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Abstract.
The promising field of homomorphic encryption enables functions to be evaluated on
encrypted data and produce results for the same computations done on plaintexts.
It, therefore, comes as no surprise that many ventures at constructing homomorphic
encryption schemes have come into the limelight in recent years. Most popular
are those that rely on the hard lattice problem, called the Ring Learning with
Errors problem (RLWE). One major limitation of these homomorphic encryption
schemes is that in order to securely increase the maximum multiplicative depth, they
need to increase the polynomial-size (degree of the polynomial ring) thereby also
increasing the complexity of the design. We aim to bridge this gap by proposing a
homomorphic encryption (HE) scheme based on the Module Learning with Errors
problem (MLWE), ModHE that allows us to break the big computations into smaller
ones. Given the popularity of module lattice-based post-quantum schemes, it is
an evidently interesting research endeavor to also formulate module lattice-based
homomorphic encryption schemes. While our proposed scheme is general, as a case
study, we port the well-known RLWE-based CKKS scheme to the MLWE setting.
The module version of the scheme completely stops the polynomial-size blowups when
aiming for a greater circuit depth. Additionally, it presents greater opportunities for
designing flexible, reusable, and parallelizable hardware architecture. A hardware
implementation is provided to support our claims. We also acknowledge that as we
try to decrease the complexity of computations, the amount of computations (such
as relinearizations) increases. We hope that the potential and limitations of using
such a hardware-friendly scheme will spark further research.
Keywords: Homomorphic encryption, module lattice, hardware reusability

1 Introduction
The digital world is quite asymmetric: devices like cell phones are compact but compu-
tationally challenged, which is why we often need access to large off-site ‘cloud’ servers
with greater computing power. However, trust is a major issue with such outsourced
computations. For example, a hospital wants statistical analysis on the percentage of
patients with certain dominating illnesses and hence wants to send its patients’ medical
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records to a research facility. Can the hospital be assured of the complete privacy and
protection of its data? One solution is that the hospital signs a privacy contract, and
relies on the honesty of the research facility. A better solution would be that the hospital
encrypts all its data beforehand and not rely on third parties for its own privacy. However
for it to be meaningful the research facility must be able to analyze the encrypted data
without any need for decryption and the hospital would still obtain the same analytical
results as the plain data would provide them. This is the very essence of Homomorphic
Encryption (HE).

In 1978, Rivest, Adleman, and Dertouzos [RAD+78] conjectured that computations
could be performed effectively on homomorphically encrypted data without compromising
its security. For the next three decades however, the world only knew of partially homo-
morphic schemes (like RSA [RSA78] and ElGamal [ElG85]) that could support certain
fixed types of operations on the ciphertext. The breakthrough came in 2009 when Gentry
[Gen09] introduced the first Fully Homomorphic Encryption (FHE) scheme that could
perform arbitrary operations on homomorphically encrypted data. He showed that a
somewhat homomorphic scheme could be made fully homomorphic with a process he
named ‘bootstrapping’ through which ciphertexts can be ‘refreshed’, a way to homo-
morphically evaluate the decryption circuit. His construction, although quite complex,
sparked active research and led to the introduction of other simpler homomorphic schemes.
[BV11a] proposed an FHE scheme whose security assumption was based on the classical
hardness of solving standard lattice problems in the worst-case, which is more well-known
as the Learning with Errors (LWE) problem. The dimension of the lattice determines the
scheme’s extent of security. Then, in 2011, [BV11b] and in 2012 [FV12] (BFV) ported the
scheme in [BV11a] from standard LWE setting to LWE over algebraic rings with the Ring
Learning with Errors problem (RLWE). The BGV scheme [BGV11] is another popular
RLWE-HE candidate. The TFHE scheme [CGGI20] also uses LWE and the RLWE over
a torus but adopts a different bootstrapping procedure. CKKS/HEAAN [CKKS17] and
its residue number system (RNS) variant, [CHK+18b], are recent RLWE-based schemes
that incorporate homomorphic computation of data over the real and complex fields. In
spite of a series of significant advancements in the theoretical aspects of homomorphic
encryption, present-day homomorphic encryption schemes introduce a huge computation
overhead ranging from 104 to 105 compared to plaintext calculations. As a consequence,
software implementations of homomorphic encryption in general-purpose computers are
far from usable in the privacy-preserving outsourcing of computation.

To speed up homomorphic encryption significantly, multiple attempts to develop
customized hardware accelerators have surfaced in the last few years. These works range
from real acceleration works, for example, the GPU and FPGA-based accelerators [JKA+21,
BHM+20, MAK+23, AdCY+23, RLPD20, RJV+18, TRG+20, TRV20], to futuristic ASIC
designs [FSK+21, GVBP+22, KKK+22, SFK+22, KLK+22]. It becomes clear from their
impressive speedup records, that ASIC or FPGA-based hardware accelerators will be
fundamental to making homomorphic encryption usable for real-life privacy-preserving
computation. Studying the above-mentioned hardware acceleration works, we see that they
start with the mathematical representation of a given homomorphic encryption scheme and
make hardware-based building blocks to speed up the mathematical steps of the scheme.
In contrast to this typical hardware accelerator development cycle, our approach attempts
to unify the two (often considered) sequential processes of scheme proposal followed by
hardware design. We strive to accommodate the hardware angle and incorporate it during
the process of scheme design.

The following two paragraphs present the motivation behind designing a ‘hardware-
friendly’ homomorphic encryption scheme. In RLWE-based somewhat homomorphic
encryption schemes e.g., BGV, BFV, CKKS, etc., the parameters (polynomial ring dimen-
sion and modulus size) are chosen depending on application complexity – the more complex
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the application the larger the parameters. The security of the scheme goes hand-in-hand
with the size of the ciphertext modulus and the dimension of the polynomial ring: a
need for higher multiplicative depth equates to choosing a bigger ciphertext modulus
but to keep the level of security intact, a proportional increase in the polynomial ring
dimension is equally imperative. As an example, while polynomials of degree 212 and a
110-bit ciphertext modulus would suffice for homomorphic evaluation of a simple quadratic
function, an application performing logistic regression would require almost 4 times larger
ring dimension and ciphertext modulus sizes. In a software implementation, adjusting
parameter sets for different applications is simple. However, in a hardware implementation,
the circuits are physically ‘hard-wired’ and hence the large variations in the polynomial
degree of RLWE-based homomorphic encryption schemes make it rather challenging to
optimize the circuits for variable parameter sets. Hardware reusability is desired in the
cloud as it will process different types of applications. That motivated us to answer the
question, Could homomorphic encryption schemes be designed in a way that they become
hardware-friendly by construction? The term “hardware-friendly” primarily refers to the
ability to reuse hardware resources optimally.

In post-quantum public-key cryptography, module lattice-based schemes such as
Saber [DKR+21], Kyber [SAB+21], Dilithium [BDK+21], etc., have been successful in
mitigating similar problems with varying parameter sets. With a fixed polynomial de-
gree, these schemes only have to change dimensions of the vector or the matrix of such
polynomials to incorporate changing security levels, thereby opening up opportunities for
flexibility and reusability in hardware. Taking inspiration from these facts, this paper gives
the sketch of a module lattice-based homomorphic encryption scheme and discusses its
advantages and limitations compared to the state-of-the-art ideal lattice-based schemes.

1.1 Our contributions
• In this work, we explore the prospects of using the module learning with errors

(MLWE) problem in the context of designing a homomorphic encryption scheme. As a
case study, we port the RLWE-based CKKS [CKKS17] scheme to the MLWE setting,
and propose a new scheme which we call Mod or ModRNS. A proof-of-concept Sage
implementation1 of the module-lattice-based leveled CKKS homomorphic encryption
scheme is provided.

• Algorithmically, we try to retain the properties of the ring variant while adapting them
for modules, thereby realizing our motivation without having to make any drastic
changes to the heuristics of the original scheme. We investigate the consequences of
choosing a fixed base ring and then building upon the rank of the associated module
depending on the desired parameters for circuit depth and security. We provide
detailed algorithmic descriptions for the readers to understand the design decisions
and challenges.

• We first highlight the advantages of better security assumptions associated with
MLWE when compared with RLWE [AD17], [CDW17].

• Along with the assurance of stronger security, we also explain how MLWE is a good
fit for reusing already existing hardware architecture even under varied parameter
requirements. The availability of physical resources may not be at par with the
changing security caliber. Indeed, with every such change, having to replace a
machine’s hardware or buying new ones would not be cheap. We show that in such
a scenario, accommodating different parameter sets essentially translates to simply
adjusting the rank of the module in MLWE, leading to hardware reusability.

1https://github.com/anishamukh/MODHE

https://github.com/anishamukh/MODHE
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• ModHE allows us to continue processing small polynomials even when we require
a higher depth. This is because the number of polynomials packed in a module
increases, but their size does not increase. We show how these different components
can be utilized mostly in parallel and design the hardware accordingly. Our hardware
design methodology utilizes the multi-dimensional parallel processing opportunities
offered by ModHE and presents them in the context of ModRNS.

• As an additional interesting feature that comes with MLWE-based HE, we present
the rank reduction technique. MLWE allows us to fix the degree of the ring so
that corresponding to the required multiplicative depth, the dimension of the lattice
problem (still ensuring security) can be adjusted only by changing the rank of the
module. This offers us an opportunity to dynamically adjust/reduce the components
of a ciphertext once a certain multiplicative depth has been consumed.

• We acknowledge the fact that ModHE has certain limitations in the form of con-
strained message packing, increased key sizes, reduced performance, and precision
loss. While speed-wise MLWE cannot beat RLWE, it is a trade-off for achieving
easier hardware reusability and stronger security.

• To support our motivation, we provide area and performance results for a hardware
accelerator architecture targeting the Xilinx FPGA Alveo U280 card.

Organisation: In Section 2, we provide mathematical details that will be useful to
build concepts in the rest of the paper. We also give a brief description of the important
sub-routines of the RNS-CKKS scheme. In section 3, we present algorithmic details
of Mod version of CKKS, the error bounds of important sub-routines, and also discuss
the RNS representation. In section 4, we give the potentials and limitations related to
a module-based HE construction. The hardware design is proposed in section 5 and
section 6 provides food for thought toward future possibilities and modifications of ModHE
constructions. Section 7 concludes the paper.

2 Mathematical background
2.1 Notation
Let N ∈ N be a power of two. For a number field Q[X]/(ϕ2N (X)) we denote R =
Z[X]/(ϕ2N (X)) as its ring of integers consisting of polynomials modulo the 2N -th cyclo-
tomic polynomial, ϕ2N (X) = XN + 1. Also, let Rq = R/qR be the residue ring of R
modulo an integer q. An element of Rq is a polynomial of the form, a(X) =

∑N−1
i=0 aiXi

with each of its coefficients in Zq. The Euclidean norm on the coefficient vector (ai) is
denoted simply by ∥a∥ while the l∞ norm is ∥a∥∞ such that ∥a∥∞ = supi|ai|. The l∞
norm of a polynomial a under the canonical embedding is denoted by ∥a∥can

∞ . We denote
the module of rank r over Rq as Rr

q.
Unless stated explicitly, we will use q to denote a ciphertext modulus. In the non-RNS

version of our scheme we use ql = pl · q0, 0 ≤ l ≤ L for a base p > 0 and a modulus q0
following [CKKS17]. When discussing the RNS version we will shift to a notation Q for
the large ciphertext modulus which is a product of the small primes qi.

Elements named in usual lowercase letters will denote single polynomials unless oth-
erwise explicitly specified to be integers; bold lowercase letters will represent a vector of
polynomials (except in section 2.2 where we use this notation for a vector of integers) and
bold uppercase letters will denote multi-dimensional matrices. Inner product of two vectors
is denoted by ⟨·, ·⟩. The Number Theoretic Transform (NTT) of a polynomial a is repre-
sented by ã. We use ◦ to denote composition of two functions. We use ⋆ to represent dyadic
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multiplication and ‘·’ for the following types of multiplications: polynomial-polynomial,
matrix-vector of polynomials, integer-polynomial or integer-integer multiplications (without
ambiguity, the reference will be clear from the context it is being used in).

2.2 The Learning with Errors problem and its algebraic variants
The Learning with Errors (LWE) problem was introduced by Regev [Reg05] in 2005. The
LWE problem is parameterized by two integers n ≥ 1 and q ≥ 2, and an error distribution
χerr. It has two variants: the search and the decision variant. The decision variant is
usually preferred for defining cryptographic primitives.

Learning with Errors (LWE): Sample a secret vector s in some key distribution
χkey(Zn

q ) and fix it. Consider i iterations of the following sampling process: at each i-th
iteration, sample random vector ai from a uniform distribution U(Zn

q ) and error ei from
χerr. Compute bi = ⟨ai, s⟩ + ei ∈ Zq and output the tuples (ai, bi) ∈ Zn

q × Zq, called
LWE samples from the distribution LWEn,q,χerr

. The ‘search’ LWE problem asks to find
s, given a polynomial number of samples from LWEn,q,χerr

. The ‘decision’ LWE asks to
distinguish with non-negligible advantage between a polynomial number of samples drawn
from LWEn,q,χerr and the same number of samples (a′

i, b′
i) drawn uniformly from Zn

q ×Zq.

