
Table of Contents

Randomness of random in Cisco ASA . . . . . . . . . . . . . . . . . . . . . . . . . 2
R. Benadjila, A. Ebalard

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Use of randomness in network devices . . . . . . . . . . . . . . . . . . 2
1.2 Prior art and related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Reading path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 External observations and initial recovery . . . . . . . . . . . . . . . . . . . 4
2.1 ECDSA certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 RSA certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 ASA devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Hardware devices and ASAv virtual appliances . . . . . . . . . . . 10
3.2 Firmware content, execution and analysis . . . . . . . . . . . . . . . 12
3.3 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Cryptographic and randomness players . . . . . . . . . . . . . . . . . . . . . . 17
4.1 RSA and ECDSA generation process . . . . . . . . . . . . . . . . . . . 18
4.2 Deterministic generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Entropy sources and entropy lifting . . . . . . . . . . . . . . . . . . . . . 24

5 Keygenning ASAv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1 Statistics on ASAv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Detailed example of ASAv 9.10.1-44 . . . . . . . . . . . . . . . . . . . . 28
5.3 Other versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Investigating RNG failure on hardware devices . . . . . . . . . . . . . . . 39
6.1 Black box statistics on 5506-X . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 A quick tour of Cavium firmware . . . . . . . . . . . . . . . . . . . . . . . 42

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1 Bad random does not necessarily collide . . . . . . . . . . . . . . . . 43
7.2 Mixing sources in a single RNG . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 The second best friend of a DRBG is a good addin method 44
7.4 A word on using time in random subsytems . . . . . . . . . . . . . 45
7.5 Horizontal and vertical impacts . . . . . . . . . . . . . . . . . . . . . . . . 46
7.6 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



Randomness of random in Cisco ASA

Ryad Benadjila and Arnaud Ebalard

ryad.benadjila@cryptoexperts.com

arnaud.ebalard@ssi.gouv.fr

ANSSI and CryptoExperts ⋆⋆

Abstract. It all started with ECDSA nonces and keys duplications in
a large amount of X.509 certificates generated by Cisco ASA security
gateways, detected through TLS campaigns analysis. After some statistics
and blackbox keys recovery, it continued by analyzing multiple firmwares
for those hardware devices and virtual appliances to unveil the root causes
of these collisions. It ended up with keygens to recover RSA keys, ECDSA
keys and signatures nonces. The current article describes our journey
understanding Cisco ASA randomness issues through years, leading to
CVE-2023-20107 [2,6]. More generally, it also provides technical and prac-
tical feedback on what can and cannot be done regarding entropy sources
in association with DRBGs and other random processing mechanisms.

1 Introduction

1.1 Use of randomness in network devices

Random numbers are used in multiple aspects of network equipments
operations, all the more so when those are dedicated to security tasks:

— For administration interfaces or VPN services for users, random
numbers are the root of protocols like TLS and IKE : even if state
of the art primitives like AES encryption or ECDSA signature are
used inside state of the art protocols, failure at providing correct
entropy to those primitives may result in catastrophic failure of
security product functions.

— To defend against exploitation of vulnerable code, mechanisms like
ASLR rely on (obviously) non predictable random values.

— More generally, high level protocols expect non-predictable session
identifiers, tokens, or nonces.

A difficult aspect with randomness that must be taken into account
is that it is difficult (if ever possible) to get definitive proof of practical
quality of produced output over time.

⋆⋆ Work performed while at ANSSI.
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1.2 Prior art and related work

The best way to understand practical randomness issues, even when
using state of the art theoretical primitives, is to consider previous failures
of such primitives in other systems.

Without reducing the subject to the list below, the following examples
can serve as showcases to grasp both possible root causes as well as
catastrophic impacts of randomness failures.

In 2008, a small change in Debian OpenSSL package resulted in
predictable RNG operations [16], itself leading to the generation of broken
SSH, SSL RSA and DSA keys . . . worldwide.

In 2010, nonce duplication in Sony PlayStation 3 code led to the
recovery of the firmware signature private key [8], allowing unpatchable
jailbreaks of the device on the existing consoles.

In 2012, various embedded devices with low boot entropy generated
duplicated primes during RSA key generations [11], leading to trivial
private key recovery from the set of public keys using a simple GCD
algorithm.

In 2013, nonce duplication in ECDSA signatures in the Bitcoin
blockchain allowed recovery of associated ECDSA private keys [22], then
allowing access to the fund at those addresses.

In 2019, Cisco published a reported vulnerability resulting in the
generation of low entropy keys on their ASA and FTD software based
devices [10].

The current article details an independent rediscovery of this vulnera-
bility with interesting twists and a deeper understanding of its root causes,
as well as the exposition of more vulnerable devices and more vulnerable
certificates in the wild. Indeed, [10] neither details the origins nor the
impacts of the (barely mentioned) entropy issues, which lead to keygenning
in many cases as we will present in the current article.

For french-capable readers, [19] might provide a good synthesis of the
topic.

1.3 Reading path

The structure of the document globally follows the logical and chrono-
logical way the study was performed. As it all started with the discovery of
duplications on public certificates, section 2 provides a thorough analysis
of those ECDSA and RSA certificates, the discovered issues and impacts
and possible key recovery from such a set. To get to the root cause of
the issues, an understanding of Cisco ASA ecosystem, hardware devices,
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virtualization and debug capabilities, firmware content, etc. was required.
These elements are covered in Section 3. Section 4 provides reminders
on RNG topics, with minimum required information on DRBGs (CTR-
DRBG and Hash-DRBG), OpenSSL MD_RAND and also some analysis
of implementations/mechanisms found in Cisco products, like RSA Labs
BSAFE. Building on those two sections, section 5 provides an external
analysis of randomness issues for certificates generated on ASAv virtu-
alized appliances and goes to the origin of those issues, using a specific
version as a support for this work. All keygened versions are also covered
with less details in this section. Section 6 builds upon this analysis and
specificities of hardware ASA devices to speculate on the root causes of
observed duplications on those platforms. Finally, the conclusion tries to
summarize all the lessons learned during this journey on practical RNG
implementations, and provides some advice for developers.

1.4 Disclaimer

This article takes as basis the randomness issues impacting the gen-
eration of self-signed certificates on Cisco ASA products to get to the
root causes of those specific issues on those platforms. The other possible
impacts of low randomness on those platforms (aside from certificates
generation) are not analyzed; the main purpose of this work being to alert
other developers and the community regarding the use of low randomness
sources. Namely, other cryptographic material such as IKE and SSH keys
might (or might not) be impacted with more or less severity, but this is
not the subject of the current article.

2 External observations and initial recovery

2.1 ECDSA certificates

While developing [31] and [3], the idea arose to perform some tests on r

component of ECDSA signatures in our large dataset of X.509 certificates.
This set, built with the years from public sources for test purposes, contains
more than 250 millions unique X.509 certificates.

The extraction and search for duplication of the r components of the
signature in ECDSA-signed certificates from the set resulted in an non-
empty list. Because r is computed in the following way during signature
process, collisions can only happen due to a random generator issue; this
generator returning the same value k twice during different certificate
signing operations as presented on Algorithm 1.
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1: Get a random value k in ]0, q[
2: Compute W = (Wx, Wy) = k × G

3: Compute r = Wx mod q

4: . . .
5: Return (r, s)

Algorithm 1. Generation of r during ECDSA signature process; G being the
group base point on the curve and q the order of the curve.

An analysis of the impacted certificates quickly showed that they were
all very similar in their structure as exhibited in Figure 1.

Data:

Version: 3 (0x2)

Serial Number: -2145020325 (-0x7fda69a5)

Signature Algorithm: ecdsa-with-SHA256

Issuer: CN = ASA Temporary Self Signed Certificate

Validity

Not Before: Sep 10 08:04:15 2018 GMT

Not After : Sep 7 08:04:15 2028 GMT -- 10 years

Subject: CN = ASA Temporary Self Signed Certificate

Subject Public Key Info:

Public Key Algorithm: id-ecPublicKey

Public-Key: (256 bit)

pub:

04:76:52:e0:cf:12:4c:11:22:e6:da:75:53:09:97:

5c:fa:1f:4e:b3:dd:8e:42:65:28:2d:59:52:18:e9:

b3:04:d5:3c:a6:b3:6f:a5:ee:01:2c:91:c4:e1:fd:

bb:cb:52:60:3e:f2:8b:ae:c1:42:1f:76:57:28:64:

d6:48:e6:c3:c3

ASN1 OID: prime256v1

NIST CURVE: P-256

Signature Algorithm: ecdsa-with-SHA256

30:45:02:20:36:76:d5:e1:2e:62:91:db:7d:28:6f:ed:fa:fd: -- r

15:5f:3e:4f:fb:4c:9b:f8:79:c7:dd:ba:0d:19:1d:80:27:18:

02:21:00:fd:a7:81:76:c6:da:22:30:82:09:b8:dc:c9:38:ad: -- s

94:6e:72:b4:14:63:65:88:63:b4:f7:86:d7:17:53:f8:ed

Fig. 1. Cisco ASA self-signed ECDSA certificate

Some statistics We extracted from our set all the certificates matching
this template (ECDSA, same very specific Common Name CN, etc.) to
end up with a subset of 313k ASA ECDSA self-signed certificates.

The statistics regarding r duplication in this subset went:
— ≈ 82k certs with a duplicated r, i.e. 26.4% of the set.
— ≈ 18k r appear between 2 and . . . 44 times!
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Expecting self-signed certificates of the subset to embed non-colliding
public keys, we also did some statistics on the topic:

— ≈ 113k certs with a duplicated pub key, i.e. 36.1% of the set.
— ≈ 16k pub keys appear between 2 and . . . 704 times!

Keys and nonces recovery A strong hypothesis for the resistance of
ECDSA signature mechanism is that the nonces k are fresh random values
uniformly sampled from the set of positive integers smaller than the order
of the base point of the EC parameters. Considering the length of k, a
repetition of a k value never happens when a decent RNG is used. It
is well-known that a repetition of a nonce value can be catastrophic for
the security since the private key can then be recovered from the signed
messages and their signatures [8].

For a pair of signatures (r1, s1) and (r2, s2) of different messages m1
and m2 with a colliding nonce k, we have r1 = r2, which we note r. A
simplified version of ECDSA signature mechanism is presented on the left
part of Figure 2 along with nonce recovery mechanisms on the right part
of the same Figure.

