
Threshold Private Set Intersection with Better Communication
Complexity

Satrajit Ghosh1⋆ and Mark Simkin2⋆⋆

1 Indian Institute of Technology Kharagpur
2 Ethereum Foundation

Abstract. Given ℓ parties with sets X1, . . . , Xℓ of size n, we would like to securely compute the
intersection ∩ℓ

i=1Xi, if it is larger than n−t for some threshold t, without revealing any other additional
information. It has previously been shown (Ghosh and Simkin, Crypto 2019) that this function can be
securely computed with a communication complexity that only depends on t and in particular does not
depend on n. For small values of t, this results in protocols that have a communication complexity that
is sublinear in the size of the inputs. Current protocols either rely on fully homomorphic encryption or
have an at least quadratic dependency on the parameter t.
In this work, we construct protocols with a quasilinear dependency on t from simple assumptions like
additively homomorphic encryption and oblivious transfer. All existing approaches, including ours, rely
on protocols for computing a single bit, which indicates whether the intersection is larger than n − t
without actually computing it. Our key technical contribution, which may be of independent inter-
est, takes any such protocol with secret shared outputs and communication complexity O(λℓ poly(t)),
where λ is the security parameter, and transforms it into a protocol with communication complexity
O(λ2ℓt polylog(t)).

1 Introduction

In the private set intersection (PSI) setting, ℓ parties with private input sets X1, . . . , Xℓ would like to jointly
compute ∩ℓi=1Xi without revealing anything else about any of the sets to each other. PSI is a powerful
tool with applications in various places, such as botnet detection [NMH+10], online advertising [PSSZ15],
private contact discovery [Mar14], and contact tracing [DPT20]. Various works have shown how to design
asymptotically and practically efficient protocols in both the two and multiparty setting with security against
both passive and active adversaries [Mea86, FNP04, KS05, DCW13, PSSZ15, KKRT16, PRTY19, PRTY20].
Unfortunately, all these protocols have communication complexities that are at least linear in the size of the
smallest input set and it was observed by Freedman, Nissim, and Pinkas [FNP04] that one cannot hope to
do better in general.

Ghosh and Simkin [GS19] have recently shown that the communication complexity can be sublinear in
the sizes of the input sets, when the intersection is large. The authors considered the threshold private set
intersection (TPSI) setting, where the parties would like to compute the intersection of their sets, if and
only if it is larger than n − t, where n is the size of each set and t is some threshold. If the input sets
do not have a large enough intersection, the protocols simply returns ⊥ to the parties. Based on simple
assumptions, such as the existence of oblivious transfer and additively homomorphic encryption, Ghosh and
Simkin construct protocols for TPSI with a communication complexity of O(λt2 polylog t) bits, where λ is
the computational security parameter, for the two-party case. The authors also show how to construct a close
to optimal two-party protocol based on fully homomorphic encryption with O(λt polylog t) bits and sketch
how these protocols could be extended to the multiparty case. The authors show an Ω(t) lower bound on the
communication complexity for the two-party case. Subsequently Branco, Döttling, and Pu [BDP21] present
an ℓ-party protocol with a communication complexity of O(λℓt2 polylog t) bits based on threshold additively
homomorphic encryption. Badrinarayanan et al. [BMRR21] propose a protocol for a setting similar to the

⋆ satrajit@cse.iitkgp.ac.in
⋆⋆ mark.simkin@ethereum.org

TPSI setting above, namely for computing the intersection of ℓ sets with a communication complexity of
O(λℓtpolylog t), when

∣∣(∪ℓi=1Xi) \ (∩ℓi=1Xi

∣∣) ≤ t. For ℓ = 2, the work of Badrinarayanan et al. is equivalent
to two-party TPSI, but for ℓ > 2 their work requires the set intersection to not only be large, but additionally
they require that the parties have less than t distinct elements outside the intersection among all sets. Both
Branco, Döttling, and Pu as well as Badrinarayanan et al. show that one cannot do better than Ω(ℓt) in their
respective settings and provide, up to polylog factors, matching upper bounds based on fully homomorphic
encryption.

All three works [GS19, BDP21, BMRR21] leave constructing asymptotically optimal multiparty protocols
from other assumptions than the existence of fully homomorphic encryption as an open problem.

1.1 Applications of Threshold Private Set Intersection

As has been pointed out by the previous works [GS19, BDP21, BMRR21], threshold private set intersection
is not just an interesting theoretical object to study, but also has the potential to be useful in a variety
of practical applications, where parties are only interested in the actual intersection if it is indeed large.
In the biometric authentication setting, we have a biometric reading represented as a feature vector and a
template. An authentication attempt can directly be discarded, if the reading has a small intersection with
the template. In the setting of ride sharing or dating apps, users may not care to share their private data
with each other, if they do not have a large intersection.

Even protocols for general private set intersection can benefit from more efficient TPSI protocols. Parties
that would like to compute the intersection of their sets can just execute a TPSI protocol with thresholds
2, 22, 24, . . . until an execution returns the intersection instead of ⊥. If the intersection of the input sets
is large, then this PSI protocol has a communication complexity that is sublinear in the size of the input
sets. This is in stark contrast to the majority of existing works on PSI that usually have a communication
complexity that is at least linear in the smallest set size.

1.2 Our Contribution

In this work, we present new protocols for computing the threshold private set intersection among ℓ parties
with a quasilinear rather than quadratic dependency on t from simple assumptions. More concretely, we
construct protocols with a communication complexity of O(λ2ℓtpolylog t) bits. We follow the blueprint of
Ghosh and Simkin [GS19] and tackle the problem by splitting it into two smaller problems. We first execute
a private intersection cardinality test (PICT) protocol Πn,t

ℓ-pict(X1, . . . , Xℓ) that checks, whether the given
sets X1, . . . , Xℓ have an intersection of size at least n − t. If they do, we can execute another protocol for
computing the actual intersection in a communication efficient manner.

Computing the intersection, when it has already been established that it is indeed large enough, can
be done generically from assumptions, like the existence of oblivious transfer or additively homomorphic
encryption, with a close to optimal communication complexity of Õ(λℓt) bits as has been shown by Ghosh
and Simkin. Thus, the main challenge and the focus of this work is to construct communication efficient
PICT protocols from simple assumptions, which output a single bit that indicates, whether the intersection
is large enough.

Our main technical contribution is a transformation that takes any PICT protocol with secret shared
outputs3 and communication complexity O(λℓpoly(t)) and transforms it into a new protocol that solves the
same task, but has a communication complexity of only O(λ2ℓtpolylog(t)). An implication of this compiler
is the existence of multiparty protocols with the above stated communication complexity from effectively
any assumption that implies secure computation. The efficiency of a protocol that is given as input to our
transformation only affects the constant in the polylog(t) exponent.

