋, with xz ←$ χN .

Decryption, at the same glance, does not require any further care; in fact, once
retrieved the suitable y vector, we can perform:

a← ⟨ET ,y⟩ = ⟨ET , ⟨AT , s⟩⟩+ ⟨ET ,x⟩ = ⟨UT , s⟩+ x′

b← z− a = xz − x′ +M⌊q/2⌋

and, finally, by identifying M = (M1, . . . ,MN ) and b = (b1, . . . , bN ):

Mi ←

{
1 if ⌊q/4⌋ ≤ bi ≤ ⌊3q/4⌋
0 otherwise

for i = 1, . . . , N .

A notable advantage of this approach is given by the size of the ciphertext,
since only a single copy of c0, c

+
i (for each i ∈ W+) and c−i (for each i ∈ W−)

is needed regardless of the number N of encrypted bits. Therefore, C is made of
N +m · |W+| · |W−| ≤ N +2mr values in Zq, compared with the 2Nmr generated
by N different single-bit encryptions.

Clearly, the mediated scheme introduced in this paper can benefit from the
same approach, where mediators and user both receive a matrix MKj and E of size

mr×N , built upon random matricesUj ←$ U(Zn×N
q ) and uponU0 = U−

∑k
j=1 Uj

respectively.
Furthermore, security is ensured with the same claims as per the original paper.

8. Experiments with mRLWE-CP-ABE

Here we report the results of the performance experiments we carry out to
evaluate the overhead introduced by the generation of the mediator keys and
by their application in the decryption phase. In order to do that we implement
mRLWE-CP-ABE on top of the Palisade-ABE implementation 3 of [31] and we
compare the execution time of KGen vs MKGen and of Dec vs (PDec + MDec) vs Enc.
We compare the time for (PDec + MDec) also against the time needed for Enc algo-
rithm as the procedure PDec when generates and adds the error xj to protect the
mediator key, actually is performing a LWE scheme. We carry out the following
performance experiments on a Nvidia DGX-1 equipped with 512 GB of memory; for
each experiment we report in Table 1 the average execution time over 20 repetitions
for the three different security levels, namely HEStd 128 classic, HEStd 192 classic
and HEStd 256 classic, and for five values for the number of attributes, for instance
6,8,16,20,34. We conduct experiments fixing the number of encrypted bits to 10000
and by setting k = 1.

3Last access time 02 -12-2022https://gitlab.com/palisade/palisade-abe

https://gitlab.com/palisade/palisade-abe
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As mentioned before, by seeing Table 1, it is clear that the decryption in our
system (PDec + MDec) requires almost the time of the encryption. For what con-
cern the KGen vs MKGen, the latter requires to double the time of the former; the
behaviour is what we expect as MKGen needs to generate both the user key and the
mediator keys and in the experiments setup, as mentioned, k = 1 so actually it
generates two keys.

Parameters Time (ms)
Security-Level #Attributes KGen MKGen Dec PDec + MDec Enc

HEStd 128 classic 6 179 354 1 54 47
HEStd 128 classic 8 223 451 2 75 73
HEStd 128 classic 16 386 769 3 141 129
HEStd 128 classic 20 465 938 4 185 174
HEStd 128 classic 32 725 1463 7 309 276
HEStd 192 classic 6 108 212 0 23 21
HEStd 192 classic 8 125 248 1 32 31
HEStd 192 classic 16 195 387 1 59 56
HEStd 192 classic 20 227 454 2 80 73
HEStd 192 classic 32 336 657 3 117 112
HEStd 256 classic 6 341 681 3 103 99
HEStd 256 classic 8 435 864 4 149 147
HEStd 256 classic 16 771 1550 8 282 272
HEStd 256 classic 20 929 1869 9 381 363
HEStd 256 classic 32 1470 2947 16 687 574

Table 1. Average execution time (ms) of KGen, MKGen, Dec, PDec,
MDec and Enc algorithms. We run experiments by varying the
security level and the values for attributes. We fix the number of
security mediators to k = 1 and the size of plaintext to 10000 bits.

9. Conclusions and further work

In this paper, we have presented – to the best of our knowledge – the first
post-quantum safety scheme for revocable CP-ABE based on LWE problem over
lattices. The scheme takes advantage of the lattice based CP-ABE scheme firstly
presented in [31] by building upon it a server-aided fine-grained revoking system
(mRLWE-CP-ABE). Server involved are considered semi-trusted, hence the security
proofs are given against different threat models. Security and applications are
discussed both in the single-bit and in the multi-bit approach.

To conclude, the here proposed scheme mRLWE-CP-ABE is implemented on the
ABE spin-off of the well-established open-source library Palisade to experimentally
validate and provide some early performances estimation with particular attention
to the overhead with respect to the original scheme. The implementation will be
released open source to let the community independently test and evaluate it.

