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Abstract

Cyclic codes are a subclass of linear codes and have applications in consumer electronics,
data storage systems, and communication systems as they have efficient encoding and decoding
algorithms. In this paper, by analyzing the solutions of certain equations over F3m and using
the multivariate method, we present three classes of optimal ternary cyclic codes in the case of
m is odd and five classes of optimal ternary cyclic codes with explicit values e, respectively. In
addition, two classes of optimal ternary cyclic codes C(u,v) are given.
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1 Introduction

Let p be a prime and m be a positive integer. Let Fp and Fpm denote the finite fields with p and
pm elements, respectively. An [n, k, d] linear code C over the finite field Fp is a k-dimensional sub-
space of Fn

p with minimum Hamming distance d, and is called cyclic if any cyclic shift of a codeword
is another codeword of C. Assume gcd(n, p) = 1. By identifying any vector (c0, c1, · · · , cn−1) ∈ Fn

p

with c0+c1x+c2x
2+· · ·+cn−1xn−1 ∈ Fp[x]/(xn−1), any cyclic code of length n over Fp corresponds

to an ideal of the polynomial residue class ring Fp[x]/(xn − 1). It is well known that every ideal of
Fp[x]/(xn − 1) is principal. The cyclic code can be expressed as C = 〈g(x)〉, where g(x) is monic
and has the least degree among all elements in C. Then g(x) is called the generator polynomial
of C and h(x) = (xn − 1)/g(x) is referred to as the parity-check polynomial of C. Let Ai denote
the number of codewords with Hamming weight i in a code C of length n for 1 ≤ i ≤ n. The
weight enumerator of C is defined by 1 +A1z +A2z

2 + · · ·+Anz
n. Cyclic codes are an important

subclass of linear codes and have been extensively studied [9]. Due to their wide applications in
mathematics and engineering, such as cryptography [1] and sequence design [4].

Let α be a generator of F∗3m = F3m\{0} and mi(x) be the minimal polynomial of αi over F3,
where 1 ≤ i ≤ 3m − 1. Let u, v be two integers such that αu is not a Galois conjugate of αv, the
cyclic code over F3 with generator polynomial mu(x)mv(x) is denoted by C(u,v). In recent years,
many scholars had made much progress on optimal cyclic codes over finite fields with respect to
the Sphere packing bound [9]. For (u, v) = (3

m+1
2 , 3

k+1
2 ), where m is odd, k is even, Zhou and

Ding [27] gave a class of optimal ternary cyclic codes with parameters [3m − 1, 3m − 1 − 2m, 4].
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For (u, v) = (3
m+1
2 , 2 · 3

m−1
2 + 1), where m ≥ 3 is odd, Fan et al. [5] obtained a new class of

optimal ternary cyclic codes and discussed the duals of them. For (u, v) = (3
m+1
2 , 3r + 2), where

m is odd, r is a Niho-type exponent with 4r ≡ 1 (mod m), Yan et al. [20] constructed a new
class of optimal ternary cyclic codes and determined their duals. Then, Liu et al. [15] proposed
two classes of new optimal ternary cyclic codes and determined the weight distribution of C⊥(u,v) for

(u, v) = (2, 3
m−1
2 +2(3k+1)), where m is odd, gcd(m, k) = 1. After that, for (u, v) = (3m−6, 3

k+1
2 ),

where m is even, k ∈ {1, 3,m − 1}, Wang et al. [17] gave a class of optimal ternary cyclic codes
with parameters [3m− 1, 3m− 1− 2m, 4]. On the other hand, when (u, v) = (1, e), by using perfect
nonlinear monomials, Carlet et al. [1] proposed several classes of optimal ternary cyclic codes
with parameters [3m − 1, 3m − 1 − 2m, 4]. In 2013, Ding and Helleseth [3] obtained some optimal
ternary cyclic codes with the same parameters by utilizing almost perfect nonlinear monomials
xe and some other monomials over F3m . In addition, they also presented nine open problems.
Later, by analyzing irreducible factors of certain polynomials with low degrees, an open problem
for e = 2(3m−1 − 1) was solved by Li et al. [10], while the authors also presented several classes of
optimal cyclic codes with parameters [3m−1, 3m−1−2m, 4] and [3m−1, 3m−2−2m, 5]. Through
some subtle manipulation on solving certain equations, a conjecture for e = 2(1 + 3h) was settled
by Li et al. [12]. Remarkably, some optimal ternary codes given in [3] and [10] were generalized
by Wang and Wu [18]. By solving some equations over F3m , Liu et al. [14], Han and Yan [8]
settled an open problem for e = 3h + 5 presented by [3], respectively. Then, Liu et al. [16] also
did advance work on three open problems presented by [3]. Recently, Wang et al. [17] proposed
a class of optimal ternary cyclic codes for e = 3m−1

2 − k, where m is odd with m 6≡ 0 (mod 9),
k ∈ {7, 11,−19}. Later, Zhao et al. [25] refined some optimal ternary cyclic codes in [18] and

analyzed an open problem for e = 3m−1−1
2 + 3h + 1 in [3]. For some advances about cyclic codes

can refer to [2, 6, 7, 11, 19, 21, 22, 26] and the references therein.
In particular, Zha and Hu [23] presented six classes of optimal ternary cyclic codes with pa-

rameters [3m − 1, 3m − 1 − 2m, 4] by analyzing the solutions of certain equations over F3m and
using the multivariate method. Moreover, they left some conjectures about optimal ternary cyclic
codes. In addition, They gave three classes of optimal ternary cyclic codes C(u,v) and proved that
C( 3

m+1
2

, 3
m−1
2

+v) and C(1,v) have the same optimality [24]. Motivated by their work, this paper

aims to find more optimal ternary cyclic codes over F3m . In this paper, by analyzing the solu-
tions of certain equations over F3m , we obtain three classes of new optimal ternary cyclic codes
C(1,e). Moreover, five new classes of optimal ternary cyclic codes C(1,e) are constructed by using
the multivariate method. In addition, we give two classes of optimal ternary cyclic codes C(u,v).

The remainder of the paper is organized as follows. Some preliminaries needed in the sequel
are introduced in Section 2. In Section 3, we construct three classes of optimal ternary cyclic codes
C(1,e) and two classes of optimal ternary cyclic codes C(u,v) with m is odd, respectively. Next, five
classes of new optimal ternary cyclic codes C(1,e) with explicit values e are proposed in Section 4.
Finally, we give some concluding remarks in Section 5.

2 Preliminaries

In this section, we will introduce two useful results. The first one is about cyclotomic cosets.
For a prime p, the p-cyclotomic coset modulo pm − 1 containing j is defined by

Cj = {j · ps (mod pm − 1) | s = 0, 1, . . . ,m− 1}.
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If e1 and e2 belong to the same p-cyclotomic coset, then the cyclic codes C(1,e1) and C(1,e2) are the
same.

Lemma 2.1. ([13, Corollary 3.47]) An irreducible polynomial over Fpm of degree n remains irre-
ducible over Fpml if and only if gcd(l, n) = 1.

Lemma 2.2. ([3, Lemma 2.1]) |Ce| = m for any 1 ≤ e ≤ pm − 2 with gcd(e, pm − 1) = 2.

As stated before, the ternary cyclic code with parameters [3m − 1, 3m − 1 − 2m, 4] is optimal
with respect to the Sphere Packing bound. Ding and Helleseth presented the following determining
rule of optimal ternary cyclic codes C(1,e).

Theorem 2.1. ([3, Theorem 4.1]) Let e /∈ C1 and |Ce| = m. The ternary cyclic code C(1,e) has
parameters [3m − 1, 3m − 1− 2m, 4] if and only if the following conditions are satisfied:

C1: e is even;
C2: (x+ 1)e + xe + 1 = 0 has a unique solution x = 1 over F3m ; and
C3: (x+ 1)e − xe − 1 = 0 has a unique solution x = 0 over F3m .

Recently, Zha et al. [24] showed a link between the ternary cyclic codes C( 3
m+1
2

, 3
m−1
2

+e) and

C(1,e) as follows.

Theorem 2.2. ([24, Theorem 3]) Let m be odd, e be even with |Ce| = m. The ternary cyclic code
C( 3

m+1
2

, 3
m−1
2

+e) has parameters [3m− 1, 3m− 1− 2m, 4] if and only if the ternary cyclic code C(1,e)

has parameters [3m − 1, 3m − 1− 2m, 4].

3 New optimal ternary cyclic codes in the case of m is odd

In this section, let m be odd, by analyzing the solutions of certain equations over F3m , we
present three classes of optimal ternary cyclic codes C(1,e) and two classes of optimal ternary cyclic
codes C(u,v), respectively.

Lemma 3.1. Let m be odd, h be an integer with 2h ≡ −1 (mod m), i.e., h = m−1
2 . Then e /∈ C1

and |Ce| = m if

(1) e = 3m−1
2 + 3h+5

2 and m ≡ 1 (mod 4);

(2) e = 3h+5
2 and m ≡ 3 (mod 4).