3 All existing protocols can easily be adapted to output secret shares of the output instead of the output itself.

2

Is This Stuff Practical? We stress that the main focus of this work is to construct asymptotically more
efficient protocols from simple assumptions. In particular, the goal is achieve a communication complexity
that has a quasi-linear and not a quadratic dependency on the threshold t. We hope that our work will
eventually lead to practically efficient protocols, but we think that our current results are still too inefficient
for most reasonable real-world parameters. We leave constructing concretely efficient protocols as an exciting
open problem for future work. Nonetheless, we view our work as a significant theoretical step towards more
efficient protocols for threshold private set intersection.

1.3 Technical Overview

For the sake of this overview, let us focus on the two-party case. We would like to design a protocol that takes
two sets X,Y ⊂ U from some universe U as input and outputs a bit that indicates, whether |X ∩ Y | ≥ n− t
or equivalently, whether the symmetric set difference |X△Y | := |X \ Y ∪ Y \X| ≤ 2t. Our main idea is to
approach this problem via a divide and conquer strategy, i.e. to partition the sets X and Y into smaller sets
X1, . . . , Xt and Y1, . . . , Yt and then to perform a series of independent PICTs on each pair Xi and Yi for
i ∈ [t] := {1, . . . , t}.

More precisely, imagine we have random functions4 Hi : U → [t] for i ∈ [ϵ] for some value ϵ that take
set elements as input and outputs values in [t]. Define Xj

i = {x | x ∈ X ∧ Hj(x) = i} and Y j
i = {y | y ∈

Y ∧Hj(y) = i} for i ∈ [t] and j ∈ [ϵ] and observe that for all j ∈ [ϵ]

|X△Y | =
t∑

i=1

∣∣∣Xj
i△Y j

i

∣∣∣.
Consider some fixed j ∈ [ϵ]. If |X△Y | ≤ 2t, then in expectation each pair of sets Xj

i and Y j
i contains at

most two elements in their symmetric set difference and one can show that (for a fixed j) with a constant
probability none of the pairs has a symmetric set difference that is larger than O(ln t). It follows that when
|X△Y | ≤ 2t, there must exist at least one j for which

∣∣∣Xj
i△Y j

i

∣∣∣ ∈ O(ln t) for all i ∈ [t] with an overwhelming

in ϵ probability.

So how is this helpful? Imagine we were given access to an auxiliary functionality Fn,t̃,v
△ that takes two

sets as input and either returns a secret sharing of the size of their exact symmetric set difference or a secret

sharing of some default value v, if the symmetric set difference is larger than t̃ ≈ ln t. We can use Fn,t̃,v
△ on

each of the ϵt many subset pairs to obtain equally many secret shared values and then add all the values
together that belong to inputs, which were partitioned using the same random partitioning function to get
a total of ϵ many secret shared sums. Each of those sums either equals the exact size of the symmetric set
difference of X and Y or some value, which has v as a summand. By picking v = t+ 1, we ensure that each
sum containing v is larger than t. As the final step in our protocol, we run a generic secure computation
protocol for checking, whether any of the ϵ sums is at most t in which case we conclude that the inputs X
and Y have a large enough intersection.

To make our protocol work, we still need to instantiate Fn,t̃,v
△ . We show that this can be done from

any PICT protocol with secret shared outputs for thresholds t̃. If the given protocol has a communica-

tion complexity of O(λ poly(t̃)) bits, then our instantiation of Fn,t̃,v
△ has a communication complexity of

O(λt̃poly(t̃)) = O(λ ln tpolylog t) = O(λ polylog t). Since our approach only relies on generic secure compu-
tation and existing PICT protocols, it follows that we can instantiate our constructions from assumptions
that imply both of these cryptographic objects. As we will see, this means that we can instantiate our results
from oblivious transfer or generic additively homomorphic encryption.

Our multiparty PICT protocols follows the same blueprint as the protocol outlined above, but need
to overcome several other challenges. In the the two-party case we got away with just talking about the

4 Throughout the paper we will use random functions for the sake of simplicity, but we stress that all of our
constructions and arguments work equally well with pseudorandom functions, where the key is known to all
parties.

3

symmetric set difference, since an upper bound on the difference directly translates into a lower bound on
the set intersection size. In the multiparty setting this is not the case any longer and we will need to directly
talk about the set intersection sizes in all the buckets instead. While it may sounds like a minor change, it
does introduce quite some small technical challenges that we will highlight in more detail and then overcome
in Section 4.

Paper Outline. In Section 2 we recall some basic preliminaries and define all the required notation that
will be needed throughout the paper. In Section 3, we present our protocol for the two-party case. We stress
that this does not asymptotically improve upon the state-of-the-art, which has a communication complexity
of O(λt polylog t) bits5. We do, however, believe that our two-party protocol highlights the main ideas of
this work quite well, while avoiding some of the complexities that come from considering multiple parties.
In Section 4 we present our multiparty protocol, which is the main technical contribution of this work.

2 Preliminaries

Notation. We write [n] = {1, 2, . . . , n}. Let log x be the logarithm of x with base 2 and lnx the one with
base e. For convenience, we assume the natural numbers start at one, i.e. N = {1, 2, 3, . . . }. Let λ be the
computational and ϵ the statistical security parameter and we assume that ϵ/λ ∈ O(1). We write F to denote
a finite field of prime order and we assume that |F| ≥ 2ϵ. For parties P1, . . . , Pℓ with inputs X1, . . . , Xℓ that
have oracle access to an ideal functionality F , we write (b1, . . . , bℓ)← F(X1, . . . , Xℓ) as a shorthand notation
for each party i sending Xi to the ideal functionality and, once all inputs are received, receiving back output
bi. For a protocol Π, we write CC(Π) to denote the communication complexity of Π, i.e. the number of bits
exchanged in one execution of the protocol.6

Theorem 1 (Chernoff Bound). Let I1, . . . , In be random variables with 0 ≤ Ii ≤ 1 for all i ∈ [n]. Define
I =

∑n
i=1 Ii and let µ = E[I]. For any δ ≥ 1,

Pr[I ≥ (1 + δ)µ] ≤ e−
δµ
3 .

Set Gymnastics. Let U be the universe from which set elements will be sampled and let Z = (z1, z2, . . .) be
an auxiliary (sorted) universe such that U∩Z = ∅. We will use upper case letter for sets and lower case letters
for their elements, e.g. S = {s1, . . . , sn}. For S ∈ Un and function H : U → [t], we write (S1, . . . , St)← H(S)
as a shorthand notation to specify the sets Si = {s | s ∈ S ∧H(s) = i}.

Secret Sharing. Let Sharen : F → Fℓ be an ℓ-out-of-ℓ secret sharing algorithm that takes v ∈ F as input
and outputs uniformly random v1, . . . , vℓ ∈ F, such that v =

∑ℓ
i=1 vi. When an algorithm or a functionality

outputs Shareℓ(v), we mean that party i receives shares vi.