1: h = H(m)
2: e = OS2I(h) mod q
3: k ⇐ R, k ∈ ]0, q[
4: W = (Wx, Wy) = k × G

5: r = Wx mod q

6: s = k−1
×(x×r+e) mod q

7: Return (r, s)

From 6. on the left side, we draw:

(s1 − s2) = k−1
× (xr + e1) − k−1

× (xr + e2) mod q

= k−1
× (xr + e1 − xr − e2) mod q

= k−1
× (e1 − e2) mod q

=⇒ k = (e1 − e2) × (s1 − s2)−1 mod q

=⇒ x = (k × s1 − e1) × r−1

1
mod q

= (k × s2 − e2) × r−1

2
mod q

Fig. 2. (Simplified) ECDSA Signature mechanism and duplicated nonce recovery
equations (for nonce and private key)

Considering the length of k,1 this can simply never happen with a
decent RNG. Nonetheless, if such an event occurs (which can be spotted
with identical r values), this allows for a trivial recovery of the private
key.

Additionally, mathematical computations involved in ECDSA signature
process also allows the private key owner to recover the nonce k associated
with r from the signature and the signed message. Getting access to all

1 256 bits in Cisco ASA case, i.e. the size of the order q.
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the nonces ever used by a signer is usually useless . . . except when the
r values resulting from those nonces are duplicated in other signatures
performed with differents keys.2 This is what happens in our set.

Having certificates signed with the same nonce and embedding the
same public key provides trivial access to that private key. Having access
to that key provides access to all the nonces for the certificates signed
with this key. It then provides access to the keys of all certificates whose
r value is associated with one of these nonces. This results in a trivial
iterative converging Algorithm 2 for private key recovery in our subset,
providing the results in Figure 3.

Starting with 737 recovered keys (≈ 3.7% of the 200k certificates with
unique keys) because of duplicated nonces, this iterative process allows in
a few steps a final recovery of 4739 keys (≈ 23.7%) from this subset.

Input: Apubk set of all public keys, Ar set of all r (from the certificates)
Output: Sprivk set of recovered private keys, Sk set of recovered nonces

1: Get all keys from Apubk used with duplicated nonces from Ar

2: Apply algorithm on Figure 2 to recover a set of private keys Sprivk and a set of
nonces Sk

3: From recovered Sk break unknown private keys from Apubk where the recovered
nonces are used and inflate Sprivk

4: From recovered Sprivk break unknown nonces from Ar where the recovered private
keys are used and inflate Sk

5: Did we reach a point where Sprivk and Sk did not inflate in the last two steps? If
yes exit, else goto step 3

Algorithm 2. (Simplified) Iterative keys and nonces recovery algorithm

CVE-2019-1715 The result presented on Figure 4 led us to contact Cisco
PSIRT through CERT-FR to report the issue on 10 Feb 2022, who related
this to CVE-2019-1715 [10] that indeed had an explicit title: Low-Entropy

Keys Vulnerability.
At that point, even if our findings matched this CVE, the huge number

and percentage of impacted certificates observed on Figure 4, along with
the advertised issuance dates 3 in the subset - as presented below - led

2 Actually, knowing even a small fraction of the nonce bits can lead to a HNP (Hidden
Number Problem) [33] that can break the private key with a set of known signatures.
We are not in this case as it will be unveiled in the sequel, hence we only focus on
the full duplication of nonces.

3 The value of notBefore field.
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Fig. 3. Results of iterative keys and nonces recovery on the subset

us to consider that either some products had been missed, or the fix was
failing, or a huge amount of users just had not fixed the issue.

As our dataset did not have data after 2021, we have also checked the
publicly available Rapid7 [28] Open Data databases and expanded our
total ASA ECDSA certificates number from 330k to 540k with notBefore

lying in 2022. We have confirmed on the Rapid7 only dataset as well as
on the merged one that the obviously weak ASA certificates proportion
remains the same, even in 2022, with what we have observed in the original
set.4 We have also checked on Shodan [32] that hundreds to thousands of
currently alive machines have obviously weak certificates.

2.2 RSA certificates

During the extraction of Cisco ASA certificates based on their CN

from our large set, the resulting subset contained both ECDSA and RSA
self-signed certificates. The existence of both RSA and ECDSA certificates
in the subset is explained by the fact that Cisco ASA products generate
both kinds of certificates at boot.

Expecting RNG issues on the platforms to also impact the generation
of RSA keys, we first started performing GCD between RSA modulus N

(= P × Q) extracted from those certificates, expecting duplicated P values
allowing to recover Q values as covered in [11].

4 We want to thank our colleagues from the LED laboratory and SDO entity at ANSSI
for helping us with the Rapid7 data extraction and exploitation.
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Fig. 4. Number of Cisco ASA ECDSA certificates per month (found vs obviously
weak)

From the RSA subset of 200, 466 certificates at hand, we found no GCD
issues. Wondering why RSA key generation seemed not to be impacted by
RNG issues, we started considering we missed something more obvious. We
decided to look for trivial modulus duplications which provided positive
results. A summary of the results are given in Figures 5 and 6.

The result of this initial analysis shows that between 6 and 10 % of
Cisco ASA self-signed RSA certificates in the wild contain duplicated
modulus. This explains why previous GCD checks did not provide any
positive result: modulus with a common P also had the same Q.

Among our 200k Cisco ASA RSA self-signed certificates, we found
a total amount of 12,226 certificates with a duplicated modulus. This
represents 2,194 modules which appear more than once in the certificates
set, with a repetition count between 2 and 2,492. Based on the advertised
generation date found in notBefore field in the certificate, the issue seems
to have begun between 2016 and 2017, and continues with no decrease
long after the publication of the CVE-2019-1715 [10] and associated fixed
software by Cisco, with obviously weak certificates still appearing until
the end of our data set in 2021.
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Fig. 5. Number of Cisco ASA RSA certificates per month (found vs obviously
weak)

3 ASA devices

3.1 Hardware devices and ASAv virtual appliances

The Cisco ASA family of products comes in two main flavours: hard-
ware appliances as well as ASAv virtual appliances (although these two
tend to converge towards a unique platform in the recent years). Hardware
appliances are made of dedicated hardware with network acceleration chips
and have historically been seen as the main selling devices for professional
deployment. Virtual appliances appeared a few years ago as interesting
alternatives for testing purposes, e.g. on network simulation platforms such
as GNS3 or EVE-NG [7,9], and bringing more flexibility and scalability
in VPN deployment scenarios. With the democratization of cloud solu-
tions, and the easy scaling of such virtual appliances, Cisco seem to put
efforts on developping the ASAv virtualization based solutions. More and
more hardware appliances in fact embed hardware capable Xeon CPUs
with ASAv, which is cost effective from a deployment and development
standpoint.

The “classical” hardware appliances are made of a main CPU based
on a x86 32-bit or 64-bit architecture (low power AMD Geode or Intel
Atom for low-end, more capable AMD Opteron or Intel Xeon for high-
end). A companion cryptographic accelerator on the PCI bus offloads the
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Fig. 6. Percentage of obviously weak RSA certificates per year

heavy network load and cryptographic operations (for TLS, IKE, etc.).
This accelerator comes in the form of a Cavium IP (Octeon or Nitrox
Lite for low to middle range, Nitrox PX for high-end). Figure 7 provides
an overview of the main CPU and Cavium found in current Cisco ASA
devices.

ASAv are usually provided in the form of flat files for virtualization
solutions (qcow2, ova and so on). The ASAv packages are hence self-
contained and are expected to run on most of the hypervisors (kvm,
hyperv, etc.) or bare-metal, e.g. using a x86 emulator. For both ASAv and
hardware solutions, a licensing model is used to configure functionalities
and remove forced restrictions on the same platform.

During our work, we have chosen to focus on the specific ASA
hardware device 5506-X as it was both still supported by Cisco,
cheap (≈ 40€ on a classified ads website for a brand new device) and
easily available. This explains why we only present statistics on this
platform in the sequel. We emphasize however that our results could
be extended to (at least some) other hardware platforms as they share a
very similar configuration, as can be seen on Figure 7, and use common
binaries in the firmware.
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ASA Device Crypto Accel CPU

5505 Cavium Nitrox Lite CN505 AMD Geode LX 800 500MHz

5506-X Cavium Octeon III CN7020 Atom C2000 series 1250 MHz

5506W-X Cavium Octeon III CN7130 Atom C2000 series 1250 MHz

5506H-X Cavium Octeon III CN7130 Atom C2000 series 1250 MHz

5508-X Cavium Octeon III CN7130 Atom C2000 series 2000 MHz

5510 Cavium Nitrox Lite CN1010 Pentium 4 Celeron 1600 MHz

5512-X Cavium Nitrox PX CN1610 Clarkdale 2793 MHz

5515-X Cavium Nitrox PX CN1610 Clarkdale 3059 MHz

5516-X Cavium Octeon III CN7130 Atom C2000 series 2400 MHz

5520 Cavium Nitrox Lite CN1010 Pentium 4 Celeron 2000 MHz

5525-X Cavium Nitrox PX CN1610 Lynnfield 2394 MHz

5540 Cavium Nitrox Lite CN1010 Pentium 4 2000 MHz

5545-X Cavium Nitrox PX CN1610/20 Lynnfield 2660 MHz

5550 Cavium Nitrox Lite CN1010 Pentium 4 3000 MHz

5555-X Cavium Nitrox PX CN1620 Lynnfield 2792 MHz

5580-20 Cavium Nitrox PX CN1520 AMD Opteron 2600 MHz

5580-40 Cavium Nitrox PX CN1520 AMD Opteron 2600 MHz

5585-X SSP-10 Cavium Nitrox PX CN1620 Xeon 5500 series 2000 Mhz

5585-X SSP-10 EP Cavium Nitrox PX CN1620 Xeon 5500 series 2000 Mhz

5585-X SSP-20 Cavium Nitrox PX CN1620 Xeon 5500 series 2133 MHz

5585-X SSP-20 EP Cavium Nitrox PX CN1620 Xeon 5500 series 2133 MHz

5585-X SSP-40 Cavium Nitrox PX CN1620 Xeon 5500 series 2133 MHz

5585-X SSP-60 Cavium Nitrox PX CN1620 Xeon 5600 series 2400 MHz

Fig. 7. Processors/Cavium accelerators in ASA devices (source:
https://community.cisco.com/t5/security-blogs/asa-and-firepower-

hardware-fact-sheet/ba-p/3665136). Highlighted device is the one acquired
for our experiments

3.2 Firmware content, execution and analysis

We provide hereafter a brief overview of the ASA firmware ecosystem:
we are not exhaustive as we only focus on the information needed for the
sequel of this article. For a detailed tour of taxonomy and history of ASA
devices, please refer to the comprehensive NCC group blog posts [20]. An
interesting thing to notice is that both hardware and ASAv platforms
share the same core executed binary: a flat .bin file which contains an
embedded Linux kernel and its rootfs, only the bootloader differs. grub

is used for ASAv and the proprietary rommon for hardware solutions. The
platform (init scripts after the kernel has booted) detects the running
environment and adapts some configuration depending on it. For instance,
on a hardware platform the Cavium dedicated firmware will be pushed
through the PCI bus, and proprietary communication will be established
between the main CPU and the Cavium afterwards. On ASAv, the running
environment is aware that no cryptographic accelerator is present and
everything is performed on the main CPU. Also, as we will see, various

https://community.cisco.com/t5/security-blogs/asa-and-firepower-hardware-fact-sheet/ba-p/3665136
https://community.cisco.com/t5/security-blogs/asa-and-firepower-hardware-fact-sheet/ba-p/3665136
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code paths can be executed depending on the main CPU capabilities (e.g.

