
Efficient Card-Based Millionaires’ Protocols via Non-Binary Input
Encoding
Koji Nuida1,2

1 Institute of Mathematics for Industry (IMI), Kyushu University, Japan
nuida@imi.kyushu-u.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST), Japan

Abstract
Comparison of integers, a traditional topic in secure multiparty computation since Yao’s pioneering

work on “Millionaires’ Problem” (FOCS 1982), is also well studied in card-based cryptography. For the
problem, Miyahara et al. (Theoretical Computer Science, 2020) proposed a protocol using binary cards
(i.e., cards with two kinds of symbols) that is highly efficient in terms of numbers of cards and shuffles,
and its extension to number cards (i.e., cards with distinct symbols). In this paper, with a different design
strategy which we name “Tug-of-War Technique”, we propose new protocols based on binary cards and
on number cards. For binary cards, our protocol improves the previous protocol asymptotically (in bit
lengths of input integers) in terms of numbers of cards and shuffles when adopting ternary encoding of
input integers. For number cards, at the cost of increasing the number of cards, our protocol improves
the number of shuffles of the previous protocol even with binary encoding, and more with q-ary encoding
where q > 2.

Keywords: Card-based protocols, integer comparison, Millionaires’ Problem

1 Introduction
Secure multiparty computation (MPC) is a cryptographic technology that enables multiple parties to col-
laboratively derive a correct output while keeping each party’s input secret to the other parties. The notion
of MPC was proposed by Yao [12] in 1982, where he discussed the problem of securely comparing two in-
tegers, nowadays called “Yao’s Millionaires’ Problem”. Besides such historical importance, comparison of
integers has also been an active research topic in the area of MPC from the viewpoints of theoretical inter-
ests and ubiquitous practical applications. Moreover, it is also a major topic in card-based cryptography,
which is a research area where MPC (as well as zero-knowledge proofs, etc.) is executed by using physical
(non-electronic) objects such as a deck of cards [1].

Most of the card-based protocols in the literature are designed assuming a deck of “binary cards” with
two kinds of front-side symbols, frequently denoted by ♣ and ♥, and identical back-side symbols. There
is also a line of studies for card-based protocols using a deck of “number cards” [8] where all cards have
distinct front-side symbols, such as the standard playing cards with 52 different symbols (or 53, including
a joker). An essential ingredient of card-based protocols is shuffle operations, which permute the sequence
of cards according to some probability distribution, untraceably by any party. (We note that there are also
card-based protocols using so-called private permutations [7] instead of shuffles, which are out of the scope
of the present work.) The efficiency of card-based protocols is mainly evaluated by the numbers of cards and
shuffles.

Among the existing card-based protocols based on binary cards in the literature for comparison of two
input integers in a range, say {0, 1, . . . ,m− 1}, a protocol proposed by Miyahara et al. [3] has the smallest
number of cards to the authors’ best knowledge and also uses a fairly small number of shuffles. Namely, their

1

protocol uses 4`+2 cards and 2`−1 shuffles where ` := dlog2 me denotes the bit length of each input integer.
Their basic strategy itself is elementary: they compare the two bits in the binary expressions of two input
integers from the most significant to the least significant bits, and adopt the earliest non-tie result. They
implemented this strategy by combining known efficient protocols for fundamental gates and also applying
some optimizations. In particular, they used the standard encoding of each bit of an input integer into the
order of two cards ♣ and ♥ . As their protocol requires just two extra cards in addition to the 4` cards
for encoding two `-bit integers, the number of cards cannot be largely reduced when assuming this encoding
rule. Consequently, any significant improvement in the number of cards requires a change of encoding rules.

In fact, there is a known encoding technique for a non-binary, say q-ary value in {0, 1, . . . , q − 1} (with
q > 2) using the q possible positions of a single card ♥ in a sequence of q cards where the other q−1 cards

are ♣ . By using q = 3, i.e., ternary expressions of integers, the number of cards needed in encoding two
input integers can be reduced in comparison to the binary encoding above (due to the effect that the number
of digits is decreased). However, the previous protocol in [3] relies on known efficient protocols specific to
binary AND and XOR gates, therefore it is not directly extendible to non-binary input encoding. A possible
strategy is to apply some efficient protocol tailored to comparison of non-binary (and fairly small) integers,
recursively from the most significant to the least significant digits. For example, Nakai et al. [7] proposed a
card-based implementation of Yao’s original protocol in [12] using private permutations, and its conversion
to the shuffle model (i.e., without private permutations) is also described in [3]. However, this protocol has
a crucial drawback from the present viewpoint, inherited from Yao’s protocol, that it is in nature for only
distinguishing two cases α < β and α ≥ β, while such a recursive usage as above requires distinguishing
three cases α < β, α > β, and α = β. To the authors’ best knowledge, an efficient card-based protocol for
non-binary inputs that can distinguish these three cases is not known in the literature.

1.1 Our Contributions
In this paper, we introduce a new design strategy for integer comparison protocols, which we name “Tug-of-
War Technique”, and propose a new card-based protocol based on the technique. Our Tug-of-War subprotocol
distinguishes three cases αν < βν , αν = βν , and αν > βν for q-ary digits αν and βν of input integers α
and β, respectively, therefore it can realize the strategy for recursive comparison mentioned in the previous
paragraph. Table 1 shows a comparison of the efficiency of our proposed protocol with the previous protocol
in [3], where some cells also include asymptotic values (when log2 m → ∞) of the numbers of cards or
shuffles. See Section 2.4 for definitions of the shuffles appearing in the table. When using binary encoding,
our proposed protocol is slightly less efficient compared to [3] in both numbers of cards and shuffles. On the
other hand, our proposed protocol with ternary encoding achieves better efficiency than [3]; asymptotically,
the number of cards is reduced to approximately 94.6% and the number of shuffles is reduced to 63.1%.
(We note that the shuffles used in [3] are random bisection cuts, which are the simplest case of pile-shifting
shuffles; while our protocol requires not only random bisection cuts but also more complicated pile-shifting
shuffles.) In addition, Table 1 also includes the state-of-the-art protocol by Ono et al. [9] among card-based
garbled circuits [11], which uses just a single shuffle but a significantly larger (though still linear in log2 m)
number of cards. See Section 3.4 for the details of the comparison of efficiency.

