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Abstract. Hybrid post-quantum cryptography is a cautious approach
that aims to guard against the threat posed by the quantum computer,
through the simultaneous use of Post-Quantum (PQ) and classical (i.e.
pre-quantum) cryptosystems, should the post-quantum schemes used
prove insecure.
Regarding the hybridization of Key Encapsulation Mechanisms (KEMs),
most recent studies focus on safely combining the symmetric keys out-
put by a parallel execution of classical and post-quantum KEMs. While
this architecture is straightforward, it appears to lack computational ef-
ficiency and bandwidth optimization.
Hence, we propose a novel method for more effectively hybridizing sev-
eral KEMs, by combining the underlying Public-Key Encryption schemes
(PKEs) in an innovative variant of the cascade composition that we call
“leaking-cascade”, before turning the hybrid PKE into a KEM with a
FO transformation. We prove that this architecture constitutes a robust
combiner for encryption schemes up to IND-CPA security, which permits
to eventually generate an IND-CCA2-secure KEM.
In terms of performance, our leaking-cascade scheme is at least as com-
putationally efficient and has a better communication cost than the com-
monly used parallel combination, with a bandwidth gain of its ciphertext
that may exceed 13 % compared to the latter. Moreover, we prove that
for given PKEs that need to be hybridized, the leaking-cascade has an
optimal ciphertext communication cost.

Keywords: PKE combiner · KEM hybridization · Cascade · Post-
Quantum Cryptography · Hybrid Key Exchange

1 Introduction

Faced to the looming threat posed by the quantum computer to the classi-
cal public-key cryptography, the American National Institute of Standards and
Technology (NIST) launched in 2017 a Post-Quantum Cryptography (PQC)
competition aiming to select the best post-quantum KEM and signature algo-
rithms. KEMs, in particular, were chosen as basic bricks to ensure the public-key
encryption functionality.



A KEM is a black-box algorithm generally based on a public-key encryption
scheme which consists, for a sender, in randomly drawing a symmetric key and
encrypting it with the related PKE. The recipient is then able to decapsulate the
received ciphertext and recover the transmitted key. Many KEMs, and especially
most PQ ones, are built by applying on an OW-CPA4 or IND-CPA-secure PKE
an operation named “Fujisaki-Okamoto (FO) transformation” [10] which turns
the whole scheme into an IND-CCA2 KEM.

NIST’s PQC competition reached a turning point in summer 2022, when a
KEM (Crystals Kyber, see [3]) and several signature schemes were selected for
standardization. One may thus be tempted to use Kyber from now on in order
to avoid the “harvest now – decrypt later” attacks that may occur with the
quantum computer. However, due to the lack of maturity of post-quantum cryp-
tography as a field of research, especially when it comes to the parametrization
of real-life implementations of PQ primitives, it appears much safer to hybridize
KEMs by simultaneously using classical and PQ algorithms, in order to benefit
from the best security of both worlds, yet at the cost of some overhead.

The PQ KEM hybridization that is currently most studied is the double
one, where a classical key exchange scheme is combined with a single PQ KEM.
However, when it comes to sensitive data whose secrecy must be ensured for at
least few decades (and which are, consequently, particularly vulnerable to the
aforementioned “harvest now – decrypt later” attacks), some users may want to
ensure that they do not rely on only one PQ cryptosystem that could be shown
insecure in a couple of years, in which case the hybridization would have been
totally useless. A n-hybridization (n > 2) with one classical algorithm and two
or more PQ KEMs solves this problem, but it suffers from important computa-
tional and bandwidth overheads that should be limited as much as possible.

There are two different ways to carry out a KEM hybridization: either with
a straightforward combination of the selected KEMs or by the combination of
the PKEs comprised in these KEMs.

KEM Combination. The first method – the combination of KEMs seen as
black-boxes – is the most common. Its classical architecture is the parallel com-
position (cf. section 2.4) where all component KEMs are running in parallel and
output their own symmetric key and related ciphertext. Then, a dedicated prim-
itive named “key combiner” (aka “core function” in [11]) mixes the symmetric
keys with the ciphertexts to produce a combined key.

4 One-Way Chosen-Plaintext Attacks. This encryption security model, which aims to
prevent the full recovery of a plaintext by an adversary having access to an encryption
oracle, is weaker than models relying on “semantic security”, where the adversary
tries to distinguish the ciphertexts associated to chosen plaintexts, with the help
of an encryption oracle (IND-CPA) and potentially an adaptive decryption oracle
(IND-CCA2).
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Using KEMs as core components is a natural approach, since these primitives
were precisely targeted by the NIST for standardization in its PQC competition.
However, the parallel composition of KEMs appears not to be the most effective
way to generate an hybrid KEM, for the following reasons:

– Regarding the computation cost, combining n KEMs built with a FO trans-
formation means carrying out this FO transformation n times as well, whereas
we would like to reduce this number to a single operation.

– More importantly, the bandwidth of a key exchange using such an hybrid
KEM (n public-keys and n ciphertexts) is not optimized, and this issue is
even more pronounced with PQ algorithms that are all quite cumbersome.

PKE Combination. The other – less studied – method is the combination of
the PKEs within the KEMs that we want to hybridize, in order to produce an
hybrid PKE that a FO transformation will turn into an IND-CCA2 KEM. The
main idea here is to save the computation cost of (n − 1) FO transformations,
since this one must be applied only once, on the hybrid PKE. Furthermore, as
this (intermediate) hybrid PKE only gets to be OW-CPA or IND-CPA-secure,
the key combiner can afford to be simpler – and thus computationally more
sober – than in the IND-CCA2 security model. Indeed, it was proved by [11]
that merely XORing the keys of component IND-CPA KEMs was sufficient to
ensure the same security for the hybrid algorithm5.

To the best of our knowledge, the only study of an hybrid KEM based on
a PKE combination is [16], which presents a generic construction where PKEs
are run in parallel composition before the resulting hybrid PKE undergoes a
single FO transformation. However, the gains of this construction, compared to
a KEM combination, are purely computational and in particular, the bandwidth
is leaved unaltered.

Outside the scope of public-key cryptography, the combination of secret-
key encryption primitives has been far more studied, and notably the cascade
composition (cf. section 2.4). The early works of [8] and [18] focus on cascades
of block ciphers; the former proves the security of the hybrid scheme against
message-recovery attacks, whereas the latter shows that a cascade of ciphers is
at least as secure as the first cipher but that the security of the construction
cannot be ensured, in the corresponding security model, by the second cipher
only.

At a higher level, [13] proves that a cascade of encryption schemes yields
IND-RCCA security6 if at least one of its components achieves that security.
In a similar study, [23] introduces the notion of “multi-encryption” and shows

5 This result can be extended to the case of encryption schemes.
6 IND-RCCA [4] and IND-gCCA [1] are relaxed versions of the IND-CCA2 security

notion, designed to exclude trivial security failures in the IND-CCA2 model that
come from “benign malleability”.
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that the cascade scheme can reach IND-gCCA security6 in their slightly different
multi-encryption security model.

Our Contributions and Outline of this Paper. We present in section 3
of this paper a new way to combine encryption schemes, designed to keep the
computational gains of the PKE parallel combination of [16] while offering a
lighter bandwidth. This construction, that we call “leaking-cascade”, is a mix
between parallel and cascade combinations. We prove that our leaking-cascade
scheme is a robust encryption combiner for IND-CPA security (in the sense of
Definition 2), which is a sufficient condition to build an IND-CCA2 KEM from
the hybrid PKE, via a FO transformation.

We study in subsection 3.4 the functionalities offered by such an architecture,
mainly the aforementioned KEM hybridization but also a lighter Authenticated
Key Exchange (AKE) protocol that can be used, for instance, to implement the
recent KEM-TLS proposal [21].

We then instantiate in section 4 two types of leaking-cascade hybrid KEMs:
– a first one combining a classical encryption scheme (ElGamal) and a PQ

PKE (Crystals Kyber);
– a second one, where another PQ PKE (either NTRU-HRSS [17], its variant

NTRU’ from [20] or BAT [9]) is added to the former double hybridization.
We also refer to some possible improvements that are further detailed in ap-
pendix D, including one, named “Integrated Diffie-Hellman (IDH) KEM”, in
which the first classical PKE in the cascade chain is replaced by a Diffie-Hellman
key agreement scheme.

Finally, we prove in section 5 that the leaking-cascade architecture has an
optimal ciphertext communication cost when it comes to PKE combination, and
we compare in practice the computational and communication efficiencies of the
instantiations from section 4.

2 Preliminaries

2.1 Notations and Terminology

In all the document, sampling an element s from a space S with uniform dis-
tribution is represented by “s

$← S”. The output of a probabilistic algorithm is
represented by “←” and that of a deterministic algorithm is given by “:=”.

“.||.” is used for the concatenation operation. “[.]” denotes optional values or
parameters. |.| represents the bit length of a given value. ⌊ ⌉ and ⌈ ⌉ respectively
denote the rounding and ceiling values of a decimal number.