AES or SHA-2 acceleration instructions, rdrand, etc.).

For ASAv, the .bin is packaged with the grub bootloader as well as
another partition emulating the flash (the rootfs being read-only, the
“flash” is used for configuration and state data), and these elements form
the flat file to be virtualized, e.g. as an ova file.

For hardware platforms, the .bin was historically directly loaded by
rommon, and the flash device is a physical hardware device in the form of
Compact Flash (CF) card or embedded eUSB flash chip. The .bin is on
this device and the “user” configuration data is on a dedicated partition.
rommon reads the flash, performs some checks and boots the .bin. It is
also possible to load the .bin file using tftp or an USB thumb drive
connected to the appliance.

In recent hardware platforms (since around 2018 with the release
of FTD FirePOWER integration in ASA), firmware files are now .SPA

files. This file format is also concurrent with the usage of secure boot
technologies in Cisco products: modern hardware releases now integrate
UEFI with secure boot, a dedicated ACT chip against counterfeiting as
well as a custom FPGA (the Cisco Trust Anchor module for software
checking) are used as roots of trust to ensure that the loaded firmware
is authentic (signed) and not tampered with. The rommon bootloader is
implemented as an UEFI module and extends the trusted anchor of UEFI
secure boot, with additional work from the FPGA and the ACT chip.
Although the exact process of secure boot is not described by Cisco, some
elements can be found in [14]. Additionally to the kernel and rootfs,
.SPA files also contain cryptographic metadata that help the secure boot
flow and the authentication of the image. It is also worth noticing that
both for .bin and .SPA format, similar extensions are used for rommon as
well as other modules updates (such as other UEFI modules, the FPGA
bitstream, etc.) with authenticity checks whenever necessary when secure
boot is supported.

Once the boot process is finished in both ASAv and hardware platforms,
the Linux kernel launches a binary called lina_monitor whose task is
to execute the main executable with dedicated options: lina. It is a
monolithic binary whose size has been increasing over the firmware versions
(from around 100 MB in the 9.8 versions to around 180 MB in recent
9.17 versions). The binary has elevated privileges and embeds all the
functionalities that are expected from the platform: drive the network
interfaces, interact with the cryptographic accelerator if present, monitor
the state and health of the running environment, etc. It implements
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various abstraction layers inherited from old Cisco non-Linux IOS era,
which might explain the monolithic approach, whose purpose is portability
across existing Cisco platforms. This explains why thousands (more than
110k) of functions are present, with lots of aggregated libraries in different
versions (e.g. 30 instances of SHA-2), with or without customization by
Cisco (e.g. OpenSSL is mostly genuine except from some low-level parts
discussed in the next sections). Analyzing all the possible execution paths
for all the possible platform with static analysis is made very complex
by all the abstraction layers and the combinatorial complexity. The lina

binary is stripped, but debugging strings used in printf like functions
ease the static analysis.

3.3 Instrumentation

There is a substantial previous work on Cisco ASA jailbreaking and
instrumentation. For the sake of brevity, we advise the curious reader
to refer to the extensive work of NCC group [21] that builds upon (and
details) a long history of CVEs in their articles. We have based a large part
of our analysis and our instrumentation on their tools by modifying their
asafw and asadbg frameworks for our specific purposes. They explain
how to modify the firmware images in order to inject a gdbserver binary
and disable the various protections that exist, namely: integrity checking
of the lina binary by the lina_monitor launcher, ASLR (Address Space
Layout Randomization), the watchdog in the lina binary itself that sends
termination signals whenever there is a stall (e.g. with breakpoints), etc.

Although at the time of release, NCC group’s tools allowed to in-
strument both ASAv virtual images as well as hardware images (e.g. for
5505 or 5512-X), recent hardware releases (of interest for us) such as the
5506-X make use of secure boot technologies as previously described.
Secure boot limited our instrumentation of the available 5506-X hard-
ware since we could not inject our gdbserver and modify the image
without being detected by rommon. Recent attacks on all ASA firmware
presented at BlackHat [13] would have allowed a tethered jailbreak (i.e.

inject the instrumentation payload post-boot with an exploit providing
root privileges access). However, we did not explore this path because
these exploits appeared late during our work on ASA and we lacked time
to integrate and use them. Moreover, we suspect that some of the reasons
behind the entropy fragility also lies in the Cavium firmware behavior:
beyond the mere instrumentation of the main x86 CPU code, instrument-
ing the cryptographic accelerator is another topic that would require a
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substantial additional work (unveiling Cisco’s proprietary protocol for the
communication over PCI between lina and the MIPS processor).

Hence, we will hereafter describe our gray box dynamic instrumentation
on ASAv that allowed us to capture the executed code paths, understand
the flaws and implement key gen tools for various firmware versions. We
will then describe the pure black-box methodology we used on the 5506-
X to expose the fragility of some firmware versions in their hardware
fashion: because of the secure boot limitation, the analysis is limited and
these weaknesses are not exploited (beyond nonce reuse issues previously
described).

5506-X instrumentation Since secure boot prevents exploitable modifi-
cation of 5506-X firmwares, we have chosen a pure black-box approach. We
have implemented a Python script that communicates with the hardware
appliance through the serial console as well as through the network using
the expect module to automate our commands.

The serial console is mainly used to drive the rommon bootloader and
boot using tftp a target firmware. Then, the firmware is configured with
minimal elements to have the network and generate the RSA and ECDSA
certificates during boot. Then, a TLS session is opened using the SSL
Python module, and recovers these certificates (with proper ciphersuite
downgrading whenever necessary to recover the RSA certificate).

Since we know that the absolute time of the appliance can play a role
in randomness generation, we explicitly set the same time during reboot.
Although some jitter of a few seconds exist (because of non deterministic
boot time), getting many samples allows us to get certificates generation
time collisions (in seconds, that we validate using notBefore), which
exhibit interesting results as we will expose in the next sections.

ASAv instrumentation Our dynamic instrumentation of the ASAv
firmware versions used three complementary aspects:

— Modify NCC group’s asafw and asadbg scripts to adapt to various
recent versions of ASAv firmware (e.g. handle ASLR in different
fashions, properly repacking when injecting new binaries in all
situations, etc.). We also decided to get rid of the GNS3 network
simulation framework for instrumentation, as it added too much
complexity for little useful features in our context: we used custom
scripts to handle virtual interfaces and bridges creation, and a dedi-
cated qemu command line. We have also developed a Python script
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based on the expect module to automatically perform the appli-
ance configuration on the (virtual) serial line. This Python script
is very similar to the one described in the 5506-X instrumentation.

— Develop dedicated gdb scripts that allow to dynamically sample
values from memory at breakpoints, inject data at will, and get a
better view and big picture of the code paths. These scripts became
quite complex as they could execute up to 30 breakpoints, and
they behaved quite well for most of the firmware versions, showing
that this methodology scales well even for a multi-threaded large
binary. Among other things the script dumps the RSA and ECDSA
certificates in DER format after their generation.

— Develop dedicated qemu plugins to push the instrumentation further.
As we will explain hereafter, although gdb is a very powerful tool
for dynamic analysis, some situations required a less “invasive”
monitoring of the lina binary in action (ideally a pure black-box
observation of the untouched binary).

As it will be highlighted in the dedicated Sections 4 and 5, some versions
of the ASAv firmware use absolute time and relative timings of events
as entropy sources or additional data. In such cases, using breakpoints
with gdb will completely break these timings: it is not possible to observe
key generations with “real” values (i.e. values that the untouched binary
would produce) since breakpoints use delays with too much volatility for
the target precision. Another issue arising with gdb instrumentation is the
observation of the values of initialized or uninitialized input buffers when
these are used as an entropy source (e.g. with the MD_RAND processing):
the multi-threading nature of lina makes catching these buffers actual
values hard with a sheer debugging approach. Even harder elements to
capture are when these buffers contain ASLR chunks that are random, but
that do not appear so under gdb scrutiny as ASLR must be deactivated
for proper debugging of lina.

For all such cases, a pure black-box approach that does not tamper
with the running lina memory map and behaviour is needed, and qemu

emulation mode is perfect for this. For a quick and efficient instrumentation
of the emulation, we have chosen to develop a TCG plugin based on
the provided tests/plugins/insn.c and contrib/plugins/execlog.c

examples [27]. The idea is to be able to sample or modify the interesting
instructions and dump memory (the timings we need to sample, input
buffers raw content, etc.) at will while freezing the whole firmware. We
had to face some challenges that we will briefly describe hereafter:
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— Recovering and modifying memory content from the TCG plugins
is not straightforward as these plugins are not dedicated for this
(especially when we want to modify elements such as registers or
memory as these plugins are mainly for read-only instrumentation).
We have diverted the qemu gdb debugging stubs (that already
contain low-level memory access functions) to perform this.

— We had to deal with ASLR in our qemu instrumentation. Indeed,
when we want to observe a given address in the binary (taken from
a disassembler), this address will not be the same when running.
We have implemented some filtering heuristics that use the fact
that ASLR does not modify the lower 12 bits page offset of the rip

instruction pointer. Using these 12 bits with the pointed instruction
opcode allows for an efficient disambiguation.

— Since TCG plugins inherently depend on the basic translation
blocks of qemu, there could be some desynchronization between the
sampled values (with our custom read/write stubs) for the registers
and their real values at a given point of the program. Resynchroniza-
tion points are the end of translation blocks, usually corresponding
to the end of basic blocks. We took advantage of registers values
preservation across instructions (or copy of these values in other
registers) to get the job done in the different situations we had to
face.

All-in-all, the qemu instrumentation allowed us to confirm our analysis
of the timings in the CTR-DRBG cases, confirm our analysis of the Hash-
DRBG behaviour, and confirm static (initialized) buffer values as well as
ASLR feeding values to MD_RAND (see Section 4 for more details about
these RNG engines).

4 Cryptographic and randomness players

In this section, we describe the primitives that contribute to the
randomness generation as we analyzed them from the lina binary using
static and dynamic analysis through instrumentation on ASAv versions
ranging from 9.6 to 9.10. We focus on brevity for the sake of readability,
although the analysis was a winding road with non trivial call graphs
and arduous gdb scripting. The purpose is to have an overview of full
key and random generation paths from the entropy sources to the output,
which will help understanding their fragility and how keygenning might
be possible for some of the generated key material.