Technical Overview. We explain the central idea of our proposed Tug-of-War Technique for comparison
of two input digits αν and βν , by using the following simple but insecure protocol as an example:

1. Arrange cards sequentially (from left to right), where the card (♥ , in default) at the middle point O

is given in advance and the others are ♣ ’s.

2. Alice shifts the sequence by αν to the left.

3. Bob shifts the sequence by βν to the right.

2

Table 1: Comparison of (committed-format) protocols for comparing integers α, β ∈ {0, 1, . . . ,m− 1} (with
binary output distinguishing α < β and α ≥ β): here PSS, CS, and US denote a pile-shifting shuffle, a
complete shuffle, and a (complicated) uniform shuffle, respectively; for (*), the bottom row is under an
assumption that the cards can be shuffled before generating input commitments and each party is allowed
to generate an input commitment by using private permutations (not counted in the table)

Cards Protocols # of Cards # of Shuffles
Binary Miyahara et al. [3], §6 4dlog2 me+ 2 (2dlog2 me − 1) PSS

∼ 4 log2 m ∼ 2 log2 m
Ono et al. [9] 28dlog2 me − 16 1 US

∼ 28 log2 m
Ours, §3 2qdlogq me+ 2q − 1 (2dlogq me+ 2) PSS

q-ary encoding ∼ (2q/ log2 q) log2 m ∼ (2/ log2 q) log2 m
Ours, §3 4dlog2 me+ 3 (2dlog2 me+ 2) PSS

binary encoding (q = 2) ∼ 4 log2 m ∼ 2 log2 m
Ours, §3 6dlog3 me+ 5 (2dlog3 me+ 2) PSS

ternary encoding (q = 3) ∼ (3.7855 · · ·) log2 m ∼ (1.2618 · · ·) log2 m
Number Miyahara et al. [3], §7 4dlog2 me+ 4 (6dlog2 me − 2) PSS

Ours, §4 (6q − 3)dlogq me+ 3 (3dlogq me+ 2) PSS
q-ary encoding +1 CS

(*) (5q − 3)dlogq me+ 3 (2dlogq me+ 2) PSS
+1 CS

Ours, §4 9dlog2 me+ 3 (3dlog2 me+ 2) PSS
binary encoding (q = 2) +1 CS

(*) 7dlog2 me+ 3 (2dlog2 me+ 2) PSS
+1 CS

4. Alice (respectively, Bob) takes the cards at the left (respectively, right) side, exclusively relative to the
point O; a card at the point O remains not taken.

It is easily seen that, if αν > βν (respectively, αν < βν), then Alice (respectively, Bob) takes the card ♥ at

the end of the protocol; while if αν = βν , then the card ♥ is not taken. (Intuitively, the party who pulls

the rope of cards more strongly will get the card ♥ .) Moreover, when this protocol is repeated recursively

from the most significant to the least significant digits, the card ♥ is not taken until αν 6= βν holds, and

once αν 6= βν holds, ♥ is taken by the party with larger input at the round and ♥ does not appear in
the subsequent rounds. This realizes correct comparison of input integers. Although the protocol above is
insecure (as the position of ♥ at the end of a round tells the difference of the input digits), we can convert
it into a secure protocol by applying a known technique of computing subtraction of integers (e.g., [10]) and
using some post-processing phase to securely determine who has taken the ♥ .

Extension to Number Cards. The previous paper [3] also gives a variant of the comparison protocol
that uses number cards instead of binary cards. To the authors’ best knowledge, it is the protocol with
minimal number of cards among such existing protocols using number cards in the literature. In fact, the
number of cards is even kept almost unchanged from the case of binary cards. On the other hand, the
number of shuffles is increased to almost three times larger than the case of binary cards. This is because
the efficient protocols for fundamental gates used originally are tailored to binary cards, and their protocol
with number cards has to rely on less efficient building-block protocols.

In contrast, our proposed protocol with binary cards has an advantage that the underlying mechanism,

3

especially that for Tug-of-War subprotocol, is not deeply dependent on the characteristic of binary cards.
Our variant of the protocol using number cards is basically obtained by partitioning the number cards in
a deck into “♣-cards” and “♥-cards” first and then replacing the originally used binary cards ♣ and ♥
with random ♣-cards and ♥-cards, respectively. Here, in fact, we need some additional care about the usage
of number cards; e.g., some previously opened cards were reused in later steps for our protocol based on
binary cards, but such reuse of cards should be avoided in the case of number cards to achieve the security.
Even considering such points, our proposed protocol is still significantly more efficient than [3] in terms of
the number of shuffles, while it uses an almost twice larger number of cards than [3]. See Table 1 for more
information on the comparison with the previous work, and Section 4.3 for the details. We note also that the
number of shuffles in our protocol can be decreased further (at the cost of increasing the number of cards)
by using q-ary encoding with q > 2. It is a future research topic to improve further the trade-off between
the number of cards and the number of shuffles.