2.1 Secure Multiparty Computation

We assume familiarity with standard secure computation notions in the standalone model (see [Lin17]). In
this paper, we assume that all parties are pairwise connected via a synchronous network and authenticated
private channels. Additionally the parties have access to a broadcast channel and we assume that sending a
message on this channel has a unit cost. We consider a static adversary that can corrupt all but one parties
passively.

5 This communication complexity can be obtained, without using fully homomorphic encryption, by using the con-
struction of Ghosh and Simkin [GS19] in combination with an observation due to Badrinarayanan et al. [BMRR21].

6 We assume that the communication complexity is a deterministic function of the inputs and parameters of Π.

4

2.2 Private Intersection Cardinality Testing.

For the two-party case the functionality we are interested in is the Fn,t
pict(X,Y) functionality shown in Figure 1.

It is helpful to note that for X and Y with n = |X| = |Y |, it holds that

|X ∩ Y | ≤ n− t ⇐⇒ |X△Y | > 2t,

which means that the functionality outputs a sharing of 1 for two sets of size n if and only if |X ∩ Y | > n− t.
The functionality Fn,t

pict(X,Y) does allow for the input sets to be of unequal sizes smaller than n in which
case the equivalence above does not hold. This is done for the sake of simplifying the presentation of our
construction in the two-party case. The multiparty functionality will be introduced in Section 4 and it will
require the input sets to be of the same size.

Functionality Fn,t
pict (X,Y)

if |X| > n or |Y | > n

return ⊥
if |X△Y | > t

return Share2(0)

else

return Share2(1)

Fig. 1. Functionality takes two sets X and Y of size at most n as input and checks whether |X△Y | ≤ t.

2.3 Some Auxiliary Functionalities

In the following, we define some helpful functionalities that will come in handy later on. They can be realized
using any generic secure computation protocol and will not affect our communication complexities in any
meaningful way.

The functionalities in Figure 2 allow for comparing a secret shared input against a publicly known thresh-
old and returning either the secret shared value or a default value. Both functionalities can be easily realized
with communication complexities that are linear in their input length with standard secure computation
tools.

Functionality F t,v
cmp(r1, r2)

if r1 + r2 = t

return Share2(v)

else

return Share2(r1 + r2)

Functionality F t,v
ℓ-geq(r1, . . . , rℓ)

Compute s :=

ℓ∑
i=1

ri

if s ≥ t

return Shareℓ(s)

else

return Shareℓ(v)

Fig. 2. Some useful private comparison function of secret shared inputs.

5

Functionality F t,ϵ
ℓ-vec-leq((s

1
1, . . . s

ϵ
1), . . . , (s

1
ℓ , . . . s

ϵ
ℓ)) in Figure 3 takes ϵ many ℓ-out-of-ℓ secret shared field

elements as input and returns 1 if any one of them is smaller than t and 0 otherwise. This functionality can
be realized using generic secure computation with a communication complexity of O(ϵℓ|F|) bits.

Functionality F t,ϵ
ℓ-vec-leq((s

1
1, . . . s

ϵ
1), . . . , (s

1
ℓ , . . . s

ϵ
ℓ))

if ∃ j ∈ [ϵ] :

ℓ∑
i=1

sji ≤ t

return Shareℓ(1)

else

return Shareℓ(0)

Fig. 3. Functionality for checking, whether one of the ϵ many secret shared inputs is at most t.

The functionality in Figure 4 computes the minimum among a list of input values and returns that value
in secret shared form.

Functionality Fℓ-min(d1, . . . , dℓ)

Compute dmin := min{d1, . . . , dℓ}
return Shareℓ(dmin)

Fig. 4. Functionality for computing a secret sharing of the minimum among a set of inputs.

The functionality in Figure 5 checks whether at least one of multiple secret shared values is within a
given interval.

Functionality Fn,t,ϵ
ℓ-vec-intrvl((s

1
1, . . . s

ϵ
1), . . . , (s

1
ℓ , . . . s

ϵ
ℓ))

if ∃ j ∈ [ϵ] : n− t ≤
ℓ∑

i=1

sji ≤ n

return Shareℓ(1)

else

return Shareℓ(0)

Fig. 5. Functionality for checking, whether at least one of ϵ many secret shared input values is in between n− t and
n.

3 The Two-Party Divide-and-Conquer Approach

In this section, we will focus on the two-party case for the sake of presenting our main ideas in a simplified
setting.

6

Let us begin with a simple lemma, which states that one can partition sets X and Y into smaller sets
and compute the size of their symmetric set difference in a divide-and-conquer fashion.

Lemma 1. Let X,Y ⊂ U , let t ∈ N, and let H : U → [t] be an arbitrary function. For (X1, . . . , Xt)← H(X)
and (Y1, . . . , Yt)← H(Y), it holds that

|X△Y | =
t∑

i=1

|Xi△Yi|.

Proof. Consider two arbitrary sets X,Y ⊂ U . We observe that |X△Y | = |X \ Y | + |Y \X|. If v ∈ X \ Y ,
then there exists an index i ∈ [t] such that v ∈ Xi \ Yi and since Xi ∩Xj = ∅ for any j ̸= i, it holds that i is
unique. The other way round, for any i ∈ [t] and any v ∈ Xi \ Yi, it holds that v ∈ X \ Y . Thus

|X \ Y | =
t∑

i=1

|Xi \ Yi|

and by symmetry of the above argument

|X△Y | =|X \ Y |+ |Y \X|

=

t∑
i=1

|Xi \ Yi|+
t∑

i=1

|Yi \Xi|

=

t∑
i=1

|Xi \ Yi|+ |Yi \Xi| =
t∑

i=1

|Xi△Yi|.

□

Next, we observe that, if the symmetric set difference of X and Y is at most t, then the symmetric set
difference of each pair of subsets Xi and Yi for i ∈ [t] is in O(ln t) with a constant probability.

Lemma 2. Let n, t, t̃ ∈ N with t < n and t̃ ≥ 1 + 3 ln 2t. Let H : U → [t] be a random function, and let
X,Y ∈ Un. If |X△Y | ≤ t, then for (X1, . . . , Xt)← H(X) and (Y1, . . . , Yt)← H(Y) it holds that

Pr
[
∃i ∈ [t] : |Xi△Yi| ≥ t̃

]
≤ 1/2,

where the probability is taken over the random choice of H.

Proof. Assume that |X△Y | ≤ t. For all i ∈ [t], it holds that Xi△Yi = {v | v ∈ X△Y ∧H(v) = i} ⊂ X△Y .
Fix one bucket j and let Iv be the indicator variable for whether v ∈ X△Y landed in bucket j or not. For

E[|Xj△Yj |] = E

 ∑
v∈X△Y

Iv

 =
∑

v∈X△Y

E [Iv] =
∑

v∈X△Y

1/t ≤ 1

we get by Chernoff bound that

Pr [|Xj△Yj | ≥ 1 + 3 ln 2t] ≤ e−
3 ln 2t

3 = 1/2t,

where the probability is taken over the random choice of the function H. The statement follows by union
bounding over all t buckets. □

Now, if |X△Y | ≤ t and we partition sets X and Y not once, but ϵ many times, then we are guaranteed
with overwhelming probability that at least one of those partitions has no bucket that contains more than
O(ln t) elements.