In the context of lattice-based cryptography, vectors are written in lower case
bold characters, matrices in upper case characters and scalars in lower case ro-
man characters.
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In the whole paper, we include both symmetric and public-key cryptosystems
under the generic term of “encryption scheme”, our leaking-cascade combiner
being proved secure for both primitives. However, for practical purpose, we tend
to use the notations of public-key cryptography in most instances and figures,
as we use PKEs to build KEMs. This does not narrow the range of our study.

2.2 Encryption Schemes
Secret-Key Encryption Scheme (SKE). A stateless probabilistic secret-key
encryption scheme is a tuple of polynomial-time algorithms (KeyGen, Enc, Dec)
such that:

– KeyGen takes as input the security parameter λ and randomly draws a
(symmetric) secret key from the key space K: k ← KeyGen(1λ) .

– Enc takes as input a secret key k ∈ K and a plaintext m ∈ M and proba-
bilistically yields a ciphertext c: c← Enc(k, m) .

– Dec takes as input a secret key k ∈ K and a ciphertext c ∈ C and determin-
istically outputs a plaintext m: m := Dec(k, c) .

If the encryption scheme is correct, we have:
∀m ∈M,∀k ← KeyGen(1λ), Dec(k, Enc(k, m) = m.

Public-Key Encryption Scheme (PKE). A probabilistic public-key encryp-
tion scheme is a tuple of polynomial-time algorithms (KeyGen, Enc, Dec) such
that:

– KeyGen takes as input the security parameter λ and probabilistically out-
puts a couple of public and private keys: (pk, sk)← KeyGen(1λ) .

– Enc takes as input a public-key pk ∈ PK and a plaintext m ∈ M and
probabilistically yields a ciphertext c: c← Enc(pk, m) .

– Dec takes as input a secret-key sk ∈ SK and a ciphertext c ∈ C and deter-
ministically outputs a plaintext m: m := Dec(sk, c) .

If the encryption scheme is correct, we have:
∀m ∈M,∀(pk, sk)← KeyGen(1λ), Dec(sk, Enc(pk, m) = m.

IND-CPA Security of an Encryption Scheme. The security games corre-
sponding to the IND-CPA security of the public-key and secret-key encryption
schemes, with two experiments ExpIND−CPA−b (b ∈ {0, 1}), are detailed in Fig-
ure 1.

In the general case of an encryption scheme E , the advantage of any Prob-
abilistic Polynomial-Time (PPT) adversary A = (A1,A2) in this model (where
A wins the security experiment ExpIND−CPA−b if its guessing bit b̂ equals b) is:

advIND−CP A
E (A) =

∣∣∣Pr[1← A]Exp IND−CP A−1
E − Pr[1← A]Exp IND−CP A−0

E

∣∣∣
5



Experiment ExpIND−CPA−b
PKE

1 : (pk, sk)← KeyGen(1λ)

2 : (m
0
, m

1
, st)← A1(pk)

3 : c
∗ ← Enc(pk, m

b)

4 : b̂← A2(pk, c
∗

, m
0
, m

1
, st)

5 : return b̂

Experiment ExpIND−CPA−b
SKE

1 : k ← KeyGen(1λ)

2 : (m
0
, m

1
, st)← AOEnc(.)

1

3 : c
∗ ← Enc(k, m

b)

4 : b̂← AOEnc(.)
2 (c

∗
, m

0
, m

1
, st)

5 : return b̂

Encryption oracle OEnc(m)
1 : c← Enc(k, m)
2 : return c

Fig. 1: IND-CPA security games for public-key (left) and secret-key (right) en-
cryption schemes.

2.3 Key Encapsulation Mechanisms (KEMs)

Description As stated above, the goal of a KEM is to perform a (symmet-
ric) “key transport” functionality, usually thanks to a PKE that permits the
encryption and decryption of the randomly chosen symmetric key that has to
be transmitted. It is a tuple of algorithms (KeyGen, Encaps, Decaps) defined as
follows:

– KeyGen takes as input the security parameter λ and probabilistically out-
puts a couple of public and private keys: (pk, sk)← KeyGen(1λ) .

– Encaps takes as input a public-key pk ∈ PK. It internally randomly draws
a symmetric key k

$← K and probabilistically encapsulates it within a ci-
phertext c: (k, c)← Encaps(pk) .

– Decaps takes as input a secret-key sk ∈ SK and a ciphertext c ∈ C and
deterministically outputs a symmetric key k: k := Decaps(sk, c) .

If the KEM is correct, we have:
∀(pk, sk)← KeyGen(1λ),

(
Decaps(sk, c), c

)
← Encaps(pk).

Security. The security that is generally expected for a KEM – and that was
explicitly stated by the NIST for its PQC competition, is the IND-CCA2 secu-
rity. Similarly to the IND-CPA KEM security model, it relies on the symmetric
key indistinguishability, but it additionally gives the adversary access to a de-
capsulation oracle.

Construction / FO Transformation. A common construction of an IND-
CCA2 KEM in the (Quantum) Random Oracle Model ((Q)ROM) consists in ap-
plying, on an OW-CPA or IND-CPA secure PKE, an operation called “Fujusaki-
Okamoto (FO) transformation” [10]. Nowadays, the mostly used FO transfor-
mation is a variant by [14], which follows a modular approach and uses several
subroutines that depend on the features of the underlying PKE. The main two
of these subroutines are:
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– The “T” transformation, which turns a probabilistic OW-CPA or IND-
CPA PKE into a deterministic OW-PCVA7 PKE by deriving its
randomness r from the input plaintext m instead of randomly drawing it:
r := H(m || [pk]) , with H a cryptographic hash function modeled as a

(quantum) random oracle. In the decryption stage, the validity of the de-
crypted plaintext also generally needs to be checked via a re-encryption.

– The “(Q)U ̸⊥[m]” transformation: this operation, with several variants, de-
rives the symmetric key from the random plaintext that was encapsulated
(instead of straightly using this message as the key):
k := G(m || [c]) , with G a cryptographic hash function.

Hence we basically have (see [14] for more details):

OW/IND−CPA
PPKE T−−−−→

OW−PCVA
DPKE

(Q)U̸⊥
[m]−−−−−−−−−→

IND−CCA2
KEM

2.4 Combination of KEMs and Encryption Schemes

In hybrid cryptography, the goal of combining several primitives is to maintain
a certain property if at least a determined number of these primitives fulfill this
property themselves. The way they are mixed together is called a combiner, that
has to be “robust” in the sense of the following definition from [13].

Definition 1 (Robust Combiner [13]). Let P denote the set of all programs,
with a fixed encoding and machine model, e.g. Turing machines. A combiner (of
plurality n) is an algorithm c, whose input is a set of n programs P1, · · · , Pn ∈ Pn

and whose output is a single program c(P1, · · · , Pn). We say that c : Pn → P is
a (k, n)-robust combiner of P for specification (predicate) s : P→ {0, 1}, if:

∀(P1, · · · , Pn) ∈ Pn,
∑n

i=1 s(Pi) ≥ k ⇒ s
(
c(P1, · · · , Pn)

)
= 1

Regarding the combination of KEMs or encryption schemes, we focus on
(1, n)-robust combiners for a certain security level. We define hereunder (Defi-
nition 2) the case of a combiner for encryption schemes, upon which we rely in
this paper.

Definition 2 (Robust Combiner for Encryption Schemes). Given a se-
curity property “SEC”8, we call “SEC robust combiner for encryption schemes”
a (1, n)-robust combiner, in the sense of Definition 1, for which the combined
7 The One-Way Plaintext-Checking and Validity Attacks (OW-PCVA) security notion

is OW-CPA security where the adversary has an additional access to both a Plaintext
Checking Oracle (which states if a couple (plaintext, ciphertext) is related) and a
Ciphertext Validity Oracle (which asserts the validity of a proposed ciphertext).

8 Such as one-wayness or indistinguishability against known or chosen plaintexts or
ciphertexts.
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cryptographic primitives are encryption schemes and the predicate is the security
property “SEC”.

In other terms, a SEC robust combiner for encryption schemes leads to an
hybrid encryption scheme that yields the security property “SEC” if at least one
of its component schemes is itself SEC-secure.

Nota: When all the combined encryption schemes are public-key cryptosys-
tems, the related combiner is called a “PKE robust combiner”.

We also define beneath the notion of efficiency for combiners, which aims
to exclude from our analysis artificial combiners for encryption schemes which
decrease their bandwidth at the cost of several calls to the decryption algorithm.

An instance of such combiners, applicable to any encryption scheme provided
that the size of the encrypted plaintext is shorter than the input size of the
encryption algorithm, consists of the following steps:

– At the encryption stage, the combiner pads the plaintext m with a known
value pad.

– It then enhances the bandwidth of the hybrid scheme by truncating the
original ciphertext by a number π of bits.