1.2 Organization of the Paper
In Section 2, we summarize basic notations (Section 2.1) and our model of card-based protocols (Section 2.2),
including the encoding rule of input integers (Section 2.3) and definitions of shuffles (Section 2.4). In Section
3, we introduce the Tug-of-War subprotocol (Section 3.1), and then describe our main protocol (Section
3.2). We also discuss a way of modifying the protocol to deal with ternary and/or non-committed outputs
(Section 3.3), and explain a comparison with previous work (Section 3.4). In Section 4, we explain how an
integer is encoded using number cards (Section 4.1), describe the extension of our proposed protocol based
on binary cards to number cards (Section 4.2), and explain about the comparison of our protocols with the
previous protocol (Section 4.3).

2 Preliminaries
2.1 Notations
In the paper, we let [a..b] := {a, a+ 1, . . . , b} ⊆ Z for two integers a, b. Let Sn denote the symmetric group
on n letters. For a condition P , we define χ[P] := 1 if P is satisfied and χ[P] := 0 if P is not satisfied.

Let ~q = (q0, q1, . . . , q`−1) be a sequence of ` integers qi ≥ 2. Then we define

|~q| := q0 + · · ·+ q`−1 , π(~q) := q0q1 · · · q`−1 , max(~q) := max{q0, . . . , q`−1} .

Now in the same way as ordinary q-ary expressions of integers, for any a ∈ [0..π(~q) − 1], there is a unique
expression of the form

a =

`−1∑
k=0

akq0q1 · · · qk−1 , ak ∈ [0..qk − 1]

(where q0q1 · · · qk−1 := 1 when k = 0). We call it the ~q-ary expression of a and write a = (a`−1 · · · a1a0)~q.
When the qk’s are a constant value q (as in the case of ordinary q-ary expressions), we also write the sequence
~q as q×`.

2.2 Model of Card-Based Protocols
In the paper, we put the following assumptions on the cards. Each card has a front-side symbol and a
back-side symbol. There are two possible states for cards, “face-up” and “face-down”, where only the front-
side (respectively, back-side) symbol is visible for a face-up (respectively, face-down) card. All cards have
identical back-side symbols, denoted by ‘?’, and hence face-down cards are indistinguishable from each other.
Face-up cards with identical front-side symbols are also indistinguishable from each other. For the purpose
of explanation, we often write a face-down card with invisible front-side symbol s as [s] .

In the paper, we deal with the following two kinds of cards.

4

Binary cards The front-side symbols are ♣ or ♥.

Number cards There are a number, say N , of cards in the deck and each card has a mutually distinct
number from 1 to N as the front-side symbol.

The card-based protocols in the paper can be modeled in the following manner (see e.g., [5] for a more
formal treatment of card-based protocols). Here we only deal with protocols played by two parties, say Alice
and Bob with inputs α and β, respectively, and suppose that the number L of steps in a protocol is constant
(possibly depending on a public parameter).

Initial sequence The initial card sequence is the concatenation of three sequences In1(α), In2(β), and Aux,
where In1(α) and In2(β) are sequences of face-down cards determined by a certain encoding rule from
the input values α and β, respectively, and Aux is a publicly known sequence of face-down cards.
Moreover, a list Vis of “visible sequences” is initialized to be empty.

Main loop In ν-th step (ν = 1, 2, . . . , L), the parties execute one of the following operations on the card
sequence according to the current content of Vis, where M denotes the number of cards in the sequence:

Permutation Permute the cards in the sequence according to a publicly known permutation σ ∈ SM .
Turn Switch the states of some (possibly multiple) cards, where we write “open” (respectively, “turn

down”) to mean changing from “face-down” to “face-up” (respectively, from “face-up” to “face-
down”).

Shuffle Choose a permutation σ ∈ SM according to some probability distribution, and permute the
card sequence according to σ in a way that σ is kept secret for both parties.

Let visν denote the sequence of visible symbols of the card sequence, called the visible sequence, after
the operation above. The parties append visν to Vis. For example, if the card sequence after the
operation is ♣ ♥ ? ? ♥ , then visν = (♣,♥, ?, ?,♥). Let VisOut denote the list Vis after the L-th
step.

Output (for “non-committed-format” protocols) According to a certain rule from the list VisOut, the
parties output a value, denoted by Out.

Output (for “committed-format” protocols) According to a certain rule from the list VisOut, the par-
ties determine a list of positions, pick up the (face-down) cards at those positions in the card sequence,
and output the sequence of those picked cards. Now set Out to be the empty list.

We say that a protocol is secure (in the semi-honest model) if for any party with input γ = α or γ = β,
the conditional probability distribution of VisOut conditioned on a value of (γ,Out) is independent of the
other input β or α.

In what follows, a description of a concrete protocol may use some intuitive explanations in order to
improve the readability. For example, we allow a protocol to arrange (a part of) the cards in multiple rows
rather than a single sequence, or to store cards into (or take cards from) some separate “regions”; such
operations can in fact be simulated by some appropriate operations performed on a single sequence of cards
as in the model above.

2.3 Encoding of Input Values
We use the following two kinds of encodings of an integer into binary cards.

• We use the term k-vector commitment of a ∈ [0..k−1] and write vEnck(a) to mean a sequence of k face-
down binary cards in which the a-th card (counted from the 0-th) from the right has front-side symbol ♥
and the others have front-side symbols ♣. For example, we have vEnc5(3) = [♣] [♥] [♣] [♣] [♣] . When
k = 2, it is the same as the standard definition of commitments of bits in card-based cryptography.

5

• Let ~q = (q0, q1, . . . , q`−1) be a sequence of ` integers qi ≥ 2. For any integer a ∈ [0..π(~q) − 1] with
a = (a`−1 · · · a1a0)~q (see Section 2.1 for the notations), we use the term ~q-ary commitment of a and
write qEnc~q(a) to mean the sequence of qk-vector commitments of each ak:

qEnc~q(a) = (vEncq`−1
(a`−1), . . . , vEncq1(a1), vEncq0(a0)) .

When ~q = 2×`, it is the same as the standard definition of commitments of integers, which is used in
e.g., [3].

