
On the Impossibility of Algebraic NIZK
In Pairing-Free Groups

Emanuele Giunta1,2

1 IMDEA Software Institute, Madrid, Spain.
emanuele.giunta@imdea.org

2 Universidad Politecnica de Madrid, Spain.

Abstract. Non-Interactive Zero-Knowledge proofs (NIZK) allow a prover
to convince a verifier that a statement is true by sending only one message
and without conveying any other information. In the CRS model, many
instantiations have been proposed from group-theoretic assumptions. On
the one hand, some of these constructions use the group structure in a
black-box way but rely on pairings, an example being the celebrated
Groth-Sahai proof system. On the other hand, a recent line of research
realized NIZKs from sub-exponential DDH in pairing-free groups using
Correlation Intractable Hash functions, but at the price of making non
black-box usage of the group.
As of today no construction is known to simultaneously reduce its secu-
rity to pairing-free group problems and to use the underlying group in a
black-box way.
This is indeed not a coincidence: in this paper, we prove that for a large
class of NIZK either a pairing-free group is used non black-box by rely-
ing on element representation, or security reduces to external hardness
assumptions. More specifically our impossibility applies to two incompa-
rable cases. The first one covers Arguments of Knowledge (AoK) which
proves that a preimage under a given one way function is known. The
second one covers NIZK (not necessarily AoK) for hard subset problems,
which captures relations such as DDH, Decision-Linear and Matrix-DDH.

mailto:emanuele.giunta@imdea.org

Table of Contents

1 Introduction 3

2 Preliminaries 8
2.1 Notation . 8
2.2 Maurer’s Generic Group Model . 8
2.3 NIZK-AoK . 9
2.4 Digital Signatures . 10
2.5 Vector Commitments . 10

3 One Way Functions in Maurer GGM 11
3.1 Definition . 11
3.2 Collision Resistance . 11
3.3 Hard-Core Predicates . 12

4 Impossibility of Algebraic NIZK-AoK 13
4.1 Hiding Vector Commitments . 13
4.2 Reduction to Signatures . 14
4.3 Lower Bound . 15
4.4 Intuition on NIZK-AoK Impossibility . 15
4.5 Vector Commitments from NIZK-AoK . 16
4.6 Impossibility of Algebraic NIZK-AoK . 19

5 Impossibility of Algebraic NIZK 20
5.1 Hard Subset Membership Problem . 20
5.2 Preliminary Adversary . 21
5.3 Attack Description . 22
5.4 Impossibility of Algebraic NIZK . 23

6 Conclusions 27

A Postponed Proofs 32
A.1 Collision Resistant Algebraic OWF . 32
A.2 Hard-Core Predicates . 37
A.3 Hiding VC. 38
A.4 Hiding VC to Signatures . 39
A.5 Hard Subset Membership Problem . 40
A.6 Preliminary Adversary . 42

1 Introduction

Zero-Knowledge proofs are protocols through which a prover can convince a
verifier that a given statement is true without revealing any other information.
Non-interactive zero-knowledge proofs (NIZK) [BFM88] are often preferable in
concrete applications but it is well known that instantiating them in the standard
model is impossible. To overcome this limitations instantiations in the random
oracle model (ROM) and the common reference string (CRS) model have been
studied.

In the ROM a public hash function is modeled as being truly random, used
in the Fiat-Shamir transform [FS87] to replace interaction with a public coin
verifier. In the CRS model a set of public parameters are set up by a trusted
party before the protocol starts. In these two settings, a variety of techniques to
build NIZK for NP-complete relations have been put forward. However, when
applying them to languages of interest in cryptographic applications, for instance
those based on prime order (pairing) groups, the reduction to a target NP-
complete problem introduces overheads which limit applicability. This typically
occurs when proving statements related to ElGamal ciphertexts or Pedersen
commitments. For this reason NIZK that operate efficiently for group-theoretic
statements, and whose hardness only relied on group-theoretic problems have
been studied.

In the ROM, positive results came from the Schnorr sigma protocol [Sch90],
and its subsequent generalizations [Cra96, Mau09], which eventually led to sub-
linear arguments [BCC+16, BBB+18] for all NP solely based on hard problems
over groups. This approach, however, can provide at best computationally sound
arguments in the ROM and unclear security guarantees when replacing the RO
with a hash function.

For these reasons a parallel line of research investigated NIZKs from group
assumptions in the CRS model. Early work proved feasibility in the pairing
setting [Gro06, GOS06a, GOS06b] eventually leading to the celebrated statisti-
cally sound Groth-Sahai proof system [GS08]. Still in the pairing setting [CH20]
recently proposed different techniques to compile Schnorr-like sigma-protocols
[Sch90, Cra96, Mau09] capturing linear languages. Interestingly, both construc-
tions only make black-box usage of the underlying group, which makes the re-
sulting NIZK simpler, randomizable and able to support aggregation for specific
languages.

A more recent approach is to instantiate the Fiat-Shamir transform through
correlation-intractable hash (CIH) functions [CGH04]. Recently [JJ21] realized
CIH and NIZK only assuming sub-exponential DDH. This sparkled renewed in-
terest and led to new constructions including designated-verifier NIZK from CDH
[KNYY21], SNARGs for P and batch-NP [CGJ+22] and for log-space bounded-
depth circuits [KLV22]. On the one hand, this proved once again that the gap
between pairing-based assumptions and plain prime order group ones is thinner
than we expected. On the other hand, as opposed to Groth-Sahai, all CIH-based
NIZKs make non black-box usage of the underlying group by relying on element
representations, for instance to hash group elements, and thus breaking the al-

gebraic structure. Given the state of the art we therefore ask whether “best of
both worlds” constructions are possible, i.e.

Do there exist NIZK based only on pairing-free prime-order group problems and
that only use the group in a black-box way?

A positive answer would be interesting in practice since pairing-free groups
are generally more efficient than their pairing-friendly counterpart, possibly pro-
viding faster NIZKs that Groth-Sahai. Moreover, black-box usage of the group
may preserve the algebraic structure yielding NIZK with homomorphic proper-
ties, something currently not known to be possible via CIH.

Our Result. We answer the above question in the negative by showing that
for a large class of relations defined over a known prime order pairing free group,
any NIZK satisfies at least one of the following:

1. Relies on group element representations, thus using the group in a non black-
box way.

2. Its security does not only depend on hard problems over the group.
3. It assumes additional algebraic structure (such as pairings).

This informally implies that the usage of pairing in black-box constructions such
as Groth-Sahai cannot be removed without relying on group elements represen-
tation. Analogously, the usage of elements representation in all recent construc-
tions from sub-exponential DDH cannot be removed without introducing more
structure (like pairings or unknown order) or assumptions (like LWE).

Following the approach of recent negative results [DHH+21, CFGG23], we
formalize black-box access to the group by assuming all procedures to be defined
in Maurer’s Generic Group Model (GGM) [Mau05], where the group is replaced
by addition and equality check oracles, and no representation is ever given (as
opposed to Shoup’s Group Model [Sho97]). In this model, we isolate hard group-
theoretic problems by assuming unbounded adversaries that are constrained to
use the group efficiently, as done in [SGS21, DHH+21, CFGG23]. We will later
refer to this class of adversaries as GPPT, standing for Generic-Group PPT.
More in detail, we prove two independent impossibility results:

Impossibility for Arguments of Knowledge. Our first result shows that, in Mau-
rer’s GGM, given a one-way function (family) fk : {0, 1}n → Gm whose hardness
reduces to hard group problems, there exists no NIZK-Argument of Knowledge
(NIZK-AoK) to prove that a preimage x of y for the function fk is known. In
other words there exists no NIZK-AoK for the NP-relation

R = {((k, y), x) : fk(x) = y}.

If fk is a one-way function family, we need to further assume that the key k
only contains uniformly random group elements for the proof to go through.
Although this mildly affects generality, we capture virtually all cases of interest.

Examples are discrete logarithm and linear maps f : Fn
q → Gm, KZG [KZG10]

“powers of τ ” setup where fG : Fq → Gn with key the group generator G and
fG(τ) = (τ i ·G)ni=1, PST [PST13] multivariate CRS and range proofs.

Impossibility for Computationally Sound NIZK. Our second negative result ad-
dresses a class of relations R for which it is possible to sample statements inside
and outside the associated language3 so that distinguishing the two distribu-
tions is computationally hard. An example is the DDH relation, for which dis-
tinguishing DDH tuples4 from random ones is hard. These relations were called
in [GW11] hard subset membeship problems and for them we show that in Mau-
rer’s GGM no NIZK (not necessarily AoK) exists. This essentially captures all
group-theoretic decisional problems including DDH, DLin, Matrix DDH and
others.

Results Comparison. Finally, we remark that these two results are incompara-
ble. The impossibility of NIZK-AoK for the discrete logarithm relation cannot
follow from our second result, as the language associated to the discrete loga-
rithm problem is trivial (every group element admits a discrete logarithm), and
therefore is not a hard subset membership problem. Conversely, our second re-
sult is not implied by the first one because it addresses a weaker class of NIZKs,
which only need to satisfy soundness but need not to be extractable.

Our Techniques. We now give an overview of the ideas and challenges involved
in our result. Our starting point are two recent papers by Döttling, Hartmann,
Hofeinz, Kliz, Schäge, Ursu [DHH+21] and Catalano, Fiore, Gennaro, Giunta
[CFGG23] which respectively proved impossibility of Algebraic Signatures and
Vector Commitments (VC) [LY10, CF13] in Maurer’s GGM.

Techniques for Arguments of Knowledge. Regarding our first result, the main
idea is to reduce NIZK-AoK for a one way function f to VC in such a way that
the impossibility in [CFGG23] carries over to NIZKs. More specifically, in order
to contradict [CFGG23] one would have to produce a VC for n messages with
commitment c and opening Λ of bit length |c| and |Λ| respectively such that
|c| · |Λ| = o(n). Unfortunately, the only compressing commitments known over
groups are variations of Pedersen scheme [Ped92], which comply with the lower
bound, and NIZKs do not seem to provide an edge for compression as we do not
assume succinctness.

We overcome this limitation with the following critical observation. If the
VC hides unopened entries, the lower bound in [CFGG23] can be improved to
ℓc ≥ n, with ℓc being the number of group elements in the commitment and n the
length of the committed vector. This clears the path for the following strategy:
committing to a vector of field elements via Pedersen, and then relying on a

3 Or, more generally, so that with overwhelming probability the sampled elements lies
inside and outside the language respectively.

4 i.e. tuples of the form (G, a ·G, b ·G, ab ·G) for random a, b

NIZK-AoK to prove knowledge of the openings. Notice that opening proofs in
this case may be of linear size, which does not contradict [CFGG23]. However,
since the commitment would have constant size, we do violate our improved
lower bound.

In order to build intuition and illustrate the challenges that arise in this
construction let us present a toy instantiation for the simple case in which
fGi

(xi) = xi · Gi is the group exponentiation with Gi ∈ G. Applying directly
the idea above a commitment C to (x1, . . . , xn) and an opening Λ at position i
should be set as

C = fG1
(x1) + . . .+ fGn

(xn) = x1G1 + . . .+ xnGn

Λi = (fGj
(xi), πj)j ̸=i = (xjGj , πj)j ̸=i

with πj being an AoK for xj . This approach however fails to hide xj as it leaks
xjGj . To overcome this issue we rely on the Goldreich-Levin hardcore predicate
[GL89]. Their result informally says that for any OWF f , sampling an input x
(viewed as a bit-string) and a random string of the same length r, is hard to guess
the bit-wise inner product x⊤r modulo 2 given only f(x) and r. With this tool
we can turn the above construction into a VC to bits, where each committed bit
is a Goldreich-Levin hardcore predicate, which remains hidden even after leaking
f(x).

In the toy example with f being the group exponentiation, the resulting
commitment for b1, . . . , bn is obtained by sampling xi, ri with x⊤

i ri = bi and xi

field element and setting

C = (x1G1 + . . .+ xnGn, r1, . . . , rn) , Λi = (xjGj , πj)j ̸=i .

Another challenge is that we need our OWF f to be collision resistant, which
is trivially true for the exponentiation, but false in general. We address this by
showing a rather technical way to make any OWF family whose key consist of
random group elements collision resistant. Although this transformation renders
f computable only in GPPT time, more specifically in exponential space5 but
only polynomially many group operations, this suffices to obtain our result.

Techniques for Computationally Sound NIZK. Regarding our second result, we
fail to provide a simple reduction to primitives known to be impossible and
instead we directly adapt the approach of [DHH+21, CFGG23]. Their attack in
the setting of digital signatures works as follows: initially the adversary is given
a verification key vk. For each message it then attempts to extract a signature by
brute-force running the verifier on all possible inputs. Eventually, either a forgery
is found or a signature query reveals a linear relation on the group elements of
vk. Thus after sufficiently many attempts a forgery will be found.

We begin by sketching an adaptation to the simpler case of simulation-sound
NIZKs, where the adversary has to prove a false statement given oracle access
to the simulator. In this case one may hope that replacing the signature and
5 which explains why we do not violate the black-box separation of [Sim98].

verification procedures with the NIZK simulator and verifier, the attack would
carry over by letting the adversary try to produce a proof for false statements
in the same way.

One issue though is that the simulator is not guaranteed to work with false
statements, and may simply return an error if it recognizes one as such. We
therefore restrict our focus on hard subset membership problems, in which false
statements can be sampled so that deciding their correctness is hard. In this way
the simulator almost always returns an accepting proof, and in particular the
attack eventually succeeds.