Ring Learning with Errors (RLWE): The Ring Learning With Errors (RLWE) [LPR10]
was introduced for speeding up cryptographic constructions based on LWE. Let Rq =
Zq[X]/⟨f(X)⟩ be a polynomial ring of degree N with the defining irreducible polynomial
f(X). Sample a secret polynomial s with coefficients from some key distribution χkey(R)
and fix it. Consider i iterations of the following sampling process: at each i-th iteration,
sample public polynomial ai from a uniform distribution U(Rq) and error ei from χerr.
Compute bi = ai · s + ei ∈ Rq and output the tuples (ai, bi) ∈ Rq × Rq, called RLWE
samples from the distribution RLWEN,q,χerr

. The ‘search’ LWE problem asks to find s,
given a polynomial number of samples from RLWEN,q,χerr

. The ‘decision’ RLWE asks
to distinguish with non-negligible advantage between a polynomial number of samples
drawn from RLWEN,q,χerr and the same number of samples (a′

i, b′
i) drawn uniformly from

Rq ×Rq.
While the LWE problem is known to be as hard as worst-case problems on Euclidean

lattices, RLWE is considered as hard as the problems are restricted over special classes of
ideal lattices. The Module Learning with Errors was introduced as a bridge between the
general LWE and RLWE and was discussed in detail by Langlois and Stehlé [LS15].

Module Learning with Errors (MLWE): Consider the module M ⊆ Rr over R
with rank r, where R and Rq are defined as in RLWE above. Sample s from some key
distribution χkey(Rr) and fix it. Consider i iterations of the following sampling process:
at each i-th iteration, sample public module element ai from a uniform distribution
U(Rr

q) and error ei from χerr over R. Compute bi = ⟨ai, s⟩ + ei ∈ Rq and output the
tuples (ai, bi) ∈ Rr

q × Rq, called MLWE samples from the distribution MLWEN,r,q,χerr
.

The ‘search’ MLWE problem asks to find s, given a polynomial number of samples from
MLWEN,r,q,χerr . The ‘decision’ MLWE asks to distinguish with non-negligible advan-
tage between a polynomial number of samples drawn from MLWEN,r,q,χerr

and the same
number of samples (a′

i, b′
i) drawn uniformly from Rr

q ×Rq.
For a fixed number of samples, the MLWE problem can also be viewed in terms

of linear algebra by considering a matrix A whose rows consist of all the sampled ai’s.
Interestingly, for a commutative ring R, an R-algebra is an R-module which is also a ring.
The set, Mn(R) of all square n× n matrices over a commutative ring R with entries in
R is an R-algebra. While a multiplication between two module elements is not intrinsic,
a multiplication between two elements of Mn(R) will still make sense when perceived as
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elements in a ring. The security of the proposed MLWE-HE scheme follows from the
hardness assumptions of the MLWE problem [LS15].

2.3 CKKS and RNS-CKKS
In a typical homomorphic encryption protocol, a client sends encrypted data to a cloud
server that performs computations on it and sends the encrypted results back to the client.
The client decrypts the received results locally to again obtain meaningful plaintext results.
The client has his own secret key to be able to en(de)crypt messages.

We give an intuitive description of an RLWE-based homomorphic encryption scheme
in the following part. Let a client’s secret-key be sk = (1, s) ∈ R2

q and the corresponding
public-key be pk = (b = −a · s + e, a) ∈ R2

q . Client encrypts a message m using pk and
obtains the ciphertext ct ← (c0 = v · b + e0 + m, c1 = v · a + e1) ∈ R2

q where ei is a
Gaussian distributed error-polynomial and v is polynomial sampled from a distribution
dictated by the scheme. The client can decrypt a valid ciphertext ct = (c0, c1) using her
secret-key sk and recover the message m← ⟨ct, sk⟩. Assume that a cloud contains two
ciphertexts ct = (c0, c1) and ct′ = (c′

0, c′
1) ∈ R2

q of the client with respect to messages m
and m′ respectively. The cloud can compute a valid encryption of m+m′ simply by adding
the two ciphertexts as ctadd ← (c0 + c′

0, c1 + c′
1) ∈ R2

q. Computing encryption of m ·m′

is relatively complex and often differs based on the scheme. The basic idea is that the
multiplication of two ciphertexts will result in their respective components being multiplied
with each other, like, ctmult = (c0 · c′

0, c0 · c′
1 + c1 · c′

0, c1 · c′
1) ∈ R3

q. This intermediate
result has three polynomial components and can be decrypted using (1, s, s2) but not
using sk = (1, s). To again allow for decryption to happen using sk, a ‘Key-Switching’
operation is used to transform the three-component ciphertext ctmult back into the usual
two-component ciphertext ctrelin decryptable under (1, s). In this context, key-switching
is called ‘relinearization’ as it produces a linear ciphertext.

Most ideal lattice-based homomorphic encryption schemes such as BGV [BGV11],
BFV [FV12], CKKS [CKKS17] and RNS-CKKS [CHK+18b] share a similar underlying
protocol structure. We give a brief description of RNS-CKKS [CHK+18b] as we will build
our MLWE construction upon it.

Residue Number System (RNS)
The Residue Number System makes use of the Chinese Remainder Theorem (CRT) to
represent an integer as a vector of its residues modulo a basis of pairwise co-prime integers.
The same can also be applied to polynomials in rings. If a is a polynomial in the cyclotomic
ring RQ and C = {q0, · · · , qk−1} is a basis such that Q =

∏k−1
i=0 qi then, there is a ring

isomorphism from a ∈ RQ to its representation (a(0), a(1), · · · , a(k−1)) ∈
∏k−1

i=0 Rqi
being

applied coefficient-wise. In compact form, the RNS representation of a can be denoted
by [a]C. RNS proves useful for implementing HE schemes on hardware and software
platforms as it enables the parallelization of computations. Each polynomial involved in
the scheme’s routines has shares with respect to each small moduli in the basis. In other
words, polynomial arithmetic is done among smaller decomposed polynomials instead of
big polynomials modulo a big modulus. HE schemes using RNS choose prime moduli qi’s
so that they can utilise the advantage of Number Theoretic Transform (NTT) for fast
multiplications.

RNS-CKKS
The original CKKS scheme could not support a double-CRT representation since the
rounding operation involved in the approximate arithmetic dictated the use of a power-of-
two ciphertext modulus. An RNS variant of CKKS appeared in [CHK+18b] by constructing
algorithms that could incorporate double-CRT without compromising on the benefits of
CKKS. We give a brief description of the important sub-routines of RNS-CKKS. For better
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legibility, we will use RingRNS to denote them. For a security parameter λ let q be the
base integer modulus, L be the maximum level of computation, η be the bit precision.
Ensuring qj/q ∈ (1− 2−η, 1 + 2−η), choose a prime p and the basis C = {q0, · · · , qL} such
that at a certain level 0 ≤ l ≤ L, Cl = {q0, · · · , ql} and Ql is a product of q′

is up to l. In
this section, we use the notation y[i] to select the i-th element from the general L-tuple y.
To denote the selection of the j-th residue polynomial of y[i] we use y[i][j].

• RingRNS.KeyGen(s): The secret s is sampled from a secret key distribution χkey (like
the set HWT (h) of signed binary vectors {0,±1}N with Hamming weight h) such
that the secret key is sk = (1, s). The public key is, pk = (−a · s + e, a) ∈ R2

QL
, and

the evaluation key, where the polynomial a is sampled from a uniform distribution
U over RQL

and the error e from an error distribution χerr, usually chosen to be
discrete Gaussian distribution DG(σ2) with variance σ2 and σ > 0.

• RingRNS.KSGen(s, s′): Given two secret polynomials s and s′ from χkey, sample
the public polynomial a′ from a uniform distribution U over RpQL

where p is
a prime and error polynomial e′ from error distribution χerr. Output the key-
switching key, swk[i] = (swk0[i], swk1[i])0≤i≤L ∈ R2

pQL
where, (swk0[i], swk1[i]) =

(−a′[i] · s[i] + e′[i] + p ·B[i] · s′[i], a′[i]) (mod pQL) such that B[i] = 1 (mod qi) and
B[i] = 0 (mod qj) for all j ̸= i. The key-switching key is used to transform a
ciphertext decryptable under s into a ciphertext decryptable under s′.
At first sight the subroutine RingRNS.KSGen(s, s′) looks very similar to the other
subroutine RingRNS.KeyGen(s). However, there is one major difference: the generated
switching keys are encryptions of some function f(s) = s′ of the secret s itself. This
is referred to as ‘Key Dependent Message Security’ (KDM) or ‘Circular Security’.
It roughly means that a public-key scheme can be used to securely encrypt its own
secret key (self-encryption). The exploration of KDM secure encryption schemes
began with [BHHO08] where the authors proposed a decisional Diffie-Hellman based
scheme that could securely encrypt linear combinations of the secret key. Later, a
number of works [ACPS09, BGK11, BHHI10] showed that this can be extended for
more complex functions involving the secret key as well. [MTY11] took a different
approach by considering the secret key as an element in a ring. [MTY11] defines
KDM security or circular security as follows: for a class of functions F a public-key
encryption scheme is KDM[F ] secure if it is secure even against an adversary who
is given public keys pk1, · · · , pkn and has access to encryption of key dependent
messages, f(sk1, · · · , skn) for adaptively selected functions f ∈ F . RLWE-based HE
schemes have shown to be KDM[F ] secure.

• RingRNS.Encpk(m): It encrypts a message m into a ciphertext ct = (c0, c1) =
v · pk + (m + e0, e1) ∈ R2

QL
, with v sampled from a distribution χenc, such as the

distribution ZO(ρ) with 0 ≤ ρ ≤ 1 which samples each coefficient of the polynomial
from {0,±1}, but with probability ρ/2 for each of −1, +1, and 1− ρ for zero.

• RingRNS.Decsk(ct): It returns an approximation of the message m by decrypting the
ciphertext ct with respect to sk modulo q0, which can be written as, ⟨ct, sk⟩. This
means, m ≈ (c0 + c1 · s) (mod q0). The complete equation and its corresponding
correctness is discussed in the Appendix A.

• RingRNS.KeySwitchswk(ct): For a ciphertext ct = (c0, c1) ∈ R2
Ql

, compute (mod pQl)
the following: ct′′ =

∑l
i=0 c1[i] · swk[i]. Output the ciphertext, ct′ =

(
(c0, 0) +

(RingRNS.ModDown(ct′′)
)
∈ R2

Ql
. The RingRNS.ModDown operation is used to scale

down the coefficient modulus from pQl to Ql. This operation is used to transform a
ciphertext decryptable under s into a ciphertext decryptable under s′ with the help
of the key-switching key.
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• RingRNS.Add(ct, ct′): It adds the polynomial components of the two ciphertexts
ct = (c0, c1) ∈ R2

Ql
and ct′ = (c′

0, c′
1) ∈ R2

Ql
, and computes ctadd = (d0, d1) where

d0 = c0 + c′
0 ∈ R2

Ql
and d1 = c1 + c′

1 ∈ R2
Ql

.

• RingRNS.Mult(ct, ct′): It multiplies two input ciphertexts ct = (c0, c1) ∈ R2
Ql

and
ct′ = (c′

0, c′
1) ∈ R2

Ql
, and computes d0 = c0 ·c′

0 ∈ RQl
, d1 = c0 ·c′

1 +c1 ·c′
0 ∈ RQl

, and
d2 = c1 · c′

1 ∈ RQl
. The output is the non-linear ciphertext d = (d0, d1, d2) ∈ R3

Ql
.

• RingRNS.Relinevk(d): It relinearizes the result of RingRNS.Mult and produces a
ciphertext with two polynomial components so that it is decryptable under the secret
key. Now, with the help of the evaluation key, evk = (evk0, evk1) = KSGen(s, s2)
, one needs to compute ct′′ = (c′′

0 , c′′
1) where c′′

0 =
∑l−1

i=0 d′
2[i] · evk0[i] ∈ RpQl

and
c′′

1 =
∑l−1

i=0 d′
2[i] ·evk1[i] ∈ RpQl

. The final output is the relinearized ciphertext given
by ctrelin = (d0, d1) + (RingRNS.ModDown(c′′

0), RingRNS.ModDown(c′′
1)) (mod Ql). The

RingRNS.ModDown operation is used to reduce the coefficient modulus from pQl to
Ql. We explain the details of the multiplication and relinearization operations in the
Appendix A.

• RingRNS.ModDown(d): For a ciphertext component d ∈ RpQl
, let d′′[i] = d[l + 1]

(mod qj) for 0 ≤ i ≤ l. Then, compute the ‘scaled down’ component d′ = p−1 ·(d−d′′)
(mod qi) ∈ RQl

.

• RingRNS.Rescale(ct): It takes a ciphertext ct = (c0, c1) ∈ R2
Ql

with level l and
produces a ciphertext ct′ = (c′

0, c′
1) at level l − 1. Let, c′′

0 [i] = c0[l] (mod qi) for
0 ≤ i ≤ l − 1. Then, compute c′

0 = c0 − c′′
0 ∈ RQl−1 . Finally, output the rescaled

ciphertext element c′
0 = q−1

l · c′
0 ∈ RQl−1 . Similarly, compute the other rescaled

ciphertext component c′
1 ∈ RQl−1 .

• RingRNS.Rotatertk(ct): The slot rotation operation takes a ciphertext ct = (c0, c1) ∈
R2

Ql
and rotation key rtk and performs an automorphism and a key-switch of the

ciphertext polynomial coefficients. The rotation key is a key-switching key that has
an encryption of the rotated secret key under an automorphism. The ciphertext
obtained after the key-switching procedure is then encrypted under this rotated
secret key.

