
Diversity Algorithms for Laser Fault Injection

Marina Krček1 and Thomas Ordas2

1 Delft University of Technology, The Netherlands
2 STMicroelectronics, France

Abstract. Before third-party evaluation and certification, manufactur-
ers often conduct internal security evaluations on secure hardware de-
vices, including fault injection (FI). Within this process, FI aims to
identify parameter combinations that reveal device vulnerabilities. The
impracticality of conducting an exhaustive search over FI parameters has
prompted the development of advanced and guided algorithms. However,
these proposed methods often focus on a specific, critical region, which
is beneficial for attack scenarios requiring a single optimal FI parameter
combination.
In this work, we introduce two novel metrics that align better with the
goal of identifying multiple optima. These metrics consider the num-
ber of unique vulnerable locations and clusters (regions). Furthermore,
we present two methods promoting diversity in tested parameter com-
binations - Grid Memetic Algorithm (GridMA) and Evolution Strategy
(ES). Our findings reveal that these diversity methods, though identify-
ing fewer vulnerabilities overall than the Memetic Algorithm (MA), still
outperform Random Search (RS), identifying at least ≈ 8× more vulner-
abilities. Using our novel metrics, we observe that the number of distinct
vulnerable locations is similar across all three evolutionary algorithms,
with ≈ 30% increase over RS. Importantly, ES and GridMA prove su-
perior in discovering multiple vulnerable regions, with ES identifying
≈ 55% more clusters than the worst-performing MA.

Keywords: Laser Fault Injection · Parameter Search · Evolutionary
Algorithms · Diversity Algorithms · Multiple Optima.

1 Introduction

Small embedded devices frequently employ cryptographic algorithms to provide
security. According to Kerckhoff’s principle, it is expected that security is in-
tact when the secret key is unknown, even if all the other information about
the cryptographic system is public. Consequently, these algorithms are often
mathematically secure, rendering brute-force attacks impractical. Regardless,
implementation attacks, such as side-channel attacks (SCA) and fault injection
(FI) attacks, can potentially lead to a successful security breach of such crypto-
graphic systems. Side-channel attacks are passive, with the attacker measuring
the time [12], power consumption [11], or other side-channel data emanating from
the target device. Given a correlation between the processed data and measured

2 M. Krček et al.

side-channel information, the attacker can obtain secret information. On the
other hand, fault injection attacks are active, where the attacker purposely in-
teracts with the device, inducing errors during the execution of the underlying
algorithm. Specifically, the attack can use external sources, such as electromag-
netic radiation [18], lasers [26], temperature [9], and voltage glitching [10], to
manipulate data in memory, skip instructions, or alter instructions themselves.
These implementation attacks are commonly used in security evaluations and
are consequently extensively investigated [1,23]. The objective is to establish an
enhanced and automated evaluation process that surpasses the current standard
in terms of efficiency. The new algorithms should excel in uncovering more po-
tential vulnerabilities while making more efficient use of available resources or
possibly even reducing the required resources.

We focus on laser fault injections (LFI), as introduced by Skorobogatov et
al. [26]. The issue with laser injection (and other types of fault injections) comes
from the injection parameters determined by equipment. With the laser, we have
to define the location of the laser shot on the targeted hardware device (x and
y coordinates), the distance from the microscope lens, which is commonly used
with lasers, and, lastly, we also have the laser settings, such as laser intensity,
delay, and pulse width. Additionally, lasers can have pulses that demand several
more parameters to define. Another critical component of successful injections
is the trigger on when to perform the injection. In security evaluation, the worst
scenario is often considered, where it is assumed that we have open access to
the targeted device, and the trigger can be placed at any point in the execution.
Obviously, there are many parameters we should consider. Additionally, the pos-
sible values and combinations of those parameters increase to the extent that
exhaustive search is not feasible for security evaluation or attack.

In the attack, the adversary aims to find the parameters that lead to ex-
ploitable fault injection effects. These desired effects also depend on the method
for the attack, where some of the popular attacks are differential fault analy-
sis (DFA) [3], statistical fault attack (SFA) [7], and statistical ineffective fault
attacks (SIFA) [6]. Each attack can require different characteristics of the FI ef-
fects. Still, some commonly desired and possibly exploitable faults include caus-
ing the device to skip instructions or change values in memory [1]. This work
does not address identifying exploitable faults but focuses on a scenario within
the internal security evaluation. During the security evaluation, a target char-
acterization is performed, striving to uncover all vulnerabilities that can later
be categorized based on their level of critical exploitability. While executing an
exhaustive search would ensure that all possible vulnerabilities are observed, this
process is not feasible as there are many products to be evaluated, and the search
is impractical even for a single target. The aim is then adjusted to find as many
vulnerabilities as possible within reasonable time and resources. Therefore, the
FI parameter search is a process that should observe many vulnerabilities and
provide high confidence that little to no vulnerabilities are overlooked. Instead
of an exhaustive search, the location on the target is often searched in a grid-like
manner using the same laser settings. Defined laser settings could come from

Diversity Algorithms for Laser Fault Injection 3

previous experience, which might be misleading if the target or the bench is en-
tirely new [28]. If more options for laser settings are tested over the whole target
area, this process becomes time-consuming, so alternatively, a random search is
applied. However, both methods could omit parameter sets that lead to faults.
In grid search, while the location is relatively thoroughly inspected, fixing the
laser settings can contribute to overlooking many vulnerabilities. By including
different laser settings, the search converges to an exhaustive search where the
security analysts aim to reduce the search space based on previous knowledge,
but the execution time for these algorithms could still be measured in weeks. On
the other hand, random search is unreliable as different runs can lead to very
different observations, which causes misrepresentation of the target’s security
level. Therefore, there is an incentive to improve the process of exploring the FI
parameter search space more efficiently in an automated way.