18 Randomness of random in Cisco ASA

We classify the primitives that are needed for the understanding of
key/nonce generation in three layers, from upper to lower ones:

• the top ECDSA and RSA material generation;
• the deterministic RNG engines producing this material;
• the entropy sources and lifting routines that feed the engines.
It is to be noted that the engines can also be fed with other deterministic

engines that use entropy sources, with as many layers as needed. Actually,
things are more complicated than what is summarized here: various
backends can be used at runtime, some are selected when the lina binary
starts, others are seen as fallback of failing engines, switches between
engines can occur during the course of the execution etc. This becomes even
more crooked when entropy sources and lifters that feed the engines also
go through such runtime choices. This leads to a very complex call graph
and many possibilities that we certainly do not pretend to exhaustively
comprehend by static analysis (and even with dynamic instrumentation).
However, we have tried to limit the analysis complexity by only focusing
on the (boot time) certificates generation. We have also observed that
for a given ASA firmware version, the same execution paths are taken
for random generation during nominal executions (i.e. the randomness
generation call graph is kind of deterministic in early boot). Hence, this
section only bears down on the cryptographic primitives and RNG players
that are of interest.

All the results provided here have been validated using post analysis
and instrumentation with black-box checking and/or non-invasive qemu

values sampling. As a disclaimer, we have only focused on the random
generation paths that are executed in ASAv using our virtualization
environment (qemu with kvm on laptops with Intel CPUs). We have chosen
as the virtualized CPU an Intel Nehalem that we thought representative
of average deployed ASA appliances. This CPU microarchitecture does not
embed the latest technologies such as rdrand, and as it will be discussed
this can make a difference when it comes to entropy sources (shifting
from a very fragile random generation to a somewhat more robust one).
Although this might not be exhaustive from an analysis point of view,
this has been enough to produce keys found in our certificates dataset
which proves at least that these paths are executed on existing platforms
connected to the internet.

4.1 RSA and ECDSA generation process

The key and nonce generation processes all make use of randomness
pulled from instantiated random generators backends that will be described
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in the next section (deterministic generators). For this section, consider
them as random bytes providers. Figure 8 and Figure 9 provide a high level
view of when key material is generated. Entropy lifters are used to feed
some deterministic generator Instantiate() and Generate() functions.
The Instantiate() routine is called first to initialize the random genera-
tor, then each time random bytes are needed the Generate() routine is
invoked: Figure 8 shows how chunks of 16 bytes, then 3 × 16 (four times),
and then 28, 32 and 8 bytes are pulled from this generation process. The
RSA modulus and the ECDSA private key / nonce are generated using
some of these extracted bytes. The RSA modulus is generated first, then
the ECDSA private key and finally the nonce (which respects the most
natural way of performing the operation).

RSA prime factors and modulus The RSA prime factors follow a
seeded generation as described in FIPS 186-4 method B.3.4 [24]: using 28
random bytes, two 1024 primes P and Q are generated and the modulus
N = P × Q is computed. This perfectly explains why the GCD attacks
did not work on the certificates dataset: the collisions are on the modulus
N but no two distincts modulus share a common factor.

ECDSA private key The ECDSA secp256 private key is generated at
top level using OpenSSL original generation procedure taking 32 random
bytes and reducing them modulo the order of the generator.5 The ECDSA
private key being generated after the RSA modulus (hence with more
randomness in the random engine), less collisions are expected for them
than for RSA keys (which we indeed observe on our dataset).

ECDSA nonce We have discovered that the ECDSA secp256 nonce can
be generated in at least two ways depending on the considered firmware and
running environment. For a puzzling reason, none of them uses the original
OpenSSL nonce generation primitive. The first generation procedure makes
use of the RSA Labs BSAFE library [29] 6: two random samples, of 16
bytes and 8 bytes, are used to feed proprietary BSAFE post-processing
engines based on SHA-1 and modular reductions to produce 32 bytes.
The only important takeaway is that they are deterministic with no other
inputs (in this case, the nonce also has a theoretical entropy of 24 bytes

5 BN_rand() in EC_KEY_generate_key()
6 Which is a pain to analyze, since we switch from OpenSSL clear APIs to proprietary

big numbers abstraction layers
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Fig. 8. RSA modulus and ECDSA private key/nonce generation

instead of 32, which is bad but less catastrophic than what will be exposed
later). The second generation procedure directly samples 32 bytes from
another deterministic random backend which is a Hash-DRBG (more on
this later). Finally, the produced 32 bytes are reduced to generate the
nonce. For the same reasons we have less collisions for ECDSA keys than
for RSA modulus, we expect from the first generation procedure to have
even less collision for nonces.

Keys relations As we have explained, RSA and ECDSA key material is
generated sampling from a deterministic random generator. This means
for example that if we are able to find the RSA 28 bytes seed, we get an
output from the generator. If it is possible from these 28 bytes to guess the
next 32 bytes with few additional efforts, the ECDSA key is obtained! Also,
the ECDSA key and nonce are related (if we get one we get the other using
an equation). The next sections are about the possibilities of exploiting
these “steppings” forward or backward in the random generation flow
to guess unknown value with much less complexity than the exhaustive
search. For this, we still have to understand the deterministic generation
producing bytes at each step, as well as the entropy sources that feed this
generation: this is the purpose of the next descriptions.
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Fig. 9. Alternative ECDSA nonce generation

4.2 Deterministic generators

We present hereafter the deterministic engines that are used to produce
the random bytes consumed by the upper layers in lina. As we have
already stated, this is not an exhaustive enumeration: we only exhibit the
engines used for our purpose (i.e. RSA and ECDSA keys and certificates
generation). They are of two types: NIST DRBGs and MD_RAND. In
the sequel, we will use equivalent nomenclatures for these deterministic
engines: RNG or PRNG for (Pseudo) Random Number Generators.

An interesting thing to notice when analyzing lina is that the deter-
ministic engine is called through abstract function pointers exposed by
the OpenSSL RAND_METHOD API as shown in Listing 1.

This abstraction allows for the dynamic backend instantiation and
replacement we have previously mentioned (yielding a very difficult static
analysis).

Listing 1: OpenSSL RAND_METHOD API

1 struct rand_meth_st {

2 int (*seed) (const void *buf, int num);

3 int (*bytes) (unsigned char *buf, int num);

4 void (*cleanup) (void);

5 int (*add) (const void *buf, int num, double entropy);

6 int (*pseudorand) (unsigned char *buf, int num);

7 int (*status) (void);

8 };

9 typedef struct rand_meth_st RAND_METHOD;

NIST DRBGs DRBG stands for Deterministic Random Bit Generator,
and they have been standardized by NIST with a functional model in
their SP-800 90A publication [25]. This model is presented in Figure 10,
and exhibits the four main functions of a DRBG:
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— Instantiate(): this function takes a random seed as entropy input
as well as optional nonce and personalization string, and initializes
the DRBG internal state.

— Generate(): this function produces random bits, and takes as
input optional additional data that add entropy to the internal
state.

— Reseed(): this function is specifically called to add entropy to the
internal state by adding dedicated entropy input as well as optional
additional data.

— Uninstantiate(): internal state zeroization.

The critical data when it comes to the DRBG security are the entropy
inputs during Instantiate() and Reseed(): they must remain secret for
a safe DRBG usage (i.e. forward and backward secrecy of the generated
random bytes). Although the additional data are not critical (i.e. the
security does not rely on them), they add more non-determinism to the
DRBG generation in an opportunistic way.

Fig. 10. NIST SP-800 90A DRBG functional model (source: the NIST standard)

Behind the functional aspect, there are three possible engines that
compute the internal state and the inputs/outputs 7:

— CTR-DRBG: based on AES or TDEA (Triple DES) block cipher
in counter mode.

7 One can refer to [30] for an exhaustive C implementation covering all the NIST
DRBGs.
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— Hash-DRBG: based on hash functions (the list of standardized ones
are SHA-{1,224,256,384,512,512-224,512-256}).

— HMAC-DRBG: based on HMAC using the previous list of stan-
dardized hash functions.

These various NIST DRBGs have a history of security analysis [12,
34, 35], with CTR-DRBG being the most performant at the price of a
less clean design compared to Hash-DRBG and HMAC-DRBG. None
of these have practical attacks against them when properly instantiated
and reseeded though. Explicit Reseed() is usually a good practice for
internal state refreshing, but in practice all the implementations follow
the standard that mandates an implicit reseed when many kilobytes of
random have been generated (while explicit reseed is optional and not
used). Finally, it is worth noticing that a fourth DRBG has been part
of the standard: DUAL-EC-DRBG [23]. It has been withdrawn in 2014
following an alleged NSA trapdoor in the BSAFE library and a $10 million
deal with RSA Labs [18].

In the case of ASA firmware, among the various random related
engines, two of them are of interest: a CTR-DRBG using AES-256 and
a Hash-DRBG using SHA-512 are used during ECDSA and RSA key
generation.

MD_RAND Before DRBGs were standardized by NIST, almost every
cryptographic library used its own pseudorandom generation custom
method for post-processing entropy. The common ground was the usage of
APIs that are similar to an Instantiate/Generate/Reseed where entropy is
injected at initialization and then when reseeding, and optionaly when
generating random. MD_RAND is OpenSSL (old) way of performing
this: it is based on MD-5 or SHA-1,8 uses an entropy pool and state of
around one kilobyte. An interesting particularity of MD_RAND is that
reseeding is explicit, and to limit a no-reseeding impact the content of the
output buffers when performing a Generate() are systematically taken
as additional input data to get opportunistic entropy.9

MD_RAND makes calls to the RAND_poll() function behind the
scene at initialization, which gathers entropy for the initial pool and
internal state. RAND_poll() is hence critical and is expected to provide

8 Only the SHA-1 hash version is used in Cisco ASA firmwares.
9 The interested reader can best visualize this behavior by looking at “Line 467” on

slide 13 of [17], as this is the least critical of the two elements at the origin of the
Debian “PURIFY” CVE-2008-0166 [16] where only the PID of the processes was
used as an entropy source.
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high quality entropy: it is usually plugged to an OS systemic entropy
source such as /dev/urandom under UNIX systems or CryptGenRandom()

under Windows (for recent versions of OpenSSL). In CiscoSSL, the Cisco
ASA OpenSSL fork, we have discovered that although a /dev/urandom

is present (we are on a Linux system), a proprietary implementation
of RAND_poll() was used with bad sources, yielding weaknesses for
MD_RAND.

4.3 Entropy sources and entropy lifting

Now that we have described how the DRBG and MD_RAND deter-
ministic engines are used, it is obvious that the random bytes generation
is as robust as the entropy injected at instantiation, reseeding and to a
lesser extent during generation (with optional additional data or input
buffers content for MD_RAND).