The ciphertexts and keys are stored in Number Theoretic Transform (NTT) format to
make the sub-routines described above more efficient (polynomial multiplication becomes
O(N log(N))). To provide, an algorithmic overview of this we also describe the Algorithm
1 RingRNS.Add, Algorithm 2 RingRNS.Mult, Algorithm 3 RingRNS.ModDown, and Algorithm
4 RingRNS.Relin.

Algorithm 1 RingRNS.Add [CHK+18b]
In: c = (c̃0, c̃1), c′ = (c̃′

0, c̃′
1) ∈ R2

Ql

Out: d = (d̃0, d̃1) ∈ R2
Ql

1: d̃0 ← c̃0 + c̃′
0

2: d̃1 ← c̃1 + c̃′
1

Algorithm 2 RingRNS.Mult [CHK+18b]
In: ct = (c̃0, c̃1), ct′ = (c̃′

0, c̃′
1) ∈ R2

Ql

Out: d = (d̃0, d̃1, d̃2) ∈ R3
Ql

1: d̃0 ← c̃0 ⋆ c̃′
0, d̃2 ← c̃1 ⋆ c̃′

1
2: d̃1 ← c̃0 ⋆ c̃′

1 + c̃1 ⋆ c̃′
0
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Algorithm 3 RingRNS.ModDown [CHK+18b]
In: d̃ ∈ RpQl

Out: d̃′ ∈ RQl

1: t← INTT(d̃[l])
2: for i = 0 to l − 1 do
3: t̃← NTT(

[
t
]

qi
) ▷ in Zqi

4: d̃′[i]←
[
p−1 · (d̃[i]− t̃)

]
qi

5: end for

Algorithm 4 RingRNS.Relin [CHK+18b]
In: d = (d̃0, d̃1, d̃2) ∈ R3

Ql
, ˜evk0 ∈ Rl

pQl
, ˜evk1 ∈ Rl

pQl

Out: d′ = (d̃′
0, d̃′

1) ∈ R2
Ql

1: for j = 0 to l − 1 do
2: d2[j]← INTT(d̃2[j]) ▷ in Zqj

3: end for
4: for j = 0 to l do ▷ Here ql is used to represent special prime p
5: (c̃′′

0 [j], c̃′′
1 [j])← 0

6: for i = 0 to l − 1 do
7: r̃ ← NTT(

[
d2[i]

]
qj

) ▷ in Zqj

8: c̃′′
0 [j]←

[
c̃′′

0 [j] + ˜evk0[i][j] ⋆ r̃
]

qj
, c̃′′

1 [j]←
[
c̃′′

1 [j] + ˜evk1[i][j] ⋆ r̃
]

qj

9: end for
10: end for
11: d̃′

0 ← d̃0 + RingRNS.ModDown(c̃′′
0), d̃′

1 ← d̃1 + RingRNS.ModDown(c̃′′
1)

2.4 Encoding using complex embeddings
Since we work with an underlying polynomial ring structure, we would also expect messages
to be in the form of polynomials. But more often than not data comes in the form of
vectors of plaintexts. [CKKS17] discusses a method to ‘pack’ multiple messages in one
ciphertext.

Let K be the cyclotomic field such that R ⊆ K. The complex canonical embeddings are
the ring homomorphisms τj : K → C such that for a 2N -th root of unity ξ, τj : ξ 7→ ξj where
j ∈ Z∗

2N . The canonical embedding τ : K → CN can be defined as, τ(z) = (τj(z))j∈Z∗
2N

,
z = (zj)j∈Z∗

2N
where addition and multiplication in CN are component-wise. Since τ−j = τ̄j ,

so there can exist a natural projection π : H → CN/2 where, H = {(zj)j∈Z∗
2N

: z−j =
z̄j , j ∈ Z∗

2N}. The encoding process thus involves transforming a vector z under the inverse
of π and then using the inverse of the canonical embedding with a rounding operation
(usually accompanied with the multiplication of a scaling factor ∆ ≥ 1 to maintain
precision) to finally obtain a polynomial in R. Hence, a plaintext is the polynomial
m(X) = τ−1 ◦ π−1(z) ∈ R. The decoding procedure is simply, z = π ◦ τ(m(X)) ∈ CN/2.

3 Proposed MLWE-HE scheme
This section gives a mathematical description of all the subroutines/algorithms of ModHE.
Unlike the case of RLWE-based HE schemes, the module rank r influences the construction
of ModHE algorithms along with the polynomial degree N of the base polynomial ring R.
The secret and the public components are vectors of polynomials over Rr

q, and operations
between module elements translate into several fundamental low-level operations in Rq.
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As a particular case, when r = 1 the MLWE problem is exactly the RLWE problem. While
the addition and multiplication are ported easily from RLWE to MLWE, the key-switching
operation is not straightforward. The paper describes how to perform the key-switching
in detail. We also introduce a new subroutine in ModHE, called ‘rank-reduction’, which
enables switching between ranks to enhance performance and flexibility. Additionally,
we also present a detailed noise analysis and RNS versions of the all the subroutines of
ModHE. All mathematical expressions are explicit in r and N , and provide necessary
intuition about the differences between RLWE and MLWE based HE schemes.

Let λ be a security parameter that governs the dimension of the underlying ring N ,
the rank of the module r, the maximum level L and the ciphertext modulus ql > 0 for
0 ≤ l ≤ L, and an integer P > 0. For realizing a module lattice-based homomorphic
encryption scheme, we port the RLWE-based CKKS to the MLWE setting with RNS
optimization. We use the prefix Mod to describe its subroutines. Let A ∈ Rr×r

qL
consist

of polynomials a sampled uniformly from U(RqL
), s be the secret whose components are

chosen randomly from r copies of the set HWT (h) of signed binary polynomials {0,±1}N

with Hamming weight h and e be the error each of whose polynomial coefficients is sampled
independently from a discrete Gaussian distribution DG(σ2), σ > 0. We also consider
another distribution ZO(ρ) with 0 ≤ ρ ≤ 1 which samples each entry in the vector also
from {0,±1}N , but with probability ρ/2 for each of −1, +1, and 1 − ρ for zero. Let
any message m ∈ R be encoded under some encoding scheme, like the one described in
section 2.

• Mod.KeyGen(1λ): Generate a secret key sk = (1, s) with each secret polynomial si ←
HWT (h). Sample the random matrix A from U(Rr×r

qL
) and each error polynomial

ei ← DG(σ2) for the error vector e. Generate public key pk = (b, A) = (−A·s+e, A)
(mod qL) ∈ Rr

qL
×Rr×r

qL
.

• Mod.KSGen(s, s′): Given two secrets s and s′, output the key-switching key swk =
(bswk, Aswk) = (−Aswk · s + eswk + P · s′, Aswk) (mod P · qL) ∈ Rr

P qL
×Rr×r

P qL
. Here

Aswk ∈ U(Rr
P qL
×Rr×r

P qL
). Each error polynomial in eswk is sampled from DG(σ2).

• Mod.Encpk(m) : We obtain a ciphertext encrypting a message m, ct = (c0, c1) =
(pk · v + (m + e, e′)) (mod qL) ∈ RqL

×Rr
qL

, v ∈ Rr
qL

where the polynomials vi of
vector v are sampled as vi ← ZO(0.5).

• Mod.Decsk(ct) : We obtain an approximation of the message after decryption under
sk, (c0 + c1 · s) (mod ql) ≈ m.

• Mod.KeySwitchswk(ct): For a ciphertext ct ∈ Rql
× Rr

ql
, output the ciphertext,

ct′ = (c0, 0) + ⌊P −1 · c1 · swk⌉ ∈ Rql
×Rr

ql
.

• Mod.Add(ct, ct′) : Given two ciphertexts ct and ct′ ∈ Rql
×Rr

ql
, their sum is a sum

of their corresponding components.

ctadd = ct + ct′ = (c0 + c′
0, c1 + c′

1) (mod ql) ∈ Rql
×Rr

ql
.

• Mod.Mult(ct, ct′) : For the multiplication operation ′∗′ between two ciphertexts ct
and ct′ ∈ Rql

×Rr
ql

to be homomorphic we would like to have,

m ·m′ ≈ Mod.Dec((c0, c1) ∗ (c′
0, c′

1))
≈ Mod.Dec(c0, c1) ∗ Mod.Dec(c′

0, c′
1)

≈ ((c0 + c1 · s) · (c′
0 + c′

1 · s)) (mod ql)

≈ c0c′
0 + c0

r−1∑
i=0

c′
1isi + c′

0

r−1∑
i=0

c1isi +
r−1∑
i=0

r−1∑
j=0

c1ic
′
1jsisj .
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We write the resultant ciphertext of the multiplication as, ctmult = d = (d0, d1, d2, d3) ∈
Rql
×Rr

ql
×Rr

ql
×Rr(r−1)/2

ql where:

d0 = c0 · c′
0 d1i = c0 · c′

1i + c′
0 · c1i

d2i = c1i · c′
1i d3ij

= c1i · c′
1j + c′

1i · c1j , i < j

with all the above arithmetic done modulo ql. Note that c1 and c′
1 are in Rr

ql
and

the notation c1i refers to the i-th component of c1 for 0 ≤ i ≤ r − 1. The notation
d3ij

refers to the component of d3 that is obtained as a result of multiplications
between the ‘1i’-th component and the ‘1j’-th component of the ciphertexts ct and
ct′.
The ciphertext thus obtained is ‘extended’ in the sense that it now has more compo-
nents than a usual ciphertext. For example, in the case of rank r = 2, the extended
decryption equation would look like,

m ·m′ ≈ (d0 + d1 · s + d2 · s2 + d3 · s0s1) (mod ql). (1)

So just after one multiplication, there is a growth in the number of ciphertext
components from 2 to 4. These changes are not desirable in the design and we
would want to find a way to get ctmult to mimic a usual ciphertext so that it can be
decrypted by the usual secret key components, sk. Like, for eqn. 1 it would mean
that we would want to look for expressions d′

0 and d′
1 such that it can be rewritten

approximately as, d′
0 + d′

1 · s ≈ d0 + d1 · s + d2 · s2 + d3 · s0s1.
The concepts of relinearization and rescaling come in as a method for converting a
degree 2 ciphertext again into a degree 1 ciphertext that can be decrypted under the
secret key sk = (1, s).

• Mod.Relinevk(ctmult) : Let P = P (λ, qL) be an integer that will be used to control
the increase in error after multiplication.
Continuing with our example of r = 2, in order to do away with the non-linear
terms (in s) from eqn. (1) with respect to d2 and d3, we take help of the following
evaluation keys: evkd2 = Mod.KSGen(s, s2) and evkd3 = Mod.KSGen(s, s0s1), where
for a rank of two the polynomials of the public matrix are sampled uniformly from
RP ·qL

.
We can now define the relinearization components as,

d′
0 = (d0 + P −1 · d2 · evkd2 [0] + P −1 · d3 · evkd3 [0]) (mod ql)

d′
1 = (d1 + P −1 · d2 · evkd2 [1] + P −1 · d3 · evkd3 [1]) (mod ql)

where components of d2 and d3 have been assumed to have been lifted (modulus
switch) from residue ring modulo ql to residue ring modulo P · ql as is done in
[CKKS17].
Hence, the central idea here is that by using evaluation keys we adjust the terms
that correspond to secret key components of the form

∑r−1
i=0

∑r−1
j=0 sisj , that is,

relinearization keys are encryptions of these secret key components.
For a general rank r module, these keys have the form, evk = Mod.KSGen(s, s′) where
s′ is a vector of polynomials of the form sisj for 0 ≤ i, j < r and j ≥ i. More
specifically, s′ is s2 in the case of evkd2 and in evkd3 consists of terms sisj for
0 ≤ i, j < r; j > i respectively. So, ctrelin = (d′

0, d′
1) =

(
d0 + P −1(d2 · evkd2 [0] +

d3 · evkd3 [0]), d1 + P −1(d2 · evkd2 [1] + d3 · evkd3 [1])
)

(mod ql) ∈ Rql
×Rr

ql
.

• Mod.Rescale(ct) : Since every message has an inherent scaling factor, say ∆ ≥ 1
to preserve a certain degree of precision, multiplications between ciphertexts also
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result in an exponential increase in the scaling factor size. Therefore, to keep the
scale constant and also to reduce the noise, we can define the rescaling operation of
a ciphertext ct in a level l to a level l − 1 as, ct′ =

⌊
ql−1

ql
· ct

⌉
(mod ql−1).

Additionally, we also mention the two subroutines of CKKS called rotation and con-
jugation. It is intuitive to understand how messages in the same i-th plaintext slot of
a ciphertext could be added or multiplied. However, to operate between messages in
two different plaintext slots, there should be a way to permute data easily across slots of
the ciphertext. In this regard, permutations and rather automorphisms of the associated
algebraic ring can be efficiently used for the process of rotation of slots. Like, for a
polynomial a in a power-of-two cyclotomic ring R replacing it with a(k)(X) = a(Xk)
(mod ϕ2N (X)), k ∈ Z∗

2N , k > 1 would result only in a permutation of the coefficients.
In particular, κk : a(X) → a(Xk) (mod ϕ2N (X)) would serve as the suitable rotation
map. So a ciphertext ct encrypting a message m with respect to a secret key s would
have a ‘rotated’ ciphertext κk(ct) which is a valid encryption of κk(m) with secret key
κk(s). This operation is equivalent to a key-switching technique similar to the ring setting
and requires a switching key swk where s′ takes the form of κk(s) and for brevity, we
denote the corresponding public matrix by Arot. Notice that one of the generating sets
of the group of units Z∗

2N is {5,−1} as the integer 5 has order N/2 in Z∗
2N (by Euler’s

Totient Theorem, we at least have, 5N ≡ 1 (mod 2N) and order of the element 5 must also
divide the order of the group so order of 5 is an integer less than or equal to N . Observe
that for a power-of-two integer N , 5N/2 ≡ 1 (mod 2N) by induction, but no integer less
than N/2 would satisfy the congruence). If k = 5i−j (mod 2N) for 0 ≤ i, j < N/2, then
m(ξ5i−j

j ) = m(ξi), which resembles a permutation of the plaintext slots.