Evolutionary algorithms (EAs) were explored for laser fault injection [14],
voltage glitching [4,22,21], and electromagnetic fault injection [16,24] since laser
fault injections are not the only type of injections suffering from the previously
described issues. From the machine learning domain, hyperparameter optimiza-
tion techniques [27], reinforcement learning [17] and Generative Adversarial Net-
works (GANs) [25] were also investigated. Additionally, the prediction ability of
machine learning methods was explored for portability issues in the FI parameter
search [13] and estimating the full target characterization [28].

The issue with aforementioned search algorithms, like evolutionary algo-
rithms and tuning techniques, lies in their tendency to converge on a single
vulnerable area as they are designed to obtain a single optimal solution. Pre-
vious works show a significant increase in the observed faults clustered in one
sensitive region [16,21]. While that can be highly effective for attackers, we focus
on security evaluation, where identifying multiple vulnerable regions is deemed a
more favorable outcome. To better assess algorithm success in parameter search
concerning the security evaluation goals, we propose to use the number of unique
locations (x-y) and clusters with faults as additional metrics. We investigate the
performance of several algorithms: random search, memetic algorithm, and two
novel algorithms not explored before in the FI context - Grid Memetic Algorithm
(GridMA) and Evolution Strategy (ES). The new algorithms are introduced as
they promote the diversity of the parameter combinations. This diversity aims to
achieve a more diverse search, uncovering distant vulnerabilities and identifying
multiple optima instead of a single sensitive region. Experiments are performed
with laser fault injections but should be suitable for other fault injection types.

Our main contributions are:

– We propose two methods that promote diversity among the tested FI pa-
rameter combinations. Promoted diversity ensures fewer vulnerabilities are
overlooked, and multiple optima are uncovered during the search.

– We investigate other aspects of the algorithm performance for the FI param-
eter search, such as unique locations and clusters.

– The results show that the evolutionary algorithms find ≈ 30% more unique
vulnerable locations than random search.

4 M. Krček et al.

– The GridMA and ES algorithms found around 41% and 55% more vulnerable
clusters than the worst-performing MA in this aspect, respectively. Thus, the
diversity algorithms help determine more vulnerable regions.

2 Preliminaries

2.1 Random Search (RS)

Random Search (RS) is a widely used optimization method when exhaustive
search is impractical. In the context of FI parameter search, it explores a pre-
defined search space by randomly selecting parameter values and assessing their
performance, with each value having an equal probability of selection. We ensure
that only unique parameter combinations are considered, eliminating duplicates.

2.2 Memetic Algorithm (MA)

The memetic algorithm (MA) enhances the genetic algorithm (GA) by incor-
porating local search [19]. We apply the local search at the end of each GA
iteration, constituting the first generation of memetic algorithms. This specific
method has been successfully utilized in previous research [16,14]. The flow of
the MA is depicted in Figure 1. MA is a population-based optimization tech-
nique, operating on a set of individuals, each representing a potential solution to
a specific optimization problem. The algorithm begins by generating an initial
population using an initialization method, where a random sampling approach
is often used. The algorithm then uses a problem-specific fitness function to
evaluate each solution’s performance. After evaluation, the genetic operators,
including selection, crossover, and mutation, that drive the learning process are
performed. The selector operator identifies solutions from the current population
for reproduction. Usually, the best-performing solutions are favored as they are
more likely to yield improved solutions. The selected solutions, called parent so-
lutions, undergo the crossover operator, which combines their traits to create one
or more offspring solutions. The new solutions (offspring) undergo the mutation
operator, which introduces random variations into the new solutions. The muta-
tion probability is commonly kept low, preventing the algorithm from acting like
random sampling. The process generates a new population that continues into
another algorithm iteration. To ensure the best-performing solutions are not lost,
elitism is employed. Elitism explicitly preserves one or more of the best solutions
from the current population for the next generation. Lastly, some solutions are
selected for further improvement using the local search. In this work, we use
the memetic algorithm introduced in [14], where the algorithm incorporates the
Hooke-Jeeves as local search [8]. The algorithm runs until a predefined termina-
tion condition is satisfied. These termination conditions commonly consider the
number of iterations or evaluations for ending the execution.

Diversity Algorithms for Laser Fault Injection 5

Initialize population

Evaluate

GA operators

Local search

New population

EndTerminate?
Yes

No

Fig. 1: Flow of the Memetic Algorithm.

2.3 Clustering method

In the analysis, we use a clustering method called Mean Shift [5], an unsupervised
clustering algorithm designed to identify clusters in a continuous distribution
of data points. It is a centroid-based algorithm that updates candidates for
centroids by computing the mean of points within a specific region (referred to as
the bandwidth). Subsequently, these candidates are filtered in a post-processing
stage to eliminate nearly identical centroids, forming the final set of centroids. We
opted for the Mean Shift clustering algorithm because, unlike some other popular
methods such as K-Means [15], it does not require users to predefine the number
of clusters. While several different algorithms share this characteristic, we chose
Mean Shift due to its simplicity as a centroid-based algorithm with only one
hyperparameter. We believe it will provide satisfactory results for our analysis.
However, we do not claim Mean Shift as the superior clustering algorithm. Note
that the considered algorithms were those provided by a Python package called
scikit-learn [20] to enable quick implementation and usage, as clustering is not
the main topic of this work.