We distinguish here entropy sources that are raw values coming from
collecting points, and entropy lifters that usually process these sources in
multiple samples to extract one useful random entropy seed that can be
provided as input to the upper layers (usually the deterministic engines).
The idea behind lifters is to improve the number of entropy bits for low
quality collecting points. The theory behind entropy sources, their quality
measurement and their stochastic modeling is vast and is not the subject
of this article. The curious reader can refer to NIST SP 800-90B [26] and
BSI AIS20/31 [4] for comprehensive guidelines.

In this section, we will focus on the main entropy sources we have
analyzed during ECDSA and RSA certificates keys generation, and as we
will see most of them are bad. As usual, we emphasize the fact that we
are not exhaustive in the enumeration of these sources: we only describe
the ones that are used by the firmware we have analyzed on the platforms
we took a look at.

rand() The standard library rand() non-cryptographic PRNG, based on
a Linear Congruential Generator (LCG), has been seen directly used as one
of the entropy sources by RAND_poll(). It is used without any previous
call to srand(): this means that all the bytes produced by this source are
obviously always predictable. The only small uncertainty is the sampling
offset (by the deterministic engine) in the produced stream because lina

multi-threading makes multiple consumers of rand() compete for this
resource. From our tests, exhausting a small window of a few bytes is
enough to cover all the possible runtime cases.
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gettimeofday() Time is often a “cheap” entropy source when used cor-
rectly. A bad idea is to use predictable time values, such as boot time
or absolute time in seconds as these are obviously guessable by an at-
tacker depending on the context and information he has on the target
platform. Using timings with higher volatility and noise is a better idea
although not considered as a strong entropy source. For instance, POSIX
gettimeofday() provides a time with microseconds resolution: on devices
with multi-core and a high frequency CPU, sampling gettimeofday()

in a program will produce values with variable low bits (high bits cor-
responding to seconds are evidently predictable).10 Cisco makes use of
gettimeofday() to feed their DRBGs with additional data. We have
however discovered that two variants are used in the firmware versions we
have analyzed. Some versions use the POSIX gettimeofday() provided
by the standard library, but other versions use a custom version of
this API completely implemented in software in lina: the elapsed time is
measured from the rdtsc CPU cycles instruction and rounded to multiples
of 10 milliseconds, removing a lot of volatility and hence entropy. This
has disastrous consequences on the randomness generation as we will see
in the next section.

rdtsc and LFSR or LCG extender As a variation of time measurement,
CPU cycles measurement can be a “cheap” entropy source. The rdtsc

instruction provides a 64-bit value representing the number of cycles
elapsed on the CPU core since reset. On CPUs with high frequency
(typical Intel or AMD ones), the upper bits are stable while the lower
bits are more volatile: on a 2 GHz CPU, around 11 bits are flipped every
microsecond. Hence one sample provides a few bits of entropy, and getting
multiple samples to mix them together (e.g by concatenating and then
hashing the result) is a good way of lifting this entropy. Unfortunately
for Cisco, we have unveiled another method used in lina that lacks
robustness: the 32-bit low part of an rdtsc sample is used as a seed in
a Linear Feedback Shift Register to produce PRNG bytes. The chosen
LFSR is in Galois mode, it uses a 32-bit primitive polynomial and has a
maximum length period of 232

− 1 bits, but the whole system provides
anyhow at most 32 bits of entropy!

From the analysis of the Cavium firmware, a Linear Congruential
Generator (LCG) is used in place of the LFSR to lift input 32 bits of the

10 This assertion is less true on devices with a very deterministic behaviour, which is
generally the case for small microcontrollers or real-time systems.



26 Randomness of random in Cisco ASA

CPU cycles (a dedicated Octeon register that is equivalent to x86 rdtsc

is used). This lifting is as lousy as the LFSR based one.

Unitialized or initialized buffers, ASLR This “entropy source” was
kind of unexpected when we discovered it (and it seems to be actually a
happy coincidence in lina). During our analysis, we have observed that
some MD_RAND input buffers (hence used to add entropy to the state)
contribute to cryptographic material generation. Unitialized and initialized
buffers with static data are kind of simple to handle as it is sufficient to
observe them once to know them (this is easy on instrumented platforms,
a lot more difficult on non-instrumented ones). Other input buffers will
contain addresses (from the stack, from the heap), and coincidently add
real entropy to MD_RAND thanks to ASLR. For the kernel versions we
were dealing with in our firmwares, only 28-bit entropy are present in
these addresses, which allowed a simple exhaustive search.

Cavium hardware backed entropy When the Cavium cryptographic
accelerator is present, the deterministic engines try to use hardware backed
entropy: the lina executable asks for randomness through PCI commands.
Because we lacked instrumentation on the hardware platforms, we did not
investigate much these aspects. A static analysis of the Cavium firmware
showcases both good and bad entropy sources: while Cavium dedicated
RNG IP is used to provide high quality random bits,11 various fallback
paths exist to lower quality sources such as the rdtsc with LCG combo.
These elements are discussed further in Section 5.

Good sources in lina On the x86 side, and depending on the firmware
versions, some good quality sources can be exploited. rdrand and rdseed

instructions with proper lifters are present in the binary and could be
used on the CPUs that support them. One drawback though is that many
Cisco ASA hardware platforms have Intel CPUs that lack this support
(e.g. Intel Atom or AMD Geode), and for the ASAv virtual images it is
complex to ensure that the hypervisor will expose such capabilities of
the CPU (this will of course depend on the underlying physical CPU
capabilities, but also on the hypervisor configuration and so on).

11 The hardware RNG is based on ring oscillators [5].
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5 Keygenning ASAv

This section details the work performed on ASAv firmwares to validate
the understanding of the entropy sources and processing performed in
various firmware versions to produce the RSA modulus, ECDSA private
key and ECDSA signature nonces during Cisco ASA self-signed certificates
generation at boot.

The section first provides some statistics on observable collisions from
a black-box standpoint for a set of firmware versions. Then, the details of
a keygen written for a specific version which does not exhibit collisions
(9.10.1-44) are given. The rest of the section builds on this detailed
description to elaborate on the way keygens for 5 more versions (9.6.4-36,
9.8.1, 9.8.2/9.9.1, 9.8.3) have been developed.

5.1 Statistics on ASAv

For the reasons detailed in section 3.3, instrumentation of ASAv takes
time and we only focused on a limited number of firmware versions. Table 11
provides the blackbox statistics gathered (using our qemu automation
script) for RSA and ECDSA certificates generated by those versions.

Firmware RSA mod. ECDSA x ECDSA r #generated

9.6.4-36 100

9.8.1 93

9.8.2 ❘●❘ ❘■❘ 56

9.8.3 ■ ■ ■ 25

9.9.1 ❘●❘ ❘■❘ 60

9.10.1-44 232

9.12.2-9 100

9.16.1 100

Fig. 11. Black box statistics on various ASAv firmware versions

In table 11, an empty box indicates no observable issue for the item
on that specific version in our setup. A disk ● indicates duplications for
the item on that specific version. A square ■ indicates duplications but
only when boot time is the same, i.e. a boot time dependency for random
generation. Disks or squares colored (❘●❘ and ❘■❘) indicate collisions shared
between versions.

The black squares ■ for version 9.8.3 for RSA modulus, ECDSA private
key and ECDSA signature nonce indicate that the collisions only occur
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when the system boot time is the same. This indicates that the boot time
value participates in the entropy used for generation of those elements but
this also means - considering collisions do occur - that there is not much
more participating to the entropy of the system. This will be covered in
Subsection 5.3.

The green disks ❘●❘ for 9.8.2 and 9.9.1 indicate that both versions of
firmware have collisions for RSA modulus, but also indicate that identical
modulus values were shared between them, i.e. the entropy sources and
processing code that provide the random number for RSA modulus gener-
ation is shared. Still for those versions, the green squares ❘■❘ for ECDSA
public keys indicate that collisions do occur for each version but only
for matching boot time and that both versions do share values, i.e. the
entropy source and processing code is identical for the generation of this
item and include a dependency to boot time that does not exist for the
RSA modulus generated sooner in the process. The last interesting details
on those versions is that no ECDSA nonce duplication is visible from the
certificates data. This will be covered in more details in Subsection 5.3.

From an external standpoint, the empty boxes in the table for other
versions indicate no observable collisions. As we will see later in this
section, this does not mean that those versions have decent entropy
in the generation process of keys and nonces. This will be covered in
Subsection 5.2 for version 9.10.1-44 and 5.3 for version 9.8.1.

5.2 Detailed example of ASAv 9.10.1-44

Summary Having a high level understanding of the mechanisms involved
in the output of random values during the boot of an equipment is one
thing. Being able to generate the set of random values that may be
provided at each point during the boot is another story: it requires a
precise understanding of all the aspects that are involved.

Instead of providing a complete description of each keygen developed
for the ASAv firmware versions given previously, we decided to focus
on the 9.10.1-44 version which was the most challenging and exhibited
most of the interesting elements that we had to deal with during all the
keygenning work we did.

To ease reader’s understanding of this section, we first start with a
short summary of how 9.10.1-44 produces random before going in the
details of each step and mechanism.

From a high level perspective, the initialization of main random source
on this version on our setup can be described in the following way (we will
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denote the interesting steps that will be later analyzed using the circled
x notation for step x):

— In a first thread:

1. CTR-DRBG initialization is requested. For this purpose, 40
bytes and 20 bytes of entropy are requested to the MD_RAND
engine for entropy input and nonce.

2. MD_RAND not being initialized yet, the first request leads to
its initialization, which requires 32 bytes of seed.

3. The request for those 32 bytes of seed to initialize MD_RAND
are performed to the CTM layer.12

4. Among the possible providers that CTM may use on the plat-
forms it supports, it ends up calling unseeded rand() in our
case to provide those 32 bytes.

— Then, in the main thread :

1. CTR-DRBG is initialized with
— 40 bytes and 20 bytes of entropy grabbed from MD_RAND

for entropy input and nonce
— A personalization string including current time from boot

expressed in multiples of 10 ms (step 1 ).

— As was done in first thread, MD_RAND is reinitialized using a 32
bytes random value. We will see that the fact that the MD_RAND
initialization is performed in the first thread has an impact on the
way this initialization goes.

— The 32 bytes used by MD_RAND for its initialization are taken
from a LFSR lifter, which is called for the first time, resulting in a
seeding from a 32 bits value provided by rdtsc.

Then, after the initialization of this CTR-DRBG in the main thread,
which will serve as the default RNG for this thread, the usual set of calls
to this default RNG are performed by all the successive functions called
(see Figure 8) during the boot of virtualized Cisco ASA devices:

— A call requesting 16 bytes for the BSAFE RNG backend (step 2 )
— 4 sets of 3 calls each requesting 16 bytes for SSL_CTX_new() 13

(steps 3 to 14 ).
— A call requesting 28 bytes for the RSA seed (FIPS 186-4 method

B.3.4) for generating the RSA certificate (step 15 ).