7

Theorem 2. Let n, t, t̃ ∈ N with t < n and t̃ ≥ 1 + 3 ln 2t. For each i ∈ [ϵ], let Hi : U → [t] be a random
function. Let X,Y ∈ Un be two sets of size n and (Xi

1, . . . , X
i
t) ← Hi(X) and (Y i

1 , . . . , Y
i
t) ← Hi(Y) for

i ∈ [ϵ]. If |X△Y | ≤ t, then

Pr
[
∃i1, . . . iϵ ∈ [t] :

∣∣∣Xj
ij
△Y j

ij

∣∣∣ ≥ t̃ ∀j ∈ [ϵ]
]
≤ 2−ϵ,

where the probability is taken over the random choice of H1, . . . ,Hϵ.

Proof. Assume |X△Y | ≤ t, then

Pr
[
∃i1, . . . iϵ ∈ [t] :

∣∣∣Xj
ij
△Y j

ij

∣∣∣ ≥ 1 + 3 ln 2t ∀j ∈ [ϵ]
]

=

ϵ∏
j=1

Pr
[
∃ij ∈ [t] :

∣∣∣Xj
ij
△Y j

ij

∣∣∣ ≥ 1 + 3 ln 2t
]

≤
ϵ∏

j=1

1/2 = 2−ϵ,

where the last inequality follows from Lemma 2.
□

From the above it now follows that, if there exists at least a single bucket in each of the ϵ partitions,
which contains more than 1 + 3 ln 2t elements of the symmetric set difference, then we can conclude that
|X△Y | > t with overwhelming probability.

Corollary 1. Let n, t, t̃ ∈ N with t < n and t̃ ≥ 1 + 3 ln 2t. For each i ∈ [ϵ], let Hi : U → [t] be a random
function. Let X,Y ∈ Un be two sets of size n and (Xi

1, . . . , X
i
t) ← Hi(X) and (Y i

1 , . . . , Y
i
t) ← Hi(Y) for

i ∈ [ϵ]. If there exist indices i1, . . . iϵ ∈ [t], such that for all j ∈ [ϵ] it holds that
∣∣∣Xj

ij
△Y j

ij

∣∣∣ ≥ t̃, then

Pr[|X△Y | > t] ≥ 1− 2−ϵ,

where the probability is taken over the random choices of H1, . . . Hϵ.

Functionality Fn,t,v
△ (X,Y)

if |X| > n or |Y | > n

return ⊥
if |X△Y | > t

return Share2(v)

else

return Share2(|X△Y |)

Fig. 6. Functionality for computing the exact symmetric set difference, if it is smaller than t, of sets X and Y with
elements from U . The sets X and Y may be of different sizes, but neither of them is larger than n.

Armed with the above observations, we are now ready to present our construction. The description of
our protocol makes use of an ideal functionality Fn,t,v

△ (see Figure 6) that takes two sets as input and either
returns a secret sharing of their symmetric set difference or returns a sharing of some value v. The sets may
be of different sizes, but are both not larger than n. We want to highlight that allowing for input sets of

8

unequal size is only possible, because we are currently talking about the symmetric set difference. Looking
ahead, we will be directly talking about the size of the intersection in the multiparty protocols in Section 4
and therefore we will need to take care of making the sets be of the correct and same size. We show how to
instantiate Fn,t,v

△ in Section 3.1

Construction Πn,t
pict(X,Y)

1 : for i ∈ [ϵ] :

2 : Alice: (Xi
1, . . . , X

i
t)← Hi(X)

3 : Bob: (Y i
1 , . . . , Y

i
t)← Hi(Y)

4 : for j ∈ [t] :

5 : (rij , s
i
j)← Fn,t̃,t+1

△

(
Xi

j , Y
i
j

)
6 : Alice: ri :=

t∑
j=1

rij

7 : Bob: si :=

t∑
j=1

sij

8 : (r, s)← F t,ϵ
2-vec-leq

(
(r1, . . . , rϵ), (s1, . . . , sϵ)

)
9 : return (r, s)

Fig. 7. Protocol for private intersection cardinality testing.

Theorem 3. Let n, t, t̃ ∈ N with n > t and t̃ = 1 + 3 ln 2t. The protocol Πpict depicted in Figure 7 securely

realizes Fn,t
pict using ϵ · t calls to Fn,t̃,t+1

△ and one call to F t,ϵ
vec-cmp.

Proof. We prove correctness and privacy separately.

Correctness. Let X1, . . . , Xn be arbitrary sets. If |X△Y | > t, then the protocol always produces the correct
output. Either there exist j1, . . . , jϵ ∈ [t], such that

∣∣Xi
ji
△Y i

ji

∣∣ > t̃ for all j ∈ [ϵ], which means that riji +siji =

t+1 and thus also ri + si > t for all i ∈ [ϵ] or the protocol computes the size of the symmetric set difference
correctly in which case F t,ϵ

2-vec-leq

(
(r1, . . . , rϵ), (s1, . . . , sϵ)

)
produces the correct output.

If |X△Y | ≤ t, then the protocol can produce an incorrect output, if there exists indices j1, . . . , jϵ ∈ [t]
such that

∣∣Xi
ji
△Y i

ji

∣∣ > t̃ for all j ∈ [ϵ]. By Theorem 2, we know that this happens with probability at most
2−ϵ and thus the protocol produces the correct output with probability at least 1− 2−ϵ.

Privacy. Without loss of generality assume that Alice is corrupted. At each step of the protocol, she only
sees one share of freshly independent secret shared values returned by the ideal functionalities. Her view can
simply be simulated by providing her shares of independent secret sharings of 0 instead of the real values.
The indistinguishability of Alice’s simulated view trivially follows from the indistinguishability of the secret
sharing scheme.

□

3.1 Instantiating Fn,t,v
△

To instantiate Fn,t,v
△ , we simply use Fn,i

pict once for each threshold i ∈ [t] and then accumulate the result.

9

Construction Πn,t,v
△ (X,Y)

1 : for i ∈ [t] :

2 : (ri, si)← Fn,i
pict(X,Y)

3 : Alice: r := t+ 1−
t∑

j=1

ri

4 : Bob: s := −
t∑

j=1

sj

5 : (d1, d2)← F t,v
cmp(r, s)

6 : return (d1, d2)

Fig. 8. Protocol Πn,t,v
△ realizing Fn,t,v

△ .

Theorem 4. Let n, t ∈ N with n > t and v ∈ F. The protocol Πn,t,v
△ depicted in Figure 8 securely implements

Fn,t,v
△ using one call to Fn,i

pict for each i ∈ [t].

