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Abstract. For years, Bitcoin miners put little effort into adopting sev-
eral widely-acclaimed block acceleration techniques, which, as some ar-
gued, would secure their revenues. Their indifference inspires a theory
that slower block propagation is beneficial for some miners. In this study,
we analyze and confirm this counterintuitive theory. Specifically, by mod-
eling inadvertent slower blocks, we show that a mining coalition that
controls more than a third of the total mining power can earn unfair rev-
enue by propagating blocks slower to outsiders. Afterward, we explore
the strategies of an attacker that consciously exploits this phenomenon.
The results indicate that an attacker with 45% of the total mining power
can earn 58% of the total revenue. This attack is alarming as it is equally
fundamental but more stealthy than the well-known selfish mining at-
tack. At last, we discuss its detection and defense mechanisms.
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1 Introduction

Nakamoto consensus (NC), implemented in Bitcoin [23] and hundreds of subse-
quent digital currencies [20], is the first and most influential protocol to maintain
an inalterable ledger without relying on any prior knowledge of the participants’
identities. The ledger, called the blockchain, is organized as a chain of blocks; each
block contains a set of transactions. NC’s participants, called miners, compete for
the right to extend the ledger by solving a cryptographic puzzle, generated from
the blockchain’s latest block and a group of new transactions. The puzzle-solving
process is called mining. A successful miner broadcasts the puzzle solution and
the transactions as a new block, hoping that other miners would accept the block
in their blockchains, so that the miner is entitled to a fixed block reward. When
a block is mined during another one’s propagation, these blocks may extend the
same “latest block” and the blockchain thus forks into multiple chains. During a
fork, NC prescribes miners to work on the main chain, which is the most com-
putationally challenging one to produce—usually the longest one. When several
chains are of equal “length”, miners should work on the first-received one. We call
⋆ Corresponding author.
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this situation a tie. Eventually, all miners would adopt the same longest chain,
and blocks outside the chain are called orphaned and receive no reward.

Intuitively, the first-received policy incentivizes all miners to accelerate the
propagation of their own blocks, because an accelerated block (1) is less likely
to encounter a tie, and thus is less likely to be orphaned, and (2) could reach
more miners before a slower competitor, and thus is more likely to win a tie.
This intuition is stated or implicitly acknowledged in several early [5, 6] and
recent [19, 27] studies. Bitcoin developers also released Fast Internet Bitcoin
Relay Engine (FIBRE) [1] in 2016 to help the miners distribute blocks as fast
as possible among each other.

However, contrary to the common expectation, a significant proportion of
Bitcoin’s mining power did not embrace FIBRE to avoid ties. This can be
seen from the stable 0.2% orphan rate, i.e., the percentage of orphaned blocks,
between 2015 and mid-2017 [8, 25]. The orphan rate dropped rapidly after-
ward thanks to the efforts of the network participants, i.e., nodes, rather than
the miners. Specifically, in July 2017, the majority of nodes upgraded their
clients to advocate their unwillingness for Bitcoin to split into multiple cryp-
tocurrencies [4]. Such a massive-scale upgrade coincidentally deployed Compact
Blocks [13], a network-level block propagation acceleration technique, which low-
ers the 3-second average latency for a new block to propagate to 50% of nodes to
500 milliseconds [14]. As a result, orphaned blocks were reduced from one every
three to four days to several per year [8].

Maxwell [21] and several other researchers [11, 25] proposed a theory to ex-
plain the inconsistency between the miners’ presumed rationale to accelerate
their blocks’ propagation and their indifference in reality. In this theory, slower
block propagation might benefit larger miners, as they enjoy a headstart in find-
ing the next block. This theory is not only counterintuitive—miners who acceler-
ate their blocks may find themselves in a more disadvantageous situation—but
also subversive to our understanding of NC’s security—a system may be ex-
periencing systemic unfairness even without any observable attacks. However,
without a quantitative analysis of this phenomenon, whether or when can these
seemingly inadvertent slow blocks profit their miners remains inconclusive.

In this paper, we address this situation by formally modeling the propaga-
tion of these slow blocks. We start by confirming this possibly inadvertent but
systemic unfairness and computing its boundary conditions with a Markov pro-
cess (MP), and then integrate Bitcoin’s network parameters into the MP and
evaluate against the boundary conditions. Further, we model a strategic adver-
sary who consciously exploits this phenomenon for profit with a Markov decision
process (MDP), which reveals more intricacies of NC’s security.3 In particular,
our contributions include:
Confirming the Systemic Unfairness Caused by Slow Blocks. To confirm
Maxwell’s theory, we model the mining and block propagation process with some
blocks slower than others with an MP. The MP is simple: the slow blocks’ miner,
termed D-miner for “delay”, does not employ any strategic behavior based on
3 Code available at https://github.com/Mitsuhamizu/delayed-miner-reward.

https://github.com/Mitsuhamizu/delayed-miner-reward
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the status of the blockchain. Such a simple MP allows us to test the possibility
of systemic unfairness even when all miners are benign.

The results show that slow blocks do raise D-miner’s revenue share within a
certain range of parameters. Specifically, a D-miner with a mining power share
ρ4 can gain an unfair profit when ρ > (1− γ)/(2− γ), where γ is the proportion
of other mining power that works on the slow block during a tie. The profitable
threshold (1 − γ)/(2 − γ) is less than 0.5 as long as γ > 0, contradicting the
intuition that all miners should accelerate their blocks. Moreover, in line with
the selfish mining attack [18], the D-miner’s unfair profit grows superlinearly with
ρ, which incentivizes rational miners to join their forces and form a coalition,
damaging the network’s decentralized structure, just like Maxwell predicted [21].

Evaluating the Boundary Conditions with Bitcoin’s Network Param-
eters. As the key parameter γ in our MP is not directly measurable, our MP
cannot be plugged right into reality and answer questions regarding the inad-
vertent D-miner with a given ρ, including (1) whether it should produce slow
blocks (or propagate its blocks slower), and (2) what is the optimal delay. We
thus extend our model so that γ can be “dissected” and computed from measur-
able data. This extension allows us to incorporate the measurement results from
the Bitcoin network [2, 25], and thus answer the aforementioned questions.

