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Abstract

Amortized bootstrapping offers a way to refresh multiple ciphertexts of a fully homomorphic en-
cryption scheme in parallel more efficiently than refreshing a single ciphertext at a time. Micciancio
and Sorrell (ICALP 2018) first proposed the technique to bootstrap n LWE ciphertexts simultaneously,

reducing the total cost from Õ(n2) to Õ(3ϵn1+ 1
ϵ ) for arbitrary ϵ > 0. Several recent works have further

improved the asymptotic cost. Despite these amazing progresses in theoretical efficiency, none of them
demonstrates the practicality of batched LWE ciphertext bootstrapping. Moreover, most of these works
only support limited functional bootstrapping, i.e. only supporting the evaluation of some specific type
of function when performing bootstrapping.

In this work, we propose a construction that is not only asymptotically efficient (requiring only Õ(n)
polynomial multiplications for bootstrapping of n LWE ciphertexts) but also concretely efficient. We
implement our scheme as a C++ library and show that it takes < 5ms per LWE ciphertext to bootstrap
for a binary gate, which is an order of magnitude faster than the state-of-the-art C++ implementation on
LWE ciphertext bootstrapping in OpenFHE. Furthermore, our construction supports batched arbitrary
functional bootstrapping. For a 9-bit messages space, our scheme takes ∼6.7ms per LWE ciphertext to
evaluate an arbitrary function with bootstrapping, which is about two to three magnitudes faster than
all the existing schemes that achieve a similar functionality and message space.

∗Part of the work was done when the author was at Columbia University.
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1 Introduction

Fully homomorphic encryption (FHE) schemes support the evaluation of an arbitrary circuit over the en-
crypted data without decrypting it. Thus, it is a very powerful tool that can be widely applied in many
scenarios, like secure machine learning[30], private information retrieval[42], private set intersection [17], and
so on.

There are two major lines of FHE schemes. The first is BGV and its variants [9, 7, 19, 14]. These works
encrypt a vector of N messages using an RLWE ciphertext. This line of work allows the “Single Instruction
Multiple Data” (SIMD) operations ∗. Thus, they provide an efficient way to evaluate a circuit with a large
number of inputs. However, there exist two major limitations of this line of work: (1) they natively only
support circuits with some pre-known depth; since each level of circuit evaluation adds extra noise to the
RLWE ciphertexts, for deeper circuits, the noise may accumulate to a point that no more operations can
be evaluated. Therefore, bootstrapping is needed to reduce the noise inside an RLWE ciphertext. For
BGV/BFV, the amortized bootstrapping time for a 16-bit message can be over 300 milliseconds [25, 12]. (2)
they only efficiently support addition and multiplication, while non-polynomial evaluation (e.g., comparisons)
can be very costly.

The second line of work starts with FHEW [18] and is later improved by TFHE [15] and Lee et al. [36].
These works support bootstrapping in tens of milliseconds. Instead of batching N messages in a single
RLWE ciphertext, they encrypt a single bit inside an LWE ciphertext. Bootstrapping is done together with
a NAND gate evaluation between two encrypted bits. The output ciphertext maintains the same level of
noise as the input ciphertext. Since the NAND gate is a universal gate, these works can be used to evaluate
arbitrary circuits. Besides, they provide a more general functionality, called functional bootstrapping: given
an LWE ciphertext encrypting a message m, one can obtain an output LWE ciphertext encrypting f(m),
while the input ciphertext and output ciphertext have the same level of noise. However, they also have two
major limitations: (1) they focus on bootstrapping one message at a time and are not able to take advantage
of the SIMD feature as in the other line of work; (2) their functional bootstrapping only supports negacyclic
functions (i.e., functions f : Zq → Z such that f(x) = −f(x+ q/2)).

[44] first attempts to combine these two lines of work and introduces the batched bootstrapping to support
fast bootstrapping over n LWE ciphertexts at the same time. Recently, several works [24, 45, 37, 38] have
further greatly improved the asymptotic behavior ([38] gives an algorithm with an amortized cost of Õ(1)
polynomial multiplications per LWE ciphertext bootstrapping). However, whether these works are practical
remains to be an open problem. The only implementation in [24] requires > 1 second to bootstrap a single
LWE ciphertext encrypting a 7-bit message (amortized over n ciphertexts).

Therefore, the central question we address is:
Can we construct a batched bootstrapping algorithm for LWE ciphertexts, that is (1) practical, taking only

milliseconds per LWE ciphertext bootstrapping; (2) asymptotically efficient, requiring only Õ(1) polynomial
multiplications per LWE ciphertext bootstrapping, and (3) flexible, supporting an arbitrary function evaluation
during the bootstrapping procedure?

In this work, we firmly answer yes to this question. We design algorithms that are both asymptotically
efficient (Õ(1) polynomial multiplications per LWE ciphertext bootstrapping) and concretely fast (orders of
magnitude faster than any existing works), while supporting functional bootstrapping for arbitrary functions.

1.1 Our Contribution

Batched LWE ciphertext bootstrapping for NAND. We propose a novel method to perform batched
NAND gate evaluation between two LWE ciphertexts without increasing the error. Since the NAND gate
is universal and can be used to construct any circuits, this achieves the property of fully homomorphic
operation. The asymptotic amortized cost is Õ(1) homomorphic multiplications per NAND gate, which is
almost optimal.

∗In other words, they allow evaluating multiplication and additions over two vectors (component-wisely), each with N
messages, by evaluating the same operations over the two RLWE ciphertexts encrypting those two vectors.
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Batched LWE ciphertext bootstrapping for general binary gates. We extend our scheme to support
other types of binary gates without any overhead. Moreover, we support evaluating different gates in parallel
(instead of requiring all gates to be the same type) when performing the batched bootstrapping.

Batched arbitrary functional bootstrapping. We further extend our scheme to support arbitrary
function evaluation. In more detail, we allow one to evaluate an arbitrary function f : Zp → Zp any message
m ∈ Zp encrypted in an LWE ciphertext, without increasing the error of the output LWE ciphertexts. The

asymptotic amortized cost remains Õ(1) homomorphic multiplications per LWE ciphertext.

Implementation and evaluation. We implement our schemes as an open-sourced C++ library and mea-
sure the concrete performance for a variety of parameters to compare with prior works. Salient observations
include:

• For arbitrary binary gates, the cost is less than 5ms per gate, which is more than an order of magnitude
faster than the state-of-the-art C++ implementation of TFHE bootstrapping (OpenFHE [4]), and more
than 3x faster than the state-of-the-art rust implementation (TFHE-rs [50]).

• For arbitrary function evaluation of m ∈ Zp, the cost is ∼6.7ms when p is of 9 bits, and ∼39ms when
p has 12 bits. Both results are about two to three orders of magnitude faster than all the existing
arbitrary function evaluation methods providing the same plaintext space.

FHEW/TFHE - BFV/BGV scheme switching. Our construction can be adapted to perform scheme
switching between FHEW/TFHE-like cryptosystems and BFV/BGV, which is of its own interest. We also
benchmark this scheme switching method: ∼296 seconds to switch 32768 LWE ciphertexts into 1 BFV
ciphertext, and ∼17 seconds to switch a single BFV ciphertext into 32768 LWE ciphertexts.

1.2 Technical Overview

Main idea. Our starting point comes from the observation that the BFV/BGV HE schemes operate over
a finite field Zt for some prime t. Thus, for an LWE ciphertext (⃗a, b) ∈ Zn+1

t , encrypted under secret key
sk ∈ Zn

t (which satisfies b ≡ ⟨⃗a, sk⟩+ α ·m+ e mod t, for some message m, encoding parameter α and error
e), we homomorphically evaluate b−⟨⃗a, sk⟩ resulting in α ·m+ e (mod t) ∈ Zt instead of α ·m+ e+k · t ∈ Z.
To recover m, we simply evaluate a polynomial function f over Zt, where f : Zt → Zt is a degree t − 1
polynomial function.

Therefore, evaluating b− ⟨⃗a, sk⟩ and function f using BFV/BGV homomorphically decrypts an LWE ci-
phertext into a BFV/BGV ciphertext encrypting m. Due to the SIMD feature of BFV/BGV, the decryption
of N LWE ciphertexts can be evaluated at the same time. Then, we just need to switch a BFV/BGV cipher-
text with an underlying ring dimension N into N LWE ciphertexts. To achieve this, we adapt the SlotToCoeff
algorithm introduced in [13] to the BFV setting followed by the SampleExtract algorithm introduced in [15].

Optimizations. We provide various techniques to further optimize the performance.

• We maximize the number of zero coefficients of the function f to make the evaluation more efficient.

• We minimize the number of rotations and ciphertext multiplications by using the baby-step-giant-
step linear transformation [26, 30], Paterson-Stockmayer algorithm [47], and generating additional
bootstrapping keys.

• To support evaluating different binary gates in parallel when doing bootstrapping, we introduce ways
to pre-process and post-process the LWE ciphertexts, so that we can take advantage of the SIMD
feature of the underlying BFV scheme even when the gates are distinct.

1.3 Organization

The rest of the paper is organized as follows. Section 2 discusses related works and compares our construction
with the existing (batched) LWE ciphertexts bootstrapping methods in terms of asymptotic efficiency and
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Ours Prior works Concurrent Works
Scheme(s) §4-§6 [18, 15, 36] [44] [24, 45] [37] [38]
Amortized Cost per
Binary Gate Bootstrapping

Õ(1) O(n) Õ(31/ϵ · nϵ) O(ϵ · n1/ϵ) Õ(n0.75) Õ(1)

Arbitrary Function
Evaluation

Yes No Yes (by [24]) No

Implementation Yes No Yes (by [24]) No

Table 1: Comparisons with prior works. Amortized cost per binary gate bootstrapping counts the number of
FHE multiplications per LWE ciphertext bootstrapping (amortized over N > n ciphertexts, where n is the
secret key dimension of the LWE ciphertexts). Arbitrary function evaluation is whether the scheme supports
arbitrary lookup table evaluation over the plaintext space.

functionality. Section 3 introduces some necessary background on LWE ciphertexts bootstrapping and BFV
homomorphic encryption scheme. Section 4 describes our main construction to do batched LWE ciphertexts
bootstrapping for NAND gates. Section 5 extends the construction to allow arbitrary binary gates evaluation
in parallel. Section 6 further adapts the construction to support batched arbitrary functional bootstrapping.
Section 7 discusses our implementation, experimental results, and comparisons with other schemes providing
similar or weaker functionalities. Section 8 introduces some extensions of our construction. Section 9
concludes the paper.

2 Related Works

2.1 (Batched) FHEW/TFHE-like Bootstrapping

We give a comparison between our work and the prior works on FHEW/TFHE-like cryptosystems in Table 1,
regarding the asymptotic efficiency and functionalities. For concrete performance comparisons, see Section 7.

Non-batched schemes. FHEW [18] cryptosystem was introduced to focus on evaluating NAND gate
between two LWE ciphertexts without increasing the error of the output ciphertext. As NAND gate is
universal, such a cryptosystem can be used to homomorphically evaluate any arbitrary binary circuit. It is
later improved by TFHE [15] and Lee et al. [36]. However, all of these works primarily focus on evaluating
a single NAND gate at a time and are both asymptotically and concretely relatively costly.