2.4 Shuffles Used in the Paper
Complete Shuffle (CS) This is a shuffle that permutes all the target cards uniformly at random.

Pile-Shifting Shuffle (PSS) [2] Suppose that an array of cards with r rows and c columns is given.
A column-PSS is a shuffle that cyclically rotates the c columns uniformly at random (where the rows are
synchronized). For example, a column-PSS applied to the following 3× 3 array of cards

[1] [2] [3]

[4] [5] [6]

[7] [8] [9]

yields one of the following three arrays with probability 1/3 each:

[1] [2] [3]

[4] [5] [6]

[7] [8] [9]

,

[2] [3] [1]

[5] [6] [4]

[8] [9] [7]

,

[3] [1] [2]

[6] [4] [5]

[9] [7] [8]

.

We also define a row-PSS by switching the roles of rows and columns in a column-PSS. In the example
above, a row-PSS yields one of the following three arrays with probability 1/3 each:

[1] [2] [3]

[4] [5] [6]

[7] [8] [9]

,

[4] [5] [6]

[7] [8] [9]

[1] [2] [3]

,

[7] [8] [9]

[1] [2] [3]

[4] [5] [6]

.

We note that column-PSSs with c = 2 columns and row-PSSs with r = 2 rows are equivalent to random
bisection cuts (RBCs) [6].

3 Our Proposed Protocol with Binary Cards
3.1 Tug-of-War Subprotocol
In this subsection, we introduce a subprotocol as in Protocol 1 used in our proposed protocol, which we name
Tug-of-War subprotocol. In both of the subprotocol and our main protocol (Section 3.2), we use five separate
regions named “Main Memory”, “♣-Garage”, “♥-Garage”, “Memory A”, and “Memory B”. Main Memory
is endowed with two-dimensional coordinates and each card is placed at an integer point. For integers i ≥ 1
and j, we write “Point (i, j)” to mean the j-th column (counted from left to right) of the i-th row (counted
from top to bottom) in Main Memory. ♣-Garage and ♥-Garage are for storing face-down cards [♣] and

[♥] , respectively. Memory A and Memory B are for storing face-down cards taken during a protocol by
Alice and Bob, respectively.

6

Protocol 1 Our Tug-of-War subprotocol using binary cards
Input q-vector commitments vEncq(α), vEncq(β) of α, β ∈ [0..q − 1]

(Main Memory involves only a single face-down card, say C, and it is at Point (1, 0); and ♣-Garage must
involve at least 2q − 2 cards [♣])

Output A single face-down card, say C ′, at Point (1, 0) in Main Memory, and q − 1 new cards each in
Memory A and Memory B, among which at most one card is [♥] and the others are [♣] , where

• if C = [♥] and α > β (respectively, α < β), then [♥] is appended to Memory A (respectively,
Memory B);

• if C = [♥] and α = β, then C ′ = [♥] ;

• if C = [♣] , then all those cards are [♣] ;

and two new cards [♥] in ♥-Garage
1: For each j ∈ [1..q − 1], move a face-down card from ♣-Garage to Point (1,−j).
2: Put the cards in vEncq(α) at Points (2,−(q − 1)) to (2, 0) in reverse order; i.e., the rightmost (the 0-th)

card of vEncq(α) comes to Point (2,−(q − 1)).
3: Apply column-PSS to Main Memory, and open all cards in the second row.
4: For Main Memory, rotate the columns in the two rows synchronously in a way that ♥ in the second

row comes to the leftmost place (i.e., Point (2,−(q − 1))).
5: Move ♥ and q − 1 ♣ ’s in the second row to ♥-Garage and ♣-Garage, respectively, and turn them

face-down.
6: For each j ∈ [1..q−1], move two face-down cards from ♣-Garage to Points (1, j) and (2,−j), respectively.
7: Put the cards in vEncq(β) at Points (2, 0) to (2, q − 1).
8: Apply column-PSS to Main Memory, and open all cards in the second row.
9: For Main Memory, rotate the columns in the two rows synchronously in a way that ♥ in the second

row comes to the rightmost place (i.e., Point (2, q − 1)).
10: Move ♥ and 2q − 2 ♣ ’s in the second row to ♥-Garage and ♣-Garage, respectively, and turn them

face-down.
11: Move the cards at Points (1, j), j < 0 by Alice to Memory A, and move the cards at Points (1, j), j > 0

by Bob to Memory B.

7

Figure 1 shows an example of Protocol 1 for q = 4, α = 3, and β = 1, i.e., vEncq(α) = [♥] [♣] [♣] [♣]

and vEncq(β) = [♣] [♣] [♥] [♣] . Here we suppose that the card originally put at Point (1, 0) is [♥] . In the
figure, ‘∗’ denotes an empty point in Main Memory at which a card will be put. The four numbers in the
right side show how the numbers of cards in ♣-Garage, ♥-Garage, Memory A, and Memory B are changed.
In the example, at Step 11, one [♥] and q − 2 = 2 [♣] ’s are taken by Alice and q − 1 = 3 [♣] ’s are taken
by Bob.

Let C be the card originally put at Point (1, 0). In a general case, if the inputs satisfy that α > β
(respectively, α < β), then the card C moves α − β cells to the left (respectively, β − α cells to the right)
through Steps 1–10, therefore C is taken by Alice (respectively, Bob) at Step 11. On the other hand, if
α = β, then the card C is still at the middle after Step 10, therefore C remains not taken at Step 11. As
for the security, regardless of the input values, the visible sequences (focusing only on the second row) after
Steps 3 and 8 are uniformly random sequences of ♥ and q − 1 (respectively, 2q − 2) ♣’s, and those after
Steps 4 and 9 are public constants specified by the protocol. Hence no information leaks during Protocol 1.