Proof. For correctness, we observe that Fn,i
pict(X,Y) outputs a sharing of 1, when |X△Y | ≤ i. Thus, if

|X△Y | ≤ t, we have that (r, s) is a secret sharing of exactly |X△Y | and if |X△Y | > t, then (r, s) is a secret
sharing of t.

Seeing that the protocol is secure is straightforward, assume that Alice is corrupted. To simulated the
responses of Fn,i

pict(X,Y), we add shares of a secret sharing of 0 to her view. Given the output of the func-
tionality, we secret share that value and add one share to Alice’s view. It is straightforward to see that this
perfectly simulates Alice’s view in the real world, which completes the proof.

□

To instantiate our overall protocol, we now need to instantiate the Fn,t
pict functionality that is being used

inside of Πn,t,v
△ . The original two-party PICT protocols of Ghosh and Simkin [GS19] require the input sets

to be of the same size and the output is not secret shared. Their protocols, however, work equally well for
sets of different sizes, can easily return secret shared output values, and thus can be used to instantiate our
functionality Fn,t

pict. Internally, their work relies on a protocol for securely computing the determinant of a

secret shared matrix. They instantiate that protocol with a communication complexity of O(λt2 polylog(t))
via additively homomorphic encryption, but using a protocol for computing that determinant by Cramer
and Damg̊ard [CD01], one can instantiate the protocol of Ghosh and Simkin with communication complexity
O(λ ln3 t) from generic secure computation. It follows that our result can be instantiated from any assump-
tion, such as the existence of additively homomorphic encryption or oblivious transfer, that implies secure
computation.

In our instantiation, we have ϵt buckets and for each of them we execute the protocol of Ghosh and
Simkin O(ln t) times with a threshold of O(ln t). Thus we get the following corollaries.

Corollary 2. Assuming the existence of oblivious transfer (or additively homomorphic encryption), there
exists a constant-round protocol for securely computing the two-party private intersection cardinality test for
threshold t with communication complexity of O(ϵ2tpolylog t) bits.

Combining the results in our paper with the protocols for actually computing the intersection, once it is
known that it is large enough, from by Ghosh and Simkin [GS19], we get the following result.

Corollary 3. Assuming the existence of oblivious transfer (or additively homomorphic encryption), there
exists a constant-round protocol for threshold private set intersection among two parties with threshold t with
communication complexity of O(ϵ2tpolylog t) bits.

10

4 The Multiparty Case

We now proceed to present our protocol for the multiparty case, which follows the blueprint from Section 3,
but needs to overcome several additional challenges. The functionality that we would like to realize in this
section is depicted in Figure 9.

Functionality Fn,t
ℓ-pict(X1, . . . , Xℓ)

if |X1| ̸= n or . . . or |Xℓ| ≠ n

return ⊥

if

∣∣∣∣∣
ℓ⋂

i=1

Xi

∣∣∣∣∣ ≥ n− t

return Shareℓ(1)

else

return Shareℓ(0)

Fig. 9. Functionality for multiparty private intersection cardinality testing among sets of size exactly n.

In the two-party case we got away with talking about the set difference as a surrogate for the size of the
set intersection due to the equivalence of intersection size and size of the symmetric set difference that is
pointed out in Section 2.2. In the multiparty case, we make no such assumption.

To call a protocol for computing the size of the intersection in each bucket among ℓ parties, we will now
ensure that the sets in each bucket are of the same size. We achieve this by padding sets with elements
from an (ordered) auxiliary universe Z = {z1, z2, . . . } with Z ∩ U = ∅. For n, b ∈ N with b > n and any set
X ∈ Un, we define Pad(X, b) := X ∪ {zi | i ∈ [n − b]}. Lemma 3 shows the relationship between the size of
the intersection among padded sets and unpadded sets.

Lemma 3. Let b ∈ N and let X1, . . . , Xℓ ⊂ U with |Xi| ≤ b for all i ∈ [ℓ]. Let di := ||Xi| − b| for i ∈ [ℓ].
Then ∣∣∣∣∣

ℓ⋂
i=1

Xi

∣∣∣∣∣ =
∣∣∣∣∣

ℓ⋂
i=1

Pad(Xi, b)

∣∣∣∣∣−min(d1, . . . , dℓ)

Proof. Define Wi = Pad(Xi, b) \Xi for i ∈ [ℓ]. We observe that∣∣∣∣∣
ℓ⋂

i=1

Pad(Xi, b)

∣∣∣∣∣ =
∣∣∣∣∣

ℓ⋂
i=1

(Xi ∪Wi)

∣∣∣∣∣ =
∣∣∣∣∣

ℓ⋂
i=1

Xi

∣∣∣∣∣+
∣∣∣∣∣

ℓ⋂
i=1

Wi

∣∣∣∣∣ =
∣∣∣∣∣

ℓ⋂
i=1

Xi

∣∣∣∣∣+min(d1, . . . , dℓ),

where the second equality follows from the fact that Z ∩ U = ∅ and thus the lemma statement follows. □

The following Lemma can be seen as a generalization of Lemma 1 to the multiparty case. On an intuitive
level, it states that a lower bound on the size of the intersection of ℓ sets translates into a lower bound on
the cumulative size of the intersections in each buckets

Lemma 4. Let n, ℓ, t ∈ N with t < n, let H : U → [t] be a random function, let X1, . . . , Xℓ ∈ Un, and
(Xi,1, . . . , Xi,t)← H(Xi) for i ∈ [ℓ]. It holds that∣∣∣∣∣

ℓ⋂
i=1

Xi

∣∣∣∣∣ ≥ n− t

11

if and only if
t∑

k=1

∣∣∣∣∣Xj,k \
ℓ⋂

i=1

Xi,k

∣∣∣∣∣ ≤ t,∀j ∈ [ℓ].

Proof. Let Wj,k := Xj,k \
⋂ℓ

i=1 Xi,k for k ∈ [t] and j ∈ [ℓ]. We observe that for each pair k, k′ ∈ [t], it holds
that Wj,k ∩Wj,k′ = ∅ and thus ∣∣∣∣∣Xj \

ℓ⋂
i=1

Xi

∣∣∣∣∣ =
t∑

k=1

∣∣∣∣∣Xj,k \
ℓ⋂

i=1

Xi,k

∣∣∣∣∣.
The statement follows from the fact that ∣∣∣∣∣

ℓ⋂
i=1

Xi

∣∣∣∣∣ ≥ n− t,

if and only if ∣∣∣∣∣Xj \
ℓ⋂

i=1

Xi

∣∣∣∣∣ ≤ t,∀j ∈ [ℓ].

□

Similarly to Theorem 2, we will now show that, if the intersection is large enough, then there exists an
index j ∈ [ϵ] such that the partitioning with Hj will not result in any one party having too many elements
in a single bucket that do not belong to that buckets intersection.