The extended model indicates that in the pre-Compact-Block Bitcoin, a D-
miner profits more by delaying its blocks with ρ > 0.33. The optimal additional
delay grows roughly linearly from 0 when ρ = 0.33 to 6.8 seconds when ρ = 0.49.

Quantifying the Damage of Deliberate Attacks. Given that an inadver-
tent D-miner can make an unfair profit, likely, a strategic D-miner can further
raise the profit by acting upon the blockchain’s status. Rather than waiting for
the slow blocks to propagate naturally like an inadvertent D-miner, here the
adversary may push the blocks to the receivers when convenient. A fundamental
difference between this slow block attack and selfish mining, where the adversary
delays broadcasting the blocks as long as necessary to invalidate as many other
miners’ blocks as possible, is that our adversary never “delays” a block longer
than a fixed maximum duration. In other words, the natural block propagation
delay caps the delay time of all adversary blocks. Although such a constraint
lowers the adversary’s revenue, it also renders the attack undetectable via the
traditional indicators of selfish mining [17], and thus does not risk causing a drop
in the cryptocurrency’s price. Therefore, we can regard the slow block attack as
a stealthier, hence “safer” alternative to selfish mining.

We model the slow block attack with an MDP, where the adversary can
choose what to do when one or more blocks are mined before a slow block
finishes propagation. When ρ < 0.42, the optimal strategies output by our MDP
are either honest or naive, i.e., to publish enough blocks to cause a tie with the
honest public chain whenever possible. For ρ ≥ 0.42, the strategy becomes more
aggressive: the adversary may keep mining on its chain even when it is several
blocks shorter than the honest chain. We also observe a rapid increase in the

4 We list the notations in this paper in Table 3 of Appendix C.
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unfair profit in this region. When ρ = 0.45, the adversary gains revenue 2% to
26% higher than mining honestly, depending on the maximum delay.
Discussing Countermeasures. At last, we discuss how to detect and/or pre-
vent the slow block attack. All the technical solutions require the collective effort
of the nodes and the miners. Therefore the core issue at hand is to raise aware-
ness of the stealthiness and fundamentality of the attack. Consequently, we call
for the community to rethink the implicit assumption that an NC system, or any
other system, is fair and safe when there is no observable attack, and to replace
the widely-believed “universal” 50% security threshold with a value matching the
system’s actual network condition.

2 Block Propagation: the Faster, the Better?

2.1 Nakamoto Consensus

NC is among the most influential and actively studied consensus protocols since
the inception of Bitcoin. It is implemented in hundreds of subsequent cyptocur-
rencies [20], including Ethereum, the cryptocurrency with the second largest
market capitalization, before it switches to another protocol in September 2022.
Henceforth we use Ethereum to denote the cryptocurrency before the switch.

Each block in NC contains (1) its height—distance from the hard-coded gen-
esis block, (2) the hash value of the parent block, (3) a set of transactions, (4)
a timestamp when the block is mined, and (5) a nonce. Embedding the parent
hash ensures that a miner chooses which chain to mine on before starting to
mine. To construct a valid block, miners work on finding the right nonce so that
the block hash is smaller than the difficulty target. In Bitcoin, this target is ad-
justed every 2016 blockchain blocks so that on average one block is appended to
the blockchain in ten minutes. In Ethereum, the target is slightly adjusted per
block, leading to an average block interval of 13 seconds [16].

NC prescribes miners to publish blocks the moment they are found. Blocks
of the same height are competing blocks. Eventually, all but one of the competing
blocks are orphaned, i.e., discarded by all miners, and receive no reward.

2.2 Selfish Mining

The most influential attack against NC is selfish mining, first analyzed by Eyal
and Sirer [18] and later generalized to a family of strategies [24,26,28]. In these
attacks, a selfish miner keeps discovered blocks secret and mines on top of them,
hoping to gain a larger lead on the public chain of honest blocks mined by other
miners. The selfish miner publishes the secret chain when the public chain catches
up, or right before that, to invalidate as many honest blocks as possible.

Selfish mining is one of the most fundamental attacks against NC as it allows
the attacker to gain a higher percentage of block rewards than its mining power
share. As the attacker’s revenue rises superlinearly with the mining power, ratio-
nal miners are incentivized to attack collectively for higher profits. This situation
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not only damages the system’s decentralized structure but also raises the success
rates of various other attacks.

Luckily, the community generally believes that selfish mining has never hap-
pened in Bitcoin as it is easily detectable [17]. Essentially, as the attacker cannot
predict when the next honest block will be mined—hence when the secret block
should be released, a secret block’s timestamp is usually inconsistent with its
releasing time, which would expose the attacker. As we shall see, the slow block
attack undermines NC’s security in the same way but is more difficult to detect.

2.3 Two Conflicting Opinions

The absence of selfish mining is often attributed to its detectability, as visible
attacks on a cryptocurrency often cause sharp declines in its price, resulting in a
financial loss larger than the attacker’s gain. This argument is termed exchange
rate rationality by Bonneau et al. [9]. Given that rational miners would not risk
being detected to mine selfishly, whether due to exchange rate rationality or
some other reasons, people disagree on whether all miners are incentivized to
accelerate the propagation of their own blocks.

On the one hand, it is a general belief that although it might be irrational
to propagate other miners’ blocks, all miners would accelerate their own blocks’
propagation, to avoid ties or to raise the probability of winning potential ties
by being the first-received ones. This argument is first proposed by Babaioff as
early as 2012 [5] and has echoed for a decade [6, 19,27].

