
1

General Results of Linear Approximations over

Finite Abelian Groups
Zhongfeng Niu1, Siwei Sun1, 4, Hanlun Yan1, Qi Wang2, 3

1School of Cryptology, University of Chinese Academy of Sciences, Beijing, China
2Department of Computer Science and Engineering, Southern University of Science and Technology,

Shenzhen, 518055, China
3 National Center for Applied Mathematics Shenzhen, Southern University of Science and Technology,

Shenzhen, 518055, China
4State Key Laboratory of Cryptology, Beijing, 100878, China

niuzhongfeng1996@163.com, sunsiwei@ucas.ac.cn, hailun.yan@ucas.ac.cn, wangqi@sustech.edu.cn

Abstract

In recent years, progress in practical applications of secure multi-party computation (MPC), fully homomorphic

encryption (FHE), and zero-knowledge proofs (ZK) motivate people to explore symmetric-key cryptographic algo-

rithms, as well as corresponding cryptanalysis techniques (such as differential cryptanalysis, linear cryptanalysis),

over general finite fields F or the additive group induced by Fn. This investigation leads to the break of some

MPC/FHE/ZK-friendly symmetric-key primitives, the United States format-preserving encryption standard FF3-1 and

the South-Korean standards FEA-1 and FEA-2. In this paper, we revisit linear cryptanalysis and give general results

of linear approximations over arbitrary finite Abelian groups. We consider the nonlinearity, which is the maximal

non-trivial linear approximation, to characterize the resistance of a function against linear cryptanalysis. The lower

bound of the nonlinearity of a function F : G → H over an arbitrary finite Abelian group was first given by Pott in

2004. However, the result was restricted to the case that the size of G divides the size of H due to its connection to

relative difference sets. We complete the generalization from Fn
2 to finite Abelian groups and give the lower bound

of λF for all different cases. Our result is deduced by the new links that we established between linear cryptanalysis

and differential cryptanalysis over general finite Abelian groups.

Index Terms

Linear Cryptanalysis, Differential Cryptanalysis, Finite Abelien Groups, Linear Approximations.

I. INTRODUCTION

Linear cryptanalysis, which was first proposed by Matsui [1] in 1993, is one of the most powerful methods to

evaluate the security of symmetric-key ciphers. The main idea of linear cryptanalysis is to find linear relations

(called linear approximations) with high probability between parity bits of the plaintext, the ciphertext, and the

secret key. Since Matsui’s work, linear cryptanalysis has attracted intensive attention and has been developed to

several extensions and variants [2]–[8].



In order to characterize the resistance of symmetric-key primitives against linear cryptanalysis, several metrics

are proposed. Nyberg [9], Chabaud and Vaudenay [10] use the nonlinearity (linear-resistance) λF of Boolean vector

functions F : Fn2 → Fm2 as

λF = max
a∈Fn

2 ; b ̸=0m, b∈Fm
2

2−n · |
∑
x∈Fn

2

(−1)a·x⊕b·F (x)|,

with the following lower bound.

1) When n > m,

λF ≥ 2−
n
2 ;

2) When n ≤ m,

λF ≥ 2−n ·
√

3× 2n − 2− 2
(2n − 1)(2n−1 − 1)

2m − 1
.

The lower bound of linearity λF is related to the notion of bent functions and almost bent functions. A bent function

is a Boolean function that can reach the lower bound of linearity λF under different cases. That is, a bent function

is a special type of Boolean function with optimal nonlinearity.

The lower bound of linearity λF of the function F : G→ H over an arbitrary finite Abelian group was first given

by Pott in [11]. Pott generalized the main results on nonlinear functions from the case of Fn2 to those on arbitrary

Abelian groups by using the discrete Fourier transform instead of the Walsh–Hadamard transforms (the main tool

to investigate Boolean functions on Fn2 ). However, Pott only gave a lower bound of nonlinearity λF under certain

conditions (when the size of the domain divides the size of the range of F , i.e., |G| | |H|). A more general result

was missing.

When arguing why it should be interesting to consider Abelian groups, the reason is actually not very clear at the

very beginning as most applications (in particular in cryptography) at that time exploit nonlinear functions on finite

fields. Pott’s pointed out that “there is no technical reason why you should restrict yourselves to this case” [11].

Until recent years, progress in practical applications of secure multi-party computation (MPC), fully homomorphic

encryption (FHE), and zero-knowledge proofs (ZK) motivate people to explore symmetric-key cryptographic algo-

rithms over prime fields Fp for large p, such as MiMC [12], GMiMC [13], HadesMiMC [14], Poseidon [15] and

other primitives [16], [17]. Moreover, this motivates us to reconsider traditional cryptanalysis techniques (such as

differential cryptanalysis, linear cryptanalysis) for symmetric-key primitives working on prime fields Fp with large

p. Although differential cryptanalysis (through the theory of Markov ciphers) can be specified over an arbitrary

group, linear cryptanalysis is based on a metric (the linear probability) that sticks to bit strings. Applying it to a

non-binary block cipher would at least require to generalize this notion.

In [18], Baignères et al. generalized the notion of linear distinguisher to arbitrary sets, which is considered as

the most natural one. They got sharp estimates of the data complexity and cumulate characteristics in linear hulls.

In their work, they used group characters: for the function F : G→ H between finite Abelian group G and H , the
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“linear approximation” of F corresponds to a pair of group characters (ψ1, ψ2) of G and H . Namely, the correlation

of the “linear approximation” (ψ1, ψ2) is equal to

CFψ1,ψ2
=

1

|G|
∑
x∈G

ψ1(F (x))ψ2(x),

where group characters ψ1 and ψ2 is a group homomorphism ψ1 : H → C× and a group homomorphism ψ2 :

G → C×, respectively, and ψ1 denotes the complex-conjugate of ψ1. For example, for F : Fn2 → Fm2 , the linear

approximation of F is

CFu,v =
1

2n

∑
x∈Fn

2

(−1)u·F (x)(−1)v·x,

which is exactly the case in [1]. For F : Z/N1Z → Z/N2Z, the linear approximation of F is

CFn2,n1
=

1

N1

∑
x∈Z/N1Z

e
F (x)·n2·2πi

N2 e
−x·n1·2πi

N1 .

For F : Fnp → Fmp , the linear approximation of F is

CFu,v =
1

pn

∑
x∈Fn

p

e
<F (x),u>·2πi

p e−
<x,v>·2πi

p ,

where x · v is the inner product of x, v ∈ Fnp .

At CRYPTO 2021, Beyne [19] considered the multidimensional case and applied it to the cryptanalysis of FF3-

1. Later at ASIACRYPT 2021 [20], by using the notion of correlation matrix of linear approximation, which is

similar to the notion in [21], Beyne showed the underlying link between the general linear approximation and many

common cryptanalysis, such as invariant subspace attack, nonlinear invariants and integral attacks.