Proof. It can be easily checked that e /∈ C1. Suppose there exists an integer 1 ≤ j ≤ m− 1 such
that 3j · e ≡ e (mod 3m − 1), then (3m − 1) | e(3j − 1). And we can get that (3m − 1) | 2e(3j − 1),
which means that (3m − 1) | (3h + 5)(3j − 1). Let t = m−1

2 , then gcd((3h + 5)(3j − 1), 3m − 1) ≤
gcd(3t +5, 32t+1−1) ·gcd(3j−1, 3m−1) = gcd(3t+5, 74) · (3gcd(m,j)−1) = 2(3gcd(m,j)−1) < 3m−1
since m is odd. This is a contradiction. Therefore, 3j · e 6≡ e (mod 3m − 1) for any 1 ≤ j ≤ m− 1,
which means that |Ce| = m.

Theorem 3.1. Let m be an odd prime, h be an integer with 2h ≡ −1 (mod m), i.e., h = m−1
2 .

Then the ternary cyclic code C(1,e) has parameters [3m − 1, 3m − 1− 2m, 4] if one of the following
conditions is met:

(1) e = 3m−1
2 + 3h+5

2 , m ≡ 1 (mod 4) and m 6≡ 0 (mod 17);

(2) e = 3h+5
2 , m ≡ 3 (mod 4).
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Proof. (1) Based on Lemma 3.1, the condition C1 in Theorem 2.1 is met. For any even integer
e>1, it can be easily checked that (x + 1)e + xe + 1 = 0 has the only solution x = 1 over F3 and
(x + 1)e − xe − 1 = 0 has the only solution x = 0 over F3. To prove the conditions C2 and C3 in
Theorem 2.1 are satisfied, we need to show that there is no solution of equation

(x+ 1)e = ±(xe + 1)

in F3m\F3, which means that the equation

(x+ 1)2e − x2e − 1 + xe = 0 (1)

has no solution in F3m\F3. It is not difficult to verify that for any positive integer h,

(x+ 1)3
h+5 = (x3

h
+ 1)(x3 + 1)(x+ 1)2

= x3
h+5 − x3h+4 + x3

h+3 + x3
h+2 − x3h+1 + x3

h
+ x5 − x4 + x3 + x2 − x+ 1.

For e = 3m−1
2 + 3h+5

2 , Eq. (1) can be reduced to

x((x
3m−1

2
+ 3h+1

2 − x)2 − (x3
h−1 − 1)(x+ 1)3(x− 1)) = 0. (2)

In the following, we will discuss the solutions of Eq. (2) in F3m\F3. Let h = m−1
2 , then

gcd(m,h) = 1 and gcd(3h − 1, 3m − 1) = 2. Assume x
3h−1

2 = ±1, then we have x2 = 1, which

follows from x3
h−1 = 1 and x3

m−1 = 1, and hence we have x ∈ F3. Thus, the solutions of Eq. (2)

in F3m\F3 satisfy θ := x
3h−1

2 /∈ F3. Then we can discuss the following two cases: x is a square and
x is not a square over F3m .

Case I: x is a square over F3m . Since θ /∈ F3, it follows from Eq. (2) that

x2(θ − 1)− (θ + 1)(x4 − x3 + x− 1) = 0,

which is equivalent to

−θ(x4 − x3 − x2 + x− 1) = x4 − x3 + x2 + x− 1.

If x4 − x3 − x2 + x− 1 = 0, then x4 − x3 + x2 + x− 1 = 0, which implies that x = 0. It leads to a
contradiction. Therefore, x4 − x3 − x2 + x− 1 6= 0 and

θ = −x
4 − x3 + x2 + x− 1

x4 − x3 − x2 + x− 1
.

Then

x3
h

= xθ2 =
x9 + x8 + x4 − x3 + x2 + x

x8 + x7 − x6 + x5 + x+ 1
:=

f(x)

g(x)
, (3)

where f(x) = x9 +x8 +x4−x3 +x2 +x and g(x) = x8 +x7−x6 +x5 +x+ 1. Recall that h = m−1
2 .

Taking the 3h-th power on both sides of Eq. (3), we get

x
1
3 =

f(x3
h
)

g(x3h)
=
f(x)9 + f(x)8g(x) + f(x)4g(x)5 − f(x)3g(x)6 + f(x)2g(x)7 + f(x)g(x)8

f(x)8g(x) + f(x)7g(x)2 − f(x)6g(x)3 + f(x)5g(x)4 + f(x)g(x)8 + g(x)9
. (4)
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Plugging Eqs. (3) into (4) gives

x(f(x)8g(x) + f(x)7g(x)2 − f(x)6g(x)3 + f(x)5g(x)4 + f(x)g(x)8 + g(x)9)3

= (f(x)9 + f(x)8g(x) + f(x)4g(x)5 − f(x)3g(x)6 + f(x)2g(x)7 + f(x)g(x)8)3.

Thanks to the Magma computation, the above equation can be decomposed into the product of
some irreducible factors over F3 as

x(x+ 1)(x− 1)(x7 + x4 + x3 − 1)(x7 + x4 − x3 − x− 1)(x7 − x4 − x3 − 1)

(x7 + x6 − x3 − x− 1)(x7 + x6 + x4 − x− 1)(x7 + x6 + x4 − x3 − 1)

(x9 + x8 − x6 − x4 − x2 + x− 1)(x9 − x8 + x7 + x5 + x3 − x− 1)

(x13 + x9 − x7 − x6 − x4 − x3 + x2 − 1)(x13 + x11 + x10 − x9 − x6 − x3 + x2 − x− 1)

(x13 − x11 + x10 + x9 + x7 + x6 − x4 − 1)(x13 + x12 + x10 − x9 − x7 + x3 − x2 − x− 1)

(x13 + x12 + x11 − x10 + x6 + x4 − x3 − x− 1)(x13 + x12 − x11 + x10 + x7 + x4 − x3 − x2 − 1)

(x17 − x15 − x13 + x11 + x10 − x9 − x8 − x6 + x5 + x4 + x3 − x2 + 1)

(x17 − x15 + x14 + x13 + x12 − x11 − x9 − x8 + x7 + x6 − x4 − x2 + 1)

(x17 + x16 − x15 + x14 − x13 − x11 + x10 + x9 + x7 + x6 + x5 − x3 + x− 1)

(x17 + x16 − x15 + x14 − x13 − x12 − x11 + x10 − x9 + x8 − x7 − x6 − x5 − x3 − x+ 1)

(x17 − x16 + x14 − x12 − x11 − x10 − x8 − x7 + x6 + x4 − x3 + x2 − x− 1)

(x17 − x16 − x14 − x12 − x11 − x10 + x9 − x8 + x7 − x6 − x5 − x4 + x3 − x2 + x+ 1).

(5)

Since m ≡ 1 (mod 4) is a prime, we can get that gcd(m, 7) = 1, so the above six polynomials with
degree 7 have no roots in F3m by Lemma 2.1. Since m is a prime, we can get that gcd(m, 9) = 1,
so the above two polynomials with degree 9 have no roots in F3m by Lemma 2.1. Since m 6≡ 0
(mod 17) is a prime, we can get that gcd(m, 17) = 1, so the above six polynomials with degree 17
have no roots in F3m by Lemma 2.1. When m = 13, we can check that the above six polynomials
with degree 13 have no roots in F313 by Magma. In conclusion, we know that Eq. (5) has no
solution in F3m\F3. Therefore, we can prove that Eq. (2) has no solution over F3m\F3.

Case II: x is not a square over F3m . Since θ /∈ F3, it follows from Eq. (2) that

x2(θ + 1)− (θ − 1)(x4 − x3 + x− 1) = 0,

which can be written as

θ(x4 − x3 − x2 + x− 1) = x4 − x3 + x2 + x− 1.

Similarly, it can be easily checked that x4 − x3 − x2 + x− 1 6= 0 and

θ =
x4 − x3 + x2 + x− 1

x4 − x3 − x2 + x− 1
.

Then

x3
h

= xθ2 =
x9 + x8 + x4 − x3 + x2 + x

x8 + x7 − x6 + x5 + x+ 1
.

Similar to Case I, we can prove that Eq. (2) has no solution over F3m\F3.
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In conclusion, we can get that the ternary cyclic code C(1,e) has parameters [3m−1, 3m−1−2m, 4]

if e = 3m−1
2 + 3h+5

2 , m ≡ 1 (mod 4) and m 6≡ 0 (mod 17).

(2) For e = 3h+5
2 , The proof is similar to (1) and we omit it here.

Example 1. Let m = 3 and h = 1, then e = 4. Let α be the generator of F∗33 with α3−α+1. Then
the code C(1,e) has parameters [26, 20, 4] and generator polynomial x6 + x5 − x4 − x3 + x2 + x− 1.

The dual of C(1,e) is a ternary cyclic code with parameters [26, 6, 15] and weight enumerator

1 + 312x15 + 260x18 + 156x21.

Example 2. Let m = 5 and h = 2, then e = 121 + 7 = 128. Let α be the generator of F∗35
with α5 − α + 1. Then the code C(1,e) has parameters [242, 232, 4] and generator polynomial
x10 − x8 − x7 − x6 + x4 − x2 + x− 1.