Prior works on batched bootstrapping. Batched bootstrapping instead evaluate multiple NAND gates
in parallel. [44] was the first to introduce this concept, and was later improved and implemented by [24].
Another work [45] also achieves the same asymptotic efficiency as in [24].

Concurrent and independent works on batched bootstrapping. Two recent works [37] and [38] made
great progress along this path. [38] improves the asymptotic cost to Õ(1) homomorphic multiplications per
gate bootstrapping, which is asymptotically the same as our construction and is almost optimal. However,
to our knowledge, these two works have not yet been implemented, so whether they are concretely efficient
remains to be an open problem.

2.2 Arbitrary Function Evaluation

One important feature of FHEW/TFHE-like cryptosystems is that they allow functional bootstrapping: one
can evaluate a function over an LWE ciphertext without increasing the error. However, to our knowledge,
most of the schemes in Section 2.1 (see Table 1) can only be used to evaluate a negacyclic function (i.e., a
function f : Zq → Z satisfying f(x) = −f(x + q/2)). Moreover, the input LWE ciphertexts of these works
have small precision (normally ≤ 5 bits to remain practical). Thus, the capability is very limited. On the
other hand, another line of work constructs arbitrary function evaluation for this kind of cryptosystem, some
of which also try to allow larger precision (e.g., 10-20 bits).
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Prior works on arbitrary function evaluation. [16, 33, 40, 51] develop distinct ways to evaluate
arbitrary functions (each can be represented as look-up tables (LUT) over the plaintext space). [16, 33] rely
on homomorphic multiplications ([16] relying on BFV-like multiplications and [33] relying on GSW-based
multiplications). [40, 51] are instead based on a more lightweight method (only addition between LWE
ciphertexts is needed).

Note that the basic methods of all these works only work for small precision. [16, 40] provide a way
to extend their scheme to allow larger precisions by first dividing a large-precision input ciphertext (e.g.,
21-bit precision) into several small-precision ciphertexts (e.g., 7 ciphertexts each with 3-bit precision). Then,
these small ciphertexts are fed into the algorithms introduced in [23] to evaluate large-precision functions
(large-precision LUTs). A recent concurrent and independent work [41] further improves upon [40, 33].

[23] itself provides a way to evaluate a large LUT over a vector of ciphertexts with small plaintext space.
[39] (concurrent and independent) further optimize this method. Note that this method assumes the input to
be a vector of ciphertexts with small precision, instead of with large precision. Hence, in most applications,
the ciphertexts are required to be decomposed first by applying algorithms in [16, 40], which introduces an
extra overhead.

2.3 Other Related Works

Bootstrapping, first introduced by [21], is greatly explored in many works. Our construction is similar to the
bootstrapping procedure introduced in [19] in that we also take advantage of the free modulo t operation
when homomorphically evaluating a circuit using BFV, where t is the plaintext space. However, our work
is different from [19] in several ways. First, our goal is to support batched functional bootstrapping for
LWE ciphertexts, while [19] simply aims to reduce the error for a BFV ciphertext. Thus, our construction
not only directly achieves the functionality of FHE, but also provides much more flexibility when evluating
the bootstrapping circuit. Second, [19] discusses t being a power-of-two, which is not very compatible with
power-of-two cyclotomics, and thus limits its practicality. Our construction, instead, uses a large prime field
t, to guarantee practicality. Third, we introduce additional optimization techniques to make our procedure
concretely efficient.

3 Preliminary

Let N be a power of two. Let R = Z[X]/(XN + 1) denote the 2N -th cyclotomic ring, and RQ = R/QR for
some Q ∈ Z. Let [n] denote the set {1, . . . , n}. Let a⃗ denote a vector and a⃗[i] denote the i-th element of a⃗.
Similarly, if A is a matrix, let A[i][j] denote the element on the i-th row and j-th column of matrix A. Let
∥x⃗∥ℓ denote the ℓ-norm for vector x⃗ (calculated as (

∑
i∈|x⃗| x⃗[i]

ℓ)1/ℓ). If x ∈ R, let ∥x∥ℓ denote the ℓ-norm

of the coefficient vector of x, and let x[i] denote the i-th coefficient of x.
When a function needs to take a key but is called without the key (e.g., Dec(ct) where ct is some LWE

ciphertext and Dec is the decryption procedure of LWE scheme), it is assumed that the key is taken implicitly
and correctly unless otherwise specified.

3.1 Hard Problems

Definition 3.1 (Decisional learning with error problem). Let n, q,D, χ be parameters dependent on λ. The
learning with error (LWE) problem states the following: for a←$ Zn

q sampled uniformly at random, it holds
that (a, ⟨a, s⟩+ e) ≈c (a, b), where s← D, e← χ and b←$ Zq.

Let LWEn,q,D,χ denote the LWE assumption parameterized by n, q,D, χ.

Definition 3.2 (Decisional ring learning with error problem). Let N,Q,D, χ be parameters dependent on
λ and N being a power of two. Let R = Z[X]/(XN + 1). The ring learning with error (RLWE) problem
states the following: for a←$ RQ sampled uniformly at random, it holds that (a, a · s+ e) ≈c (a, b), where
s← D, e← χ and b←$ RQ.
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Let RLWEN,Q,D,χ denote the RLWE assumption parameterized by N,Q,D, χ.

3.2 FHEW/TFHE Cryptosystem

FHEW was first introduced in [18], and later improved by TFHE [15]. Recent work [36] also follows this line
of work.

All these bootstrapping procedures are based on (CPA secure) LWE encryption parameterized by a secret
dimension n, ciphertext modulus q, plaintext modulus p, secret key distirbution D, and error distribution
χ (such that LWEn,q,D,χ holds) defined as follows: under (secret) key sk ← D, the LWE encryption of a
message m ∈ Zp is a vector ct = (⃗a, b) ∈ Zn+1

q such that

b = ⟨⃗a, sk⟩+ α ·m+ e (mod q)

where α = ⌊q/p⌋, and e← χ is a small error term satisfying |e| < ⌊q/(2p)⌋. The message m is recovered by
computing the LWE decryption function

Dec(sk, ct) =

⌈
b− ⟨⃗a, sk⟩ (mod q)

α

⌋
Let err(ct) denote e ← Dec(sk, ct) − α ·m, where sk is the corresponding secret key of ct, m = Dec(ct),

and α = ⌊q/p⌋.
FHEW/TFHE functional bootstrapping. FHEW/TFHE bootstrapping procedure, denoted by Boot(btk,
f, ct) satisfying the following property:

Given a correct bootstrapping key btk generated from sk, any negacylic function f : Zq → Z (i.e.,
f(x + q/2) = −f(x)), and any ciphertext ct with err(ct) < β encrypted under sk, let ct′ ← Boot(btk, f, ct),
it satisfies that Dec(sk, ct′) · α = f(Dec(sk, ct) · α) (mod q) and err(ct′) < β′ where β′ ≤ β.

When we use Boot(f, ct), we implicitly mean that Boot is called with the correct bootstrapping key btk.
Note that this is the generalized functional bootstrapping achieved by [18, 15]. In this paper, we achieve

an even stronger functionality than this generalized bootstrapping by removing the requirement that f is
negacyclic.

FHEW/TFHE bootstrapping for the NAND gate. To evaluate a NAND gate (which is a universal
gate) between two LWE ciphertexts without increasing the error, the procedure is as follows (which is a
special application of the generalized functional bootstrapping described above):

• Let p = 4. Let ct1, ct2 denote the two input LWE ciphertexts, each of which is encrypting either 0 or
1, with error err(ctb) < q/16 for b ∈ {1, 2}.

• Compute ct← ct1 + ct2, ct encrypting 0, 1 or 2, with error < q/16 + q/16 = q/8.

• Let f : Zq → Z be defined as follows:

f(x) =

{
q/8 if −q/8 ≤ x < 3q/8
−q/8 otherwise

which is a negacyclic function. Compute (⃗a′, b′) = ct′ ← Boot(f, ct), and then b′ ← b′ + q/8, which
gives Dec(ct′) = 0 if Dec(ct1 + ct2) = 2 and Dec(ct′) = 1 otherwise, with err(ct′) < q/16.

FHEW/TFHE bootstrapping uses two additional procedures: modulus switching and key switching,
which are also used in our construction, we list those two techniques as follows.

Modulus switching. Modulus switching procedure is defined asModSwitch(ct, q′) = (q/q′)ct = ⌈(q/q′)(⃗a, b)⌋
where ct = (⃗a, b) is an LWE ciphertext with ciphertext modulus q. We formalize it using the following lemma,
adapted from [18]:
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Lemma 3.1 (Modulus switching). Let ct = (⃗a, b) ∈ Zn+1
q be an LWE encryption of a message m ∈ Zp under

secret key sk ∈ Zn, with ciphertext modulus q and noise bound err(ct) < β. Then, for any modulus q′, the
rounded ciphertext ct′ = (⃗a′, b′)← ModSwitch(ct, q′) is an encryption of the same message m under sk with
ciphertext modulus q′ and noise bound |Dec(⃗a′, b′)− ⌊q′/p⌋m| < (q′/q)β + β′′, where β′′ = 1

2 (∥sk∥1 + 1).

Note that for FHEW/TFHE and other FHE schemes, sk is usually a short vector (i.e., ∥sk∥∞ ≤ δ for
some small δ, e.g., δ = 1 for ternary and binary secret keys).

In practice, when the input ciphertext is sufficiently random, or when modulus switching is performed
by randomized rounding, it is possible to replace the additive term β′′ with a smaller probabilistic bound
O(∥sk∥2). For uniformly random ternary keys sk ∈ {0, 1,−1}n, it satisfies β′′ ≈

√
n/3 as discussed in [18, 40].

Key switching. Key switching allows converting an LWE encryption under a key sk ∈ Zn
q into an LWE

encryption of the same message with the same ciphertext modulus and plaintext modulus (and slightly larger
error) under a different key sk′ ∈ Zn′

q . The key switching procedure is parameterized by a base Bks (e.g., 2).

Let dks =
⌈
logBks

(q)
⌉
. Let kski,j,v ∈ Zn′+1

q ← (α⃗i,j,v, ⟨α⃗i,j,v, sk
′⟩+ e+ vsk[i]Bi

ks) for i ∈ [n], v ∈ [Bks], j ∈ [dks],

where α⃗·,·,· is a randomly sampled vector from Zn′

q and e is some small error sampled from χσ (some
Gaussian distribution with mean 0 and standard deviation σ). Let K = {kski,j,v} denote the key switching
key. KeySwitch(K, ct) is then defined as follows: given (⃗a, b) ∈ Zn+1

q as the input ciphertext, first compute the

base-Bks expansion of a⃗[i] =
∑

j∈[dks]
a⃗[i]jB

j
ks, for all i ∈ [n]; then, output ct′ = (⃗0, b)−

∑
i∈[n],j∈[dks]

kski,j,⃗a[i]j .

We formalize this property using the following lemma, adapted from [18].