On the other hand, observing the slow adoption of FIBRE, Maxwell men-
tioned in a talk in 2017 that slower block propagation might benefit larger min-
ers [21]. He further suspected that this phenomenon, as in selfish mining, would
drive miners to form a coalition that propagates blocks immediately to insiders
but slower to outsiders. Likewise, Neudecker and Hartenstein [25] speculated
that “the block propagation delay gives the miner of the last block an advantage
in finding the subsequent block, until other miners have received the block.” Cao
et al. also mentioned in [11] that a slower block may cause some miners to “waste
hashing power on an already solved cryptographic puzzle”.

The conflict between these two opinions has profound implications for NC’s
security. If the former is true, as long as no mining coalition controls more than
half of the mining power, NC systems are seemingly incentive compatible in
the absence of detectable selfish mining. Otherwise, we need to reevaluate the
commonly-believed 50% security threshold and the effectiveness of exchange rate
rationality in securing the network. We aim to resolve these conflicting views by
quantitatively analyzing the slower block propagation behavior.

3 Modeling the Inadvertent D-Miner

Our analysis starts with the simplest case, where the slow blocks’ miner, despite
the (possibly inadvertent) delay, strictly follows NC. First, we discuss the poten-
tial causes of such a delay. We then introduce our threat model and how we model
such a D-miner with an MP, whose results confirm the systemic unfairness.
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3.1 The Potential Causes of the Longer Block Propagation Delay

The delay may reside in multiple phases in a block’s lifecycle.
Pre-propagation. Before broadcasting a block, the miner processes it inter-
nally. Such processing includes (1) combining the puzzle solution with the trans-
actions and (2) sending the block to the “guard nodes” [22], who are in charge of
the broadcast. Both steps may be time-consuming when the guard nodes crash
or when the mining pool communication software does not behave as expected.
In-propagation. Two reasons may lead to in-propagation delay. First, the miner
may broadcast from some poorly-connected nodes, with few connections and
low bandwidth. Second, the block itself may take longer to synchronize, perhaps
because it is larger than the other blocks. Note that Compact Blocks (CBs),
which hope to reduce the propagation latency by optimistically not transferring
the transactions by default, do not eliminate the second case. This is because
CBs accelerate a block’s propagation only when all its transactions are already
synchronized when the block is mined. If some transactions are new, or only
known to the block miner, for each hop of the block’s propagation, an extra
round trip is required to query these transactions [13].
Post-propagation. After receiving a new block, miners should verify the va-
lidity of its transactions before starting to work on it, to avoid wasting time on
an invalid block. This can be time-consuming when some transactions refer to
a large number of previous transactions stored physically distantly from each
other on the hard disk [10].

An inadvertent delay may happen at any phase. However, for a malicious D-
miner, pre-propagation is the most convenient phase, because it does not require
a large or slow-to-verify block, allowing the attacker to, when convenient, stop
the delay and push the block to the receivers before the competing blocks.

3.2 The Threat Model for Our MP

We choose a weak yet realistic threat model to showcase that systemic unfairness
exists even without any sophisticated attacks. Time is continuous and mining is
modeled as a Poisson process with an average block interval T . Accordingly, the
probability that all miners find exactly n blocks in t seconds is (t/T )n/n! ·e−t/T .
There is only one D-miner with mining power share ρ < 1, whose blocks are
delayed up to D seconds. We do not prescribe ρ < 0.5 to cover the case that
several large mining pools propagate blocks quickly among each other but slowly
to the outside world. All other miners, who control mining power share µ (where
µ + ρ = 1) broadcast their blocks immediately, which cannot be delayed by
the D-miner. Since there is no need to distinguish these other miners, we use
the singular form “the undelayed miner” for simplicity. Both ρ and µ remain
unchanged throughout the process. All miners follow the longest chain rule, and
each fork lasts at most one block. This assumption is reasonable because all
Bitcoin forks measured by Neudecker and Hartenstein [25] are one-block long.
We neglect transaction fees and only consider block reward in this paper, as the
former only makes up 1% of the miners’ rewards in Bitcoin [7].
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Fig. 1: Markov model with an inadvertent D-miner. The double-circled nodes
denote the blockchain’s states. The directed edges denote the transitions, whose
probabilities are written on the right.

3.3 Our Markov Process

MP is commonly used to model the mining process without any strategic be-
haviors. In line with previous work [18], the blockchain’s statuses are encoded
as states, i.e., the double-circled nodes in Fig. 1, whose transitions are triggered
by two kinds of events: (1) a new block is mined, or (2) D seconds has passed.

There are three states, named after the D-miner’s lead to the undelayed
miner. In state 0, both miners work on the same block. In state 1, the D-miner has
just found a block and is delaying it. Here the D-miner is the only one working on
this latest block. In state 0’, the blockchain is forked, and the undelayed mining
power may be split: some, with a proportion γ, works on the D-miner’s block,
while the other 1− γ works on the latest block mined by the undelayed miner.

We now describe the transitions, starting from state 0. If the undelayed miner
finds a block (with probability µ, hereafter referred to as “w.p.”), the system stays
at state 0, and the undelayed miner gets a block reward ( 1 ). Otherwise, the
next block is mined by the D-miner (w.p. ρ), who starts the delay and the system
enters state 1 ( 2 ).

Three transitions may happen at state 1. If no block is mined in D seconds,
the D-miner releases the block, gets a block reward, and then the state returns to
0 ( 3 ). As mining is modeled as a Poisson process, 3 happens with probability
e−λ, where λ = D/T is the expected number of blocks mined in these D seconds.
If there are new blocks and the first one is mined by the D-miner (w.p. ρ(1−e−λ)),
the previous slow block is broadcast immediately, issuing one reward to the D-
miner, which starts delaying the new block, transiting the state to 1 again ( 4 ).
If there are new blocks and the first one is mined by the undelayed miner (w.p.
µ(1− e−λ)), the blockchain is forked and the state transits to 0’ ( 5 ).