Our Contribution. In this paper, we give general results of linear approximations over finite Abelian groups,

making Pott’s work [11] more complete after nearly 20 years. Like [9], [10], for a function F : G → H mapping

from finite Abelian group G to H , we use the “maximum value” of all non-trivial “linear approximation” λF ,

which is defined as

λF = max
ψ1∈Ĝ; ψ2 ̸=1̂, ψ2∈Ĥ

|CFψ1,ψ2
|,

as the indicators to measure the resistance of linear cryptanalysis. First, we investigate the link between the linear

cryptanalysis and differential cryptanalysis for the function F : G→ H over finite Abelian groups. With the above

link, we can deduce results of linear approximations by considering differentials, which is more natural over Abelian

groups. Finally, we give the low bound of λF for all different cases (ρG,H is defined in Definiton III.2)):

1) When |G| | |H| and ρG,H ≤ ⌊ |G|
|H|⌋

λF ≥ |G|− 1
2 .

2) When |G| ∤ |H| and ρG,H ≤ ⌈ |G|
|H|⌉

λF ≥
(

|H|(|G| − 1)

|G|3(|H| − 1)

(
|H|⌈ |G|

|H|
⌉2 + 2 re⌈ |G|

|H|
⌉+ re

)
+

|H| − |G|
|G|(|H| − 1)

) 1
2

,

where |G| = |H| · ⌈ |G|
|H|⌉+ re, 0 < re < |H|.
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3) When ρG,H > ⌊ |G|
|H|⌋ and |G| | ρG,H

λF ≥
(

|H|(|G| − 1)

|G|2(|H| − 1)
ρG,H +

|H| − |G|
|G|(|H| − 1)

) 1
2

.

4) When ρG,H > ⌊ |G|
|H|⌋ and |G| ∤ ρG,H

λF ≥
(

|H|(|G| − 1)

|G|3(|H| − 1)

(
(m− h) · c2 + h · (c+ 1)2

)
+

|H| − |G|
|G|(|H| − 1)

) 1
2

,

where |G| = m · ρG,H + n, 0 < n < ρG,H and |G| = c ·m+ h, 0 < h < m.

Note that in case 1), we get the same result as that in Pott’s work [11] but with a different technique, and in

case 3) the result is consistent with [10]’s result.

Organization. The remainder of the paper is organized as follows: Section II includes the notations and pre-

liminaries. Section III generalizes the linearity of functions to Abelian Groups and gives its (trivial) lower bound.

Section IV establishes new links between differential cryptanalysis and Linear cryptanalysis over finite Abelian

groups. Section V gives some results of differential probability on finite Abelian groups. Section VI deduces a

tighter lower bound of the nonlinearity λF by gathering the results in Section IV and Section V. The paper is

concluded in Section VII.

II. NOTATIONS AND PRELIMINARIES

Let F2 = {0, 1} be the binary field and Fn2 = {0, 1}n. Then, the set of n-bit binary strings Fn2 with the exclusive-

or operation ⊕ forms an Abelian group. For x and y in Fn2 , the inner product of x and y is denoted by x · y. Let C

be the set of complex numbers. Then, the set of nonzero complex numbers C∗ = C− {0} with the multiplication

operation forms an Abelian group. For z = a+ bi ∈ C with a and b being real numbers, its conjugate is denoted

by z̄ = a− bi. The norm of z is defined as ∥z∥ =
√
zz̄ =

√
a2 + b2. For a finite set G, the number of elements in

G is denoted by |G|.

Definition II.1. Let (G1,+) and (G2, ∗) be two groups, if the function f : G1 → G2 satifies

f(g + h) = f(g) ∗ f(h)

for all g, h ∈ G1, the function f is called a homomorphism. Moreover, if f is bijection, we call it an isomorphism.

A. Group Characters

Definition II.2 (Group Characters [22]). Let G be a finite Abelian group. A group homomorphism h : G → C∗

from G to C∗ is called a group character of the finite Abelian group G. We denote by Ĝ the set of all characters

of G.

Example II.1. The group homomorphism from Fn2 to C∗ mapping x ∈ Fn2 to (−1)a·x for some a ∈ Fn2 is a group

character of Fn2 . The group homomorphism from Zn to C∗ mapping x ∈ Zn to e−2πiax/n for some a ∈ Zn is a

group character of Zn.
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It is easy to check that the unit circle {z ∈ C : ∥z∥ = 1} ⊆ C is a group with the multiplication in C. The

following lemma tells us that the group characters of G are group homomorphisms from G to the the unit circle

in C.

Lemma II.1. Let G be a finite Abelian group. Then, For any χ ∈ Ĝ and g ∈ G, ∥χ(g)∥ = 1.

Proof. For g ∈ G, there exists a positive integer N , such that gN = 1. Then, for any χ ∈ Ĝ, ∥χ(g)∥N =

∥(χ(g))N∥ = ∥χ(gN )∥ = 1, and thus ∥χ(g)∥ = 1.

Then, for ψ ∈ Ĝ and φ ∈ Ĝ, the function mapping x ∈ G to ψ(x)φ(x) ∈ C∗ is the group homomorphism form

G to C∗ due to Definiton II.2. We denote the operator ⋆ over Ĝ such that for ψ and φ in Ĝ, ψ ⋆φ ∈ Ĝ is mapping

x ∈ G to ψ(x)φ(x) ∈ C∗.

Definition II.3. Let 1G : G → C∗ be the homomorphism from the finite Abelian group G to C∗ such that for all

g ∈ G, 1G(g) = 1. Then, 1G is a group character of G.

It is easy to check that Ĝ is also a finite Abelian group with the operation ⋆, where 1G ∈ Ĝ is the identity

element. The inverse element of ψ is denoted by ψ−1, that is, ψ ⋆ψ−1 = ψ−1 ⋆ψ = 1G ∈ Ĝ. Note that the readers

should not confuse ψ−1 with the inverse function of ψ, which may not exist at all. Let ψ be a function from G

to C which maps x ∈ G to ψ(x), where z is conjugate of z for z ∈ C. Then, it is easy to check that ψ is also a

group character.

Theorem II.1 ( [22]). The finite Abelian group Ĝ is isomorphic to G, which is denoted by Ĝ ∼= G. Therefore,
ˆ̂
G ∼= Ĝ ∼= G.

Theorem II.2 ( [22]). Let G,H be two finite Abelian group. Then χ is a character of (G,H) if and only if

χ = χ1 × χ2 for some χ1 ∈ Ĝ and χ2 ∈ Ĥ , where × is multiplication over C∗.

Theorem II.3 ( [22]). Different characters of G are “orthogonal”, namely, for χ, ψ ∈ Ĝ,∑
x∈G

χ(x)ψ(x) = |G| ·∆χ,ψ, (1)

where ∆χ,ψ =

1, χ = ψ;

0, χ ̸= ψ.

Theorem II.4. let χ be a group character for the finite Abelian group G. Then, χ(g) = χ−1(g) for all g ∈ G.