Lemma 3.2 (Key switching). Given an LWE ciphertext ct ∈ Zn+1
q encrypting message m ∈ Zp under secret

key sk ∈ Zn
q , and a key switching key K generated using sk and sk′ ∈ Zn′

q , let ct′ ∈ Zn′+1
q ← KeySwitch(K, ct),

it holds that Dec(ct′, sk′) = Dec(ct, sk) and err(ct′)← χσ+n·dks·σ′ where σ is the error standard deviation for
ct and σ′ is the error standard deviation for each element in the key switching key.

The security of key switching is also intuitive. Essentially, key switching is simply summing up key-
switching keys, which are all LWE ciphertexts, and since all the information needed is public, the resulting
ciphertext is semantically secure.

3.3 B/FV Leveled Homomorphic Encryption

The BFV leveled homomorphic encryption scheme is first introduced in [8] using standard LWE assumption,
and later adapted to ring LWE assumption by [20].

Given a polynomial ∈ Rt = Zt[X]/(XN +1), the BFV scheme encrypts it into a ciphertext consisting of
two polynomials, where each polynomial is from a larger cyclotomic ring RQ = ZQ[X]/(XN + 1) for some
Q > t. We refer t as the plaintext modulus, Q as the ciphertext modulus, and N as the ring dimension. t
satisfies that t ≡ 1 mod 2N , where N is a power of two.

Plaintext encoding. To encrypt a plaintext m⃗ = (m1, . . . ,mN ) ∈ ZN
t , BFV creates polynomial m(X) =∑

i∈[N ] miX
i−1, and then encodes it by constructing another polynomial y(X) =

∑
i∈[N ] yiX

i−1 where

mi = y(ηj), ηj := η3
j

mod t, and η is the 2N -th primitive root of unity of t. Such encoding can be done
using an Inverse Number Theoretic Transformation (INTT), which is a linear transformation (and can be
represented as matrix multiplication).

Encryption and decryption. The BFV ciphertext encrypting m⃗ under sk ← D has the format ct =
(a, b) ∈ R2

Q, satisfying b− a · sk = ⌊Q/t⌋ · y+ e where ⌊Q/t⌋ · y ∈ RQ and y is the polynomial encoded in the
way above, and e is some small error term sampled from some Gaussian distribution over RQ. Note that
this encryption using ⌊Q/t⌋ ·y for some message y is exactly the same as the LWE encryption we have above
(there we have α = ⌊q/p⌋).

Symmetric key encryption can be done by simply sampling a random a and constructing b accordingly
using sk. Public key encryption can also be achieved easily but it is not relevant to our paper so we refer
the readers to [8, 20, 31] for details.
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Decryption is thus to calculate y′ ← ⌈(t/Q) · (b− a · sk)⌋ ∈ Rt (note that (b−a ·sk) is done over RQ), and
then decodes it by applying a procedure to revert the encoding process (which is also a linear transformation).
We assume BFV.Dec outputs plaintext ∈ ZN

t , which is the decoded form, for simplicity. Similarly, we assume
BFV.Enc contains the encoding process.

BFV operations. BFV essentially supports addition, multiplication, rotation, and polynomial function
evaluation, satisfying the following property:

• (Addition) BFV.Dec(ct1 + ct2) = BFV.Dec(ct1) + BFV.Dec(ct2)

• (Multiplication) BFV.Dec(ct1 × ct2) = BFV.Dec(ct1)× BFV.Dec(ct2)

• (Rotation) BFV.Dec(rot(ct, j))[i] = BFV.Dec(ct)[i+ j (mod N)] for all i, j ∈ [N ]

• (Polynomial evaluation) BFV.Dec(BFV.Eval(ct, f)) = f(BFV.Dec(ct)), where f : Zt → Zt is a polyno-
mial function. Note that this is implied by addition and multiplication.

BFV ciphertexts addition is done by adding the two pairs of polynomials accordingly (i.e., ct1 + ct2 =
(a1 + a2, b1 + b2). Multiplication requires a tensor product between two ciphertexts followed by a relin-
earization processing (i.e., a way to bring the product result of three ring elements back to two elements),
altogether taking polylog(Q) polynomial multiplications (or equivalently O(Npolylog(Q) log(N)) integer mul-
tiplications). Rotation is done via Galois automorphism which also takes polylog(Q) polynomial multiplica-
tions. Multiplication requires a BFV evaluation key for relinearization and rotation requires a BFV rotation
key. We assume all keys are correctly and implicitly taken. All operations are operated over the entire
plaintext vector m ∈ ZN

t . Thus, all messages need to be evaluated using the same polynomial f by default.
This is also known as the Single Instruction Multiple Data (SIMD) property of BFV.

Since we use all of these operations as blackboxes, we omit the details and refer the readers to [8, 20, 49,
31].

Short keys. In practice, sk ∈ R is almost always a short vector (i.e., ∥sk∥∞ ≤ δ for some small δ, e.g.,
δ = 1 for ternary and binary secret keys). sk ∈ R can be easily represented in RQ (e.g., if sk[i] = −1, it is
represented as Q− 1). Therefore, we directly view sk ∈ RQ for simplicity. When sk is transformed to RQ′ ,
the transformation is done in the same way. In this paper, we assume the secret key of BFV is ternary (i.e.,
sk[i] ∈ {0, 1,−1} for all i ∈ [N ] for sk ∈ R), compliant with FHE standard [1], unless otherwise specified.

BFV modulus switching. Similar to the modulus switching procedure described in Section 3.2 for
FHEW/TFHE, the modulus switching procedure for BFV: BFV.ModSwitch(ctBFV, Q

′) is as follow: let
ctBFV = (a, b) ∈ RQ be a BFV ciphertext with ring dimension N , ciphertext modulus Q and error e.
Then, BFV.ModSwitch(ctBFV, Q

′) := (Q′/Q)ctBFV simply takes every coefficient of a, b, divides them by Q,
multiplies them by Q′, and rounds to the nearest integer.

BFV key switching. BFV key switching is much more complicated than the key switching for LWE
ciphertexts introduced above, but essentially for the same functionality. We skip the details here and refer
the readers to [31].

4 Binary NAND Gate Bootstrapping

In this section, we show in detail how to construct a batched bootstrapping process for NAND gate, i.e., the
batch version of the original FHEW/TFHE bootstrapping procedure as introduced in Section 3.2.

Given 2N LWE ciphertexts c⃗t1 = (ct1,1, . . . , ct1,N ), c⃗t2 = (ct2,1, . . . , ct2,N ), encrypting either 0 or 1 with
ciphertext modulus q, plaintext modulus p = 3 †, under the same key sk, with error < β = ⌊q/12⌋, we want to
construct some procedure Boot(c⃗t1, c⃗t2, btk) where btk is some bootstrapping key to be discussed later, and
output (ct′1, . . . , ct

′
N ), all encrypted under sk with error < β, such that Dec(ct′i) = ¬(Dec(ct1,i) ∧ Dec(ct2,i))

for i ∈ [N ].
We perform the batched bootstrapping using BFV scheme, parametrized by ring dimension N , ciphertext

modulus Q, and plaintext modulus t.

†Note that prior works use p = 4.
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4.1 Bootstrapping Key Generation

We start by discussing what bootstrapping keys we need. Since our construction is fully based on BFV HE
scheme, we need the public key of BFV BFV.pk, the evaluation key of BFV BFV.evk (for relinearization after
multiplications), and the rotation key of BFV BFV.rtk for arbitrary rotations (to perform BFV.Rotate(ct,
BFV.rtk, i). For each i, we need to generate a different BFV rotation key. Thus, BFV.rtk essentially includes
multiple keys corresponding to multiple rotation step sizes. We will fix the specific number of rotation keys
included in BFV.rtk later. Besides, we need bfvctsk ← BFV.Enc(sk). Here sk ∈ Zn

q
‡, is the secret key used to

encrypt the inputs c⃗t1, c⃗t2. Note that the plaintext space of the BFV scheme is ZN
t , to make it consistent

with the modulus of sk, we let t = q. Moreover, to make sk a valid input to BFV.Enc, we repeat sk for N/n
times and concatenate together §, i.e. (sk|| . . . ||sk) ∈ ZN

t .
All these public keys are generated using a BFV secret key skBFV =

∑
i∈[N ] siX

i−1 ∈ RQ, generated

independently from the secret key sk (which is used to encrypt the input LWE ciphertexts).

Let
−−−→
skBFV = (s1, . . . , sN ) denotes the vector of the coefficients of skBFV. With

−−−→
skBFV and sk, we generate

the key-switching key K that is used to turn an LWE ciphertext encrypted under skBFV to an LWE ciphertext
encrypted under sk as introduced in Section 3.2.

Based on the CPA security of BFV, all of these keys are not leaking any information about skBFV or sk.
Thus, our bootstrapping key is btk = (BFV.pk,BFV.evk,BFV.rtk,K, bfvctsk).

4.2 Pair-wise Summation

Recall that for an LWE ciphertext (⃗a, b) encrypting 1 under sk, we have b−⟨sk, a⃗⟩ ∈ (⌊q/3⌋−⌊q/12⌋ , ⌊q/3⌋+
⌊q/12⌋), as err(ctj,i) < β = ⌊q/12⌋, and encrypting 0 when b− ⟨sk, a⃗⟩ ∈ (−⌊q/12⌋ , ⌊q/12⌋). ¶

Our first step simply adds the two input vectors pair-wisely. For all i ∈ [N ], given ct1,i = (⃗a1,i, b1,i), ct2,i =
(⃗a2,i, b2,i), compute cti = (⃗ai, bi) ← (⃗a1,i + a⃗2,i, b1,i + b2,i + ⌊q/6⌋), where the vector addition is done via
element-wise addition. (We shift the result by ⌊q/6⌋ to avoid negative numbers for simplicity in the following
range analysis.)

Thus, if Dec(ct1,i) = Dec(ct2,i) = 1 we have:

bi − ⟨sk, a⃗i⟩ = (b1,i − ⟨sk, a⃗1,i⟩) + (b2,i − ⟨sk, a⃗2,i⟩) + ⌊q/6⌋
∈ (⌊q/3⌋+ ⌊q/3⌋ − ⌊q/12⌋ − ⌊q/12⌋+ ⌊q/6⌋ , ⌊q/3⌋+ ⌊q/3⌋+ ⌊q/12⌋+ ⌊q/12⌋+ ⌊q/6⌋)
⊆ (2 ⌊q/3⌋ , q)

And similarly, if Dec(ct1,i) = Dec(ct2,i) = 0, we have bi − ⟨sk, a⃗i⟩ ∈ (0, ⌊q/3⌋), otherwise bi − ⟨sk, a⃗i⟩ ∈
(⌊q/3⌋ , 2 ⌊q/3⌋).

4.3 Homomorphic Decryption Circuit

Our next step is to homomorphically decrypt all the cti’s. The regular LWE decryption procedure is as
follow:

Dec(sk, ct = (⃗a, b)) =

⌈
b− ⟨⃗a, sk⟩ (mod q)

α

⌋
which has three steps: (1) inner product, (2) subtraction, and (3) division and rounding. As our goal is
to compute a NAND gate and output an LWE ciphertext, during the final step, we also need to map the
resulting value in Z3 into {0, ⌊q/3⌋}, which is the encoding of {0, 1} correspondingly. Thus, the last step is
essentially division, rounding, and NAND mapping.