3.2 The Main Protocol
Based on Tug-of-War subprotocol in Section 3.1, we describe our proposed protocol using binary cards
in Protocol 2. For ~q-ary commitments qEnc~q(α) and qEnc~q(β) of input values α = (α`−1 · · ·α1α0)~q and
β = (β`−1 · · ·β1β0)~q, respectively, first suppose that α 6= β and ν0 is the largest index with αν0

6= βν0
. Then

the card [♥] is not taken by Alice nor by Bob in Tug-of-War subprotocols during the loops with ν > ν0,

and at the loop with ν = ν0, [♥] is taken by Alice (respectively, Bob) if αν0
> βν0

(respectively, αν0
< βν0

).

On the other hand, if α = β, then the card [♥] is not taken by Alice nor by Bob during all the loops. As

a result, for the 0-th to λ-th columns (where λ := |~q| − `) after Step 5, [♥] exists in the first row if α ≥ β

and in the second row if α < β, while the other cards are [♣] . Now when α ≥ β, the two [♥] ’s in Main

Memory are at the same (first) row after Step 5, which implies that [♥] comes to Point (2,−1) after Step
8 and therefore the protocol outputs the 2-vector commitment of the bit 0 = χ[α < β]. On the other hand,
when α < β, the two [♥] ’s in Main Memory are at different rows after Step 5, which implies that [♥]

comes to Point (1,−1) after Step 8 and therefore the protocol outputs the 2-vector commitment of the bit
1 = χ[α < β]. Hence Protocol 2 outputs vEnc2(χ[α < β]) correctly.

As for the security, it was shown in Section 3.1 that Tug-of-War subprotocol leaks no information. For
the remaining steps, as the 0-th to λ-th columns after Step 5 involves precisely one [♥] , the column-PSS in
Step 6 has an effect equivalent to the complete shuffle for these columns. Consequently, the visible sequence
(focusing only on the 0-th to λ-th columns) after Step 7 is a uniformly random 2 × (λ + 1) array of one ♥
and 2λ + 1 ♣’s regardless of the input values, and the visible sequence after Step 8 is uniquely determined
by that after Step 7. Hence Protocol 2 is secure.

As for the efficiency, Protocol 2 uses 2` ♥ ’s and 2|~q| − 2` ♣ ’s for the two ~q-ary commitments; and

one ♥ and 2 ·max(~q) − 2 ♣ ’s prepared in Step 1 (the cards moved to ♣-Garage and ♥-Garage during

Tug-of-War subprotocols can be reused as the extra ♥ and ♣ ’s in Step 5). Therefore the protocol uses

2`+ 1 ♥ ’s and 2|~q| − 2`+ 2 ·max(~q)− 2 ♣ ’s, hence 2|~q|+ 2 ·max(~q)− 1 cards in total. When ~q = q×`,
these values are 2`+ 1, 2(q − 1)`+ 2q − 2, and 2q`+ 2q − 1. On the other hand, Protocol 2 uses two PSSs
per one Tug-of-War subprotocol and two PSSs after the loops, hence 2`+ 2 PSSs in total.

8

∗ ∗ ∗ [♥] ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∣∣∣ ♣ ♥ A B
±0 ±0 ±0 ±0

1,2−→
[♣] [♣] [♣] [♥] ∗ ∗ ∗
[♣] [♣] [♣] [♥] ∗ ∗ ∗

∣∣∣ ♣ ♥ A B
−3 ±0 ±0 ±0

3−→
[♣] [♣] [♥] [♣] ∗ ∗ ∗
♣ ♣ ♥ ♣ ∗ ∗ ∗

∣∣∣ ♣ ♥ A B
−3 ±0 ±0 ±0

4−→
[♥] [♣] [♣] [♣] ∗ ∗ ∗
♥ ♣ ♣ ♣ ∗ ∗ ∗

∣∣∣ ♣ ♥ A B
−3 ±0 ±0 ±0

5−→ [♥] [♣] [♣] [♣] ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∣∣∣ ♣ ♥ A B
±0 +1 ±0 ±0

6,7−→
[♥] [♣] [♣] [♣] [♣] [♣] [♣]

[♣] [♣] [♣] [♣] [♣] [♥] [♣]

∣∣∣ ♣ ♥ A B
−6 +1 ±0 ±0

8−→
[♣] [♣] [♣] [♥] [♣] [♣] [♣]

♣ ♥ ♣ ♣ ♣ ♣ ♣

∣∣∣ ♣ ♥ A B
−6 +1 ±0 ±0

9−→
[♣] [♥] [♣] [♣] [♣] [♣] [♣]

♣ ♣ ♣ ♣ ♣ ♣ ♥

∣∣∣ ♣ ♥ A B
−6 +1 ±0 ±0

10−→ [♣] [♥] [♣] [♣] [♣] [♣] [♣]

∗ ∗ ∗ ∗ ∗ ∗ ∗

∣∣∣ ♣ ♥ A B
±0 +2 ±0 ±0

11−→ ∗ ∗ ∗ [♣] ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∣∣∣ ♣ ♥ A♥ B
±0 +2 +3 +3

Figure 1: Example of Protocol 1 for q = 4, α = 3, β = 1: the pictures after Step 3 and Step 8 show some
possible results of PSS

9

Protocol 2 Our proposed protocol using binary cards (committed-format)
Input ~q-ary commitment qEnc~q(α) of α = (α`−1 · · ·α1α0)~q, and ~q-ary commitment qEnc~q(β) of β =

(β`−1 · · ·β1β0)~q
Output 2-vector commitment vEnc2(b) of the bit b = χ[α < β]

1: Put a face-down card [♥] at Point (1, 0); put 2 · max(~q) − 2 face-down cards [♣] in ♣-Garage; and
initialize ♥-Garage, Memory A, and Memory B to be empty.