Proof. According to the definition of “⋆”, 1G(g) = χ ⋆ (χ−1)(g) = χ(g)χ−1(g) = 1. In addition, Lemma II.1

implies that ∥χ(g)∥2 = χ(g)χ(g) = 1. Thus, we have χ(g)χ(g) = χ(g)χ−1(g), which in turn implies that

χ(g) = χ−1(g).
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B. Fourier Transformations over Finite Abelian Groups

Definition II.4 (Fourier Transformation). Let f : G→ C be a function from a finite Abelian group G to C. Then,

the function f̂ : Ĝ→ C defined as f̂ : χ 7→
∑
x∈G f(x)χ(x) is called a Fourier transformation of f .

Example II.2. Let f : Fn2 → F2 be a boolean function and χ ∈ F̂n2 be a group character such that χ(x) = (−1)a·x

for some a ∈ Fn2 . Then,

f̂(χ) =
∑
x∈Fm

2

f(x)χ(x) =
∑
x∈Fm

2

f(x)(−1)a·x,

which corresponds to the Walsh-Hadamard transformation.

Definition II.5 (Inverse Fourier Transformation). Let h : Ĝ→ C be a function, where G is a finite Abelian group.

Then, the function h̃ : G→ C defined as h̃ : x 7→ 1
|G|
∑
χ∈Ĝ h(x)χ(x) is called the inverse Fourier transformation

of h.

Theorem II.5. Let f : G→ C be a function from a finite Abelian group G to C. Then, ˜̂
f = f .

Next, we define the convolution operator “∗”, and the reader is kindly reminded that “⋆” and “∗” are different

operators in this paper.

Definition II.6 (Convolution). Let f and g be functions from (G,+) to C. Then, the convolution f ∗ g of f and g

is defined as

(f ∗ g)(x) =
∑
y∈G

f(x− y)g(y).

Theorem II.6. Let f and g be functions from (G,+) to C. Then, f̂ ∗ g(χ) = f̂(χ)ĝ(χ).

III. DIFFERENTIAL PROBABILITY, CORRELATION OF LINEAR APPROXIMATIONS AND LINEARITY OVER

ABELIAN GROUPS

In this section, we revisit the differential probability and the correlation of linear approximations over finite

Abelian groups, based on which we give the definition and a (trivial) lower bound of the nonlinearity of functions

over the Abelian Group.

Definition III.1. Let (G,+) and (H,+) be two finite Abelian groups, and F : G→ H be a function. The probability

of the differential of F with input difference g ∈ G and output difference h ∈ H is defined as

Pr[g
F−→ h] =

δF (g, h)

|G|
,

where δF (g, h) = |{x ∈ G|F (x)− F (x− g) = h}|.

Example III.1. For any function F : G→ H , δF (0, 0) = |G|.

Example III.2. Let F : Fn2 → Fn2 be a function. For (α, β) ∈ Fn2 × Fn2 . Pr[α
F−→ β] = 2−nδF (α, β), where

δF (α, β) = |{x ∈ Fn2 |F (x)⊕ F (x⊕ α) = β}|.
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Example III.3. Let F : G→ H be a function with G = H = (Z2n ,⊞). For a, b ∈ Z2n , we have

Pr[a
F−→ b] =

δF (a, b)

2n
,

where δF (a, b) = |{x ∈ G|F (x)⊞ (−F (x⊞ (−a))) = b}|.

Let S ⊆ Z be a set of integers. We use min+(S) to denote the minimum positive number in S. For example,

min+(S) = 2 for S = {0, 3, 5, 5, 3, 0, 2}.

Definition III.2. For a set F of functions from a finite Abelian group (G,+) to another finite Abelian group

(H,+), we denote

ρF
G,H = min+{δF (a, b) : F ∈ F , a ∈ G, b ∈ H}.

When G, H , and F are clear from the context, we may omit the superscript and subscript for simplicity.

Example III.4. Let F be the set of all vectorial Boolean functions from Fn2 to Fn2 . Then, ρF
Fn
2 ,Fn

2
= 2. For instance,

for (x1, x2, · · · , xn) ∈ Fn2 , the vectorial Boolean functions f : Fn2 → Fn2 is defined as

(x1, x2, · · · , xn) 7→ (x1 ∧ xn, x2 ∧ x1, · · · , xn ∧ xn−1).

If we let a = (1, 1, 1, · · · , 1) and b = (1, 1, 0, · · · , 0), we have δf (a, b) = 2 ( [23] Theorem 2).

Definition III.3 ( [18], [19]). Let G and H be two finite Abelian groups, and F : G → H be a function. The

correlation of the linear approximation of F with input character (or mask) ψ ∈ Ĝ and output character (or mask)

χ ∈ Ĥ is defined as

CFψ,χ =
1

|G|
∑
x∈G

ψ(x)χ(F (x)).

Example III.5. The correlation CFu,v of the linear approximation of a vectorial boolean function F : Fn2 → Fn2
with input mask u ∈ Fn2 (corresponding to the character x 7→ (−1)u·x) and output mask v ∈ Fn2 (corresponding to

the character x 7→ (−1)v·x) is defined as

CFu,v =
1

2n

∑
x∈Fn

2

(−1)u·x(−1)v·F (x) =
1

2n

∑
x∈Fn

2

(−1)u·x⊕v·F (x).

Example III.6 ( [18], [19]). The correlation CFa,b of the linear approximation of a function F : Zn → Zm with

input mask a ∈ Zn (corresponding to the character x 7→ e2πiax/n) and output mask b ∈ Zm (corresponding to the

character x 7→ e2πibx/m) is defined as

CFa,b =
1

n

∑
x∈Zn

e−2πiax/ne2πibF (x)/m.
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Example III.7 ( [19]). The correlation C⊞
a,b of the modulo addition ⊞ with input mask (a, b) ∈ (Z2n ,Z2n)

(corresponding to the character (x, y) 7→ e2πiax/2
n

e2πiby/2
n

) and output mask c ∈ Z2n (corresponding to the

character x 7→ e2πicx/2
n

) can be calculated as:

CF(a,b),c =2−2n
∑

x,y∈Z2n

e2πiax/2
n

e2πiby/2
n

e2πic(x⊞y)/2
n

=2−2n
∑

x,y∈Z2n

e2πiax/2
n

e2πiby/2
n

e−2πicx/2ne−2πicy/2n

=2−n
∑
x∈Z2n

e2πi(a−c)x/2
n

2−n
∑
y∈Z2n

e2πi(b−c)y/2
n

=∆a,c ∆b,c =

 1, a = b = c;

0, others.

For the correlation of Linear Approximations over a finite Abelian group, we have the following property:

Lemma III.1. Let ψ and χ be characters of the finite Abelian groups G and H respectively, and F : G → H be

a function. Then, CFψ,χ = CFψ−1,χ−1 .

Proof. According to Definition III.3 and Theorem II.4, we have

CFψ,χ =
1

|G|
∑
x∈G

ψ(x)χ(F (x)) =
1

|G|
∑
x∈G

ψ(x)χ(F (x))

=
1

|G|
∑
x∈G

ψ−1(x)χ−1(F (x)) = CFψ−1,χ−1 .

