
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–23. DOI:XXXXXXXX

Vectorized and Parallel Computation of
Large Smooth-Degree Isogenies using
Precedence-Constrained Scheduling

Kittiphon Phalakarn1, Vorapong Suppakitpaisarn2,
Francisco Rodríguez-Henríquez3,4 and M. Anwar Hasan1

1 University of Waterloo, Waterloo, Canada, {kphalakarn,ahasan}@uwaterloo.ca
2 The University of Tokyo, Tokyo, Japan, vorapong@is.s.u-tokyo.ac.jp

3 CINVESTAV-IPN, Mexico City, Mexico, francisco@cs.cinvestav.mx
4 Technology Innovation Institute, Abu Dhabi, UAE, francisco.rodriguez@tii.ae

Abstract. Strategies and their evaluations play important roles in speeding up the
computation of large smooth-degree isogenies. The concept of optimal strategies for
such computation was introduced by De Feo et al., and virtually all implementations
of isogeny-based protocols have adopted this approach, which is provably optimal
for single-core platforms. In spite of its inherent sequential nature, several recent
works have studied ways of speeding up this isogeny computation by exploiting the
rich parallelism available in vectorized and multi-core platforms. One obstacle to
taking full advantage of this parallelism, however, is that De Feo et al.’s strategies
are not necessarily optimal in multi-core environments. To illustrate how the speed
of vectorized and parallel isogeny computation can be improved at the strategy-
level, we present two novel software implementations that utilize a state-of-the-art
evaluation technique, called precedence-constrained scheduling (PCS), presented by
Phalakarn et al., with our proposed strategies crafted for these environments. Our first
implementation relies only on the parallelism provided by multi-core processors. The
second implementation targets multi-core processors supporting the latest generation
of the Intel’s Advanced Vector eXtensions (AVX) technology, commonly known
as AVX-512IFMA instructions. To better handle the computational concurrency
associated with PCS, we equip both implementations with extensive synchronization
techniques. Our first implementation outperforms the implementation of Cervantes-
Vázquez et al. by yielding up to 14.36% reduction in the execution time, when
targeting platforms with two- to four-core processors. Our second implementation,
equipped with four cores, achieves up to 34.05% reduction in the execution time
compared to the single-core implementation of Cheng et al. of CHES 2022.
Keywords: Isogeny-based cryptography · Isogeny computation · Software optimiza-
tion · Vectorization · Parallel computing · Precedence-constrained scheduling

1 Introduction
Isogeny-based cryptography is much newer than other post-quantum cryptographic schemes,
specifically, those based on codes and lattices. Some of the isogeny-based cryptographic
schemes include hash functions [CLG09, DPB17], the Supersingular Isogeny Diffie-Hellman
(SIDH) key exchange [JD11], the Supersingular Isogeny Key Encapsulation (SIKE) mech-
anism [JAC+20], and the Commutative SIDH (CSIDH) [CLM+18]. Recently, other
isogeny-based schemes have been proposed, notably Verifiable Delay Functions (VDFs)
[DMPS19, CSRT22] and the Short Quaternion and Isogeny Signature (SQISign) scheme

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
mailto:{kphalakarn,ahasan}@uwaterloo.ca
mailto:vorapong@is.s.u-tokyo.ac.jp
mailto:francisco@cs.cinvestav.mx
mailto:francisco.rodriguez@tii.ae
http://creativecommons.org/licenses/by/4.0/

2 Vectorized and Parallel Computation of Large Smooth-Degree Isogenies using PCS

[DKL+20]. We note that a key-recovery attack exploiting the auxiliary elliptic-curve points
of SIDH/SIKE has recently rendered SIDH/SIKE completely insecure [CD22, MM22,
Rob22], but there is no known way to apply similar attacks to the general isogeny problem.

The computation to find the curve and point images of isogenies, required by many
cryptosystems, is time-consuming. There have been various proposals (see below) to
speed-up the computation to obtain low-latency implementations of those protocols. Also,
the speed-up is of interest for VDFs. A VDF is a function that cannot be computed in
less time than a prescribed delay. Thus, the function must crucially be as sequential as
possible, in the sense that there should not exist any effective parallelization technique
that yields a significant acceleration in its computation. In this work, we push the limits of
the amount of effective parallelization obtained from isogeny computations, which can be
useful for a parameter selection in isogeny-based VDFs. Our focus is on the computation
of large smooth-degree isogenies with degree ℓe, where ℓ is typically a small prime.