– During decryption, the protocol carries out an exhaustive search on the
missing bits from the ciphertext and, for each guess, checks whether the
padding value matches the one that was added before encrypting (pad).

This method allows a bandwidth gain of π bits, limited by the computational
resources that the recipient is ready to dedicate to the decryption process of a
single ciphertext (since it takes up to 2π guesses to recover the plaintext). In any
case, π is bounded by the security parameter λ (π ≪ λ).

Definition 3 (Efficient Combiner). A robust combiner is said to be (compu-
tationally) “efficient” if none of its component primitives runs more than once
during each of the encryption and decryption processes.

We present beneath the two main modes of combination of KEMs and en-
cryption schemes : the parallel and cascade (sequential) compositions.

Parallel Composition. The common way to hybridize KEMs or encryption
schemes is called the “parallel composition” (cf. [11] for KEM combination). This
method consists in running in parallel each one of the n component primitives
that we want to hybridize, in order to generate a combined public-key pk :=
(pk1, · · · , pkn), a combined ciphertext c := c1 || · · · || cn and, in the case of
KEMs, a combined key kc := Comb(k1, · · · , kn, c), with Comb a key combiner.

Cascade Composition. The combination of n encryption schemes (Ei :=
(KeyGeni, Enci, Deci))i∈J1,nK is called a cascade (aka sequential) composition
if every ciphertext output by the first n−1 encryption schemes is given as input
to the following encryption scheme:

Enccasc((pk1, · · · , pkn), m) := Encn(pkn, Encn−1(pkn−1, · · ·Enc1(pk1, m)))

8



3 Leaking-Cascade Hybridization of Encryption Schemes

3.1 Description

Because the ciphertexts of most post-quantum PKEs are much larger than their
inputs, it is not possible to combine them in a regular cascade. We consequently
conceive, for the purpose of PQ KEM hybridization, the leaking-cascade combi-
nation where only a part of the intermediate ciphertexts is encapsulated as in a
regular cascade. The rest of these ciphertexts is joined to the last ciphertext cn

of the chain, to produce the global ciphertext of the hybrid scheme (cf. Figure 2
& Figure 3).

This architecture aims to keep most of the advantages brought by the regu-
lar cascade hybridization, compared to the more common parallel composition,
when the regular cascade combination of encryption schemes appears impossi-
ble. It indeed performs an hybridization more effective than the parallel one in
terms of bandwidth and can still be proved a robust combiner – in the sense of
Definition 2 – under certain assumptions, as detailed beneath.

Definition 4 (Leaking-Cascade Combination of Encryption Schemes).
The combination of n encryption schemes (Ei := (KeyGeni, Enci, Deci))i∈J1,nK is
called a (partially) L-leaking-cascade composition if there exists a non empty
subset of the n− 1 first indices, L ⊆ {1, · · · , n− 1}, such that:
1. For every encryption scheme in this subset Ej (j ∈ L), called a “leaking

primitive”:
– the generated ciphertext is of the form cj := (uj , vj) or cj := (vj , uj) ;
– uj constitutes a part of the global ciphertext, along with the output cn of

the last scheme of the chain: c :=
(
(uj)j∈L, cn

)
;

– vj is given as input to the following encryption algorithm Encj+1:
cj+1 := Encj+1(pkj+1, vj) .

2. The encryption schemes (Ei)i ̸∈L outside the subset L are composed in regular
cascade and thus feed the next primitives Enci+1 with their full ciphertext ci:
ci+1 := Enci+1(pki+1, ci) .

In this paper, we focus on double and triple hybridization, with upstream
primitives that are all leaking (i.e. {1}-leaking-cascade double hybridization and
{1, 2}-leaking-cascade triple hybridization). We call this type of architecture a
fully leaking-cascade, as stated below.

Definition 5 (Fully Leaking-Cascade). A fully leaking-cascade composition
is a {1, · · · , n − 1}-leaking-cascade scheme, i.e. a leaking-cascade combination
where all the n − 1 first primitives (Ei)i∈J1,n−1K are leaking a part of their ci-
phertexts in the global ciphertext.
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c

Enc1

m

pk1

c1 = v1

Enc2pk2

u2

v2

· · · · · · Encnpkn

cn

vn−1

Fig. 2: Architecture of a {2}-leaking-cascade encryption combiner. In this in-
stance, E2 is thus a leaking primitive which publicly displays a part of its cipher-
text (called u2), whereas the encryption algorithms E1 and E3 to En are combined
in a regular (i.e. non leaking) cascade.

3.2 Partitioned-Ciphertext Encryption Schemes

The security offered by the leaking-cascade architecture relies on an encryption
scheme property, that we name “partitioned-ciphertext”, which states that the
ciphertext yielded by this encryption scheme can be decomposed into two parts,
cr and cm, such that cr does not depend on the encrypted plaintext but rather
(generally) on the randomness of the probabilistic encryption, whereas cm com-
prises the whole plaintext.

As it is proved hereunder, the security of a L-leaking-cascade composition
can be ensured if and only if the leaking-primitives (Ej)j∈L of the chain have
this partitioned-ciphertext property and if their cm element is included in the
encapsulated part v of their ciphertext : cmj ⊆ vj , ∀j ∈ L (which, in turn,

implies that crj
⊇ uj , ∀j ∈ L ).

Definition 6 (Partitioned-Ciphertext Encryption Scheme). An encryp-
tion scheme E = (KeyGen, Enc, Dec) is said to have “partitioned ciphertexts” if
any ciphertext c output by the scheme can be decomposed into two bit strings cr

and cm
9 such that:

1. The bit-lengths of cr and cm are constant over the message space M;
2. cr does not depend on the plaintext m.

More formally: ∀pk ∈ PK, ∀r ∈ R, ∀(m, m′) ∈M2,
(cr, cm) := Enc(pk, m; r) and (c′r, c′m) := Enc(pk, m′; r) s.t.
9 As in Definition 4, the relative order of cr and cm in the ciphertext c is not determined

in the general case.
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Leaking-cascade Enclc(pk, m, L)
1 : (pk1, · · · , pkn) := P arse(pk)
2 : c := ∅
3 : v0 := m

4 : for i ∈ J1, n− 1K do :
5 : if i ∈ L then :
6 : (ui, vi)← Enci(pki, vi−1)
7 : c := c || ui

8 : else :
9 : vi ← Enci(pki, vi−1)

10 : cn ← Encn(pkn, vn−1)
11 : c := c || cn

12 : return c

Leaking-cascade Declc(sk, c, L)
1 : (sk1, · · · , skn) := P arse(sk)
2 : ((ui)i∈L, cn) := P arse(c)
3 : vn−1 := Decn(skn, cn)
4 : for i ∈ Jn− 1, 1K do :
5 : if i ∈ L then :
6 : ci := (ui, vi)
7 : else :
8 : ci := vi

9 : vi−1 := Deci(ski, ci)
10 : m := v0

11 : return m

Fig. 3: Encryption and decryption algorithms of a L-leaking-cascade encryption
combiner. L ⊆ {1, · · · , n − 1} denotes the set of leaking primitives in the
cascade chain. The key generation, identical to a parallel combination [16], is
not detailed.

1. |cr| = |c′r| and |cm| = |c′m|
2. cr = c′r.

A common instance of a partitioned-ciphertext classical encryption scheme
is ElGamal. Regarding PQ algorithms, the PKEs of three of the four KEMs that
are most likely to be standardized in the future10 have this partitioned-ciphertext
property: Kyber, BIKE and HQC.

We prove in appendix A the partitioned-ciphertext property of two of these
algorithms (ElGamal, Kyber) that we use in our instantiations (cf. section 4).

3.3 IND-CPA Security of Leaking-Cascade

Theorem 1. The combination of n encryption schemes (Ei = (KeyGeni, Enci,
Deci))i∈J1,nK in a L-leaking-cascade mode constitutes a robust encryption com-
biner for IND-CPA security, in the sense of Definition 2 11, if and only if all
leaking primitives are partitioned-ciphertext algorithms whose “message part” of
the ciphertext (cm) is encapsulated by the next encryption scheme in the chain
(i.e. cmj

⊆ vj , ∀j ∈ L).

Nota : Breaking one of the leaking primitives in a leaking-cascade chain (due
to a mathematical flaw or a sufficient computational power of an adversary)
does not question at all the partitioned-ciphertext property of this encryption
scheme. All information regarding the plaintext remains in the “message part”
cm of its ciphertext, which is encapsulated by the next encryption scheme in the
leaking-cascade chain.
10 These promising algorithms are the current winner of round 3 of NIST’s PQC com-

petition (Crystals Kyber) as well as the remaining three candidates of the fourth
round, studied as an alternative solution to Kyber (BIKE, ClassicMcEliece & HQC).

11 In other terms, the hybrid scheme is IND-CPA-secure if at least anyone of its com-
ponent primitives is IND-CPA-secure as well.
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Proof Sketch. Our security proof for the generic leaking-cascade construction
relies on the security of a particular case: the combination of two encryption
schemes in leaking-cascade. The case of a leaking-cascade with an arbitrary
number n of primitives is then deduced from the latter by an induction argu-
ment that is detailed at the end of the section.