The final challenge is using this adversary, let us call it A, to break regular
soundness where no simulator oracle is provided. Our solution is reminiscent of
the strategy to simulate the folklore proof for graph isomorphism against ma-
licious verifiers: Given the crs, we begin by tossing a coin b, that is a guess on
the behavior of A: If b = 1 we sample a true statement with its witness (x1, w1),
otherwise we sample a false one x0. Next we run A on xb. If A returns a proof
and we guessed b = 0, then this breaks soundness. Conversely if A asks for a sim-
ulated proof and we guessed b = 1, the proof can be computed with the NIZK
prover using w1. In this second case A’s output will contain a linear relation
among the group elements in the crs. If the guess is not correct we can resample
a fresh b and xb and repeat. Since distinguishing x0 from x1 is hard, each guess
is correct with probability close to 1/2 and with sufficiently many guesses the
attack succeeds with significant probability.

Related Work. Since the seminal work by Impagliazzo and Rudich [IR89],
many papers studied the relations among cryptographic primitives through black-
box reduction, and, on the negative side, black-box separations [Sim98, KST99,
GT00, GKM+00, GMR01, GGK03].

This includes the study of what primitives can and cannot be built over black-
box pairing-free known prime order groups, typically modeled as Maurer’s or
Shoup’s GGM. Papakonstantinou, Rackoff and Vahlis [PRV12] were the first to
study the impossibility of Identity-Based Encryption in the Shoup GGM, result
later tightened by [SGS21] in Maurer’s GGM and fully proved in [Zha22] in
Shoup’s Model. Recent works showed impossibility in Maurer’s GGM for several
other primitives, such as verifiable delay functions [RSS20], digital signatures
[DHH+21] and vector commitments [CFGG23], where the last two are known to
exist in Shoup’s GGM. In this view our work places NIZK as another primitive
which separates Maurer’s model from Shoup’s one.

Regarding general impossibility results for NIZK, Gentry and Wichs’s cele-
brated result [GW11] shows that succinct arguments cannot be based on falsifi-
able assumption assuming sub-exponential hardness. We stress that our problem
is orthogonal to their result as we don’t assume succinctness. However, we ask
for black box usage of a group, which is more restrictive than simply assuming
a reduction to (falsifiable) group-theoretic problems.

Abe, Camenisch, Dowsley, Dubovitskaya proved in [ACDD19] a general im-
possibility result for deterministic structure-preserving primitives which captures

among others PRF, VRF and unique signatures. Their result however does not
cover NIZKs as proofs may not be unique.

More recently Ganesh, Khoshakhlagh, Parisella [GKP22] showed that the
Couteau-Hartmann framework [CH20] to instantiate the Fiat-Shamir transform
in pairing groups fails to achieve a stronger notion of extraction when no knowl-
edge assumption is used.

We finally remark that Bellare and Goldwasser [BG90] and later Goldwasser
and Ostrovsky [GO93] proved the equivalence between NIZKs and invariant sig-
natures. This, in combination with the impossibility result for digital signatures
in Maurer’s GGM [DHH+21, CFGG23], yields a weaker version of our second
result, excluding simulation sound NIZKs only for certain expressive relations6

2 Preliminaries

2.1 Notation

In the following we denote [n] = {1, . . . , n}. Fq for a prime q is the field of
order q, isomorphic to the integers modulo q. V ≤ Fn

q means that V is an affine
subspace of Fn

q . Given a group G of known prime order q, we call G its canonical
generator. Although we will use additive notation for groups, given a ∈ Fq and
H ∈ G we will refer to the operation a ·H as an exponentiation. We also assume
operations on vectors and sets are entry-wise, that is given v ∈ Fn

q , V ≤ Fn
q and

H ∈ G, v ·G = (v1G, . . . , vnG) and V ·G = {v ·G : v ∈ V }. For a set X , x ∼ X
means x is a random variable with support in X whereas x ∼ U(X) means x is
uniformly distributed over X . Given x, y ∼ X we denote ∆(x, y) their statistical
distance

∆(x, y) =
1

2

∑
t∈X

∣∣∣Pr [x = t]− Pr [y = t]
∣∣∣ .

2.2 Maurer’s Generic Group Model

Maurer’s Generic Model, introduced in [Mau05] and revised in [Zha22], is a
framework to describe generic computation. Since we are interested in procedures
defined over a group we will refer to this special case as the Generic Group
Model (GGM). In this setting, a group G of known prime order q is modeled by
a stateful oracle machine O along with an internal list of group elements V of
length n. The list initially only contains one generator, i.e. V = (G) and n = 1.
Operations over the group can be performed through oracle queries Oadd, Oeq to
O. More specifically

– When Oadd(i, j) is queried with i, j ≤ n, O computes Vn+1 ← Vi + Vj and
appends the result to V .

– When Oeq(i, j) is queried with i, j ≤ n, O computes the bit b ← Vi == Vj

and returns b.
6 More specifically given a PRF f , a perfectly binding commitment c to a PRF key
k, and public inputs x and y the NIZK has to prove that y = fk(x).

We remark that the above description follows [Zha22] revision, which removes
the possibility to specify in Oadd queries in which entry of V the result should
be stored, appending it instead at the end of the list by default. Throughout the
rest of this paper, to improve readability, we will use Oadd and Oeq with group
elements instead of indices (implicitly associating group elements to indices).

An important class of adversaries in the GGM used to isolate hard problems
in the group from other source of hardness is the following.

Definition 1. GPPT is the class of all (unbounded) probabilistic Turing Ma-
chines with access to Oadd,Oeq whose number of oracle queries is polynomially
bounded in their input length.

This class was implicitly introduced when proving lower bound for compu-
tational and decisional problems such as discrete logarithm, DDH and CDH, as
well as in recent impossibility result [RSS20, DHH+21, CFGG23].

2.3 NIZK-AoK

A Non-Interactive Zero-Knowledge argument (NIZK) for a relation R is a tuple
of three algorithms (G,P,V) that allow a prover to convince a verifier about the
validity of a statement without leaking any other information. Given crs← G(1λ)
and (x,w) ∈ R a valid statement, the prover can compute a proof running
π ← P(crs, x, w) which can later be verified by b ← V(crs, x, π). The proof is
accepted if b = 1, or rejected otherwise. Below we revise formally the main
properties NIZKs can satify.

Completeness: ∀(x,w) ∈ R

Pr
[
1← V(crs, x, π)

∣∣ crs← G(1λ), π ← P(crs, x, w)
]
= 1.

Soundness: ∃ε negligible such that ∀x : ∄w : (x,w) ∈ R and ∀A PPT

Pr
[
1← V(crs, x, π)

∣∣ crs← G(1λ), π ← A(crs, x)
]
≤ ε(λ).

Argument of Knowledge: For any PPT adversary A there exists a PPT
extractor E such that
1. ∃ε negligible such that ∀D PPT, given crs0, td← E(1λ), crs1 ← G(1λ)

|Pr [1← D(crs0)]− Pr [1← D(crs1)]| ≤ ε(λ).

2. There exists a negligible function ε such that

Pr

[
V(crs, x, π)→ 1
(x,w) /∈ R

∣∣∣∣ crs, td← E(1λ), (x, π)← A(crs)
w ← E(td, x, π)

]
≤ ε(λ).

Zero-Knowledge: There exists a PPT simulator S such that, up to negli-
gible probability ε, for all (x,w) ∈ R and PPT adversary A, given

crs0, td← S(1λ), π0 ← S(td, x), crs1 ← G(1λ), π1 ← P(crs1, x, w)

⇒ |Pr [1← A(crs0, π0)]− Pr [1← A(crs1, π1)]| ≤ ε(1λ).

In the rest of the paper we will say that in Maurer’s Generic Group Model,
a NIZK is algebraic if soundness and zero-knowledge hold against any GPPT
adversary, i.e. with unbounded computational power but limited to perform a
polynomially bounded number of queries to the GGM oracles. Analogously an
Algebraic NIZK-AoK is an argument of knowledge against GPPT adversaries.

2.4 Digital Signatures

A Digital Signature scheme is a tuple of three algorithms (S.Setup,S.Sign,S.Vfy)
along with a set S.M such that

– S.Setup(1λ)→ vk, sk generates the verification signature key
– S.Sign(sk,m)→ σ with m ∈ S.M, signs the message m.
– S.Vfy(vk,m, σ)→ 0/1 check the validity of the signature.

A signature scheme is correct if given vk, sk generated by the setup procedure
and for all m ∈ S.M, computing σ ← S.Sign(sk,m) yields a valid signature, i.e.
such that Pr [S.Vfy(vk,m, σ)→ 1] = 1.

A signature scheme is unforgeable against a class of adversaries, if no ad-
versary in this class on input vk and oracle access to S.Sign(sk, ·) can return a
signature on a message that was not queried with non negligible probability.

2.5 Vector Commitments

Vector Commitment (VC) [LY10, CF13] is a primitive that allows a user to
commit to a vector of messages and later on reveal entries of its choice. A VC
scheme consists of four algorithms (VC.Setup,VC.Com,VC.Open,VC.Vfy) and a
message space VC.M such that
– VC.Setup(1λ)→ pp generates the public parameters.
– VC.Com(pp, x1, . . . , xn)→ (c, aux) with x1, . . . xn ∈ VC.M.
– VC.Open(pp, i, aux)→ Λ produces an opening proof for position i.
– VC.Vfy(pp, c, x, i, Λ)→ 0/1 check the validity of the opening proof.

A vector commitment is correct if, given pp generated by the setup algorithm, c
a commitment to (x1, . . . , xn) with auxiliary information aux and Λ an opening
proof for position i, then Pr [VC.Vfy(pp, c, x, i, Λ)→ 1] = 1.

The main notion of security for VC is position binding. This generalizes the
analogous notion for standard commitments as it requires that opening a position
to two different messages is computationally hard. More formally, given pp ←
VC.Setup(1λ), for all adversary A there exists a negligible ε such that

Pr

[
A(1λ, pp)→ (c, i, x0, Λ0, x1, Λ1),
∀b ∈ {0, 1} VC.Vfy(pp, c, xb, i, Λb)→ 1

]
≤ ε(λ).

Although VC in applications are also required to be succinct we will not
impose that restriction in this work. The reason behind this choice is that known
impossibility results in Maurer’s GGM [CFGG23] applies also to VC that are not
succinct in the traditional sense (i.e. with logarithmic commitment and opening
size).

3 One Way Functions in Maurer GGM

3.1 Definition

In this section we provide definitions that allow us to capture one way func-
tions that only uses a black-box group and whose hardness reduces only to hard
problems in the group. The first notion is easily captured by assuming f access
the group through the oracles Oadd and Oeq. To capture the second one we fol-
low the approach of [DHH+21, CFGG23] where security is provided against all
GPPT adversaries, i.e. unbounded machines restricted to perform a polynomially
bounded number of queries to the GGM random oracles.

Definition 2. We define Algebraic OWF Family a couple (Gen, f) of PPT al-
gorithms with

k ←$ Gen(1λ), fk : {0, 1}n1 ×Gn2 → {0, 1}m1 ×Gm2 .

such that for all GPPT adversaries A there exists a negligible ε such that

Pr
[
A(y)→ z, fk(z) = y

∣∣∣ x←$ {0, 1}n1 ×Gn2 , y ← f(x)
]
≤ ε(λ).

The simplest example of algebraic OWF is the group exponentiation f : Fq →
G with f(x) = x ·G, whose hardness in the GGM was proved in [Mau05].

Without loss of generality we can assume that fk outputs only group ele-
ments, as the output bits can be encoded in the exponent. More precisely given
f as in the definition above we can define for each key k

f ′
k : {0, 1}n1×Gn2 → Gm1+m2 : fk(x) = ((bi)

m1
i=1,H) ⇒ f ′

k(x) = ((bi·G)m1
i=1,H).

In the GGM f ′(x) can be computed from f(x) and vice versa.

3.2 Collision Resistance

Our first impossibility result for NIZK-AoK will apply to NP relations defined
for a large family of OWF, but we will need the OWF to be collision resistant.
This is problematic as not every OWF is collision resistant, effectively restricting
the scope of our result.

To address this issue we show that any algebraic OWF family with domain
{0, 1}n and Gen returning only random group elements can be transformed to
achieve collision resistance by simply restricting its domain. The idea is that, with
unbounded computation, we could find for a given key k a subset X ⊆ {0, 1}n
such that fk(X) = Im fk and fk is injective over X . However this would be
inefficient in terms of group operations7. Therefore we show that if the OWF
key is a vector of random group elements, it is possible to restrict the function’s
7 Each evaluation of fk would required access to the GGM, implying exponentially

many queries.

domain in GPPT time so that finding collisions implies finding linear relations
among the group elements in the key.

Concretely in the following lemma we provide two GPPT algorithm, Memb
and Samp, respectively testing membership with the restricted domain x ∈ X
and sampling elements from X . A proofs appears in the Appendix, Section A.1.

Lemma 1. Given (Gen, f) algebraic OWF family with f : {0, 1}n → Gm and
Gen returning a uniformly distributed key k ∼ U(Gκ), there exists a set X ⊆
{0, 1}n and two GPPT algorithm Memb and Samp such that

– Correctness 1: Memb(x)→ 1 ⇔ x ∈ X .
– Correctness 2: x←$ Samp(1λ) ⇒ x ∈ X .
– Indistinguishability: ∃ε negligible s.t. for k ←$ Gen(1λ), x1 ←$ {0, 1}n

and x2 ←$ Samp(1λ),

∆
(
(k, fk(x1)), (k, fk(x2))

)
≤ ε(λ).

– Collision Resistance: ∃ε negligible s.t. for all GPPT adversaries A , given
k ←$ Gen(1λ),

Pr [A(k)→ (x1, x2), x1, x2 ∈ X , x1 ̸= x2, fk(x1) = fk(x2)] ≤ ε(λ).