3 Related Work

Carpi et al. [4] investigated various search strategies for voltage glitch param-
eters, specifically the glitch shape and timing, for a successful FI attack. They
explored glitch voltage and length with Monte Carlo (random), FastBoxing,
Adaptive Zoom&Bound, and a Genetic Algorithm (GA). The genetic algorithm,
without fine-tuning, required more measurements than the superior Adaptive
Zoom&Bound algorithm. Picek et al. [22] extended the GA for the same voltage
glitch parameters by employing a specialized crossover operator and selection
mechanism, finding more faults than random search. Later, Picek et al. [21] in-
troduced a memetic algorithm considering three voltage glitching parameters,
namely glitch length, voltage, and offset. The authors mentioned the impracti-
cality of specific algorithms used in previous work [4] due to increased dimen-

6 M. Krček et al.

sionality, excluding them from comparison. Their objective was to efficiently
identify favorable parameters within minimal time, seeking both successful pa-
rameter combinations and regions with consistent behavioral outcomes. Maldini
et al. [16] increased the parameter search space by optimizing five parameters
for Electromagnetic Fault Injection (EMFI) using a memetic algorithm. Krček
et al. [14] demonstrated the effectiveness of a similar memetic algorithm for laser
fault injection (LFI). These studies showcased the efficacy of the memetic algo-
rithm across various FI types. Werner et al. [27] employed two hyperparameter
optimization techniques from machine learning to enhance the parameter search
for voltage glitching. They proposed a two-stage optimization strategy to reduce
the dimensionality of the parameter space, similar to Carpi et al. [4]. Rais-Ali et
al. [24] compared three different methods for EMFI, with the GA consistently
outperforming the others in identifying areas of interest. The authors emphasize
that, from an attacker’s perspective, the goal is to identify a single exploitable
fault using a specific FI parameter set. However, in the evaluation context, the
objective is to ensure device security without excessive time investment, requir-
ing a high-dimensional search to avoid overlooking potential parameter combi-
nations. In [21,16,24], the authors evaluated performance based on the number
of observed vulnerabilities, considering the notion of distinct regions and faults.
We introduce diversity methods within the evolutionary approach to improve
the algorithms’ ability to discover more distinct regions with vulnerabilities. Re-
lated work on voltage glitching parameter search typically involved optimization
of two or three parameters, while EMFI and LFI examined five. We optimize the
same five parameters for LFI, performing a high-dimensional parameter search.

Wu et al. [28] focused on laser settings’ impact on a specific building block.
The authors noted that the complete characterization took over a week to exe-
cute. This underscores the need for faster and more efficient algorithms in the
field. However, their work differs from ours, as our research investigates fault
injection considering five distinct parameters, intending to uncover vulnerabil-
ities across various building blocks within an integrated circuit (IC). Krček et
al. [13] explored the transferability of results to different samples of the same
target using decision tree models, falling outside the scope of this work for com-
parison as this work focuses on improving the parameter search without prior
knowledge. Lastly, Moradi et al. [17] and Sedaghatbaf et al. [25] applied rein-
forcement learning and Generative Adversarial Networks (GANs), respectively,
for efficiently exploring the fault injection space in simulations for adaptive cruise
control systems in autonomous vehicles domain. These techniques could poten-
tially extend to fault injection on hardware devices, aligning with our work.

Comparing all methods from the mentioned related work is time-consuming
and complex. Hence, we leave this task to future work, recognizing the im-
portance of unifying and evaluating these advanced methods to determine the
state-of-the-art approach for parameter search in the scope of security evalu-
ation, target characterization, and FI attacks. In this study, we compare new
algorithms with random search and memetic algorithm, previously employed for
high-dimensional parameter search on EMFI and LFI.

Diversity Algorithms for Laser Fault Injection 7

4 Diversity Algorithms

This section explains the newly proposed diversity algorithms that should help
identify multiple vulnerable regions within the FI parameter search.

4.1 Grid Memetic Algorithm (GridMA)

We propose a novel approach, named the Grid Memetic Algorithm algorithm,
that involves partitioning the target area for exploration into a grid and run-
ning the previously explained memetic algorithm within each grid region. The
primary objective of the GridMA approach is to ensure attention (time and eval-
uations) of the algorithm to all target regions, mitigating the risk of overlooking
vulnerabilities in specific (x-y) locations. For instance, if the target area is di-
vided into a 3× 3 grid, resulting in nine distinct regions, GridMA executes the
MA independently in each region during a single run. As the search space size
within each grid region decreased, we reduced the MA hyperparameters, specif-
ically the population and elite sizes. GridMA represents a minor adaptation to
the established MA. Nevertheless, it is a valuable initial step in evaluating di-
versity algorithms, precisely when we aim to obtain multiple vulnerable target
regions.

4.2 Evolution Strategy (ES)

Evolution Strategy, like genetic algorithms, belongs to the class of evolutionary
algorithms inspired by the principles of natural evolution [2]. The initial ver-
sion of ES consisted of a single-parent solution from which one offspring was
produced through a mutation-like procedure. The superior solution between the
parent and offspring is preserved, and it resumes the same iterative process until
it fulfills specific termination criteria. These termination conditions align with
those described for MA in Section 2.2, consisting of attributes such as the num-
ber of iterations, evaluations, or acquiring a specified fitness level. Over time, ES
has evolved, and in its more general form, it adopts the notation of (µ+, λ)-ES.
For instance, the original version can be denoted as (1 + 1)-ES, suggesting the
presence of only one parent and one offspring in the process. Thus, µ represents
the number of parents, and λ indicates the number of offspring. Additionally, a
µ/ρ notation can be used for parents, where µ denotes existing parents, and ρ
indicates the number of parents selected for producing offspring. Typically, ρ is
less than or equal to µ, meaning that a subset of the best individuals is chosen
for reproduction. In the notation, we use symbols + or , to indicate whether the
solutions selected for the following generation are derived from both parents and
offspring (µ + λ) or the parents (µ) are discarded, and only the offspring (λ),
regardless of their fitness, continue to the next generation.