In the following, we generalize the definition of the nonlinearity of functions to any finite Abelian groups and

give its lower bound based on the Parseval equation which is the corollary of Lemma IV.3 in Section IV.

Definition III.4 (Linearity over Abelian Groups). Let (G,+) and (H,+) be two finite Abelian groups and F :

G→ H be a Boolean function. The linearity λF of function F over finite Abelian groups is defined as:

λF = max
(ψ,χ)∈(Ĝ,Ĥ),χ̸=1H

∥Cψ,χ∥. (2)

Theorem III.1 (Parseval equation over Abelian Grounps).∑
ψ∈Ĝ

Cψ,χCψ,χ =
∑
ψ∈Ĝ

∥Cψ,χ∥2 = 1. (3)

Proof. For δF (a, b), when b ̸= 0H , δF (0G, b) = 0 and δF (0G, 0H) = |G|. For any ψ ∈ Ĝ, χ ∈ Ĥ , ψ(0G) = 1,

χ(0H) = 1.

Let δF (0G, b) = f(b), for any χ ∈ Ĥ , we then have:

f̂(χ) =
∑
g∈H

χ(g)δF (0G, g) = χ(0)δF (0G, 0H) = |G|.
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From Lemma IV.3, it follows that:

f(b) =
|G|
|H|

∑
ψ∈Ĝ,χ∈Ĥ

χ(b) Cψ,χCψ,χ.

Then,

f̂(χ) =
|G|
|H|

∑
g∈H

χ(g)
∑
χ1∈Ĥ

∑
ψ∈Ĝ

χ1(g) Cψ,χ1Cψ,χ1

=
|G|
|H|

∑
χ1∈Ĥ

∑
ψ∈Ĝ

Cψ,χ1Cψ,χ1

∑
g∈H

χ(g)χ1(g)

=|G|
∑
χ1∈Ĥ

∑
ψ∈Ĝ

Cψ,χ1Cψ,χ1∆ψ,χ1

=|G|
∑
ψ∈Ĝ

Cψ,χCψ,χ.

Thus, ∑
ψ∈Ĝ

Cψ,χCψ,χ =
∑
ψ∈Ĝ

∥Cψ,χ∥2 = 1.

According to the Parseval equation, we have λF ≥ |G|− 1
2 :

Corollary III.1. λF ≥ |G|− 1
2 .

Proof. Note that

λF = max
χ∈Ĥ,χ̸=1

max
ψ∈Ĝ

(|Cψ,χ|2)
1
2 = max

χ∈Ĥ,χ ̸=1
(max
ψ∈Ĝ

|Cψ,χ|2)
1
2 .

For maxψ∈Ĝ |Cψ,χ|2, we then have:

max
ψ∈Ĝ

|Cψ,χ|2 ≥
∑
ψ∈Ĝ |Cψ,χ|2

|G|
=

1

|G|
.

Thus, λF ≥ |G|− 1
2 .

IV. THE LINK BETWEEN THE DIFFERENTIAL CRYPTANALYSIS AND LINEAR CRYPTANALYSIS OVER FINITE

ABELIAN GROUPS

In this section, we establish new links between differential cryptanalysis and Linear cryptanalysis over finite

Abelian group, which will be used in Section VI to deduce a tighter lower bound of λF .

We first define two special functions θF and θ∗F .

Definition IV.1. Let (G,+) and (H,+) be two finite Abelian groups, and F : G→ H be a function. The functions

θF : (G,H) → R and θ∗F : (G,H) → R are defined as

θF (a, b) =

1, b = F (a)

0, b ̸= F (a)

,
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and

θ∗F (a, b) =

1, b = −F (−a)

0, b ̸= −F (−a)
.

For θF and θ∗F , we have the following property.

Lemma IV.1. θ̂F (ψ, χ) = |G|Cψ−1,χ, and θ̂∗F (ψ, χ) = θ̂F (ψ
−1, χ−1).

Proof. For θ̂F (ψ, χ), we have

θ̂F (ψ, χ) =
∑

(a,b)∈(G,H)

χ(b) ψ(a) θF (a, b) =
∑
a∈G

χ(F (a)) ψ(a)

=
∑
a∈G

χ(F (a)) ψ(a) =
∑
a∈G

χ(F (a)) ψ−1(a)

=|G|Cψ−1,χ.

For θ̂∗F (ψ, χ), we have

θ̂∗F (ψ, χ) =
∑

(a,b)∈(G,H)

χ(b)ψ(a) θ∗F (a, b)

=
∑
a∈G

χ(−F (−a)) ψ(a).

Since for any g ∈ G and h ∈ H , χ(g)χ(−g) = 1 and ψ(h)ψ(−h) = 1, χ(−g) = χ−1(g), and ψ−1(h) = ψ(−h).

Consequently,

θ̂∗F (ψ, χ) =
∑
a∈G

χ(−F (−a))ψ(−(−a))

=
∑

−a∈G
χ−1(F (−a))ψ−1(−a) = θ̂F (ψ

−1, χ−1).

Lemma IV.2. (θ∗F ∗ θF )(a, b) = δF (a, b).

Proof. According to Definition II.6, we have

(θ∗F ∗ θF )(a, b) =
∑

(x,y)∈(G,H)

θ∗F (a− x, b− y)θF (x, y)

=
∑

(x,y)∈(G,H)

θ∗F (a− x, b− F (x))

=|{x ∈ G : b− F (x) = −F (−(a− x))}|

=|{x ∈ G : F (x)− F (a− x) = b}|

=δF (a, b).

10



Lemma IV.3. Let G and H be finite Abelian groups, and F : G→ H be a function. Then, we have

δF (a, b) =
|G|
|H|

∑
χ∈Ĥ,ψ∈Ĝ

ψ(a)χ(b)CFψ,χCFψ,χ,

or equivalently,

CFψ,χCFψ,χ =
1

|G|2
∑

a∈G,b∈H

ψ(a)χ(b)δF (a, b).

Proof. According to the Lemma IV.2, we have

δF (a, b) =(θ∗F ∗ θF )(a, b) =
˜̂

(θ∗F ∗ θF )(a, b) = ˜(θ̂∗F × θ̂F )(a, b)

=
1

|G|
1

|H|
∑

ψ∈Ĝ,λ∈Ĥ

ψ(a) λ(b) θ̂∗F (ψ, λ)θ̂F (ψ, λ)

=
|G|
|H|

∑
ψ∈Ĝ,λ∈Ĥ

ψ(a) λ(b) Cψ,λ−1Cψ−1,λ

=
|G|
|H|

∑
ψ∈Ĝ,χ∈Ĥ

ψ(a)χ(b) Cψ,χCψ−1,χ−1

=
|G|
|H|

∑
ψ∈Ĝ,χ∈Ĥ

ψ(a) χ(b) Cψ,χCψ,χ.