It is known that the best way of performing this task is through the computation of a
sequence of degree-ℓ isogenies using Vélu-like formulas and point multiplications by [ℓ].
The first work which considered this problem is by De Feo et al. [FJP14]. The authors
started with an abstraction of the computation called a strategy and associated a cost
with it. The cost of a strategy theoretically represents the execution time of the isogeny
computation corresponding to that strategy when it is implemented. In their paper, a
dynamic programming equation for mathematically constructing a strategy with the least
cost, called an optimal strategy, is proposed. These optimal strategies are then utilized
in many implementations to reduce execution times [KJA+16, Mic17]. Apart from this,
several techniques were introduced to speed-up isogeny computation taking into account
various arithmetic aspects of the underlying field [CLN16, ALJK18, FLOR18, SLLH18].

In order to speed-up the computation, one can also adopt a technology especially
designed for exploiting paralellism, such as vector instructions of Intel’s Advanced Vector
eXtensions (AVX). By these special instructions, multiple operations can be performed
simultaneously on vectors. For the latest generation of AVX, called AVX-512, each vector
(consisting of an array of data) is of length 512 bits and can be operated as eight 64-bit
elements, meaning that eight 64-bit operations can be performed within a similar time as
a single 64-bit operation. The advantages of AVX-512 have been exploited to speed-up the
isogeny computation by a few works [KG19, CFGR22]. In [CFGR22], the authors proposed
optimizations in several layers, including base-field arithmetic, extension-field arithmetic,
elliptic curve arithmetic, and isogeny computation. Combining all those techniques, the
execution time of their implementation is 2.40 times faster compared to that of [Mic17].

To further improve the speed of the isogeny computation, many researchers [KAK16,
KAK+20, COR22] turned to multi-core platforms, on which multiple operations can be
performed simultaneously on different cores. We note that the use of vector instructions
is somewhat similar to the multi-core setting, but in the former, the same instruction is
performed on all vector elements. As the execution environment changes, strategies and the
cost function have to be revised accordingly. The earliest work that analyzes strategies and
the cost functions specifically for the multi-core setting is due to Hutchinson and Karabina
[HK18]. Their main contributions are a formalization of a parallel isogeny computation
on multi-core platforms called per-curve parallel (PCP) and a dynamic programming
algorithm constructing optimal strategies under this PCP parallel computation. The
experimental results show that, in the multi-core setting, optimal strategies under PCP
lead to lower costs compared to original optimal strategies of [FJP14] designed for serial
computation. This implies that serial optimal strategies of [FJP14] are not necessarily
optimal in the multi-core environment. Looking at the experimental results, the theoretical
costs of optimal strategies under PCP are up to 24%, 40%, and 51% cheaper than the
costs of optimal strategies of [FJP14] when the number of cores is two, four, and eight,
respectively. And when implementing the computation on a three-core platform using the

K. Phalakarn, V. Suppakitpaisarn, F. Rodríguez-Henríquez, M. A. Hasan 3

techniques of [HK18] along with other optimizations, Cervantes-Vázquez et al. [COR22]
could achieve more than 35% speed-up in the execution time compared to the serial
implementation. These results clearly show an impact on the speeding-up of isogeny
computation for multi-core platforms at the strategy-level.

Although speeding-up at the strategy-level is important, there is no implementation
that attempts to do so beyond PCP. To demonstrate how the computation can be further
sped-up at the strategy-level for vectorized and parallel software implementation, we
consider the recent work of Phalakarn et al. [PSH22] which has proposed the precedence-
constrained scheduling (PCS) technique to evaluate strategies. In that work, the isogeny
computation is considered to have two orthogonal axes: strategy construction and strategy
evaluation, i.e., the order in which operations are performed affects the strategy cost. The
PCS technique is an evaluation scheme which is shown to lead to lower cost compared
to PCP for the same strategy. The theoretical costs of strategies under PCS are up to
20% less than those under PCP. Although the theoretical strategy costs under PCS are
promising, there is no work, to the best of our knowledge, that applies the PCS technique
to practical software or hardware implementations of isogeny-based protocols.

Contributions. This work presents two software implementations of the degree-ℓe isogeny
computation, which aim to further speed-up this operation at the strategy-level by exploit-
ing parallelism and the PCS technique. Since [PSH22] did not consider any implementation
aspects, we also provide analyses and modifications on how to effectively apply the PCS
technique to the unique execution environment of each implementation. For comparison
purposes, the implementations are based on the SIKEp751 parameter set of SIKE. Both of
our implementations are available at https://github.com/kittiphonp/PCS.