In the context of the described notation, we employ the (µ + λ)-ES. The
original, (1 + 1)-ES, using one single parent and an offspring, still converges to
one optimal solution. Thus, to achieve diversity and reduce the risk of focusing
on a single optimal solution, we set µ > 1, effectively creating a population

8 M. Krček et al.

of size µ as employed in MA. The initial set of solutions is distributed across
different locations, and in each iteration, new offspring are generated from each of
these parent solutions as we set λ > 1. Consequently, ES maintains a population
of diverse solutions that evolve through iterations. This iterative process may
lead to finding distinct solution clusters representing local optima. Thus, by
employing ES, we expect to decrease the chances of overlooking vulnerabilities
within the target area and observe more distinct solutions with optimal fitness.

5 Experimental Setup

5.1 Target

In collaboration with STMicroelectronics, we utilize their products for our ex-
periments. Due to confidentiality reasons, we cannot disclose the details of the
targets and the utilized laser bench. The target for our experiments is an IC con-
structed with 40nm technology. Since we use lasers for fault injection, mechanical
thinning, a standard procedure, was part of the preparation for the experiments.
During security evaluation, test programs can be deployed on the targeted prod-
ucts. The program running on our target device is a test program where data
words are loaded into a register from the non-volatile memory (NVM). This test
program can commonly be a part of the functionalities occurring within different
algorithms on these devices. The target has no security countermeasures as the
purpose here is not an attack breaking the device’s security and countermea-
sures. Additionally, this provides the worst-case scenario. The implementation
is done in the C programming language, and the pseudocode is displayed in
Pseudocode 1.1. The pseudocode shows calls to three functions, where the first
function is the trigger event. The trigger event is a monitored event used to
trigger the laser shot to inject faults at the desired time. In this case, the in-
jection is aimed during the execution of the following function. That function
loads the data from the NVM into a register. Lastly, we read the register and
compare the value with the expected data. There is a fault if the register value
has changed (fault class fail). On the other hand, if the injection was unsuccess-
ful and the data is unmodified, equal to the expected value, then we give this
response a fault class pass. Lastly, if there is no response from the device due to
a time-out error or reset, we categorize this as a fault class mute. Note that the
IC was reset to the initial state after each injection to provide a clean condition
for each injection.

Pseudocode 1.1: Pseudocode of the program running on the target device.

. . .
t r i g g e r e v e n t ()
l o a d r e g i s t e r () // i n j e c t i o n here
r e a d r e g i s t e r ()
. . .

Diversity Algorithms for Laser Fault Injection 9

The FI parameter search is done on the following five parameters - x, y,
delay, laser pulse width, and intensity. These parameters are commonly used
in literature and practice during a security evaluation [13,16]. We use a subset
of the available values for each of the five parameters, defined according to
the known layout and target cartography. Step sizes are defined based on the
minimum possible step according to the utilized bench equipment, and the target
area size includes different building blocks of the IC. The intervals are kept the
same for all experiments. While we cannot share the parameter intervals as they
are specific to the product and laser bench, we note that there are 370 772 710
possible combinations of the parameter values. The exhaustive search with the
defined subset of possible values will take around 643 days if we consider that
one laser shot takes ≈ 0.15 seconds.

While we focus on a single target in this study, the parameter search algo-
rithms we introduce are versatile and applicable across various targets, bench
configurations, and FI types. On average, the relative performance of these algo-
rithms is expected to remain similar across mentioned scenarios. The obtained
target responses guide these algorithms. Therefore, regardless of the selected
target and setup, they strive to identify optimal solutions within the current
setup and measured responses. The extent of improvements is limited by the
finite number of detectable vulnerabilities associated with a specific target and
bench setup.

5.2 Algorithm Details

In all our experiments, we specified a maximum limit of 6 000 evaluations of
unique FI parameter combinations as a termination condition. Since we perform
injection five times with the same parameter combination, we allow 30 000 laser
shots. The number of evaluations is a practical upper bound on the algorithm’s
execution time. Previous work [13] indicates that a similar evaluation count leads
to successful convergence, thus further justifying its selection.

In our approach, as we perform five measurements with the same parameter
combination, we can acquire distinct fault class responses given the same pa-
rameters. Thus, there is a slight variation in our fault classification compared to
related work. In our results, we present classes so that if there is even a single
fail response within the measurements, we consider it a critical outcome and
label it under fail comb. notation, signifying a fail combination. This approach
aggregates all fail occurrences, disregarding the specific combinations that led
to them. A more fine-grained categorization might be beneficial if we consider
a specific attack, as parameter combinations with consistent outcomes might be
more suitable for attacks. However, since we are in a security evaluation scenario,
any occurrence of a fail response is considered critical. Other classes we include
are those with mute response, a combination of mute and pass referred to as
mute pass, and lastly, there is a pass class where only pass class occurred in five
measurements. The fitness function for all algorithms is calculated as

fitness =
fP ·NP + fM ·NM + fF ·NF

NP +NM +NF
,

10 M. Krček et al.

where fP , fM , and fF correspond to the fitness values assigned to the fault
classes pass, mute, and fail, respectively. Similarly, NP , NM , and NF represent
the frequency of these classes occurrences within the number of measurements for
a specific parameter combination. The sum of NP , NM , and NF constitutes the
total number of measurements per parameter combination. This fitness function
definition follows the previous works [14,13]. In our case, the fitness values for
fP , fM , and fF are 1, 2, 10, respectively. These values differ slightly from prior
works, as we choose to create a more pronounced distinction in fitness value
between each fault class. This design decision emphasizes the significance of
any fail combination by assigning it a significantly higher fitness value. Before
evaluating the entire population, we conduct a sorting operation using a greedy
approach that considers the Manhattan distance between different locations of
the FI parameter combinations within the population as described in [14].