The proof for the 2-primitives leaking-cascade consists of three parts: the
first two statements underneath correspond to the “sufficient” condition of The-
orem 1, while the third statement deals with the “necessary” condition:
1. The combination in leaking-cascade mode of two encryption schemes E1 and
E2 yields IND-CPA security if the first scheme E1 is IND-CPA, regardless of
the security of the second scheme E2.

2. The combination in leaking-cascade mode of two encryption schemes E1 and
E2 yields IND-CPA security if the second scheme E2 is IND-CPA and if the
first scheme E1 is a partitioned-ciphertext algorithm s.t. cm1 ⊆ v1, regardless
of the security of E1.

3. The combination in leaking-cascade of two encryption schemes E1 and E2
is an IND-CPA-unsecure combiner for encryption schemes if the upstream
leaking primitive E1 is not partitioned-ciphertext or if the message part of
its ciphertext is not entirely encapsulated by the downstream encryption
scheme E2 (cm1 ̸⊆ v1).

Proof of Statement 1. Let us consider a leaking-cascade hybrid encryption
scheme E composed of two component encryption schemes E1 and E2, with the
first scheme E1 being IND-CPA-secure. No security property is demanded for
the second scheme E2.

Game 0. This is the experiment ExpIND−CPA−0
leak−casc of the leaking-cascade secu-

rity game derived from Figure 1. The global ciphertext produced by the hybrid
scheme is : c← u0 || Enc2(pk2, v0), with (u0, v0)← Enc1(pk1, m0)

Game 1. We replace in this game both terms u0 and v0 by u1 and v1, with
(u1, v1)← Enc1(pk1, m1): c← u1 || Enc2(pk2, v1 ).

The advantage of any attacker to distinguish Game 1 from Game 0 is:
ϵ1 ≤ advIND−CP A

E1
.

Proof. From any adversary A = (A1,A2) trying to distinguish Games 0 and 1,
we can build an adversary B = (B1,B2) against the CPA-indistinguishability of
the encryption scheme E1, as follows:

– B1 acts as a challenger for A1 and thus collects the encryption request
(m0, m1) sent by A1, which it straightly forwards to its own challenger.

– From its challenger’s answer (c∗1 = (ub, vb)← OEnc
E1

), B1 computes
c∗ ← (ub || Enc2(pk2, vb)).

– B2 then runs the adversary AO
Enc
lc (.)

2 with this input c∗ and forwards to its
challenger the guessing bit output by A2.
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Consequently, A’s advantage is bounded as follows:
ϵ1 = advG0−G1(A) ≤ advIND−CP A

E1
(B).

Game 1 corresponds to the experiment ExpIND−CPA−1
leak−casc of the leaking-cascade

security game. Consequently, the overall advantage of an adversary against a
leaking-cascade encryption scheme with an IND-CPA-secure first encryption
scheme is: advIND−CP A

leak−casc ≤ advIND−CP A
E1

.

Proof of Statement 2. Let us now consider a similar leaking-cascade hybrid
encryption scheme E comprising an IND-CPA-secure second scheme E2 and a
first scheme E1 with partitioned-ciphertext property and s.t. cm1 ⊆ v1.

Game 0. This is the experiment ExpIND−CPA−0
leak−casc of the leaking-cascade security

game (cf. Figure 1). The global ciphertext produced by the hybrid scheme is :
c← u0 || Enc2(pk2, v0), with (u0, v0)← Enc1(pk1, m0).

Game 1. We replace in this game the term v0 by the ciphertext ṽ of a random
message m̃ from the message space: (ũ, ṽ) ← Enc1(pk1, m̃), with m̃

$← M.
Thus, we have: c← u0 || Enc2(pk2, ṽ ).

The advantage of any attacker A to distinguish Game 0 from Game 1 is
bounded by the IND-CPA security of the scheme E2: ϵ1 ≤ advIND−CP A

E2
.

Proof. We can once again construct an adversary B = (B1,B2) against the
CPA-indistinguishability of the encryption scheme E2 from any adversary A =
(A1,A2) trying to distinguish Games 0 and 1, as detailed in Figure 4.

Adv. (B1)E2

(pk1, sk1)← KeyGen1()

(m
0
, m̃) $←M2

(u
0
, v

0)← Enc1(pk1, m
0)

(ũ, ṽ)← Enc1(pk1, m̃)

s← A
OEnc

G0−G1(.)
1 (u

0)

return ((v
0
, ṽ), u

0
, s)

Adv. (B2)E2 (c∗
2, u0, s)

c
∗ := u

0 || c
∗
2

b̂← A
OEnc

G0−G1(.,u0)
2 (c

∗)

return b̂

Enc. oracle OEnc
G0−G1(m, [u0])

if u
0 = ∅ then :

m
0 $←M

(u
0
, v

0)← Enc1(pk1, m
0)

(u, v)← Enc1(pk1, m)

c2 ← OEnc
E2 (v)

c := u
0 || c2

return c

Fig. 4: Adversary B = (B1,B2) against the CPA-indistinguishability of the second
encryption scheme E2 of a leaking-cascade, based on an adversary A = (A1,A2)
against the indistinguishability of games G0 and G1.

Game 2. We replace u0 by u1: c← u1 || Enc2(pk2, ṽ).

Neither u0 nor u1 is related in any way to the term Enc2(pk2, ṽ), since ṽ
originates from a randomly drawn element m̃ from M. Moreover, u0 and u1

follow the exact same distribution independent from their underneath plaintexts
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m0 and m1, because of the “partitioned-ciphertext” property of the encryption
scheme E1 and the fact that cm1 ⊆ v1. Consequently, the advantage of any
attacker in distinguishing Game 2 from Game 1 is null: ϵ2 = 0.

Game 3. We replace ṽ by v1: c← u1 || Enc2(pk2, v1 ).

Similarly to the passage from Game 0 to Game 1, the advantage of any at-
tacker to distinguish Game 3 from Game 2 is : ϵ3 ≤ advIND−CP A

E2
.

Game 3 corresponds to the experiment ExpIND−CPA−1
leak−casc of the leaking-cascade

security game. Consequently, the overall advantage of an adversary against a
leaking-cascade encryption scheme with an IND-CPA-secure second encryption
scheme and a first “partitioned-ciphertext” encryption scheme, is:
advIND−CP A

leak−casc ≤ 2.advIND−CP A
E2

.

Proof of Statement 3. We show here that if all information regarding the
plaintext m in the first ciphertext c1 is not entirely encapsulated by the down-
stream encryption scheme E2 and if the leaking upstream primitive E1 is not
IND-CPA secure, then the leaking-cascade scheme is IND-CPA-unsecure as well,
even if E2 is itself IND-CPA-secure. This includes both the case where E1 is not
partitioned-ciphertext (which implies that the information related to m is scat-
tered in the whole ciphertext c1) and the case where at least a single bit from
cm1 is publicly leaked within u1.

We consider the latter case that is more conservative, and assume that there
exists, in the leaking part of E1, a bit that belongs to the message part cm1 :
∃b ∈ {0, 1} : (b ∈ cm1) ∧ (b ∈ u1).

For instance, let us define the upstream encryption scheme E1 as follows:

Enc1 : PK ×M −→ C = C′ || {0, 1}
(pk, m) 7−→ Enc′(pk, m) || σ(m)

with σ(m) =
∑|m|−1

i=0 bi (mod 2) a checksum on all bits bi ∈ {0, 1} of the plaintext
m and Enc′ : PK×M→ C′ the encryption algorithm of a partitioned-ciphertext
IND-CPA-secure encryption scheme E ′.

Because E ′ has partitioned ciphertexts, any ciphertext c′ it outputs consists
of distinct random and message parts, and so is any ciphertext c1 of the wrapping
algorithm E1:

∀(pk, m) ∈ PK ×M, c′ := Enc′(pk, m) = (c′r, c′m)

c1 := c′ || σ(m) =
(

cr1 = c′r, cm1 =
(
c′m, σ(m)

))
We now study the combination in leaking-cascade of E1 (as the leaking up-

stream primitive) with an IND-CPA secure encryption scheme E2 (as the down-
stream primitive), such that the leaking part u1 of E1’s ciphertext includes the
bit σ(m):

u1 := c′r || σ(m) and v1 := c′m

14



Then, despite the IND-CPA security of E2 and the leakage of only one bit
related to m, any PPT adversary A can easily win the IND-CPA security game
of the hybrid scheme, described in Figure 1, by choosing challenge messages m0

and m1 such that σ(m0) = 0 and σ(m1) = 1, and by recovering σ(m∗) in the
challenge leaking-cascade ciphertext:

c∗ : = u∗1 || c∗2

= c′∗r || σ(m∗) || c∗2

Proof of the n-Hybridization in Leaking-Cascade. Let us consider n en-
cryption schemes (Ei)i∈J1,nK such that all n−1 upstream primitives (Ei)i∈J1,n−1K
are either non-leaking or with partitioned-ciphertext (and with the “message
part” cmi

of their ciphertext encapsulated by the next scheme Ei+1). We want
to prove that if at least one of these n primitives is IND-CPA-secure, then the
combination of all of them in leaking-cascade is IND-CPA as well.