2: for ν = `− 1, . . . , 1, 0 do
3: Execute Tug-of-War subprotocol using qν-vector commitments vEncqν (αν) and vEncqν (βν) contained

in qEnc~q(α) and qEnc~q(β), respectively.
4: end for // Each of Memory A and Memory B involves λ := |~q| − ` cards
5: Move a card from ♥-Garage to Point (1,−1); put all cards in Memory A at Points (1, 1), (1, 2), . . . ,

(1, λ); move two cards from ♣-Garage to Points (2,−1) and (2, 0); and put all cards in Memory B at
Points (2, 1), (2, 2), . . . , (2, λ).

6: Apply column-PSS to the 0-th to λ-th columns in Main Memory.
7: Apply row-PSS to all cards in Main Memory, and open the cards in the 0-th to λ-th columns in Main

Memory.
8: For Main Memory, rotate the rows synchronously in a way that the face-up card ♥ comes to the bottom

(i.e., the second row).
9: Output a pair of the face-down cards at Points (1,−1) and (2,−1) in this order.

3.3 Options for the Protocol
Ternary Output. We can modify Protocol 2 in a way that it will output the 3-vector commitment vEnc3(b)
of the value b given by b = 0 if α > β, b = 1 if α = β, and b = 2 if α < β. Instead of the array of cards
with two rows in Step 5, we let the protocol arrange the face-down cards in a way that the first row is a
sequence of [♥] and the cards in Memory A; the second row is a sequence of [♣] , the card remained (at

Point (1, 0)) after the loops, and λ− 1 [♣] ’s from ♣-Garage; and the third row is a sequence of [♣] and the
cards in Memory B. (The correspondence of the value of b and the three conditions can be made arbitrarily
by changing the order of the rows appropriately.) Steps 6–8 are executed similarly, with the only difference
that the number of rows is increased by one and the number of columns is decreased by one. Finally, in Step
9, the output is changed to the triplet of the cards at Points (1,−1), (2,−1) and (3,−1) in this order. As
for the number of cards, the new Step 5 uses one extra ♥ and λ+1 = |~q| − `+1 extra ♣ ’s, therefore we

have to put max{2 ·max(~q)− 2, |~q| − `+ 1} ♣ ’s to ♣-Garage at Step 1. Hence this option requires 2`+ 1

♥ ’s and 2|~q| − 2`+max{2 ·max(~q)− 2, |~q| − `+ 1} ♣ ’s, therefore 2|~q|+max{2 ·max(~q)− 1, |~q| − `+ 2}
cards in total. When ~q = q×` and ` ≥ 2, these values are 2`+ 1, 3q`− 3`+ 1, and 3q`− `+ 2. On the other
hand, when ~q = q×1, these values are 3, 4q− 4, and 4q− 1 (note that q ≥ 2). As for the shuffles, the number
of shuffles is not changed by adopting the option.

Non-Committed Format. Protocol 2 is easily converted into a non-committed-format protocol by just
opening the cards after the column-PSS in Step 6 and tells at which row the ♥ appears (we have α ≥ β if
it is the first row and α < β if it is the second row). This option does not require the two cards put at the
(−1)-th column (among which the ♣ is a reused card) nor the row-PSS in Step 7. As a result, the number

of ♥ ’s is decreased by one and the number of ♣ ’s is not changed, while the number of PSSs is decreased
by one.

This non-committed-format option can be also modified to output a ternary value. In contrast to the
committed-format case, here we do not need an extra row. Instead, we just change the procedure in the

10

Table 2: Comparison of the numbers of binary cards
Protocols # of Cards

Total For Inputs Additional
Miyahara et al. [3], §6 4dlog2 me+ 2 4dlog2 me 2

Ours, Protocol 2 (any q) 2qdlogq me+ 2q − 1 2qdlogq me 2q − 1

Ours, Protocol 2 (q = 2) 4dlog2 me+ 3 4dlog2 me 3
Ours, Protocol 2 (q = 3) 6dlog3 me+ 5 6dlog3 me 5

previous paragraph in a way that the last column-PSS is applied to the 1-th (rather than the 0-th) to λ-th
columns; the three possibilities can be distinguished by observing the position of ♥ among the opened
cards. This even does not require the card put at Position (2, 0), but as it was a reused card, the number
of cards (as well as the number of shuffles) used throughout the protocol is not changed from the previous
paragraph.

3.4 Comparison to the Previous Work
To the authors’ best knowledge, the existing committed-format protocol in the literature for integer compar-
ison (with binary output) using minimal number of binary cards is the protocol by Miyahara et al. [3, Section
6]. Table 2 shows a comparison of the numbers of cards for our proposed protocol (with binary output in the
committed format, i.e., the original Protocol 2) and for the previous one mentioned above. Here m denotes
the size of the input domain, i.e., α, β ∈ [0..m− 1]. For our protocol, we simply use the parameter ~q = q×`

(though the use of ~q with differing components qν may sometimes decrease the number of cards further),
where ` = dlogq me to satisfy the requirement π(~q) ≥ m. From the table we observe that, our protocol with
q = 2 requires one more additional card compared to [3] and consequently, the total number of cards for
our protocol is also increased by one. On the other hand, when we use q = 3, the number of additional
cards in our protocol is increased further by two, but now the number of cards for input commitments is
asymptotically decreased (note that 6dlog3 me ∼ (3.7855 · · ·) · (log2 m)) due to the effect that the number of
digits in the input integers is decreased. As the latter effect is dominant, the total number of cards is also
asymptotically decreased.