The first implementation is designed for multi-core processors without AVX-512IFMA
instructions. We consider processors with two to four cores, and tailor strategies and
schedulings under PCS for each case. We use OpenMP for multi-threading with extensive
techniques to handle synchronization among cores. Moreover, we include an optimization
of [COR22] and modify the scheduling algorithm of [PSH22] to take advantage of this
optimization. As a result, we are able to obtain speed-ups of up to 12.53%, 12.57%, and
14.36% when compared to [COR22] using two, three, and four cores, respectively.

The second implementation is designed for multi-core processors which support AVX-
512IFMA. To our best knowledge, this work is the first to combine vectorization with
multi-core processors for isogeny computation. We start by improving PCP to suit our
specific execution environment. Then, PCS is modified and applied to the strategies crafted
for AVX-512 implementations. We also use the synchronization technique as in the first
implementation. Under this environment, PCS is very effective and can reduce a large
amount of the execution time over PCP. A speed-up of up to 34.05% is achieved by our
four-core implementation when compared to the single-core implementation of [CFGR22].

Generalization. The proposed implementations have a potential to be adapted for the
computation of degree-ℓ1ℓ2 · · · ℓn isogenies, which are used in some isogeny-based protocols
such as CSIDH. The only strategy-level difference is that in this case the isogeny computa-
tion is more complex. In particular, the cost of computing an ℓi-isogeny differs from that
of an ℓj-isogeny. This is also true for point multiplication by [ℓi] and [ℓj].

To handle these differences, we require some changes to both strategy construction
and evaluation. For strategy construction, there are already some works that have
studied optimal strategies for the isogeny computation [HLKA20, CR22]. Although both
approaches are designed for serial implementation, they can be extended to vectorized
and parallel implementation in the same manner. For strategy evaluation, the scheduling
algorithm used by the PCS technique needs to be applicable with tasks of varying length.
Example of such algorithms are [Gra66, CS99]. Tables 1 and 2 summarize and compare
strategy construction and evaluation techniques for both isogeny computations.

https://github.com/kittiphonp/PCS

4 Vectorized and Parallel Computation of Large Smooth-Degree Isogenies using PCS

Table 1: Strategy construction and evaluation techniques for computing isogenies of degree
ℓe in various settings.

Settings Strategy Construction Strategy Evaluation
Single-core Optimal strategies [FJP14] Sequential
Multi-core PCP [HK18, COR22] Modified PCS (Section 3.1)

AVX & Multi-core Modified PCP (Section 4.1) Modified PCS (Section 4.2)

Table 2: Strategy construction and evaluation techniques for computing isogenies of degree
ℓ1ℓ2 · · · ℓn in various settings.

Settings Strategy Construction Strategy Evaluation

Single-core Optimal strategies
[HLKA20, CR22] Sequential

Multi-core PCP Modified PCS using
[Gra66, CS99]AVX & Multi-core Modified PCP

2 Preliminaries
In this section, we give a brief overview of methods to compute large smooth-degree
isogenies, strategies for isogeny computation, the per-curve parallel (PCP) technique, the
precedence-constrained scheduling (PCS) technique, and the AVX-512 instructions.

2.1 Large Smooth-Degree Isogeny Computation and Strategies
Let E and E′ be elliptic curves over a field F . An isogeny from E to E′ is a surjective
morphism with a finite kernel. When specifying an elliptic curve E over F and a point
R ∈ E(F), one can compute the unique isogeny ϕ : E → E/⟨R⟩ satisfying ker ϕ = ⟨R⟩
using Vélu’s [Vél71] or

√
élu’s [BDFLS20] formulas. The degree of ϕ is equal to the order

of R.
Many isogeny-based cryptosystems require a computation of large smooth-degree

isogeny ϕ and the image curve E′ given the starting curve E and the kernel generator R.
We describe in this section how this computation can be performed effectively.

Let the order of R be ℓe, where ℓ is a small prime. Instead of directly computing the
degree-ℓe isogeny, it is suggested by [FJP14] to break down the computation into a chain
of e degree-ℓ isogenies:

ϕ : E = E0
ϕ0−−−→ E1

ϕ1−−−→ E2
ϕ2−−−→ · · · ϕe−2−−−→ Ee−1

ϕe−1−−−→ Ee = E′.