In future implementation, we will develop a similar approach on the further
scheme proposed in [32]. Furthermore, we also plan to provide support to other
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libraries, including e.g. Microsoft SEAL ([25]) and Pyfhel as well as to carry out a
more in-depth performance analysis of the system.
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[7] Johannes Blömer and Jean-Pierre Seifert. On the complexity of computing short linearly
independent vectors and short bases in a lattice. In Proceedings of the Thirty-First Annual

ACM Symposium on Theory of Computing, STOC ’99, pages 711–720, New York, NY, USA,

1999. Association for Computing Machinery. [DOI:10.1145/301250.301441].
[8] Dan Boneh, Xuhua Ding, Gene Tsudik, and Chi-Ming Wong. A method for fast revoca-

tion of public key certificates and security capabilities. In Dan S. Wallach, editor, 10th

USENIX Security Symposium, August 13-17, 2001, Washington, D.C., USA. USENIX, 2001.
usenix.org/publications/library/proceedings/sec01/boneh.html.

[9] David Cash, Dennis Hofheinz, and Eike Kiltz. How to delegate a lattice basis. Cryptology
ePrint Archive, Paper 2009/351, 2009. [eprint:2009/351].

[10] Hui Cui, Robert H. Deng, Xuhua Ding, and Yingjiu Li. Attribute-based encryption with

granular revocation. In Robert Deng, Jian Weng, Kui Ren, and Vinod Yegneswaran, editors,
Security and Privacy in Communication Networks, pages 165–181, Cham, 2017. Springer

International Publishing. [DOI:10.1007/978-3-319-59608-2 9].

[11] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Proceedings of the fortieth annual ACM symposium on

Theory of computing, pages 197–206, 2008. [DOI:10.1145/1374376.1374407].

[12] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS ’06, pages 89–98, New York, NY, USA, 2006.
Association for Computing Machinery. [DOI:10.1145/1180405.1180418].

[13] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Com-

puter and System Sciences, 62(2):367–375, 2001. [DOI:10.1006/jcss.2000.1727].
[14] Joseph K. Liu, Tsz Hon Yuen, Peng Zhang, and Kaitai Liang. Time-based direct revocable

ciphertext-policy attribute-based encryption with short revocation list. In Bart Preneel and

https://doi.org/10.1016/j.ipl.2020.106065
http://boneh.com/pubs/papers/latticebb.pdf
https://doi.org/10.3390/s19071695
https://hal.inria.fr/inria-00359718
https://doi.org/10.1109/FOCS.2017.11
https://doi.org/10.1109/SP.2007.11
https://doi.org/10.1145/301250.301441
http://www.usenix.org/publications/library/proceedings/sec01/boneh.html
https://eprint.iacr.org/2009/351
https://doi.org/10.1007/978-3-319-59608-2_9
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1006/jcss.2000.1727


mRLWE-CP-ABE: A REVOCABLE CP-ABE FOR POST-QUANTUM CRYPTOGRAPHY 23

Frederik Vercauteren, editors, Applied Cryptography and Network Security, pages 516–534,

Cham, 2018. Springer International Publishing. [DOI:10.1007/978-3-319-93387-0 27].

[15] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions
based on gaussian measures. SIAM Journal on Computing, 37(1):267–302, 2007.

[DOI:10.1137/S0097539705447360].

[16] Steve Moffat, Mohammad Hammoudeh, and Robert Hegarty. A survey on ciphertext-policy
attribute-based encryption (cp-abe) approaches to data security on mobile devices and its

application to iot. In Proceedings of the International Conference on Future Networks and

Distributed Systems, ICFNDS ’17, New York, NY, USA, 2017. Association for Computing
Machinery. [DOI:10.1145/3102304.3102338].

[17] PALISADE Lattice Cryptography Library (release 1.11.2). [Palisade Crypto], May 2021.

[18] Chris Peikert. Some recent progress in lattice-based cryptography. In Theory of Cryptography,
pages 72–72. Springer Berlin Heidelberg, 2009. [DOI:10.1007/978-3-642-00457-5 5].

[19] Tran Viet Xuan Phuong, Guomin Yang, Willy Susilo, and Xiaofeng Chen. Attribute based
broadcast encryption with short ciphertext and decryption key. In Günther Pernul, Peter

Y A Ryan, and Edgar Weippl, editors, Computer Security – ESORICS 2015, pages 252–269,

Cham, 2015. Springer International Publishing. [DOI:10.1007/978-3-319-24177-7 13].
[20] Marco Rasori, Michele La Manna, Pericle Perazzo, and Gianluca Dini. A survey on attribute-

based encryption schemes suitable for the internet of things. IEEE Internet of Things Journal,

9(11):8269–8290, June 2022. [DOI:10.1109/JIOT.2022.3154039].
[21] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In

STOC’05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages

84–93. ACM, New York, 2005. [DOI:10.1145/1060590.1060603].
[22] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Jour-

nal of the ACM (JACM), 56(6):1–40, 2009. [DOI:10.1145/1568318.1568324].