12 CTM is an abstraction layer developed by Cisco for various possible cryptographic
helpers which depend on hardware, software and runtime combinations.

13 Those 3 random values grabbed by each SSL_CTX_new() are used as keys to protect
TLS session tickets.
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— A call requesting 32 bytes for the ECDSA private key (step 16 ).
— A call requesting 8 bytes for BSAFE RNG backend, which then

provides 32 bytes of BSAFE RNG random for ECDSA signature
nonce during ECDSA certificate signature (step 17 ).

All the calls listed above are performed through the main OpenSSL
rand_bytes() interface but result in calls to the generate() method from
the CTR-DRBG initialized in the main thread. As we will see in more
details, the callbacks providing additional data during each generate()

call include current time from boot expressed in multiples of 10 ms.

At that point of the section, the attentive reader can already conclude
that - even if multiple layers of RNG are stacked which will include states
and do transformations steps - the real entropy available at each call is
limited to:

— 32 bits of RDTSC.
— Uninitialized data found in 40 bytes and 20 bytes input buffers to

be filled by MD_RAND for entropy input and nonce.
— Set of timing values.

— Feeding the CTR-DRBG personalization string.
— Feeding the CTR-DRBG additional data during generate() calls.

The details regarding those elements and the final articulations of
the keygen will be covered in the next subsections. The details of the
impacts of the initialization of the first thread on the second one will also
be discussed in next subsections.

Listing 2: CTR-DRBG initialization C code

1 drbg_ctx ctx;

2 int drbg_initialized = 0;

3

4 int CiscoSSL_DRBG60_init()

5 {

6 struct timeval tv;

7 unsigned char pers_buf[64];

8

9 drbg_set_type(ctx, AES256_CTR);

10 drbg_set_entropy_nonce_callbacks(drbg_ctx,

11 drbg_get_entropy_nonce_cb);

12 drbg_set_rand_callbacks(ctx,

13 drbg_get_adin_cb,

14 drbg_rand_seed_cb,

15 rand_add_cb);

16 memcpy(pers_buf, "CiscoSSL DRBG60", 16);

17 get_time(&tv);

18 ((unsigned int *)pers_buf)[12] = tv.sec;

19 ((unsigned int *)pers_buf)[13] = tv.usec;

20 ((unsigned int *)pers_buf)[14] = 1;

21 drbg_instantiate(ctx, pers_buf, 64);

22 drbg_initialized = 1;

23 }
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CTR-DRBG instantiation 9.10.1-44 version has the same kind of
generic initialization code for CTR-DRBG as other versions using this
mechanism. A simplified version of this initialization code can is repre-
sented in Listing 2.

The function starts by setting the DRBG flavour (AES256-CTR) and
then sets the various callbacks that will be used during the operations of
the DRBG:

— drbg_get_entropy_nonce_cb: this callback is called internally by
the drbg_instantiate() function to first grab 40 bytes and then
20 bytes to be used respectively as entropy input and nonce in-
put for DRBG instantiation. The subsystem to which the request
is performed is MD_RAND, i.e. drbg_get_entropy_nonce_cb()

is a simple wrapper around MD_RAND main random provider
(ssleay_rand_bytes()). As it will be discussed below, this implies
that MD_RAND is the main source of entropy used for DRBG
instantiation on this ASAv firmware version in our setup.

— drbg_get_adin_cb: this callback is used to provide 48 bytes of
additional random input at each DRBG generate() call to be
used to refresh the DRBG state. Simply put, the implementation of
this callback is a wrapper around the get_time() function which
we will discuss in more details below. Let’s spoil a bit by telling
that even though the output is a 48 bytes buffer, the only “entropy”
it contains is the output of get_time().

— drbg_rand_seed_cb: this callback would be used to request entropy
if a DRBG reseed was called at some point. It is never called in
practice.

— rand_add_cb: this callback is the one that will be called when
OpenSSL rand_add() RNG method is called by user code to
voluntarily push new entropy and refresh the RNG state of current
OpenSSL subsystem. As an example, when OpenSSL BN_rand()

is called to generate a random big number integer, e.g. in the
process of generating a new ECDSA key, rand_add() is explicitly
called to pass current time value on 8 bytes. This should lead to a
dependency of ECDSA key to boot time but - as will see below -
this is not the case.

The remaining of the function comes and fills a 64 bytes buffer
whose content is mainly fixed; the only varying part is provided by the
get_time() function which returns a time value encoded on 8 bytes.

The nonce and entropy buffers are - with the personalization string
discussed above - the random root seeds of CTR-DRBG instantiation.
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Thread 2 hit Breakpoint 4 in ?? ()

$6 = "========= DRBG pers string is:"

$7 = 0x1

0x7fffea1a0bc0: 0x43 0x69 0x73 0x63 0x6f 0x53 0x53 0x4c // CiscoSSL

0x7fffea1a0bc8: 0x20 0x44 0x52 0x42 0x47 0x36 0x30 0x00 // DRBG60\0

0x7fffea1a0bd0: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 \

0x7fffea1a0bd8: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 \ Lot of 0

0x7fffea1a0be0: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 /

0x7fffea1a0be8: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 /

0x7fffea1a0bf0: 0x06 0x00 0x00 0x00 0xe0 0x04 0x07 0x00 // time

0x7fffea1a0bf8: 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 // counter

Fig. 12. An example of pers_buf content grabbed using gdb

The only variability in the personalization string being the time value
(more on this below), the CTR-DRBG instantiation fully depends on the
quality of the random provided by MD_RAND at that point.

Unlike some other firmware versions which use gettimeofday() to
collect time values since epoch with a precision to the microsecond the
function we called get_time() returns the time elapsed in a struct

timeval but the content of the tv_usec field contains a value which is
only accurate to a multiple of 10ms. In the personalization buffer presented
in Figure 12, the boot time is 6s and 460000us, which is indeed a multiple
of 10ms. The 13 bits of higher entropy are lost in this puzzling rounding
process resulting in at most 7 bits of entropy in the personalization string.

Then, because the 48 bytes of additional data returned by
drbg_get_adin_cb() callback during generate() calls also use
get_time(), the additional entropy brought during each call after the
first one does not depend anymore on the intrinsic boot time value but
only on the difference between the time included in a given step (e.g. the
personalization string) and the following one (next call to get_adin_cb()).

Figure 13 provides 125 recorded timings in ms from boot on the Y
axis for each of the 17 interesting first steps of CTR-DRBG operation
after boot (numbered 1 to 17 as previously defined on the X axis). We
can observe:

— The low volatility in boot time 1 (from 1910 ms to 3130 ms by
10ms increment, i.e. 7 bits).

— Little volatility for step 2 and 3 (up to 50ms, up to 30ms respec-
tively).

— Near zero time spent in the 4 × 3 steps associated with the 4
SSL_CTX_new() cases, i.e. at most one bump of at most 10ms.
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— Up to 20ms (1 bit) between steps 14 and 15 .
— Up to 20ms (1 bit) until next 16 for RSA seed.
— Between 110ms and 350ms between RSA seed generation and

ECDSA nonce generation: this large and a bit more volatile value
(5 bits) is due to the varying time of the FIPS algorithm depending
on RSA seed value.
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Fig. 13. Recorded timings for CTR-DRBG for steps 1 to 17 (125 captures)

The little volatility is better seen on Figure 14 that also work on the
same dataset of 125 runs but presenting only the delta in ms between
previous CTR-DRBG steps. Note that the value for step 1 has been set
to 0 to avoid a squeezing effect on the plot; let us just keep in mind the 7
bits of time entropy for that specific step.

One can conclude that during the generate() calls in SSL_CTX_new()

the delta between the outputs of get_time() in get_adin_cb() are
almost all 0, as discussed above, with very few of them having a value of
10ms (in steps 4 to 14 included). The 3 points above 0 for those steps are
for different runs, confirming that at most a single toggle between a time
value t and t + 10ms only occurs once between steps 4 to 14 included.
This observation help making the brute-force practical as will be seen
later in this section. This would definitely not have been the case without
the rounding performed by get_time().
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Fig. 14. Delta timings for CTR-DRBG (125 captures)

MD-RAND We saw that CTR-DRBG initialization depends on
MD_RAND initialization to provide 40 bytes of entropy and 20 bytes of
nonce, through calls to ssleay_rand_bytes().

In practice, the situation is a bit more complex than expected because
there is not a single MD_RAND initialization, but two, in 9.10.1-44
version as presented in the introduction of this subsection. For that reason,
even if only the second thread participates in the generation of RSA and
ECDSA certificates, the impacts of what happens in the first one need to
be understood. The first initialization of CiscoSSL DRBG60 in the Thread
#1 will happen using MD_RAND for the first time to provide entropy and
nonce: 32 bytes are requested using a CTM function capable of selecting
various entropy sources (hardware backed TRNG, rdrand, etc.). On our
ASAv setup, the 32 bytes are extracted from calls to (unseeded) rand()

whose output is fixed and known.
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The second thread will also instantiate a CTR-DRBG, but with a
semi-reinitialized MD_RAND context (as ssleay_rand_cleanup() has
been called in between).14 A major difference here is that MD_RAND’s
RAND_poll() has also switched its random source backend, and now uses
rdtsc with the LFSR lifter.

Once this instantiation performed, the CTR-DRBG acts on its own,
the only external dependency being the time added by get_adin_cb().

Assembling things in a practical keygen Creating a keygen for this
version requires a few additional steps to validate the composition of the
mechanisms presented in previous subsections:

— Validation of the LFSR output (compared to other firmware ver-
sions).

— Validation of MD_RAND initialization and use of input buffers,
including stability of these buffers in different setups (with and
without gdb). On other versions (e.g. 9.8.2), some of MD_RAND
input buffers have toggling bytes, or include varying addresses due
to ASLR.

— Validation of CTR-DRBG work.
— Progressive setup of the two aspects of the bruteforce: rdtsc seed-

ing followed by bruteforce of timing values used in CTR-DRBG
operations (instantiate() and generate()).

To cut the problem in half and avoid launching a large bruteforce
without guarantees of success, we first created a patched ASAv image with
a tiny binary modification 15 providing a fixed seed during call to rdtsc.
Rebuilding a .qcow2 image with that lina binary and generating a set
of certificates provides the expected result: a good amount of collisions
on RSA and ECDSA certificates. Generated certificates are then used as
a basis to validate the CTR-DRBG part of the keygen (i.e. the timing
bruteforce). We followed the same patching strategy to force some values
provided by get_time() and validate our CTR-DRBG with incremental
keygenning.