Equivalently, we can see that: ∑
a∈G,b∈H

ψ(a)χ(b)δF (a, b)

=
|G|2

|G||H|
∑

a∈G,b∈H

ψ(a)χ(b)
∑

σ∈Ĝ,τ∈Ĥ

σ(a) τ(b) Cσ,τCσ,τ

=
∑

σ∈Ĝ,τ∈Ĥ

Cσ,τCσ,τ
∑
a∈G

ψ(a)σ(a)
∑
b∈H

τ(b)χ(b)

=|G|2CFψ,χCFψ,χ.

Gathering Lemma IV.1, Lemma IV.2 and Lemma IV.3, we finally draw the conclusion in Theorem IV.1, which

gives the relationship between the differential probability and correlation of linear approximations:

Theorem IV.1. Let G and H be finite Abelian groups, and F : G→ H be a function. Then, we have∑
ψ∈Ĝ

∑
χ∈Ĥ,χ ̸=1

∥CFψ,χ∥4 =
|H|
|G|3

∑
a∈G,a ̸=0

∑
b∈H

δF (a, b)
2 +

|H|
|G|

− 1.

In addition, we call
∑
a∈G,a̸=0

∑
b∈H δF (a, b)

2 as the square sum of Differential Probability.
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Proof. According to Lemma IV.3, ∥CFψ,χ∥2 = CFψ,χCFψ,χ = 1
|G|2 δ̂F (ψ, χ). Therefore, we have∑

ψ∈Ĝ

∑
χ∈Ĥ,χ ̸=1H

∥CFψ,χ∥4

=
∑
ψ∈Ĝ

∑
χ∈Ĥ

∥CFψ,χ∥4 −
∑
ψ∈Ĝ

∥CFψ,1∥4

=
1

|G|4
∑
ψ∈Ĝ

∑
χ∈Ĥ

(δ̂F (ψ, χ))
2 −

∑
ψ∈Ĝ

∥CFψ,1∥4

=
1

|G|4
∑
ψ∈Ĝ

∑
χ∈Ĥ

̂δF ∗ δF (ψ, χ)−
∑
ψ∈Ĝ

∥CFψ,1∥4

=
1

|G|4
∑
ψ∈Ĝ

∑
χ∈Ĥ

̂δF ∗ δF (ψ, χ)−
∑
ψ∈Ĝ

∥CFψ,1∥4

=
|H|
|G|3

1

|G||H|
∑
ψ∈Ĝ

∑
χ∈Ĥ

ψ(0)χ(0) ̂δF ∗ δF (ψ, χ)−
∑
ψ∈Ĝ

∥CFψ,1∥4

=
|H|
|G|3

(δF ∗ δF )(0, 0)−
∑
ψ∈Ĝ

∥CFψ,1∥4.

Due to the fact that CFψ,1H =

1, ψ = 1G

0, otherwise

, it follows that

∑
ψ∈Ĝ

∑
χ∈Ĥ,χ ̸=1H

∥CFψ,χ∥4 =
|H|
|G|3

∑
a∈G,a̸=0

∑
b∈H

δF (a, b)
2 +

|H|
|G|

− 1.

Example IV.1. Applying Theorem IV.1 to a vectorial Boolean function F : Fn2 → Fm2 , we have∑
u∈Fn

2

∑
v∈Fm

2 ,v ̸=0

∥CFu,v∥4 = 2m−3n
∑
a∈Fn

2
a ̸=0

∑
b∈Fm

2

δF (a, b)
2 + 2m−n − 1.

This is consistent with the result derived in [10].

V. ON THE LOWER BOUND OF THE SQUARE SUM OF DIFFERENTIAL PROBABILITY

In this section, we consider
∑
a∈G,a ̸=0

∑
b∈H δF (a, b)

2 (the right part) in the equation in Theorem IV.1. We

calculate its lower bound so that we can get the lower bound of the linear approximations (the left part), which

will be directly used to deduce a tighter lower bound of λF in Section VI.

Let G = {a1, · · · , a|G|−1, a|G|} and H = {b1, · · · , b|H|−1, b|H|} with a|G| = 0. Then,

∑
a∈G,a ̸=0

∑
b∈H

δF (a, b)
2 =

|G|−1∑
i=1

|H|∑
j=1

δF (ai, bj)
2. (4)

12



Let d = (d1, · · · , dH), DG,H = {d ∈ Z|H| : di = 0 or di ≥ ρF
G,H , for 0 ≤ i ≤ |H|, and

∑|H|
i=1 di = |G|}, and

ξG,H = min
d∈DG,H

∑|H|
j=1 dj . It is easy to see that for any i ∈ {1, 2, · · · , |G| − 1},

∑|H|
j=1 δF (ai, bj) = |G|, and for

1 ≤ j ≤ |H|, δF (ai, bj) = 0 or ρF
G,H ≤ δF (ai, bj) ≤ |G|. Therefore, for any i ∈ {1, · · · , |G| − 1},

|H|∑
j=1

δF (ai, bj)
2 ≥ ξG,H . (5)

Consequently,
∑|G|−1
i=1

∑|H|
j=1 δF (ai, bj)

2 is lower bounded by (|G| − 1)ξG,H . Next, we derive ξG,H .

Definition V.1. Let (G,+) and (H,+) be two finite Abelian groups, and

ζG,H = min
d∈DG,H

|H|∑
i=1

(
di −

|G|
|H|

)2

(6)

where d = (d1, · · · , dH) and

DG,H = {d ∈ Z|H| : di = 0 or di ≥ ρ, for 0 ≤ i ≤ |H|, and

|H|∑
i=1

di = |G|}.

We can see the following relationship between ξG,H and ζG,H .

Lemma V.1.

ζG,H +
|G|2

|H|
= ξG,H .

Proof. For d = (d1, · · · , dH) ∈ S, we can see that

|H|∑
i=1

(
di −

|G|
|H|

)2

+
|G|2

|H|

=

 |H|∑
i=1

di
2 − 2

|G|
|H|

|H|∑
i=1

di +
|G|2

|H|2

|H|∑
i=1

1

+
|G|2

|H|

=

 |H|∑
i=1

di
2 − 2

|G|2

|H|
+

|G|2

|H|

+
|G|2

|H|

=

|H|∑
i=1

di
2.

Thus, we have

ζG,H +
|G|2

|H|
= ξG,H .

Obviously, according to the Lemma V.1, if we know the value of ζG,H , then we can get ξG,H immediately. Next,

we will give the value of ζG,H under different cases.

A. |H| | |G| and ρ ≤ ⌊ |G|
|H|⌋

Setting di =
|G|
|H| , we get ζG,H = 0, and thus ξG,H = |G|2

|H| according to Lemma V.1.
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B. |H| ∤ |G| and ρ ≤ ⌊ |G|
|H|⌋

Under such cases, we can see that the ζG,H can be reached over a subset of DG,H :

Lemma V.2. Let (G,+) and (H,+) be two finite Abelian groups with |H| ∤ |G| and ρ ≤ ⌊ |G|
|H|⌋. Then

ζG,H = min
d∈DG,H

|H|∑
i=1

(
di −

|G|
|H|

)2

= min
d∈BG,H

|H|∑
i=1

(
di −

|G|
|H|

)2

where d = (d1, · · · , dH),

DG,H = {d ∈ Z|H| : di = 0 or di ≥ ρ, for 0 ≤ i ≤ |H|, and

|H|∑
i=1

di = |G|},

BG,H = {d ∈ Z|H| : di ≥ ⌊ |G|
|H|

⌋, for 0 ≤ i ≤ |H|, and

|H|∑
i=1

di = |G|},

and BG,H is a subset of DG,H .