Specifically, for 0 ≤ i < e, ϕi is an ℓ-isogeny from Ei to Ei+1 with a kernel generated by
[ℓe−i−1]Ri, where R0 = R and Ri+1 = ϕi(Ri). The straightforward way of implementing
this is to first perform e− i− 1 point multiplications by [ℓ] to Ri in order to obtain the
kernel generator [ℓe−i−1]Ri, next generate (ϕi, Ei+1) using Vélu’s or

√
élu’s formulas from

(Ei, [ℓe−i−1]Ri), and then compute Ri+1 = ϕi(Ri). This can be done in a different way by
simply noting that ϕ([ℓ]R) = [ℓ]ϕ(R). De Feo et al. [FJP14] captured how an ℓe-isogeny
can be computed using strategies which we define below.

Definition 1 (Strategy). The directed graph showing all possible operations for computing
ℓe-isogeny is defined as Te = (Ve, Ee) where Ve = {(i, j) : 0 ≤ i, j < e ∧ i + j < e} and
Ee = {⟨(i, j), (i + 1, j)⟩, ⟨(i, j), (i, j + 1)⟩ : (i, j) ∈ Ve ∧ i + j ̸= e− 1}.

A strategy S = (VS , ES) for computing ℓe-isogeny is a subgraph of Te such that there is
a path from (0, 0) to (i, e− i− 1) for 0 ≤ i < e in S.

K. Phalakarn, V. Suppakitpaisarn, F. Rodríguez-Henríquez, M. A. Hasan 5

(a) (b) (c)

Figure 1: (a) The directed graph Te for e = 5, (b) An example of a strategy S for e = 5,
and (c) An abstraction of S using smaller strategies S1 and S2.

Examples of the graph Te and a strategy S for e = 5 are depicted in Figure 1(a) and 1(b),
respectively. In brief, a vertex (i, j) in the i-th column and j-th row represents [ℓj]Ri, a
left-to-right edge ⟨(i, j), (i + 1, j)⟩ represents the computation of [ℓj]Ri+1 = ϕi([ℓj]Ri), and
a top-to-bottom edge ⟨(i, j), (i, j + 1)⟩ represents the computation of [ℓj+1]Ri = [ℓ]([ℓj]Ri).
Hence, all edges on a path from (0, 0) to (i, e− i− 1) form a computation of the kernel
generator for ϕi. Therefore, all strategies provide valid ways to compute ℓe-isogeny, but
their usefulnesses are different. The paper [FJP14] associates a cost to each strategy,
reflecting its execution time when implemented.

In the single-core setting, we utilize a strategy S as follows: for each 0 ≤ i < e, (i)
perform point multiplications indicated by an edge ⟨(i, j), (i, j + 1)⟩ in S, (ii) generate
(ϕi, Ei+1) from (Ei, [ℓe−i−1]Ri), and (iii) perform isogeny evaluations indicated by an edge
⟨(i, j), (i + 1, j)⟩ in S. Let ES,mul be the set of all edges of the form ⟨(i, j), (i, j + 1)⟩ in S
and ES,iso be the set of all edges of the form ⟨(i, j), (i + 1, j)⟩ in S. The cost function of a
strategy proposed by [FJP14] is C1(S) = #ES,mul · cmul + #ES,iso · ciso, where cmul and ciso
denote the costs of performing one point multiplication by [ℓ] and one isogeny evaluation,
respectively. In addition, De Feo et al. presented a dynamic programming equation which
computes the lowest cost of all possible strategies for computing degree-ℓe isogeny, given
(e, cmul, ciso): C∗

1(e) = min0<i<e{C∗
1(i) + C∗

1(e− i) + (e− i) · cmul + i · ciso}. Strategies with
the cost of C∗

1(e) are then called optimal strategies.
We explain the idea behind the equation of C∗

1(e) as follows. It is proved in [FJP14]
that any optimal strategy must be constructed from two smaller optimal strategies S1
and S2, as shown in Figure 1(c). These two smaller optimal strategies are combined by
a sequence of point multiplications and a sequence of isogeny evaluations. Suppose S1
covers the last e− i columns and S2 covers the first i columns. Since S1 and S2 are both
optimal, their costs are C∗

1(e− i) and C∗
1(i), respectively. Including the cost of (e− i) · cmul

for the sequence of point multiplications and the cost of i · ciso for the sequence of isogeny
evaluations that connect S1 and S2, we obtain the equation for C∗

1(e). Hence, this equation
also indicates how one can construct an optimal strategy.