‡Recall that technically sk ∈ Zn. However, it can be transformed to Zn
q easily as long as ∥sk∥∞ ≤ ⌊q/2⌋. Thus, for simplicity,

we view sk ∈ Zn
q . Similarly for the BFV secret key below.

§For simplicity we assume N/n ∈ Z+.
¶Note that −⌊q/12⌋ is simply q − ⌊q/12⌋.
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Algorithm 1 Homomorphic Linear Transformation

1: procedure LT(BFV.rtk, A, bfvct) ▷ A ∈ ZN×n
t

2: ▷ bfvct encrypts a vector v⃗ ∈ Zn
t by repeating v N/n times and encrypting the concatenation of those

N/n repetitions.
3: rt←

√
n

4: ▷ We assume
√
n to be an integer for simplicity. For more general n’s, see [30] for details.

5: for i ∈ [rt] do
6: bfvctroti ← BFV.Rotate(bfvct,BFV.rtk, i · rt)
7: Initialize BFV ciphertexts resk, for k ∈ [rt], each encrypting 0’s
8: for k ∈ [rt] do
9: for i ∈ [rt] do

10: Construct tmp ∈ ZN
t , such that tmp[j] = A[indct][inda], where indct = (j − k) mod N , inda =

(j + i · rt) mod n
11: c← tmp× bfvctroti
12: resk ← resk + c

13: for i ∈ [rt− 1] do
14: c← BFV.Rotate(resrt−i+1,BFV.rtk, 1)
15: resrt−i ← BFV.Add(resrt−i, c)

16: return bfvct′ ← res1

One key property we use is that BFV homomorphically computes over Zt where we set t equals q which
is the LWE ciphertext modulus. Therefore, the mod operation over t is automatically performed during all
computations and we just need to design the circuit over Zt with t = q.

Inner product. We start by homomorphically computing the inner product. Let cti = (⃗ai, bi). To compute

⟨⃗ai, sk⟩ for all i ∈ [N ] is equivalent to compute Ask where A =

(
a⃗1...
a⃗N

)
∈ ZN×n

t .

Naively, this matrix multiplication can be computed with N plaintext-by-ciphertext multiplications to-
gether with N rotations. However, we improve this by using the baby-step-giant-step technique, which is first
introduced in [26] and later improved in [30]. Thus allows us to compute Ask with N plaintext-by-ciphertext
multiplications and just 2

√
N rotations. Note that each rotation requires a specific rotation key generated

accordingly. As the BFV key generation is straightforward, we view it as a blackbox and assume all the keys
needed are properly included in btk.

We adapt this technique and formally present it in Algorithm 1, which takes a matrix A ∈ ZN×n
t , a BFV

ciphertext bfvct encrypting a vector m ∈ Zn
t , and proper BFV rotation keys, and outputs a BFV ciphertext

bfvct′ encrypting (Am)⊺ ∈ ZN
t . For the correctness of this algorithm, see [26, 30] for details.

Subtraction. Subtraction can be done by computing b⃗− (Ask)⊺ where b⃗ = (b1, . . . , bN ). Again, as BFV is
computing the circuits over Zt, “mod t” part comes for free.

Division, rounding, and NAND mapping. This step is the most involved component in the decryption
procedure. The reason is that BFV only supports multiplication and addition over a finite field , while
division and rounding are not supported. Thus, we design a polynomial function over the finite field Zt to
compute division and rounding.

Recall that if Dec(ct1,i) = Dec(ct2,i) = 1 we have bi − ⟨sk, a⃗i⟩+ ⌊q/6⌋ ∈ (2 ⌊q/3⌋ , q), where (⃗ai, bi) = cti
computed above in Section 4.2. This is the case that should be mapped to 0 for a NANG gate mapping.
Otherwise, the result should be mapped to ⌊q/3⌋ (i.e., the encoding of 1).

We first express this division, rounding, and mapping process as a function DRaM : Zt → Zt (recall that
t = q):

DRaM(x) =

{
0 if x ≥ 2 ⌊t/3⌋
⌊t/3⌋ otherwise

(1)
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where DRaM stands for Division, Rounding, and Mapping.
Then, we translate this function into a polynomial function DRaMpoly : Zt → Zt by using the following

formula adapted from [29, Equation 2]:

DRaMpoly(x) = DRaM(0)−
t−1∑
i=1

xi
t−1∑
a=0

DRaM(a)at−1−i .

For any t, DRaMpoly is then equivalent to DRaM and we formalize it by the following lemma.

Lemma 4.1. Given any prime p, for any function f : Zp → Zp, let f
′(x) := f(0)−

∑t−1
i=1 x

i
∑t−1

a=0 f(a)a
t−1−i

then it holds that for any x ∈ Zp, f(x) = f ′(x).

For correctness proof of the lemma, we refer the readers to [29, Section 3].
Thus, to evaluate the division, rounding, and mapping, we simply need to perform BFV.Eval(bfvct,DRaMpoly),

where bfvct ← b⃗ − LT(BFV.rtk, A, bfvctsk) is the BFV ciphertext resulted by homomorphically computing

b⃗ − (Ask)⊺, where b⃗ = (b1, . . . , bN ), A =

(
a⃗1...
a⃗N

)
, and bfvctsk is the BFV ciphertext encrypting sk ∈ Zn

t

(generated as in Section 4.1).
Naively computing the polynomial DRaMpoly requires O(t) ciphertext-by-ciphertext multiplications,

which are used to generate xi for all i ∈ [t]. However, instead, we use the Paterson-Stockmeyer algorithm
[47], reducing to O(

√
t) ciphertext-by-ciphertext multiplications.

4.4 BFV Ciphertext to LWE Ciphertexts

After all the processes above, we obtain a BFV ciphertext bfvctres encrypting the message vector (m1, . . . ,mN ).
Here we have mi = 0 if Dec(ct1,i) = Dec(ct2,i) = 1, and mi = ⌊q/3⌋ otherwise, where ct1,i, ct2,i for i ∈ [N ]
are input ciphertexts. Recall that bfvctres is in the encoded form introduced in Section 3.3.

Our next step is to expand this single BFV ciphertext encrypting N messages into N LWE ciphertexts,
each encrypting a single mi. To do this, we first transform bfvctres to a BFV ciphertext encrypting m(X) =∑

i miX
i−1. In other words, we decode the encoded messages homomorphically. Then, we extract N

LWE ciphertexts each encrypting a single coefficient mi, i.e., switching a Ring-LWE ciphertext into LWE
ciphertexts.

Homomorphic decoding. Recall that in BFV, to encrypt a vector of messages (m1, . . . ,mN ) ∈ ZN
t , we

first use canonical embedding to encode them into a polynomial. In more detail, letm(X) :=
∑

i∈[N ] miX
i−1,

we construct a polynomial y(X) =
∑

i∈[N ] yiX
i−1, where yi = m(ζi), where ζ being the 2N -th primitive root

of unity of t, and ζi := ζ3
i

. Thus, a ciphertext bfvctres encrypting (m1, . . . ,mN ) encrypts the polynomial
y(X).

To revert this process, we can homomorphically compute bfvct′res ← bfvctresU
⊺, where

U :=



1 ζ0 ζ20 . . . ζN−1
0

1 ζ1 ζ21 . . . ζN−1
1

...
...

...
. . .

...

1 ζN
2 −1 ζ2N

2 −1
. . . ζN−1

N
2 −1

1 ζ̄0 ζ̄20 . . . ζ̄N−1
0

1 ζ̄1 ζ̄21 . . . ζ̄N−1
1

...
...

...
. . .

...

1 ζ̄N
2 −1 ζ̄2N

2 −1
. . . ζ̄N−1

N
2 −1


∈ ZN×N

t

where ζ̄j := ζ−1
j , and the resulting bfvct′res is thus encrypting the polynomial m(X) =

∑
i miX

i−1.
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This process is first introduced as the SlotToCoeff procedure in [13] for the CKKS HE scheme, and we
adapt it to the BFV scheme.

Ring-LWE to LWE. Now bfvct′res = (abfv, bbfv) ∈ R2
Q and we have bbfv − abfvskBFV ≈ ⌊Q/t⌋m where m is

the polynomial m(X) defined above with all the coefficients being either 0 or ⌊t/3⌋. Our goal is to obtain

N LWE ciphertexts (ct′1 = (⃗a′1, b
′
1), . . . , ct

′
N = (⃗a′N , b′N )) ∈ ZN ·(N+1)

Q such that b′i − ⟨⃗a′i, s⃗⟩ ≈ ⌊Q/t⌋mi, where
s⃗ = (s1, . . . , sN ) for s⃗ is the coefficient vector of skBFV.

This can be done by using the SampleExtract procedure in [15]. With ciphertext bfvct′res = (abfv(X) =∑
i∈[N ] abfvi

Xi−1, bbfv(X) =
∑

i∈[N ] bbfvi
Xi−1), we achieve the extraction from RLWE ciphertext bfvct′res to

LWE ciphertexts (⃗a′i, b
′
i)i∈[N ] by setting a⃗′i = (αi,1, . . . , αi,N ) where αi,j ← abfvi−j+1

if j ≤ i and αi,j ←
−abfvN−j+i+1

if j > i, and b′i = bbfvi
for i ∈ [N ].

This procedure is formalized by the following lemma:

Lemma 4.2. For any ring elements a(X) =
∑

i∈[N ] aiX
i−1, s(X) =

∑
i∈[N ] siX

i−1 ∈ Rq, let b(X) =

a · s =
∑

i∈[N ] biX
i−1 ∈ Rq, it holds that bi =

∑
j∈[N ] a

′
i,j · sj mod q where a′i,j = ai−j+1 if j ≤ i and

a′i,j = q − aN−j+i+1 otherwise.

The correctness of the lemma is straightforward so we omit the details. The procedure is presented as
Extract in Algorithm 2.

Key switching and modulus switching. After all these steps, we now obtain (ct′1 = (⃗a′1, b
′
1), . . . , ct

′
N =

(⃗a′N , b′N )) ∈ ZN ·(n+1)
Q encrypting the NAND results under s⃗. To obtain N LWE ciphertexts encrypting

the NAND results under sk with ciphertext modulus t, two final steps are needed: (1) use key switching
KeySwitch introduced in Section 3.2 with the key switching key K generated as in Section 4.1 to change ct′i
into ciphertexts encrypted under sk instead of s⃗; (2) use modulus switching to change the ciphertext modulus
from Q to t.

We thus complete our algorithm, and formally demonstrate the entire procedure in Algorithm 2.

Theorem 4.3. Let (pplwe = (n, q, p = 3,D1, χσ), ppbfv = (N,Q,Q′, t = q,D2, χσ′), sk, btk) ← Setup(1λ) in
Algorithm 2, for any input LWE ciphertexts c⃗t1 = (ct1,1, . . . , ct1,N ), c⃗t2 = (ct2,1, . . . , ct2,N ) parameterized
by pplwe, encrypting {0, 1} under sk, and err(cti,j) < ⌊q/12⌋ for all i ∈ [2], j ∈ [N ]; let (ctout1, . . . , ctoutN )←
Boot(c⃗t1, c⃗t2, btk) in Algorithm 2, it holds that: Dec(ctouti) = NAND(Dec(ct1,i),Dec(ct2,i)), Pr[err(ctouti) <
⌊q/12⌋] ≥ 1− negl(λ), and ctouti is encrypted under secret key sk, for all i ∈ [N ].