Let assume that a random scheme Ej (j ∈ J1, nK) in the leaking-cascade chain
is IND-CPA-secure.

Thus, relying on statement 1 above and on the work of [13] regarding the
regular cascade, the combination in regular or leaking-cascade of Ej with the
scheme Ej+1 is an hybrid IND-CPA-secure primitive (that we call Ehy

j,j+1), even
if Ej+1 itself appears unsecure. We similarly combine this new hybrid scheme
Ehy

j,j+1 with the following primitive Ej+2, and so on, until the last scheme En of
the chain.

We then use statement 2 and the results of [13] to combine the hybrid IND-
CPA scheme Ehy

j,n with its upstream primitive Ej−1. As long as the latter is either
non-leaking or with partitioned-ciphertext (and with the “message part” cmj−1

of its ciphertext encapsulated by the scheme Ej), its combination with Ehy
j,n also

produces an IND-CPA hybrid scheme Ehy
j−1,n. We carry out this combination

step by step towards the first primitive E1 of the chain.
We now have a fully hybrid primitive Ehy

1,n yielding IND-CPA security, with
only one encryption scheme underneath with that security level, which completes
the proof of Theorem 1. □

3.4 Functionalities of a Leaking-Cascade

We present hereunder two functionalities brought by the leaking-cascade com-
bination of encryption schemes.

KEM Hybridization. At a higher level than the combination of encryption
schemes, the leaking-cascade architecture is used for KEM hybridization, in order
to maintain the security of the hybrid encapsulation scheme even in case of failure
of some of its components. A (leaking-)cascade KEM hybridization is realized
by combining the PKEs of the KEMs we want to associate in order to generate
an hybrid PKE, which in turn is transformed into an hybrid KEM with a FO
transformation.

15



Authenticated Key Exchange with Leaking-Cascade. The leaking-cascade
combination may also be used in the context of an authenticated key exchange,
where the parties would be implicitly authenticated by additional KEMs instead
of signatures. This approach, stated for instance by [3], appears particularly in-
teresting in the framework of post-quantum authentication, as most current PQ
signatures still suffer from a larger bandwidth than their KEM counterparts.
This observation gave rise to KEM-TLS [21], a variant of TLS where signatures
are replaced by a KEM-based implicit authentication. KEM-TLS however uses
a classical parallel combination of its KEMs, and therefore could be improved
with the use of our leaking-cascade.

Figure 5 compares a standard implicit Unilateral Authenticated Key Ex-
change (UAKE) with a similar protocol using a leaking-cascade combiner.

Fig. 5: KEM-based implicit UAKE, with authentication of party B. Figure a
shows a standard authentication procedure, as proposed in [3]. Figure b details
the variant with a leaking-cascade hybrid-KEM.

Here, the (leaking-)cascade architecture does no longer have to prevent the
failure of some of the KEMs. It instead plays the role of a multi-key encryption
scheme, for which several secret-keys (the ephemeral one, used to refresh the
randomness, as well as the recipient’s static one, used as an authentication mean)
are needed to decrypt a ciphertext.

In this paradigm, one can rely on the same algorithm for the whole leaking-
cascade. As a consequence, the initial constraint of Theorem 1, stating that
the upstream PKE must be partitioned ciphertext, may be relaxed (since this
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property is only needed, in the security proof of the leaking-cascade, when the
first encryption scheme is broken and the second one remains secure).

4 Instantiations

We now detail the instantiation of two hybrid schemes that we consider as par-
ticularly relevant in real world applications:

4.1 Leaking-Cascade Double-Hybridization

The first hybrid KEM consists in a {1}-leaking-cascade combination of the clas-
sical ElGamal cryptosystem (on elliptic curves) and the PKE of the PQ KEM
Crystals Kyber.

As ElGamal yields partitioned ciphertexts, according to Theorem 1, the re-
sulting hybrid PKE has IND-CPA security and the related KEM, after applying
the FO transformation, is IND-CCA2 secure.

4.2 Leaking-Cascade Triple-Hybridization

The second hybrid KEM combiner, adapted to highly sensitive data, comes from
a triple hybridization in {1,2}-leaking-cascade composition, with one classical en-
cryption scheme and two post-quantum PKEs (cf. Figure 6). In this case, the
choice of PQ algorithms is strongly constrained by the ciphertext length of the
upstream PQ PKE and the input size of the downstream PQ PKE.

In our instantiation, the classical algorithm and the upstream PQ PKE are
the same as in the double hybridization: ElGamal and Kyber. The security of
the combiner is ensured by the fact that Kyber, which is a leaking primitive
in the scheme along with ElGamal, is also a partitioned-ciphertext encryption
scheme (cf. proof in appendix A).

Regarding the downstream PQ algorithm, we consider two candidates both
based on NTRU lattices: NTRU-HRSS [17] and the more recent algorithm BAT
[9]. We also implement a variant of NTRU-HRSS proposed by [20], that we call
NTRU’. This one is based on a tweak by [19] where the probabilistic NTRU-
HRSS PKE is turned into a deterministic one by including the randomness r
into the input of the PKE, along with the plaintext m (since it is possible to
recover r as well in the decryption process). This tweak therefore increases the
input size of this PKE, which is beneficial for the efficiency of the leaking-cascade.

The criteria considered for these choices were:
– The good performances of these algorithms, that make them realistic alter-

natives to Kyber in case this one would be broken.
– Their differences with Kyber in terms of mathematical foundations, so that a

vulnerability on Kyber or even on the Module-Learning with Error problem
would not necessarily compromise them.
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Fig. 6: Architecture of the triple hybridization in {1,2}-leaking-cascade ElGamal-
Kyber-NTRU/BAT. The leaking PKEs, here both ElGamal and Kyber, are de-
picted in pink color. The dashed blue box represents the hybrid PKE and the
dashed red boxes, the modular FO transformation.

– More importantly, the input lengths12 of their PKEs, of 140 bytes for NTRU-
HRSS, 160 bytes for BAT and 280 bytes for NTRU’, permit the encapsulation
of the 128 byte-long cm part of Kyber’s ciphertext (cmky

⊆ vky), which is
the necessary condition to implement a secure leaking-cascade combination
of these KEMs.

We underline that NTRU-HRSS PKE takes as input a bit string that is
encoded afterwards into a ternary polynomial. Because the original encoding
algorithm does not permit to recover, in the decryption process, an arbitrary
input given to the PKE (which is not a problem when NTRU is only used as a
KEM), we had to slightly modify this encoding algorithm. Our modification is
presented in appendix B.

4.3 Enhanced Variations

We study two possible enhancements of our leaking-cascade KEM hybridization,
that are detailed in appendix D.

Integrated Diffie-Hellman (IDH) KEM. The IDH KEM is a leaking-cascade
combination of one or several PQ PKEs with a Diffie-Hellman on Elliptic Curve
(ECDH) key agreement scheme (in replacement of the classical encryption scheme).
12 For the parameters corresponding to the NIST security level 3.
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The idea here is to be more efficient in terms of bandwidth, given the fact that
an ECDH key agreement scheme produces a ciphertext13 lighter than a similar
encryption algorithm (twice smaller, for instance, than its ElGamal counterpart).

Integration of the Public Keys. Another enhancement consists in the encap-
sulation in one another of the public keys of the PKEs to be hybridized, in order
to gain once again some bandwidth. We provide here a method to encapsulate
an ECDH or ElGamal public key in Kyber’s one. This proposal is unfortunately
not generically applicable to all classical or PQ algorithms, since it depends on
the structure of the wrapping public key. However, the fact that Kyber and
the ECDH schemes are the most commonly used key exchange primitives, re-
spectively in the classical and post-quantum settings, mitigates this drawback.

5 Performances

The leaking-cascade architecture was designed to improve the communication
cost of the parallel composition, for a computational cost at least as good as the
latter.

The results of our experiments show that these goals were achieved, with a
bandwidth reduced over 10% – depending on the algorithms used – and a com-
putational cost similar, and even slightly better for our leaking-cascade scheme.

5.1 Computational Cost

The leaking-cascade combiner avoids the computations of the key combination
and of all but one FO transformations that are necessary with a parallel com-
biner.

As a proof of concept, we tested, on a laptop running Ubuntu 22.04 and
equipped with an Intel(R) Core(TM) i7-8565U @1.80GHz octo-core CPU, a dou-
ble KEM hybridization based on ElGamal and Kyber, implemented in Python.