The dual of C(1,e) is a ternary cyclic code with parameters [242, 10, 144] and weight enumerator

1 + 2420x144 + 12100x153 + 34364x162 + 7744x171 + 2420x180.

Remark 1. Note that for e = 3h+5
2 , 2h ≡ −1 (mod m) and m ≡ 3 (mod 4), Theorem 3.1 is a

special case of Open Problem 7.9 [3].

Based on Theorem 2.2, we have the following corollary.

Corollary 3.1. Let u = 3m+1
2 , h = m−1

2 and m be an odd prime. Then the ternary cyclic code
C(u,v) has parameters [3m − 1, 3m − 1− 2m, 4] if one of the following conditions is met:

(1) v = 3h+5
2 , m ≡ 1 (mod 4) and m 6≡ 0 (mod 17);

(2) v = 3m−1
2 + 3h+5

2 , m ≡ 3 (mod 4).

Theorem 3.2. Let m be odd, e be even, h be an integer satisfying that 1 ≤ h ≤ m−1 and e(3h−1) ≡
3m+1

2 (mod 3m − 1). Then the ternary cyclic code C(1,e) has parameters [3m − 1, 3m − 1− 2m, 4] if
the equation xe + x− 1 = 0 has no solution x in F3m\F3 satisfying that (χ(x), χ(x+ 1)) = (−1, 1)
or (χ(x), χ(x+ 1)) = (−1,−1).

Proof. Since e is even, we can get e /∈ C1. Assume there exists an integer 1 ≤ j ≤ m− 1 such that
3j · e ≡ e (mod 3m− 1), then (3m− 1) | e(3j − 1). And we can get that (3m− 1) | e(3h− 1)(3j − 1),
i.e., 3m − 1 | 3m+1

2 · (3j − 1). Moreover, we have gcd(3m − 1, 3
m+1
2 · (3j − 1)) ≤ gcd(3m − 1, 3

m+1
2 ) ·

gcd(3m − 1, 3j − 1) = 2(3gcd(m,j) − 1) < 3m − 1 since m is odd. This leads to a contradiction.
Therefore, 3j · e 6≡ e (mod 3m − 1) for any 1 ≤ j ≤ m− 1, which means that |Ce| = m. Thus, the
condition C1 in Theorem 2.1 is satisfied. For any even integer e>1, it can be easily checked that
(x + 1)e + xe + 1 = 0 has the only solution x = 1 over F3 and (x + 1)e − xe − 1 = 0 has the only
solution x = 0 over F3. To prove the conditions C2 and C3 in Theorem 2.1 are satisfied, we need
to show that there is no solution of equation

(x+ 1)e = ±(xe + 1)

in F3m\F3, which means that the equation

(x+ 1)e(3
h−1) = (xe + 1)3

h−1
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has no solution in F3m\F3. Plugging χ(x) = x
3m−1

2 into above equation, we have

χ(x+ 1)(xe+1 + xe + x+ 1) = χ(x)xe+1 + 1, (6)

since e(3h−1) ≡ 3m+1
2 (mod 3m−1). For x ∈ F∗3m . χ(x) = 1 if x is a square. Otherwise, χ(x) = −1.

Next, we can divide the solutions of Eq. (6) into the following four cases.
Case I: χ(x) = χ(x+ 1) = 1. In this case, Eq. (6) turns to x(xe−1 + 1) = 0, which implies that

x = 0 or xe−1 = −1. Recall that m is odd and e is even, then −1 is not a square in F3m and e− 1
is odd. It implies that xe−1 = −1 holds only if χ(x) = −1. Therefore, there is no solution of Eq.
(6) in F3m\F3.

Case II: χ(x) = 1, χ(x + 1) = −1. In this case, Eq. (6) turns to (x − 1)(xe − 1) = 0, which
implies that x = 1 or xe = 1. Note that m is odd and e is even. If xe − 1 = 0, then x = ±1.
Therefore, there is no solution of Eq. (6) in F3m\F3.

Case III: χ(x) = χ(x+ 1) = −1. In this case, Eq. (6) turns to

xe + x− 1 = 0.

which implies that there is no solution of Eq. (6) in F3m\F3 satisfying that χ(x) = χ(x+ 1) = −1.
Case IV: χ(x) = −1, χ(x+ 1) = 1. In this case, Eq. (6) becomes

xe+1 − xe − x = 0.

Let y = 1
x , then

ye + y − 1 = 0,

where χ(y) = χ(y + 1) = −1 and y ∈ F3m\F3. Similarly, there is no solution of Eq. (6) in F3m\F3.
In summary, the ternary cyclic code C(1,e) has parameters [3m − 1, 3m − 1 − 2m, 4] if the

equation xe + x − 1 = 0 has no solution x in F3m\F3 satisfying that (χ(x), χ(x + 1)) = (−1, 1) or
(χ(x), χ(x+ 1)) = (−1,−1).

Example 3. Let m = 3 and h = 2, then e = 18. The equation xe+x−1 = 0 becomes x18+x−1 = 0.
Let ω is a primitive element of F33 . The equation x18 + x − 1 = 0 can be decomposed into the
product of some irreducible factors over F33 as

(x+ ω17)(x+ ω23)(x+ ω25)(x2 + x− 1)(x13 + x12 + x11 − x8 − x7 + x6 − x5 − x4 + x3 + x2 − 1) = 0.

We can verify that χ(−ω17) = χ(−ω23) = χ(−ω25) = 1 by Magma. Let α be the generator of
F∗33 with α3 − α + 1. Then the code C(1,e) has parameters [26, 20, 4] and generator polynomial
x6 + x5 − x3 − x− 1.

The dual of C(1,e) is a ternary cyclic code with parameters [26, 6, 15] and weight enumerator

1 + 312x15 + 260x18 + 156x21.

Lemma 3.2. Let m be an odd prime and e = 3m−1−1
2 + 3h− 1, where h is an integer with 0 ≤ h ≤

m− 1. Then e /∈ C1 and |Ce| = m in the following two conditions:
(1) 2h = 1 (mod m), i.e., h = m+1

2 ;
(2) 2h = −1 (mod m), i.e., h = m−1

2 .
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Proof. It is easy to see that e /∈ C1 since e is even. So, we only need to prove that |Ce| = m.
It is well known that |Ce| | m, then we have |Ce| = 1 or |Ce| = m, since m is an odd prime.

If |Ce| = 1, then 3(3
m−1−1

2 + 3h − 1) ≡ 3m−1−1
2 + 3h − 1 (mod 3m − 1). So we can get that

(3m−1) | 2(3
m−1−1

2 +3h−1). Since 2(3
m−1−1

2 +3h−1) = 3m−1+2·3h−3 and 3m−1+2·3h−3 ≤ 3m−1,
we obtain that 3m−1 + 2 · 3h − 3 = 3m − 1, then 3m−1 = 3h − 1. This is in contradiction with the
assumption that 0 ≤ h ≤ m− 1. Consequently, we can conclude that |Ce| = m.

Theorem 3.3. Let m be an odd prime and e = 3m−1−1
2 + 3h − 1, where h is an integer with

0 ≤ h ≤ m − 1. If 2h ≡ ±1 (mod m), i.e., h = m±1
2 , then the ternary cyclic code C(1,e) has

parameters [3m − 1, 3m − 1− 2m, 4].

Proof. According to Lemma 3.2, the condition C1 in Theorem 2.1 is met. It can be easily checked
that (x + 1)e + xe + 1 = 0 has the only solution x = 1 over F3 and (x + 1)e − xe − 1 = 0 has the
only solution x = 0 over F3. To prove the conditions C2 and C3 in Theorem 2.1 are satisfied, we
need to show that there is no solution of equation

(x+ 1)e = ±(xe + 1)

in F3m\F3, which means that

(x+ 1)6e = x6e + 1− x3e (7)

has no solution in F3m\F3.
Assume that x ∈ F3m\F3 is a solution of Eq. (7). Then we can discuss the following two cases:

x is a square and x is not a square over F3m .

Case I: x is a square over F3m . It can be verified that x6e = x2·3
h+1−8 and x3e = x

3m−1
2

+3h+1−4 =
x3

h+1−4. Let x3
h+1

:= θ, we can get

(x7 − x6 + x5 − x4 + x3 − x2 + x− 1)θ2

+ (x12 − x11 + x10 − x9 − x7 + x6 − x5 + x4)θ

− x16 + x15 − x14 + x13 − x12 + x11 − x10 + x9 = 0.

(8)

First, we suppose that x7 − x6 + x5 − x4 + x3 − x2 + x − 1 6= 0. Otherwise, we have x7 − x6 +
x5 − x4 + x3 − x2 + x− 1 = (x− 1)(x2 + 1)(x2 + x− 1)(x2 − x− 1) = 0. Since m is an odd prime
and gcd(m, 2) = 1, it then follows from Lemma 2.1 that the above three factors of degree 2 are
irreducible polynomials over F3m , which implies that x = 1. This is contrary to the assumption
that x ∈ F3m\F3. Then Eq. (8) becomes

((x2 + x− 1)θ + x5(x2 − x− 1))((x2 − x− 1)θ − x4(x2 + x− 1)) = 0.

Hence, we can get θ = −x5(x2−x−1)
x2+x−1 or θ = x4(x2+x−1)

x2−x−1 .