• Mod.Rotatertk(ct) : The associated rotation key is given by the key-switching key
generation subroutine by, rtk = Mod.KSGen(s, κk(s)). The rotated ciphertext is
ct′ = (c0, 0) + (P −1 · c1 · rtk) (mod ql) ∈ Rql

×Rr
ql

.

• Mod.Conjugatecjk(ct) : Another property to note here is that for 2N -th primitive
roots of unity ξj , we know ξ̄j = ξ−1

j . Then for a polynomial a in R, a(ξj) =
a(ξ̄j) = a(ξ−1

j ). Considering k = −1 for the mapping κk, the ciphertext c̄t can
be seen as the encryption of the conjugate z̄ of a vector z. The conjugate key is a
switch-key with s′ as κ−1(s) and can be written as, cjk = Mod.KSGen(s, κ−1(s)) and
c̄t = (c0, 0) + (P −1 · c1 · cjk) (mod ql) ∈ Rql

×Rr
ql

.

In the end, we include a new subroutine which we refer to as ‘rank-reduction’ that
also works similar to the key-switching operation. In leveled homomorphic encryption the
ciphertext modulus diminishes as more and more levels get consumed (see the rescaling
operation). For a smaller ciphertext modulus, the rank of the lattice could be reduced to
an appropriate r′ from r (where r′ < r) without lowering the security of the homomorphic
encryption scheme. An example is used to explain the above fact. Let, the initial ciphertext
modulus size be log2 (qL) = 220 and the rank be r = 2 for 128-bit security. Let, after
several homomorphic multiplications the ciphertext modulus size reduces to log2 (ql) = 110.
With the current modulus size and rank r = 2 the lattice instance would be almost 256-bit
secure. The proposed rank reduction procedure could be used to obtain an equivalent
ciphertext at a lower rank e.g., r = 1 while achieving around 128-bit security. Reducing the
rank significantly improves the speed and memory requirement. We discuss its usefulness
in section 4.

More formally, the rank reduction procedure takes an MLWE rank-r ciphertext
(c0, c1) ∈ Rql

× Rr
ql

which is decryptable under the secret s = (s0, · · · sr−1) ∈ Rr. It
produces an equivalent ciphertext (c′

0, c′
1) ∈ Rql

× Rr′

ql
of a lower rank r′ < r which is

decryptable under the secret s′ = (s′
0, · · · s′

r′−1) ∈ Rr′ . Let s′′ = {sr′ , · · · , sr−1} ∈ Rr−r′ .
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• Mod.RedKeySwitch(s′, s′′): Generate the public matrix Ared ∈ R(r−r′)×r′

P ql
by sam-

pling its polynomials from U(RP ql
). Generate ered ∈ Rr−r′ by sampling its error

polynomials from DG(σ2). Compute the rank reduction key, redk = (bred, Ared) =
(−Ared · s′ + ered + P · s′′, Ared) (mod P · ql) ∈ Rr−r′

P ql
×R(r−r′)×r′

P ql
.

In line with circular security as mentioned in section 2.3, we adopt the notion
of ‘extended circular security’ where some components of the secret are securely
encrypted under the remaining secret components.

• Mod.Rankredredk(ct) : For a ciphertext ct ∈ Rql
×Rr

ql
, the components of the rank-

reduced ciphertext ct′ = (c′
0, c′

1) ∈ Rql
× Rr′

ql
are then given by

(
c′

0 = c0 + P −1 ·
crem · redk[0]

)
(mod ql) and,

(
c′

1 = cred + P −1 · crem · redk[1]
)

(mod ql), where,
cred = (c1k)0≤k<r′ and crem = (c1j)r′≤j<r, are respectively the ‘reduced’ and the
‘removed’ components of c1.

We note here that for r ≥ 3 many successive rank reductions from r → (r− 1) can lead
to linear combinations between secret components but with respect to different ciphertext
moduli. Thorough analysis remains to be performed to understand whether or not such
combinations could be exploited by new cryptanalysis. However, as a simple solution, one
could always perform rank reduction securely from r → r/2.

3.1 Noise estimations
Note that in a ring setting, the error bound grows in proportion to the size of the ring.
Instead, in a module setting, the size of the ring remains fixed and the change in the error
bound follows the rank of the module. For a similar security level, the lattice dimension
N · r of an MLWE instance with the rank r and ring dimension N will be roughly equal
to the ring dimension N ′ = N · r of the RLWE instance but with N fixed. Therefore the
error growth in an MLWE instance with lattice dimension N · r will depend on r along
with a smaller N .

We discuss the following error estimations along the lines of [CKKS17], [CHK+18b], and
[CS16]. First, we mention a few facts about the various distributions that the polynomials
have been sampled from: Let all sampled coefficients be independent and identically
distributed, and let σ2 be the variance of each such coefficient. Then, a polynomial
sampled from a uniform distribution U over Rq has a variance of q2N/12, a polynomial
sampled from the discrete Gaussian distribution DG(σ2) of mean centered around zero has
variance σ2N and a polynomial sampled from ZO(ρ) has variance ρN . For a distribution
HWT (h) over signed binary integers {0,±1} the variance is just its Hamming weight,
h. In the case of a multiplication of two independent random variables sampled from
Gaussian distributions with variances σ2

1 and σ2
2 , the high-probability bound is set to

16σ1σ2. As a consequence of the law of large numbers, the high-probability bound on the
(ring) canonical embedding norm is taken to be 6σ.

Lemma 1. The error induced during encryption is bounded by Benc = 16rσ(N/
√

2 +√
hN) + 6σ

√
N .

Proof. Consider the decryption equation of a ciphertext ct encrypting a message m.

c0 + c1 · s = ((pk[0] · v + m + e) + (pk[1] · v + e′) · s) (mod ql)
= (m + epk · v + e + e′ · s) (mod ql)

= (m +
r−1∑
i=0

eipk
· vi + e +

r−1∑
i=0

e′
i · si) (mod ql)
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Let, E = (
∑r−1

i=0 eipk
· vi + e +

∑r−1
i=0 e′

i · si). The upper bound can then be established
with the following inequality:

∥E∥can
∞ ≤ r · 16 · σ ·N√

2
+ 6σ

√
N + r · 16σ

√
hN

≤ 16rσ(N/
√

2 +
√

hN) + 6σ
√

N

If z ∈ CN/2 and ∆ is the scaling factor being used, an encryption of the encoded message
m is also an encryption of ∆ · τ−1 ◦ π−1(z) which would have an error upper bound equal
to Benc + N/2 = B′ (say). Then for the equality, π(τ(⌊∆−1(m + B′)⌉)) = π(τ(⌊∆−1(m)⌉))
to hold we need to have ∆−1B′ < 1/2. Thus, if ∆ > N + 2Benc, the decoded message
(after decryption) will correctly return z.

Lemma 2. The error bound after one addition is the sum of the error bounds corresponding
to the individual ciphertexts.

Lemma 3. The error induced in the rescaling step is bounded by Bres = 6
√

N/12 + r ·
16

√
hN/12.

Proof. The error induced during rescaling is because of the fact that we try to approximate
a ciphertext ct with ct′ using ql−1

ql
ct. Thus an error bound Eres can be found on the

error vector using the expression,

ct′ − ql−1

ql
ct (mod ql−1) = (ϵ0, ϵ1).

Assuming that each coefficient of the polynomials in the error vector has an approximate
variance of 1/12, we write the error bound during the decryption of this vector by the
following inequality:

((ϵ0, ϵ1), s) = (ϵ0 +
r−1∑
i=0

ϵ1i · si)

≤ ∥ϵ0∥can
∞ +

r−1∑
i=0
∥ϵ1i · si∥can

∞

≤ 6
√

N/12 + r · 16
√

hN/12.

Lemma 4. The cumulative error bound after a homomorphic multiplication is the sum
of the bounds of Bres + Bmult + Brelin where Bmult and Brelin are the upper bounds of
errors induced during the actual multiplication steps and relinearization respectively.

Proof. Homomorphic multiplication involves a series of operations, starting with actual
multiplications, relinearization, and rescaling. Each of these steps contributes to the error
growth. First, note that the multiplication m ·m′ is approximated by (co +c1 ·s)(c′

o +c′
1 ·s)

(mod ql) with respect to the two ciphertexts ct and ct′. Let ⟨ct, s⟩ = m + E (mod ql)
and ⟨ct′, s⟩ = m′ + E′ (mod ql) such that ∥E∥can

∞ and ∥E′∥can
∞ have error bounds B and

B′ respectively, then we may write the error expression corresponding to multiplication as:

(m + E)(m′ + E′) (mod ql) = (mm′ + mE′ + m′E + EE′) (mod ql)
∥Emult∥can

∞ ≤ ∥mE′ + m′E + EE′∥can
∞

≤ µB′ + µ′B + BB′
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where, µ and µ′ are respectively the upper bounds of the message space of m and m′. Next,
some error is also induced during relinearization when d2 and d3 are multiplied with their
respective evaluation keys. More precisely we can write the error during relinearization
with the following inequality:

Erelin = P −1 · ((d2 · ed2 + d3 · ed3) (mod P · ql))

∥Erelin∥can
∞ ≤ P −1 · r(r + 1)/2 · 16

√
Nq2

l

12 σ
√

N

Lemma 5. The error induced in the rank-reduction step is bounded by Bred + Bres where,
Bred = P −1 · (r − r′) · 16

√
Nq2

l

12 σ
√

N .

Proof. The error induced due to this process comes from the terms of the form
∑r−1

j=r′ c1j ·ej

and one rescaling. If Bred denotes the upper bound of the error induced just during the
key-switching phase, ∥Ered∥∞ and Bres is the upper bound of the error introduced during
rescaling then the total error bound would be Bred + Bres where we have the following
expression bound for ∥Ered∥∞:

∥Ered∥∞ ≤ P −1 · (r − r′) · 16
√

Nq2
l

12 σ
√

N

3.2 RNS representation for ease of implementation: ModRNS
In section 2.3, we described how the RNS representation can improve the efficiency of HE
operations. A natural extension would be also to define an RNS variant of Mod. We can
define the module isomorphism between Rr

Q and the module
∏k−1

i=0 Rr
qi

which is the direct
product of the modules Rr

qi
, i ∈ {0, · · · , k − 1} such that,

a = (at)r−1
t=0 7→ ([a0]C , [a1]C , · · · , [ar−1]C) = [a]C

and [at]C = (a(0)
t , a

(1)
t , · · · , a

(k−1)
t ) ∈

∏k−1
i=0 Rqi

. For simplicity, we will use either the
notation a(j) or A(j) as per context to specify that each component of the module element
has its corresponding j residue polynomials. The RNS variants of all Mod algorithms
follow. We denote them by ModRNS. We use the representation

∏l
j=0Rr

qj
= Rr

Ql
in the

subroutines below as well as in their pseudo-codes (Algorithms 5, 6, 7, 8, 9, 10).

• ModRNS.Setup(q, L, η; 1λ): For security parameter λ we choose an integer q which
determines the approximate basis, maximum levels L as before, a bit precision η,
ensuring qj/q ∈ (1 − 2−η, 1 + 2−η) for 1 ≤ j ≤ L. We choose a prime p and the
basis C = {q0, · · · , qL} such that at a certain level 0 ≤ l ≤ L, Cl = {q0, · · · , ql}.
For simplicity of equation and notations, we also refer to p as ql+1. Let q̂(j) =
Q/qj , q̂′(j) = (q̂−1)(j) (mod qj) such that, B(j) = q̂′(j)

· qj .

• ModRNS.KeyGen(1λ): Generate a secret key sk = (1, s) where s consists of polynomials
si ← HWT (h). For the public matrix A ∈ U(

∏L
j=0Rr×r

qj
) comprising of residue

polynomials a ∈
∏L

j=0Rqj
, sample each a = [a]C’s such that the residues are in U

over
∏L

j=0Rqj . Generate public key pk =
(
pk(j) = (b(j) = −A(j) · s + e, A(j)) ∈

Rr
qj
×Rr×r

qj

)
0≤j≤L

.
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• ModRNS.KSGen(s, s′) : Given two secrets s and s′, output the key-switching key swk =
(swk(j,i) = b(j,i)

swk , A(j,i)
swk )0≤j<L,0≤i≤L such that, b(j,i)

swk =
(
−A(j,i)

swk · s + eswk + p ·B(j) ·
s′) ∈ Rr

qi
for A(j,i)

swk uniformly random in Rr×r
qi

.

• ModRNS.Encpk(m) : We obtain a ciphertext, ct = (ct(j))0≤j≤L such that each ct(j) =
(pk(j) · v + (m + e, e′)) (mod qj) ∈ Rqj

×Rr
qj

for 0 ≤ j ≤ L.

• ModRNS.Decsk(ct) : For a ciphertext ct = (ct(j))0≤j≤l retrieve an approximation of
the message m under the secret key sk , ⟨ct(0), sk⟩ (mod q0) ≈ m.