Operation Running time (ms)
Parallel combination Leaking-cascade combination

Encapsulation 83.20 82.85
Decapsulation 120.59 119.93

Fig. 7: Compared computational performances of parallel and leaking-
cascade combinations of an ElGamal-Kyber KEM hybridization.

Figure 7 details the average running time, over 2,500 runs, of the encap-
sulation and decapsulation operations14 for both parallel and leaking-cascade
13 We model here the “ciphertext” of an ECDH key agreement scheme by the public

DH element output by the sender. See appendix D for additional details.
14 The key generation stage was not evaluated, as it is similar in both schemes.
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schemes. It indeed confirms a better computational performance of the leaking-
cascade scheme, mainly due to a lesser number of hashing operations resulting
to the single FO transformation.

This minor computational advantage is mitigated, to some extent, by the pos-
sibility offered by the parallel composition to parallelize the computations, which
is not possible for a cascade construction. We consider nevertheless that in most
use cases where computational optimization really matters, in particular servers
performing a huge number of operations, the parallelization of subroutines of a
single encapsulation or decapsulation is less interesting than the parallelization
of these encapsulations or decapsulations themselves.

5.2 Communication Cost

The main advantage of a PKE hybridization in leaking-cascade is the improved
bandwidth of its ciphertext. The extent of this gain relies on the characteristics
of the encryption schemes used in the chain, including the lengths of their in-
puts and ciphertext “message parts”. However, we state that for given PKEs that
must be hybridized, the leaking-cascade combination is the optimal hybridiza-
tion method regarding the communication cost of its ciphertext.

We define below the concept of encryption scheme with “optimized cipher-
text” that aims to exclude, in our Theorem 2 and in the related proof, artificial
encryption schemes whose ciphertexts would natively include redundancy, e.g.
to compensate some communication loss. In practice, to the best of our knowl-
edge, all real-life cryptosystems have optimized ciphertexts, while potential re-
dundancy mechanisms are implemented at a higher level in the communication
protocol.

Definition 7 (Encryption Scheme with Optimized Ciphertext). An en-
cryption scheme E, whose encryption algorithm Enc takes as input a plaintext m
and yields a ciphertext c of size |c|λ (depending on the set of parameters) is said
to have an “optimized ciphertext” if the size of its ciphertext is the minimum
necessary to legitimately recover the encrypted plaintext m with a single call to
the decryption algorithm Dec.

Theorem 2 (Optimal Communication Cost). Let PKE1 and PKE2 be two
public-key cryptosystems with optimized ciphertexts, such that:

– PKE1 is partitioned-ciphertext ;
– the message part cm1 of PKE1’s ciphertext is smaller than or the same size

as the input of PKE2 : |cm1 | ≤ |m2|.
Then, the combination of these two PKEs in leaking-cascade, with PKE1

as the leaking upstream primitive and cm1 ⊆ m2, constitutes the optimal effi-
cient IND-CPA robust PKE combiner in terms of ciphertext bandwidth. In other
terms, there exists no hybridization method of these PKEs yielding IND-CPA
security, running once each underlying primitive and outputting a ciphertext
shorter than with the leaking-cascade.
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Nota: A regular cascade is a particular case of leaking-cascade, occurring
when |c1| ≤ |m2|. When this condition is fulfilled, it is therefore the optimal
combiner in terms of ciphertext bandwidth.

Proof of Theorem 2. Our proof starts by computing the communication
efficiency of the leaking-cascade combination in the general case of encryption
schemes, which implies the concept of “expansion rate” formalized below.

We then restrict the scope of our demonstration to the efficient combination
of PKEs with optimized ciphertexts for an aimed IND-CPA security, and we
show the ciphertext bandwidth optimality of the leaking-cascade with a proof
by contradiction, by considering an hypothetical PKE combiner C outputting a
shorter ciphertext than the leaking-cascade.

Definition 8 (Expansion Rate of an Encryption Scheme). Let us consider
an encryption scheme E that, for a given set of parameters depending on the
security parameter λ, takes as input plaintexts of bit-length |mE |λ and outputs
ciphertexts of bit-length |cE |λ.

We define the expansion rate of E for the security parameter λ as the ratio
τE,λ = |cE |λ

|mE |λ .

Nota: When the security parameter λ is well-defined and remains unchanged
in a given context, it may be omitted in the notation of the expansion rate τE and
the input and output sizes |mE | and |cE |, which are then considered as constant
values. This is the case in this paper.

Communication Cost of the Leaking-Cascade. Given two encryption schemes E1
and E2 with respective input and output sizes |m1|, |m2|, |c1|, |c2|, the ciphertext
bandwidth |c|lc of their leaking-cascade combination is computed as follows.

As in Definition 4, we note u1 the public part of E1’s ciphertext and v1 the
part of its ciphertext that is encapsulated by E2.

|c|lc = |u1|+ |c2|
= (|c1| − |v1|) + τ2.|m2|, with |v1| = |m2|

⇔ |c|lc = τ1.|m1|+ (τ2 − 1).|m2|

Proof by Contradiction. Let us assume that, for given public-key cryptosys-
tems PKE1 and PKE2, with respective expansion rates τ1 and τ2, input sizes
|m1| and |m2| and ciphertext sizes |c1| and |c2|, there exists an efficient IND-CPA
robust PKE combiner C (in the sense of Definition 2 and Definition 3) that has
a better ciphertext communication cost than the leaking-cascade. Consequently,
its ciphertext bandwidth is bounded by that of the leaking-cascade:

|c|C < |c|lc
< τ1.|m1|+ (τ2 − 1).|m2|
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We now wonder whether the data comprised in C ’s ciphertext bandwidth
are sufficient to recover the original plaintext m that was encrypted by C .

A robust PKE combiner must clearly make use of all its underlying schemes
(in this case, PKE1 and PKE2) in order to benefit from the best security of
them. Furthermore, the decryption process of a PKE combiner only uses its
component PKEs’ decryption algorithms15. Consequently, the original plaintext
m encrypted by the combiner C can be recovered only if both decryptions algo-
rithms Dec1 and Dec2 are run successfully.

Without loss of generality, let us analyze sequentially the decryption process
of the combiner C by considering first the decryption algorithm Dec2. As PKE2
has an optimized ciphertext, Dec2 takes as input a part of the bandwidth whose
size cannot fall below |c2| = τ2.|m2|. Then, it yields an output of size |m2|.
Consequently, the data from the ciphertext bandwidth that remain available for
the decryption by Dec1 have a size bounded by:

|Dec1.input|C ≤ |c|C − |c2|+ |m2|
< |c|lc − |c2|+ |m2|
< τ1.|m1|+ (τ2 − 1).|m2| − τ2.|m2|+ |m2|
< |c1|

Because PKE1 also has an optimized ciphertext, its decryption algorithm Dec1
needs an input size of at least |c1|. The data available for Dec1 are therefore too
small to successfully retrieve the plaintext m1 that was encrypted with Enc1.

Thus, as we need both decryption algorithms to work successfully, as stated
above, the failure of Dec1 makes impossible to recover the original plaintext m
that steams from m1 and m2 and the combiner C turns out to be non-functional.

This indicates that the leaking-cascade is an optimal efficient IND-CPA hy-
bridization method for PKEs with optimized ciphertexts, which terminates the
proof of Theorem 2. □

Communication Cost in a Degraded Configuration. We also show in appendix C
that even when the features of the algorithms PKE1 and PKE2 imply condi-
tions not conducive to the implementation of the leaking-cascade (namely, when
the message part |cm1 | of PKE1 is bigger than the input size |m2| of PKE2),
this combination remains more efficient than the classical parallel composition,
within a certain range of parameters.
15 Indeed, if the decryption process of a PKE combiner used the encryption algorithm

(instead of the decryption one) of one or several component PKEs, then anyone could
legitimately run these primitives with the related public encryption keys. These ones
would therefore bring no security to the hybrid scheme. This is a major difference
with a combiner for secret-key cryptosystems, that may only use the encryption al-
gorithms of its component schemes, even for the decryption process. This restriction
specific to PKE combiners is needed in the proof of Theorem 2, which explains why
the latter only shows the optimality of the leaking-cascade as a PKE combiner.
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Practical Efficiency. In our instantiations of KEM hybridization (cf. Figure 8),
the best optimization brought by our leaking-cascade scheme exceeds 13 %, in
the case of the triple hybridization ElGamal_Kyber_NTRU’, with a reduction
of 306 bytes in the output ciphertext.

Hybridization Parallel comb. Leak-casc. comb. Gain of
|ct| (bytes) |ct| (bytes) leak-casc. comb.