The 232 rdtsc seeds with the LFSR lifter can be transferred to parsing
a 232 bits keystream for a time-memory tradeoff (allowing to skip the
seed derivation processing through precomputed tables of a few gigabytes).
When we take all the possible timings for the CTR-DRBG rounded to
10ms, we have around 213 possible tuples when limiting the delta timings

14 We do not detail this here, but a remanent static variable in MD_RAND state is
important in the generation process.

15 See subsection 3.3 for the details of running modified images on ASAv.
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to the largest plausible values (and limit their sum to the total possible
running time). This leads to a complexity of around 245 for the exhaustive
search of keys with “heavy” DRBG computations at each step. Although
this can be achieved in a few weeks on a HPC cluster or using costly cloud
computation, we have decided to follow another path with a poor man’s
PoC that would work on a regular machine.

From the statistics of timings extracted from Figure 14, we have picked
the most probable values for each step to drastically reduce the number
of tuples and target a ≈ 237.5 complexity. Using the patched rdtsc based
binary, we have observed a rate of 1.7% certificates broken with the chosen
timing tuples.16 To validate our keygen, we expected to observe the same
rate of broken certificates when generated using the unpatched firmware.
And this is indeed what we obtained: over 1, 000 new certificates produced
on the unpatched binary, a certificate of the set is broken every ≈ 9 hours
on a 16 CPUs Intel Xeon machine (32 hyper-threaded cores). Finally,
≈ 8.5 days were necessary to complete the exhaustive search.

A relevant question about this keygen is its adherence to the underlying
(physical or virtual) platform producing the certificates, i.e. does our
specific setup somehow biases the certificates production? While there is
a clear dependency on the CPU microarchitecture and e.g. the presence
of rdrand instructions (we have used a virtualized Nehalem CPU without
such instructions 17), we have tried to check that we do not have more
specificities. Regarding the 10ms rounded timings, most of the modern
x86 CPUs are fast enough to produce the same timing profiles: we have
used three various Intel CPUs virtualizing ASAv and validated that the
same keygen allows to break the certificates. Similarly, the number of
CPUs dedicated to kvm does not seem to interfere with our keygenning
(we have tried with 1 and 4 CPUs in the kvm configuration).

5.3 Other versions

For the sake of conciseness, we only presented a somewhat detailed
explanation of the keygenning of the 9.10.1-44 version. Even if other
versions also had some very interesting variations and challenges, we only
cover them briefly to give the reader a glimpse of the various (unsuccessful)
combinations of RNG and seeding method we encountered.

ASAv 9.6.4-36 In this version, RSA seed and ECDSA private key are
both generated using CTR-DRBG as a random provider. The ECDSA

16 This rate has been observed with a 1, 000 certificates black-box generation campaign.
17 Mainly because we believe it captures the average machines in the wild.
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nonce is generated from a completely different deterministic engine: the
Hash-DRBG (which is in fact also indirectly used as an entropy provider
for the CTR-DRBG).

This Hash-DRBG runs from the following (lack of) entropy parameters:
— An empty personalization string is used for instantiation.
— The entropy input and nonce used during instantiation are respec-

tively 32 bytes and 16 bytes of a LFSR stream initialized with 32
bits of rdtsc.

— No additional inputs are used during generate calls.
The CTR-DRBG shares the same initialization pattern as for 9.10.1-44:

entropy input and nonces are provided by MD_RAND. The only difference
is that MD_RAND is seeded by the Hash-DRBG engine. This makes the
CTR-DRBG harder to exploit since Hash-DRBG computations must be
added and somehow break the 232 time-memory tradeoff used for rdtsc

with slower computations.
However, since the ECDSA nonces generation only relies on Hash-

DRBG, we are able to keygen them in 232. Once this is done, recovering
the ECDSA key is mathematically easy (getting the RSA seed from the
ECDSA key is not so trivial as reversing the DRBG from the output
should be intractable).

ASAv 9.8.1 In this version, RSA seed and ECDSA private key are
both generated using CTR-DRBG and the ECDSA nonce is generated
using the Hash-DRBG (this is somewhat similar to 9.6.4-36). The CTR-
DRBG runs with similar parameters except that the entropy input and the
nonce are extracted from unseeded rand(), and that real gettimeofday()

with microseconds precision is used for generate() calls, rendering its
keygenning unachievable in reasonable time: direct keygenning of RSA and
ECDSA keys is not feasible. Nonetheless, as for 9.6.4-36, ECDSA nonces
can be broken with a complexity of 232, yielding in ECDSA immediate
key breaking.

ASAv 9.8.2/9.9.1 Version 9.8.2 and 9.9.1 do share the same RNG code
basis and outputs. In those versions, MD_RAND is the main deterministic
engine. RSA seed and ECDSA private key are generated directly from
MD_RAND. ECDSA Nonce is generated from the BSAFE RNG seeded
from MD_RAND.

MD_RAND is instantiated from 32 bytes taken from unseeded rand(),
and the input/output buffers during rand_bytes() are filled with either
fixed known values (zeroes or other data), almost fixed values (one toggling
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byte), or with stack or heap addresses with ASLR. Hence, keygenning
these versions bring some interesting challenges as we have to break ASLR,

The analysis of the dynamic behavior of this version and the valida-
tion of the understanding through the development of a keygen helps
understand the black-box statistics presented in 5.1:

— The lack of dependency to time for RSA modulus generation results
from the use of MD_RAND which - unlike Cisco initialization and
use of DRBG - does not include the time as entropy value.

— The dependency to time for the ECDSA private key generation is
explained by the fact that OpenSSL does perform a rand_add()

of time before calling rand_bytes(), which creates an obvious
dependency to time after that point for random extracted from
MD_RAND.

— The lack of visible collisions for ECDSA r components of the
signature results from the presence of ASLR during its generation
(bringing a weird situation with lucky good randomness).

From our analysis, ASLR for our buffer on the studied firmwares has
only 28 bits of entropy (due to the concerned addresses that are aligned
on 8 bytes and the inherent limitations of ASLR in the concerned kernel).
This allows for a keygen complexity of 228 plus ≈ 25 for the toggling bytes
and index in the rand() buffer 18 (due to multi-threading), yielding a total
complexity of ≈ 233.

ASAv 9.8.3 In this version, CTR-DRBG is the main random engine.
RSA seed and ECDSA private key are both generated directly from CTR-
DRBG. The ECDSA nonce is generated from BSAFE RNG seeded from
CTR-DRBG.

The only sources of entropy are unseeded rand() for the entropy input
and nonce in instantiate(), the system boot time rounded to 10ms
for the personalization string, and 10ms timings for additional inputs of
generate().

Keygenning this version boils down to exhausting all the possible
tuples of boot time and delta timings rounded to 10ms while handling
some rand() offsets toggling due to multi-threading, which represents
around 216 when we consider plausible timings limits. This is performed
quickly on a regular laptop.

18 The only time used here is immediately extracted from the certificate notBefore.
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5.4 Summary

A summary of all the analysis and keygen work performed on ASAv is
presented on Figure 15. The highlighted versions are proven vulnerable
while not concerned by the previous CVE-2019-1715.

Firmware RSA ECDSA ECDSA Comment Keygen
modulus nonce key complexity

ASAv9.6.4-36 CTR-DRBG is seeded by
MD_RAND, itself seeded

◗ ● ◗ by HASH-DRBG itself seeded 232 (nonce)
▲ by a LFSR itself seeded

by rdtsc rounded to 32 bits

ASAv9.8.1 CTR-DRBG “saved” by addin
with true gettimeofday(),

● ▲ HASH-DRBG seeded by a 232 (nonce)
LFSR itself seeded
by rdtsc rounded to 32 bits

ASAv9.8.2 MD_RAND seeded by rand(),
● ● ● ASLR in input buffers for MD_RAND (nonce), ≈ 233

BSAFE seeded by MD_RAND

ASAv9.8.3 ● ● ● CTR-DRBG seeded by rand() ≈ 216

BSAFE seeded by CTR_DRBG

ASAv9.9.1 MD_RAND seeded by rand(),
● ● ● ASLR in input buffers for MD_RAND (nonce), ≈ 233

BSAFE seeded by MD_RAND

ASAv9.10.1-44 CTR-DRBG seeded by MD_RAND Full: ≈ 245

❍ ❍ ❍ seeded by LFSR seeded by 32 bits rdtsc. PoC: ≈ 237.5

Bad gettimeofday is also used.

Legend:
● Fully broken with a PoC keygen
❍ Broken with a PoC keygen with higher time complexity
◗ Fragile entropy sources, harder to exploit (but seems feasible)

▲ Broken as a side effect of nonce breaking
Versions highlighted are vulnerable and NOT concerned by previous CVE-2019-1715

Fig. 15. ASAv firmwares keygenning overview

6 Investigating RNG failure on hardware devices

As previously stated, we did not have the opportunity to investigate
instrumentation of hardware appliances. Instead, we have only performed
a black-box analysis of the produced certificates. The current section first
presents the results, then discusses our basic investigations on the Cavium
firmware, and then concludes with some hypothesis on the root causes
and possible future work.
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6.1 Black box statistics on 5506-X

Table 16 presents the black box statistics we obtained on firmware
versions ranging from 9.6.2 to 9.16.

Firmware RSA modulus ECDSA r nonce ECDSA x key #generated

9.6.2-23 45

9.6.3-20 15

9.6.4-34 ❶ ❷ 15
9.6.4-36 ❶ ❷ 15
9.6.4-40 ❶ ❷ 15
9.6.4-41 ❶ ❷ 15
9.6.4-42 ❶ ❷ 15
9.6.4-45 ❶ ❷ 45

9.7.1-4 160

9.8.1 60

9.8.2 ❸ ◗ ❘❹❘ 60

9.8.3 ❺ 60

9.8.4-10 ❺ 10
9.8.4-41 ❺ 30

9.9.1 ❸ ❺ ❘❹❘ 30

9.9.2-85 ❺ 30

9.10.1-44 ◗ 30

9.12.4 30
9.12.4-35 30

9.13.1-12 30

9.14.3-18 30

9.15.1-15 30

9.16.2-14 30
9.16.2 45

Legend:
● = collisions shared between firmware versions
◗ = isolated collisions

❘●❘ = collisions emerging with same certificate time
Same number/color = collision values shared across versions
Empty box = no observable collisions, inconclusive

Versions highlighted are vulnerable and NOT concerned by CVE-2019-1715

Fig. 16. 5506-X black-box statistics

A few elements are worth commenting:
— There are visible RSA and ECDSA key or nonce duplications for a

wide range of versions between 9.6.4-34 and 9.10.1-44. This means
that although there is a hardware backed cryptographic accelerator
providing physical random sources, either it is used but badly
configured, or another software backend is used. In any case, this
is the symptom of a very dubious behaviour.
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— Some versions show shared values (trail of colors), which means
that the same deterministic engines are used with the same entropy
sources and inputs for the concerned duplicated values.