We remark that the above Lemma could be extended to k ∼ Gκ (not nec-
essarily uniform) such that finding non-trivial linear relations among its group
elements is hard for GPPT adversary. This holds as in the GGM such a vector k
would be indistinguishable from k′ ∼ U(Gκ), implying that f can be extended
to f ′ with key space Gκ by running the evaluation algorithm for f also for those
keys for which f is not formally defined. Since Memb and Samp exists for f ′,
they satisfy the above properties also for f (or else we could build a distinguisher
for k and k′).

3.3 Hard-Core Predicates

In [GL89] Goldreich and Levin proved that in the standard model, any OWF f
with domain in {0, 1}n can be transformed into another OWF f ′(x, r) = (f(x), r)
that admits the hard-core predicate x⊤r.

We observe that, given an algebraic OWF family, that is secure against any
GPPT adversary, even when the function’s domain is restricted as discussed in
the previous section, the same result applies.

Theorem 1. Let (Gen, f) an algebraic OWF familty with f : {0, 1}n → Gm and
Gen returning k ∼ U(Gκ). Then there exists ε negligible such that for all GPPT
adversaries A

Pr

[
A(k, y, r)→ b, b = x⊤r

∣∣∣∣ k ←$ Gen(1λ), r←$ {0, 1}n
x←$ Samp(1λ), y ← fk(x)

]
≤ ε(λ)

The proof is identical to the original result up to observing that in this case
the function’s input is sampled with a different distribution than the uniform
one and that the reduction only needs black-box access to the group. For com-
pleteness a proof appears in the Appendix, Section A.2.

4 Impossibility of Algebraic NIZK-AoK

4.1 Hiding Vector Commitments

Our first step toward the impossibility of algebraic NIZK-AoK will be to prove
a tighter lower bound than the one presented in [CFGG23] for the class of al-
gebraic VC which hides unopened entries. In this section we define the hiding
property in a game-based way. The approach we take is inspired by IND security
for functional encryption schemes: for any two vectors x0, x1 provided by the
adversary, we ask that guessing which one was committed is hard even when
those positions in which x0 and x1 match are opened.

ExpHideA(1λ)

1 : pp← VC.Setup(1λ), β ←$ {0, 1}
2 : (x0,x1)← A(pp) such that x0,x1 ∈ (VC.M)n

3 : c, aux← VC.Com(pp,xβ), A ← c

4 : When A queries i ∈ {1, . . . , n}:
5 : If x0

i = x1
i : Λi ← VC.Open(pp, i, aux), A ← Λi

6 : When β′ ← A:
7 : Return β′ == β

Fig. 1. Vector Commitment’s hiding game with adversary A

Definition 3. Given a Vector Commitment and an adversary A we define its
advantage at the hiding game, described in Fig. 1, as

Adv(A) =

∣∣∣∣12 − Pr
[
ExpHideA(1λ) = 1

]∣∣∣∣ .
A VC (resp. Algebraic VC) is hiding if there exists ε negligible such that for all
PPT (resp. GPPT) adversaries A, Adv(A) ≤ ε(λ).

As a sanity check we observe that combining any (non necessarily alge-
braic) VC with a commitment scheme yields an hiding VC as informally stated
in [CF13]. We further notice that, viewing VCs as a special class of Functional
Commitments [LRY16], the game in Fig. 3 could be rephrased for this general
primitive by letting A query functions f and receive an opening for f only if
f(x0) = f(x1).

While the above definition is given in a way that can be easily generalized,
when applied to VC it becomes equivalent to a simpler notion, given through the
game described in Fig. 2. The two main differences from the previous definition
are that x0 and x1 are allowed to differ in at most one position, and that opening
proofs for all other positions are given directly without oracle queries.

ExpHideVCA(1λ)

1 : pp← VC.Setup(1λ), β ←$ {0, 1}
2 : (x0,x1)← A(pp) with x0,x1 differing only in position i

3 : c, aux← VC.Com(pp,xβ), Λj ← VC.Open(pp, j, aux) for all j ̸= i.
4 : When β′ ← A(c, (Λj)j ̸=i)

5 : Return β′ == β

Fig. 2. Simpler Vector Commitment’s hiding game with adversary A

Proposition 1. A (resp. algebraic) VC is hiding if and only if there exists a
negligible ε such that for each PPT (resp. GPPT) adversary A, its advantage in
the game described in Fig. 2 is

Adv(A) =

∣∣∣∣12 − Pr
[
ExpHideVCA(1λ) = 1

]∣∣∣∣ ≤ ε(λ).

A proof of this Proposition appears in the Appendix, Section A.3.

4.2 Reduction to Signatures

Having introduced the notion of hiding VC we now show that the reduction from
VC to Signatures provided in [CFGG23] transform hiding VCs into unforgeable
signature schemes. We recall their construction in Fig. 3. Their idea is to sign
the indices from 1 to n by letting the verification key of the scheme be the VC’s
common reference string and a commitment to n random messages. A signature
for message i is then an opening of the i-th position, whose correctness can be
verified through VC.Vfy.

S∗.Setup(1λ):

1 : VC.Setup(1λ)→ pp

2 : m1, . . . ,mn ←$ VC.M

3 : c, aux←$ VC.Com(pp,m1, . . . ,mn)

4 : vk← (pp, c), sk← aux

5 : Return vk, sk

S∗.Sign(sk, i):

1 : π ← VC.Open(pp, i, aux)

2 : Return σ ← (mi, π)

S∗.Vfy(vk, i, σ):

1 : Return VC.Vfy(pp, c,mi, i, π)

Fig. 3. Generic transformation from VCs to signature schemes

Unforgeability is proven as follows. Assume an adversary forges a signature
for message i, that is an opening of c at position i to some message m′

i, with c
being a commitment to m1, . . . ,mn. Then m′

i ̸= mi only with negligible proba-
bility, or else A would break position binding. Therefore A can be used to break

the hiding property. This is done by guessing the position i it will forge, querying
in the hiding game, Figure 2, two random vectors differing in that position, an-
swering signature queries with the received opening values and finally returning
the bit corresponding to the vector containing m′

i in position i.
A more detailed proof appears in the Appendix, Section A.4.

Proposition 2. Given a position-binding and hiding (Algebraic) Vector Com-
mitment, the (Algebraic) Signature scheme in Fig. 3 is unforgeable.

4.3 Lower Bound

As proposition 2 implies that Algebraic VC can be transformed into Algebraic
Signatures, for which lower bounds on the parameter size are known [DHH+21,
CFGG23], we now derive a lower bound for position-binding and hiding vector
commitments.

In [CFGG23] it is proven that any algebraic signature satisfying a weaker
security notion, which they call ϑ unforgeability, with message space of size n
and a verification key with m group elements8 must satisfy m ≥ n + ϑ. As
observed in that paper, the standard Unforgeability notion is equivalent to their
ϑ-unforgeability when ϑ = 0. Moreover, in the reduction provided in Fig. 3, the
verification key only consist of the public parameters (that can be given in the
CRS) and one commitment. We thus conclude that

Theorem 2. Any position-binding and hiding Algebraic Vector Commitment
with GPPT computable procedures, whose commitment for a vector of length n
contains ℓc = ℓc(λ, n) group elements, satisfies ℓc ≥ n.

Notice that an Algebraic VC that is both position-binding and hiding with
linear opening proof size and constant commitment size would violate this The-
orem, but not the results presented in [CFGG23]. Indeed in the rest of this
sections we show that if Algebraic NIZK-AoK exists for certain relations, VC of
this form could be built in the GGM.

We finally remark that the above Theorem also captures VC scheme that
are efficient only with respect to group operations. This follows as the proof in
[CFGG23] also captures this corner case and will be extremely useful in the rest
of this section in order to apply our Lemma 1.

4.4 Intuition on NIZK-AoK Impossibility

The final step to obtain our claimed result on Algebraic NIZK-AoK is to show
that it would allow to construct a vector commitment in GPPT violating the
negative result of Theorem 2.

To build up intuition we first provide a toy construction assuming we have a
NIZK-AoK (G,P,V) for the discrete logarithm relation, i.e. that given K,H ∈ G
8 Excluding those group elements contained in the CRS for which the signer has no

trapdoor information.

proves knowledge of x such that H = x·K. The idea is to tweak a regular Petersen
commitment for n field elements until we make it hiding. An initial approach is,
given x1, . . . , xn ∈ Fq, to commit to them by sending C = x1K1 + . . . + xnKn

with Ki random group elements in the public parameters. To open position i we
can send, together with xi, the elements xjKj along with a proof of knowledge
of xj .

This would be position binding, as from any two opening of the same position
a challenger can extract (using the NIZK extractor) two different representations
of C in base K1, . . . ,Kn, which would break the security of standard Petersen
commitments. However this would not yet be hiding, even if the argument used
is zero knowledge. The issue is that x ·K does not hide x. More concretely, in the
hiding game, an adversary could send x0 = (1, 0, . . . 0) and x1 = (2, 0, . . . , 0).
Later, testing if C is equal to K1 or 2K1, it would be able to understand which
was the committed vector.

A way to address this issue is resorting to an hard-core predicate ℓ : Fq →
{0, 1} for the discrete logarithm OWF, such as the least significant bit. This
time, instead of committing to x1, . . . , xn, we present a commitment to bits:
given b1, . . . , bn the committer samples

xi ←$ Fq : ℓ(xi) = bi C = x1K1 + . . .+ xnKn.

An opening to bi can again be the message xi together with xjKj and a proof
of knowledge for xj , but now the verifier has to further verify that ℓ(xi) = bi.

This scheme would be binding as before, up to observing that ℓ(x0
i) ̸= ℓ(x1

i)
implies x0

i ̸= x1
i . Conversely the scheme is hiding because until position i is

opened, nothing about xi is revealed apart from xiKi, also because our argu-
ment is zero-knowledge. Thus guessing the message at position i reduces to the
hardness of predicting the hard-core predicate ℓ.

4.5 Vector Commitments from NIZK-AoK

We now discuss how to generalize the construction in Section 4.4 to algebraic
OWF families.

The first issue is that not all OWFs admit hard-core predicates. We ad-
dress this using the Goldreich-Levin transformation, see Section 3.3, f ′

k(x, r) =
(fk(x), r) which admits the hard-core bit x⊤r.

The second issue is that OWF may not be collision resistant9. An example
is fK : {0, . . . , 2q − 1} → G such that fK(x) = x · K where fK(0) = fK(q).
This may allow an adversary to break position-binding by finding two x,x′ with
fk(x) = fk(x

′) and different hard-core bits. To address this we introduced in
Section 3.2 two GPPT procedures Memb and Samp to restrict the domain of a
OWF in order to make it collision resistant and to sample from this restricted
domain.

9 In the previous example x 7→ x ·K is collision resistant because it is a bijection

Given these observations, in Fig. 4 we provide a complete description of the
resulting VC, with (Gen, f) being an algebraic OWF where f : {0, 1}µ → Gm and
Gen samples uniformly from Gκ, and (G,P,V) is a NIZK-AoK for the relation

R = {((k, y), x) : fk(x) = y}.

VC∗.Setup(1λ, n):

1 : crsi,j ← G(1λ)

2 : ki ← Gen(1λ)

3 : pp← {crsi,j , ki : i, j ∈ [n]}

VC∗.Com(pp, b1, . . . , bn):

1 : xi ←$ Samp(1λ)

2 : ri ←$ {0, 1}µ such that x⊤
i ri = bi

3 : C ←
∑n

i=1 fki(xi)

4 : aux← (xi)
n
i=1

5 : Return (C, (rj)
n
j=1), aux

VC∗.Open(pp, i, aux):

1 : πi,j ← P(crsi,j , kj , fkj (xj),xj)

2 : Λi = (xi, (fkj , πi,j)j ̸=i)

3 : Return Λi

VC∗.Vfy(pp, (C,D), bi, i, Λi)

1 : Parse Λi = (xi, (Yj , πi,j)j ̸=i)

2 : Accept if and only if:
3 : C = fki(xi) +

∑
j ̸=i Yj

4 : 1 = V(crsj , kj ,Yj , πj)

5 : 1 = Memb(xi), bi = x⊤
i ri

Fig. 4. Hiding Vector Commitment from a NIZK-AoK for R.

Theorem 3. If (G,P,V) is a NIZK-AoK, the VC described in Fig. 4 is com-
putable in GPPT time, position-binding, hiding and returns commitments with
O(1) group elements.

Proof. Efficiency: To show that all procedures can be computed in GPPT time
it suffices to observe that all steps are efficiently computable, and by Lemma 1
Samp,Memb are computable in GPPT time.

Constant Group-Elements Commitment: Commitments only contains m
group elements in C ∈ Gm with Gm being the domain of f . Because m does
not depend on n, the commitment only contains a constant number of group
elements in n (although it may depends on λ).

Position Binding: Given A breaking position binding we build B which, given
κn random group elements in G, finds a linear relation among them. Note that
this is equivalent to breaking the discrete logarithm problem, which in Maurer’s
GGM is known to be hard [Mau05].

B(V):

1 : Parse the input as n OWF keys V = (k1, . . . ,kn) ∈ (Gκ)n

2 : Sample with the NIZK extractor (crsi,j , tdi,j)← E(1λ)

3 : pp← {crsi,j ,ki : i, j ∈ [n]}
4 : A(pp)→ (c, i, b0, Λ0, b1, Λ1)

5 : Parse c = (C, (rj)
n
j=1) and Λβ = (xβ

i , (Y
β
j , π

β
i,j)j ̸=i) for β ∈ {0, 1}

6 : Extract xβ
j ← E(tdi,j ,kj ,Y

β
j , π

β
i,j) for j ∈ [n] \ {i}

7 : Compute Aβ
j ∈ Fm,κ

q such that fkj (x
β
j) = Aβ

j · kj for j ∈ [n]

8 : Return (A0
j −A1

j)
n
j=1

Fig. 5. B reducing position binding to the discrete logarithm problem.