Proof. See Appendix A.

Then, when |H| ∤ |G| and ρ ≤ ⌊ |G|
|H|⌋, we can get ξG,H .

Lemma V.3. For the two finite Abelian groups (G,+) and (H,+), when |H| ∤ |G| and ρ ≤ ⌊ |G|
|H|⌋, we have:

ζG,H = r ·
(
⌊ |G|
|H| ⌋+ 1− |G|

|H|

)2

+ (|H| − r) ·
(
⌊ |G|
|H| ⌋ −

|G|
|H|

)2

Accordingly,

ξG,H =

(
r ·
(
⌊ |G|
|H|

⌋+ 1

)2

+ (|H| − r) · ⌊ |G|
|H|

⌋2
)

where r = |G| − |H| · ⌊ |G|
|H|⌋ and r < |H|.

Proof. For a given d = (d1, · · · , d|H|) ∈ BG,H , we assume that there are k entries of d strictly larger than ⌊ |G|
|H|⌋.

Without loss of generality, we may assume that the k entries are d1, · · · , dk, and thus dk+1 = · · · = d|H| = ⌊ |G|
|H|⌋.

Let

d1 = ⌊ |G|
|H|

⌋+ ϵ1, · · · , dk = ⌊ |G|
|H|

⌋+ ϵk

with ϵ1, · · · , ϵk ≥ 1, and r =
∑k
j=1 ϵj . Then

|G| = d1 + · · ·+ dk + dk+1 + · · ·+ d|H| = r + |H|⌊ |G|
|H|

⌋. (7)

Therefore, r = |G| − |H| · ⌊ |G|
|H|⌋. Note that r < |H|, otherwise r + |H|⌊ |G|

|H|⌋ ≥ |H|(1 + ⌊ |G|
|H|⌋) > |H| |G|

|H| = |G|.

Since |H| − k > r − k =
∑k
j=1(ϵj − 1), for each j ∈ {1, · · · , k}, we can select a new set of ϵj − 1 entries

of d (denoted as dj1 , · · · , djϵj−1
) whose values are all ⌊ |G|

|H|⌋. Then we set the values of these entries and dj to

⌊ |G|
|H|⌋+1. We call the new vector d′, and it is easy to see that d′ ∈ BG,H . It satisfies that r components are equal

to ⌊ |G|
|H|⌋+ 1 and the remaining |H| − r components are equal to ⌊ |G|

|H|⌋.

Let m = ⌊ |G|
|H|⌋+ 1− |G|

|H| , for any positive integer a, the following inequality holds:

(m+ a− 1)2 + (a− 1)(m− 1)2 ≥ am2
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And it’s easy to verify that the inequality is equivalent to the inequality a2 ≥ a where a ≥ 1.

Because of the above inequality, for each j ∈ {1, · · · , k}, we can see that(
dj −

|G|
|H|

)2

+

ϵj−1∑
i=1

(
dji −

|G|
|H|

)2

=(m+ ϵj − 1) + (ϵj − 1)(m− 1)

≥ϵjm2 =

(
d′j −

|G|
|H|

)2

+

ϵj−1∑
i=1

(
d′ji −

|G|
|H|

)2

where m = ⌊ |G|
|H|⌋+ 1− |G|

|H| .

Thus, for all d = (d1, · · · , d|H|) ∈ DG,H such that di ≥ ⌊ |G|
|H|⌋ where 1 ≤ i ≤ |H|,

|H|∑
j=1

(
dj −

|G|
|H|

)2

≥
|H|∑
j=1

(
d′j −

|G|
|H|

)2

=r ·
(
⌊ |G|
|H|

⌋+ 1− |G|
|H|

)2

+ (|H| − r) ·
(
⌊ |G|
|H|

⌋ − |G|
|H|

)2

.

In summary, we know that

ζG,H = r ·
(
⌊ |G|
|H|

⌋+ 1− |G|
|H|

)2

+ (|H| − r) ·
(
⌊ |G|
|H|

⌋ − |G|
|H|

)2

where r = |G| − |H| · ⌊ |G|
|H|⌋, r < |H|.

C. ρ > ⌊ |G|
|H|⌋ and ρ | |G|

Under such cases, we have:

Lemma V.4. For the two finite Abelian groups (G,+) and (H,+), when ρ > ⌊ |G|
|H|⌋ and ρ | |G|, we have:

ζG,H = |G|ρ− |G|2

|H|
.

Accordingly,

ξG,H = |G|ρ.

Proof. For any d = (d1, · · · , d|H|) ∈ DG,H , for 1 ≤ i ≤ |H|, due to di ≥ ρ or di = 0, we have:(
di −

|G|
|H|

)2

≥
(
ρ− 2

|G|
|H|

)
· q + |G|2

|H|2
,

where q = 0 or q = ρ.
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For d′ ∈ DG,H , we suppose that d′i = ρ for 1 ≤ i ≤ |G|
ρ and d′i = 0 for |G|

ρ + 1 ≤ i ≤ |H|. Thus, according to

the above inequality for any d ∈ DG,H , we have:

|H|∑
i=1

(
di −

|G|
|H|

)2

≥
|H|∑
i=1

(
ρ− 2

|G|
|H|

)
· d′i +

|H|∑
i=1

|G|2

|H|2

=

|G|/ρ∑
i=1

(
ρ2 − |G|

|H|
ρ

)
+

|G|2

|H|

=|G|ρ− |G|2

|H|
.

D. ρ > ⌊ |G|
|H|⌋ and ρ ∤ |G|

Under such cases, we can see that the ζG,H can be reached over a subset of DG,H :

Lemma V.5. Let (G,+) and (H,+) be two finite Abelian groups with ρ > ⌊ |G|
|H|⌋ and ρ ∤ |G|. Then

ζG,H = min
d∈DG,H

|H|∑
i=1

(
di −

|G|
|H|

)2

= min
d∈BG,H

|H|∑
i=1

(
di −

|G|
|H|

)2

where d = (d1, · · · , dH), m · ρ = |G| − n,

DG,H = {d ∈ Z|H| : di = 0 or di ≥ ρ, for 0 ≤ i ≤ |H|, and

|H|∑
i=1

di = |G|},

BG,H = {d ∈ Z|H| : for 0 ≤ i ≤ |H|, the number of di such that di > 0 is m}.

and BG,H is a subset of DG,H .

Proof. See Appendix A.

Then, when ρ > ⌊ |G|
|H|⌋ and ρ ∤ |G|, we can get ξG,H .