— Some versions (9.8.2, 9.9.1) exhibit collisions only when the boot
time is set, implying the usage of time as an entropy source.

— When compared with table 16 for ASAv, we can spot interesting
differences. 9.6.4 and 9.10.1-44 versions show collisions in 5506-X
where nothing is exhibited on ASAv (in black-box at least). 9.8.3
suffers from only nonce collisions on 5506-X while RSA and ECDSA
keys are also impacted on ASAv. The usage of fixed boot time
exhibits new collisions but not at the sames places, which is the
sign that parts of engines or entropy sources might be the same
but other parts might differ.

— As for ASAv, empty boxes do not mean that there is no issue
at all. As we have proven in the previous sections with advanced
keygenning on the virtualized platforms, no visible collisions do not
mean no entropy issue. This is why we have marked these cases as
inconclusive.

From the pure results and differential diagnosis, we can speculate
on some hypothesis. 9.8.2 and 9.9.1 share the same behaviour on both
hardware and virtualized platforms, but this behaviour is different on each.
The behaviour for ECDSA and RSA private keys are exactly the same as
in ASAv: the MD_RAND backend seems to be used there, with certificate
time addition when ECDSA key is generated.19 On the other hand, ECDSA
nonces exhibit a different behaviour since observable collisions exist on
5506-X and not on ASAv (where ASLR hides them), and these collisions
do not depend on time. This is the sign that another deterministic backend
and/or other sources are used (e.g. Hash-DRBG instead of MD_RAND).
This might be a coincidence (or not), but these specific two firmware
versions are among the ones explicitly concerned by the original CVE-
2019-1715 [10]. The highlighted versions exhibit a vulnerable behaviour
while not concerned by this previous CVE.

To summarize, we can conclude that ASAv and 5506-X seem to some-
times share the same code paths and backends (with apparently a failure
of the Cavium based entropy sources on 5506-X), and sometimes not,
yielding in firmware versions that might be more fragile on one type of
platform or another, and with differences for specific key material (RSA
modulus, ECDSA key and nonce).

19 Unfortunately, because of too much unknown input buffers, we cannot confirm this
with keygenning.
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6.2 A quick tour of Cavium firmware

In the current section we try and explore the possible paths that
could lead to the Cavium hardware backend failure as an entropy source
for lina in the platforms using it. For this, we focus on the Cavium
firmware analysis that bring some trails to follow. The SoC is embedding
a main MIPS64 BE processor with additional specific Octeon instructions
and hardware blocks accessed through dedicated registers and memory
addresses.

The Cavium firmware is a 2MB stripped binary loaded by the main
x86 CPU at boot time on hardware platforms via the PCI interface.
Cisco has used the Cavium SDK for many of the low-level functions, but
the proprietary communication post-boot over PCI seems to have been
specifically developed by Cisco on top of the SDK. The lina analysis
also exhibits some binaries with a proprietary format (embedded in the
executable) that seem to be sent to the Cavium firmware at runtime for
TLS and IPsec.

Unfortunately, the Cavium SDK as well as emulators (that could have
ease the dynamic instrumentation of the firmware) are only available
under NDA. This is why we were only limited to static analysis using
tools that support the specific MIPS N64 ISA and the Cavium specialized
instructions.

We have discovered that third party libraries are included in the
Cavium firmware, such as OpenSSL 0.9.7d (which is a quite old one). For
all the 5506-X firmware versions we have studied (from 9.6 to 9.16), the
Cavium SDK version and the used libraries seem to be stable with not
much evolutions.

Although not completely satisfactory from an intellectual perspective
(it is hard to draw solid conclusions), we have decided to list the findings
that emerged from our static investigations and that we consider as
bad practices that could lead to a flawed randomness generation. As a
disclaimer, the elements presented hereafter must be taken with a grain
of salt as no dynamic analysis confirmed them.

From the static analysis, Cisco firmware for Cavium has at least
two main deterministic engines that may participate to the generation
of random upon request from lina: an OpenSSL MD_RAND and a
Hash-DRBG engine.

Looking respectively at the OpenSSL RAND_bytes() and Hash-
DRBG generate() methods provides interesting leads. A common
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entropy-providing source function 20 is called by both functions. The
hw_get_random() function implementation shows two main paths: if the
processor flags indicate availability of a hardware RNG (which seems to be
the case for most recent Octeons), the function will use it. Else, a fallback
will grab 64 bits of a rdtsc-like value and will pass the 32 lower bits to
LCG_init() as a seed of the Linear Congruential Generator entropy lifter
that operates modulo 264 (the LCG used is the one described in [15] page
106), and random is then provided through calls to LCG_get_random()

using the LCG. To sum up, if no hardware RNG is available on the Cavium
or if this detection fails, each call to hw_get_random() to get e.g. 16 or
32 bytes of random will produce buffers biased output with only 32 bits
entropy. Finally, RAND_bytes() also contains another entropy lifter that
makes use of an AES-256 CBC and CTR PRF (that we could not relate
to any standard we know 21), making use of Octeon hardware accelerated
AES instructions.

7 Conclusion

7.1 Bad random does not necessarily collide

One of the first conclusions of the work presented in this article is that
even some versions initially thought not to have issues from an external
standpoint ended up being keygened. This comes as a reminder that the
quality of randomness cannot be assessed neither by looking externally at
generated values in a limited set nor on a single platform.

The auditor may be capable of aligning boot time values, get enough
samples to hit some birthday paradox but it is impossible to cover all the
causes of bad random not colliding (e.g. inclusion of to-be-signed message
as entropy input during signature, presence of a variable address in an
input buffer, etc.).

Looking at external values is limited as it only deters superficial issues.
The only ways forward are a validated (ideally simple and clean) design
and validated entropy sources.

7.2 Mixing sources in a single RNG

During our journey, we witnessed stacks of random processing layers,
each one used as a seeding source for the one above, with sometimes a

20 We called it hw_get_random() but it may have another name in the original source
code.

21 But this can be static analysis bias.
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unique low entropy source used by lowest layers. In the end, this complex
stacking only contained almost the same amount of entropy than the one
provided by the low entropy source.

As demonstrated in the section detailing keygens 5, the security of
such a design and the resulting keys, nonces, etc. almost only depends on
the secrecy of the design, i.e. on the ability for an (motivated) attacker to
understand how the layers work together, directly violating Kerckhoffs’s
second principle.

Instead of spending time on stacking RNG layers, a more simple, logical
and efficient approach is to select a state-of-the art RNG scheme and mix
different entropy sources while keeping the following in mind:

— There is no point in having low entropy fallback mechanisms, i.e.

one should consider an entropy source as acceptable if it can alone
support the expected strength of the final mechanism. This avoids
ending up calling rand() or using a LFSR seeded with 32 bits of
rdtsc if nothing else is available.

— In random processing stacks return values of functions should be
checked conscientiously. Failure MUST not result in the use of
returned buffers, but in a final error or a set of retries possibly
leading to a final error. As a practical example, now ubiquitously
used rdrand and rdseed instructions return an error code; upon
error, those instructions guarantee that the (expected random)
return value will be null (as in “equal to 0 on all its bits”). This is
only a single example of the possible impact of not checking error
codes.

— In some versions of Cisco products, the design for sources selection
is simply based on availability, i.e. the first available source is
selected. Considering the importance of random sources for the
whole security of the product, this approach can be improved by
mixing multiple sources. This simple defense-in-depth advice will
help to further reduce the impact of a single failure, without adding
too much burden on the design.

7.3 The second best friend of a DRBG is a good addin method

The first best friend being a good Instantiate() method. As written
in DRBG specifications,22 the mechanism is deterministic in its operations
and only depends on entropy input sources:

— the one used during Instantiate() (entropy and nonce),

22 the ’D’ as the beginning of DRBG serves as a hint.
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— the one used during Generate() calls to provide additional inputs,
— the one used during Reseed() (if it ever happens).

Our work confirms that failure to base DRBG operation on a robust
entropy source for initial entropy during Instantiate() makes initial
random output guessable to an attacker. It also confirms that failure to
provide decent additional inputs during Generate() (low entropy values
or correlated values) makes the situation persist in later calls. It should
be added that decent additional inputs are not a solution to a bad initial
entropy source.

From both design and validation standpoints, the main focus during
DRBG integration should be to guarantee that the following hypothesis
hold:

1. Initial entropy during Instantiate() MUST come from a strong
entropy source or a combination of strong entropy sources.

2. Additional input provided at each Generate() call SHOULD pro-
vide additional strong entropy.

3. Reseed() MUST be called with fresh entropy as often as possible.

7.4 A word on using time in random subsytems

During our analysis, we stumbled upon various uses of time-related
values as entropy sources: performance counters, rdtsc, absolute time,
rounded versions, etc.

Stating the obvious, using a low entropy absolute time value as a
random source is pointless. Using a high precision (micro or nano seconds)
value can provide a few bits of entropy but is definitely not a decent
or sufficient entropy source for seeding a system wide mechanism like
a DRBG. On a system which expects to perform cryptographic tasks
(read: most system deployed nowadays) and hence which requires a decent
entropy source for its post-processing mechanism, no developer should
start playing with time primitives to extract bits of entropy, expecting
an happy end to the story. The system (hardware or virtual appliances)
should be designed to include serious entropy sources (TPM, dedicated
chips, rdseed, etc.) available for random subsystem.

One could argue that there is no reason not to use rdtsc (for instance)
as a defense in depth mechanism, to participate to the additional
inputs of a DRBG. Although this is true, the point here is that defense-
in-depth must be backing a sound design based on strong sources.
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7.5 Horizontal and vertical impacts

One lesson learned while working on this study is that failing at
providing correct random can have two kinds of impacts:

— Vertical: it can impact all the cryptographic aspects of a product,
from certificates, to (EC)DH values for session keys, nonces, cookies,
tokens, or TLS ticket protection keys.

— Horizontal: the problem with random related vulnerabilities is
that bad cryptographic material may have been generated that
needs quite some time to be replaced. This is what happened to
Debian [16]. Regarding the current work, it is unclear when (and
how) the amount of online Cisco ASA devices with vulnerable
certificates will come to 0.

7.6 State of the art

Designing and implementing a good random subsystem on a platform
is not an easy task but is definitely feasible, considering the amount of
helpers now available at different levels. The main way to reduce the
possibility of mistakes on this path is to understand the state of the
art: both by working with standards that define useful rules [1, 4, 26]
and by learning from others’ mistakes to avoid repeating them. We hope
that articles and CVEs exposing poor entropy issues and their disastrous
consequences will be a wake-up call for developers and security architects
to comply with these advices.
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