We preliminary notice that in line 7, Aβ
j can be computed efficiently. A way

to achieve this is locally storing during the execution of fkj (x
β
j) a representation

for each element queried to the GGM oracle as a linear combination of the
group elements in kj . Doing so, the matrix Aβ

j is given by the output elements’
representations .

Next we define the following events:
B wins :

∑n
j=1(A

0
j −A1

j)kj = 0 and (A0
j −A1

j)
n
j=1 is a non-zero matrix

A wins : A breaks position-binding
Ext : fkj

(xβ
j) = Yβ

j for all j ̸= i and β ∈ {0, 1}
Coll : x0

i ̸= x1
i ∧ fki(x

0
i) = fki(x

1
i) ∧ 1 = Memb(x0

i) = Memb(x1
i)

Since A wins only if the openings are correct, πβ
i,j are all accepted. Calling

ε1 the extractor error, see Section 2.3, we have that

Pr [Ext | A wins] = 1− Pr

[∨
j ̸=i

∨1

β=0
fkj

(xβ
j) ̸= Yβ

j

∣∣∣∣ A wins

]
≥ 1−

∑
j ̸=i

∑1

β=0
Pr

[
fkj

(xj) = Yβ
j

∣∣∣ A wins
]

≥ 1− (2n− 2)ε1(λ) = 1− ε∗1(λ).

with ε∗1 = (2n− 2)ε1 being a negligible function. By Lemma 1 we also have that
Pr [Coll] ≤ ε2(λ). Next, we notice that B wins if A wins, Ext and ¬Coll occurs.
Indeed in this case

C = fki(x
β
i) +

∑
j ̸=i

Yβ
j =

∑n

j=1
fkj (x

β
j) =

∑n

j=1
Aβ

j kj

for both β ∈ {0, 1}, where the first equality follows by A wins, the second one
from Ext and the third one by construction. This implies

∑n
j=1(A

0
j −A1

j)kj = 0.
Moreover this relation is non trivial since, as A wins, we must have

b0 ̸= b1 ⇒ (x0
i)

⊤ri ̸= (x1
i)

⊤ri ⇒ x0
i ̸= x1

i ⇒
⇒ fki

(x0
i) ̸= fki

(x1
i) ⇒ A0

iki ̸= A1
iki ⇒ A0

i −A1
i ̸= 0.

Where the fourth implication comes from ¬Coll. To conclude we finally bound
the advantage ofA with the probability that B successfully finds a linear relation.

Pr [B wins] ≥ Pr [A wins, Ext, ¬Coll]
≥ Pr [A wins, Ext]− Pr [Coll]

≥ Pr [Ext | A wins] · Pr [A wins]− ε2(λ)

≥ (1− ε∗1(λ)) Pr [A wins]− ε2(λ).

Since B succeeds with negligible probability, the advantage of A must be
negligible as well.

Hiding: We show that given any GPPT adversary A executed in the game
described in Fig. 2, we can build an adversary B guessing the Goldreich-Levin
hard-core predicate for f .

The idea is, given (k,Y, r), to setup the VC parameters with the simulator,
and use k as the OWF key for a randomly guessed entry i. Next A proposes its
two vectors of bits b0,b1. If they differ on the guessed position i, B proceeds
computing the commitment, where it uses Y, r as the OWF image for the i-th
entry, and simulating the required openings. Finally, once A guesses a bit, it
returns the same value. A detailed description appears in Fig. 6.

First we observe that due to the Zero-Knowledge property, distinguishing
crsℓ,j , πℓ,j generated by B from the ones returned by real challenger of ExpHideVC
in Fig. 2 cannot be done with advantage greater than a negligible ε by any GPPT
adversary.

Next, assume i = i′. Calling β the hard-core predicate B has to guess, B
correctly commits to bβ since its challenger sets Y = fk(x) = fki

(x) with10

bβi = β = x⊤r, x ← Samp(1λ) and r ←$ {0, 1}µ. Thus B wins if A correctly
guesses β, and the initial guess is correct, i.e. i = i′. We conclude that

Adv(B) = |Pr [A → 0, i = i′|β = 0]− Pr [A → 0, i = i′|β = 1]|
= Pr [i = i′] · |Pr [A → 0|β = 0]− Pr [A → 0|β = 1]|

≥ Adv(A)− ε(λ)

n
.

Where the third inequality uses Pr [i = i′] = 1/n, which follows as A has no
information on i when it computes b0,b1 (and in particular i′).

4.6 Impossibility of Algebraic NIZK-AoK

Combining Theorem 3 and Theorem 2 we can eventually derive the following

Theorem 4. Given (Gen, f) a one way function family with Gen returning a
uniformly sampled vector in Gκ and f : {0, 1}µ → Gm, then there exists no
Algebraic NIZK-AoK for the relation

R = {((k, y), x) : fk(x) = y}.
10 note that we assumed without loss of generality b0i = 0 and b1i = 1.

B(k,Y, r):

1 : Sample i←$ {1, . . . , n} a guess on the position A will choose
2 : Sample kj ← Gen(1λ) for j ̸= i and set ki ← k

3 : Sample with the NIZK simulator (crsℓ,j , tdℓ,j)← S(1λ) with ℓ, j ∈ [n]

4 : pp← {crsℓ,j , kj : ℓ, j ∈ [n]}
5 : A(pp)→ b0,b1 differing only at position i′ (wlog b0i′ = 0 and b1i′ = 1)
6 : If i ̸= i′: Return ⊥

// Simulate the commitment

7 : For j ̸= i:
8 : Sample xj ←$ Samp(1λ) and rj ←$ {0, 1}µ with x⊤

j rj = b0j = b1j

9 : Set ri ← r

10 : Compute C ← Y +
∑

j ̸=i fkj (xj)

11 : Create the commitment c← (C, (rj)
n
j=1)

// Simulate the openings

12 : For ℓ ̸= i:
13 : πℓ,j ← S(tdℓ,j , kj , fkj (xj)) for all j ̸= ℓ

14 : Λℓ = (xℓ, (fkj (xj), πℓ,j)j ̸=ℓ)

// Execute A to guess the hard-core bit

15 : Execute A(pp, C, (Λℓ)ℓ ̸=i)→ b and return b

Fig. 6. Reduction B guessing the Goldwasser-Levin hardcore predicate of fk.

5 Impossibility of Algebraic NIZK

5.1 Hard Subset Membership Problem

In this section we recall the definition of Hard Subset Membership Problem,
presented in [GW11]. Given an NP relation R, its associated language L is the
set of all statements x for which (x,w) ∈ R for some witness w. Informally,
the relation R is a hard subset problem if there are two ways to sample from
L and its complement {0, 1}∗ \ L that are computationally hard to distinguish.
As mentioned this captures DDH since the distributions (G, aG, bG, abG) and
(G, aG, bG, cG) with a, b, c random field elements and c ̸= a · b are hard dis-
tinguish. More generally this captures decisional assumptions and their related
relations such as Decision Linear and Matrix-DDH. More formally:

Definition 4. A Subset Membership Problem is a tuple (R,SampGood,SampBad)
with R an NP relation, and SampGood, SampBad such that

– SampGood(1λ)→ (x,w) ⇒ (x,w) ∈ R.
– SampBad(1λ)→ x ⇒ ∄w : (x,w) ∈ R.

A subset membership problem is called hard (against GPPT adversaries) if
∃ε negligible such that for all A GPPT

x0 ←$ SampBad(1λ), (x1, w1)←$ SampGood(1λ)

⇒ |Pr [A(x0)→ 0]− Pr [A(x1)→ 0]| ≤ ε(1λ).

In the rest of this section we will also use the following Lemma, saying that
the probability of correctly guessing λ independent instances of a subset problem
is negligible. A proof appears in the Appendix, Section A.5.

Lemma 2. If (R,SampGood,SampBad) is a Hard Subset Membership Problem,
then ∃ε negligible such that for all GPPT adversaries A, setting for i ∈ [λ]

x0
i ←$ SampBad(1λ), (x1

i , w
1
i)←$ SampGood(1λ), bi ←$ {0, 1}

⇒ Pr
[
A(xb1

1 , . . . , xbλ
λ)→ (b′1, . . . , b

′
λ), bi = b′i ∀i ∈ [λ]

]
≤ ε(λ).

5.2 Preliminary Adversary

Having defined relations with a hard subset problem against GPPT adversaries,
in the rest of this section we show that these relations do not admit a NIZK
argument in Maurer’s GGM. Toward this goal we first construct an adversary A
that, given a NIZK crs and oracle access to the simulator, either returns a proof
of a false statement or it finds a linear relation among the group elements in the
CRS. In order to ensure sequential executions of A we give it an affine space V in
input, containing linear relations already found among the crs elements. Finally,
we will allow A to fail with an arbitrary small (but non-negligible) probability
1/p with p = poly(λ). More formally

Lemma 3. Let (R,SampGood,SampBad) be a hard subset problem and (G,P,V)
a NIZK argument for R with simulator S. Then, for any p = poly(λ), there exists
a GPPT adversary A such that: given

(crs, td)← S(1λ), x← SampBad(1λ) :
crs = (Y, c′) ∈ Gn × {0, 1}∗
x = (Z, z′) ∈ Gm × {0, 1}∗

and V ≤ Fn
q such that Y ∈ V ·G, calling Z = z ·G then either:

1. A(V, crs, x)→ (proof, π) such that 1← V(crs, x, π).
2. A(V, crs, x)→ query. Then setting π ← S(td, x), A(V, crs, x, π) either aborts

with probability smaller than 1/p(λ) or it returns L such that

(Y,Z) ∈ L ·G ∧ L ∩
(
Fn
q × {z}

)
⪇ (V × {z})

First of all we remark that the second condition simply states that the affine
space L contains a new linear relation among the elements Y,Z that is non-
trivial with respect to Y. Next, we observe that this adversary could be trivially
used to break the simulation soundness property of the underlying NIZK. This

is a stronger version of soundness in which the adversary has oracle access to a
simulator and wins if it returns a proof for a false statement that was not queried.
The way to use A is sampling n + 1 independent elements with SampBad(1λ)
and sequentially passing them to A, using the simulation oracle to reply query
requests. At each step (assuming A does not abort) either A finds a new linear
relationship on the CRS’ group elements, reducing the dimension of V by 1, or it
returns a proof for x breaking soundness. Calling n the number of group elements
in the CRS, A can find at most n linear relations, implying by the pigeonhole
principle that eventually it has to return a valid proof. However, note that using
A to break the standard notion of soundness is not as trivial since in that case
no simulator oracle is provided.

Although the construction of A is rather technical, we simply adapt the
approach of [CFGG23]. First, we describe an adversary B that on input (crs, x)
either return a proof or, with one simulation query, finds a linear relation among
the group elements in (crs, x). Next, using B we build A which ensures that the
linear relation found is non-trivial for those elements in the crs with probability
1− 1/p. A full description appears in the Appendix, Section A.6.

5.3 Attack Description

As mentioned, the main difficulty of using A to break soundness is the absence
of a simulator oracle. In this section we explain how to circumvent this issue,
describing an adversary Z that breaks soundness using A, and eventually derive
our second impossibility result for algebraic NIZKs.

The core idea is that NIZKs for hard subset problem allow to produce proofs
in two indistinguishable ways, that is either

1. sampling crs ← G(1λ), (x,w) ←$ SampGood(1λ) and producing the proof
using P and the witness w

2. sampling (crs, td) ← S(1λ), x ←$ SampBad(1λ) and producing the proof
using the simulator.

Thus, assuming we were able to predict whether A is going to return proof or
query, our adversary Z could

1. sample (x,w) ← SampGood(1λ) when A is going to ask a query. In this
way it can simulate S(x) with P(x,w) and get a linear relation on the CRS’
elements.

2. sample x← SampBad(1λ) when A is going to return a proof π. In this way
π proves a false statement and Z breaks soundness

Unfortunately we don’t have a way to predict A’s behavior. However, since the
only difference in the two approaches above is how x is sampled, A cannot
distinguish between them. Hence by flipping a random coin Z can guess A’s
reply and act accordingly. Since A replies almost independently from Z’s choice,
its guess is correct with probability close to 1/2. Amplifying this in a way that
makes Z guess correctly at least n+1 times allows us to conclude that A proves

a false statement at least once, because at most n linear relations can be found
on the CRS’ elements. A complete description of Z appears in Fig. 7.

We remark that the computation of z in line 5 can be done in polynomial time
since SampBad and SampGood are generic algorithm: Therefore, by reading their
queries to the GGM oracles, it is possible to locally store the discrete logarithm
in base G of any queried group element during their execution, and in particular
of output’s group elements.

Z(crs):

1 : Initialize V ← Fn
q and π∗ ←⊥

2 : For i ∈ {1, . . . , λ(n+ 1)}: // λ(n + 1) iterations to guess correctly n + 1 times

3 : Sample βi ←$ {0, 1}
4 : If βi = 0: x← SampBad(1λ); Else (x,w)← SampGood(1λ)

5 : Parse x = (Z, z′) ∈ Gm × {0, 1}∗ and get z such that Z = z ·G
6 : If A(V, crs, x)→ query:
7 : If βi = 0: Continue the for loop
8 : Else:
9 : Create a proof π ← P(crs, x, w)

10 : Get A(V, crs, x, π)→ L and let V ′ be s.t. L ∩ (Fn
q × {z}) = V ′ × {z}

11 : Update V ← V ′

12 : Elif A(V, crs, x)→ (proof, π):
13 : If βi = 0 and 1← V(crs, x, π): store π∗ ← π

14 : Return π∗

Fig. 7. GPPT Adversary Z breaking soundness using A from Lemma 3.