MA Hyperparameters. We employ a population of size 100, with an elite size
of 10. The initialization method employs a random sampling strategy while pre-
venting duplicates. For selection, we implement the roulette wheel method. We
use uniform crossover and a uniform mutation with a mutation probability of
0.05. Lastly, the Hooke-Jeeves algorithm is applied for local search. Note that
the hyperparameters in our experiments remain the same and have been taken
based on information from previous work [14].

GridMA Hyperparameters. We dedicated additional experiments to explor-
ing the hyperparameters of the GridMA algorithm, as it is a newly proposed
method. We performed a minor hyperparameter search focused on the grid size,
the population size, and the elite size of the MA. This section outlines the hy-
perparameters for the final version of the GridMA, whose results are shown in
Section 6. The MA instances running in each grid have the same hyperparame-
ters as described in Section 5.2, except for the mentioned hyperparameters that
we were able to decrease due to the reduced scope of exploration within each
grid region. Accordingly, the population size is set at 30 individuals, with an
elite size of 5. We divide the area in 4 × 4 grid, effectively conducting a total
of 16 MA algorithms during a single run of GridMA. Since we maintain the
total number of evaluations at 6 000 parameter combinations, each grid region
is limited to evaluating only 375 FI parameter combinations.

ES Hyperparameters. Evolution Strategy is a new approach, so we explored
several hyperparameters. Specifically, we assessed the algorithm’s performance
concerning the number of parents and offspring and the mutation probability.
While we quickly obtained reported results, further fine-tuning may improve
performance. The reported results are derived from ES employing 40 parent so-
lutions and 5 offspring with the initial generation of parents established through
random sampling. This algorithm uses the mutation operator as the sole source
of introducing solution modifications, so a higher mutation probability will be

Diversity Algorithms for Laser Fault Injection 11

necessary. We observed that the mutation probability of 0.4, much higher than
used with MA, produces the best results without converging to a purely random
search approach. The mutation probability applies to each specific dimension
within the parameter combinations. For example, with 40% probability, muta-
tion will occur from uniformly distributed values of the given parameter. Uni-
form mutation encourages more substantial modification, allowing more ‘jumps’,
particularly beneficial in the context of FI parameter search, as there are more
non-vulnerable areas than vulnerable ones. In Section 6.4, we explore several
modifications to the ES algorithm, including the Gaussian mutation approach,
which is more commonly utilized to ensure a higher probability of local changes.

6 Experimental Results

This section presents results from applying the described algorithms to the same
IC and laser bench. We aim to identify more locations with a fail outcome and
uncover multiple vulnerable regions. To achieve this, we avoid restricting our
search to a 2D location exploration, as it could overlook numerous parameter
combinations due to the need for fixed laser settings. To effectively assess and
identify algorithms that perform well for our objective, we compare them not
only based on the observed 5D parameter combinations with a fail outcome
but also on the number of unique locations (2D) and clusters. We executed
each algorithm five times and reported the average results to ensure statistically
relevant observations.

6.1 Number of Unique Parameter Combinations (5D)

We initially assess the number of unique parameter combinations with fail out-
comes, where we use percentages from total tested combinations as in previous
work for a more straightforward comparison. The results, shown in Table 1, re-
veal a comparable increase in fail responses between random search (RS) and
memetic algorithm (MA) to the reported results in [14,13,16]. The MA iden-
tified ≈ 55.6× more FI parameter combinations leading to fail response than
RS. In contrast, the two new methods, which provide greater diversity in the
population of the FI parameters, obtained a lower percentage of fail responses
compared to the MA. Compared to RS, we still find ≈ 12.4× more fails with
GridMA, and ≈ 7.8× more with the ES. This decrease in the percentage arises
from GridMA’s exploration of areas where vulnerabilities might not exist. The
ES, which relies solely on mutation, introduces more randomness than the MA,
leading to a decrease in the number of identified vulnerabilities. Moreover, each
parent evolved independently, resulting in more dispersed parameters and less
exploitation of sensitive locations. These features should enhance our current
objective but are shown to impact this metric negatively. Considering only the
number of unique 5D parameter combinations tested, MA outperforms the other
tested algorithms. However, the evolutionary approaches with diversity still offer
advantages and should be preferred over random search.

12 M. Krček et al.

Table 1: The average percentage of observed fault classes from all tested param-
eter combinations (6 000) using four different algorithms on the same IC. The
average is calculated over five runs.