• ModRNS.KeySwitchswk(ct): For a ciphertext ct = (ct(j))0≤j≤l, output the cipher-
text, ct′ = (ct′(j))0≤j≤l such that each of its residue component is given by,
ct′(j) =

(
(c(j)

0 , 0) + (RingRNS.ModDown(c′
1

(j))
)

(mod qj) ∈ Rqj
×Rr

qj
, where, c′

1
(j) =∑l+1

i=0(c1
(j) · (swk(j,i)[0], swk(j,i)[1])(modqi)) ∈ RpQl

×Rr
pQl

.

• ModRNS.Add(ct, ct′) : Given two ciphertexts ct = (ct(j))0≤j≤l and ct′ = (ct′(j))0≤j≤l

both in
∏l

j=0Rr+1
qj

at some arbitrary level l, their sum is given by, ctadd =
(ctadd

(j))0≤j≤l ∈
∏l

j=0Rr+1
qj

where ctadd
(j) = ct(j) + ct′(j) (mod qj), 0 ≤ j ≤ l

following the algorithm Mod.Add.

• ModRNS.Mult(ct, ct′) : For ciphertexts ct =
(
ct(j) = c

(j)
0 , c1

(j))
0≤j≤l

and ct′ =(
ct′(j) = c′

0
(j)

, c′
1

(j))
0≤j≤l

both in
∏l

j=0Rr+1
qj

, we write each residue of the result
ctmult = d of Mod.Mult in the RNS form as (d(j) = d

(j)
0 , d1

(j), d2
(j), d3

(j) ∈ Rqj ×
Rr

qj
×Rr

qj
×Rr(r−1)/2

qj ),

d
(j)
0 = c

(j)
0 · c′

0
(j)

d
(j)
1t = c

(j)
0 · c′

1t
(j) + c′

0
(j) · c(j)

1t

d
(j)
2t = c

(j)
1t · c′

1t
(j)

d
(j)
3tt′ = c

(j)
1t · c′

1t′
(j) + c′

1t
(j) · c1t′

(j), t < t′, 0 ≤ t, t′ < r

with all arithmetic done (mod qj), for 0 ≤ j ≤ l. For each j-th residue component
of d3, the notation d

(j)
3tt′ refers to the component that is obtained as a result of

multiplications between the ‘1t’-th component and the ‘1t′’-th component of the
ciphertexts ct and ct′ with respect to each j-th residue.

• ModRNS.Relinevk(ctmult) : We need to relinearize the module components (d2
(j))0≤j≤l

and (d3
(j))0≤j≤l. The evaluation keys are given by, evkd2 = ModRNS.KSGen(s, s2) and

evkd3 = ModRNS.KSGen(s, s′) where s′ = (sisj)0≤i,j<r;j>1. As in RingRNS.Relin and
in Mod.Relin we perform an equivalent of the ‘modulus up’ operation of each d2

(j)

and d3
(j) intrinsically using a prime p. Also, recall from Mod.Relin that the evalua-

tion key, evk is in the modulo domain of P ·qL. In RNS representation we denote each
of its residues is given by evk(j,i) = (b(j,i)

evk , A(j,i)
evk ) ∈ Rr

qi
×Rr×r

qi
for 0 ≤ j ≤ L and

0 ≤ i ≤ L. Let, (d′′
0)(j) =

∑l+1
i=0

(
d2

(j) · evkd2
(j,i)[0] + d3

(j) · evkd3
(j,i)[0]

)
(mod qi) ∈

RpQl
and (d1

′′)(j) =
∑l+1

i=0
(
d2

(j) · evkd2
(j,i)[1] + d3

(j) · evkd3
(j,i)[1]

)
∈ Rr

pQl
. The

relinearized ciphertext is then ctrelin such that each of its residue shares is given by,(
ctrelin

(j) = (d′
0

(j)
, d′

1
(j))

)
0≤j≤l

such that d′
0

(j) = (d(j)
0 +RingRNS.ModDown

(
(d′′

0)(j)))
(mod qj) ∈ Rqj

and d′
1

(j) = (d1
(j) + RingRNS.ModDown

(
(d1

′′)(j))) (mod qj) ∈ Rr
qj

for 0 ≤ j ≤ l.

• ModRNS.Rescale(ct): A ciphertext ct = (ct(j))0≤j≤l ∈
∏l

j=0Rqj ×
∏l

j=0Rr
qj

is
changed into a ciphertext ct′ = (ct′(j))0≤j≤(l−1) =

(
q−1

l ·(c
(j)
0 −c

(l)
0 ), q−1

l ·(c1
(j)−c1

(l))
(mod qj)

)
0≤j≤(l−1) ∈

∏l−1
j=0Rqj ×

∏l−1
j=0Rr

qj
.
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Lastly, we also provide the RNS version of our proposed rank-reduction technique.

• ModRNS.RedKeySwitch(s′, s′′): In RNS representation we denote the residues of
the reduction key for each 0 ≤ j < l and 0 ≤ i′ ≤ l b,y redk(j,i′) = (b(j,i′)

red =
−A(j,i′)

red · s′ + ered + s′′, A(j,i′)
red ) ∈ Ri

qi′ ×Ri×r′

qi′ .

• ModRNS.Rankredredk(ct): The residues corresponding to the rank-reduced ciphertext
are written as, (ct′(j) = (c′

0
(j)

, c′
1

(j)))0≤j≤l such that the j-th residue is given by,
(c′

0
(j)

, c′
1

(j)) =
(
(c(j)

0 , c(j)
red) + RingRNS.ModDown(c′′(j))

)
(mod qj) ∈ Rqj

×Rr′

qj
, such

that c′′(j) =
∑l

i′=0(c(j)
rem · (redk(j,i′)[0], redk(j,i′)[1]) (mod qj) ∈ RpQl

×Rr′

pQl
.

Algorithm 5 ModRNS.Add Algorithm
In: ct = (c̃0, c̃1), ct′ = (c̃′

0, c̃′
1) ∈ Rr+1

Ql

Out: d = (d̃0, d̃1) ∈ Rr+1
Ql

1: d̃0 ← c̃0 + c̃′
0

2: for i = 0 to r − 1 do
3: d̃1[i]← c̃1[i] + c̃′

1[i]
4: end for

Algorithm 6 ModRNS.Mult Algorithm
In: ct = (c̃0, c̃1), ct′ = (c̃′

0, c̃′
1) ∈ Rr+1

Ql

Out: d = (d̃0, d̃1, d̃2, d̃3) ∈ RQl
×Rr

Ql
×Rr

Ql
×R

r(r−1)/2
Ql

1: d̃0 ← c̃0 ⋆ c̃′
0

2: for i = 0 to r − 1 do
3: d̃1[i]← c̃0[i] ⋆ c̃′

1[i] + c̃1[i] ⋆ c̃′
0[i]

4: d̃2[i]← c̃1[i] ⋆ c̃′
1[i]

5: for j = 1 to r − 1 do
6: if i < j then
7: d̃3[i, j]← c̃1[i] ⋆ c̃′

1[j] + c̃1[j] ⋆ c̃′
1[i]

8: end if
9: end for

10: end for

Algorithm 7 ModRNS.SubRelin Algorithm
In: d́ ∈ Rr

Ql

In: ˜evk0 ∈ Rr·L
pQL

, ˜evk1 ∈ Rr·r·L
pQL

Out: d = (d́0, d́1) ∈ Rr+1
QL

1: for k = 0 to r − 1 do
2: for j = 0 to l + 1 do ▷ Here ql+1 is used to represent special prime p
3: for i = 0 to l do
4: ũ← NTT(INTT(

[
d́[i][k]

]
)qj

) ▷ in Zqj

5: d́0 ← d́0 + ˜evk0[i][j][k] ⋆ ũqj

6: d́1[j, k]←
∑r−1

t=0 ˜evk1[i][j][k][t] ⋆ ũqj

7: end for
8: end for
9: end for
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Algorithm 8 ModRNS.Relin Algorithm
In: d = (d̃0, d̃1, d̃2, d̃3) ∈ RQl

×Rr
Ql
×Rr

Ql
×R

r(r−1)/2
Ql

In: ˜evk0 ∈ R
(r·(r+1)·L)/2
pQL

, ˜evk1 ∈ R
(r·r·(r+1)·L)/2
pQL

Out: d′ = (d̃′
0, d̃

′
1) ∈ Rr+1

Ql

1: t0, t1 ← 0 ▷ (t0, t1) ∈ R
((r+1)·l)/2
pQl

×R
(r·(r+1)·l)/2
pQl

2: (t0[0], t1[0])← ModRNS.SubRelin(d̃2, ˜evk0[0], ˜evk1[1])
3: for j = 1 to (r + 1)/2 do
4: (t0[j], t1[j])← ModRNS.SubRelin(d̃3[j − 1], ˜evk0[j], ˜evk1[j])
5: end for
6: d̃

′
0 ←

∑(r+1)/2
j=0 t0[j] + RingRNS.ModDown(c̃′′

0), d̃
′
1 ←

∑(r+1)/2
j=0 t1[j] +

RingRNS.ModDown(c̃′′
1)

Algorithm 9 ModRNS.RedKeySwitch Algorithm
In: ć ∈ Ri

Ql

In: ˜redk0 ∈ Ri·l
pQl

, ˜redk1 ∈ Ri·r′·l
pQl

▷ r′ = r − i

Out: (ć0, ć1) ∈ RQl
×Rr′

Ql

1: for k = r′ + 1 to r do
2: for j = 0 to l + 1 do ▷ Here ql+1 is used to represent special prime p
3: for m = 0 to l do
4: ũ← NTT(INTT(

[
ć[m][k]

]
)qj

) ▷ in Zqj

5: ć0 ← ć0 + ˜redk0[m][j][k] ⋆ ũqj

6: ć1[j, k]←
∑r′−1

t=0 ˜redk1[m][j][k][t] ⋆ ũqj

7: end for
8: end for
9: end for

4 Potentials and limitations of MLWE-based homomorphic
encryption

We devote this section to identify the potentials of an MLWE-based homomorphic encryp-
tion scheme as well as discuss the possible drawbacks that would need further attention
from the community. We discuss enhanced security, hardware reusability, increased oppor-
tunities for parallel computation and the flexibility to change module rank in the list of
potentials. On the other hand, constrained message packing ability and reduced efficiency
pose a challenge to the scheme.

4.1 Better security assumptions

While RLWE is known to be hard over restrictions of special classes of ideal lattices, the
LWE problem is considered to be as hard as worst-case problems on Euclidean lattices
[AD17]. MLWE acts as a bridge between the LWE and RLWE problems. In fact, the
hardness of MLWE can be considered equivalent to natural hard problems of lattices and
most attacks need to view this problem in terms of the LWE problem (by replacing the ring
Rq by Zq). Although the MLWE problem is defined over polynomial rings, MLWE would
still remain secure under an attack exploiting RLWE. As a result, MLWE can provide a
better guarantee of security. The MLWE problem has also been proposed as an alternative
to protect against attacks that target the structural characteristics of RLWE [CDW17].
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Algorithm 10 ModRNS.RankRed Algorithm
In: ct = (c̃0, c̃1) ∈ RQl

×Rr
Ql

In: ˜redk0 ∈ R
(i·l)
pQl

, ˜redk1 ∈ R
(i·r′·l)
pQl

, c̃rem ∈ Ri
Ql

▷ r′ = r − i

Out: ct′ = (c̃′
0, c̃′

1) ∈ RQl
×Rr′

Ql

1: t0, t1 ← 0 ▷ (t0, t1) ∈ Rl
pQl
×R

(r′·l)
pQl

2: for j = 1 to r′ do
3: (t0, t1[j])← ModRNS.RedKeySwitch(c̃rem[j], ˜Evk0[j], ˜Evk1[j])
4: end for
5: c̃′

0c0 + RingRNS.ModDown(t̃0), c̃′
1 ←

∑(r′−1)
j=0

(
c̃1[j] + RingRNS.ModDown(t̃1[j])

)

4.2 Hardware-reusability
RLWE-based homomorphic encryption schemes set their ring dimensions based on the
desired level of security and the multiplicative depth. For example, CKKS [CKKS17] sets
the degree of polynomial to 214 or 215 for the multiplicative depths 6 and 10 respectively.
Note that, an increase in the multiplicative depth increases the ciphertext modulus size
which results in diminished security. To compensate for the security loss, the dimension of
the lattice is increased by increasing the polynomial degree. The polynomial size changes
by a factor of two for different multiplicative depths when cyclotomic rings are used.

Such variations in the polynomial degree in the RLWE-based homomorphic encryption
scheme make hardware implementation of a parameter-flexible architecture challenging.
Furthermore, when the polynomial degree is 213 or larger, implementation of the large
accelerator circuit in hardware becomes very challenging due to low resource utilization,
placement, routing, slow clock frequency, and limited on-chip memory, as discussed
in [RLPD20, MAK+23].

MLWE-based homomorphic encryption scheme avoids these problems due to its modular
nature. This is explained as follows. When working with modules, we can choose a base
ring of some suitable (and small) dimension, say N = 2k, and then we can adjust the rank
r of the module as per our requirements. This is a good way to restrain the degree of the
polynomial from increasing every time we want more depth.