5.4 Impossibility of Algebraic NIZK

Given a description of the adversary Z we finally state and prove our second
impossibility result for NIZK in Maurer’s GGM.

Theorem 5. Let (R,SampGood,SampBad) be a subset membership problem hard
against GPPT adversaries. Then there exists no algebraic NIZK for R.

Proof. We show that given a complete and zero-knowledge non-interactive argu-
ment, Z breaks soundness. First let us fix some notation. Y will be the vector of
group elements in crs, i.e. crs = (Y, c′) ∈ Gn × {0, 1}∗. A will be the adversary
from Lemma 3 chosen with failure probability

1

p(λ)
=

1

4λ(n+ 1)

and for the i-th execution of the for-loop in Z we define the events:

GoodProofi : βi = 0 and A(V, crs, x)→ (proof, π)

BadProofi : βi = 1 and A(V, crs, x)→ (proof, π)

GoodQueryi : βi = 1 and A(V, crs, x)→ query

BadQueryi : βi = 0 and A(V, crs, x)→ query

Badi : BadProofi ∨ BadQueryi
Faili : A(V, crs, x)→⊥ or Y /∈ V ·G

We further define Fail the event ∃i : Faili. Next, we break the proof into the
following sequence of claims.

Claim 1 Pr [Fail] ≤ 1/2.

Claim 2 The probability of happening λ sequential Bad events is negligible, i.e.
there exist a negligible ε0 such that

∀j0 ≤ nλ Pr

[∧λ

i=1
Badj0+i

∣∣∣∣ ¬Fail] ≤ ε0.

Claim 3 The probability that ¬Bad occurs less than n + 1 times is negligible,
i.e.

Pr [|{i : Badi}| ≤ n | ¬Fail] ≤ (n+ 1) · ε0.

Claim 4 If GoodQueryi occurs, then at step 11 of Fig. 7, the dimension of V
decreases with overwhelming probability, i.e. there exists a negligible ε1 such that

Pr [GoodQueryi ∧ ¬(V ′ ⪇ V) | ¬Fail] ≤ ε1.

Claim 5 If GoodProofi occurs, then at step 13 of Fig. 7, the proof π is correct
with overwhelming probability, i.e. there exists a negligible ε2 such that

Pr [GoodProofi ∧ 0← V(crs, x, π) | ¬Fail] ≤ ε2.

Before proving these claims we show they imply that with significant proba-
bility Z produces a proof for a false statement. From Claim 3, 1− (n+ 1)ε0 ≤

≤ Pr
[
∃i1, . . . , in+1 : ¬Badij

∣∣ ¬Fail]
≤ Pr

[
∃i1, . . . , in+1 : GoodQueryij

∣∣∣ ¬Fail]+ Pr [∃i : GoodProofi | ¬Fail] .

Regarding the first term, if GoodQuery occurs n + 1 times, in at least one of
these events the affine space returned by A does not yield V ′ < V , because the
dimension of V can decrease at most n times. Hence, calling wrongi the event
¬(V ′ < V) at iteration i, we have that for some j, wrongij occurs. Then

Pr
[
∃i1, . . . , in+1 : GoodQueryij

∣∣∣ ¬Fail]
= Pr

[
∃i1, . . . , in+1 : GoodQueryij ∧ ∃j : wrongij

∣∣∣ ¬Fail]
≤ Pr [∃i : GoodQueryi ∧ wrongi | ¬Fail]

≤
∑λ(n+1)

i=1
Pr [GoodQueryi ∧ wrongi | ¬Fail] ≤ λ(n+ 1)ε1.

Regarding the second term, calling validi the event that a proof returned at step
i is accepted by the verifier.

Pr [∃i : GoodProofi | ¬Fail]
≤ Pr [∃i : GoodProofi ∧ validi | ¬Fail] + Pr [∃i : GoodProofi ∧ ¬validi | ¬Fail]
≤ Pr [1← V(crs, x, π∗) | ¬Fail] + λ(n+ 1)ε2

Combining this two upper bounds together we get that Z returns a correct proof
with probability negligibly close to 1/2.

Pr [1← V(crs, x, π∗)] ≥ (1− (n+ 1)(ε0 + λε1 + λε2)) · Pr [¬Fail]

≥ 1− (n+ 1)(ε0 + λε1 + λε2)

2
.

Proof of Claim 1. Calling εzk the advantage of distinguishing a crs generated by
G from one produced by S and εR the advantage of guessing an instance of a
hard subset membership problem, we will show that

Pr [Faili | ¬Fail1 ∧ . . . ∧ ¬Faili−1] ≤
1

4λ(n+ 1)
+ 2(εzk + εR).

Summing all this λ(n+1) terms will give an upper bound Pr [Fail] ≤ 1/4+negl(λ)
that for sufficiently large values of λ is less that 1/2. To show this we study two
cases:

– βi = 0. Then A receives (V, crs, x) with crs← G(1λ) and x← SampBad(1λ).
By Zero-Knowledge, we have that any D distinguishing (crs0, π0) generated
with G and P from (crs1, π1) generated by S has advantage at most εzk. This
holds for any statement, and in particular also for (x,w) chosen by D (not
depending on the crs).
Next we sketch a distinguisher D using A. Initially D samples (xi, wi) from
SampGood, set it as the challenge statement and receives (crs, πi) either
generated correctly using wi or simulated. For the first i−1 rounds D behaves
as Z. At the i-th round if A outputs query it replies with πi. If A fails D
returns 1, otherwise it returns 0. When the (crs, πi) is honestly generated, A
fails with probability 1/p(λ) by Lemma 3. Hence when (crs, πi) is simulated
A fails with probability smaller than 1/p(λ) + Adv(D) ≤ 1/p(λ) + εzk.
In conclusion Pr [Faili | ¬Fail1 ∧ . . . ∧ ¬Faili−1] =

Pr

[
A(V, crs, x)→⊥

∣∣∣∣∧i−1

j=1
¬Failj

]
≤ 1

p(λ)
+εzk ≤

1

4λ(n+ 1)
+2(εzk+εR).

– βi = 1. ThenA receives (V, crs, x) with crs← G(1λ), (x,w)← SampGood(1λ).
By Definition 4 the advantage of distinguishing (crs, x) from (crs, x′) with
x′ ← SampBad(1λ) is less than εR. The previous argument allow us to con-
clude

Pr [A(V, crs, x)→⊥ | ¬Fail1 ∧ . . . ∧ ¬Faili−1] ≤
1

4λ(n+ 1)
+ εzk + εR.

Analogously, since (Y,Z) ∈ L ·G if and only if Y ∈ V ′ ·G, Pr [Y /∈ V ′ ·G] ≤
εzk + εR, or else A could be used as a distinguisher as shown before. Using
a union bound yields again the claimed inequality.

Proof of Claim 2. We describeM using A to guess λ instances of a hard subset
membership problem.

M(x1, . . . , xλ):

1 : Initialize crs← G(1λ), V ← Fn
q

2 : For j0 times: // Behave as Z

3 : Sample β ←$ {0, 1}
4 : If β = 0: x← SampBad(1λ); Else (x,w)← SampGood(1λ)

5 : If A(V, crs, x)→ query:
6 : If β = 1:
7 : Create a proof π ← P(crs, x, w)

8 : Get A(V, crs, x, π)→ V ′ and update V ← V ′

9 : // After the For-loop, pass for λ times the challenges to A

10 : For i ∈ {1, . . . , λ}:
11 : If A(V, crs, xi)→ proof: Set bi ← 1

12 : Else: Set bi ← 0

13 : Return (b1, . . . , bλ)

Fig. 8. Reduction M guessing λ instances of a Hard Subset Membership Problem.

By inspectionM perfectly emulates the behavior of Z for the first j0 execu-
tions of the initial For-loop. Regarding the subsequent λ calls to A we proceed
inductively assuming M correctly guessed all challenges and simulated Z until
the (i − 1)-th step. Let b′i be the challenger’s bit, such that if b′i = 0 then xi is
generated with SampBad or else SampGood was used. When b′i = 0,M correctly
executes A(V, crs, xi) as Z would with βj0+i = 0. Similarly when b′0,M correctly
run A(V, crs, xi) as Z would with βj0+i = 1. Thus, assuming ¬Fail

bi = b′i ⇔ (b′i = 0→ bi = 0) ∧ (b′i = 1→ bi = 1) ⇔
⇔ BadQueryj0+i ∧ BadProofj0+i ⇔ Badj0+i.

As a consequence, if M correctly guesses b′i, not updating V keeps its behavior
identical to Z, which only updates V if GoodQueryj0+i occurs. Therefore

Pr [bi = b′i, i ∈ [λ]] ≥ Pr [¬Fail] · Pr [bi = b′i, i ∈ [λ] | ¬Fail]
= Pr [¬Fail] · Pr [¬Badj0+i, i ∈ [λ] | ¬Fail]

Since by Lemma 2 the probability of b′i = bi is negligible, and by Claim 1
Pr [¬Fail] ≥ 1/2 we conclude that the claim is true.

Proof of Claim 3. If ¬Bad occurs less than n+ 1 times, by the pigeonhole prin-
ciple for at least one of the intervals Ik = {λk+1, . . . , λ(k+1)} Badi occurs for
all i ∈ Ik. A union bound yields

Pr
[∣∣∣{i : ¬Badi}

∣∣∣ < n+ 1
∣∣∣ ¬Fail] ≤ ∑n

k=0
Pr [∀i ∈ Ik, Badi | ¬Fail]

≤ (n+ 1) · ε(λ).

Proof of Claim 4. We first observe that if (crs, x) is generated with S and SampBad,
if A(V, crs, x) → query the affine space L it returns satisfies by Lemma 3 L ∩
(Fn

q × {z}) ⪇ V × {z}. By definition then

V ′ × {z} = L ∩
(
Fn
q × {z}

)
⪇ V × {z} ⇒ V ′ ⪇ V.

Therefore, borrowing notation from the proof of Claim 1, when βi = 1, the
probability that GoodQueryi ∧ ¬(V ′ ⪇ V) is smaller than εzk + εR, or else A
could be used to distinguish (crs, x) from (crs′, x′) respectively generated with
G,SampGood and S,SampBad. Finally since ¬Fail occurs with significant proba-
bility,

Pr [GoodQueryi ∧ ¬(V ′ ⪇ V) | ¬Fail] ≤ Pr [GoodQueryi ∧ ¬(V ′ ⪇ V)]

Pr [¬Fail]

≤ εzk + εR
Pr [¬Fail]

≤ εzk + εR
2

.

Proof of Claim 5. Analogous to the proof of Claim 4.

6 Conclusions

In conclusion we proved that in Maurer’s GGM the following primitives are
impossible:

– NIZK-AoK for the preimage relation of algebraic OWF families whose do-
main is the set of string {0, 1}n and key consists of random group elements.

– NIZK for any hard subset membership problem.

Although these cover virtually all cases for which NIZKs are currently used in
practice, our results leave a small gap open for technical reasons. The mainly
theoretical problem of understanding whether NIZK-AoK impossibility extends
to all computationally hard relations, for which finding a witness for a given
statement x is (worst-case) hard for GPPT adversaries, is thus left for future
work. We also leave open the analogous problem of extending our impossibility
for NIZK (not necessarily AoK) to all relations R whose associated language is
(worst-case) hard to decide for GPPT adversaries.

Acknowledgments

This work has been partially supported by SECURING Project (PID2019-110873RJ-
I00/MCIN/AEI/10.13039/501100011033) and by PRODIGY Project (TED2021-
132464B-I00) funded by MCIN/AEI/10.13039/501100011033 and the European
Union NextGenerationEU/PRTR. The authors further wish to thank the anony-
mous reviewers for their comments as well as Dario Fiore, Dario Catalano, David
Balbas and Daniele Cozzo for the helpful discussions.

References

ACDD19. Masayuki Abe, Jan Camenisch, Rafael Dowsley, and Maria Dubovitskaya.
On the impossibility of structure-preserving deterministic primitives. Jour-
nal of Cryptology, 32(1):239–264, January 2019.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE Symposium on Security and Privacy, pages
315–334. IEEE Computer Society Press, May 2018.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic circuits
in the discrete log setting. In Marc Fischlin and Jean-Sébastien Coron, ed-
itors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357.
Springer, Heidelberg, May 2016.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th ACM STOC,
pages 103–112. ACM Press, May 1988.

BG90. Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures
and message authentication based on non-interactive zero knowledge proofs.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 194–
211. Springer, Heidelberg, August 1990.

CF13. Dario Catalano and Dario Fiore. Vector commitments and their applica-
tions. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, vol-
ume 7778 of LNCS, pages 55–72. Springer, Heidelberg, February / March
2013.

CFGG23. Dario Catalano, Dario Fiore, Rosario Gennaro, and Emanuele Giunta. On
the impossibility of algebraic vector commitments in pairing-free groups.
In Theory of Cryptography: 20th International Conference, TCC 2022,
Chicago, IL, USA, November 7–10, 2022, Proceedings, Part II, pages 274–
299. Springer, 2023.

CGH04. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited. Journal of the ACM (JACM), 51(4):557–594, 2004.

CGJ+22. Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and
Jiaheng Zhang. Correlation intractability and snargs from sub-exponential
ddh. Cryptology ePrint Archive, 2022.

CH20. Geoffroy Couteau and Dominik Hartmann. Shorter non-interactive zero-
knowledge arguments and ZAPs for algebraic languages. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume
12172 of LNCS, pages 768–798. Springer, Heidelberg, August 2020.