Proof sketch. We show this result from basic correctness (i.e., achieving NAND gate functionality) and noise
analysis.

• (Correctness) Correctness (i.e., Dec(ctouti) = NAND(Dec(ct1,i),Dec(ct2,i))) is intuitive. We first ho-
momorphically evaluate a circuit using BFV, which includes the evaluation of Dec function of the LWE
ciphertexts and the NAND mapping. Then we extract N LWE ciphertexts out from the resulting BFV
ciphertext. The correctness of circuit design is given by Lemma 4.1, the correctness of the evaluation
of the circuit is given by the correctness of BFV (and condition (4) in Setup), and the correctness
of extraction (including RLWE to LWE transformation, key switching, and modulus switching) is
guaranteed by Lemmas 3.1, 3.2 and 4.2.

• (Noise Analysis) By the correctness of BFV, with bfvct5 obtained as on line 33 in Algorithm 2, we have
err(bfvct5) ≤ (Q′/t)/2, and this error is from Gaussian distribution χσ5

with mean 0 and standard
deviation σ5. The key switching procedure introduces an extra noise with a standard deviation of
σks = σkskNdks where σksk is the error standard deviation of the key switching key and σksk = σ′,
where σ′ is selected on line 4 in Algorithm 2, and dks is a key switching parameter, bounded by log(N)
(see details in Section 3.2). Thus, after modulus switching, the resulting ciphertexts have error of

standard deviation σ =

√(
t
Q′ (σ5 + σks)

)2
+ σms

2, where σms =

√
∥sk∥2

2+1
3 is the modulus switching

error standard deviation, and ∥sk∥2 is the ℓ-2 norm of the secret key of the LWE ciphertexts)
Thus, by condition (6) on line 8 in Algorithm 2, err(ctouti) < ⌊q/12⌋ ,∀i ∈ [N ] with overwhelming
probability.
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Algorithm 2 Batched FHEW/TFHE bootstrapping for NAND gate

1: procedure Setup(1λ)
2: Select (n, q,D1, χσ, N,Q,D2χσ′ , Q′) minimizing the cost of the entire homomorphic circuit evaluation

and also satisfying:
3: (1) LWEn,q,D1,χσ

holds, and Pr[e < ⌊q/12⌋] ≥ 1− negl(λ) where e← χσ.
4: (2) RLWEN,Q,D2,χσ′ hold.
5: (3) Q′ ≤ Q, LWEn,Q′,D1,χσ′ holds.
6: (4) BFV with parameters N,Q, t = q,D2, χσ′ is enough to evaluate the circuit in procedure Boot

7: (5) LWEn,q,D1,χσres
holds, where σres =

√
( t
Q′ (σ5 + σks))2 + σms

2, where σ5 is the noise distribution

standard deviation of line 33
8: (6) Pr[e′ < ⌊q/12⌋] ≥ 1− negl(λ) where e′ ← χσres ▷ σks, σms are as introduced in Section 3.2.
9: sk← D1

10: Generate BFV secret key skBFV ← D2.
11: Generate bootstrapping keys btk = (BFV.pk,BFV.evk,BFV.rtk,K, bfvctsk) as in Section 4.1.
12: ▷ K generated with skBFV, sk, Q

′, χσ′ .
13: return (pp = pplwe = (n, q, p = 3,D1, χσ), ppbfv = (N,Q,Q′, t = q,D2, χσ′), sk, btk)

14: procedure Extract(bfvct = (abfv, bbfv)) ▷ Extract N LWE ciphertexts from one BFV ciphertext
15: Initialize cti = (⃗ai, bi) for i ∈ [N ]
16: for i ∈ [N ] do
17: for j ∈ [N ] do
18: if j ≤ i then
19: a⃗i[j]← abfv[i− j + 1]
20: else
21: a⃗i[j]← −abfv[N − j + i+ 1]
22: ▷ Negative number is still in Zq where q is the bfvct ciphertext modulus

23: bi = bbfvi

24: return (ct1, . . . , ctN )

25: procedure Boot((ct1,1, . . . , ct1,N ), (ct2,1, . . . , ct2,N ), btk = (BFV.pk,BFV.evk,BFV.rtk,K, bfvctsk))
26: ▷ ctj,i = (⃗aj,i, bj,i) for j ∈ [2], i ∈ [N ]
27: Compute cti = (⃗ai, bi)← (⃗a1,i + a⃗2,i, b1,i + b2,i + ⌊q/6⌋),∀i ∈ [N ]
28: A← (⃗a⊺1 , . . . , a⃗

⊺
N )

29: bfvct1 ← LT(BFV.rtk, A, bfvctsk)

30: bfvct2 ← (b1, . . . , bN )− bfvct1 ▷ Homomorphically computes b⃗− skA
31: bfvct3 ← BFV.Eval(BFV.evk, bfvct2,DRaMpoly)
32: bfvct4 ← LT(BFV.rtk, U⊺, bfvct3) ▷ Recall that U is the matrix defined for packing
33: bfvct5 ← BFV.ModSwitch(bfvct4, Q

′) ▷ BFV.ModSwitch is described in Section 3.3
34: (ct′1, . . . , ct

′
N )← Extract(bfvct5)

35: ct′′i ← KeySwitch(K, ct′i),∀i ∈ [N ]
36: ▷ KeySwitch is defined in Section 3.2, and K is the key switching key
37: ctouti ← ModSwitch(ct′′i , q),∀i ∈ [N ] ▷ ModSwitch is defined in Section 3.2
38: return (ctout1 , . . . , ctoutN )
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Efficiency analysis. As explained, the BFV circuit needs O(
√
n +
√
N) rotations, O(

√
t) ciphertext-by-

ciphertext multiplications, and n+ t+N plaintext-by-ciphertext multiplications, with multiplicative depth
ℓ = log(t)+3 (where we have log(t)+1 levels for polynomial evaluation, one level for the inner product, and
one level for Ring LWE to LWE extraction). Note that all these costs are amortized over N LWE ciphertexts
bootstrapping.

All the homomorphic operations take at most O(poly(ℓ)) polynomial multiplications (see Section 3.3).
The only constraint for t is that t > 2N +1 to guarantee that there is a primitive 2N -th root of unity. Thus,
the total cost is Õ(N) polynomial multiplications per bootstrapping for N LWE ciphertexts. The amortized
cost is thus quasi-constant number of polynomial multiplications (which can be done with O(N log(N)) ZQ

operations using NTT). ‖

Security analysis. Security analysis, on the other hand, is more involved. By condition (1), the input
ciphertexts are semantically secure. To make the whole process secure, we need to make sure that the
ciphertexts bfvct1, bfvct2, bfvct3, bfvct4, bfvct5, (ct

′
i)i∈[N ] are all semantically secure. These ciphertexts are

secure as long as the keys in btk = (BFV.pk,BFV.evk,BFV.rtk,K, bfvctsk) are secure (as all these cipher-
texts are obtained by performing operations over the input ciphertexts using these keys). By condition (2)
on line 4 in Algorithm 2, together with the semantic security of BFV and the security of key switching
process, bfvct1, bfvct2, bfvct3, bfvct4, bfvct5, (ct

′
i)i∈[N ] are semantically secure. Based on the security of BFV,

BFV.pk,BFV.evk,BFV.rtk, bfvctsk are all secure. By condition (3) on line 5, K is also secure. Thus, the whole
process is secure.

4.5 Optimizations

Efficiency of DRaMpoly. For a function

f(x) =

{
0 if x ∈ (−r, r)
y otherwise

where r ∈ [2, ⌊t/2⌋] and y ∈ Zt, the function f ′(X) = f(0) −
∑t−1

i=1 X
i
∑t−1

a=0 f(a)a
t−1−i has about half of

its coefficients being 0. This means that when homomorphically evaluating f ′, only half of the plaintext-by-
ciphertext multiplications are needed, and only half of the powers are needed, which means fewer ciphertext-
by-ciphertext multiplications. Thus, we modify DRaM to be

DRaM(x) =

{
0 if x ∈ (⌊−t/6⌋ , ⌊t/6⌋)
⌊t/3⌋ otherwise

and shift the cti = (⃗ai, bi) (from Section 4.2) by −(2 ⌊t/3⌋ + ⌊t/6⌋) (i.e., bi ← bi − 2 ⌊q/3⌋ − ⌊t/6⌋). This
reduces the complexity of evaluating DRaMpoly while remains everything else the same (recall that t = q).

Generating rotations in advance. Note that for line 29 in Algorithm 2, we need to rotate bfvctsk
√
n

times, as on line 6 in Algorithm 1. However, instead of doing the rotations when evaluating Boot, we can
compute those rotations during btk generation and include bfvctroti in btk for all i ∈ [

√
n]. This can save

√
n

rotations during bootstrapping.

Level-specific rotation keys. With the optimization above, we only need
√
n rotation keys with full

level. After the deep circuit evaluation of DRaMpoly, we also need rotation keys to compute line 31 in
Algorithm 2. Instead of generating the rotation keys with modulus Q, we modulus switch bfvct3 to modulus
Q′ and generate rotation keys with modulus Q′ ≪ Q to greatly reduce the bootstrapping key size.

‖LWE ciphertexts addition has the cost of O(1) Zq operations per LWE ciphertext. LWE key switching has the cost of

Õ(N) ZQ′ operations per LWE ciphertext. LWE modulus switching has the cost of O(n) ZQ′ operations per LWE ciphertext.
Thus, their costs do not affect the asymptotic behavior. Note that the prior works (e.g., [44, 37]) use a similar way to compute
the asymptotic costs. Concretely, their costs are also much smaller than the BFV circuit evaluation.
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Using BFV key switching and modulus switching. Note that BFV also supports key switching
procedure and modulus switching procedure. Hence, instead of performing these two procedures for each
extracted LWE ciphertext, we process directly on the single BFV ciphertext. We first create a polynomial
s′(X) =

∑
i∈[N ] s

′
iX

i−1 ∈ RQ where s′i = sk[i] if i ≤ n and s′i = 0 if i > n, for i ∈ [N ]. ∗∗ We use s′(X) as the
new key to generate the BFV key switching key K together with skBFV. The modulus switching procedure
remains the same. The security guarantee of BFV key switching is the same as ring switching introduced in
[22] as long as n is a power-of-two. Since the key switching procedure and modulus switching procedure are
relatively fast, especially for modulus switching, the runtime may not be majorly affected.

4.6 Additional Discussion

Further tuning n. Note that as on line 5 in Algorithm 2, we need LWEn,Q′,D1,χσ′ to hold. However, since
Q′ is relatively large, although σ′ is also huge, n might need to be relatively large (e.g., concretely 1024).
While this can be sufficient for many applications, we introduce the following way to even reduce n.

Suppose we choose some n such that LWEn,Q′,D1,χσ5
breaks. To work around this issue, we introduce

an intermediate n′ > n and first perform a KeySwitch to the intermediate secret key with length n′, such
that LWEn′,Q′,D1,χσ5

holds. Then, we modulus switch the result to q′ < Q′, with the error standard devi-

ation σtmp =
√
( q′

Q′ (σ5 + σks))2 + σms
2, such that LWEn,q′,D1,χσtmp

holds. Finally, we perform another key

switching to n and modulus switching to q. The resulted error distribution standard deviation is then√
(t/q′)(σtmp + σks

′2) + σms
′2, which can be dominated by σms

′ with careful parameter choosing. One can of
course repeat this intermediate step for arbitrary times to find an optimal n.