Theorem 5. Let n, ℓ, t, t̃ ∈ N with t < n and t̃ ≥ 1+3 ln(2tℓ). For each j ∈ [ϵ], let Hj : U → [t] be a random
function. Let X1, . . . , Xℓ ∈ Un be sets of size n and (Xj

i,1, . . . , X
j
i,t)← Hj(Xi) for j ∈ [ϵ] and i ∈ [ℓ]. If∣∣∣∣∣

ℓ⋂
i=1

Xi

∣∣∣∣∣ ≥ n− t,

then

Pr

[
∃ k1, . . . , kϵ ∈ [t]

i1, . . . , iϵ ∈ [ℓ]
:

∣∣∣∣∣Xj
ij ,kj
\

ℓ⋂
m=1

Xj
m,kj

∣∣∣∣∣ ≥ t̃ ∀j ∈ [ϵ]

]
≤ 2−ϵ,

where the probability is taken over the random choice of H1, . . . ,Hϵ.

Proof. Let Wi := Xi \
(⋂ℓ

m=1 Xm

)
for i ∈ [ℓ]. Assume

∣∣∣⋂ℓ
m=1 Xm

∣∣∣ > n− t, then for each i ∈ [ℓ], it holds that

|Wi| ≤ t. Fix some i ∈ [ℓ], j ∈ [ϵ], k ∈ [t] and consider Xj
i,k, where (Xj

i,1, . . . , X
j
i,t) ← Hj(Xi). For v ∈ Wi,

let Iv be the indicator variable for whether v ∈ Xj
i,k or not. Then,

E

[∑
v∈Wi

Iv

]
=

∑
v∈Wi

1/t ≤ 1

and thus by Chernoff bound

Pr

[∑
v∈Wi

Iv ≥ 1 + 3 ln(2tℓ)

]
≤ e−

3 ln(2tℓ)
3 = 1/2tℓ.

By union bound over all t buckets and all ℓ sets, we can thus conclude that

Pr

[
∃k ∈ [t], i ∈ [ℓ] :

∣∣∣∣∣Xj
i,k \ (

ℓ⋂
m=1

Xj
m,k)

∣∣∣∣∣ > 1 + 3 ln(2tℓ)

]
≤ 1/2.

12

It follows that

Pr

[
∃ k1, . . . kϵ ∈ [t]
i1, . . . , iϵ ∈ [ℓ]

:

∣∣∣∣∣Xj
ij ,kj
\

ℓ⋂
m=1

Xj
m,kj

∣∣∣∣∣ ≥ 1 + 3 ln(2tℓ) ∀j ∈ [ϵ]

]

=

ϵ∏
j=1

Pr

[
∃kj ∈ [t], ij ∈ [ℓ] :

∣∣∣∣∣Xj
ij ,kj
\

ℓ⋂
m=1

Xj
m,kj

∣∣∣∣∣ ≥ 1 + 3 ln(2tℓ) ∀j ∈ [ϵ]

]
≤ 2−ϵ.

□

Corollary 4. Let n, t, t̃ ∈ N with t < n and t̃ ≥ 1 + 3 ln(2tℓ). For each j ∈ [ϵ], let Hj : U → [t] be a random
function. Let X1, . . . , Xℓ ∈ Un be sets of size n and (Xj

i,1, . . . , X
j
i,t)← Hj(Xi) for j ∈ [ϵ] and i ∈ [ℓ]. If there

exist indices k1, . . . kϵ ∈ [t] and i1, . . . , iϵ ∈ [ℓ], such that for all j ∈ [ϵ] it holds that∣∣∣∣∣Xj
ij ,kj
\

ℓ⋂
m=1

Xj
m,kj

∣∣∣∣∣ ≥ t̃,

then

Pr

[∣∣∣∣∣
ℓ⋂

i=1

Xi

∣∣∣∣∣ < n− t

]
≥ 1− 2−ϵ

where the probability is taken over the random choices of H1, . . . Hϵ.

When partitioning a set into several subsets randomly, one cannot guarantee that all subsets will be of
the same size. This is problematic, since we would like to view each party’s buckets as inputs to smaller
instances of a private multiparty intersection cardinality testing problem. That is, if the different parties have
inputs of different (secret) sizes, then it is not clear what it means for an intersection to be large enough.
For this reason, each party will not directly input its subset, but rather a padded version of it. Since the
communication complexities of our protocols never depend on the input sizes and since we only care about
the asymptotic communication complexity, we simply pad each bucket to its maximum size.

Lemma 5. Let n, ℓ, t, t̃, b ∈ N with t ≤ t̃ < n and b := n and H : U → [t] be a random function. Let
X1, . . . , Xℓ ∈ Un be sets of size n and (Xi,1, . . . , Xi,t)← H(Xi) for i ∈ [ℓ]. If∣∣∣∣∣Xj,k \

ℓ⋂
i=1

Xi,k

∣∣∣∣∣ < t̃,∀j ∈ [ℓ], k ∈ [t], t̃ ∈ N

then ∣∣∣∣∣Pad(Xj,k, b) \
ℓ⋂

i=1

Pad(Xi,k, b)

∣∣∣∣∣ < t̃,∀j ∈ [ℓ], k ∈ [t].

Proof. Fix some k ∈ [t] and define tj :=
∣∣∣Xj,k \

⋂ℓ
i=1 Xi,k

∣∣∣ for j ∈ [ℓ]. Observe that

tj +

∣∣∣∣∣
ℓ⋂

i=1

Xi,k

∣∣∣∣∣+ |Pad(Xj,k, b) \Xj,k| = b

and thus for j, j′ ∈ [ℓ] we have

tj +

∣∣∣∣∣
ℓ⋂

i=1

Xi,k

∣∣∣∣∣+ |Pad(Xj,k, b) \Xj,k| = tj′ +

∣∣∣∣∣
ℓ⋂

i=1

Xi,k

∣∣∣∣∣+ |Pad(Xj′,k, b) \Xj′,k|

13

⇐⇒ tj + |Pad(Xj,k, b) \Xj,k| − |Pad(Xj′,k, b) \Xj′,k| = tj′

Now consider index j′ such that |Xj′,k| ≥ |Xj,k| for any other j ∈ [ℓ]. For that index j′ it holds that
Pad(Xj′,k, b) \Xj′,k ⊆ Pad(Xj,k, b) \Xj,k. In other words, this means that the elements that were used for
padding the bucket belonging to party j′ will be exactly the added elements in the intersection. Thus, for any
other j the number of elements not in the intersection will be tj+|Pad(Xj,k, b) \Xj,k|−|Pad(Xj′,k, b) \Xj′,k|.
Now if by assumption tj′ < t̃, then tj + |Pad(Xj,k, b) \Xj,k| − |Pad(Xj′,k, b) \Xj′,k| < t̃. □

Combining all of the above observations, we now get the following lemma.