Cra96. Ronald Cramer. Modular design of secure yet practical cryptographic pro-
tocols. Ph. D.-thesis, CWI and Uni. of Amsterdam, 1996.

DHH+21. Nico Döttling, Dominik Hartmann, Dennis Hofheinz, Eike Kiltz, Sven
Schäge, and Bogdan Ursu. On the impossibility of purely algebraic sig-
natures. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part III,
volume 13044 of LNCS, pages 317–349. Springer, Heidelberg, November
2021.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

GGK03. Rosario Gennaro, Yael Gertner, and Jonathan Katz. Lower bounds on the
efficiency of encryption and digital signature schemes. In 35th ACM STOC,
pages 417–425. ACM Press, June 2003.

GKM+00. Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivious
transfer. In 41st FOCS, pages 325–335. IEEE Computer Society Press,
November 2000.

GKP22. Chaya Ganesh, Hamidreza Khoshakhlagh, and Roberto Parisella. Niwi and
new notions of extraction for algebraic languages. In Security and Cryp-
tography for Networks: 13th International Conference, SCN 2022, Amalfi
(SA), Italy, September 12–14, 2022, Proceedings, pages 687–710. Springer,
2022.

GL89. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In 21st ACM STOC, pages 25–32. ACM Press, May 1989.

GMR01. Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of
basing trapdoor functions on trapdoor predicates. In 42nd FOCS, pages
126–135. IEEE Computer Society Press, October 2001.

GO93. Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-
interactive zero-knowledge proofs are equivalent (extended abstract). In
Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 228–
245. Springer, Heidelberg, August 1993.

GOS06a. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and
new techniques for NIZK. In Cynthia Dwork, editor, CRYPTO 2006, vol-
ume 4117 of LNCS, pages 97–111. Springer, Heidelberg, August 2006.

GOS06b. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero
knowledge for NP. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 339–358. Springer, Heidelberg, May / June 2006.

Gro06. Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In Xuejia Lai and Kefei Chen, editors, ASI-
ACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Heidelberg,
December 2006.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415–432. Springer, Heidelberg, April 2008.

GT00. Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of
generic cryptographic constructions. In 41st FOCS, pages 305–313. IEEE
Computer Society Press, November 2000.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.

IR89. Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In 21st ACM STOC, pages 44–61. ACM
Press, May 1989.

JJ21. Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from
sub-exponential DDH. In Anne Canteaut and François-Xavier Standaert,
editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 3–32.
Springer, Heidelberg, October 2021.

KLV22. Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. Snargs
and ppad hardness from the decisional diffie-hellman assumption. Cryptol-
ogy ePrint Archive, 2022.

KNYY21. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Ya-
makawa. Compact designated verifier NIZKs from the CDH assumption
without pairings. Journal of Cryptology, 34(4):42, October 2021.

KST99. Jeong Han Kim, Daniel R. Simon, and Prasad Tetali. Limits on the effi-
ciency of one-way permutation-based hash functions. In 40th FOCS, pages
535–542. IEEE Computer Society Press, October 1999.

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-
mitments to polynomials and their applications. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Hei-
delberg, December 2010.

LRY16. Benoît Libert, Somindu C. Ramanna, and Moti Yung. Functional com-
mitment schemes: From polynomial commitments to pairing-based accu-
mulators from simple assumptions. In Ioannis Chatzigiannakis, Michael
Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, ICALP 2016,
volume 55 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl, July 2016.

LY10. Benoît Libert and Moti Yung. Concise mercurial vector commitments and
independent zero-knowledge sets with short proofs. In Daniele Micciancio,
editor, TCC 2010, volume 5978 of LNCS, pages 499–517. Springer, Heidel-
berg, February 2010.

Mau05. Ueli M. Maurer. Abstract models of computation in cryptography (invited
paper). In Nigel P. Smart, editor, 10th IMA International Conference on
Cryptography and Coding, volume 3796 of LNCS, pages 1–12. Springer,
Heidelberg, December 2005.

Mau09. Ueli M. Maurer. Unifying zero-knowledge proofs of knowledge. In Bart
Preneel, editor, AFRICACRYPT 09, volume 5580 of LNCS, pages 272–286.
Springer, Heidelberg, June 2009.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume
576 of LNCS, pages 129–140. Springer, Heidelberg, August 1992.

PRV12. Periklis A. Papakonstantinou, Charles Rackoff, and Yevgeniy Vahlis. How
powerful are the DDH hard groups? Electron. Colloquium Comput. Com-
plex., page 167, 2012.

PST13. Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures
of correct computation. In Amit Sahai, editor, TCC 2013, volume 7785 of
LNCS, pages 222–242. Springer, Heidelberg, March 2013.

RSS20. Lior Rotem, Gil Segev, and Ido Shahaf. Generic-group delay functions re-
quire hidden-order groups. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part III, volume 12107 of LNCS, pages 155–180. Springer,
Heidelberg, May 2020.

Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–
252. Springer, Heidelberg, August 1990.

SGS21. Gili Schul-Ganz and Gil Segev. Generic-Group Identity-Based Encryption:
A Tight Impossibility Result. In Stefano Tessaro, editor, 2nd Conference
on Information-Theoretic Cryptography (ITC 2021), volume 199 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 26:1–26:23,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997.

Sim98. Daniel R. Simon. Finding collisions on a one-way street: Can secure hash
functions be based on general assumptions? In Kaisa Nyberg, editor, EU-
ROCRYPT’98, volume 1403 of LNCS, pages 334–345. Springer, Heidelberg,
May / June 1998.

Zha22. Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume
13509 of LNCS, pages 66–96. Springer, Heidelberg, August 2022.

A Postponed Proofs

A.1 Collision Resistant Algebraic OWF

Proof of Lemma 1. We will describe Memb and Samp by first providing a GPPT
algorithm T that generates an exponentially long explicit description of the
set X along with a probability distribution. Then Memb and Samp can check
membership in X and sample from it without using the group at all.

In order to describe T we make the following preliminary observation. Given
any deterministic and polynomial time oracle Turing Machine F that computes
fk(x) for k ∈ Gκ and x ∈ {0, 1}n, there exists an extractor E that on input k, x
returns a matrix A such that fk(x) = Ak. The idea is simply that E executes F
forwarding all the queries to the GGM’s oracles while keeping a representation
of each queried element in base k. Although there may be many matrices A such
that fk(x) = Ak, since F is deterministic, so is E , implying that there is only
one such matrix returned on input (k, x). We can thus define

Ak,x ∈ Fm,κ
q : E(k, x)→ Ak,x, fk(x) = Ak,x · k.

The above definition works when G is a prime order group and k is uniformly
sampled from Gκ. However in the following we will use a different generic group
modeling Gκ instead of G where k∗ = (e1, . . . , eκ) ∈ (Gκ)κ, with e1, . . . , eκ
being the canonical base of Gκ. This will be done to create an environment
indistinguishable from the standard one (where the GGM models G) in which
the group elements in the key satisfy no linear relation. By executing E with this
GGM oracle modeling Gκ we define for all x ∈ {0, 1}n

A∗
x ∈ Fm,κ

q : E(k∗, x)→ A∗
x.

We are now ready to provide a description of T . The idea is that computing
A∗

x does not require any real GGM oracle query because T can simulate a GGM
in which any non trivial linear relation query among the elements in k is answered
with 0. Hence T can compute A∗

x for all x and insert in X only those element
whose associated matrix does not collide with other elements already in X . In
this way we have that the map

X → Fm,κ
q : x 7→ A∗

x

is injective. Furthermore T can compute in exponential space a map F : {0, 1}n →
X such that x and F (x) have the same associated matrix. This defines a distri-
bution over X that is the image through F of the uniform one over {0, 1}n. A
full description of T is provided in Figure 9, along with a Memb and Samp.

Note that X is well defined because T is deterministic, although it depends
on the arbitrary choice of an ordering in {0, 1}n and a procedure F to compute f ,
used to construct E . Having defined X we can now state and prove the following
claims, which trivially imply the thesis.

Claim 1 Both correctness properties holds. I.e. for all x ∈ {0, 1}n, 1← Memb(x)
iff x ∈ X and x← Samp(1λ) implies x ∈ X .

Procedure T (1λ):

1 : Initialize X ← ∅ and F : 0, 1n → X partial function
2 : For x ∈ {0, 1}n:
3 : Compute A∗

x ← E(k∗, x)

4 : If there exists z ∈ X with A∗
z = A∗

x:
5 : Set F (x)← z

6 : Else:
7 : Add X ← X ∪ {x} and set F (x) = x

8 : Return (X , F)

Memb(1λ, x)

1 : Run (X , F)← T
2 : If x ∈ X : Return 1

3 : Else: Return 0

Samp(1λ)

1 : Run (X , F)← T
2 : Sample x←$ {0, 1}n

3 : Else: Return F (x)

Fig. 9. Intermediate procedure T describing X .

Claim 2 There exists a negligible ε such that for any distribution D over {0, 1}n,
given k←$ Gen(1λ) and x←$ D,

Pr [A∗
x ̸= Ak,x] ≤ ε(λ).

Claim 3 There exists a negligible ε such that for any distribution D over {0, 1}n,
given k←$ Gen(1λ) and x←$ D,

∆((k, A∗
x), (k, Ak,x)) ≤ ε(λ).

Claim 4 Given k← Gen(1λ), x1 ←$ {0, 1}n and x2 ←$ Samp(1λ) then

∆((k, A∗
x1
), (k, A∗

x2
)) = 0.

Claim 5 Given k← Gen(1λ), x1 ←$ {0, 1}n and x2 ←$ Samp(1λ) then

∆((k, fk(x1)), (k, fk(x2))) ≤ ε(λ).

Claim 6 ∃ε negligible s.t. for all GPPT adversaries A , given k←$ Gen(1λ),

Pr [A(k)→ (x1, x2), x1, x2 ∈ X , x1 ̸= x2, fk(x1) = fk(x2)] ≤ ε(λ).

Proof of Claim 1. By inspection Memb(x) returns 1 if and only if x ∈ X and
is a GPPT algorithm since both T is, as no GGM query is ever performed.
Analogously by construction F : {0, 1}n → X , so Samp(1λ) always returns an
element in X .

Proof of Claim 2. Given a distribution D, even if not efficiently sampleable, we
will build an adversary A who tries to find a linear relation among κ group
elements. The idea is that A∗

x differs from Ak,x only if E (indirectly) queried if k
satisfies a non-trivial linear relation and got 1 as a reply in the real GGM. This
happens since E is deterministic, thus, if it does not find any non-trivial linear
relation, it gets the same replies from both the real GGM and the generic group
modeling Gκ. A description of A appears in Figure 10.

Reduction A(k):

1 : Sample in exponential time x←$ D
2 : Run E(k, x)
3 : When E queries Oadd(T1, T2):
4 : Retrieve a1,a2 ∈ Fκ

q such that Ti = a⊤
i k

5 : Query Oadd(T1, T2) and store a1 + a2 as a representation of the result
6 : When E queries Oeq(T1, T2):
7 : Retrieve a1,a2 ∈ Fκ

q such that Ti = a⊤
i k

8 : Query b← Oeq(T1, T2) and return E ← b.
9 : If b = 1 and a1 − a2 ̸= 0:

10 : Return a1 ̸= a2

11 : When E halts: Return ⊥

Fig. 10. Reduction A finding a linear relation among κ elements k.

First of all we observe that inductively A can store a representation of each
element in base k as initially ki = e⊤i k, with ei being 1 in the i-th position and
0 elsewhere. Next, if A ever executes line 10, it returns a linear relation since
b = 1 implies a⊤1 k = a⊤2 k and therefore (a1 − a2)

⊤k.
Finally, if line 10 is never executed, then E receives 1 from Oeq only when

a1 ̸= a2, implying that A correctly simulates simultaneously the standard GGM
and the generic group modeling Gκ. Thus in this case A∗

x = Ak,x.
In conclusion, (A →⊥) ⇒ A∗

x = Ak,x, therefore

Pr
[
A(k)→ v, v⊤k = 0

]
≥ Pr [A∗

x ̸= Ak,x] .

Since finding linear relations on a vector of random group elements is equivalent
to the discrete logarithm problem, we have that Pr [A∗

x ̸= Ak,x] is negligible.

Proof of Claim 3. To simplify notation, the summations below are taken for all
k0 ∈ Gκ, A0 ∈ Fm,κ

q and x0 ∈ {0, 1}n.

∆((k, A∗
x), (k, Ak,x)) =

=
1

2
·
∑

k0, A0

∣∣Pr [k = k0, A
∗
k,x = A0

]
− Pr [k = k0, Ak,x = A0]

∣∣
≤

∑
k0, A0, x0

1

2

∣∣Pr [A∗
k,x = A0

∣∣k = k0, x = x0

]
− Pr [Ak,x = A0|k = k0, x = x0]

∣∣
. . . · Pr [k = k0, x = x0]

=
∑
k0, x0

Pr [A∗
x ̸= Ak,x|k = k0, x = x0] · Pr [k = k0, x = x0]

= Pr [A∗
x ̸= Ak,x] ≤ ε

where in last step we applied Claim 2 and in the third step we used the fact that∑
A0

1

2

∣∣Pr [A∗
k,x = A0

∣∣k = k0, x = x0

]
− Pr [Ak,x = A0|k = k0, x = x0]

∣∣
is equal to Pr [A∗

x ̸= Ak,x|k = k0, x = x0] because

– If A∗
x0

= Ak0,x0
then the summation only contains terms that are 0, as A0 is

either different or equal to both matrices. Thus the above sum is 0, and so is
the probability of the two matrices being different when k = k0 and x = x0.

– If A∗
x0
̸= Ak0,x0 then the only non zero terms of the summation are those in

which A0 is equal to either A∗
x0

or Ak0,x0
. This yield only two terms both

equal to 1/2, implying that the sum equals 1, and so does the probability of
the two matrix being different when k = k0 and x = x0.