2.2 Per-Curve Parallel (PCP) Technique
When working on multi-core platforms, we are provided with a processor with K cores and,
hence, up to K operations can be performed simultaneously. However, it is not simple to
fully utilize all cores for degree-ℓe isogeny since there are dependencies among operations.
Hutchinson and Karabina [HK18] were the first to analyze this setting and proposed an
original computation model. Under their per-curve parallel (PCP) computation, a strategy
S is utilized as follows: for each 0 ≤ i < e, (i) serially perform point multiplications
indicated by ⟨(i, j), (i, j+1)⟩, (ii) generate (ϕi, Ei+1) from (Ei, [ℓe−i−1]Ri), and (iii) perform

6 Vectorized and Parallel Computation of Large Smooth-Degree Isogenies using PCS

isogeny evaluations indicated by ⟨(i, j), (i + 1, j)⟩, up to K evaluations at a time. The
assumption of PCP is that K evaluations on K cores take time equal to one evaluation.

As the computation model changes, the cost function must be revised. Let ES,iso,i be
the set of all edges of the form ⟨(i, j), (i + 1, j)⟩ in S, i.e., the set of evaluations using
ϕi. The cost function of a strategy under PCP is proposed as CPCP

K (S) = #ES,mul ·
cmul +

∑
0≤i<e(⌈#ES,iso,i/K⌉ · ciso). Although the cost function looks more complicated

than that for the single-core setting, Hutchinson and Karabina were able to construct a
dynamic programming equation which yields the least cost of all strategies under PCP,
when (e, cmul, ciso, K) is fixed:

CPCP∗

K (e, k) =
0 if e = 1,

CPCP∗

K (e, K) + (e− 1) · ciso if e > 1 and k = 0,

min
0<i<e

{CPCP∗

K (i, k − 1) + CPCP∗

K (e− i, k) + (e− i) · cmul + ciso} otherwise.

The least cost of all strategies for ℓe-isogeny under PCP is CPCP∗

K (e, K) with k = K. A
strategy having this cost is thus called optimal under PCP.

The notion CPCP∗

K (e, k) denotes a subproblem of calculating the least cost of strategies
for ℓe-isogeny under PCP when k out of K cores are available for the first isogeny evaluations
in step (iii) above. In other words, for CPCP∗

K (e, k), we can evaluate up to k points when
we first perform step (iii) and then, if there are still points to be evaluated, up to K points
in the following iterations. We give an example below to help understanding the notation.

Example 1. Suppose we are to evaluate the strategy in Figure 1(b) when k = 2 out of
K = 3 cores are available for the first isogeny evaluations in step (iii). For ϕ0, we need to
perform three isogeny evaluations. Since we can perform only k = 2 evaluations in the
first iteration, we have to perform the remaining one evaluation in the second iteration, in
which we can evaluate up to K points. Two iterations take a time of 2 · ciso. On the other
hand, for ϕ1, we need to perform two isogeny evaluations and we can perform all of them
in the first iteration. Thus, this takes a time of ciso.

The idea behind this equation is that an optimal strategy under PCP can again be
decomposed into two smaller optimal strategies. The third case of the equation selects an
optimal decomposition among all possible choices. However, one core is spent on isogeny
evaluations which connect both parts (shown in Figure 2 as a dotted line). Therefore,
CPCP∗

K (e, k) is decomposed to S1 and S2 with costs of CPCP∗

K (e− i, k) and CPCP∗

K (i, k − 1),
respectively. In the second case where e > 1 and k = 0, we can evaluate no points when
we first perform step (iii). This means that all cores are occupied. We can convert those
working cores into a cost of (e− 1) · ciso and start step (iii) fresh with K cores. Hence, we
have CPCP∗

K (e, 0) = CPCP∗

K (e, K) + (e− 1) · ciso.

Figure 2: Computing the cost of strategies using PCP: Strategy S is decomposed into S1
with a cost of CPCP∗

K (e− i, k) and S2 with a cost of CPCP∗

K (i, k − 1).

K. Phalakarn, V. Suppakitpaisarn, F. Rodríguez-Henríquez, M. A. Hasan 7

The work of Hutchinson and Karabina actually presented another computation model
called consecutive-curve parallel (CCP). Briefly, CCP allows point multiplications and
isogeny evaluations to be performed simultaneously, but only for operations on the same
curve Ei or the next curve Ei+1. This flexibility improves CCP from PCP to some extent.
We refer the interested readers to [HK18] for details of CCP.

2.3 Precedence-Constrained Scheduling (PCS) Technique
Although PCP and CCP provide faster implementations in the multi-core setting when
compared to the use of optimal strategies of [FJP14], the formers still do not fully utilize
all cores as much as possible. This issue was analyzed by Phalakarn et al. [PSH22] who
then proposed the precedence-constrained scheduling (PCS) technique as described below.