Three transitions may happen at state 0’; all end with state 0. If the D-miner
finds the next block (w.p. ρ), it wins the tie, claiming two rewards ( 6 ). If the
undelayed miner finds a block on the D-miner’s block (w.p. µγ), each miner
gets one reward ( 7 ). Otherwise, if the undelayed miner finds a block on the
undelayed block (w.p. µ(1− γ)), the undelayed miner gets two rewards ( 8 ).
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3.4 State Probabilities and Relative Revenues

Stationary Distribution. We derive the following equations from Fig. 1, where
p0, p1, and p0′ are the stationary probability of states 0, 1, and 0’, respectively:

p0 = p0µ+ p1e
−λ + p0′

p1 = p0ρ+ p1(1− e−λρ)

p0′ = p1(1− e−λ)µ

1 = p0 + p0′ + p1

. (1)

Solving Eqn. (1) gives us these probabilities:

p0 = (µ+ ρe−λ)/(1 + µρ+ ρ2e−λ) ,

p0′ = ρµ(1− e−λ)/(1 + µρ+ ρ2e−λ) ,

p1 = ρ/(1 + µρ+ ρ2e−λ) .

(2)

Relative Revenue. The revenues for the D-miner and the undelayed miner,
denoted rd and ru, can be computed from the transition probabilities among the
states and their corresponding rewards:

rd = 2p0′ρ+ p0′µγ + p1(1− e−λ)ρ+ p1e
−λ ,

ru = p0µ+ 2p0′µ(1− γ) + p0′µγ .
(3)

Combining Eqn. (2) and (3) allows us to compute the relative revenue, i.e.,
the proportion of the D-miner’s revenue among all the rewards:

Rd =
rd

rd + ru
= ρ(e−λ + (1− e−λ)(ρ2γ − 2ρ2 − 2ργ + 3ρ+ γ)) . (4)

Equation (4) shows that Rd is a function of three inputs ρ, γ, and λ. We define
the unfair revenue as Rd − ρ, i.e., the difference between Rd and the D-miner’s
fair reward share, and plot how it varies with these inputs in Fig. 2.
Analysis. Here are three patterns from Fig. 2 and their underlying reasons.

Observation 1. The D-miner earns unfair revenue with a large enough ρ.

This confirms the systemic unfairness, that propagating blocks slower can be
more profitable than mining honestly, despite that the forks are no more than
one block long. Even when γ = 0, i.e., no undelayed mining power works on the
D-miner’s block in a tie, the D-miner can still earn an unfair profit with ρ > 0.5.

Essentially, the unfair revenue comes from orphaning the undelayed miner’s
blocks in ties. The D-miner earns a profit if more than µ percentage of orphaned
blocks are mined by the undelayed miner, but suffers a loss otherwise.

Observation 2. Whether the D-miner earns unfair revenue depends only on ρ
and γ, not on λ.
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Fig. 2: Overview of unfair revenue for the D-miner.

To quantify when the D-miner earns an unfair profit, we solve the inequality
Rd > ρ, leading to the condition ρ > (1−γ)/(2−γ). Interestingly, this condition
does not involve the delay duration λ, because here the D-miner’s profitability
depends only on the probability of winning ties, which further relies on ρ and γ,
but not on the frequency of ties, which relies on ρ and λ.

The multifunctionality of ρ also explains why when γ and λ are fixed, the
D-miner’s unfair revenue first decreases, and then increases with a growing ρ.
Specifically, when ρ is small, the D-miner loses almost all ties, thus increasing
ρ results in a higher loss as it raises the frequency of ties; when ρ grows larger,
the D-miner wins more ties, thus profiting more from the ties.

Observation 3. When γ and ρ are fixed, the D-miner’s profit/loss amplifies
with a larger λ.

A larger λ means a higher frequency of ties, amplifying the D-miner’s profit/loss.

4 Are Inadvertent Slow Blocks Profitable in Reality?

Results from the previous section cannot be applied to reality yet, as, unlike ρ
and λ, which are either known or controllable/measurable, the key parameter γ
is not only unknown but also not directly measurable. Therefore, in this section,
we extend our model by dissecting γ with real-world data, which enables us to
quantify the profitability of an inadvertent D-miner in the Bitcoin network.

4.1 Extracting the D-γ Relationship in the Bitcoin Network

Intuitively, when both competing blocks propagate naturally, the distribution of
mining power working on each block—other than their own miners—is mainly
decided by the interval between their announcements. This intuition guides us
to express γ as a function of D, which consists of two tasks: (1) express γ as a
function of the headstart, i.e., the (equivalent) announcement interval, (2) express
the headstart as a function of D.
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Headstart to γ. We can only learn the relation between the headstart ths and
γ from a series of (ths, γ) data points, where ths measures how long the block is
announced before its competitor, in seconds. We fetch the ths values directly from
Neudecker and Hartenstein’s measurement study [25], which covers all Bitcoin
forks between 2015 and 2017. Although γ is not directly measurable, we can
estimate it by extending our model. According to [25], a miner wins a tie with
probability Pwin = 3.07×10−5ths+0.63. On the other hand, P′

win = ρ+γ(1−ρ) in
our model, which is the combination of transitions 6 and 7 in Fig. 1. Assuming
P′
win = Pwin, we have γ = (3.07× 10−5ths + 0.63− ρ)/(1− ρ). By inputting the

miners’ then-mining-power share—fetched from IntoTheBlock [2]—as ρ into this
equation, we now have the estimated γ for each data point.

To fit these (ths, γ) data into a curve, we introduce an additional heuristic
that γ = 0.5 when ths = 0. This is reasonable as two simultaneously-announced
competing blocks should have an equal chance to be selected by a third party. Not
surprisingly, a linear equation γ(ths) = 6.37× 10−2ths + 0.5 for ths ∈ [−7.8, 7.8],
learned via the least squares method, already gives us a good estimation: the
root-mean-square deviation (RMSD) is as low as 0.12.

This (ths, γ) relation implies that γ = 1 when ths = 7.8, meaning that it
takes 7.8 seconds for a block to be propagated to all the miners. This result
justifies the reasonableness of our model as it is consistent with the measured
data: blocks propagated to 90% of nodes in 5 to 20 seconds [25].