Proof of Claim 4. We begin observing that k is independent from both x1 and
x2, therefore

∆((k, A∗
x1
), (k, A∗

x2
)) = ∆(k,k) +∆(A∗

x1
, A∗

x2
) = ∆(A∗

x1
, A∗

x2
).

From the way we defined Samp, see Figure 9, there exists a random variable x3

uniformly distributed over {0, 1}n such that x2 = F (x3). Thus, since for each
element z, F satisfy the identity A∗

z = A∗
F (z), we have that

∆(A∗
x1
, A∗

x2
) = ∆(A∗

x1
, A∗

F (x3)
) = ∆(A∗

x1
, A∗

x3
) = 0

where the last equation follows as x1 and x3 are both uniformly distributed.

Proof of Claim 5. First of all we observe that

∆((k, fk(x1)), (k, fk(x2))) ≤ ∆((k, Ak,x1), (k, Ak,x2))

since the two distribution on the left hand can be obtained from those in the
right hand through the map

(k, A) 7→ (k, A · k)

where we use the fact that Ak,x ·k = fk(x) by the way these matrices are defined.
Next let z1, z2 be two random variables, with z1 ←$ {0, 1}n and z2 ←$ Samp(1λ).
Applying the triangular inequality twice we get

∆((k, A∗
x1
), (k, Ax2

))

≤ ∆((k, Ak,x1
), (k, A∗

z1)) + ∆((k, A∗
z1), (k, A

∗
z2)) + ∆((k, A∗

z2), (k, Ak,x2
))

≤ 2ε

where we the first and last term are smaller than ε from Claim 3 and the central
term is zero from Claim 4.

Proof of Claim 6. Given a GPPT adversary A that given k returns two different
points x1, x2 ∈ X for which fk(x1) = fk(x2), we build a GPPT adversary B that
finds linear relation on a vector of κ random group elements.

The idea is that if x1 and x2 lies in X are distinct, then their associated
matrices A∗

x1
and A∗

x2
need also to be different, or else one of these two points

would not be included in X by T . If A returned inputs for which A∗
x1
̸= Ak,x1

or A∗
x2
̸= Ak,x2

, then as done in the proof of Claim 2, we could extract a linear
relation over the elements of k. Conversely, if A∗

x1
= Ak,x1

and A∗
x2

= Ak,x2
,

then A∗
x1
−A∗

x2
is a non zero matrix that vanishes on k. A full description of B

appears in Figure 11

Reduction B(k):

1 : Run A(k)→ (x1, x2)

2 : If ¬ (x1 ̸= x2 ∧ x1, x2 ∈ X ∧ fk(x1) ̸= fk(x2)): Return ⊥
3 : Compute A∗

x1
, A∗

x2
, Ak,x1 , Ak,x2

4 : If A∗
xb
̸= Ak,xb for b ∈ {0, 1}:

5 : Compute as done in Fig. 10 a linear relation v : v⊤k = 0

6 : Return v

7 : Else:
8 : Return A∗

x1
−A∗

x2

Fig. 11. Reduction A finding a linear relation among κ elements k.

Let coll be the event that the condition at step 2 is not satisfied, i.e. the
event in which A returns a valid collision, and equal be the event A∗

xb
= Ak,xb

for b ∈ {0, 1}. If coll and ¬equal occurs, B finds a linear relation with probability
1, as observed in the proof of Claim 2. Conversely, if coll and equal we have that

fk(xb) = Ak,xb
· k = A∗

xb
· k. fk(x1) = fk(x2) ⇒ A∗

x1
k = A∗

x2
k.

Which implies that (A∗
x1
−A∗

x2
) vanishes on k. Furthermore this is a non trivial

relation since

x1, x2 ∈ X , x1 ̸= x2 ⇒ A∗
x1
̸= A∗

x2
⇒ A∗

x1
−A∗

x2
̸= 0.

We can thus conclude that if coll occurs, then A finds a a linear relation which
implies that Pr [coll] is negligible.

A.2 Hard-Core Predicates

Proof sketch of Theorem 1. We will revise the textbook proof of the result in
[GL89], pointing out where necessary why it still applies in the setting of GPPT
adversaries.

Assume there exists a GPPT adversary A such that, given k ←$ Gen(1λ),
x← Samp(1λ), r←$ {0, 1}n, with probability ε = poly(λ)

Pr
[
A(k, fk(x), r)→ b, b = x⊤r

]
≥ 1

2
+ ε

The first step is proving the following claim

Claim 1 There exists a set X0 ⊆ X such that Pr [x ∈ X0] ≥ 1/2 and for each
x ∈ X0

Pr
[
A(k, fk(x), r)→ b, b = x⊤r

]
≥ 1

2
+

ε

2
.

Given this and conditioning on x ∈ X0, we describe an adversary B that
guesses through brute-force the value of ℓ independent hard-core predicate bits
b1, . . . , bℓ for uniformly sampled r1, . . . , rℓ. These are expanded to 2ℓ − 1 bits
b′i, r

′
i by linearity, i.e. such that

∀S ⊆ [ℓ], S ̸= ∅ r′S =
⊕

j∈S
rj , b′S =

⊕
j∈S

bj (1)

up to mapping non-empty subsets of [ℓ] to integers in [2ℓ − 1]. For each of its
guess, B will try to extract the j-th bit of x by querying A on

A(k, y, ej ⊕ r′i)→ β′
i.

If the initially guessed bits are correct, which will happen after at most 2m

guesses, by linearity β′
i = x⊤r′i. Thus A receives 2ℓ − 1 pair-wise independent

random guesses and, if it replies correctly then

β′
i ⊕ b′i = x⊤(ej ⊕ r′i) ⊕ x⊤r′i = x⊤ej = xj

Thus B will chose the majority bit among all the replies it gets from A as a
candidate value for xi. Note each β′

i ⊕ b′i is correct with probability 1/2 + ε/2.
Applying Chebyshev inequality, if 2ℓ−1 ≥ 2n

ε2 , then the majority bit chosen by A
is the wrong one with probability smaller than 1

2n . A union bound then implies
that B obtain the right x with probability grater than 1/2. A full description of
B appears in Figure 12

We remark that B runs in GPPT time since ℓ = O(log(λ)), and thus only
O(poly(λ)) executions of A and fk(·) are performed. The only potentially ineffi-
cient step is the check x∗ ∈ X , which however can be computed in GPPT time
by Lemma 1.

B(k, y):

1 : Chose ℓ such that 2ℓ − 1 ≥ 2n
ε2

2 : Sample r1, . . . , rℓ ←$ {0, 1}n

3 : For (b1, . . . , bℓ) ∈ {0, 1}ℓ: // Brute-force guess ℓ hardcore bits

4 : For j ∈ {1, . . . , n}
5 : Compute b′i, r

′
i for i ∈ [2ℓ − 1] as in Equation 1

6 : Get β′
i ← A(k, y, ej ⊕ ri)

7 : Set x∗
j as the majority bit in {β′

i ⊕ b′i : i ∈ [2ℓ − 1]}
8 : If fk(x

∗) = y and x∗ ∈ X : Return x∗

9 : Return ⊥ // Abort if nothing was found

Fig. 12. Reduction B executed in the hiding game of Fig. 2.

A.3 Hiding VC

Proof of Proposition 1. We begin observing that one implication is trivially true:
Given a VC that is hiding with respect to the game ExpHide in Figure 1, then
any adversary A executed in ExpHideVC, defined in Figure 2, also succeeds with
negligible advantage.

To this goal we describe B, executed in ExpHide that on input pp, executes
A(pp) and forward its chosen vectors x0,x1 to the challenger. It then queries
opening proofs Λj for all valid positions, i.e. all except for the i-th, the only
one in which x0 and x1 are allowed to differ. Finally, it forwards (Λj)j ̸=i to A
and when A returns a bit, it output the same bit. Clearly B perfectly simulate
the challenger defined in ExpHideVC and guesses correctly if and only if A does.
Therefore Adv(A) = B.

Regarding the converse we will build a sequence of hybrid games H0, . . . ,Hn

where in Hi the challenger commits to the first i entries of x0 and the remaining
n − i entries of x1. In this way H0 is equivalent to ExpHideVC with β = 0 and
Hn is equivalent to ExpHideVC with β = 1. In all hybrid games, opening queries
for position j are only answered if x0

j = x1
j .

To conclude, we will show that any GPPT adversary D, its advantage at
distinguishing Hi−1 from Hi is negligible. We do this by describing a GPPT
algorithm B that used D to win at the game ExpHideVC. A description of B
appears in Figure 13.

First of all we observe that conditioning on x0
i ̸= x1

i , A perfectly simulates
Hi−1 if executed with challenge bit β = 0 and Hi otherwise. Next, we point
out that the advantage of D when x0

i = x1
i is zero as the two games becomes

B(pp)

1 : Run x0,x1 ← D(pp)
2 : If x0

i = x1
i : Return 1 // Abort the execution

3 : Compute and send to the challenger z0, z1 such that:
4 : z0 = (x0

1, . . . , x
0
i−1, x

0
i , x

1
i+1, . . . , x

1
n)

5 : z1 = (x0
1, . . . , x

0
i−1, x

1
i , x

1
i+1, . . . , x

1
n)

6 : On input (c, (Λj)j ̸=i) from the challenger, forward D ← c

7 : When D queries j with x0
j = x1

j :
8 : Forward the right opening proof D ← Λj

9 : When b← D: Return b

Fig. 13. Reduction B using D to win at ExpHideVC.

identical. Thus, calling eq the event x0
i = x1

i and eq its negation,

Adv(D) = |Pr [D → 0|Hi−1]− Pr [D → 1|Hi]|
≤ |Pr [D → 0|Hi−1, eq]− Pr [D → 0|Hi, eq]| +

. . .+ |Pr [D → 0|Hi−1, eq]− Pr [D → 0|Hi, eq]|
= |Pr [B → 0|β = 0]− Pr [B → 0|β = 1]| ≤ Adv(B).

Thus Adv(D) is negligible, concluding the proof.

A.4 Hiding VC to Signatures

Proof of Proposition 2. Given an adversary A breaking unforgeability of the sig-
nature scheme described in Fig. 3, we build in Figure 14 an adversary B playing
against the (simpler) hiding game for Vector Commitment described in Fig. 2.

We first state the following claim, where b is the challenge bit chosen by B’s
challenger and forge the event 1← VC.Vfy(pp, c, x∗

k, k, Λ
∗
k).

Claim 1 Exists ε negligible such that Pr
[
forge, k = i, x∗

k ̸= x0
i

∣∣ b = 0
]
≤ ε.

These claims implies the thesis since

2 · Adv(B) = |Pr [B → 0 | b = 0]− Pr [B → 0 | b = 1]|
≥ Pr [B → 0 | b = 0]

≥ Pr
[
forge, k = i, x∗

k = x0
i

∣∣ b = 0
]

≥ Pr [forge, k = i | b = 0]− Pr
[
forge, k = i, x∗

k ̸= x0
i

∣∣ b = 0
]

≥ Pr [forge | b = 0, k = i] Pr [k = i | b = 0]− ε

≥ Adv(A) · 1
n
− ε

B(pp):

1 : Guess the index A is going to forge, i←$ [n]

2 : Sample x0
i , x

1
i ←$ VC.M with x0

i ̸= x1
i

3 : For all j ̸= i: xj ←$ VC.M, and set x0
j ← xj , x1

j ← xj

4 : Query x0,x1 and wait for (c, (Λj)j ̸=i)

5 : Run A(pp, c)
6 : When A queries j:
7 : If j = i: Return 1 // i.e. abort

8 : Else: A ← (xj , Λj)

9 : When A returns (k, x∗
k, Λ

∗
k)

10 : If k ̸= i or 0← VC.Vfy(pp, c, x∗
k, k, Λ

∗
k) or x∗

k = x1
i :

11 : Return 1
12 : Else: Return 0

Fig. 14. Reduction B executed in the hiding game of Fig. 2.

where we used the fact that A has no information on i, thus Pr [k = i] = 1/n
and forge is independent on k = i.

Thus Adv(A) ≤ 2nAdv(B) + nε, that is negligible. Next we prove the Claim
providing a reduction C that uses A to break position binding. The idea is that
C can emulate the behavior of B when b = 0 until the final step. If the adversary
manages to produce an opening to a message x∗

k for the right position k = i but
with x∗

k ̸= x0
i , then C breaks position binding returning this opening for x∗

k, and
the correct one he can generate for x0

i . A full description appears in Figure 15.
By inspection C simulates B when b = 0 and x = x0 correctly. Note that

there is no need to simulate x1 as when b = 0, A gets no information about
it. Finally, if the condition at step 9 is executed, C breaks position binding
correctly since x∗

k ̸= xi, 1 ← VC.Vfy(pp, c, x∗
k, k, Λ

∗
k) and, by correctness, 1 ←

VC.Vfy(pp, c, xi, i, Λi) with i = k. Hence

Adv(C) = Pr
[
forge, k = i, x∗

k ̸= x0
i

∣∣ b = 0
]
.

which proves the claim.

A.5 Hard Subset Membership Problem

Proof of Lemma 2. We will show the Lemma holds using the following claim
which we prove later on

Claim 1 Given bi ←$ {0, 1}, b∗i ←$ {0, 1} and xi such that

bi = 0 ⇒ xi ←$ SampBad(1λ), bi = 1 ⇒ xi, wi ←$ SampGood(1λ).