The PCS technique, shown in Algorithm 1, formalizes ℓe-isogeny computation as a
scheduling problem with precedences. In detail, the computation [ℓj+1]Ri = [ℓ]([ℓj]Ri)
requires the value of [ℓj]Ri, and the computation [ℓj]Ri+1 = ϕi([ℓj]Ri) requires the value of
[ℓj]Ri and also the kernel generator [ℓe−i−1]Ri of ϕi. These precedences are described using
a task dependency graph, which can be constructed from an input strategy (Lines 3–7).
This task dependency graph is then used to schedule operations to processor’s cores. The
work of [PSH22] applied to the task dependency graph two scheduling algorithms, Hu’s
[Hu61] and Coffman-Graham’s [CJG72] algorithms, to obtain a scheduling (Lines 8 and
14–16). In short, a scheduling is a sequence S = ⟨S1, · · · , Sn⟩ where St is a set of points
to be computed in iteration t and #St is no more than the number of processor’s cores.
Although both algorithms do not guarantee to provide scheduling with earliest finish time,
it was experimentally shown that both provided good approximations. Finally, the cost of
the scheduling for the given strategy is calculated (Lines 17–21). The cost is denoted by
CHu

K (S) or CCG
K (S) depending on the scheduling algorithm used.

Figure 3 below provides an example of a comparison between applying PCP and PCS
to the same strategy. Suppose K = 2 and cmul = ciso. When using PCP, the steps that
each operation performs are shown as in Figure 3(a) and the last operation is done in Step
10. The same number means that operations are performed simultaneously in the same
step. When using PCS, we first obtain the task dependency graph of the strategy as in
Figure 3(b). Applying a scheduling algorithm to it, we get the result as in Figure 3(c)
where the last operation is done in Step 9.

Unlike the single-core setting and PCP, an optimal strategy under PCS has yet to be
discovered due to the complexity of the computation model. In [PSH22], the authors used
optimal strategies under PCP as inputs to the algorithm. Those optimal strategies are
randomly constructed by the dynamic programming equation CPCP∗

K . After constructing
sufficient amount of strategies, the strategy with the lowest cost under PCS found until
certain fixed number of iterations can be used for the implementation.

(a) (b) (c)

Figure 3: (a) A strategy with the steps shown when using PCP, (b) The task dependency
graph of the strategy, and (c) The same strategy with the steps shown when using PCS.

8 Vectorized and Parallel Computation of Large Smooth-Degree Isogenies using PCS

Algorithm 1: Precedence-Constrained Scheduling (PCS) Technique

1 C
Hu/CG
K (S = (VS , ES)) :

2 E∗
S ← ES

3 for ⟨(i, j), (i + 1, j)⟩ ∈ S do
4 ES ← ES ∪ {⟨(i, e− i− 1), (i + 1, j)⟩}
5 ES ← ES \ {⟨(0, 0), (0, 1)⟩, ⟨(0, 0), (1, 0)⟩}
6 VS ← VS \ {(0, 0)}
7 Remove transitive edges from ES
8 Label all vertices v ∈ S with L(v) using Hu’s or Coffman-Graham’s algorithms
9 S← ⟨⟩

10 t← 0
11 cost← 0
12 while VS ̸= ∅ do
13 t← t + 1
14 St ← {K vertices in S with highest L(·) and their in-degrees are 0}
15 Append St to S

16 Remove all vertices in St and their out-going edges from S
17 costt ← 0
18 for (i, j) ∈ St do
19 if ⟨(i, j − 1), (i, j)⟩ ∈ E∗

S then costt ← max{costt, cmul}
20 else costt ← max{costt, ciso}
21 cost← cost + costt

22 return (cost, S)

2.4 Intel’s Advanced Vector eXtension AVX-512

The latest generation of Intel’s Advanced Vector eXtensions (AVX), which is AVX-512,
provides a way to vectorize and speed-up a software by using vectors of length 512 bits
and vectorized instructions. One extension of AVX-512 used by [CFGR22] and this work
is the Integer Fused Multiply-Add extension (IFMA or AVX-512IFMA) which is useful for
software libraries requiring large integer arithmetic. As we are mainly interested in the
strategy-level optimization, we briefly explain the high-level usage of AVX-512.

In [CFGR22] and our implementation, we consider 512-bit vectors as eight elements of
64 bits: [a, b, c, d, e, f, g, h] where each variable is of size 64 bits. The AVX-512 instructions
allow us to compute [a, b, . . . , h]⊕ [a′, b′, . . . , h′] = [a⊕a′, b⊕ b′, . . . , h⊕h′] within a similar
time as a ⊕ a′ for certain operations ⊕. Thus, we can consider AVX-512 as a form of
parallel computation where all cores perform the same operation.