Case I.1: θ = −x5(x2−x−1)
x2+x−1 . In this case, we have

θ = x3
h+1

= −x
5(x2 − x− 1)

x2 + x− 1
:=

f(x)

g(x)
, (9)

where f(x) = −x5(x2 − x− 1) = −x7 + x6 + x5 and g(x) = x2 + x− 1.
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When 2h ≡ 1 (mod m) and taking the 3h+1-th power on both sides of Eq (9), we obtain

x27 = (
f(x)

g(x)
)3

h+1
=
−f(x)7 + f(x)6g(x) + f(x)5g(x)2

f(x)2g(x)5 + f(x)g(x)6 − g(x)7
:=

F (x)

G(x)
,

where F (x) = −f(x)7 + f(x)6g(x) + f(x)5g(x)2 and G(x) = f(x)2g(x)5 + f(x)g(x)6 − g(x)7, we
calculate

x27G(x)− F (x) = 0.

Then the left-hand side of the above equation can be decomposed into a product of some irreducible
factors over F3 as

x25(x+ 1)25(x− 1) = 0.

This is contrary to the assumption that x ∈ F3m\F3. Therefore, we conclude that Eq. (7) has no
solution in F3m\F3 if m is an odd prime.

When 2h ≡ −1 (mod m) and taking the 3h+1-th power on both sides of Eq (9), we obtain

x3 = (
f(x)

g(x)
)3

h+1
=
−f(x)7 + f(x)6g(x) + f(x)5g(x)2

f(x)2g(x)5 + f(x)g(x)6 − g(x)7
:=

F (x)

G(x)
,

where F (x) = −f(x)7 + f(x)6g(x) + f(x)5g(x)2 and G(x) = f(x)2g(x)5 + f(x)g(x)6 − g(x)7, we
calculate

x3G(x)− F (x) = 0.

Then the left-hand side of the above equation can be decomposed into a product of some irreducible
factors over F3 as

x3(x+ 1)3(x− 1)(x7 + x4 − x3 − x2 − 1)(x7 + x5 + x4 − x3 − 1)(x7 + x6 + x4 + x2 − x+ 1)

(x7 + x6 + x5 + x3 + x2 − x+ 1)(x7 − x6 + x5 + x3 + x+ 1)(x7 − x6 + x5 + x4 + x2 + x+ 1) = 0.

When m = 7, we can check that the above six polynomials with degree 7 have no roots in F37 by
Magma. Therefore, we conclude that Eq. (7) has no solution in F3m\F3 if m is an odd prime.

Case I.2: θ = x4(x2+x−1)
x2−x−1 . In this case, we have

θ = x3
h+1

=
x4(x2 + x− 1)

x2 − x− 1
:=

f(x)

g(x)
, (10)

where f(x) = x4(x2 + x− 1) = x6 + x5 − x4 and g(x) = x2 − x− 1.
When 2h ≡ 1 (mod m) and taking the 3h+1-th power on both sides of Eq. (10), we obtain

x27 = (
f(x)

g(x)
)3

h+1
=
f(x)6 + f(x)5g(x)− f(x)4g(x)2

f(x)2g(x)4 − f(x)g(x)5 − g(x)6
:=

F (x)

G(x)
,

where F (x) = f(x)6 + f(x)5g(x) − f(x)4g(x)2 and G(x) = f(x)2g(x)4 − f(x)g(x)5 − g(x)6, we
calculate

x27G(x)− F (x) = 0.
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Then the left-hand side of the above equation can be decomposed into a product of some irreducible
factors over F3 as

x16(x+ 1)25(x3 + x2 − x+ 1)(x3 − x2 + x+ 1) = 0.

When m = 3, we can check that the above two polynomials with degree 3 have no roots in F33 by
Magma. Therefore, we conclude that Eq. (7) has no solution in F3m\F3 if m is an odd prime.

When 2h ≡ −1 (mod m) and taking the 3h+1-th power on both sides of Eq. (10), we obtain

x3 = (
f(x)

g(x)
)3

h+1
=
f(x)6 + f(x)5g(x)− f(x)4g(x)2

f(x)2g(x)4 − f(x)g(x)5 − g(x)6
:=

F (x)

G(x)
,

where F (x) = f(x)6 + f(x)5g(x) − f(x)4g(x)2 and G(x) = f(x)2g(x)4 − f(x)g(x)5 − g(x)6, we
calculate

x3G(x)− F (x) = 0.

Then the left-hand side of the above equation can be decomposed into a product of some irreducible
factors over F3 as

x3(x+ 1)3(x15 + x14 + x13 + x12 − x11 + x9 − x7 + x6 + x4 − x3 + x− 1)

(x15 − x14 + x12 − x11 − x9 + x8 − x6 + x4 − x3 − x2 − x− 1) = 0.
(11)

When m = 3, we can check that the above two polynomials with degree 15 are all decomposed
as the product of three irreducible polynomials with degree 5 over F33 by Magma. Furthermore,
we know that Eq. (11) has no solution in F33\F3, which follows from Lemma 2.1. When m = 5,
we can verify that the above two polynomials with degree 15, are decomposed into five irreducible
polynomials with degree 3 over F35 by Magma. Furthermore, we know that Eq. (11) has no solution
in F35\F3 by Lemma 2.1. Therefore, we conclude that Eq. (7) has no solution in F3m\F3 if m is
an odd prime.

Case II: x is not a square in F3m . It can be verified that x6e = x2·3
h+1−8 and x3e =

x
3m−1

2
+3h+1−4 = −x3h+1−4. Let θ = x3

h+1
, we can get

(x7 − x6 + x5 − x4 + x3 − x2 + x− 1)θ2

− (x12 − x11 + x10 − x9 − x8 − x7 + x6 − x5 + x4)θ

− x16 + x15 − x14 + x13 − x12 + x11 − x10 + x9 = 0.

(12)

From the proof of Case I, we have x7− x6 + x5− x4 + x3− x2 + x− 1 6= 0. Then Eq. (12) becomes

((x2 + 1)θ + x5(x− 1))((x− 1)θ − x4(x2 + 1)) = 0,

which implies that θ = −x5(x−1)
x2+1

or θ = x4(x2+1)
x−1 .

Case II.1: θ = −x5(x−1)
x2+1

. In this case, we have

θ = x3
h+1

= −x
5(x− 1)

x2 + 1
:=

f(x)

g(x)
, (13)

where f(x) = −x5(x− 1) = −x6 + x5 and g(x) = x2 + 1.
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When 2h ≡ 1 (mod m) and taking the 3h+1-th power on both sides of Eq. (13), we obtain

x27 = (
f(x)

g(x)
)3

h+1
=
−f(x)6 + f(x)5g(x)

f(x)2g(x)4 + g(x)6
:=

F (x)

G(x)
,

where F (x) = −f(x)6 + f(x)5g(x) and G(x) = f(x)2g(x)4 + g(x)6, we calculate

x27G(x)− F (x) = 0.

Then the left-hand side of the above equation can be decomposed into a product of some irreducible
factors over F3 as

x25(x+ 1)16(x3 + x2 − 1)(x3 − x2 + 1) = 0.

When m = 3, we can check that the above two polynomials with degree 3 have no roots in F33 by
Magma. Therefore, we conclude that Eq. (7) has no solution in F3m\F3 if m is an odd prime.

When 2h ≡ −1 (mod m) and taking the 3h+1-th power on both sides of Eq. (13), we obtain

x3 = (
f(x)

g(x)
)3

h+1
=
−f(x)6 + f(x)5g(x)

f(x)2g(x)4 + g(x)6
:=

F (x)

G(x)
,

where F (x) = −f(x)6 + f(x)5g(x) and G(x) = f(x)2g(x)4 + g(x)6, we calculate

x3G(x)− F (x) = 0.

Then the left-hand side of the above equation can be decomposed into a product of some irreducible
factors over F3 as

x3(x+ 1)3(x15 + x14 − x13 − x12 − x9 − x8 + x7 + x6 − x5 + x+ 1)

(x15 − x14 − x13 + x12 + x11 − x7 − x6 − x5 − x4 + x3 + x2 − x+ 1) = 0.
(14)

When m = 3, we can check that the above two polynomials with degree 15 are all decomposed
as the product of three irreducible polynomials with degree 5 over F33 by Magma. Furthermore,
we know that Eq. (14) has no solution in F33\F3, which follows from Lemma 2.1. When m = 5,
we can verify that the above two polynomials with degree 15 can be factored into five irreducible
polynomials with degree 3 over F35 by Magma. Furthermore, we know that Eq. (14) has no solution
in F35\F3 by Lemma 2.1. Therefore, we conclude that Eq. (7) has no solution in F3m\F3 if m is
an odd prime.

Case II.2: θ = x4(x2+1)
x−1 . In this case, we have

θ = x3
h+1

=
x4(x2 + 1)

x− 1
:=

f(x)

g(x)
, (15)

where f(x) = x4(x2 + 1) = x6 + x4 and g(x) = x− 1.
When 2h ≡ 1 (mod m) and taking the 3h+1-th power on both sides of Eq. (15), we obtain

x27 = (
f(x)

g(x)
)3

h+1
=
f(x)6 + f(x)4g(x)2

f(x)g(x)5 − g(x)6
:=

F (x)

G(x)
,
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where F (x) = f(x)6 + f(x)4g(x)2 and G(x) = f(x)g(x)5 − g(x)6, we calculate

x27G(x)− F (x) = 0.