KEM hybridization
ElGamal_Kyber 1,152 1,120 2.8 %
ElGamal_BAT 1,070 1,006 6.0 %
ElGamal_Kyber_NTRU 2,290 2,121 7.4 %
ElGamal_Kyber_BAT 2,158 1,966 8.9 %
ElGamal_Kyber_NTRU’ 2,290 1,984 13.4 %
Unilateral Authenticated Key Echange
Kyber_Kyber 2,176 2,144 1.5 %
NTRU_NTRU 2,276 2,139 6.0 %
BAT_BAT 2,012 1,852 8.0 %
NTRU’_NTRU’ 2,276 2,002 12.0 %

Fig. 8: Compared ciphertext communication costs of parallel and leaking-
cascade combinations for different types of hybridizations and KEM-based au-
thentications relying on ElGamal, Kyber, NTRU, NTRU’ and BAT PKEs.

Even though its bandwidth improvement remains moderate, the leaking-
cascade combination offers interesting perspectives for lighter constructions in
the future, as its performances closely depend on the primitives involved, which
may appear in the future more appropriate to such a combination. Furthermore,
in some use cases, even a small decrease in the size of the data transmitted can
avoid reaching the maximum transmission size of a packet in a network, and
thus its fragmentation.
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A Proofs for Partitioned-Ciphertext Algorithms

We detail hereunder the proofs of the partitioned-ciphertext property of ElGamal
and Kyber encryption schemes, used in the practical instantiations of section 4.

A.1 ElGamal
Theorem 3. ElGamal public-key encryption algorithm [7] is a partitioned-
ciphertext encryption scheme.
Proof. We recall that in a cyclic group G of order q, with a generator g, an
ElGamal ciphertext corresponding to a plaintext m ∈M if of the form:
ceg := (creg = gr, cm = m.Xr) , where X := gx is the recipient’s public-key and

r
$← Zq a secret random element drawn by the sender.

For a given set of parameters {G, q, g}, the sizes of the components creg

and cmeg
clearly remain constant for all messages (m, m′) ∈M2 s.t. |m| = |m′|.

Furthermore, creg
does not depend on the encrypted plaintext m but only on

the randomness r, which completes the proof.

A.2 Kyber
Theorem 4. Crystals Kyber public-key encryption algorithm [3] is a partitioned-
ciphertext encryption scheme.
Proof. The ciphertext output by Kyber is of the form ckyber := (u, v), with

crky
:= u = Compress(AT .r + e1)

cmky
:= v = Compress(tT .r + e2 +

⌊
q
2

⌉
.m)

– The modulus q = 3329 is a fixed public parameter;
– t and A = Expand(ρ) are issued from the recipient’s public-key pk := t || ρ

(with ρ
$← {0, 1}256);

– e1, e2 and r are sampled from a secret seed r
$← {0, 1}256.

As any semantically-secure encryption scheme, Kyber is “length-uniform”
(cf. [13]), which implies that:
∀(pk, pk′) ∈ K2,∀(m, m′) ∈M2, |m| = |m′| ⇒ |Enc(pk, m)| = |Enc(pk′, m′)|.
Consequently: ∀m ∈M,∃κ ∈ N : |crky

|+ |cmky
| = κ.

Furthermore, the element crky
does not depend on the plaintext m: it is a

function of the recipient’s public key (since the matrix A directly comes from
the random seed ρ ∈ pk) and of the random seed r used to deterministically
produce r, e1 and e2. It thus fulfills condition 2 of Definition 6 and implies
that |crky

| is constant over M. According to the previous paragraph, we can
deduce that |cmky

| is constant overM as well, which terminates the proof of the
theorem.
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B NTRU-HRSS Encoding Variant for the
Leaking-Cascade

B.1 Original Input Encoding of the NTRU-HRSS PKE

As indicated in section 4, the PKE of NTRU-HRSS16 cannot recover any arbi-
trary input byte array. Indeed, as specified in [5], one of the first operations in
the encryption stage consists in turning this byte array into a ternary coefficient
polynomial, via the operation “unpack_S3”.

During this process, every byte (b1, · · · , b8) of the string (256 possible values)
is transformed into a tuple of 5 trigits (c1, · · · , c5) ∈ {0, 1, 2}5 (243 possible
values), which implies a loss of information that prevents the recovery of the
original plaintext during the decryption stage.

As NTRU – as specified in [5] – is designed to be only used as a KEM, this
encoding issue is overcome by treating in advance the byte array given as input to
the PKE, so that this string only encodes 243 values per byte instead of the 256
that could be possible17. Consequently, no information is lost in the encryption-
then-decryption process. This modus operandi works well in the framework of a
KEM because the original value of the plaintext itself does not matter, as long
as a random shared secret can be derived from it. Indeed, in NTRU-HRSS KEM
algorithm, the shared secret is a hash of the “treated” plaintext.

B.2 Our Modified Encoding

However, this solution is not relevant in the more general case of a PKE, in
which any input of the good length has to be successfully recovered.

We therefore propose a slight variation of the encoding operation “unpack_S3”
(and its reverse “pack_S3”), designed so that no information is lost during the
encoding and thus the decryption can recover the encrypted plaintext. Figure 9
details the changes brought by our proposal. In a nutshell, we encode the input
bits not per byte – as in the original encoding – but in packs of 11 bits (2,048
possible values) that are turned into sets of 7 trigits (2,187 values). As the final
set of values is bigger than the initial one, all possible values from the byte array
can be encoded in the ternary coefficient polynomial.

In terms of efficiency, for NTRU-HRSS we have n = 701 and the input length
is |m+r| = 280 bytes. With our tweak, we carry out γ = 100 times our modified
encoding operation detailed in lines 5 to 7 of Figure 9, which permits to encode
137 bytes instead of the original 140 bytes for each part r and m, so 274 bytes
instead of 280 in total. The efficiency loss induced by our technics is minor,
whereas it brings a general scope to the PKE of NTRU-HRSS.
16 As well as with NTRU-HPS, its counterpart from the same submission package to

the NIST’s PQC competition.
17 This data treatment, carried out in an operation named “sample_rm”, consists in

sampling, both for m and r, a random ternary coefficient polynomial of degree n−2.
This one is then transformed into a byte array, via the operation “pack_S3”.
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Unpack_S3(B: byte array)
1 : γ := ⌈(n− 1)/5⌉
2 : (b1, · · · , b8.γ ) := P arse(B)
3 : v := 0
4 : i := 0
5 : while i < γ do :

6 : set (c1, · · · , c5) ∈ {0, 1, 2}5
s.t. :

7∑
j=0

2j
.b8i+1+j =

4∑
j=0

3j
.c1+j

7 : (v5i+1, · · · , v5i+5) := (c1, · · · , c5)
8 : i := i + 1
9 : return S3(v): polynomial

Modified_unpack_S3(B: byte array)
1 : γ := ⌈(n− 1)/7⌉
2 : (b1, · · · , b11.γ ) := P arse(B)
3 : v := 0
4 : i := 0
5 : while i < γ do :

6 : set (c1, · · · , c7) ∈ {0, 1, 2}7
s.t. :

10∑
j=0

2j
.b11i+1+j =

6∑
j=0

3j
.c1+j

7 : (v7i+1, · · · , v7i+7) := (c1, · · · , c7)
8 : i := i + 1
9 : return S3(v): polynomial

Pack_S3(v: polynomial)
1 : γ := ⌈(n− 1)/5⌉
2 : v := S3(a)
3 : B = (b1, · · · , b8.γ ) := (0, · · · , 0)
4 : i := 0
5 : while i < γ do :

6 : set (c1, · · · , c5) ∈ {0, 1, 2}5
s.t. :

cj ≡ v5i+j (mod 3)
7 : set (b8i+1, · · · , b8i+8) s.t. :

7∑
j=0

2j
.b8i+1+j =

4∑
j=0

3j
.c1+j

8 : i := i + 1
9 : return B: bytearray

Modified_pack_S3(v: polynomial)
1 : γ := ⌈(n− 1)/7⌉
2 : v := S3(a)
3 : B = (b1, · · · , b11.γ ) := (0, · · · , 0)
4 : i := 0
5 : while i < γ do :

6 : set (c1, · · · , c7) ∈ {0, 1, 2}7
s.t. :

cj ≡ v7i+j (mod 3)
7 : set (b11i+1, · · · , b11i+11) s.t. :

10∑
j=0

2j
.b11i+1+j =

6∑
j=0

3j
.c1+j

8 : i := i + 1
9 : return B: bytearray

Fig. 9: Unpack_S3 and pack_S3 algorithms from the original NTRU-HRSS PKE
[5] (left column), along with our modified versions (right column). In the encryp-
tion and decryption stages, these operations are performed both on the plaintext
m and on the randomness r. S3(v) and S3(v) respectively denote the canoni-
cal and non-canonical representatives of a polynomial v in the quotient-ring
S/3 = Z[X]/(3, Φn).
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C Communication Cost of the Leaking-Cascade in a
Degraded Configuration

We study the hybridization – as an IND-CPA robust combiner – of two encryp-
tion schemes E1 and E2 such that E1 is “partitioned-ciphertext”. For a given set
of parameters, corresponding to an aimed security level, the input and output
sizes of these algorithms (|m1|, |m2|, |c1| and |c2|) are fixed.