We further verify this relation with Ethereum’s data. Specifically, we fetch
236 553 fork instances, group those with similar ρ and ths, and compare each
(ρ, ths) group’s estimated P′

win = ρ + γ(ths) · (1 − ρ) and the actual Pwin. The
results confirm the accuracy of our model, whose details are in Appendix A.

D to Headstart. A stable delay D does not imply a stable ths, as the competing
block may be announced anytime during D. If the undelayed competing block is
mined in the first d = D−7.8 seconds, the undelayed block may enjoy a headstart,
i.e., ths ≤ 0. Otherwise, the slow block enjoys a headstart and ths > 0.

We now solve how d, i.e., the slow block’s delay in addition to the natural
propagation latency, affects the probability distribution of ths. As mining is a
Poisson process, the interval between the slow block’s and the undelayed block’s
mining, denoted tin, follows an exponential distribution, whose density function
is f(tin) = µ/600 × e−(µ/600)tin for tin ∈ (0,∞), where µ/600 is the expected
number of undelayed blocks mined in a second. We compute the probability
density function of ths from f(tin) via two post-processing steps. First, ths = tin−
d as the slow block’s announcement is delayed for d seconds. Second, the density
function is normalized by dividing 1 − e−(µ/600)(d+7.8) to exclude the situation
that no undelayed blocks are mined during the slow block’s propagation.

Finally, by linking these two relations, we can estimate γ with a given d:
γ = 0.748 − 0.0318d when d ≪ 600. We omit the detailed process as it is
relatively straightforward compared to the previous two steps.
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4.2 Applying the Extended Model to the Bitcoin Network

We instantiate our MP in Sect. 3.3 with λ = D/T = (d + 7.8)/600 and γ =
0.748− 0.0318d. We plot how d and ρ affect the unfair revenue Rd − ρ in Fig. 3
and the most profitable additional delay d in Fig. 4.

Two thresholds—0.21 and 0.33—are identifiable from Fig. 3. Miners with
ρ > 0.21 gain unfair revenue with no additional delay beyond the universal
7.8 seconds. Miners with ρ > 0.33 can increase their earnings by intentionally
delaying block propagation, as their unfair revenue is monotonically increasing
at d = 0. This 0.33 threshold roughly corresponds with γ = 0.5 in Fig. 2. The
optimal—most profitable—additional delay grows roughly linearly, from 0 when
ρ = 0.33 to 6.8 seconds when ρ = 0.49. As a side note, the unfair revenue for ρ
between 0.2 and 0.33 mainly comes from receiving undelayed blocks earlier than
other miners, which decreases with a growing d.

5 Modeling the Strategic D-Miner

We now analyze how and how much a strategic D-miner can profit from the
systemic unfairness by modeling its decisions with an MDP. We name the output
strategy the slow block attack.

5.1 The Threat Model for Our MDP

We highlight some key settings here; other settings are identical to that of our
MP in Sect. 3.2. We limit ρ < 0.5 to avoid pathological actions. In line with
previous MDP-based analyses [26,28], the strategic D-miner can (1) choose which
block to mine on, (2) withhold multiple blocks, and (3) decide when and how
many blocks to publish. Such freedom does not render the problem unsolvable,
because, in the longest chain rule, a rational for-profit attacker maintains at most
one secret chain and only mines on the tips of chains, as proved by Sapirshtein
et al. [26]. Their proof applies to our model. Henceforth we use undelayed blocks
to denote “blocks mined by the undelayed miner” for brevity. Our model differs
from previous analyses in that the D-miner must broadcast a secret block within
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every D seconds. This constraint adds a type of transition “delay” to our MDP,
which models the passage of time and thus complicates the modeling due to the
continuity of time. Consequently, we limit the attacker’s actions when accurate
modeling is infeasible, so that our MDP outputs achievable strategies and lower
bounds on the D-miner’s profitability, demonstrating the severity of the attack.

5.2 Our Markov Decision Process

Modeling Mining Processes as MDPs. An MDP models decision-making
in situations where outcomes are partly random and partly under the control of
a strategic player. Formally, an MDP is a four-element tuple (S,A, P,R). S is
the state space, encoding all status and history information that might influence
the player’s decision. A is the action space, which includes all possible rational
choices in an arbitrary state. P is the transition matrix, which encodes all possible
outcome states for each (state, action) pair and their probability distribution. R
is the reward matrix, which records a reward for every (state, action,new_state)
transition; the reward is used to compute the final utility.

MDP is commonly employed in modeling mining processes [26,28]. We sum-
marize Sapirshtein [26]’s selfish mining MDP here as the baseline of our design.
In their MDP, a state transition is triggered by a mining event, and the attacker
makes decisions at the beginning of a state. Blocks accepted or abandoned by
both miners are settled, whose corresponding rewards are allocated to the min-
ers. Settled blocks are removed from the state encoding, as they do not affect the
attacker’s decisions. Specifically, a state is a 3-tuple (ld, lu, fork) where ld and lu
represent the lengths of the unsettled attacker chain and the public chain, re-
spectively, and fork indicates the latest block’s miner and whether the attacker
has the option to Match, which is defined next. There are at most four available
actions at any moment: Adopt to throw away the attacker chain and mine on the
public chain, Override to publish until the (lu+1)-th attacker block to invalidate
the public chain, Match to publish until the lu-th attacker block to cause a tie,
which is available only when the honest miner has just mined a block and the
attacker has a competing secret block, and Wait to keep mining on the attacker
chain. We omit the reward distribution and the state transition matrices here.

Overview. Our MDP differs from previous works as we introduce a new type
of transition called delay : the passage of D seconds. When the D-miner chooses
not to publish all withheld blocks, the next transition must be a delay.