Then the left-hand side of the above equation can be decomposed into a product of some irreducible
factors over F3 as

x16(x+ 1)16(x3 − x2 + 1)(x3 − x− 1) = 0.

When m = 3, we can check that the above two polynomials with degree 3 have no roots in F33 by
Magma. Therefore, we conclude that Eq. (7) has no solution in F3m\F3 if m is an odd prime.

When 2h ≡ −1 (mod m) and taking the 3h+1-th power on both sides of Eq. (15), we obtain

x3 = (
f(x)

g(x)
)3

h+1
=
f(x)6 + f(x)4g(x)2

f(x)g(x)5 − g(x)6
:=

F (x)

G(x)
,

where F (x) = f(x)6 + f(x)4g(x)2 and G(x) = f(x)g(x)5 − g(x)6, we calculate

x3G(x)− F (x) = 0.

Then the left-hand side of the above equation can be decomposed into a product of some irreducible
factors over F3 as

x3(x+ 1)3(x15 + x14 − x10 + x9 + x8 − x7 − x6 − x3 − x2 + x+ 1)

(x15 − x14 + x13 + x12 − x11 − x10 − x9 − x8 + x4 + x3 − x2 − x+ 1) = 0.
(16)

When m = 3, we can check that the above two polynomials with degree 15 are all decomposed
as the product of three irreducible polynomials with degree 5 over F33 by Magma. Furthermore,
we know that Eq. (16) has no solution in F33\F3, which follows from Lemma 2.1. When m = 5,
we can verify that the above two polynomials with degree 15, can be factored into five irreducible
polynomials with degree 3 over F35 by Magma. Furthermore, we know that Eq. (16) has no solution
in F35\F3 by Lemma 2.1. Therefore, we conclude that Eq. (7) has no solution in F3m\F3 if m is
an odd prime.

To summarize, we know that Eq. (7) has no solution in F3m\F3. Hence, the ternary cyclic code
C(1,e) has parameters [3m − 1, 3m − 1− 2m, 4] if 2h ≡ ±1 (mod m).

Example 4. Letm = 3 and h = m+1
2 = 2, then e = 12. Let α be the generator of F∗33 with α3−α+1.

Then the code C(1,e) has parameters [26, 20, 4] and generator polynomial x6+x5−x4−x3+x2+x−1.
The dual of C(1,e) is a ternary cyclic code with parameters [26, 6, 15] and weight enumerator

1 + 312x15 + 260x18 + 156x21.

Example 5. Let m = 3 and h = m−1
2 = 1, then e = 6. Let α be the generator of F∗33 with α3−α+1.

Then the code C(1,e) has parameters [26, 20, 4] and generator polynomial x6 + x5 − x3 − x− 1.
The dual of C(1,e) is a ternary cyclic code with parameters [26, 6, 15] and weight enumerator

1 + 312x15 + 260x18 + 156x21.

Based on Theorem 2.2, we have the following corollary.

Corollary 3.2. Let m ≥ 3 be an odd prime. Let u = 3m+1
2 , v = 2 · 3m−1 + 3h − 2, where h is an

integer with 0 ≤ h ≤ m − 1. If 2h ≡ ±1 (mod m), i.e., h = m±1
2 , then the ternary cyclic code

C(u,v) has parameters [3m − 1, 3m − 1− 2m, 4].
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4 New optimal ternary cyclic codes C(1,e) with explicit values e

In this section, by using the multivariate method, we propose five classes of optimal ternary
cyclic codes C(1,e) with explicit values e.

First, we give the following lemma needed later, which is an immediate consequence of Lemma
2.1 in [13].

Lemma 4.1. Let f(x) be an irreducible polynomial over Fq of degree n and k be a positive integer,
where q is a prime power. Then f(x) = 0 has no solution in Fqk if and only if k 6≡ 0 (mod n).

Theorem 4.1. Let m, e be two positive integers satisfying m > 1 and 7e ≡ 4 (mod 3m− 1). Then
the ternary cyclic code C(1,e) has parameters [3m − 1, 3m − 1 − 2m, 4] if and only if m is odd and
m 6≡ 0 (mod 9).

Proof. From the condition 7e ≡ 4 (mod 3m − 1), we can get that e is even and m 6≡ 0 (mod 6),
which means that e /∈ C1 and gcd(7, 3m− 1) = 1. Therefore, we have gcd(e, 3m− 1) = gcd(7e, 3m−
1) = gcd(4, 3m − 1) = 2 since m is odd. It follows from Lemma 2.2 that |Ce| = m. Hence, the
condition C1 of Theorem 2.1 is satisfied. For any x ∈ F3m , there exists α, β ∈ F3m such that
x+ 1 = α7, x = β7 and

α7 − β7 = 1. (17)

Next, we show that the conditions C2 and C3 of Theorem 2.1 are satisfied, respectively.
First of all, the equation (x+ 1)e + xe + 1 = 0 can be written as

α4 + β4 = −1. (18)

Eliminating α from Eqs. (17) and (18) gives

(−β4 − 1)7 = (β7 + 1)4.

Then the above equation can be decomposed into a product of some irreducible factors over F3 as

(β − 1)4(β8 + β6 − β5 − β3 − β2 + β − 1)(β8 − β7 + β6 − β4 + β2 − β + 1)

(β8 − β7 + β6 + β5 + β3 − β2 − 1) = 0.
(19)

By Lemma 4.1, we can get that three irreducible polynomials of degree 8 in Eq. (19) have no
solutions in F3m if and only if m 6≡ 0 (mod 8), which means that β = 1. Hence, we can get that
x = 1 is a unique solution of the equation (x+ 1)e + xe + 1 = 0 if and only if m 6≡ 0 (mod 8).

Secondly, the equation (x+ 1)e − xe − 1 = 0 can be simplified as

α4 − β4 = 1. (20)

Combining Eqs. (17) and (20) leads to

(β4 + 1)7 = (β7 + 1)4.

Then the above equation can be decomposed into a product of some irreducible factors over F3 as

β4(β2 + 1)(β9 + β8 − β7 − β6 − β3 − β2 + β − 1)(β9 − β8 + β7 + β6 + β3 + β2 − β − 1) = 0.

(21)
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By Lemma 4.1, we can get that the irreducible polynomial of degree 2 in Eq. (21) has no solution
in F3m if and only if m 6≡ 0 (mod 2) and two irreducible polynomials of degree 9 in Eq. (21) have
no solutions in F3m if and only if m 6≡ 0 (mod 9), which means that β = 0. Hence, we can get that
x = 0 is a unique solution of the equation (x+ 1)e − xe − 1 = 0 if and only if m 6≡ 0 (mod 2) and
m 6≡ 0 (mod 9).

To sum up, the ternary cyclic code C(1,e) has parameters [3m − 1, 3m − 1− 2m, 4] if and only if
m is odd and m 6≡ 0 (mod 9).

Note that the conditions in Theorem 4.1 hold in the following cases: (i) e = 5·3m−1
7 , when m ≡ 1

(mod 6); (ii) e = 2·3m+2
7 , when m ≡ 3 (mod 6) and m 6≡ 0 (mod 9); (iii) e = 6·3m−2

7 , when m ≡ 5
(mod 6).

Example 6. Let m = 3, then e = 8. Let α be the generator of F∗33 with α3−α+ 1. Then the code
C(1,e) has parameters [26, 20, 4] and generator polynomial x6 − x5 + x4 + x3 − 1.

The dual of C(1,e) is a ternary cyclic code with parameters [26, 6, 15] and weight enumerator

1 + 312x15 + 260x18 + 156x21.

Theorem 4.2. Let m, e be two positive integers satisfying m > 1 and 5e ≡ 3m − 3 (mod 3m − 1).
Then the ternary cyclic code C(1,e) has parameters [3m − 1, 3m − 1 − 2m, 4] if and only if m 6≡ 0
(mod 6).

Proof. Since 5e ≡ 3m − 3 (mod 3m − 1), then e is even and e /∈ C1. Suppose there exists an
integer 1 ≤ j ≤ m − 1 such that 3j · e ≡ e (mod 3m − 1), then (3m − 1) | e(3j − 1). And
we can get that (3m − 1) | 5e(3j − 1), i.e., (3m − 1) | (3m − 3)(3j − 1). Furthermore, we have
gcd(3m− 1, (3m− 3)(3j − 1)) ≤ gcd(3m− 1, 3m− 3) · gcd(3m− 1, 3j − 1) = 2(3gcd(m,j)− 1) < 3m− 1,
which leads to a contradiction. Therefore, 3j · e 6≡ e (mod 3m − 1) for any 1 ≤ j ≤ m − 1, which
means that |Ce| = m. Hence, the condition C1 of Theorem 2.1 is satisfied. It can be checked that
m 6≡ 0 (mod 4) since 5e ≡ 3m − 3 (mod 3m−1), then we have gcd(5, 3m−1) = 1. For any x ∈ F3m ,
there exists α, β ∈ F3m such that x+ 1 = α5, x = β5 and

α5 − β5 = 1. (22)

Next, we show that the conditions C2 and C3 of Theorem 2.1 are satisfied, respectively.
First, the equation (x+1)e+xe+1 = 0 can be written as α−2+β−2 = −1. It can be verified that

α 6= 0, β 6= 0 and (β2 + 1)(β−2 + 1) 6= 0. Otherwise, if β−2 = −1, then α−2 = 0, which contradicts
to the assumption that α ∈ F3m . If β2 = −1, then β−2 = −1 and α−2 = 0, a contradiction. Hence,
we have

α2 = − 1

β−2 + 1
= − β2

β2 + 1
. (23)

Plugging Eqs. (23) into (22) turns to

(−β2)5 = (β5 + 1)2(β2 + 1)5.