RS MA GridMA ES

fail comb. 0.61% 33.84% 7.54% 4.77%

mute 1.23% 3.23% 4.44% 4.53%

mute pass 0.79% 1.21% 2.24% 2.83%

pass 97.36% 61.72% 85.79% 87.88%

6.2 Number of Unique Locations (2D)

In this work, we explore other metrics that could be used to evaluate the per-
formance of different parameter search algorithms employed for fault injection.
As we explain, MA converges commonly to one region sensitive to the utilized
FI type and exploits it, leading to many observed FI parameter combinations
with fail outcome. These parameter combinations come from a cluster of close
x-y locations that can be detected visually (see Figure 1b in [16] and Figure 2
in [21]). In security evaluation, there should be a certain confidence that not
many vulnerabilities are missed during the assessment of the IC. Also, we aim
to find multiple regions with vulnerabilities, so we explore algorithms that pro-
mote diversity as it should help produce vulnerabilities distant in the utilized
5D space. More importantly, we want distant solutions when looking at the ob-
served vulnerabilities’ location (x-y). Thus, in Table 2, we report the number of
unique parameter combinations with different fault classes and the number of
unique locations per fault class from those parameter combinations. The table
has two columns per algorithm, with the first showing the numbers from all the
tested parameter combinations and the second showing the number of unique
x-y locations. We also calculate what we refer to as location coverage, dividing
the number of unique locations (2D) by the number of total tested unique 5D
parameter combinations. This number shows the ratio of covered area within
the tested parameter combinations. The numbers are rather small if we look
at the absolute possible locations instead of relative to the tested parameters.
To put it into perspective, from all possible combinations (≈ 370 million), we
only test 0.00162% with 6 000 combinations. Unique tested locations from all
possible locations (2D) per algorithm are 4.27%, 1.67%, 2.02%, and 3.07% for
RS, MA, GridMA, and ES, respectively. We see an increase in the absolute lo-
cation coverage between different evolutionary approaches, but RS has the best
result. In the table, we report the relative location coverage as it provides an
easier comparison. The relation between the algorithms is the same when we
compare the absolute and relative location coverage. The results show that RS
has the best coverage with 97.95% as the algorithm has no guidance. The worst
location coverage is with MA (38.24%), supporting the motivation for this work.
GridMA and ES improve coverage with 46.36% for GridMA and 70.29% for ES.

Diversity Algorithms for Laser Fault Injection 13

Location coverage can serve as a measure of the algorithm’s confidence in not
overlooking vulnerable areas. Comparing the unique locations with fail response
between MA, GridMA, and ES, we see that the algorithms find a similar num-
ber of unique locations with fail - around 48, which is around 30% more than
with RS (36.4). While similar in the number of unique locations with fail out-
come, GridMA found the most unique locations on average with higher location
coverage than MA. This improvement over MA is not as significant as the differ-
ence in performance between the evolutionary approaches and RS. Still, it shows
the potential of diversity algorithms for security evaluation as they provide bet-
ter coverage and thus confidence in identified vulnerabilities while delivering a
similar improvement over RS in the number of unique, vulnerable locations.

Table 2: The average number of unique parameter combinations and x-y loca-
tions per fault class, and in total for all four algorithms. The average is calculated
over five runs.

RS MA GridMA ES

Nb. comb. | Nb. loc. 6000 5877.2 6000 2294.6 6000 2781.4 6000 4217.4

Location coverage 0.9795 0.3824 0.4636 0.7029

fail comb. 37 36.4 2030.2 48.4 452 49.2 285.6 47

mute 74 73 194 60.4 266.2 70.4 271.6 93.2

mute pass 47.4 47 72.8 45.8 134.6 61.4 169.8 67.6

pass 5841.6 5723.4 3703 2218.8 5147.2 2704.8 5273 4088.6

6.3 Number of Location Clusters

Finding distant, vulnerable locations is considered more valuable as the smaller
regions could further be explored with an exhaustive search on a significantly re-
duced search space [24]. Thus, we compare the algorithms based on the number
of observed location clusters with a specific fault class. We calculate the number
of clusters using the Mean Shift clustering algorithm. The bandwidth hyperpa-
rameter for the Mean Shift algorithm defines the window/region from which the
mean is calculated. We executed the clustering with different bandwidth values,
precisely 0.1, 0.2, 0.3, 0.4. With a bandwidth of 0.3, the region was large enough
to categorize all the x-y points as one cluster for all fault classes. Table 3 shows
the number of clusters averaged over five runs with bandwidth set to 0.1. Using
the same bandwidth ensures the number of clusters is comparable as the same
window size is considered. Note that if the number of clusters is more signifi-
cant, the vulnerabilities are observed in more distant and distinct locations on
the target, which is the desired objective. The results show that GridMA finds
the most clusters with fail outcome, implying that the observed locations are
more distant than other algorithms. GridMA and ES obtain a similar number
of clusters on average, closely followed by RS. MA, on the other hand, clearly

14 M. Krček et al.

Table 3: The number of clusters based on Mean Shift clustering algorithm over
the unique x-y locations per fault class. The bandwidth size is 0.1. The number
of clusters is averaged over five runs.

RS MA GridMA ES

fail comb. 7.8 5.8 8.2 8

mute 11.4 8.6 9.6 10.6

mute pass 9.6 8.4 10.8 10.2

pass 41.8 37 34.2 33.8

shows a smaller number of clusters observed. These results further emphasize the
benefits of diversity methods for security evaluation and finding multiple regions
sensitive to the utilized FI type. We checked the clustering model’s predictions
visually for several cases to ensure that classified clusters are meaningful. While
some more distinct locations were still clustered together using this bandwidth,
the predicted clusters seemed reasonable. Moreover, we use the same bandwidth
to ensure comparable results, as relative correlation is essential.

6.4 Further Exploring the Evolution Strategy Algorithm

The results show that evolutionary algorithms perform better than random
search when considering the number of unique FI parameter combinations and
unique locations with fail response. Considering the number of clusters, RS was
better than MA, but the diversity algorithms were better overall. Thus, while
the performance was not significantly improved using the diversity algorithms
considering these metrics, the observed minor improvements show promising re-
sults. Therefore, we deem it necessary to explore these algorithms more within
the scope of future work. In this section, we explore several ES versions to obtain
enhanced performance.