4.3 Increased scope for parallel computations
The proposed MLWE-based homomorphic encryption scheme adds an additional level of
abstraction with respect to RLWE-based schemes. A module element is a vector of several
small ring components, and these small ring components could be processed in parallel.
This additional and high-level parallelism could be exploited in the cloud where many
accelerator platforms are generally available. Let us consider the relinearization operation
of our ModRNS construction where (d2, d3) ∈ Rr

Ql
×R

r(r−1)/2
Ql

components of the extended
ciphertext are linearized (section 3). The relinearization boils down to relinearization of
the polynomial ring elements of d2 and d3. As there are no data dependencies between
them, the polynomial ring elements could be processed in parallel. As an example, Fig. 1
describes relinearization when rank r = 2. Here, d2 has two ring elements, and d3 has only
one ring element. All of these ring elements are data and computation-independent of each
other throughout the relinearization until the very end when accumulation is performed.
Thus, in a multi-accelerator setting (which is common in clouds), dedicated accelerators
can be used to process the three ring elements independently in parallel (Fig. 1). We
observe that until the very end of the multiplication and key-switching, no accelerator-
to-accelerator data exchanges are required. This is particularly advantageous as frequent
inter-accelerator data exchanges (which happens when there are data dependencies) are
problematic for parallel processing. The same applies to multi-threaded or multi-processor
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Figure 1: An operation schedule of the relinearization step demonstrating massive paral-
lelism and limited communication for module-dimension r = 2

software systems.

4.4 Ciphertext compression due to module rank reduction
Module-based homomorphic encryption scheme offers additional flexibility in determining
the dimension of the lattice problem to work with. This also let us adapt the module rank
depending on the size of the ciphertext modulus. In a leveled homomorphic encryption
scheme, the ciphertext modulus is initially the largest and then it gradually reduces with
the multiplicative depth. Therefore, we may scale down the lattice problem from the initial
dimension N · r to a smaller N · r′ where r > r′ while keeping the security of the scheme
in place. Smaller ciphertexts would also mean a reduced decryption complexity, lower
computation overhead, and smaller key size.

The procedure for rank-reduction was described in section 3. Although the procedure
is a form of key-switching, it is computationally cheaper than a full rank key-switching
(e.g., relinearization or rotation).

Rank reduction could be advantageous in applications where the majority of homomor-
phic calculations are performed on ciphertexts of low depths, and fewer calculations are
performed on ciphertexts of high depths. We give an example of Hybrid Homomorphic
Encryption (HHE) [DGH+21]. In HHE the client encrypts her data using a symmetric
cipher before sending them to the cloud. HHE saves the communication bandwidth
significantly compared to the case where the data is encrypted using a homomorphic
encryption scheme. The client also sends a homomorphic encryption of her symmetric key
to the cloud. The cloud then evaluates the decryption operation of the symmetric cipher
homomorphically to obtain homomorphic encryption of user’s data. After that, the cloud
is able to evaluate any useful analytical or statistical function on the user’s data. A typical
scenario in HHE is that the server requires larger parameter sets that can support greater
multiplicative depth so as to be able to perform the homomorphic decryption and still
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be left with enough multiplicative depth to carry out the actual computations. In such a
case, ModHE endowed with the rank reduction feature can be well-suited. This can be
explained in a better way. Let, the symmetric decryption requires Ldec multiplicative levels
and the homomorphic analytical or statistical function evaluation requires Leval levels,
then the parameter set of the HHE must be chosen to support a total of L ≥ Ldec + Leval

multiplicative levels. With ModHE, the cloud fixes a ring degree N and chooses a module
rank r suitable for Ldec + Leval. The cloud uses Ldec for the symmetric decryption and
then performs a rank reduction sufficient for Leval. For the special case Ldec ≈ Leval, the
cloud can choose a rank r = 2, hence perform dec in module lattice and eval in ring lattice
(r = 1).

4.5 Reduced message packing
As previously mentioned, the packing of plaintext messages does not increase with an
increase in the module rank so ModRNS can encode a plaintext of size N · log(qi)/2 bits as
opposed to N ′ · log(qi)/2 bits in RNS-CKKS where, N ′ = N · r. By construction, fixing
N also fixes the degree of the first polynomial component c0 in the ModRNS ciphertext.
This implies that the degree of the message polynomial m that encodes the N/2 complex
numbers also gets set to N since it resides in the c0 component. This degree does not
increase with an increase in the rank of the module and hence, the amount of plaintext a
ModRNS ciphertext can encode decreases linearly in r, when compared to RingRNS. ModRNS
trades flexibility of message packing with flexibility of adjusting the module rank in
accordance with security parameters. Indeed, the effect of this constraint would be less
palpable in applications that have sparsely packed messages but still require larger security
parameters.

4.6 Increased memory consumption and reduced performance
Another limitation of using ModRNS is that the number of (small) ring-level operations as
well as the number of polynomials in the keys increases quadratically with the module
dimension r. More generally, with the module rank r, there will be O(r2) non-linear
components of polynomial degree N to relinearize after a polynomial multiplication. In
contrast, in the RingRNS case, only one non-linear component of polynomial degree N · r
must be relinearized.

Understandably, the expansion rate of the MLWE ciphertext is (r + 1)/2 as the size of
the ModRNS ciphertext is L ·N · (r + 1) · log(qi) bits, while the size of the RLWE ciphertext
is 2L ·N ′ · log(qi) bits where N ′ = N · r. The proposed MLWE-based scheme performs
more polynomial operations than the corresponding RLWE-based scheme for the same
parameter set. Although the number of polynomials is higher in ModRNS than in RingRNS,
the polynomials in ModRNS are smaller by r times than those in RingRNS. Therefore,
choosing a too-small ring size and a very large module rank will not be an ideal design
decision for a homomorphic encryption scheme.

Next, to understand how the rank r of the module affects the total number of keys,
we recall that for the secret vector s = {s0, · · · , sr−1}, we require relinearization keys
containing the product of every two of its components, that is,

∑r−1
i,j=0 sisj but with terms

of the form sisj and sjsi for a pair of (i, j) absorbed into the same relinearization key.
Thus the total number of keys would be r(r+1)

2 relinearization keys with respect to each
distinct quadratic secret component along with the usual r decryption keys. The size
of relinearization keys in ModRNS is equal to r · (r + 1)2 · L · (L + 1) · N · log(qi)/2 bits
when compared to 2 · L · (L + 1) · N ′ · log(qi) bits in the RLWE setting. Similarly, the
rank-reduction keys of ModRNS have a size of (r′ + 1) · L′ · (L′ + 1) ·N · log qi for all r′ < r
and L′ < L.
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As stated earlier in the text, the structured variants of LWE over polynomials rings
(RLWE) provide advantages in terms of efficiency in speed and keys as well as ciphertext
sizes. However, the additional structure makes them susceptible to attacks. On the
other hand, LWE benefits from lack of structure but suffers from substantially decreased
efficiency. MLWE interpolates between the LWE and RLWE problems [SAB+21]. For
similar parameters, MLWE would have a reduced structure compared to its RLWE
counterpart (benefiting security) but reduced performance, which we experience in our
construction as well.

4.7 Higher precision loss due to increased error
Due to increased computations for relinearization and rank reduction, the error also
increases in ModRNS as discussed in section 3.1. For RingRNS, no rank reduction exists
so there is no possibility for comparison. In case of the relinearization step, the number
of non-linearized components in ModRNS is directly proportional to the module rank r
in contrast with RingRNS in which it is always one. As mentioned in section 3.1 the
error can be quantified with a factor of r · (r + 1)/2 in ModRNS. Thus, we also report
an increased precision loss with respect to RingRNS at least by r · (r + 1)/2×. This is a
trade-off that needs to be performed based on the demands of the specific application.
Applications requiring higher precision can choose a bigger word size at the expense of
some multiplicative depth L.

5 Hardware architecture for ModRNS and its evaluation
In this paper, along with a Sage implementation, we define a proof-of-concept instruction-
set hardware architecture for the proposed ModRNS scheme.The architecture is coded
using Verilog RTL and implemented using the Xilinx Vivado tool (up to placement and
routing) for the Xilinx Alveo U280 accelerator card. While area results of the architecture
are obtained from Vivado, computation times for high-level homomorphic evaluation
procedures and applications are estimated from the number of instructions.

We do not develop a full-stack prototype of the hardware accelerator as we believe
the proposed MLWE-based homomorphic encryption scheme is in its early stages of
development. Building a prototype of a homomorphic accelerator requires many months
(or years) of rigorous engineering. Hence, it would be more practical to create an accelerator
prototype once MLWE-based homomorphic encryption is further improved. The majority
of published hardware acceleration studies for homomorphic encryption report simulation
results rather than prototypes.

5.1 Hardware architecture
Intuitively, the proposed MLWE-based homomorphic encryption scheme ModRNS adds
an additional layer of abstraction with respect to the RLWE-based RingRNS scheme: a
module element is a collection of ring elements. Hence, RLWE-based and MLWE-based
homomorphic encryption schemes share very similar homomorphic routines and arithmetic
operations. For example, the relinearization operation of RingRNS (Algorithm 4) is very
similar to the relinearization subroutine of ModRNS (Algorithm 7). Both operations include
NTT/INTT and multiplication with evaluation keys. The ModRNS performs the ring-
relinearization subroutine several times to perform the module-relinearization operation
as shown in Algorithm 8. Thus, a hardware architecture designed for an RLWE-based
homomorphic encryption scheme can be re-used for an MLWE-based scheme with very few
changes. For example, any accelerator architecture for the RingRNS scheme can be adapted
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to accelerate the homomorphic operations of the ModRNS. To that end, we followed the de-
sign approach of an existing instruction-based accelerator architecture, Medha [MAK+23],
and showcase how with minimal changes it can efficiently support the ModRNS scheme.
Then, we used this implementation to analyze the performance of ModRNS on hardware.

Target parameter set and platform: As a proof of concept, we selected polynomial
degree N as 214, module dimension r as 2, and the number of small RNS primes as 15
where prime sizes are 54-bit and 60-bit. With the chosen parameters (N = 214, r =
2, log2 qi = 54, L = 15), encryption of N ·log qi

2 bits ≈ 0.05 MB of plaintext using ModRNS
produces a ciphertext of size L ·N · (r + 1) · log qi bits ≈ 5 MB. These parameters support
a multiplicative depth of L − 1, so in our case, it is 14. The relinearization keys will
require r·(r+1)2·L·(L+1)·N ·log qi

2 bits ≈ 239 MB of storage. The keys for rank reduction
for going from r = 2 to r′ = 1 (ct ∈ Rq × R2

q → ct′ ∈ Rq × R1
q), when L reduces to

L′ = 7, require (r′+1)·L′·(L′+1)·N ·log qi

2 bits ≈ 16 MB of storage. A RingRNS ciphertext for
the same security parameters consumes 2 · L · N · r · log qi bits ≈ 6.6 MB storage, can
encode N ·r·log qi

2 bits ≈ 0.1 MB data and the relinearization key size required in this case
is 2 · L · (L + 1) ·N · r · log qi bits ≈ 106 MB. The additional memory requirement for keys
in ModRNS compared to RingRNS is not a problem as present-day accelerator platforms
contain on-board DDR or high bandwidth memory (HBM).

As explained in section 4, one limitation of ModRNS is that the key size can increase
with large module dimensions. Thus, using only on-chip memory resources for storing the
evaluation keys can become more challenging for large module dimensions. To that end,
for our proof-of-concept design, we selected the Xilinx Alveo U280 card, equipped with an
HBM providing up to 460 GB/s, as our target platform.

Low-level arithmetic units: Design decisions for the low-level arithmetic units are
borrowed from Medha [MAK+23]. Reader may follow [MAK+23] for detailed description
of these units. We used Xilinx multiplier IPs to generate bit-parallel multipliers that utilize
DSPs available in Alveo U280 card for implementing integer multiplication operations. An
integer multiplier for 54/60-bit inputs consumes 10 DSP units and has a latency of 12 cycles.
To simplify modular reduction operation, we used sparse primes that also enable cheap
reduction circuit implementations. Instead of using Barrett and Montgomery methods
that work for generic primes, we used an add-shift-based modular reduction approach
optimized for sparse primes that uses only LUTs and eliminates DSPs [ZYC+20, MAK+23].
In our architecture, each modular reduction unit is designed to support two sparse primes,
corresponding to two RNS bases (i.e., qi and qi+8). Modular reduction unit saves area
by performing resource sharing. For example, an add-shift based modular reduction unit
designed for a 54-bit prime, 253 + 219 + 218 + 1, can easily be adapted for a prime with
similar form, e.g., 253 + 223 + 217 + 1, using a few extra multiplexers. An add-shift-based
modular reduction unit, with runtime configurability to support two sparse primes, finishes
one reduction in five cycles due to five-stage pipelined design.

NTT is one of the fundamental and most time-consuming arithmetic blocks in HE
schemes. Thus, there are several efforts in literature to implement efficient NTT architec-
tures for HE [MAK+23, RLPD20]. In this work, we implemented a parallel 16-core iterative
NTT circuit for N = 214. Each core implements a unified butterfly circuit that can perform
both the Cooley-Tukey butterfly configuration for NTT and the Gentleman-Sande butterfly
configuration for INTT [CG99]. The same circuit can perform both NTT and INTT,
and it finishes one NTT/INTT operation in 7,168 cycles. A butterfly operation during
NTT requires several constants called twiddle factor. Storing all necessary twiddle factors
for each butterfly unit will increase on-chip memory utilization significantly. To reduce
the on-chip memory usage, we generated twiddle factors on-the-fly during NTT/INTT
operation. Each butterfly unit is coupled with one modular multiplier and a memory block
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Figure 2: Parallel execution of NTT and Dyadic core during relinearization operation (a)
in [MAK+23] and (b) in ModRNS. The numbers inside boxes represent the number of cores
employed in each unit. One NTT operation is finished in 7,168 cycles. One Dyadic core
with 4 and 8 cores finish its operation in 4,096 and 2,048 cycles, respectively.

that stores initial twiddle factors. These extra multipliers used in twiddle factor generation
are re-used for coefficient-wise multiplication operations as well.