Then the above equation can be decomposed into a product of some irreducible factors over F3 as

(β − 1)2(β6 + β5 + β3 + β + 1)(β6 − β5 + β4 + β2 + β − 1)(β6 − β5 − β4 − β2 + β − 1) = 0. (24)
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By Lemma 4.1, we can get that three irreducible polynomials of degree 6 in Eq. (24) have no
solutions in F3m if and only if m 6≡ 0 (mod 6), which means that β = 1. Hence, we can get that
x = 1 is a unique solution of the equation (x+ 1)e + xe + 1 = 0 if and only if m 6≡ 0 (mod 6).

Secondly, we calculate the solutions of equation (x + 1)e − xe − 1 = 0. Obviously, x = 0 is a
solution of this equation. If x 6= 0, this equation can be simplified as α−2 − β−2 = 1. Similarly, we
can get (β2 + 1)(β−2 + 1) 6= 0. Hence, we have

α2 =
1

β−2 + 1
=

β2

β2 + 1
. (25)

Eliminating α from Eqs. (22) and (25), we can get

(β2)5 = (β5 + 1)2(β2 + 1)5.

Then the above equation can be decomposed into a product of some irreducible factors over F3 as

β20 − β18 + β16 − β15 + β14 + β13 − β12 − β11 + β10 − β9 − β8 + β7 + β6 − β5 + β4 − β2 + 1 = 0.

(26)

By Lemma 4.1, we can get that Eq. (26) has no solution in F3m if and only if m 6≡ 0 (mod 20).
And since m 6≡ 0 (mod 4), then Eq. (26) has no solution in F3m . Hence, we can get that x = 0 is
a unique solution of the equation (x+ 1)e − xe − 1 = 0.

In conclusion, the ternary cyclic code C(1,e) has parameters [3m− 1, 3m− 1− 2m, 4] if and only
if m 6≡ 0 (mod 6).

Note that the conditions in Theorem 4.2 hold in the following cases: (i) e = 3m−3
5 , when m ≡ 1

(mod 4); (ii) e = 4·3m−6
5 , when m ≡ 2 (mod 4) and m 6≡ 0 (mod 6); (iii) e = 2·3m−4

5 , when m ≡ 3
(mod 4).

Example 7. Let m = 2, then e = 6. Let α be the generator of F∗32 with α2−α− 1. Then the code
C(1,e) has parameters [8, 4, 4] and generator polynomial x4 − x3 − x− 1.

The dual of C(1,e) is a ternary cyclic code with parameters [8, 4, 4] and weight enumerator

1 + 20x4 + 32x5 + 8x6 + 16x7 + 4x8.

Example 8. Let m = 6, then e = 582. Let α be the generator of F∗36 with α6 − α4 + α2 − α − 1.
Then the code C(1,e) has parameters [728, 716, 3] and generator polynomial x12 − x11 + x10 + x8 +
x6 + x2 + x− 1. Clearly, this is an almost optimal ternary cyclic code.

Theorem 4.3. Let m, e be two positive integers satisfying m > 1 and 7e ≡ 3m − 3 (mod 3m − 1).
Then the ternary cyclic code C(1,e) has parameters [3m − 1, 3m − 1 − 2m, 4] if and only if m 6≡ 0
(mod 3), m 6≡ 0 (mod 4) and m 6≡ 0 (mod 22).

Proof. Since 7e ≡ 3m − 3 (mod 3m−1), it can be verified that e is even and e /∈ C1. Suppose that
there exists an integer 1 ≤ j ≤ m− 1 such that 3j · e ≡ e (mod 3m − 1), then (3m − 1) | e(3j − 1).
And we can get that (3m − 1) | 7e(3j − 1), i.e., (3m − 1) | (3m − 3)(3j − 1). Moreover, we have
gcd(3m− 1, (3m− 3)(3j − 1)) ≤ gcd(3m− 1, 3m− 3) · gcd(3m− 1, 3j − 1) = 2(3gcd(m,j)− 1) < 3m− 1.
This leads to a contradiction. Therefore, 3j · e 6≡ e (mod 3m − 1) for any 1 ≤ j ≤ m − 1, which
means that |Ce| = m. Hence, the condition C1 of Theorem 2.1 is met. It can be checked that
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m 6≡ 0 (mod 6) since 7e ≡ 3m − 3 (mod 3m − 1), then gcd(7, 3m − 1) = 1. For any x ∈ F3m , there
exists α, β ∈ F3m such that x+ 1 = α7, x = β7 and

α7 − β7 = 1. (27)

Next, we show that conditions C2 and C3 of Theorem 2.1 are satisfied, respectively.
At first, the equation (x+ 1)e + xe + 1 = 0 can be written as α−2 + β−2 = −1. Similar to the

proof of Theorem 4.2, we can get (β2 + 1)(β−2 + 1) 6= 0 and

α2 = − 1

β−2 + 1
= − β2

β2 + 1
. (28)

Combining Eqs. (27) and (28) gives

(−β2)7 = (β7 + 1)2(β2 + 1)7.

Then the above equation can be decomposed into a product of some irreducible factors over F3 as

(β − 1)10(β3 − β − 1)(β3 + β2 − 1)(β4 − β − 1)(β4 + β3 − 1)(β4 − β3 + β2 − β + 1) = 0. (29)

By Lemma 4.1, we can get that two irreducible polynomials of degree 3 in Eq. (29) have no solutions
in F3m if and only if m 6≡ 0 (mod 3) and three irreducible polynomials of degree 4 in Eq. (29) have
no solutions in F3m if and only if m 6≡ 0 (mod 4), which means that β = 1. Hence, we can get that
x = 1 is a unique solution of the equation (x+ 1)e + xe + 1 = 0 if and only if m 6≡ 0 (mod 3) and
m 6≡ 0 (mod 4).

Secondly, we calculate the solutions of equation (x + 1)e − xe − 1 = 0. Obviously, x = 0 is a
solution of this equation. If x 6= 0, this equation can be written as α−2 − β−2 = 1. Similarly, we
can get (β2 + 1)(β−2 + 1) 6= 0 and

α2 =
1

β−2 + 1
=

β2

β2 + 1
. (30)

Eliminating α from Eqs. (27) and (30) turns to

(β2)7 = (β7 + 1)2(β2 + 1)7.

Then the above equation can be decomposed into a product of some irreducible factors over F3 as

(β3 + β2 + β − 1)(β3 − β2 − β − 1)

(β22 − β20 + β19 + β16 + β14 − β13 − β12 − β10 − β9 + β8 + β6 + β3 − β2 + 1) = 0.
(31)

By Lemma 4.1, we can get that two irreducible polynomials of degree 3 in Eq. (31) have no solutions
in F3m if and only if m 6≡ 0 (mod 3) and the irreducible polynomial of degree 22 in Eq. (31) has no
solution in F3m if and only if m 6≡ 0 (mod 22). Hence, we can get that x = 0 is a unique solution
of the equation (x+ 1)e − xe − 1 = 0 if and only if m 6≡ 0 (mod 3) and m 6≡ 0 (mod 22).

In summary, the ternary cyclic code C(1,e) has parameters [3m − 1, 3m − 1− 2m, 4] if and only
if m 6≡ 0 (mod 3), m 6≡ 0 (mod 4) and m 6≡ 0 (mod 22).

Note that the conditions in Theorem 4.3 hold in the following cases: (i) e = 3m−3
7 , when

m ≡ 1 (mod 6); (ii) e = 2·3m−4
7 , when m ≡ 2 (mod 6), m 6≡ 0 (mod 4) and m 6≡ 0 (mod 22); (iii)

e = 3m+1−5
7 , when m ≡ 4 (mod 6), m 6≡ 0 (mod 4) and m 6≡ 0 (mod 22); (iv) e = 4·3m−6

7 , when
m ≡ 5 (mod 6).
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Example 9. Let m = 2, then e = 2. Let α be the generator of F∗32 with α2−α− 1. Then the code
C(1,e) has parameters [8, 4, 4] and generator polynomial x4 − x3 − x− 1.

The dual of C(1,e) is a ternary cyclic code with parameters [8, 4, 4] and weight enumerator

1 + 20x4 + 32x5 + 8x6 + 16x7 + 4x8.