When the operand sizes are larger than 64 bits, they must be divided into 64-bit
blocks in order to use AVX-512 instructions: a = an−1an−2 . . . a1a0 where ai is of size
64 bits. For a computation, we can use n vectors Vi = [ai, bi, . . . , hi] for 0 ≤ i < n to
represent eight operands and perform Vi ⊕ V ′

i . One needs to take care of any carry and
dependency between blocks to ensure correctness. Nonetheless, there are other usages when
we have less than eight operands. Other possible options are (i) using n/2 vectors Wi =
[ai, ai+n/2, bi, bi+n/2, ci, ci+n/2, di, di+n/2] for 0 ≤ i < n/2 to represent four operands, (ii)
using n/4 vectors Xi = [ai, ai+n/4, ai+2n/4, ai+3n/4, bi, bi+n/4, bi+2n/4, bi+3n/4] for 0 ≤ i <
n/4 to represent two operands, and (iii) using n/8 vectors Yi = [ai, ai+n/8, ai+2n/8, ai+3n/8,
ai+4n/8, ai+5n/8, ai+6n/8, ai+7n/8] for 0 ≤ i < n/8 to represent only one operand. Following
[CFGR22], we call these representations and computations as 8-way, 4-way, 2-way, and
1-way, respectively.

K. Phalakarn, V. Suppakitpaisarn, F. Rodríguez-Henríquez, M. A. Hasan 9

3 Multi-core Implementation using PCS
Our first strategy-level-optimized software implementation of isogeny computation is
designed for multi-core processors without AVX-512IFMA instructions. For this setting,
we utilize the equation CPCP∗

K to construct strategies. To achieve better speed-up, we
consider the optimization of [COR22] and modify PCS to accommodate such optimization.

3.1 Modifying PCS for Speed-up
We first describe the speed-up technique of Cervantes-Vázquez et al. [COR22] for multi-core
platforms. Some isogeny-based protocols require computing a point R from other points,
e.g., R← P + [m]Q for 0 ≤ m < ℓe, before passing it as an input for isogeny computation.
For fixed points P and Q of degree ℓe, this computation, typically performed using a three-
point ladder algorithm, takes time roughly e · cmul when the size of m is of e bits. However,
[ℓj]R = [ℓj]P + [m][ℓj]Q can be computed faster. This is because (i) [ℓj]P and [ℓj]Q can be
precomputed when P and Q are public and fixed, and (ii) [m][ℓj]Q = [m mod ℓe−j][ℓj]Q
as deg([ℓj]Q) = ℓe−j . The computation of [m mod ℓe−j]([ℓj]Q) would only take time of
(e− j) · cmul. This observation suggests the following implementation.

Figure 4: Optimization for multi-core platform proposed by [COR22]: we can compute R′

and S2 without knowing R, thus we can compute R′ and S2 in parallel with R.

Let R denote the result of P + [m]Q and R′ denote that of [ℓj]P + [m][ℓj]Q, where R′

is a corner point of a strategy S2. Since we do not need to know R to compute R′ and the
computation time of R′ is smaller than that of R, Cervantes-Vázquez et al. proposed, for
the multi-core platforms, that we devote one core for computing R. While the computation
takes place, we use one core to compute R′ and then K − 1 cores to compute the whole
strategy S2. They would choose j such that the computation time of R is close to the
computation time of R′ and S2. After R is computed, several isogeny evaluations are
serially performed on R before we start computing S1 using all K cores.

The optimization of [COR22] significantly reduces the isogeny computation time.
However, it can be further reduced, as we can see that the isogeny evaluations performed
on R are done serially and the computation does not utilize all available cores. Here, we
apply the PCS technique to fully utilize those cores. The modified PCS that makes use of
this optimization is presented in Algorithm 2.

The algorithm works in two phases. The first phase is for operations performed after
R′ is computed but before R. The cost is thus initialized as (e− j) · cmul. In this phase,
we can utilize K ′ = K − 1 cores and we cannot compute ϕ(R), represented by (1, 0), since
the computation of R is not yet finished. The cost computation in Lines 21–25 is done
as in the original PCS. In Line 26, we check whether the current cost is at least e · cmul,
the cost for computing R. If so, this implies that the computation for R is completed
and we can start the next phase. In the second phase, we can utilize all K cores. The
algorithm continues until all computational tasks are scheduled. For our algorithm, we do
not require that the computation time of R is close to the computation time of R′ and S2.