Use BGV instead of BFV. Since BGV also evaluates circuits over Zt, our construction can use BGV
instead of BFV. Note that BGV encodes messages using least significant bits (LSBs), and FHEW/TFHE
ciphertexts (i.e., LWE ciphertexts) encrypt messages using most significant bits (MSBs). Therefore, can
simply use the technique introduced in [3, Appendix A] to convert a BGV ciphertext to a BFV ciphertext
before switching back to the LWE ciphertexts. This minor change does not affect the overall functionality
or the security analysis.

5 Multi-binary-gate Bootstrapping

NAND gate itself is a universal gate, and thus our bootstrapping for NAND gate evaluation already achieves
the functionality requirement of FHE. However, the efficiency is still limited.

To evaluate a circuit, one needs to first translate the circuit to have only NAND gates. This might
introduce a lot of overhead on the circuit size. Moreover, it is restrictive that all the N pairs of input LWE
ciphertexts are of the same gate.

Thus, in this section, we propose a construction to evaluate an arbitrary binary logic gate (including OR,
NOR, AND, NAND, XOR, XNOR). Moreover, the batched bootstrapping procedure can take N different
gates, and evaluate the N pairs of LWE ciphertexts with respect to these N input gates in parallel, instead
of evaluating the same gate for all the N pairs of input ciphertexts. This enhanced flexibility of our scheme
does not introduce any overhead ††.

5.1 Construction

Recall that to evaluate the NAND gate, at a high level, we proceed as follows: given two bits γ1, γ2 ∈ {0, 1},
step (1): lift them into Z3, and compute r ← γ1 + γ2 mod 3; step (2): if r = 2, γ′ ← 0, otherwise γ′ ← 1.
This procedure gives us γ′ = NAND(γ1, γ2) as expected.

∗∗Recall that sk is ternary so it can be tranformed in Zq easily
††For XOR and XNOR, prior constructions have an extra overhead in terms of error, as instead of ct1 + ct2, they need to

perform 2(ct1 − ct2) before applying bootstrapping. We refer the readers to [43, Sec 3.2] for details.
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Recall that step (2) is performed homomorphically using BFV. Since all the slots in a BFV ciphertext
need to be evaluated using the same polynomial function by the SIMD nature of BFV, one main challenge
is that we cannot modify step (2), i.e., step (2) needs to be shared among all different gates. Hence, our
construction focuses on modifying step (1) and adding a step (3).

OR gate. For the OR gate, we change step (1) to the following: compute r ← (γ1 + γ2) − 1 mod 3. In
this case, if γ1 and γ2 are both 0, r is 2, and we get γ′ = 0 in step (2). Otherwise, r is 0 or 1, and we get
γ′ = 1.

XNOR gate. For the XNOR gate, we change step (1) to the following: compute r ← (γ1+γ2)−2 mod 3.
In this case, if only one of γ1 and γ2 is 1, r is 2, and we get γ′ = 0 as needed. Otherwise, r is 0 or 1, and
γ′ = 1.

NOR, AND, XOR gates. For those three gates, we add a step (3). We first evaluate the result γ′ as OR,
NAND, and XNOR gate correspondingly using steps (1) and (2). We then perform γ′ ← 1 − γ′, as NOR,
AND, and XOR are simply negations of the result of OR, NAND, XNOR.

Translation to LWE ciphertexts. Recall that our DRaM(x) function outputs 0 when x ∈ (2 ⌊q/3⌋ , q)
and outputs ⌊q/3⌋ otherwise (see Eq. (1)). We show how to evaluate the modification of step (1) described
above in Zq for different gates, such that this DRaM function in step (2) could be shared.

• (OR gate) Given a pair of ciphertexts (ct1 = (⃗a1, b1), ct2 = (⃗a2, b2)), compute ct = (⃗a, b) ← (⃗a1 +
a⃗2, b1 + b2 − ⌊q/6⌋). In this case, iff Dec(ct1) = 0 and Dec(ct2) = 0, we have b− ⟨⃗a, sk⟩ ∈ (2 ⌊q/3⌋ , q).

• (XNOR gate) Given a pair of ciphertexts (ct1 = (⃗a1, b1), ct2 = (⃗a2, b2)), compute ct = (⃗a, b) ← (⃗a1 +
a⃗2, b1+ b2−⌊q/3⌋−⌊q/6⌋). In this case, iff Dec(ct1) = 1∧Dec(ct2) = 0 or Dec(ct1) = 0∧Dec(ct2) = 1,
we have b− ⟨⃗a, sk⟩ ∈ (2 ⌊q/3⌋ , q).

• (Negation) After obtaining ct = (⃗a, b) encrypting γ′, which is either ⌊q/3⌋ or 0, compute ct ←
(−a⃗, ⌊q/3⌋ − b).

Combining all these, we construct a more general binary gate bootstrapping. We formally show the entire
procedure in Algorithm 3.

Theorem 5.1. Let (pplwe = (n, q, p = 3,D1, χσ), ppbfv = (N,Q,Q′, t = q,D2, χσ′), sk, btk) ← Setup(1λ) in
Algorithm 3, for any input LWE ciphertexts c⃗t1 = (ct1,1, . . . , ct1,N ), c⃗t2 = (ct2,1, . . . , ct2,N ) parameterized
by pplwe, encrypting {0, 1} under sk, and err(cti,j) < ⌊q/12⌋ for all i ∈ [2], j ∈ [N ] and a vector of gates
(g1, . . . , gN ) ∈ {OR, NOR, AND, NAND, XOR, XNOR}N ; let (ctout1, . . . , ctoutN )← Boot(c⃗t1, c⃗t2, (gi)i∈[N ], btk)
in Algorithm 3, it holds that: Dec(ctouti) = gi(Dec(ct1,i),Dec(ct2,i)), Pr[err(ctouti) < ⌊q/12⌋] ≥ 1 − negl(λ),
and ctouti is encrypted under secret key sk, for all i ∈ [N ].

Proof sketch. Correctness and noise analysis follow similarly as in the proof of Theorem 4.3.

Efficiency and security analysis. This remains exactly the same as the NAND gate analysis in Sec-
tion 4.4. The costs of preprocessing and postprocessing the LWE ciphertexts are only at most O(n) Zq

operations, and thus do not affect the asymptotic behavior. Concretely, their costs are also much smaller
than the BFV circuit evaluation.

Optimizations. All the optimizations introduced in Section 4.5 can still be applied in a similar way.

6 Functional Bootstrapping for Arbitrary Functions

In this section, we discuss an even more general bootstrapping: functional bootstrapping for arbitrary
function evaluation. At a high level, functional bootstrapping allows one to evaluate an arbitrary function
over an FHE ciphertext without increasing the error of the FHE ciphertext. More formally, the process takes

a ciphertext encrypting m ∈ Zp with error <
⌊

q
2p

⌋
, and outputs a ciphertext encrypting m′ ← f(m) for an

arbitrary function f : Zp → Zp, with the error of the output ciphertext also <
⌊

q
2p

⌋
.
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Algorithm 3 Batched FHEW/TFHE bootstrapping for arbitrary binary gates

1: procedure Setup(1λ)
2: Select (n, q,D1, χσ, N,Q,D2χσ′ , Q′) minimizing the cost of the entire homomorphic circuit evaluation

and also satisfying:
3: (1) LWEn,q,D1,χσ

holds, and Pr[e < ⌊q/12⌋] ≥ 1− negl(λ) where e← χσ.
4: (2) RLWEN,Q,D2,χσ′ hold.
5: (3) Q′ ≤ Q, LWEn,Q′,D1,χσ′ holds.
6: (4) BFV with parameters N,Q,D2, t = q, χσ′ is enough to evaluate the circuit in procedure Boot

7: (5) LWEn,q,D1,χσres
holds, where σres =

√
( t
Q′ (σ5 + σks))2 + σms

2, where σ5 is the noise distribution

standard deviation of line 35
8: (6) Pr[e′ < ⌊q/12⌋] ≥ 1− negl(λ) where e′ ← χσres

9: ▷ σks, σms are as introduced in Section 3.2.
10: sk←$ {−1, 0, 1}n
11: Generate BFV secret key skBFV ← D2.
12: Generate bootstrapping keys btk = (BFV.pk,BFV.evk,BFV.rtk,K, bfvctsk) as in Section 4.1.
13: ▷ K generated with skBFV, sk, Q

′, χσ′ .
14: return (pp = pplwe = (n, q, p = 3,D1, χσ), ppbfv = (N,Q,Q′, t = q,D2, χσ′), sk, btk)

15: procedure GateOps(ct1 = (⃗a1, b1), ct2 = (⃗a2, b2), g, q)
16: ct = (⃗a, b)← (⃗a1 + a⃗2, b1 + b2) ▷ Operations in Zq.
17: if g is AND or NAND then
18: b← b+ ⌊q/6⌋
19: else if g is OR or NOR then
20: b← b− ⌊q/6⌋
21: else ▷ g is XOR or XNOR
22: b← b− ⌊q/3⌋ − ⌊q/6⌋
23: return ct
24: procedure Negation(ct = (⃗a, b), g, q)
25: if g is NOR or AND or XOR then
26: a⃗← −a⃗, b← ⌊q/3⌋ − b ▷ Operations in Zq.

27: return ct = (⃗a, b)

28: procedure Boot((ct1,i)i∈[N ], (ct2,i)i∈[N ], (gi)i∈[N ], btk = (BFV.pk,BFV.evk,BFV.rtk,K, bfvctsk))
29: cti ← GateOps(ct1,i, ct2,i, gi, q),∀i ∈ [N ]
30: A← (⃗a⊺1 , . . . , a⃗

⊺
N )

31: bfvct1 ← LT(BFV.rtk, A, bfvctsk)

32: bfvct2 ← (b1, . . . , bN )− bfvct1 ▷ Homomorphically computes b⃗− skA
33: bfvct3 ← BFV.Eval(BFV.evk, bfvct2,DRaMpoly)
34: bfvct4 ← LT(BFV.rtk, U⊺, bfvct3) ▷ Recall that U is the matrix defined for packing
35: bfvct5 ← BFV.ModSwitch(bfvct4, Q

′) ▷ BFV.ModSwitch is described in Section 3.3
36: (ct′1, . . . , ct

′
N )← Extract(bfvct5) ▷ Extract same as in Algorithm 2.

37: ct′′i ← KeySwitch(K, ct′i),∀i ∈ [N ]
38: ▷ KeySwitch is defined in Section 3.2, and K is the key switching key
39: ctouti ← ModSwitch(ct′′i , q),∀i ∈ [N ] ▷ ModSwitch is defined in Section 3.2
40: ctouti ← Negation(ctouti , gi, q),∀i ∈ [N ]
41: return (ctout1 , . . . , ctoutN )

18



In regular FHEW/TFHE bootstrapping, this function f is required to be negacyclic ‡‡. There have been
several recent works trying to allow arbitrary functions [16, 33, 40]. However, all of them require at least
two bootstrapping operations (or equivalent overhead), which is not efficient (not to mention the increasing
parameters due to algorithm change, inducing an even larger cost). Moreover, the two works [33, 40] with
implementation only tolerate small precision ([40] benchmarks for 3 bits, and [33] takes tens seconds for 7
bis of precision, see Section 7 for more details).