We also implemented an 8-core dyadic unit that can work in parallel with NTT unit.
Each core can perform modular addition, subtraction, multiplication and multiply-and-
accumulate operations. Dyadic core is used to perform coefficient-wise addition, subtraction
and multiplication between polynomials. For N = 214, it finishes its operation in 2,048
cycles.

Architecture of ModRNS processor: Here we describe how an existing accelerator
architecture (in this case Medha [MAK+23]) for RingRNS could be turned into an accelerator
for the proposed ModRNS by incorporating small modifications. Medha [MAK+23] designs
and implements residue polynomial arithmetic units (RPAU) of polynomial size 214 for
each small RNS prime used in the RingRNS scheme. Each RPAU has an NTT (main) unit
for NTT/INTT and coefficient-wise operations, a dyadic unit tailored for coefficient-wise
polynomial addition and multiplication, and on-chip memory for data and key storage. We
followed a similar approach and implemented RPAUs for RNS bases of ModRNS. In an RPAU,
the NTT and dyadic units can run operations in parallel and this enables efficient execution
of the relinearization operation of ModRNS. The relinearization operation requires one NTT
and r · (r + 1)/2 evaluation key multiplications as explained in section 4.4. For example, for
r = 2, it requires three evaluation key multiplications. For optimal performance, the latency
of one NTT operation and r·(r+1)/2 evaluation key multiplications should be similar so the
execution of both operations can be overlapped efficiently. For example, the relinearization
operation of RingRNS requires one NTT and two evaluation key multiplications (steps 7,8
of Algorithm 4) and [MAK+23] selected the number of cores in NTT unit and dyadic units
accordingly to optimize the performance of relinearization operation. Similarly, we used a
16-core NTT unit and an 8-core dyadic unit in each RPAU. This enables our architecture
to parallelize one NTT and three evaluation key multiplications efficiently for r = 2 setting,
as illustrated in Fig. 2. To reduce the computation time, we employ 8 RPAUs in our
architecture where each RPAU supports two small RNS primes by employing reconfigurable
modular reduction units.

Note that if the rank, r, is increased, memory bandwidth, on-chip memory resources
and the number of dyadic units are parameters one must re-evaluate to ensure that
the hardware architecture performs optimally without any stall due to communication
bottleneck. However, this does not necessarily mean that any change in r would require
a new architecture. For example, it is possible to use the proposed architecture for a
higher r with slight performance loss due to dyadic core latency. This performance loss
can be minimized by utilizing the main core for evaluation key multiplications as well.
Another approach would be selecting a range of r values to support and optimizing your
architecture for the maximum r parameter. This will enable your architecture to operate
with multiple r without any performance loss.

Our architecture utilizes HBM and this eliminates the need for excessive on-chip
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Figure 3: High-level architecture of the proposed design which follows the ring-based
interconnect proposed in [MAK+23]. Each RPAU has a 16-core NTT coupled with a
16-core twiddle factor generator, an 8-core dyadic unit, and on-chip BRAM/URAMs.

memory consumption. In our architecture, the evaluation keys are assumed to be read
from HBM during homomorphic operations without degrading the performance, and fed to
the dyadic multipliers for relinearization operation. The host processor sends ciphertexts
to the FPGA and ciphertexts are stored in on-chip memory. Our architecture for r = 2
uses 8 RPAUs, each having 8-core dyadic units. Thus, during a relinearization operation,
8 · 8 = 64 coefficient-wise multiplications with 64 coefficients of relinearization keys are
performed every cycle. Our architecture needs to read 64 coefficients every cycle from
HBM running with an operation frequency of f MHz. It will require an HBM bandwidth
of ≈ 64·8·f

103 GB/s. For example, for an operating frequency of 210 MHz, the required
bandwidth is ≈ 108 GB/s. This shows that Xilinx Alveo U280’s HBM is fast enough to
feed 64 coefficients of relinearization keys every cycle. Each RPAU in our architecture
employs 32 URAMs and 96 BRAMs that can store 13 residue polynomials for ciphertexts.
Each RPAU also uses 16 URAMs as a pre-fetch unit that can store evaluation keys read
from HBM.

As we follow an instruction-based architecture, we employ a program controller unit for
sending instructions to RPAUs. The program controller has two instruction memories, one
for the NTT unit and one for the Dyadic unit. This enables parallel execution of NTT and
Dyadic cores when there is no data dependency or memory conflict. In our architecture,
each RPAU supports RNS bases qi and qi+8 (mod 16). This reduces the idle time of an
RPAU as the multiplicative depth is consumed.

Our target FPGA, Xilinx Alveo U280, consists of three separated SLR regions and
there are only a limited number of connections between two neighboring SLRs [Xil]. As
shown in Algorithm 4, each RPAU should send or receive residue polynomials from other
RPAUs during key switching operation. This poses a significant implementation chal-
lenge for SLR-based large FPGAs due to the limited number of SLR-to-SLR connections.
In [MAK+23], a ring interconnect is proposed to place and connect multiple RPAU units
on an SLR-based FPGA. This method connects only neighboring RPAUs and eases the
placement and routing of RPAUs. This method is adopted and used in our architecture.
We used 2 SLRs to place 8 RPAUs, 4 RPAUs per SLR, and reserved one SLR for HBM-
related building blocks for providing a more realistic implementation result. For the rest
of the architecture, we followed the same approach as Medha [MAK+23]. A high-level
architecture diagram of the proposed accelerator is shown in Fig. 3.

Implementation results: We synthesized and implemented our design targeting the
Xilinx Alveo U280 accelerator card using Vivado 2022.2. The implementation results show
that our design with 8 RPAU units consumes only 699,513 LUTs, 513,720 FFs, 3,200 DSPs,
1,034 BRAMs, and 305 URAMs. Its implementation achieves a clock frequency of 210 MHz.
The implementation includes all components of the proposed processor excluding an HBM
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Table 1: Estimated performance figures. When the r is 1, the multiple accelerator setting
is not applicable, as we operate on one module component per accelerator.

N r Depth+1 Homomorphic Perf.(Cycle) Perf.(Cycle)
(L) Operation (1 accelerator) ( r(r+1)

2 ,r>1 accelerators)
214 1 7 Add. 1,152 -
214 1 7 Mult. 2,560 -
214 1 7 Mult.+ Relin. 99,448 -
214 2 15 Add. 3,456 1,152
214 2 15 Mult. 13,824 4,608
214 2 15 Mult.+Relin. 1,193,376 397,792
214 2 → 1 7 → 7 Rank reduction 99,448 -
214 4 30 Add. 11,520 1,152
214 4 30 Mult. 81,920 8,192
214 4 30 Mult.+ Relin. 15,993,600 1,599,360
214 4 → 3 15 → 15 Rank reduction 398,344 -

controller. True prototyping in FPGA and functional verification of an HBM-processor
interface is not a straightforward task as it could require many months of engineering
work [BBTV]. Several works [SYYZ22, SYYT20, FSK+21, KLK+22] in literature report
synthesis results. Similar to these works [FSK+21, KLK+22], we use HBM’s bandwidth
specification for estimating the time requirements for high-level homomorphic procedures
and applications.

5.2 Performance benchmarking
Estimated performance results for ModRNS.Add, ModRNS.Mult and ModRNS.Relin operations
are presented in Table 1. It should be noted that the proposed accelerator can be used in
a multi-FPGA setting where each FPGA implements the accelerator of Fig. 3 to improve
the performance as shown in Fig. 1. Cloud providers such as Amazon AWS use FPGA
stacks for accelerating computation. Our base ring dimension (when r = 1) is 214, with
the packing of 213, and for higher multiplicative depth, we increase the r = 2, 4.

Note that at this point, we have more multiplicative depth; however, the maximum
available packing stays fixed at 213. The fixed amount of packing is one limitation of
the ModRNS scheme, as we go higher up in the module dimension, the amount of packing
does not increase, unlike RingRNS. Thus, the ModRNS suffers from an (r + 1)/2 ciphertext
expansion rate compared to RingRNS. Similarly, owing to quadratic growth in the number
of non-linear components after multiplication, ModRNS will also require (r + 1)/2× more
time compared to an RingRNS implementation. Thus, for our example case where r = 2,
ModRNS has 1.5 × higher ciphertext expansion rate and 1.5× slower computation. Both
ModRNS and [MAK+23] use an architecture designed for polynomial degree N = 214.
ModRNS reuses it for parameters (r = 2, N = 214) and [MAK+23] reuses it to process
polynomials of degree N ′ = N · r = 215. Both these parameters offer the same depth for
128-bit security. Therefore, we just compare the results for [MAK+23] (N ′ = 215) with
ModRNS (r = 2, N = 214) on the same architecture. For this case, ModRNS consumes ≈ 1.7×
more clock cycles compared to [MAK+23]. As an additional example, we also provide
performance results for (r = 4, N = 214) such that N ′ = 216 and, L = 30. Timing in
this case will be approximately 160× with respect to (r = 1, N = 214) as there will be
ten ring-level relinearization operations and, cost per ring-level relinearization increases
approximately by O(L2 + L).

We also provide an estimated benchmark for the logistic regression inference. For
computing the logistic function g(x) = 1/(1 + ex) homomorphically, we use Taylor’s
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polynomial approximation up to polynomial degree-9 i.e., g(x) ≈ 1/2 + 1/4x− 1/48x3 +
1/480x5 − 17/80640x7 + 31/1451520x9. The proposed hardware architecture is estimated
to consume 3.8M clock cycles and finish the operation in 18 ms using a three accelerator
setting (see Fig. 1) when the FPGA-based accelerator runs at 210 MHz. The same
application consumes 1.8 seconds using the SEAL library with polynomial degree N = 215

on one Intel(R) Core(TM) i5-10210U CPU running at 1.60GHz. Although we only provide
estimates for logistic regression, similar estimations can be extended to other function
approximations, for example, sine, cosine, etc. Comparing the application here with
the one reported in [MAK+23] will not be fair as here we target higher accuracy by
expanding to more terms. Instead, comparing the speedup achieved over software can
be justified. ModRNS running on one hardware accelerator is 2.8× slower than [MAK+23]
running on the same hardware accelerator. We also acknowledge that due to added
error, ModRNS Key-switch operation reports only 34-bit precision compared to the 40-bit
precision reported in the RingRNS case. The new property of rank reduction also incurs an
additional 3-bit precision loss. Thus, ModRNS offers ≈ 30-bit precision for the parameters
used here. Implementing Medha [MAK+23] in our setting (on Xilinx Alveo U280 card)
will significantly reduce its on-chip memory. This might help improve its clock frequency
and routing problems to improve performance further. However, we cannot estimate this
without performing an actual implementation.

6 Future scopes
In section 4, we discuss a few limitations of an MLWE-based homomorphic encryption. As
a future direction of research along ModHE lies in mitigating them. For example, in theory,
the canonical embedding map τ : K → CN used in the encoding-decoding procedure of
RNS-CKKS can be extended to the map (τ, τ, · · · , τ) which will be an embedding from
Kd → CNr, r ≤ d. For an R-module M ⊆ Kd (if M is full rank then r = d) let us then
denote this embedding as τM . The set τM (M) is then a module lattice of dimension
Nr. This map can then help to extend packing along the rank of a module and the
concrete procedure for using this map for applications that necessarily require full packing
of plaintexts remains to be explored. In the following paragraphs, we discuss three other
interesting avenues of future work.

6.1 Bootstrapping
The next step would be to analyze the bootstrapping procedure of ModRNS. [CHK+18a]
presents a series of procedures for bootstrapping in the CKKS/HEAAN scheme. It
aims at refreshing or recrypting a ciphertext in a low level of modulus q to produce an
equivalent ciphertext with a larger modulus Q ≫ q such that both of these ciphertexts
decrypt approximately to the same message over their respective moduli. This approximate
decryption would also involve a modular reduction resulting in a polynomial of a substantial
degree and evaluating it during refreshing would again consume a lot of levels. To avoid
this problem, [CHK+18a] instead proposed approximating the modular reduction function
with a scaled sine function, both possessing a periodic behaviour in a given suitable
interval and ultimately exploiting its relation with the complex exponential function
to arrive at a desired polynomial approximation. The sequence of high-level routines
involved in CKKS bootstrapping consists of ModRaise, CoeffToSlot, EvalExp, ImgExt and
SlotToCoeff respectively. Since these routines are part of a homomorphic recryption,
they are built upon combinations of fundamental homomorphic functions. For example,
CoeffToSlot and SlotToCoeff involve linear transformations of vectors over plaintext
slots, which in turn involve homomorphic multiplication and rotation functions. Likewise,
conjugation is required for extracting the imaginary part of the recrypted ciphertext in
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ImgExt. Therefore, bootstrapping in the module variant of CKKS could follow along these
lines. It serves as an interesting future scope for a complete analysis of the process as well
as its feasible implementation.