Theorem 6. Let n, ℓ, t, t̃, b ∈ N with t < n, t̃ ≥ 1+ 3 ln(2tℓ) and let b = n. For each j ∈ [ϵ], let Hj : U → [t]
be a random function. Let X1, . . . , Xℓ ∈ Un be sets of size n and (Xj

i,1, . . . , X
j
i,t) ← Hj(Xi) for j ∈ [ϵ] and

i ∈ [ℓ]. If ∣∣∣∣∣
ℓ⋂

i=1

Xi

∣∣∣∣∣ ≥ n− t,

then

Pr

[
∀k ∈ [t],∀i ∈ [ℓ],∃j ∈ [ϵ] :

∣∣∣∣∣Pad(Xj
i,k, b) \

ℓ⋂
m=1

Pad(Xj
m,k, b)

∣∣∣∣∣ < t̃

]
≥ 1− 2−ϵ,

where the probability is taken over the random choice of H1, . . . ,Hϵ.

Proof. By Theorem 5 we know that if
∣∣∣⋂ℓ

i=1 Xi

∣∣∣ ≥ n − t, then for all i ∈ [ℓ] and k ∈ [t], there exist

j ∈ [ϵ], such that
∣∣∣Xj

i,k \
⋂ℓ

m=1 X
j
m,k

∣∣∣ < t̃ with overwhelming probability. Also from Lemma 5 we know∣∣∣Pad(Xj
i,k, b) \

⋂ℓ
m=1 Pad(X

j
m,k, b)

∣∣∣ < t̃ in that case. The proof directly follows from these two observations.

□

Functionality Fn,t,v
ℓ-∩ (X1, . . . , Xℓ)

u :=

∣∣∣∣∣
ℓ⋂

i=1

Xi

∣∣∣∣∣
if u < n− t

return Sharen(v)

else

return Sharen(u)

Fig. 10. Functionality for computing the number of elements in the intersection.

Armed with the insights from above, we are now ready to present our multiparty construction. We will
assume that we are given access to an ideal functionality Fn,t,v

ℓ-∩ as depicted in Figure 10 and we will show how

to concretely instantiate it in Section 4.1. We also use two other simple functionalities Fℓ-min and Fn,t,ϵ
ℓ-vec-intrvl

in our protocol, which are described in Figure 4 and Figure 5 respectively. Note that these functionalities
can be implemented using any generic MPC protocol with communication complexities that are independent
of the initial set size n or threshold t.

In Figure 11 we instantiate the protocol for multiparty private cardinality testing. Similar to the two-
party case, here all the parties throw their set elements into t buckets and then run separate instances of
cardinality test protocol among those buckets with a threshold parameter t̃, as stated in Theorem 6.

14

Construction Πn,t
ℓ-pict(X1, . . . , Xℓ)

1 : for j ∈ [ϵ] :

2 : for i ∈ [ℓ] :

3 : Party i :

4 : (Xj
i,1, . . . , X

j
i,t)← Hj(Xi)

5 : for k ∈ [t] :

6 : (sj1,k, . . . , s
j
ℓ,k)← F

n,t̃,n+1
ℓ-∩

(
Pad(Xj

1,k, n+ 1), . . . , Pad(Xj
ℓ,k, n+ 1)

)
7 : (dj1,k, . . . , d

j
ℓ,k)← Fℓ-min

(
{
∣∣∣Pad(Xj

i,k, n+ 1)
∣∣∣− ∣∣∣Xj

i,k

∣∣∣}i∈[ℓ]

)
8 : for i ∈ [ℓ] :

9 : Party i : sji =

t∑
k=1

(sji,k − dji,k)

10 : (r1, . . . , rℓ)← Fn,t,ϵ
ℓ-vec-intrvl((s

1
1, . . . , s

ϵ
1), . . . , (s

1
ℓ , . . . , s

ϵ
ℓ))

11 : return (r1, . . . , rℓ)

Fig. 11. Protocol for multiparty private intersection cardinality testing.

Theorem 7. Let n, t, t̃ ∈ N with n > t and t̃ ≥ 1 + 3 ln(2tℓ). The protocol Πℓ-pict depicted in Figure 11

securely realizes Fn,t
ℓ-pict using ϵ · t calls to Fb,t̃,n+1

ℓ-∩ and Fℓ-min and one call to Fn,t,ϵ
ℓ-vec-intrvl.

Proof. We prove correctness and privacy separately.

Correctness. If
∣∣∣⋂ℓ

i=1 Xi

∣∣∣ < n − t, then by Theorem 6, we know that no bucket will overflow with an

overwhelming probability in which case the protocol computes the size of the intersection correctly. If∣∣∣⋂ℓ
i=1 Xi

∣∣∣ ≥ n−t, then two things can happen. Either there will exist indices k1, . . . kϵ ∈ [t] and i1, . . . , iϵ ∈ [ℓ],

such that for all j ∈ [ϵ] it holds that
∣∣∣Xj

ij ,kj
\
⋂ℓ

m=1 X
j
m,kj

∣∣∣ ≥ t̃. In this case, by Corollary 4, we know that

the intersection was too small with an overwhelming probability. By construction, each sum of secret shared
values per partitioning will contain a summand of n + 1 and thus the sums will always be larger than n in
which case Fn,t,ϵ

ℓ-vec-intrvl returns 0 as desired.
Otherwise, the intersection is too small, but no bucket overflows. Since no bucket overflows, the parties

correctly compute a secret sharing of the actual intersection and thus Fn,t,ϵ
ℓ-vec-intrvl will produce the correct

output of the computation.

Privacy. Without loss of generality assume that P1, . . . , Pℓ−1 are corrupted. We observe that the only
communication the parties have during a protocol execution is through oracle calls. Each oracle call returns
a fresh secret sharing of some random value and the parties always receives a subset of shares that is
insufficient to reconstruct. To simulate the corrupted parties’ views, we simply return shares of fresh secret
sharings of 0 for each oracle call.

□

4.1 Instantiating Fn,t,v
ℓ-∩

To instantiate Fn,t,v
ℓ-∩ , we use Fn,i

ℓ-pict once for each threshold i ∈ [t] and then accumulate the result. We also

use Fn−t,v
ℓ-geq functionality, described in Section 2, which checks whether the secret shared values obtained from

Fn,i
ℓ-pict indicates that the size of the intersection is greater than n − t. If that is the case Fℓ-geq returns the

15

Construction Πn,t,v
ℓ-∩ (X1, . . . , Xℓ)

1 : for i ∈ [t]

2 : (r1,i, . . . , rℓ,i)← Fn,i
ℓ-pict(X1, . . . , Xℓ)

3 : for i ∈ [ℓ]

4 : Party i : ri :=

t∑
j=1

ri,j

5 : Party 1 : r1 := n− t− 1 + r1

6 : (d1, . . . , dℓ)← Fn−t,v
ℓ-geq (r1, . . . , rℓ)

7 : return (d1, . . . , dℓ)

Fig. 12. Protocol Πn,t,v
ℓ-∩ realizing Fn,t,v

ℓ-∩ .

exact size of the intersection, otherwise it returns the default value v. The protocol Πn,t,v
ℓ-∩ is described in

Figure 12.