In this section, we show how to improve our batched multi-binary-gate bootstrapping construction to a
bootstrapping construction to evaluate an arbitrary function.

6.1 Construction

Recall that for LWE encryption, a message m ∈ Zp is encoded to a message x ∈ Zq by computing x← m ·α,
where α = ⌊q/p⌋, p is the plaintext modulus of the LWE ciphertext, and q is the ciphertext modulus of the
LWE ciphertext. Also recall that we use t = q, where t is the plaintext modulus of the BFV scheme.

Our main observation is that given function f : Zp → Zp, we can create a look-up table LUT : Zt → Zt

such that LUT(x) = (f(⌊x/α⌋)) ·α, where α = ⌊q/p⌋. Let BFV plaintext space t = q, we create the following
polynomial function

fpoly(x) = LUT(0)−
t−1∑
i=1

xi
t−1∑
a=0

LUT(a)at−1−i . (2)

Then, we replace DRaMpoly evaluated homomorphically using BFV on line 33 in Algorithm 3 with fpoly,
and the other procedures remain exactly the same. This achieves our goal without any cost §§, unlike
prior works [16, 33, 40] (concretely are all at least 5x slower than the binary gate bootstrapping with their
implementation, see Section 7 for details).

We formalize our constructions in Algorithm 4.

Theorem 6.1. For any p = poly(λ), let (pplwe = (n, q, p,D1, χσ), ppbfv = (N,Q,Q′, t = q,D2, χσ′), sk, btk)←
Setup(1λ, p) in Algorithm 4, for any input LWE ciphertexts c⃗t1 = (ct1,1, . . . , ct1,N ), c⃗t2 = (ct2,1, . . . , ct2,N )
parameterized by pplwe, c⃗t = (ct1, . . . , ctN ) encrypting m⃗ = (m1, . . . ,mN ), for mi∈[N ] ∈ Zp under sk, and

err(cti) <
⌊

q
2p

⌋
for all i ∈ [N ] and a vector of gates (g1, . . . , gN ) ∈ {OR, NOR, AND, NAND, XOR, XNOR}N ;

let (ctout1 , . . . , ctoutN )← Boot(f, c⃗t, btk) in Algorithm 4, it holds that: Dec(ctouti) = f(Dec(cti)), err(ctouti) <⌊
q
2p

⌋
, and ctouti is encrypted under secret key sk, for all i ∈ [N ].

Proof sketch. We prove from the basic correctness (i.e., evaluating f correctly over the encrypted messages)
and noise analysis.

• (Correctness) Correctness (i.e., Dec(ctouti) = f(Dec(cti)))) is intuitive. Most of the parts remain
exactly the same as the proof for Theorem 4.3. The only thing we need to argue that LUT : Zt → Zt

defined as LUT(x) = (f(⌊x/α⌋)) · α, where α = ⌊q/p⌋ and t = q, correctly represents an arbitrary
function f : Zp → Zp. This can be demonstrated as follow: given LWE parameters (n, q, p,D1, χ),

for all x ∈ Zq, let y ←
⌈

x
⌊q/p⌋

⌋
∈ Zp, for any LWE secret key sk ← D1, any a⃗ ←$ Zn

q , let ct ← (⃗a ∈
Zn
q , ⟨a, sk⟩+ LUT(x) + e) where e← χ, it holds that Pr[Dec(ct) = f(y)] ≥ 1− negl(λ) (probability over

the error sampling), by the correctness of the underlying LWE scheme.

‡‡More precisely, they require the function to be first transformed into a function Zq → Z and this transformed function
needs to be negacyclic. For details, see [43]. However, either way, this constraint is very strong and makes the functionality
much more limited.

§§Note that concretely, the number of zero coefficients increases as discussed in Section 4.5, but this only incurs a small
overhead. See Section 7 for more details.
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Algorithm 4 Batched FHEW/TFHE bootstrapping for arbitrary function over Zp

1: procedure Setup(1λ, p)
2: Select (n, q,D1, χσ, N,Q,D2, χσ′ , Q′) minimizing the cost of the entire homomorphic circuit evaluation

and also satisfying:

3: (1) LWEn,q,D1,χσ holds, and Pr[e <
⌊

q
2p

⌋
] ≥ 1− negl(λ) where e← χσ.

4: (2) RLWEN,Q,D2,χσ′ hold.
5: (3) Q′ ≤ Q, LWEn,Q′,χσ′ holds.
6: (4) BFV with parameters N,Q, t = q,D2, χσ′ is enough to evaluate the circuit in procedure Boot

7: (5) LWEn,q,D1,χσres
holds, where σres =

√
( t
Q′ (σ5 + σks))2 + σms

2, where σ5 is the noise distribution

standard deviation of line 34
8: (6) Pr[e′ <

⌊
q
2p

⌋
] ≥ 1− negl(λ) where e′ ← χσres

9: ▷ σks, σms are as introduced in Section 3.2.
10: sk←$ {−1, 0, 1}n
11: Generate BFV secret key skBFV.
12: Generate bootstrapping keys btk = (BFV.pk,BFV.evk,BFV.rtk,K, bfvctsk) as in Section 4.1.
13: ▷ K generated with skBFV, sk, Q

′, χ′.
14: return (pp = pplwe = (n, q, p,D1,χσ), ppbfv = (N,Q, t = q,D2,χσ′), sk, btk)

15: procedure Extract(bfvct = (abfv, bbfv)) ▷ Extract N LWE ciphertexts from one BFV ciphertext
16: Initialize cti = (⃗ai, bi) for i ∈ [N ]
17: for i ∈ [N ] do
18: for j ∈ [N ] do
19: if j ≤ i then
20: a⃗i[j]← abfv[i− j + 1]
21: else
22: a⃗i[j]← −abfv[N − j + i+ 1]
23: ▷ Negative number is still in Zq where q is the bfvct ciphertext modulus

24: bi = bbfvi

25: return (ct1, . . . , ctN )

26: procedure Boot(f : Zp → Zp, (ct1, . . . , ctN ), btk = (BFV.pk,BFV.evk,BFV.rtk,K, bfvctsk))
27: Compute LUT(x) = (f(⌊x/α⌋)) · α, where LUT : Zt → Zt

28: Compute fpoly(x) = LUT(0)−
∑t−1

i=1 x
i
∑t−1

a=0 LUT(a)a
t−1−i

29: A← (⃗a⊺1 , . . . , a⃗
⊺
N )

30: bfvct1 ← LT(BFV.rtk, A, bfvctsk)

31: bfvct2 ← (b1, . . . , bN )− bfvct1 ▷ Homomorphically computes b⃗− skA
32: bfvct3 ← BFV.Eval(BFV.evk, bfvct2, fpoly)
33: bfvct4 ← LT(BFV.rtk, U⊺, bfvct3) ▷ Recall that U is the matrix defined for packing
34: bfvct5 ← ModSwitch(bfvct4, Q

′) ▷ ModSwitch is described in Section 3.3
35: (ct′1, . . . , ct

′
N )← Extract(bfvct5)

36: ct′′i ← KeySwitch(K, ct′i),∀i ∈ [N ]
37: ▷ KeySwitch is defined in Section 3.2, and K is the key switching key
38: ctouti ← ModSwitch(ct′′i , q),∀i ∈ [N ] ▷ ModSwitch is defined in Section 3.2
39: return (ctout1 , . . . , ctoutN )
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• (Noise Analysis) The noise analysis remains the same as in Theorem 4.3. Each resulting ciphertext

has an error with σ =
√

( t
Q′ (σ5 + σks))2 + σms

2 as the standard deviation. Thus, by condition (6) in

Setup, err(ctouti) <
⌊

q
2p

⌋
,∀i ∈ [N ].

Efficiency and security analysis. The efficiency and security analysis remain exactly the same as the
NAND gate bootstrapping.

6.2 Size of p

Practically, we can achieve p of 9 bits given the parameters we choose (see Section 7), without introducing
much overhead compared to the binary gate evaluation. This is already an improvement compared to prior
state-of-the-art works.

This precision can be useful in many applications like machine learning using FHE [30, 33]. However,
some other applications might need to further enlarge p. To accommodate a larger p, we need to increase
the degree of the underlying polynomial. Note that the number of plaintext-by-ciphertext multiplications
grows linearly with p,¶¶ and the number of ciphertext-by-ciphertext multiplications grows with

√
p. Hence,

our scheme still remains practical for some applications for p being 10-15 bits ∗∗∗.
To more efficiently achieve even larger precision evaluation, one can do a digit decomposition and evaluate

the function using additional techniques (e.g., the chain-based or tree-based methods) as explained in more
detail in [40, Section 5]. The chain-based and tree-based methods are first introduced in [23] and later
optimized by [39]. These techniques can potentially be integrated with our scheme, but we leave this for
future works to further explore.

7 Evaluation

We implemented our algorithms proposed in Sections 4 to 6 in a C++ library. We use Palisade [46] for our
LWE ciphertexts implementation, and SEAL [48] for BFV scheme. We benchmark these schemes on several
parameter settings on a Google Compute Cloud e2-standard-4 with 16GB RAM.

Binary gate bootstrapping parameter selection. We choose LWE parameters as follows: n = 1024, q =
65537, p = 3, σ = 3.2, and BFV parameters as follows: N = 32768, logQ ≈ 673, t = 65537, σ′ = 3.2. We use
Gaussian secret keys with a standard deviation of 3.2 for our LWE ciphertexts. These parameters guarantee
> 128-bit security by LWE estimator [2].

Arbitrary function evaluation parameter selection. n, σ,N, σ′ remain unchanged. Set (t = q =
2562+1, logQ ≈ 673) for p = 29, and (t = q = 768 ·1024+1, logQ ≈ 900) for p = 212. We use ternary secret
keys for arbitrary function evaluation to reduce the error of modulus switching. These parameters guarantee
> 125-bit security by LWE estimator [2].

We choose q, p such that the error of the output ciphertext is larger than
⌊

q
2p

⌋
with probability < 2−30.

By performing 1000 trials of bootstrapping, which is of total 32,768,000 LWE ciphertexts, we calculate the

standard deviation of the output error to be ∼10. Thus, we choose q, p accordingly such that
⌊

q
2p

⌋
≥ 64.