[23] Amit Sahai, Hakan Seyalioglu, and Brent Waters. Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,

Advances in Cryptology – CRYPTO 2012, pages 199–217, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. [DOI:10.1007/978-3-642-32009-5].

[24] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,

Advances in Cryptology – EUROCRYPT 2005, pages 457–473, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg. [DOI:10.1007/11426639 27].

[25] Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL, March 2022. Microsoft

Research, Redmond, WA.
[26] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, nov 1979.

[DOI:10.1145/359168.359176].

[27] Xingxing Xie, Hua Ma, Jin Li, and Xiaofeng Chen. An efficient ciphertext-policy attribute-
based access control towards revocation in cloud computing. JUCS - Journal of Universal

Computer Science, 19(16):2349–2367, 2013. [DOI:10.3217/jucs-019-16-2349].
[28] Shengmin Xu, Guomin Yang, and Yi Mu. Revocable attribute-based encryption with decryp-

tion key exposure resistance and ciphertext delegation. Information Sciences, 479:116–134,

2019. [DOI:10.1016/j.ins.2018.11.031].
[29] Yanjiang Yang, Xuhua Ding, Haibing Lu, Zhiguo Wan, and Jianying Zhou. Achieving re-

vocable fine-grained cryptographic access control over cloud data. In Yvo Desmedt, edi-

tor, Information Security, pages 293–308, Cham, 2015. Springer International Publishing.
[DOI:10.1007/978-3-319-27659-5 21].

[30] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Attribute based data sharing with
attribute revocation. In Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, ASIACCS ’10, page 261–270, New York, NY, USA, 2010.

Association for Computing Machinery. [DOI:10.1145/1755688.1755720].
[31] Jiang Zhang and Zhenfeng Zhang. A ciphertext policy attribute-based encryption scheme

without pairings. In International Conference on Information Security and Cryptology, pages

324–340. Springer, 2011. [DOI:10.1007/978-3-642-34704-7 23].
[32] Jiang Zhang, Zhenfeng Zhang, and Aijun Ge. Ciphertext policy attribute-based encryption

from lattices. In Proceedings of the 7th ACM Symposium on Information, Computer and

Communications Security, pages 16–17, 2012. [DOI:10.1145/2414456.2414464].

https://doi.org/10.1007/978-3-319-93387-0_27
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1145/3102304.3102338
https://palisade-crypto.org/
https://doi.org/10.1007/978-3-642-00457-5_5
https://doi.org/10.1007/978-3-319-24177-7_13
https://10.1109/JIOT.2022.3154039
https://doi.org/10.1145/1060590.1060603
https://10.1145/1568318.1568324
https://10.1007/978-3-642-32009-5
https://doi.org/10.1007/11426639_27
https://github.com/Microsoft/SEAL
https://doi.org/10.1145/359168.359176
https://doi.org/10.3217/jucs-019-16-2349
https://doi.org/10.1016/j.ins.2018.11.031
https://doi.org/10.1007/978-3-319-27659-5_21
https://doi.org/10.1145/1755688.1755720
https://doi.org/10.1007/978-3-642-34704-7_23
https://doi.org/10.1145/2414456.2414464


24 M. CIANFRIGLIA, E. ONOFRI, AND M. PEDICINI

[33] Yinghui Zhang, Robert H. Deng, Shengmin Xu, Jianfei Sun, Qi Li, and Dong Zheng.

Attribute-based encryption for cloud computing access control: A survey. ACM Comput.

Surv., 53(4), aug 2020. [DOI:10.1109/JIOT.2022.3154039].

https://doi.org/10.1145/3398036

	1. Introduction
	1.1. Related Works
	1.2. Contributions
	1.3. Paper organisation

	2. Notation
	3. Scheme, system and threat model
	3.1. Ciphertext policy attribute-based encryption
	3.2. System model of mR_LWE-CP-ABE
	3.3. Threat model to mR_LWE-CP-ABE

	4. Prerequisites on lattices
	4.1. Hard problems
	4.2. Discrete Gaussians
	4.3. Learning with errors
	4.4. Literature algorithms on lattices

	5. CP-ABE scheme on lattices
	5.1. The scheme
	5.2. Parameters requirements and security

	6. mR_LWE-CP-ABE
	6.1. The scheme
	6.2. Parameter requirements
	6.3. Security of mR_LWE-CP-ABE

	7. Multiple bit encryption
	8. Experiments with mR_LWE-CP-ABE
	9. Conclusions and further work
	Acknowledgements
	References