Example 10. Let m = 4, then e = 34. Let α be the generator of F∗34 with α4 − α3 − 1. Then the
code C(1,e) has parameters [80, 72, 3] and generator polynomial x8− x7 + x6− x4− x3− x2− x− 1.
We can verify this is an almost optimal ternary cyclic code by the collection of the tables of best
linear codes known maintained by Markus Grassl at http://www.codetables.de/.

Theorem 4.4. Let m, e be two positive integers satisfying m > 1, and 5e ≡ 3m − 5 (mod 3m− 1).
Then the ternary cyclic code C(1,e) has parameters [3m − 1, 3m − 1− 2m, 4] and if and only if m is
odd.

Proof. From the condition 5e ≡ 3m − 5 (mod 3m − 1), we can get that e is even and m 6≡ 0
(mod 4), then e /∈ C1 and gcd(5, 3m−1) = 1. Since m is odd, then gcd(e, 3m−1) = gcd(5e, 3m−1) =
gcd(3m− 5, 3m− 1) = 2. Therefore, we have |Ce| = m, which follows from Lemma 2.2. Hence, The
condition C1 of Theorem 2.1 is satisfied. It can be checked that m 6≡ 0 (mod 4) since 5e ≡ 3m − 5
(mod 3m − 1), then gcd(5, 3m − 1) = 1. For any x ∈ F3m , there exists α, β ∈ F3m such that
x+ 1 = α5, x = β5 and

α5 − β5 = 1. (32)

Next, we show that the conditions C2 and C3 of Theorem 2.1 are satisfied, respectively.
First, the equation (x+1)e+xe+1 = 0 can be written as α−4+β−4 = −1. It can be verified that

α 6= 0, β 6= 0 and (β4 + 1)(β−4 + 1) 6= 0. Otherwise, if β−4 = −1, then α−4 = 0, which contradicts
to the assumption that α ∈ F3m . If β4 = −1, then β−4 = −1 and α−4 = 0, a contradiction. Hence,
we have

α4 = − 1

β−4 + 1
= − β4

β4 + 1
. (33)

Eliminating α from Eqs. (32) and (33), we can get

(−β4)5 = (β5 + 1)4(β4 + 1)5.

Then the above equation can be decomposed into a product of some irreducible factors over F3 as

(β − 1)10(β10 − β8 − β7 − β6 − β5 − β4 − β3 − β2 + 1)

(β10 − β8 − β7 − β5 − β4 − β3 + β + 1)(β10 + β9 − β7 − β6 − β5 − β3 − β2 + 1) = 0.
(34)

By Lemma 4.1, we can get that three irreducible polynomials of degree 10 in Eq. (34) have no
solutions in F3m if and only if m 6≡ 0 (mod 10), which means that β = 1. Hence, we can get that
x = 1 is a unique solution of the equation (x+ 1)e + xe + 1 = 0 if and only if m 6≡ 0 (mod 10).

Secondly, we calculate the solutions of equation (x + 1)e − xe − 1 = 0. Obviously, x = 0 is a
solution of this equation. If x 6= 0, this equation can be simplified as α−4 − β−4 = 1. Similarly, we
can get (β4 + 1)(β−4 + 1) 6= 0 and

α4 =
1

β−4 + 1
=

β4

β4 + 1
. (35)
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Plugging Eq. (35) into (32) leads to

(β4)5 = (β5 + 1)4(β4 + 1)5.

Then the above equation can be decomposed into a product of some irreducible factors over F3 as

(β2 + 1)(β6 − β5 + β4 − β3 + β2 − β + 1)

(β32 + β31 − β30 − β29 + β27 + β26 + β25 − β24 − β23 − β21 + β20 − β19 + β18 − β17

− β16 − β15 + β14 − β13 + β12 − β11 − β9 − β8 + β7 + β6 + β5 − β3 − β2 + β + 1) = 0.

(36)

By Lemma 4.1, we can get that the irreducible polynomial of degree 2 in Eq. (36) has no solution
in F3m if and only if m 6≡ 0 (mod 2), the irreducible polynomial of degree 6 in Eq. (36) has no
solution in F3m if and only if m 6≡ 0 (mod 6) and the irreducible polynomial of degree 32 in Eq.
(36) has no solution in F3m if and only if m 6≡ 0 (mod 32). Hence, we can get that x = 0 is a
unique solution of the equation (x+ 1)e − xe − 1 = 0 if and only if m 6≡ 0 (mod 2).

To sum up, the ternary cyclic code C(1,e) has parameters [3m − 1, 3m − 1− 2m, 4] if and only if
m is odd.

Note that the conditions in Theorem 4.4 hold in the following cases: (i) e = 2·3m−6
5 , when m ≡ 1

(mod 4); (ii) e = 4·3m−8
5 , when m ≡ 3 (mod 4).

Example 11. Let m = 3, then e = 20. Let α be the generator of F∗33 with α3 − α + 1. Then the
code C(1,e) has parameters [26, 20, 4] and generator polynomial x6 − x5 + x4 + x3 − 1.

The dual of C(1,e) is a ternary cyclic code with parameters [26, 6, 15] and weight enumerator

1 + 312x15 + 260x18 + 156x21.

Theorem 4.5. Let m, e be two positive integers satisfying m > 1 and 7e ≡ 3m − 5 (mod 3m − 1).
Then the ternary cyclic code C(1,e) has parameters [3m− 1, 3m− 1− 2m, 4] if and only if m is odd,
m 6≡ 0 (mod 5) and m 6≡ 0 (mod 9).

Proof. From the condition 7e ≡ 3m − 5 (mod 3m − 1), we can get that e is even and m 6≡ 0
(mod 6), which implies that e /∈ C1 and gcd(7, 3m − 1) = 1. Therefore, we have gcd(e, 3m − 1) =
gcd(7e, 3m − 1) = gcd(3m − 5, 3m − 1) = 2 since m is odd. Consequently, we can get |Ce| = m,
which follows from Lemma 2.2. Hence, the condition C1 of Theorem 2.1 is met. For any x ∈ F3m ,
there exists α, β ∈ F3m such that x+ 1 = α7, x = β7 and

α7 − β7 = 1. (37)

Next, we show that the conditions C2 and C3 of Theorem 2.1 are satisfied, respectively.
At first, the equation (x+ 1)e + xe + 1 = 0 can be written as α−4 + β−4 = −1. Similar to the

proof of Theorem 4.4, we can get (β4 + 1)(β−4 + 1) 6= 0 and

α4 = − 1

β−4 + 1
= − β4

β4 + 1
. (38)

Drugging Eq. (38) into (37) yields

(−β4)7 = (β7 + 1)4(β4 + 1)7.
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Then the above equation can be decomposed into a product of some irreducible factors over F3 as

(β − 1)2(β9 − β8 − β7 + β5 − β4 + β3 − 1)(β9 − β6 + β3 + β − 1)(β9 − β8 − β6 + β3 − 1)

(β9 + β8 − β4 + β3 + β2 − 1)(β9 − β6 + β5 − β4 + β2 + β − 1)(β9 − β7 − β6 + β5 − β − 1) = 0.

(39)

By Lemma 4.1, we can get that six irreducible polynomials of degree 9 in Eq. (39) have no solutions
in F3m if and only if m 6≡ 0 (mod 9), which means that β = 1. Hence, we can get that x = 1 is a
unique solution of the equation (x+ 1)e + xe + 1 = 0 if and only if m 6≡ 0 (mod 9).

Secondly, we calculate the solutions of equation (x+ 1)e−xe− 1 = 0. It is clear that x = 0 is a
solution of this equation. If x 6= 0, this equation is equivalent to α−4 − β−4 = 1. Similarly, we can
get (β4 + 1)(β−4 + 1) 6= 0 and

α4 =
1

β−4 + 1
=

β4

β4 + 1
. (40)

Substituting Eqs. (40) into (37) leads to

(β4)7 = (β7 + 1)4(β4 + 1)7.

Then the above equation can be decomposed into a product of some irreducible factors over F3 as

(β2 + 1)(β5 + β4 + β3 + β2 − β + 1)(β5 − β4 + β3 + β2 + β + 1)

(β8 + β7 − β6 + β5 + β3 − β2 + β + 1)(β36 − β35 − β33 − β32 − β31 − β29 + β27 − β26 − β25

− β24 + β23 + β19 + β18 + β17 + β13 − β12 − β11 − β10 + β9 − β7 − β5 − β4 − β3 − β + 1) = 0.

(41)

By Lemma 4.1, we can get that the irreducible polynomial of degree 2 in Eq. (41) has no solution
in F3m if and only if m 6≡ 0 (mod 2), two irreducible polynomials of degree 5 in Eq. (41) have no
solutions in F3m if and only if m 6≡ 0 (mod 5), the irreducible polynomial of degree 8 in Eq. (41)
has no solution in F3m if and only if m 6≡ 0 (mod 8) and the irreducible polynomial of degree 36
in Eq. (41) has no solution in F3m if and only if m 6≡ 0 (mod 36). Hence, we can get that x = 0 is
a unique solution of the equation (x + 1)e − xe − 1 = 0 if and only if m 6≡ 0 (mod 2) and m 6≡ 0
(mod 5).