Binary gate bootstrapping. From Table 2, we can see that our performance is more than 30x faster than
the state-of-the-art C++ implementation of the non-batched construction. We are also more than 3x faster
compared to the rust implementation by TFHE-rs [50]. Moreover, our construction supports Gaussian secret
keys without any loss in performance, while the TFHE construction does not. With a secret key generated

¶¶Each plaintext-by-ciphertext multiplication only requires N ZQ multiplications as the “plaintext” is a scalar.
∗∗∗Asymptotically, the cost of our scheme is dominated by the number of scalar-by-ciphertext multiplications, which grows

linear in p. Thus, our scheme becomes impractical when p is too large (e.g., 20 bits or more).
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TFHE
(OpenFHE)

TFHE
(TFHE-rs)

Ours
(Single Gate)

Ours
(Mixed Gates)

Amortized time per
LWE ciphertext (ms)

190 17.5 4.7 4.7

Total time (sec) 0.19 0.0175 155 155
# of ciphertexts
per bootstrapping

1 1 32768 32768

LWE ciphertexts
secret key type

Ternary Binary Gaussian Gaussian

Table 2: Runtime comparison between our construction and state-of-the-art implementation of non-
batched FHEW/TFHE-like cryptosystems. Mixed gates means the 32768 input gates contain a mix of
AND/NAND/OR/NOR/XOR/XNOR gates (∼32768/6 for each type). For OpenFHE, we benchmark it
with Intel HEXL optimizaiton and their own NATIVEOPT. For Concrete, we benchmarked it with AVX512
optimization on.

Plaintext space 3-bit 7-bit 8-bit 9-bit
Scheme(s) LMP22 [40] GPL23 [24] FDFB[33] GBA21[23] LXDX23 [39] LMP22 [40] PEGASUS[30] Ours
Amortized time (ms)
per LWE ciphertext

1192 1205 35169 2203 409 1793 3476 6.7

Total time (sec) 1.192 1234 35.169 2.203 0.409 1.793 3.476 220
# of ciphertexts
per bootstrapping

1 1024 1 1 1 1 1 32768

Input assumption No No No
A vector of

LWE ct’s with
small precision

A vector of
LWE ct’s with
small precision

Only works for
sign function and
CT decomposition

MSB of the input
ciphertext being 0

No

Table 3: Runtime comparison between our work and prior or concurrent works to evaluate an arbitrary
function with ≤ 9 bits of precision (i.e., plaintext space ≤ 9 bits). Note that GPL23 [24] and LXDX23
[39] do not have an implementation publicly available so we directly reuse the number from their papers.
GBA21 [23] only has the number for 6-bit, so we directly take the numbers reported in [39] for [23]. [24]
has environment: Intel Xeon Platinum 8252C CPU at 4.5 GHz with 192 GB of RAM at 2933 MHz, and [39]
has environment: i7-10700F at 2.90GHZ. Both environments are better than our running environment and
thus not under-estimating their performance. All other numbers are based on the experiment with the same
environment as ours.

under a Gaussian distribution (i.e., each secret key element is sampled from a Gaussian distribution (0, σ)),
the scheme is more secure than the one with a ternary or binary secret key.

We only compare with the TFHE construction, not FHEW or Lee et al. [36], as to our knowledge, if
simply considering the bootstrapping runtime, TFHE is the most efficient one.

Arbitrary function evaluation. Through our experiment, we losslessly support 9 bits of precision with
t = 65537 for arbitrary function evaluation with bootstrapping. In terms of amortized cost, our construction
is about two to three orders of magnitude faster than all the other schemes providing 9-bits or less as
demonstrated in Table 3. For even larger precision, 12-bits, as shown in Table 4, our construction achieves
even better results: all more than two orders of magnitude faster than any other existing schemes. All the
existing schemes benchmark at most ≤ 12 bits of precision, for an arbitrary function evaluation, so we follow
this convention.

Furthermore, we make no assumption on the inputs. On the other hand, PEGASUS [30] (implementing
TFHE functional bootstrapping) requires the input ciphertexts MSB to be 0; LMP22 [40] can only perform
sign function and ciphertext decomposition (i.e., decomposing a large precision ciphertext into a vector of
small precision ciphertexts) for larger precision (> 3-bits); LXDX23 [39] follows the route of [23], and thus
both [39] and [23] require the input to be a vector of LWE ciphertexts with small precision, instead of a
single LWE ciphertext with large precision †††. Hence, our scheme is not only much faster, but also much

†††To decompose a large precision ciphertext into a vector of small precision ciphertexts, one may use LMP22[40], which
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Plaintext space 10-bit 12-bit
Scheme(s) GBA21[23] LXDX23 [39] LMP22 [40] GBA21[23] LXDX23[39] Ours
Amortized time (ms)
per LWE ciphertext

23667 1779 3998 51085 8092 39.1

Total time (sec) 23.667 1.779 3.998 51.085 8.092 1280
# of ciphertexts
per bootstrapping

1 1 1 1 1 32768

Input assumption
A vector of

LWE ct’s with
small precision

A vector of
LWE ct’s with
small precision

Only works for
sign function and
CT decomposition

A vector of
LWE ct’s with
small precision

A vector of
LWE ct’s with
small precision

No

Table 4: Runtime comparison between our work and prior or concurrent works to evaluate an arbitrary
function with larger bits of precision (i.e., plaintext space > 9 bits). For experiment environment, same as
Table 3, we run the experiments using the code for LMP22 [40] and take the numbers from [39] for [23, 39].

stronger and more flexible in terms of functionality ‡‡‡.

Bootstrapping key size. Our btk size is as follows. The numbers are for t = 2562+1 and t = 768 ·1024+1
for p = 29 and p = 212 respectively. Our construction requires 32 rotation keys with full-level, ∼65MB and
∼107MB each; 128 rotation keys with 2 levels, both ∼1MB each; 32 BFV ciphertexts with full-level, ∼5.2MB
and∼7MB each; 1 BFV public key, ∼5.2MB and ∼7MB; and 1 BFV relinerization key, ∼65MB and ∼107MB.
In total, the btk size is ∼2.38GB for binary gates and 9-bit LUT. For 12-bit LUT, it is ∼3.80GB.

8 Extension

8.1 Scheme Switching

Another important application of our scheme is FHEW/TFHE and BFV/BGV scheme switching. Scheme
switching was first introduced by Chimera [6] and later improved by PEGASUS [30].

The main goal of scheme switching is to change the ciphertexts of one FHE scheme to the other and
switch back. During the encryption, the same plaintext is encrypted under different schemes. The motivation
is that BFV/BGV/CKKS only support polynomial evaluation but when switching to FHWE/TFHE, we can
evaluate an arbitrary LUT, such as comparisons.

Both of the prior works mainly focus on FHEW/TFHE-CKKS scheme switching, while FHEW/TFHE-
BFV/BGV scheme switching is only discussed, without a thorough study or implementation. Another work
[11] converts LWE ciphertexts to RLWE ciphertexts and back. However, in their conversion, the output
ciphertexts depend on the error of the input ciphertexts, which makes the conversion not quite compatible
with the motivation of scheme switching. Ideally, when transforming LWE to RLWE ciphertexts, the noise
of the output should be independent of the input noise, so that the application can take full advantage of the
leveled HE property without enlarging the LWE ciphertext’s modulus or dimension. We refer the readers to
[11, 6, 30] for more details.

In contrast, our work achieves the conversion between FHEW/TFHE ciphertexts and BFV/BGV ci-
phertexts. The same process as in Section 4.3 can be adapted for FHEW/TFHE-BFV scheme switching.
The only change is to replace DRaMpoly with a function according to the underlying plaintext modulus p
(instead of 3) of the input LWE ciphertexts. Section 4.4 can be directly applied for BFV-FHEW/TFHE
scheme switching §§§.

introduces another 5-6 seconds of overhead for a 12-bit precision LWE ciphertext.
‡‡‡Note that we do not compare with a concurrent and independent work [41], as it focuses on optimizing the schemes in [40]

and achieving a 2-3x runtime improvement. We believe that this improvement does not affect our overall comparison, and to
our knowledge, there is no open-sourced code available. However, note that this work shows a great improvement over [40] and
may be preferred over our result when the number of bootstrapping needed is small.

§§§Note that here the output LWE ciphertexts have error dependent on the input BFV ciphertexts. This is fine in many
applications, as FHEW/TFHE evaluation itself involves bootstrapping.
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Our scheme switching is similar to the scheme switching between FHEW/TFHE and BFV/BGV described
in [6, Sec 3.1]. However, directly applying the schemes they introduce is relatively impractical. Our scheme,
on the other hand, practically realizes this functionality by carefully matching the parameters and introducing
optimizations to fully use the power of BFV. Moreover, our scheme can evaluate an arbitrary function during
the conversion, as introduced in Section 6.

Note that the LWE plaintext modulus p and BFV plaintext modulus t are different (as t = q > p).
One may encrypt a message m ∈ Zp using the LWE ciphertext, and then to switch to BFV, the output
BFV ciphertext encrypts m′ ∈ Zt (i.e., the encrypted message is lifted to Zt). Thus, the subsequent circuit
evaluation must be done via Zt.

Benchmark. We benchmark this extension with the following parameters: given N = 32768 LWE cipher-
texts with n = 1024, q = 65537, p = 29, switching them into one BFV ciphertext with N = 32768, Q ≈
2793, t = 65537 and with ∼5 levels left (roughly 150 bits of noise budget left). Then, given a BFV ciphertext
with one level left, for N = 32768, t = 65537, convert it two 32768 LWE ciphertexts.

• (FHEW/TFHE to BFV) ∼296 seconds

• (BFV to FHEW/TFHE) ∼17 seconds

8.2 Batched LWE Ciphertext Bootstrapping Based on CKKS

An interesting question is can we use CKKS to do batched LWE ciphertext bootstrapping? To our knowledge,
the answer is both yes and no.

Evaluating NAND gates using CKKS is easy. Similarly, we first compute b − ⟨⃗a, s⟩. Then, since CKKS
performs an approximate real number evaluation, we get a result of kq + m + e for some integer k. To
recover m, we need to remove kq and e at the same time and map m to 0 or 1. This can be done by using
a sine function to approximate the process. This sine-based approximation for modular computation is first
proposed in [13] and later greatly improved in a long line of work [10, 27, 35, 28, 5, 34, 32]. Further, since
sine is not a polynomial function, one needs to use a polynomial function to approximate sine, which has
also been extensively studied in this line of work.

In a nutshell, if ∥sk∥1 (LWE ciphertext secret key) is small, k is small and thus this process is actually
very efficient. Therefore, using CKKS to perform batched NAND gate bootstrapping can potentially be
more efficient than what we introduce in Section 4.

Unfortunately, this process is hard to be extended to support arbitrary function evaluation. If we want to
evaluate an arbitrary function f together with bootstrapping, we need to compose f with the sine functions
in an efficient way. However, since f is based on Zp where p can be relatively large (e.g., 29), how to efficiently
use polynomial functions to approximate a composition between the sine function and the arbitrary function
f remains to be an open problem.

Therefore, for simple f (i.e., either p is small or f has some specific structure like the NAND gate), using
CKKS to do batched bootstrapping can potentially be a great alternative. Nevertheless, since evaluating
arbitrary functions is an essential feature of FHEW/TFHE cryptosystems [30, 40] and is widely applied in
many applications, we choose to use BFV. Exploring this direction in more detail is left for future work.

9 Concluding Remarks

In this work, we show a novel way to do batched bootstrapping for LWE ciphertexts. Based on the benchmark
of the implementation, our method is orders of magnitude faster than the prior works when considering the
amortized cost, thus adding a strong tool to the FHEW/TFHE line of work. It also opens other new and
interesting directions; for example, how to efficiently extend our algorithm to support even larger plaintext
space, or how to use CKKS as an alternative for batched functional bootstrapping. These are left for future
works to explore.
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