Formalizing these transitions is highly nontrivial as both the D-miner and
the undelayed miner may mine blocks during the delay, and it is infeasible to
encode all information that might influence the D-miner’s decision. For example,
the D-miner may make decisions based on the time of the first undelayed block:
to Override if the block is mined at the beginning of D, and to Match if it is
mined at the end. However, we cannot encode time into the state, as time is
continuous, and the number of states must be finite. Dividing D into several
slots and recording the mining sequence in each slot is also impractical, as in
that case, the number of states is too large to be solvable.
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To address this challenge, we prescribe the D-miner’s strategy during the
delay so that the system’s state after the delay only depends on the pre-delay
state and the number of blocks mined by each miner during the delay. Through
careful engineering of the state space S and the action space A, the number
of states becomes solvable after this simplification, yet our MDP still reveals a
series of insights into the slow block attack. Next, we describe our MDP design.
State Space. A state is a four-element tuple (ld, lw, lu, fork). The lengths of the
D-miner’s and the undelayed miner’s chains are encoded as ld and lu, respec-
tively. Note that the common ancestors are not counted in ld or lu as they are
settled. The variable lw is the number of withheld blocks, which satisfies lw ≤ ld
as these blocks are a suffix of the D-miner’s chain. The variable fork indicates
whether some undelayed mining power is working on the D-miner’s chain, which
is meaningful only in a tie, i.e., ld − lw = lu. It has two possible values:

– Active. The lu-th D-miner’s block is published along with the last undelayed
block, so some undelayed mining power may work on the D-miner’s chain.

– Inactive. The lu-th D-miner’s block is published after the last undelayed
block, so all undelayed mining power works on the undelayed chain.

There are two differences between our state space and that of [26]. First,
we encode lw explicitly so that the D-miner can learn/decide whether the next
transition is a delay, and how many such delays to look forward to. Second, our
fork has only two options, because the D-miner never needs to explicitly choose
the Match action, whose reason is explained next.
Action Space. There are only three actions Adopt, Override, and Wait in our
MDP. The definitions of Adopt and Override are identical to their counterparts
in [26]. The Wait and Match actions in [26] are merged into our Wait action:

– Wait. If there are no withheld blocks, the D-miner keeps mining on its chain
until the next block generation event. Otherwise, i.e., during a delay, the D-
miner mines on its chain until the delay ends, and publishes enough blocks to
cause a tie, i.e., “Match”, when the undelayed chain “catches up from behind”
and reaches the D-miner’s pre-delay chain length ld.

To understand this change, we first introduce how we prescribe the D-miner’s
strategy during the delay. Given that a fixed strategy is necessary to avoid an
overwhelming number of states, we want a strategy that is simple enough to be
computationally feasible, yet still reasonable for the D-miner. A naive strategy
is to force the D-miner to keep mining on its chain without publishing anything
throughout the delay. This strategy causes a significant loss when the undelayed
chain overtakes—catches up from behind and surpasses—the D-miner’s chain
during the delay, as the D-miner loses its entire chain with a high probability.
A better strategy is to prescribe the D-miner to publish the entire chain at the
exact moment when the undelayed chain catches up. However, as both miners
may find blocks during the delay, it is difficult to predict when the catch-up
happens unless we encode the full sequence of mining events during the delay
into the MDP, which is computationally infeasible. Therefore, we choose a middle
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Fig. 5: The ϵ-optimal unfair revenue.

ground between these two strategies and prescribe the D-miner to cause a tie
when the undelayed chain catches up to the D-miner’s pre-delay chain length,
which is reasonable as it lowers the attacker’s risk of losing the whole chain, yet
still manageable as there is no need to enumerate all possible mining sequences.

As an unexpected benefit of this “middle-ground” strategy, the D-miner never
needs to explicitly choose Match. If the last undelayed block is mined during a
delay, Match is automatic; otherwise, i.e., outside delays, the D-miner has no
secret block by our threat model, thus cannot choose Match.
Transition and Reward Matrices. We leave the full matrices to Appendix B
and briefly overview how we compute the post-delay transitions here. We denote
the number of blocks mined by the D-miner and the undelayed miner during
the delay as nd and nu, respectively. They are independent and both follow the
Poisson distribution, allowing us to compute their joint probability distribution
of the resulting states (ld+nd, lw +nd, lu+nu, inactive). We then enumerate the
possible outcomes for the implicit Match action for all lu < ld ≤ lu + nu and
their corresponding probability, and update the corresponding transitions.
Solving the MDP. We define the utility as the D-miner’s relative revenue and
solve the MDP with the RelativeValueIteration method of pymdptoolbox [12].
The stopping criterion is set to ϵ < 10−4. The upper bound for ld and lu is
set to 60. We solve the MDP for all combinations of ρ = {0, 0.05, · · · , 0.45},
γ = {0, 0.5, 1}, and λ = {1/30, 1, 5}.

5.3 Unfair Revenues and Profitable Thresholds

Relative Revenues. We visualize the D-miner’s unfair revenue under various
λ, γ, and ρ in Fig. 5, and notice two patterns:

Observation 4. The strategic D-miner’s unfair revenue increases with λ.

This is consistent with our intuition: a longer delay upper bound gives the D-
miner larger room for malicious manipulation, thus increasing the unfair revenue.
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Also, the unfair revenue never goes below zero, as the D-miner has the honest
strategy as a safe choice.

Observation 5. The unfair revenue rockets when ρ ≥ 0.42 for all γ and λ.

We locate the reason by examining the optimal strategies. For ρ < 0.42, the
unfair revenue mainly comes from winning ties; the D-miner chooses Abandon if
its chain is shorter than the undelayed chain. For ρ ≥ 0.42, the optimal strategy
becomes more aggressive: it keeps mining on its own chain even when it is two to
four blocks behind. Admittedly, this also makes the attack detectable. We list the
full strategy when ρ = 0.45, γ = 1 in Table 1. This strategy is counterintuitive
given that ρ < µ. We attribute this to the D-miner’s higher risk tolerance than
the undelayed miner: the D-miner gives up its chain at its chosen time, but
the undelayed miner gives up as soon as it is one block behind. Indeed in the
gambler’s ruin problem, if one gambler has two to four coins and a 45% one-time
winning rate, and the other one has only one coin but a 55% one-time winning
rate, the latter is 1.48 to 2.47 times more likely to bankrupt than the former.
Profitable Thresholds. We compare the profitable thresholds, i.e., the mini-
mum ρ to be more profitable than the honest strategy of our MP ((1−γ)/(2−γ)),
MDP, and selfish mining ((1−γ)/(3−2γ), from [18]) in Fig. 6. The results show
that the threshold of the strategic D-miner resides between that of the inadver-
tent D-miner and the selfish miner.