In conclusion, the ternary cyclic code C(1,e) has parameters [3m− 1, 3m− 1− 2m, 4] if and only
if m is odd, m 6≡ 0 (mod 5) and m 6≡ 0 (mod 9).

Note that the conditions in Theorem 4.5 hold in the following cases: (i) e = 2·3m−6
7 , when m ≡ 1

(mod 6) and m 6≡ 0 (mod 5); (ii) e = 5·3m−9
7 , when m ≡ 3 (mod 6), m 6≡ 0 (mod 5) and m 6≡ 0

(mod 9); (iii) e = 3m−5
7 , when m ≡ 5 (mod 6) and m 6≡ 0 (mod 5).

Example 12. Let m = 3, then e = 18. Let α be the generator of F∗33 with α3 − α + 1. Then the
code C(1,e) has parameters [26, 20, 4] and generator polynomial x6 + x5 − x3 − x− 1.

The dual of C(1,e) is a ternary cyclic code with parameters [26, 6, 15] and weight enumerator

1 + 312x15 + 260x18 + 156x21.

Example 13. Let m = 5, then e = 34. Let α be the generator of F∗35 with α5 − α + 1. Then the
code C(1,e) has parameters [242, 232, 3] and generator polynomial x10 + x7 − x3 − x − 1. We can
verify this is an almost optimal ternary cyclic code by the collection of the tables of best linear
codes known maintained by Markus Grassl at http://www.codetables.de/.
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Remark 2. Note that Theorems 4.2, 4.3, 4.4 can solve the remaining problems of [23]. Furthermore,
we have found that the necessary and sufficient conditions of Theorem 4.2 in [23] should be m > 1
and m 6≡ 0 (mod 5). And the necessary and sufficient conditions of Theorem 4.3 in [23] should be
m > 2, m 6≡ 0 (mod 5) and m 6≡ 0 (mod 9).

5 Concluding remarks

This paper mainly investigated the construction of optimal ternary cyclic codes over F3m . On
the one hand, by analyzing the solutions of certain equations over F3m , we obtained three classes
of optimal ternary cyclic codes C(1,e) in the case of m is odd. On the other hand, we proposed five
new classes of optimal ternary cyclic codes C(1,e) with explicit values e by using the multivariate
method. As a byproduct, two classes of optimal ternary cyclic codes C(u,v) were given. It is a
continuation and generalization of some previous works in [23, 24]. We summarized all known
optimal ternary cyclic codes C(1,e) and C(u,v) over F3m in Tables 1 and 2, respectively. Finding
more optimal ternary cyclic codes over F3m would be interesting.

Table 1
Known optimal ternary cyclic codes C(1,e) over F3m

e Conditions Reference

3h+1
2

h is odd, gcd(m,h) = 1 [1]

3h + 1 m
gcd(m,h)

is odd [1]
3m−3

2
m ≥ 5 is odd [3]

3m+1
4

+ 3m−1
2

m ≥ 3 is odd [3]

(3
m+1

4 − 1)(3
m+1

2 + 1) m ≡ 3 (mod 4) [3]

3
m+1

2 −1
2

or 3m+1−1
8

m ≡ 3 (mod 4) [3]

3
m+1

2 −1
2

+ 3m−1
2

m ≡ 1 (mod 4) [3]
3m+1−1

8
+ 3m−1

2
m ≡ 1 (mod 4) [3]

3h − 1 gcd(h,m) = gcd(3h − 2, 3m − 1) = 1 [3]

3h−1
2

m is odd, h is even
[3]

gcd(h,m) = gcd(h− 1,m) = 1
2(3m−1 − 1) or 5(3m−1 − 1) m is odd, m 6≡ 0 (mod 3) [10]
3m−1

2
+ r r = 7, m is odd or r = 10, m ≡ 2 (mod 4) [10]

3m−1
2
− r

r = 2, m ≡ 2 (mod 4); r = 5, m is odd [10]
r = 7; r = 11, m 6≡ 0 (mod 9); r = −19, m 6≡ 0 (mod 9) [17]

2(3h + 1) m is odd [12]

e ≡ 3m−1
2

+ 3h + 1 (mod 3m − 1) m is even, m
gcd(m,h)

is odd [18]

e ≡ 3m−1
2

+ 3h − 1 (mod 3m − 1) see [18] [18]

3h + 5

m ≡ 0 (mod 4), m ≥ 4, h = m
2

[8]
m ≡ 2 (mod 4), m ≥ 6, h = m+2

2
[8]

2h ≡ 1 (mod m), m ≥ 5 is odd, gcd(m, 3) = 1 [8]
2h ≡ −1 (mod m), m ≥ 5 is odd prime [16]

3h + 13
2h ≡ −1 (mod m), m ≥ 7 is odd prime [16]
2h ≡ 1 (mod m), m ≥ 5 is odd, gcd(m, 3) = 1 [8]

3m−1−1
2

+ 3h + 1
2h ≡ ±1 (mod m), m ≥ 5 is odd prime [16]
see [25] [25]

3m−1−1
2

+ 3h m is even, gcd(m,h+ 1) = gcd(3h+1 − 2, 3m − 1) = 1 [25]

e(3s + a) ≡ 3t + a (mod 3m − 1)
a = 1, gcd(m, t− s) = gcd(m, t+ s) = 1 or

[18, 25]
a = −1, gcd(m, t) = gcd(m, t− s) = 1

Continue on the next page
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The continuation of Table 1

e Conditions Reference

3
m+1

2 +5
2

m ≡ 1 (mod 4), m 6≡ 0 (mod 3) [23]

3
m+1

2 +5
2

+ 3m−1
2

m ≡ 3 (mod 4), m 6≡ 0 (mod 3) [23]
3h+7

2
m is odd, h is even [23]

3h+7
2

+ 3m−1
2

m is odd, h is odd [23]

e(3h + 1) ≡ 3m+1
2

(mod 3m − 1) m is odd, e is even [23]
5e ≡ 2 (mod 3m − 1) m 6≡ 0 (mod 3) [23]
5e ≡ 4 (mod 3m − 1) m > 2, m 6≡ 0 (mod 3), m 6≡ 0 (mod 5) [23]
7e ≡ 2 (mod 3m − 1) m 6≡ 0 (mod 5), gcd(m, 6) = 1 or m ≡ 3 (mod 6) [23]

3
m−1

2 +5
2

+ 3m−1
2

m is odd prime, m ≡ 1 (mod 4), m 6≡ 0 (mod 17)
Theorem 3.1

3
m−1

2 +5
2

m is odd prime, m ≡ 3 (mod 4)

e(3h − 1) ≡ 3m+1
2

(mod 3m − 1) see Theorem 3.2 Theorem 3.2
3m−1−1

2
+ 3h − 1 2h ≡ ±1 (mod m), m is odd prime Theorem 3.3

7e ≡ 4 (mod 3m − 1) m > 1 is odd, m 6≡ 0 (mod 9) Theorem 4.1
5e ≡ 3m − 3 (mod 3m − 1) m > 1, m 6≡ 0 (mod 6) Theorem 4.2

7e ≡ 3m − 3 (mod 3m − 1)
m > 1, m 6≡ 0 (mod 3), m 6≡ 0 (mod 4),

Theorem 4.3
m 6≡ 0 (mod 22)

5e ≡ 3m − 5 (mod 3m − 1) m > 1 is odd Theorem 4.4
7e ≡ 3m − 5 (mod 3m − 1) m > 1 is odd, m 6≡ 0 (mod 5), m 6≡ 0 (mod 9) Theorem 4.5

Table 2
Known optimal ternary cyclic codes C(u,v) over F3m

u v Conditions Reference

3m+1
2

3s+1
2

m is odd, s is even, gcd(m, s) = 1 [27]
3m+1

2
2·3l + 1 m = 2l + 1 [5]

3m+1
2

3r + 2 m ≥ 3 is odd, 4r ≡ 1 (mod m), 9 - m [20]

3m−6 3k+1
2

see [17] [17]

2 3m−1
2

+ 2(3k − 1) m is odd, gcd(m, k) = gcd(3k − 2, 3m − 1) = 1 [15]

2 3m−1
2

+ 2(3k + 1) m is odd, gcd(m, k) = 1 [15]
3k+1

2
3l+1

2
l

gcd(m,l)
is odd, m

gcd(m,l)
is even, gcd(m, k ± l) = 1 [24]

2i 3m−1
2

+ 2i · e m is odd, C(1,e) is optimal ternary cyclic code [24]

u 3m−1
2

+ (3k − 1)u m is odd, k = m+1
2

, gcd(u, 3m − 1) = 2 [24]
3m+1

2
3m−1

2
+ e m is odd, C(1,e) is optimal ternary cyclic code [24]

3m+1
2

3
m−1

2 +5
2

m is odd prime, m ≡ 1 (mod 4), m 6≡ 0 (mod 17) Corollary 3.1

3m+1
2

3m−1
2

+ 3
m−1

2 +5
2

m is odd prime, m ≡ 3 (mod 4) Corollary 3.1
3m+1

2
2 · 3m−1 + 3h − 2 2h ≡ ±1 (mod m), m ≥ 3 is odd prime Corollary 3.2
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