As for the shuffles, the protocol in [3] has dlog2 me loops. Each loop uses the six-card AND protocol in
[6] with one RBC, which is equivalent (in our terminology) to row-PSS for two rows, and, except for the first
loop, uses the six-card XOR protocol in [6] with one RBC. In total, the protocol in [3] uses 2dlog2 me − 1
PSSs. On the other hand, our protocol (with ~q = q×`) uses 2dlogq me+ 2 PSSs. This number is larger than
[3] by three when q = 2, while it is again asymptotically smaller than [3] when q = 3.

We also take into account another line of researches on card-based garbled circuits using only a single shuf-
fle invented by Shinagawa and Nuida [11]. Among its follow-up work, the most efficient (committed-format)
protocol known at the present (in the shuffle-based model as in our work, without private permutations) is
the one by Ono et al. [9], using 6g + 2nIn + 2nOut cards and a single (uniform, but not necessarily closed)
shuffle, where g is the number of gates for a circuit to be computed, nIn is the number of input bits, and
nOut is the number of output bits. By setting nIn = 2dlog2 me and nOut = 1 as in our problem and applying
it to the integer comparison circuit used in [3] with g = 4dlog2 me − 3 gates, it follows that the number of
cards used by the protocol of [9] becomes 28dlog2 me−16, which is still linear in dlog2 me but is significantly
larger.

11

4 Our Proposed Protocol with Number Cards
4.1 Encoding of Integers Using Number Cards
Here we extend the definitions of commitments of integers based on binary cards to number cards. We
partition the number cards into “♣-cards” and “♥-cards”. In our protocol, each ♣-card plays the role of a
card ♣ , and each ♥-card plays the role of a card ♥ . Now the definitions of k-vector commitments and
~q-ary commitments are naturally generalized and written in the same notations as the original, by replacing
any binary card ♣ with some ♣-card and replacing any binary card ♥ with some ♥-card. For example,
when ♣-cards and ♥-cards have front-side symbols in [1..7] and in {8, 9}, respectively, the two sequences
[0] [8] [3] [6] and [4] [9] [0] [1] are examples of 4-vector commitments vEnc4(2) of an integer 2.

4.2 Extension of Our Protocol to Number Cards
Our proposed protocol with number cards is obtained basically by replacing the cards ♣ and ♥ in
Protocol 2 with ♣-cards and ♥-cards, respectively. Therefore the correctness is inherited from the original
protocol.

Regarding the security, the problem in contrast to the case of binary cards is that now the ♣-cards
have non-identical front-side symbols. Consequently, the distribution of the ♣-cards opened simultaneously
at some step should be independent of the input values. In particular, unlike Protocol 2 where some
cards ♣ opened previously may be reused later, such reuse of ♣-cards in the current case violates the
independency requirement. Hence we have to remove from the protocol the ♣-cards opened during a Tug-
of-War subprotocol without being reused. As a result, each, say ν-th, Tug-of-War subprotocol now requires
3(qν − 1) new ♣-cards, and the steps after the loops requires two more new ♣-cards. On the other hand, we
do not need to concern about the distributions of the ♥-cards in the protocol and therefore a ♥-card opened
at some loop may be reused in Step 5, as at most one ♥-card is opened at each step and the order of turns
for ♥-cards in the protocol is determined independently of the input values. These arguments change the
number of cards as follows: we need one ♥-card and 3|~q| − 3`+2 ♣-cards in addition to 2|~q| cards for input
commitments, hence 5|~q| − 3`+ 3 number cards in total. When ~q = q×`, the last value is (5q − 3)`+ 3.

In case where each input commitment is made from scratch at the beginning of the protocol by the party
knowing the input value, the condition above on the distribution of ♣-cards can be satisfied in the following
manner:

1. Before making the input commitments, a CS is applied to all the face-down ♣-cards. Then sufficient
numbers of face-down ♣-cards and ♥-cards are separately given to each of Alice and Bob.

2. Alice generates a commitment qEnc~q(α) by permuting her face-down cards privately and appropriately.
Bob generates a commitment qEnc~q(β) by permuting his face-down cards privately and appropriately.

Although the second step seems to require private permutations, such usage of private permutations might
be allowable, as it is reasonable to assume that an input commitment of each party is anyway generated
privately. If we adopt this option, the whole protocol uses 2`+ 2 PSSs and one CS.

In what follows, we consider another possibility that ~q-ary commitments qEnc~q(α) and qEnc~q(β) of input
values are given in advance (e.g., as outputs of some other committed-format protocols). In this case, we
assume that

(*) there are disjoint sets Si,ν (i ∈ {1, 2}, ν ∈ [0..` − 1]) of ♣-cards satisfying that the choice of
♣-cards in the qν-vector commitment vEncqν (αν) (respectively, vEncqν (βν)) is uniformly random
over all sequences of qν − 1 distinct cards in the set S1,ν (respectively, S2,ν).

Now for, say ν-th Tug-of-War subprotocol, the second row at Step 3 consists only of the cards from
vEncqν (αν). Therefore, the condition (*) implies that the sequence of the qν cards opened at Step 3 is
a uniformly random sequence of a ♥-card and uniformly random qν − 1 distinct ♣-cards from S1,ν , which

12

is independent of the input values. On the other hand, if we naively use vEncqν (βν) as is, then among the
2qν −1 cards opened at Step 8, the cards from vEncqν (βν) become distinguishable from the others and hence
the value of βν can be guessed. To avoid the issue, we introduce a pre-processing phase at the beginning
of the whole protocol to replace each ♣-card in qEnc~q(β) with a random one among the remaining ♣-cards
(while keeping the committed value), as follows:

1. A CS is applied to all face-down ♣-cards (not in qEnc~q(α) nor in qEnc~q(β)).

2. For each ν ∈ [0..`− 1], we generate a new qν-vector commitment vEncqν (βν) in the following manner:

(a) Reverse the order of cards of the original vEncqν (βν).
(b) Put a face-down ♥-card and qν − 1 face-down ♣-cards from left to right at the next row, making

a 2× qν array of cards.
(c) Apply a column-PSS to the array, open all cards in the first row (i.e., where the original com-

mitment was placed), and rotate each of the two rows synchronously in a way that the face-up
♥-card comes to the rightmost. Then use the second row as a new vEncqν (βν).