6.2 Other HE schemes and MLWE
At the beginning of the paper we listed quite a few popular HE schemes such as the
BFV/FV [FV12] and the BGV [BGV11] schemes that rely on the RLWE problem. Although
these schemes differ in their concrete noise management techniques, they share a similar
underlying structure for their arithmetic circuits. For example, the polynomials involved
in the en(de)cryption routines of the FV [FV12] HE scheme could be replaced by module
elements such that the ciphertext ct now becomes a vector of polynomials contained in
the module. The decryption is still valid as all modulo operations with respect to the
ciphertext modulus or the plaintext modulus can be performed component-wise over the
resulting module elements. In fact, homomorphic functions like homomorphic addition or
multiplication could be extended to operate over module elements just like we showcased
in our MLWE construction. One has to however apply the relinearization techniques with
some caution so as to maintain the correctness of the decryption. A similar intuition can
be applied to the BGV scheme [BGV11] as well. Therefore, it is not just CKKS but also
the other RLWE-based HE schemes that could be ported to the module setting.

6.3 Memory-centric platforms
Various memory-centric platforms like processing-in-memory (PIM) and computing-in-
memory (CIM) are emerging as the future paradigms of computing. PIM [AMY+23]
platforms are ideal when there are several small computation tasks in an algorithm.
Operands for the small tasks could be fetched fast from the near-memory, then processed
in the processing elements of the platform, and finally written back in low latency to the
near-memory. CIM platforms [VJV+19] offer computation in memory so data movement
is minimal and is within the memory. The smaller the computation requirement, the easier
it is to perform it in this setting.

The proposed ModRNS is a suitable algorithm for such platforms, owing to its ability to
process smaller rings for homomorphic operations instead of one big ring. The NTT/INTT
transforms, and the remaining homomorphic operations can be more efficiently evalu-
ated using the ModRNS setting. Expensive operations such as relinearization are done
independently on each non-linear module element. Even within a module element that
consists of a component equal to the rank of the module, each of the module components
is operated upon separately. Once these operations are done, a data share is indeed
required to add the result to the remaining elements. The proposed hardware architecture
is optimized for module components and features parallel dyadic units that can utilize all
three relinearization key components in parallel.

In the emerging memory landscape, Micron Technology Inc. introduced 3D stacked
memory [Sch], called Hybrid Memory Cube (HMC) that offers an aggregate bandwidth of
480 GBps at much lower power and a smaller form factor. More recently AMD designed
the 3D Chiplets [JP] that can offer up to 2 terabytes of bandwidth. Such Chiplets feature
multiple DRAM layers stacked on top of each other and connected through high bandwidth
through silicon vias (TSVs) as shown in Figure 4. The bottom layer of the 3D stack is the
logic layer which contains the necessary computation circuits for the memory controller.
As the logic layer could not be arbitrarily large, a small ModRNS processing unit could
be placed in the logic layer. All the above memory layers can be used to store all the
required keys and ciphertexts. Thus, the data can be fetched fast via TSVs (i.e., high
bandwidth), processed fast in the ModRNS processing unit, and then stored back fast into
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Figure 4: (a) shows the side-view of the 3D stack where the bottom layer after the substrate
is the logic layer and the upper layers are memories, and (b) is a cross-sectional view to
show the TSV interconnects connecting multiple different layers.

the memory layers. In this way, data will never leave the memory cube and thus the
classical memory-processor data transfer bottlenecks will be avoided.

7 Conclusion and further directions
In this paper we discussed the use of module lattices to instantiate homomorphic encryption
schemes and as a concrete construction presented a module version of the original ring-based
CKKS scheme. We then proposed an RNS variant of the scheme to further improve the
efficiency of HE operations. The original scheme’s sub-routines were adapted in a way that
requires minimum deviations from its fundamental approaches. In addition to reaping the
benefits of the ring-based CKKS, our scheme also aids hardware reusability and long-lived
parallel computation opportunities. It eliminates the need to increase the polynomial
degree every time we want our scheme to support a higher level of security. With the MLWE
feature of rank-reduction, the rank of the module can infact be managed dynamically.
We also made a few important observations about module-based HE constructions: while
ModHE can flourish in environments that need greater circuit depth, selecting appropriate
parameter trade-offs is vital for achieving its full potential. It faces shortcomings in the
context of an increased load on memory and the number of computations. We discussed
a hardware implementation that is consistent with our primary goal of reusability and
flexibility. We then provided results for homomorphic operations in the module setting.

MLWE-based HE schemes are fairly unexplored: there is immense scope for investigation
of its properties and designing concrete hardware prototypes. Efficient bootstrapping for
ModHE and detailed analysis of MLWE instances of other popular ring-based HE schemes
are the major future direction of research in this area. We believe that experimenting
with different parameter sets and improving functionalities of module-based homomorphic
encryption in order to overcome its limitations would indeed be worthwhile.

A Correctness of RingRNS and description of subroutines
We first discuss in brief the correctness proof of CKKS and RingRNS after encryption and
decryption. Then we give detailed equations for its important subroutines described in
section 2.3 so that the reader gets familiar with how they give the desired results.

Let ct be an encryption of the message m such that m is obtained as a result of
encoding z ∈ CN/2. Then the decryption and decoding of ct will correctly return z if
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the scaling factor ∆ satisfies ∆ > N + 2Bclean where Bclean is the upper bound of the
decryption error [CKKS17]. The decryption (mod q0) works in the following way:

RingRNS.Decsk(ct) = c0 + c1 · s
= (v · pk[0] + m + e0) + (v · pk[1] + e1) · s
= (v · (−a · s + e) + m + e0) + (v · a + e1) · s
= −v · a · s + v · e + m + e0 + v · a · s + e1 · s
= m + E

where, E = (v · e + e0 + e1 · s). Let the upper bound of E be given by Bclean such that
Bclean = 8

√
2σN + 6σ

√
N + 16σ

√
hN (the readers may refer to [CKKS17] for details of

the derivation). For a vector z ∈ CN/2 an encryption of the encoded message m is also an
encryption of ∆ · τ−1 ◦ π−1(z) as given in section 2.4 where ∆ is the scaling factor being
used during encoding to maintain precision. The total error upper bound for E is equal to
Bclean + N/2 = B′ (say). Then for the equality, π(τ(⌊∆−1(m + B′)⌉)) = π(τ(⌊∆−1(m)⌉))
to hold we need to have ∆−1B′ < 1/2. Thus, if ∆ > N + 2Bclean, the decoded message
(after decryption) will correctly return z.

The addition subroutine RingRNS.Add adds two ciphertexts ct and ct′ such that the
resultant ciphertext (mod Ql) is ctadd = (d0 + d1) as in section 2.3 and is decryptable
under sk in the following way:

d0 + d1 · s = (c0 + c′
0) + (c1 + c′

1) · s
= (c0 + c1 · s) + (c′

0 + c′
1 · s)

= m + m′ + E′

The equations above capture the homomorphic nature of this addition subroutine because
RingRNS.Decsk(ct + ct′) = RingRNS.Decsk(ct) + RingRNS.Decsk(ct′).

Similarly, RingRNS.mult is desired to fulfill the following homomorphic property,
RingRNS.Decsk(ct ∗ ct′) = RingRNS.Decsk(ct) ∗ RingRNS.Decsk(ct′) where we use ‘∗’ to
refer to the multiplication operation between ciphertexts. In the following part we show
why this is not very straightforward and additionally needs RingRNS.Relinevk. Consider
the RHS of the desired homomorphic multiplication property mentioned above done
(mod Ql):

RingRNS.Decsk(ct) ∗ RingRNS.Decsk(ct′) = (c0 + c1 · s) · (c′
0 + c′

1 · s)
= (−v · a · s + v · e + m + e0 + v · a · s + e1 · s)
· (−v · a · s + v · e + m′ + e′

0 + v · a · s + e′
1 · s)

= m ·m′ + E′′

Observe that, (c0 + c1 · s) · (c′
0 + c′

1 · s) = c0 · c′
0 + (c0 · c′

1 + c′
0 · c1) · s + (c1 · c′

1) · s2. So
the multiplied ciphertext ct ∗ ct′ defined as d = (d0, d1, d2) such that d0 = c0 · c′

0 ∈ RQl
,

d1 = c0 · c′
1 + c1 · c′

0 ∈ RQl
, and d2 = c1 · c′

1 ∈ RQl
would satisfy the above-mentioned

homomorphic property. But this means that d is decryptable using (1, s, s2) and not
using (1, s) and the decryption complexity will keep increasing with more multiplications.
The subroutine RingRNS.Relinevk is used to avoid this problem as it helps to manage the
non-linear terms (with respect to s) in the decryption equation. Recall the forms of the
relinearized ciphertext ctrelin and evaluation key evk = (−a′ · s + e + s2, a′) ∈ R2

pQL
as

given in section 2.3. We show that the relinearized ciphertext ctrelin would decrypt to
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approximately the same value as d using the following equations (mod Ql):

d′
0 + d′

1 · s =
(
d0 + RingRNS.ModDown(d2 · (−a′ · s + e + s2))

)
+

(
d1 · s + RingRNS.ModDown(d2 · a · s)

)
≈ d0 + d1 · s + d2 · s2

B Correctness of Mod and description of subroutines
In order to demonstrate how the different subroutines work together in the case of Mod, we
will continue our choice of module rank 2 for the all the following mathematical descriptions.

Let ct = (c0, c1) ∈ Rql
× R2

ql
be an encryption of the message m such that m is

obtained as a result of encoding z ∈ CN/2. Then the decryption and decoding of ct will
correctly return z if the scaling factor ∆ satisfies ∆ > N + 2Benc where Benc is the upper
bound of the decryption error as explained in section 3.1. The decryption works in the
following way:

Mod.Decsk(ct) = c0 + c1 · s
= (v · pk[0] + m + e0) + (v · pk[1] + e1) · s
= (v · (−A · s + e) + m + e0) + (v ·A + e1) · s
= −v ·A · s + v · e + m + e0 + v ·A · s + e1 · s
= m + E

Note that for module rank 2, s consists of two ring components, s0 and s1. So, c1 · s =
c10 · s0 + c11 · s1 where c10 and c11 are respectively the two ring components of c1.

The addition subroutine Mod.Add adds two ciphertexts ct and ct′ in Rql
×R2

ql
such

that the resultant ciphertext (mod ql) is ctadd = (c0 + c′
0, c1 + c′

1) as in section 3 and is
decryptable under sk in the following way:

Mod.Decsk(ctadd) = (c0 + c′
0) + (c1 + c′

1) · s
= (c0 + c1 · s) + (c′

0 + c′
1 · s)

= m + m′ + E′

Again, through the above-mentioned equations, the homomorphic nature of this addition
subroutine can be perceived due to the relation, Mod.Decsk(ct + ct′) = Mod.Decsk(ct) +
Mod.Decsk(ct′).

Next, the desired homomorphic properties of Mod.Mult has been discussed in section 3
for a module of general rank r. For r = 2 and two ciphertexts ct and ct′ in Rql

×R2
ql

, we
have the following relation for decryption:

m ·m′ = c0 · c′
0 + (c0 · c′

10 + c′
0 · c10) · s0 + (c0 · c′

11 + c′
0 · c11) · s1

+ (c10 · c′
10) · s2

0 + (c11 · c′
11) · s2

1 + (c10 · c′
11 + c′

10 · c11) · s0s1

The multiplied ciphertext ctmult defined as d = (d0, d1, d2, d3) such that d0 = c0 · c′
0 ∈ Rql

,
d1 = (c0 · c′

10 + c′
0 · c10, c0 · c′

11 + c′
0 · c11) ∈ R2

ql
, d2 = (c10 · c′

10, c11 · c′
11) ∈ R2

ql
and

d3 = c10 · c′
11 + c′

10 · c11 ∈ Rql
would satisfy the above-mentioned homomorphic property.

This ciphertext is decryptable under (1, s, s2, s0s1) and hence for similar reasons mentioned
in the previous section, needs to be relinearized. Using the evaluation keys with respect to
d2 and d3 mentioned in RingRNS.Relinevk in section 3, the relinearized ciphertext would
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be ctrelin = (d′
0, d′

1) such that it is decryptable again under (1, s) and approximates the
actual decryption in the following way:

d′
0 + d′

1 · s =
(
d0 + P −1 · (d2 · (−Ad2 · s + ed2 + s2) + d3 · (−Ad3 [0] · s + ed3 + s0s1)

)
+

(
d1 + P −1 · (d2 ·Ad2 + d3 ·Ad3 [0])

)
· s

≈ d0 + d1 · s + d2 · s2 + d3 · s0s1

In case of the rank reduction subroutine to decrease the rank of a ciphertext ct =
(c0, c1) ∈ Rql

× R2
ql

in a module of rank 2 to a module of rank 1 (that is, change
it to a ciphertext in the base ring), the rank reduction key required will be redk =
(−A1×1

red · s0 + ered + P · s1,−A1×1
red ). Notice that in this special case, the public matrix is

actually just a polynomial ared. The rank-reduced ciphertext ct′ = (c′
0, c′

1) ∈ Rql
×Rql

thus obtained approximates the ring decryption of the rank-reduced ciphertext with respect
to s0 in the following way:

c′
0 + c′

1 · s0 =
(
c0 + P −1 · c11 · (−ared · s0 + ered + P · s1)

)
+

(
c10 + c11 · ared

)
· s0

≈ c0 + c10 · s0

The two above-mentioned sections in Appendix show that the structures of both RingRNS
and Mod share similarities by virtue of the homomorphic properties desired by the different
operations. However, it also brings out the differences in terms of the increased algebraic
manipulations required in the module case as well as the additional feature of rank reduction.
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