Theorem 8. Let n, t ∈ N with n > t and v ∈ F. The protocol Πn,t,v
ℓ-∩ depicted in Figure 12 securely imple-

ments Fn,t,v
ℓ-∩ using one call to Fn,i

ℓ-pict for each i ∈ [t] and one call to Fn−t,v
ℓ-geq .

Proof. For correctness, we observe that Fn,i
ℓ-pict(X1, . . . , Xℓ) returns a sharing of 1, whenever

∣∣∣⋂ℓ
i=1 Xi

∣∣∣ ≥ n−i.

Thus, if
∣∣∣⋂ℓ

j=1 Xj

∣∣∣ ≥ n− t, then Fℓ-pict will return sharing of 1 exactly t− t∗ + 1 times, where n− t∗ is the

true intersection size. Consequently the protocol returns a secret sharing of n− t−1+(t− t∗+1) = n− t∗ =∣∣∣⋂ℓ
j=1 Xj

∣∣∣.
Privacy. Without loss of generality assume that P1, . . . , Pℓ−1 are corrupted. The view of the corrupted
parties only contain received messages from the oracles. Each oracle query to Fn,i

ℓ-pict returns a fresh secret
sharing, which can be simulated by providing the corrupted parties with fresh shares of secret sharings of
0. The last query to Fn−t,v

ℓ-geq (r1, . . . , rℓ) can be simulated by returning the outputs given to the simulator.
Indistinguishability of the simulated transcript from the real one directly follows from the security guarantees
of additive secret sharing.

□

We can use the protocol of Branco, Döttling, and Pu [BDP21] to instantiate Fn,t
ℓ-pict in Fn,t,v

ℓ-∩ . They

present an ℓ-party protocol with a communication complexity of O(λℓt2 polylog t) bits based on additively
homomorphic encryption. Their protocol can easily be extended to use generic secure computation techniques
in all places, where additively homomorphic encryption was used. With this change, their protocol provides
a solution based on, for instance, oblivious transfer with a communication complexity of O(λℓpoly(t)) bits.

In our instantiation, we have ϵt buckets and for each of them we execute the protocol of Branco et al.
O(ln t) times with a threshold of O(ln t). Thus we get a total communication complexity of O(ϵλℓtpolylog t).

Corollary 5. Assuming the existence of oblivious transfer and or additively homomorphic encryption, there
exists a protocol for securely computing the ℓ-party private intersection cardinality test for threshold t with
communication complexity of O(ϵ2ℓtpolylog t) bits.

Combining the results in our paper with the protocols for actually computing the intersection, once it is
known that it is large enough, from by Ghosh and Simkin [GS19], we get the following result.

Corollary 6. Assuming the existence of oblivious transfer or additively homomorphic encryption, there
exists a passively secure protocol for threshold private set intersection among ℓ parties with threshold t with
communication complexity of O(ϵ2ℓtpolylog t) bits.

16

References

BDP21. Pedro Branco, Nico Döttling, and Sihang Pu. Multiparty cardinality testing for threshold private intersec-
tion. In Juan Garay, editor, PKC 2021: 24th International Conference on Theory and Practice of Public
Key Cryptography, Part II, volume 12711 of Lecture Notes in Computer Science, pages 32–60, Virtual
Event, May 10–13, 2021. Springer, Heidelberg, Germany.

BMRR21. Saikrishna Badrinarayanan, Peihan Miao, Srinivasan Raghuraman, and Peter Rindal. Multi-party thresh-
old private set intersection with sublinear communication. In Juan Garay, editor, PKC 2021: 24th Inter-
national Conference on Theory and Practice of Public Key Cryptography, Part II, volume 12711 of Lecture
Notes in Computer Science, pages 349–379, Virtual Event, May 10–13, 2021. Springer, Heidelberg, Ger-
many.

CD01. Ronald Cramer and Ivan Damg̊ard. Secure distributed linear algebra in a constant number of rounds. In
Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 119–136, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany.

DCW13. Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big data: an efficient and
scalable protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013: 20th
Conference on Computer and Communications Security, pages 789–800, Berlin, Germany, November 4–8,
2013. ACM Press.

DPT20. Thai Duong, Duong Hieu Phan, and Ni Trieu. Catalic: Delegated PSI cardinality with applications to con-
tact tracing. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2020,
Part III, volume 12493 of Lecture Notes in Computer Science, pages 870–899, Daejeon, South Korea,
December 7–11, 2020. Springer, Heidelberg, Germany.

FNP04. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set intersection.
In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume
3027 of Lecture Notes in Computer Science, pages 1–19, Interlaken, Switzerland, May 2–6, 2004. Springer,
Heidelberg, Germany.

GS19. Satrajit Ghosh and Mark Simkin. The communication complexity of threshold private set intersection. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part II,
volume 11693 of Lecture Notes in Computer Science, pages 3–29, Santa Barbara, CA, USA, August 18–22,
2019. Springer, Heidelberg, Germany.

KKRT16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivious PRF
with applications to private set intersection. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and
Communications Security, pages 818–829, Vienna, Austria, October 24–28, 2016. ACM Press.

KS05. Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Victor Shoup, editor,
Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages
241–257, Santa Barbara, CA, USA, August 14–18, 2005. Springer, Heidelberg, Germany.

Lin17. Yehuda Lindell. How to simulate it–a tutorial on the simulation proof technique. Tutorials on the Foun-
dations of Cryptography, pages 277–346, 2017.

Mar14. Moxie Marlinspike. The difficulty of private contact discovery. whispersystems.org/blog/

contact-discovery., 2014.

Mea86. Catherine A. Meadows. A more efficient cryptographic matchmaking protocol for use in the absence of a
continuously available third party. In Proceedings of the 1986 IEEE Symposium on Security and Privacy,
Oakland, California, USA, April 7-9, 1986, pages 134–137, 1986.

NMH+10. Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita Borisov. Botgrep: Finding
P2P bots with structured graph analysis. In 19th USENIX Security Symposium, Washington, DC, USA,
August 11-13, 2010, Proceedings, pages 95–110, 2010.

PRTY19. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Lightweight private set inter-
section from sparse OT extension. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances
in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer Science, pages
401–431, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

PRTY20. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: Fast, malicious private set
intersection. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT 2020,
Part II, volume 12106 of Lecture Notes in Computer Science, pages 739–767, Zagreb, Croatia, May 10–14,
2020. Springer, Heidelberg, Germany.

17

whispersystems.org/blog/contact-discovery.
whispersystems.org/blog/contact-discovery.

PSSZ15. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set intersection using
permutation-based hashing. In 24th USENIX Security Symposium, USENIX Security 15, Washington,
D.C., USA, August 12-14, 2015., pages 515–530, 2015.

18

	Threshold Private Set Intersection with Better Communication Complexity