We test the ES algorithm with a more common Gaussian mutation, which
uses the Gaussian distribution to set the probabilities of each of the parameter
values getting selected. The mutation probability will then be used as a standard
deviation σ parameter, while the parameter’s current value will be the mean µ.
This mutation makes local changes more likely, while the more distant signifi-
cant changes have a low probability of occurring, but not zero. We refer to this
version of ES as ES gauss. Another modification we test is the initialization
method, where we use a grid approach to set the parents of ES in distinct re-
gions over the target area, considering only the location parameters. This way,
the location parameters within the initial population are well-distributed, and
the evolution should have a better chance of observing more distant and dis-
tinct regions with fail response. This version of ES is named ES grid. We then
combine both modifications into a third version of ES referred to as ES grid
gauss. Lastly, we execute a GridES, similar to GridMA, where we run ES within
each grid cell over the target area. The grid is split in the same manner as for

Diversity Algorithms for Laser Fault Injection 15

GridMA. We ran the GridES with the ES grid version as it was the best consid-
ering the number of clusters, and it performed similarly to the best ES versions
considering the other two metrics. Note that the reported results from the new
ES versions are mean values from three runs, while the previous experiments
ran five times. From the results in Table 4, considering the number of unique
FI parameter combinations with fail response, the initial ES version per-
forms the best on average, followed by the ES grid version. The versions with
Gaussian mutation perform more closely to the results observed with random
search. However, applying grid initialization for the version with Gaussian muta-
tion did help increase the number of observed vulnerabilities. Still, using uniform
mutation proved better within these experiments. Similar to ES gauss and ES
grid gauss, GridES obtained a similar number of faults as RS. Considering the

Table 4: The average percentage of observed fault classes from all tested param-
eter combinations (6 000) using five different versions of ES algorithm on the
same IC. The average is calculated over three runs.

ES
gauss

ES
grid

ES
grid gauss

GridES
grid

fail comb. 0.61% 4.19% 0.82% 0.82%

mute 1.83% 6.31% 2.02% 1.68%

mute pass 1.17% 2.85% 1.08% 0.94%

pass 96.39% 86.66% 96.08% 96.57%

number of unique locations with fail response, versions ES grid and ES grid
gauss were better than the initial ES version, as seen in Table 5. On average,
the number of unique locations is now closer to the best GridMA algorithm, and
it remains in the scope of previously observed improvements over RS using any
of the evolutionary approaches. Considering this metric, ES gauss and GridES
perform similarly to RS. Gaussian mutation increases the location coverage to
the same level as RS, as evident from the results with the ES gauss and ES
grid gauss. Finally, we consider the number of clusters with fail response in
Table 6, and the ES grid version found 9 clusters on average, while the GridMA,
had 8.2 clusters which was the previous best result. We also note that all the
ES versions observed more clusters than the initial version, and GridES had
the same number on average. Thus, we improved the initial ES, with the cru-
cial modification being the grid initialization. Gaussian mutation provided more
randomness in the location parameters, which led to enhanced location coverage
but less vulnerable parameter combinations and locations. However, interest-
ingly, all ES versions provided more clusters than RS and MA, demonstrating
the potential of diversity methods.

16 M. Krček et al.

Table 5: The number of unique parameter combinations and x-y locations per
fault class, and in total for all four algorithms. The average is calculated over
three runs.

ES gauss ES grid ES grid gauss GridES grid

Nb. comb. | Nb. loc. 6000 5869 6000 4235.5 6000 5857.3 6000 4322

Location coverage 0.9782 0.7059 0.9762 0.7203

fail comb. 36.3 36 251 48 49 48.7 48.7 35.7

mute 110 107.3 378.5 124.5 121.3 121 101 78

mute pass 70 69.7 171 86.5 64.7 64.7 56.3 47

pass 5783.7 5666 5199.5 4075 5765 5632 5794 4216.3

Table 6: The number of clusters based on the Mean Shift clustering algorithm
over the unique x-y locations per fault class. The bandwidth size is 0.1. The
number of clusters is averaged over three runs.

ES
gauss

ES
grid

ES
grid gauss

GridES
grid

fail comb. 8.3 9 8.3 8

mute 11.3 10 9.6 10.3

mute pass 9 12 10 9.3

pass 32.3 31.5 27.6 40

7 Conclusions and Future Work

Previous works show the benefits of algorithms such as memetic algorithm in
finding more FI parameter combinations with vulnerabilities compared to com-
monly used random search. However, the observed results commonly come from
a single sensitive region, and during security evaluation, we do not want to ne-
glect possibly exploitable vulnerabilities. Thus, we propose diversity algorithms
that promote diversity in the population of evolutionary algorithms and test
the GridMA and Evolution Strategy and its variations. While we evaluate al-
gorithms considering the number of unique FI parameter combinations as in
related work, we additionally assess algorithm success based on the number of
unique locations (x-y) and clusters with faults as two additional metrics that
better align with the objective of finding multiple vulnerable regions. MA per-
forms best only when the number of faults is concerned. However, GridMA and
ES with grid initialization and Gaussian mutation (ES grid gauss) found more
unique locations with faults. Nonetheless, all evolutionary algorithms, including
MA, found around 30% more unique locations with fail responses than RS, per-
forming similarly. Considering the number of clusters, MA performed the worst,
while ES with grid initialization (ES grid) had the most clusters, followed by the
GridMA algorithm and other ES versions. This work shows that the diversity ap-
proach helps find more distant locations with the desired outcome. However, the
improvements are less significant than the difference between evolutionary algo-

Diversity Algorithms for Laser Fault Injection 17

rithms and RS regarding the number of FI parameter combinations. Thus, while
this work showcases the potential enhancement using the diversity approaches,
future work could consider (µ, λ)-ES and more advanced diversity algorithms to
provide more significant improvements.