Lemma V.6. For the two finite Abelian groups (G,+) and (H,+), when ρ > ⌊ |G|
|H|⌋ and ρ ∤ |G|, we have:

ζG,H =

(
(m− h) ·

(
c− |G|

|H|

)2

+ h ·
(
c+ 1− |G|

|H|

)2
)

Accordingly,

ξG,H = (m− h) · c2 + h · (c+ 1)
2

where m · ρ = |G| − n, n < ρ and h = |G| − c ·m, h < m.

Proof. For any d = (d1, · · · , d|H|) ∈ BG,H , for convenience, we can let di = ρ+ ri for 1 ≤ i ≤ m and di = 0 for

m+ 1 ≤ i ≤ |H|. In addition,
∑|H|
i=1 ri = n, where n = |G| −m · ρ.

Let w = ρ− |G|
|H| , then we can see that, for any z, j ∈ {1, · · · ,m} such that rz > rj , we have

(w + rz)
2 + (w + rj)

2 ≥ (w + rz − 1)2 + (w + rj + 1)2
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if and only if rz − rj = 1, the equation holds.

For d′ = (d′1, · · · , d′|H|) ∈ BG,H , we let d′i = di, i ∈ {1, · · · ,m} except for z, j and r′z = rz − 1, r′j = rj + 1.

Then, from above inequality, we have

|H|∑
i=0

(di −
|G|
|H|

)2 ≥
|H|∑
i=0

(d′i −
|G|
|H|

)2

if and only if rz − rj = 1. Therefore the equation holds.

Thus, for d′ = (d′1, · · · , d′|H|) ∈ BG,H such that d′z, d
′
j ≥ ρ and |d′z − d′j | ≤ 1 holds for any z, j ∈ {1, · · · , |H|},

we have
|H|∑
i=1

(
d′i −

|G|
|H|

)2

=

(
(m− h) ·

(
c− |G|

|H|

)2

+ h ·
(
c+ 1− |G|

|H|

)2
)

= min
d∈BG,H

|H|∑
i=1

(
di −

|G|
|H|

)2

,

where m · ρ = |G| − n, n < ρ and h = |G| − c ·m, h < m.

According to the Lemma V.5,

ζG,H =

(
(m− h) ·

(
c− |G|

|H|

)2

+ h ·
(
c+ 1− |G|

|H|

)2
)

where m · ρ = |G| − n, n < ρ and h = |G| − c ·m, h < m.

VI. A TIGHTER BOUND OF λF

In this section, we give a tighter lower bound of the linearity λF by gathering the results in the previous two

sections Section IV and Section V. Note that we already give a lower bound of λF in Section IV, but we must

point out that such a lower bound is meaningful only when ρF
G,H ≤ ⌊ |G|

|H|⌋, |G| | |H| (see [11]). The bound of the

linearity given in this section is reasonable under different cases.

According to the Parseval equation, we can drive a relationship between λF and
∑
ψ∈Ĝ

∑
χ∈Ĥ,χ ̸=1H ∥CFψ,χ∥4:

Lemma VI.1.

(λF )
2 · (|H| − 1) ≥

∑
ψ∈Ĝ

∑
χ∈Ĥ,χ ̸=1H

∥CFψ,χ∥4

if and only if the equation holds when ∥CFψ,χ∥ = λF or ∥CFψ,χ∥ = 0, for all ψ ∈ Ĝ, χ ∈ Ĥ , χ ̸= 1H .

Proof. For any ψ ∈ Ĝ,χ ∈ Ĥ and χ ̸= 1H , we have:

(λF )
2 · ∥CFψ,χ∥2 ≥ ∥CFψ,χ∥4

if and only if the equation holds when ∥CFψ,χ∥ = ξG,H or ∥CFψ,χ∥ = 0. Thus,

(λF )
2 ·
∑
ψ∈Ĝ

∑
χ∈Ĥ,χ ̸=1H

∥CFψ,χ∥2 ≥
∑
ψ∈Ĝ

∑
χ∈Ĥ,χ ̸=1H

∥CFψ,χ∥4.
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By combining Theorem III.1, we get the inequality.

Combing with Lemma IV.1 and Lemma V.1, we get:

Lemma VI.2. Let (G,+) and (H,+) be two finite Abelian groups and F : G→ H be a function. For a set F of

functions from a finite Abelian group (G,+) to another finite Abelian group (H,+), we have:∑
ψ∈Ĝ

∑
χ∈Ĥ,χ ̸=1H

∥CFψ,χ∥4 ≥ |H|(|G| − 1)

|G|3
· ξG,H +

|H|
|G|

− 1,

where the value of ξG,H can be obtained in Table I

Then, by gathering Lemma VI.1, Lemma VI.2, Lemma V.3, Lemma V.4 , Lemma V.6, according to |G|, |H|

and ρF
G,H , we get the lower bound of λF :

Theorem VI.1. Let (G,+) and (H,+) be two finite Abelian groups and F : G→ H be a function. For a set F

of functions from a finite Abelian group (G,+) to another finite Abelian group (H,+), we have:

λF ≥

√
1

|H| − 1

(
|H|(|G| − 1)

|G|3
· ξG,H +

|H|
|G|

− 1

)
,

where the value of ξG,H can be obtained in Table I, and the low bound of λF is summarized as Table II.

Remark VI.1. 1. For the condition |G| | |H| and ρF
G,H ≤ ⌊ |G|

|H|⌋, [11] has proved that the optimal function against

differential cryptanalysis satisfies λF = (
√
|G|)−1.

2. If we consider the set F of functions from finite Abelian group (G,+) to another finite Abelian group (H,+)

such that ρF
G,H = |G| (The set contains all “affine” functions from a finite Abelian group (G,+) to another finite

Abelian group (H,+) ), then we have λF ≥ 1 from Theorem VI.1.

3. Likely, for the function set F such that ρF
G,H > |G|

2 , according to Theorem VI.1, we can get λF ≥ 1.

Example VI.1. We use the function f(x) =
(
(−1)x mod 2 · x2

)
mod p (p is a prime number), which was proposed

in [16] (see the fifth row of Table 1 in [16]), to demonstrate the correctness of Theorem VI.1. The input domain

is set as Fp, which has good properties against the algebraic attack [16]. And for all possible prime numbers not

greater than 100, we calculate the λf of f(x). Then, we do a comparison with the lower bound in Theorem VI.1

(See Table III). If the input domain is set as Fq , where q > p, the result is shown in Table IV. And if the input

domain is set as Fq , where q < p, the result is shown in Table V.

VII. CONCLUSION AND FUTURE WORK

For the lower bound of the linearity λF of a function F : G→ H mapping from finite Abelian group G to H ,

we complete the generalization from Fn2 to finite Abelian groups according to the links we established between

linear cryptanalysis and differential cryptannlysis. Compared with Pott’s work [11], we give more general results.