Definition 9 (Leaking-Cascade in a Degraded Configuration). We say
that the combination in leaking-cascade of two encryption schemes E1 and E2,
with E1 as a “partitioned-ciphertext” algorithm, occurs in a degraded configura-
tion if the message part of the upstream primitive E1 is bigger than the input size
of the downstream scheme E2: |cm1 | > |m2|.

In this unfavorable case, the IND-CPA security of the leaking-cascade hy-
brid scheme can be ensured only if the downstream encryption scheme E2 runs
α > 1 times to encrypt the whole message part cm1 of E1, with α defined as:
α =

⌈
|cm1 |
|m2|

⌉
.

In this context, the ciphertext communication cost |c|lcα of the leaking-
cascade becomes:

|c|lcα
= |u|+ α.|c2|
= (|c1| − α.|m2|) + α.|c2|

⇔ |c|lcα
= τ1.|m1|+ α.(τ2 − 1).|m2| with α > 1

The parallel combination, where the ciphertexts of the component encryption
schemes are simply concatenated together, has therefore the following ciphertext
communication cost:

|c|// = τ1.|m1|+ τ2.|m2|

We can rewrite the efficiency of the leaking-cascade as:

|c|lcα
= τ1.|m1|+ α.(τ2 − 1).|m2|
= |c|// + ((α− 1).τ2 − α).|m2|

Thus, for the leaking-cascade in this degraded mode (lcα) to be more or
equally efficient than its parallel counterpart, we need that :

(α− 1).τ2 − α < 0 ⇔ τ2 <
α

α− 1

– τ2 = 1 : In the very particular case where the downstream encryption
scheme E2 has a unitary expansion rate, this condition is fulfilled for all
possible values of α and the leaking-cascade yields a better efficiency than
the parallel combination.
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– τ2 > 1: The leaking-cascade is more efficient than the parallel composition
only under some values of τ2, depending on α. For instance, the following
conditions must be met for leaking-cascade to be more efficient than the
parallel combination:

α = 2⇒ τ2 < 2

α = 3⇒ τ2 <
3
2

29



D Enhancements of the Cascade Combiner
D.1 Integrated Diffie-Hellman (IDH) KEM

As stated in subsection 4.3, this tweaked cascade combiner replaces, at the first
position of the chain, the classical encryption scheme by a Diffie-Hellman key
agreement scheme on Elliptic Curve (ECDH).

To do so, we model the recipient’s static public DH element as their public-key
(pkdh

B := Y = G.y, with y
$← {0, 1}n and G a public point of the elliptic curve)

and the sender’s ephemeral public DH element (X := G.x, with x
$← {0, 1}n) as

their ciphertext.

Fig. 10: Encapsulation step of an Integrated Diffie-Hellman KEM. The decapsu-
lator’s public DH element G.y is seen as their ECDH public-key pkdh while the
encapsulator’s public ECDH element is modeled as their ciphertext cdh := G.x.

For identical parameters (choice of the elliptic curve and representation of
the points’ coordinates), such an agreement scheme is twice lighter than an
encryption scheme like ElGamal, since only one point of the curve needs to be
transmitted instead of two. Consequently, with an adequate choice of parameters,
the ciphertext can be reduced to 32 bytes, which permits to carry out a regular
cascade combination instead of a leaking one and saves 32 bytes of bandwidth.

Security Considerations. Contrary to a standard PKE cascade combiner,
the hybrid primitive generated here by the cascade composition is not a real
PKE since the decapsulator receiving the ciphertext c is not able to recover the
original plaintext x but a shared secret ssdh derived from it.

Nevertheless, the security proof of a PKE cascade-combination (cf. section 3.3)
could be adapted to the present case in order to demonstrate that the hybrid
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IDH_KEM.EncapsA(pkB)
1 : (pk

pq
B , pk

dh
B ) := P arse(pkB)

2 : x
$← {0, 1}n

3 : ss
dh := H(x.pk

dh
B )

FO transformation T :

4 : r := H(ss
dh [ || H(pkB)])

Cascade PKE encryption :

5 : c
dh := X = G.x

6 : c := P Q.P KE.Enc(pk
pq
B , X, r)

FO transformation (Q)U̸⊥
[m]:

7 : k := G(ss
dh [ || H(c)])

8 : return (k, c)

IDH_KEM.DecapsB(skB, c, pkB)
1 : sk

pq
B , sk

dh
B := P arse(skB)

Cascade PKE decryption :

2 : X
′ := P Q.P KE.Dec(sk

pq
B , c)

3 : ss
dh′

:= H(X
′
.sk

dh
B )

FO transformation T :

4 : r
′ := H(ss

dh′
[ || H(pkB)])

FO transformation (Q)U ̸⊥
[m]:

5 : c
′ := P Q.P KE.Enc(pk

pq
B , X

′
, r

′)

6 : if c
′ = c then :

7 : k := G(ss
dh′

[ || H(c)])
8 : else :

9 : z ← {0, 1}n

10 : k := G(z [ || H(c)])
11 : return k

Fig. 11: Encapsulation and decapsulation algorithms of the IDH-KEM. The key
generation step is identical to a cascade or a parallel KEM combiner. The brack-
ets represent variants of the FO transformation. The blue lines show the addi-
tional computations compared to a single PQ KEM.

primitive produced is as secure as its most secure component. To do so, we note
that:

– the recipient’s public DH element G.y has the exact same form as an ElGamal
public-key, and thus can be considered as their ECDH public-key pkdh

B ;
– encapsulating the sender’s public DH element G.x in the downstream PKE

has the exact same effect as encapsulating a “real” PKE ciphertext, in the
sense that an adversary needs to break both the downstream PKE and the
upstream key agreement to eventually recover the shared secret ssdh.

We then consider that applying a FO transformation on this hybrid primitive
has the same effect of generating an IND-CCA2 KEM as it does upon a standard
PKE. The main difference here with a standard KEM construction from a PKE
is that the transformation (Q)U ̸⊥[m] is not applied directly on the random input
seed x but rather on the shared secret ssdh derived from it. As this operation
merely consists in hashing the seed, it makes no difference, in terms of security,
to do it on the derived value ssdh instead of on the original seed. Actually,
this approach is similar to the FO transformation variant used in Kyber, where
(Q)U̸⊥[m] is applied not on the seed m itself but rather on the pre-key k̂ that
originates from a hash of this seed.

Instantiation of the ECDH Scheme. The PKEs of most PQ KEMs are set
to take as input a 256 bit-long pseudorandom string and to output a symmetric
key of the same length. It is therefore necessary to select ECDH algorithms
that produce public elements and shared secret of that sizes. X25519, the key-
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agreement scheme based on Curve25519 (cf. [2]), appears to be an excellent
candidate in that matter, with its 32 byte-long public element, almost uniformly
distributed in {0, 1}256. Its main drawback is that it yields a shared secret of
“only” 255 bits, which lowers by one bit the security of the scheme, even after
hashing the shared secret into the expected string of 256 bits.

D.2 Integration of the Public Keys

We detail hereunder another possible enhancement, where an encapsulation is
no longer carried out on the ciphertexts but on the public keys. Because it re-
lies on the structure of these public keys, this tweak cannot unfortunately be
generically applied to any PKE. The principle is to use a short public key (gen-
erally from an encryption or key agreement scheme on an elliptic curve with a
256 bit-long order) as a replacement for a seed that is part of another public key.

Our method works for any Learning with Error (LWE), Ring-LWE or Module-
LWE cryptosystem. These ones indeed use a public matrix A and an error term e
to hide the secret key s. Because this matrix can be deterministically generated
from a random seed, some schemes choose to transmit the seed instead of the
whole matrix to save some communication cost. This is precisely the case of the
Module-LWE-based Kyber KEM, which only transmits in its public key the seed
ρ used to build the matrix A: pkky := tky || ρ , with tky := A.s + e.

When instantiated with any key-agreement scheme and Kyber, our public
key enhancement saves 32 bytes of bandwidth.

ECDH_Kyber.KeyGen(G)
ECDH key generation :

1 : y
$← {0, 1}256

2 : pk
dh := Y = G.y

3 : sk
dh := y

Kyber key generation :

4 : ρ := H(pk
dh) �����

ρ
$← {0, 1}256

5 : σ
$← {0, 1}256

6 : A := Expand(ρ)

7 : (sky
, e) := Expand(σ)

8 : tky := A.sky + e

9 : return pk := (tky
, pk

dh), sk := (sky
, sk

dh)

Fig. 12: Key generation of an ECDH-Kyber combiner with encapsulated public
keys. The blue line represents the only change in the key generation of this
scheme, compared to a stand-alone execution of Kyber.

As for the security of the scheme, hashing the ECDH public key (which is
almost uniformly distributed on {0, 1}256) yields a string that is, in the (Q)ROM,
fully uniformly distributed on {0, 1}256. We consequently consider that Kyber’s
implementation should not suffer from this change, even if a formal security
analysis would be necessary before any real use of this tweaked scheme.
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