C(pp):

1 : // Simulate B and its challenger

2 : Sample i←$ [n] and x←$ VC.Mn

3 : (c, aux)← VC.Com(pp,x)

4 : Run A(pp, c)
5 : When A queries j:
6 : If j = i: Return ⊥
7 : Else: πj ← VC.Open(pp, j, aux), A ← (xi, Λi)

8 : When A return (k, x∗
k, Λ

∗
k)

9 : If k ̸= i and VC.Vfy(pp, c, x∗
k, k, Λk) and x∗

k ̸= xi:
10 : Λi ← VC.Open(pp, i, aux)

11 : Return (c, i, x∗
k, Λ

∗
k, xi, Λi)

12 : Else: Return ⊥

Fig. 15. Reduction C breaking position binding.

for i ∈ [λ], then the distributions (x,b) and (x,b∗) are hard to distinguish, i.e.
∃ε negligible such that for all GPPT adversaries D

Adv(D) = |Pr [D(x,b)→ 0] − Pr [D(x,b∗)→ 0]| ≤ ε.

Assuming the claim holds, let A be an adversary trying to solve λ hard subset
membership challenges we can build a trivial distinguisher D that on input (x, c),
executes A(x) → b′ and returns 0 if c = b′ and 1 otherwise. If D is executed
with c = b, then the probability that it returns 0 is by definition Adv(A), where

Adv(A) = Pr [A(x)→ b′, b′ = b] .

Conversely, if c = b∗ then A has no information on b∗. Therefore its guess is
independent from it and Pr [b′ = b∗] = 2−λ. In conclusion we have that

Adv(D) =

∣∣∣∣Adv(A)− 1

2λ

∣∣∣∣ ⇒ Adv(A) ≤ 1

2λ
+ Adv(D) ≤ 1

2λ
+ ε(λ).

which proves the Lemma.

Proof of Claim 1. With the above notation we define the following hybrid dis-
tributions

σi = (x, b1, . . . , bi, b
∗
i+1, . . . , b

∗
λ)

and claim that distinguishing σi−1 from σi is hard for all i, which implies the
thesis. First of all, for notational convenience, we will call

τi = (x, b1, . . . , bi−1, b
∗
i+1, . . . , b

∗
λ)

which contains all the entries that σi−1 and σi have in common, so that up to
reordering

σi−1 = (τi, bi), σi = (τi, b
∗
i).

Next we study the advantage of a given GPPT algorithm D distinguishing σi−1

from σi

Adv(D) = |Pr [D(τi, bi)→ 0]− Pr [D(τi, b∗i)→ 0]|

=

∣∣∣∣12 Pr [D(τi, 0)→ 0|bi = 0] +
1

2
Pr [D(τi, 1)→ 0|bi = 1]

−1

4
Pr [D(τi, 0)→ 0|bi = 0]− 1

4
Pr [D(τi, 1)→ 0|bi = 0]

−1

4
Pr [D(τi, 0)→ 0|bi = 1]− 1

4
Pr [D(τi, 1)→ 0|bi = 1]

∣∣∣∣
≤

∣∣∣∣14 · Pr [D(τi, 0)→ 0|bi = 0]− 1

4
· Pr [D(τi, 0)→ 0|bi = 1]

∣∣∣∣+
+

∣∣∣∣14 · Pr [D(τi, 1)→ 0|bi = 0]− 1

4
· Pr [D(τi, 1)→ 0|bi = 1]

∣∣∣∣ .
where the second equation follow conditioning on all possible values of bi and b∗i
and observing that D on a fixed input does not depend on b∗i (although it does
depend on bi since xi depends on bi). Thus it suffice to show that this two terms
are negligible. Toward this goal we build two adversaries B0 and B1, each trying
to solve a single hard subset membership problem. Bβ(x) begins sampling bj , b

∗
j

and xj as in the claim statement for all j ̸= i. Then it calls xi = x and returns
the bit it gets from D(τi, β) (note β is a constant value here). The probability
that Bβ guesses correctly is then, calling b = bi the challenge bit it has to guess

|Pr [Bβ(x)→ 0|b = 0] + Pr [Bβ(x)→ 0|b = 1]|
= |Pr [D(τi, β)→ 0|b = 0]− Pr [D(τi, β)→ 0|b = 1]|

By Definition 4 we have that the left hand side is smaller than a negligible ε for
all β ∈ {0, 1}, eventually implying that Adv(D) ≤ ε/2.

A.6 Preliminary Adversary

Proof of Lemma 3. In order to provide a description of A, we begin by building
a signature scheme given a NIZK whose message space has only one element.
This will allow us to use the adversary B described in [CFGG23] which, on an
algebraic signature scheme with a single message, either produces a forgery or
finds a linear relation among the group elements of the verification key. The idea
is, given a NIZK for an hard subset membership problem, to set the verification
key as the crs and a false statement x, and the signing key is the simulation
trapdoor td. A signature for the only message 0 is then any proof π for x. In
this way the signer can create a proof for x using the simulation trapdoor, while

S.Setup(1λ):

1 : Sample (crs, td)← S(1λ), x←$ SampBad(1λ)

2 : Set vk← (crs, x), sk← td and Return (vk, sk)

S.Sign(sk, 0):

1 : Return π ← S(td, x)

S.Vfy(vk, 0, π):

1 : Return b← V(crs, x, π)

Fig. 16. Signature scheme from any NIZK for a hard subset membership problem.

no adversary can provide a proof for x unless soundness does not hold. A full
description of the scheme is presented in Fig. 16.

Given this signature scheme, calling x = (Z, x′) ∈ Gm × {0, 1}∗ and crs =
(Y, c′) ∈ Gn × {0, 1}∗, we claim as in [CFGG23] that

Claim 1 There exists a GPPT adversary B such that, given V ≤ Fn
q and W ≤

Fm
q containing respectively the discrete logarithm of Y and Z, either

– B(V,W, vk)→ (π, L), with π a valid forgery
– B(V,W, vk) queries a signature for 0 and upon receiving a valid π, such that

B(V,W, vk)→ (⊥, L) ⇒ L ⪇ V ×W, (Y,Z) ∈ L ·G.

Note that this adversary almost satisfies the property we wish A to have.
However, when no forgery is found, it instead returns a linear relation among all
the group elements in the verification key (Y,Z) and not only Y. This means
that linear relations found could be trivial in Y.

In order to refine this adversary we use a technique also introduced in [CFGG23]:
The idea is to run B several times in a simulated environment with the real state-
ment x and a fresh crs∗ generated with a trapdoor td∗. In this simulation either
A returns a bad L from which B can extract a linear relation among the elements
of x, or for sufficiently many times L satisfies

L ∩ (Fn
q × {z}) ⪇ V × {z}

If this is the case, thenA executes B one last time with the real crs it receives and,
if needed, replies to the signature query from B using its only simulation query.
Since the space L satisfied the above property for sufficiently many iterations,
it will likely be satisfied also in this last one.

One issue with this approach is that z is not known to A, so testing L∩(Fn
q ×

{z}) ⪇ V × {z} might be hard. The next claim address this.

Claim 2 Given V ≤ Fn
q , W ≤ Fm

q and L ≤ V ×W affine spaces and calling
η2 : Fn

q × Fm
q → Fm

q the projection on the second entry11, then for all z ∈W

L ≤ V ×W, η2(L) = W ⇒ L ∩ (Fn
q × {z}) ⪇ V × {z}.

11 i.e. η(x,y) = y. Typically projections are denoted with π, but we have to depart
from this notation to avoid any confusion as π already denotes proofs.

We are now ready to give a description of the adversary A parametrized by
a polynomially bounded t, which appears in Fig. 17.

Given this algorithm we break the proof that At is indeed the right algorithm
for some t into the following claims.

Claim 3 A is GPPT.

Claim 4 For each step of the execution of A, calling x = (Z, x′) ∈ Gm×{0, 1}∗,
then Z ∈W ·G.

Claim 5 For any choice of t = poly(λ)

Pr [A(V, crs, x)→⊥] ≤ m+ 1

t+ 1
.

These claims imply the thesis since A only uses the group efficiently and,
setting t = (m+ 1) · p(λ)− 1, aborts with probability p(λ)−1. Finally, if it does
not abort either it returns a proof π for x, which happens without performing
any query since A ask for a proof if and only if B ask for a signature, or it
outputs L with η2(L) = W . In this latter case, since z ∈W by Claim 4, Claim 2
implies that

L ∩ (Fn
q × {z}) ⪇ V × {z}

where we used the fact that by Claim 1, A returns L ⊆ V ×W .

Proof of Claim 2. By contradiction assume L ∩ Fn
q × {z} = V × {z}. Then for

all (v,w) ∈ V × W , since η2(L) = W there exists a point u ∈ V such that
(u,w) ∈ L. Using the initial hypothesis we also have that

(u, z), (v, z) ∈ L ⇒ (u,w) + (v, z)− (u, z) ∈ L ⇒ (v,w) ∈ L.

Hence V ×W ≤ L which is a contradiction as we assumed L ⪇ V ×W .

Proof of Claim 3. Since t and m are polynomially bounded, it suffice to show
that each individual line can be computed in GPPT time. This is evident for all
commands with the exception of Line 3. That step however can be computed
inefficiently, but with only polynomially many group operations. This is done first
computing the conditional distribution of the exponents of the crs, conditioned
to Y ∈ V · G, sampling from this distribution (which take exponential space),
and finally computing crs from the sampled exponents, which takes polynomially
many group operations.

Proof of Claim 4. We proceed by induction. Initially Z ∈W ·G since W = Fm
q .

Next assume that until the i-th iteration of the outer for-loop, Z ∈W ·G. At the
end of the loop either W ′ = W , implying that the thesis still holds, or W ′ ̸= W .
In this second case W ′ = η2(L) with L being the output of B(V,W, crs∗, x). Since
by hypothesis Y ∈ V · G and Z ∈ W · G, we have that (Y,Z) is contained in
V ×W . Calling y, z the discrete logarithm respectively of Y and Z, we have that

(y, z) ∈ L ⇒ z = η2(y, z) ∈ η2(L) = W ′ ⇒ Z ∈W ′ ·G.

At(V, crs, x):

1 : Initialize W ← Fm
q the space of possible exponents for Z

2 : For j ∈ {1, . . . ,m+ 1}:
// Each execution tries to reduce dimW

3 : Set W ′ ←W an affine space storing information on x gathered later on
4 : For i ∈ {1, . . . , t}:
5 : Sample (crs∗, td∗)← S(1λ) with crs∗ = (Y∗, c∗) and Y∗ ∈ V ·G
6 : Run B(V,W, crs∗, x)

7 : When B queries a signature for 0:
8 : Compute a simulated proof π ← S(td∗, x) and send it B ← π

9 : When B returns (π, L):
10 : If η2(L) ̸= W : Store the result W ′ ← η2(L)

11 : If W ′ ⪇ W : Update W ′ ←W

12 : Else: Break the outer for-loop

// Execute B one last time with the real crs

13 : Run B(V,W, crs, x)

14 : When B queries a signature for 0:
15 : Return query and on input π send B ← π

16 : When B returns (π, L)

17 : If π is a valid proof: Return π

18 : Elif η2(L) = W : Return L

19 : Else: Return ⊥

Fig. 17. Adversary At parametrized by t = poly(λ).

Proof of Claim 5. We define J a random variable denoting the value index j
has before terminating the outer loop by executing Line 12. Note that J is well
defined since each time Line 12 is not executed, setting W ← W ′ reduces the
dimension of W by 1 which can only happens at most m times.

Next we define the event Ei,j as J ≥ j and at the i-th iteration of the inner
for loop, the condition of Line 10 is not satisfied. We further let Fail be the event
A(V, crs, x)→⊥. Note that the events Ei,j are also well defined since either J < j
or when J ≥ j the inner loop is executed for all i.

Next we observe that, for each j, the inner loop runs A with the same vector
spaces (V,W) and equally distributed crs∗ and x. Thus we have that Pr [Ei,j] is
constant for all j, allowing us to define

pj = Pr [E1,j] = . . . = Pr [Et,j] .

Next, we observe that conditioning on J = j, Fail occurs if and only if B(V,W, crs, x)
returns a vector space L satisfying η2(L) = W with crs following the same dis-
tribution simulated in Line 3. Thus

Pr [A(V, crs, x)→⊥ | J = j] = 1− pj

In conclusion

Pr [A(V, crs, x)→⊥] ≤
∑m+1

j=1
Pr [A(V, crs, x)→⊥ | J = j] Pr [J = j]

≤
∑m+1

j=1
(1− pj) Pr [E1,j ∧ . . . ∧ Et,j]

≤
∑m+1

j=1
(1− pj) · ptj ≤

∑m+1

j=1

1

t+ 1
≤ m+ 1

t+ 1
.

where in the third step we used the fact that the events Ei,j for a fixed j are
mutually independent and in the second to last step, we upper bound (1− pj) ·
ptj ≤ (t+ 1)−1 since pj ∈ [0, 1].

	Introduction
	Preliminaries
	Notation
	Maurer's Generic Group Model
	NIZK-AoK
	Digital Signatures
	Vector Commitments

	One Way Functions in Maurer GGM
	Definition
	Collision Resistance
	Hard-Core Predicates

	Impossibility of Algebraic NIZK-AoK
	Hiding Vector Commitments
	Reduction to Signatures
	Lower Bound
	Intuition on NIZK-AoK Impossibility
	Vector Commitments from NIZK-AoK
	Impossibility of Algebraic NIZK-AoK

	Impossibility of Algebraic NIZK
	Hard Subset Membership Problem
	Preliminary Adversary
	Attack Description
	Impossibility of Algebraic NIZK

	Conclusions
	Postponed Proofs
	Collision Resistant Algebraic OWF
	Hard-Core Predicates
	Hiding VC
	Hiding VC to Signatures
	Hard Subset Membership Problem
	Preliminary Adversary