This pre-processing itself is secure due to the condition (*). After the pre-processing, the distribution of the
♣-cards opened during the protocol except for Step 3 of each Tug-of-War subprotocol becomes uniformly
random. Hence our protocol is secure as well. The pre-processing phase requires |~q| more cards, one CS, and
` PSSs. In total, our protocol with this option uses 6|~q| − 3`+ 3 number cards (which is (6q − 3)`+ 3 when
~q = q×`), 3`+ 2 PSSs, and one CS.

Options for the Protocol. By the same idea as Section 3.3, the protocol above can be also modified to
have a ternary and/or non-committed output.

• For the case of a ternary and committed output, the steps after the loops now use |~q| − ` + 1 new
♣-cards, while it used two new ♣-cards in the original protocol. Hence the total number of cards is
increased by |~q| − `− 1, which becomes (q − 1)`− 1 when ~q = q×`.

• For the case of a binary and non-committed output, one of the two new ♣-cards used after the loops
becomes not necessary, therefore the total number of cards is decreased by one compared to the original
(the ♥-card therein is also not necessary, but it was a reused card and does not affect the total number
of cards). We also note that a PSS is removed from the original.

• For the case of a ternary and non-commited output, the total number of cards is decreased further by
one compared to the binary and non-committed case.

4.3 Comparison to the Previous Work
We compare the efficiency of our proposed protocol (with binary and committed-format output) with the
number-card version of Miyahara et al.’s protocol [3, Section 7], which is (to the authors’ best knowledge)
the existing protocol with minimal number of shuffles among those based on number cards in the literature.
Similarly to the case of binary cards discussed in Section 3.4, their protocol consists of dlog2 me loops (where
m is the size of the input domain), each using an extended version of AND protocol in [4] and, except for
the first loop, an XOR protocol in [4]. The total number of cards is 4dlog2 me+ 4 and it uses 6dlog2 me − 2
RBCs. See Section 7 of [3] for details. On the other hand, our protocol with given ~q-ary commitments for
inputs (i.e., not made from scratch), where ~q = 2×`, uses 9dlog2 me+ 3 cards, 3dlog2 me+ 2 PSSs, and one
CS. If we allow the parties to make the input commitments from scratch by using private permutations, the
total number of cards is decreased to 7dlog2 me+ 3 and the number of shuffles is decreased to 2dlog2 me+ 2
PSSs and one CS. In any case, there is a trade-off between the protocol in [3] and ours, the former using less
cards but more shuffles, while the latter using more cards but less shuffles. When using larger parameter
q ≥ 3, the number of shuffles in our protocol is decreased further, at the cost of increasing the number of
cards further.

13

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP19H01109, Japan.

References
[1] C. Crépeau and J. Kilian, “Discreet Solitary Games”, in: Proceedings of CRYPTO 1993, LNCS vol.773,

pp.319–330, 1993

[2] R. Ishikawa, E. Chida, and T. Mizuki, “Efficient Card-Based Protocols for Generating a Hidden Random
Permutation Without Fixed Points”, in: Proceedings of UCNC 2015, LNCS vol.9252, pp.215–226, 2015

[3] D. Miyahara, Y. Hayashi, T. Mizuki, and H. Sone, “Practical Card-Based Implementations of Yao’s
Millionaire Protocol”, Theoretical Computer Science, vol.803, pp.207–221, 2020

[4] T. Mizuki, “Efficient and Secure Multiparty Computations Using a Standard Deck of Playing Cards”,
in: Proceedings of CANS 2016, LNCS vol.10052, pp.484–499, 2016

[5] T. Mizuki and H. Shizuya, “A Formalization of Card-Based Cryptographic Protocols via Abstract
Machine”, International Journal of Information Security, vol.13, pp.15–23, 2014

[6] T. Mizuki and H. Sone, “Six-Card Secure AND and Four-Card Secure XOR”, in: Proceedings of FAW
2009, LNCS vol.5598, pp.358–369, 2009

[7] T. Nakai, Y. Tokushige, Y. Misawa, M. Iwamoto, and K. Ohta, “Efficient Card-Based Cryptographic
Protocols for Millionaires’ Problem Utilizing Private Permutations”, in: Proceedings of CANS 2016,
LNCS vol.10052, pp.500–517, 2016

[8] V. Niemi and A. Renvall, “Solitaire Zero-Knowledge”, Fundamenta Informaticae, vol.38, no.1–2,
pp.181–188, 1999

[9] T. Ono, K. Shinagawa, T. Nakai, Y. Watanabe, and M. Iwamoto, “Card-Based Protocols for Any
Boolean Circuit with Six Cards per Gate” (in Japanese), in: Proceedings of 2023 Symposium on Cryp-
tography and Information Security (SCIS 2023), article no.3D2-2, 2023

[10] K. Shinagawa, T. Mizuki, J. C. N. Schuldt, K. Nuida, N. Kanayama, T. Nishide, G. Hanaoka, and
E. Okamoto, “Card-Based Protocols Using Regular Polygon Cards”, IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences, vol.E100-A, no.9, pp.1900–1909, 2017

[11] K. Shinagawa and K. Nuida, “A Single Shuffle Is Enough for Secure Card-Based Computation of Any
Boolean Circuit”, Discrete Applied Mathematics, vol.289, pp.248–261, 2021

[12] A. C.-C. Yao, “Protocols for Secure Computations”, in: Proceedings of FOCS 1982, pp.160–164, 1982

14