6 Detection and Defense

Detecting via the Timestamp-Announcement Difference. As mentioned
in Sect. 2.2, it is long known that selfish mining can be detected by measuring
the difference between the blocks’ timestamp and their announcement time.
Unfortunately, it is difficult to apply the same trick to detect the slow block
attack, at least in Bitcoin, due to the miners’ long timestamp updating cycle.
We plot Bitcoin’s timestamp-announcement difference distribution in Fig. 7 (blue
bars), whose data are provided by Grundmann, the maintainer of a Bitcoin
monitoring site [14]. There are 33 453 blocks from January 1 to August 20, 2020,



16 Zhichun Lu and Ren Zhang

and 93% of their differences are within [−10, 50] seconds. The distribution is far
from ideal, where all data concentrate at 0. Instead, it is close to the exponential
distribution with an expectation of 30 seconds (orange bars). We speculate that
this is because mining pools use specialized software, e.g., P2Pool [3], to assign
tasks and collect shares among individual miners, which updates the timestamp
roughly every 30 seconds. Consequently, as long as the D-miner keeps the delay
within 30 seconds, e.g., λ < 1/20, it is difficult, if not impossible, to detect the
slow block attack from the timestamp-announcement difference.

Detecting via the Orphan Rate. Most mining pools nowadays publish the
blocks they mined for transparency, enabling us to compute a pool’s percentage
of blocks that have competing blocks. A mining pool encountering block races
more often than the others is a strong indicator of systemic unfairness. Also, a
rise in the overall orphan rate may indicate network issues or malicious behaviors.

Eliminating the Inadvertent Delays from the Protocol Level. Our anal-
ysis shows that we cannot expect the miners, especially large ones, to accelerate
their blocks’ propagation, as their incentive is not aligned. Yet we can prevent
these inadvertent delays from happening via protocol-level efforts, which do not
need the miners’ individual consent or proactive operations. For example, to
avoid in-propagation delay due to transaction synchronization, NC-Max [29]
prescribes that transactions must be synchronized before their confirmation, so
that blocks are always propagated at the maximum possible speed. NC-Max thus
reduces the latency to just 18.7% of that in NC, given a context of 40-second av-
erage block interval and 100 transactions per second workload. This also reduces
the unfair revenue of miners with ρ = 0.4 to 19.2% of that in NC.

Modifying the Tie-Breaking Mechanism. When a delayed block is forced
to be broadcast due to the announcement of a competing block, its timestamp
is usually inconsistent with its announcement time. This is because the D-miner
cannot predict when the competing block will be mined. This phenomenon in-
spires us to propose a new tie-breaking mechanism, which favors the block with
a more accurate timestamp. This new mechanism only works if all undelayed
miners synchronize their clocks and keep updating their blocks’ timestamps. We
leave the detailed threshold and rule of this mechanism to future work.

7 Conclusion

Despite numerous efforts from the Bitcoin community, many miners refused to
accelerate their blocks’ propagation, as revealed by the slow adoption of FIBRE
and Compact Blocks. In this paper, we confirmed Maxwell’s theory that slower
propagation could be more profitable. These seemingly-benign slow blocks lead
to systemic unfairness, which could be deliberately exploited for higher revenue.
The slow block attack fundamentally undermines NC’s security just like the
selfish mining attack, yet is more difficult to detect. To mitigate this unfairness
and deter such inadvertent or malicious behaviors, we call on the community to
(1) keep accelerating block propagation on the protocol and the network layer,
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(2) synchronize the clocks and update the block timestamp more frequently, and
(3) modify the protocol to defend against this attack. Most importantly, we must
explicitly address it via proactive actions, rather than hoping that the miners’
incentive will be spontaneously aligned.

This attack is another example that our attack detection metrics are lim-
ited by existing security analyses—most formal analyses of NC assume a fixed
block propagation latency. Therefore, we—researchers—should keep looking for
attacks folded into the assumptions of these analyses.
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A Verifying the headstart-γ Relation in Ethereum

We apply the (ρ, ths) relation we learned in Sect. 4.1 to Ethereum network’s data
to test its accuracy. We obtain 236 553 fork instances from Etherscan [15], rang-
ing from 2015 to 2022, which includes the then mining power of the competing
blocks’ miners. Since ths is not available, we approximate it as the difference
between the competing blocks’ timestamps. We then group these fork instances
by ρ in steps of 0.05, and ths in steps of one second. We exclude groups with less
than 1000 instances to reduce stochastic errors. At last, we plot each group’s
estimated win rate P′

win = ρ+ γ(ths) · (1− ρ) and the actual Pwin, which is the
number of winning cases divided by the total number of cases, in Fig. 8.

The results show that P′
win and Pwin not only follow the same pattern but

are also numerically close, confirming the (ρ, ths) relation we learned, except
for two differences. First, Pwin escalates faster with an increasing ths. We think
this is because the network condition is improved in Ethereum’s data, measured
until 2022, compared with Bitcoin’s pre-compact-block data [25]. When blocks
propagate faster, the same positive ths yields a stronger advantage than before.

Second, for groups with ths = 0, P′
win overestimates Pwin by roughly 9%.

We provide two possible explanations here. First, the P′
win formula overestimate

the win rate as it ignores the producer of the competing block. In reality, the
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competing block’s producer always works on its own block, rather than with γ
probability. Secondly, 5.3% of ties in Ethereum involve three or more blocks,
causing Pwin to be lower than P′

win as the latter only covers the two-block case.
These phenomena are not significant when ths > 0 as their effects are mitigated
by the advantage of the early announcement.