On the functions the function from Fm2 to Fn2 , some works [24] [25] [26] [27] [28] constructed a series of

functions that can reach the low bound of λF , which are called bent functions (m > n) or almost bent functions

(m ≤ n). Such (almost) bent functions can be used to construct DES-like block cipher that are resistant to differential

18



attacks and linear attacks. Likely, for some specific finite Abelian groups G and H , can we construct a series of

functions that can reach the low bound of λF ? We left it as an open problem. In addition, the notion of differential

probability can be extended into finite groups [29]. In such a case, can we obtain same result?
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APPENDIX

Appendix Proof of Lemma V.2

Proof. Firstly, for d ∈ DG,H , we show that if min(d) < ⌊ |G|
|H|⌋, then max(d) > ⌊ |G|

|H|⌋, or max(d) ≥ ⌊ |G|
|H|⌋ + 1,

where min(d) (max(d)) denotes the minimum (maximum) component of vector d. Otherwise, we have

|H|∑
i=1

di < ⌊ |G|
|H|

⌋+ (|H| − 1) · ⌊ |G|
|H|

⌋ = |H|⌊ |G|
|H|

⌋ < |H| |G|
|H|

= |G|.

For a given d ∈ DG,H with min(d) < ⌊ |G|
|H|⌋, we can transform it into another d′ ∈ DG,H by increasing the smallest

entry of d by 1 and decreasing the maximal entry of d by 1. Next, we show that

|H|∑
i=1

(
di −

|G|
|H|

)2

≥
|H|∑
i=1

(
d′i −

|G|
|H|

)2

. (8)
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Let min(d) = ⌊ |G|
|H|⌋ −▽ and max(d) = ⌊ |G|

|H|⌋+△ with ▽ ≥ 1 and △ ≥ 1, and u = |G|
|H| − ⌊ |G|

|H|⌋. Then,

(
min(d)− |G|

|H|

)2

+

(
max(d)− |G|

|H|

)2

−
(
min(d′)− |G|

|H|

)2

−
(
max(d′)− |G|

|H|

)2

=(u−▽)2 + (u+△)2 − (u−▽+ 1)2 − (u+△− 1)2

=2(▽+△)− 2 > 0.

Therefore, we can successively apply the above transformation until min(d) ≥ ⌊ |G|
|H|⌋.

Appendix Proof of Lemma V.5

Proof. Supposed that |G| = m · ρ+n, n < ρ. Then, we can see that the number of nonzero components is at most

m . Else, it will be in contradiction to n < ρ.

And we define the set D′
G,H as

D′
G,H = {h ∈ Z|H| : hi = 0 or hi ≥ ρ, for 0 ≤ i ≤ |H|,

and

|H|∑
i=1

hi = |G| − n},

where d = (d1, · · · , dH), n= |G| −m · ρ.

For h′ = (h′1, · · · , h′|H|) ∈ D′
G,H , we suppose that h′i = ρ, 1 ≤ i ≤ m and h′i = 0 , m+ 1 ≤ i ≤ |H|. Then, like

Lemma V.4, using same technique, we get

|H|∑
i=1

(
h′i −

|G|
|H|

)2

= min
h∈D′

G,H

|H|∑
i=1

(
hi −

|G|
|H|

)2

. (9)

Next, for any d = (d1, · · · , dH) ∈ DG,H , we suppose that there are p (p ≤ m < |H|) nonzero components.

For convenience we denote it as the first p components. Then, we define d′ ∈ D′
G,H from d, where d

′

i = 0 for

p+ 1 ≤ i ≤ |H| and d
′

i = di − ri, di ≥ ρ, 0 ≤ ri ≤ di − ρ for 1 ≤ i ≤ p. In addition,
∑p
i=0 ri = n.

And we also define db = (db1, · · · , db|H|) ∈ BG,H , where dbi = h′i + ri = ρ + ri for 1 ≤ i ≤ p and dbi = h′i for

p+ 1 ≤ i ≤ |H|.

Then, for 1 ≤ i ≤ p, due to

(2d′i + ri − 2
|G|
|H|

) ri ≥ (2ρ+ ri − 2
|G|
|H|

) ri,

we can see that (
d

′

i + ri −
|G|
|H|

)2

−
(
d

′

i −
|G|
|H|

)2

≥
(
ρ+ ri −

|G|
|H|

)2

−
(
ρ− |G|

|H|

)2

.

(10)
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Finally, according to Equation (9) and Inequality (10), we have:(
p∑
i=0

(
d

′

i + ri −
|G|
|H|

)2

−
(
d

′

i −
|G|
|H|

)2
)

+

|H|∑
i=0

(
d

′

i −
|G|
|H|

)2

=

|H|∑
i=0

(
di −

|G|
|H|

)2

≥

(
p∑
i=0

(
ρ+ ri −

|G|
|H|

)2

−
(
ρ− |G|

|H|

)2
)

+

|H|∑
i=0

(
h′i −

|G|
|H|

)2

=

|H|∑
i=0

(
dbi −

|G|
|H|

)2

.
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TABLE III: The λF of f(x) and the lower bound in Theorem VI.1 under different p

p 3 5 7 11 13 17 19

λF 1.000 0.724 0.785 0.633 0.717 0.575 0.542

Lower bound 0.577 0.447 0.378 0.302 0.277 0.243 0.229

p 23 29 31 37 41 43 47

λF 0.532 0.531 0.498 0.432 0.412 0.418 0.393

Lower bound 0.209 0.186 0.180 0.164 0.156 0.152 0.146

p 53 59 61 67 71 79 83

λF 0.385 0.372 0.356 0.350 0.334 0.311 0.306

Lower bound 0.137 0.130 0.128 0.122 0.119 0.113 0.110

TABLE IV: The result of q > p

q 5 7 11 13 17 19 23

p 3 5 7 11 13 17 19

λF 0.833 0.565 0.640 0.587 0.481 0.500 0.496

Lower bound 0.482 0.411 0.325 0.295 0.262 0.240 0.222

q 29 31 37 41 43 47 53

p 23 29 31 37 41 43 47

λF 0.402 0.433 0.366 0.406 0.382 0.386 0.345

Lower bound 0.200 0.185 0.175 0.163 0.156 0.151 0.144

q 59 61 67 71 79 83

p 53 59 61 67 71 79

λF 0.328 0.378 0.320 0.336 0.294 0.294

Lower bound 0.136 0.130 0.127 0.123 0.117 0.112
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TABLE V: The result of q < p

q 3 5 7 11 13 17 19

p 5 7 11 13 17 19 23

λF 0.832 0.749 0.692 0.533 0.601 0.634 0.538

Lower bound 0.667 0.503 0.438 0.324 0.308 0.255 0.248

q 23 29 31 37 41 43 47

p 29 31 37 41 43 47 53

λF 0.489 0.476 0.426 0.414 0.403 0.395 0.393

Lower bound 0.229 0.192 0.194 0.172 0.160 0.159 0.154

q 53 59 61 67 71 79

p 59 61 67 71 79 83

λF 0.370 0.339 0.348 0.339 0.326 0.313

Lower bound 0.144 0.132 0.134 0.126 0.125 0.115
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