References

1. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: Theory, practice, and countermeasures. Proceedings of the
IEEE 100(11), 3056–3076 (2012)

2. Beyer, H.G., Schwefel, H.P.: Evolution strategies–a comprehensive introduction.
Natural computing 1, 3–52 (2002)

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems (1997)
4. Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub, M.: Glitch

it if you can: parameter search strategies for successful fault injection. In: In-
ternational Conference on Smart Card Research and Advanced Applications. pp.
236–252. Springer (2013)

5. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space
analysis. IEEE Transactions on pattern analysis and machine intelligence 24(5),
603–619 (2002)

6. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Pri-
mas, R.: Sifa: Exploiting ineffective fault inductions on symmetric cryptogra-
phy. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, Issue 3, 547–572
(2018). https://doi.org/10.13154/tches.v2018.i3.547-572, https://tches.iacr.

org/index.php/TCHES/article/view/7286
7. Fuhr, T., Jaulmes, E., Lomné, V., Thillard, A.: Fault attacks on aes with faulty

ciphertexts only. In: Proceedings of the 2013 Workshop on Fault Diagnosis and
Tolerance in Cryptography. p. 108–118. FDTC ’13, IEEE Computer Society,
USA (2013). https://doi.org/10.1109/FDTC.2013.18, https://doi.org/10.1109/
FDTC.2013.18

8. Hooke, R., Jeeves, T.A.: “ direct search” solution of numerical and statistical prob-
lems. J. ACM 8, 212–229 (1961)

9. Hutter, M., Schmidt, J.M.: The temperature side channel and heating fault attacks.
In: International Conference on Smart Card Research and Advanced Applications.
pp. 219–235. Springer (2013)

10. Kim, C.H., Quisquater, J.J.: Fault attacks for crt based rsa: New attacks, new
results, and new countermeasures. In: IFIP International Workshop on Information
Security Theory and Practices. pp. 215–228. Springer (2007)

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Annual international
cryptology conference. pp. 388–397. Springer (1999)

12. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: Proceedings of the 16th Annual International Cryptology Con-
ference on Advances in Cryptology. p. 104–113. CRYPTO ’96, Springer-Verlag,
Berlin, Heidelberg (1996)

13. Krček, M., Ordas, T., Fronte, D., Picek, S.: The more you know: Improving laser
fault injection with prior knowledge. In: 2022 Workshop on Fault Detection and
Tolerance in Cryptography (FDTC). pp. 18–29. IEEE (2022)

14. Krček, M., Fronte, D., Picek, S.: On the importance of initial solutions selection in
fault injection. In: 2021 Workshop on Fault Detection and Tolerance in Cryptog-
raphy (FDTC). pp. 1–12 (2021). https://doi.org/10.1109/FDTC53659.2021.00011

https://doi.org/10.13154/tches.v2018.i3.547-572
https://tches.iacr.org/index.php/TCHES/article/view/7286
https://tches.iacr.org/index.php/TCHES/article/view/7286
https://doi.org/10.1109/FDTC.2013.18
https://doi.org/10.1109/FDTC.2013.18
https://doi.org/10.1109/FDTC.2013.18
https://doi.org/10.1109/FDTC53659.2021.00011

18 M. Krček et al.

15. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. vol. 1, pp. 281–297. Oakland, CA, USA (1967)

16. Maldini, A., Samwel, N., Picek, S., Batina, L.: Genetic algorithm-based electro-
magnetic fault injection. In: 2018 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC). pp. 35–42. IEEE (2018)

17. Moradi, M., Oakes, B.J., Saraoglu, M., Morozov, A., Janschek, K., Denil, J.: Ex-
ploring fault parameter space using reinforcement learning-based fault injection.
In: 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W). pp. 102–109. IEEE (2020)

18. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: towards a fault model on a 32-bit microcontroller. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography. pp. 77–88. IEEE
(2013)

19. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial
arts - towards memetic algorithms. Caltech Concurrent Computation Program (10
2000)

20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

21. Picek, S., Batina, L., Buzing, P., Jakobovic, D.: Fault injection with a new flavor:
Memetic algorithms make a difference. In: International Workshop on Constructive
Side-Channel Analysis and Secure Design. pp. 159–173. Springer (2015)

22. Picek, S., Batina, L., Jakobović, D., Carpi, R.B.: Evolving genetic algorithms for
fault injection attacks. In: 2014 37th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO). pp. 1106–
1111. IEEE (2014)

23. Picek, S., Perin, G., Mariot, L., Wu, L., Batina, L.: Sok: Deep learning-based
physical side-channel analysis. ACM Computing Surveys 55(11), 1–35 (2023)

24. Rais-Ali, I., Bouvet, A., Guilley, S.: Quantifying the speed-up offered by genetic
algorithms during fault injection cartographies. In: 2022 Workshop on Fault De-
tection and Tolerance in Cryptography (FDTC). pp. 61–72. IEEE (2022)

25. Sedaghatbaf, A., Moradi, M., Almasizadeh, J., Sangchoolie, B., Van Acker, B.,
Denil, J.: Delfase: A deep learning method for fault space exploration. In: 2022 18th
European Dependable Computing Conference (EDCC). pp. 57–64. IEEE (2022)

26. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Inter-
national workshop on cryptographic hardware and embedded systems. pp. 2–12.
Springer (2002)

27. Werner, V., Maingault, L., Potet, M.L.: Fast calibration of fault injection equip-
ment with hyperparameter optimization techniques. In: International Conference
on Smart Card Research and Advanced Applications. pp. 121–138. Springer (2021)

28. Wu, L., Ribera, G., Beringuier-Boher, N., Picek, S.: A fast characterization method
for semi-invasive fault injection attacks. In: Cryptographers’ Track at the RSA
Conference. pp. 146–170. Springer (2020)

	Diversity Algorithms for Laser Fault Injection