B The State Transition and Reward Matrices of MDP

The transition and reward matrices are defined in Table 2. The transition matrix
describes the candidate states and corresponding probabilities for a given state×
action combination, and the reward is a two-element tuple (ru, rd). Beside, we
list an optimal strategy in Table 1, where ρ = 0.45, γ = 0, ld, lu ≤ 8, fork =
inactive and lw = ld. A, W, and O stand for Adopt, Wait, Override respectively.

B.1 Pruning Our MDP

Our model differs from selfish mining MDP [26] in that it introduces a new type
of transition called “delay”. The “delay” transition depends on the number of
blocks mined by both parties. Given the number of mined blocks can be infinite,
the MDP’s transitions and states become unlimited, making it unsolvable. To
overcome this while ensuring accuracy, we prune low-probability transitions.

Based on the probability calculation given in Sect. 3.2, we use ρn to denote
the probability of a miner with mining power ρ to mine n blocks during the
delay. Then, we set a cutoff n∗ and approximate mining n blocks as n∗ when
n > n∗, with n∗ being the maximum n where ρn ≥ 1 × 10−9. We will reset n∗

to 60− n if the fork length limitation is reached first. Besides, we use n+
d , n

+
u to

denote positive nd, nu to identify cases where a party has mined blocks.

B.2 Detailing Our MDP Transitions

When the action is adopt, the adversary takes the honest fork, so the honest
miners get lu blocks reward. Then, the state transition depends on the producer
of the next block, either the adversary w.p. ρ or an honest miner w.p. µ.

When the action is override, the adversary first publishes its blocks to lu + 1
to orphan the honest fork. The subsequent transition and reward are determined
by the number of withheld blocks at this point, which is ld − lu − 1. If there are
no withheld blocks, the transitions follow the same pattern as those in adopt,
but the adversary wins lu + 1 blocks instead. If there are withheld blocks, the
following transition is the passage of withholding time, and the adversary will
release one block at the end of it. In addition, the transition is determined by
the number of blocks mined by the honest miners during the withholding. If no
honest block is mined, the released block will reset the block race again and the
adversary wins lu + 2 blocks. Otherwise, the adversary still wins lu + 1 blocks.

For the wait action, we only detail transitions where lw ̸= 0 and fork =
inactive. Firstly, we ignore transitions where lw = 0 since they follow the same
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Table 1: The optimal actions.

ld

lu 0 1 2 3 4 5 6 7 8

0 A W A A A A A A A
1 W W W W A A A A A
2 W O W W W W A A A
3 W W O W W W W A A
4 W W W O W W W W W
5 W W W W O W W W W
6 W W W W W O W W W
7 W W W W W W O W W
8 W W W W W W W O W

pattern of adopt. Secondly, transitions where fork = inactive can be inferred by
further dividing those under fork = inactive, based on the first honest block’s
location. For instance, the state is (1, 0, 1, fork) and honest miners find the next
block. If fork = inactive, all honest miners work on the honest fork so the new
block must be on it, resulting in the transited state (1, 0, 2, inactive). Otherwise,
the honest mining power is split and the first honest block can be found on either
the adversary fork w.p. γ or on the honest fork w.p. 1 − γ, resulting in states
(2, 1, 1, inactive) or (1, 0, 2, inactive) respectively.

When describing the wait under inactive, we discuss the transition of the wait
with and without the match separately due to their significant difference. We
first detail the transition of wait without match. Assuming match is untriggered,
the adversary only releases a block at the end of the withholding. The following
transition depends on whether this block resets the block race, i.e., whether the
lengths of the public part of both sides’ fork are identical (lu+nu = ld−lw) before
the block release. The expression can be further simplified by removing nu since
it must be zero. A positive nu implies lu < ld − lw, suggesting that the public
part of the adversary’s fork is longer than the honest fork before the withholding.
In this case, all honest miners will accept the adversary’s fork, which contradicts
our preliminary assumption that a fork existed before the withholding. If this
condition is met, the state becomes (lw−1+nd, lw−1+nd, 0, i) and the adversary
gets a block reward of lu+1. If not, the state remains (ld+nd, lw+nd−1, lu+n+

u , i).
Without match, transitions under wait depend on whether an honest block is

mined after match. If not (ld = lu + n+
u ), fork remains active, and the transited

state is (ld+nd, nd, lu+n+
u , a). Otherwise, transitions split according to the first

honest block’s location post-match. If it’s on the adversary’s fork, miners adopt
ld adversary’s blocks, leading to (nd, nd, lu+n+

u − ld, i). If the honest block is on
the honest fork, the race persists and the state becomes (ld + nd, nd, lu + n+

u , i).
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C Notations

Table 3: Notations in this paper.

Notation Description

ρ, µ The mining power shares of the D-miner and the
undelayed miner, respectively.

γ The proportion of other mining power that works
on the D-miner’s fork during a tie.

nd, nu The number of blocks mined by the D-miner and
the undelayed miner during the delay, respectively.

n+
d , n

+
u The number of blocks mined by the D-miner and

the undelayed miner during the delay respectively,
under the condition that this number is positive.

D The maximum delay length in seconds for the D-
miner.

T The average block interval.
λ The expected number of blocks mined by the entire

network during the delay, i.e., D/T .
rd, ru The absolute revenues for the D-miner and the un-

delayed miner, respectively.
Rd The relative revenue for the D-miner.
ths The headstart of the block producer in seconds, that

is, the time span between when a block is mined and
when it is announced.

Pwin The D-miner’s win rate in ties, which is 3.07 ×
10−5ths+0.63 derived from real-world Bitcoin data.

P′
win The theoretical win rate of the D-miner in ties,

which is ρ+ γ(1− ρ).
d The additional delay in seconds that the slow blocks

experience beyond the natural propagation latency.
ld, lu The lengths of the forks that belong to the D-miner

and the undelayed miner, respectively.
lw The number of blocks mined and intentionally with-

held by the D-miner.
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