10 Vectorized and Parallel Computation of Large Smooth-Degree Isogenies using PCS

Algorithm 2: Modified PCS for the optimization of [COR22]

. . . (Lines 1–10 are the same as in Algorithm 1)
11 cost← (e− j) · cmul
12 K ′ ← K − 1
13 Remove vertices (0, 1), . . . , (0, j) and their out-going edges from S
14 while VS ̸= ∅ do
15 t← t + 1
16 V ′ ← {v ∈ VS : in-degree(v) = 0}
17 if K ′ ̸= K then V ′ ← V ′ \ {(1, 0)}
18 St ← {K ′ vertices in V ′ with highest L(·)}
19 Append St to S

20 Remove all vertices in St and their out-going edges from S
21 costt ← 0
22 for (i, j) ∈ St do
23 if ⟨(i, j − 1), (i, j)⟩ ∈ E∗

S then costt ← max{costt, cmul}
24 else costt ← max{costt, ciso}
25 cost← cost + costt

26 if cost ≥ e · cmul then K ′ ← K

27 return (cost, S)

3.2 Handling Synchronization

We use the OpenMP API to accommodate multi-threading for our implementation. Al-
though the OpenMP is usually used in the single instruction, multiple data (SIMD)
paradigm, this tool provides a way to perform different operations on different cores.

The construct we are using is the OpenMP’s "sections" and "section". They let us
explicitly describe what each core does. Below we show how to use them with three cores.

#pragma omp sections
{

#pragma omp section
core1_op();

#pragma omp section
core2_op();

#pragma omp section
core3_op();

}

From our scheduling, it is straightforward to convert S = ⟨S1, . . . , Sn⟩ into a code: we
can have n "sections", the i-th "sections" represents Si, and K "section" in each
"sections", each represents one core. Nonetheless, the resulting implementation is not
effective, as there is overhead when starting and ending "sections". To overcome this
issue, it is better to have only one "sections" and put all operations of each core across
all iterations into each "section", e.g., the first "section" includes operations for the
first core from all S1, . . . , Sn.

However, we also need a synchronization mechanism to ensure the order of operations.
For instance, it is possible that the second core starts its second operation while the first
core is still working on its first operation and the second operation of the second core
requires a result of the first operation of the first core. Considering the algorithm that we
used to construct S, we should ensure that all operations in S1 are finished before we start
S2 in our implementation. We solve this issue by implementing our own barriers.

K. Phalakarn, V. Suppakitpaisarn, F. Rodríguez-Henríquez, M. A. Hasan 11

#pragma omp section
{

core1_op1();
L1_1 = 0;
while(L2_1 || L3_1);

core1_op2();
L1_2 = 0;
while(L2_2 || L3_2);

...
}

#pragma omp section
{

core2_op1();
L2_1 = 0;
while(L1_1 || L3_1);

core2_op2();
L2_2 = 0;
while(L1_2 || L3_2);

...
}

#pragma omp section
{

core3_op1();
L3_1 = 0;
while(L1_1 || L2_1);

core3_op2();
L3_2 = 0;
while(L1_2 || L2_2);

...
}

The codes above show an example when working with three cores. All three "section"
are under one single "sections" similar to the earlier fragment. The initial values of
all variables Lj_i, representing a status for j-th core and i-th operation, is 1. For the
scheduling, let Si contain three operations: core1_opi, core2_opi, and core3_opi. We
give one operation to each core. After a core performs its task, that core changes the
variable to 0, signaling other cores that its operation is done. Then, that core keeps
checking whether other cores finish their operations. As soon as all variables are set to 0,
all cores continue to the next operation. This mechanism ensures correct order and is not
costly when implemented.

3.3 Implementation Results
We implement our first strategy-level-optimized isogeny computation, combining all speed-
up techniques in previous subsections. The implementations are based on the SIKEp751
parameter set, where the underlying field is Fp2 with p = 23723239 − 1. We computed
two isogenies of degree 4186 and 3239, respectively. After that, we execute them on an
Intel(R) Core(TM) i7-8700 processor, benchmarking them with those of [COR22]. For the
reproducibility of the results, the Intel Hyper-Threading and Intel Turbo Boost technologies
were disabled. For benchmarking, we employ the same set of parameters, including the
prime and the extension field, used in the works that we compare our results with.

Table 3 compares execution times of several implementations with one to four cores. The
execution times for the single-core setting are shown for reference. For the multi-core setting,
we compare four implementations: the implementation of [COR22] and our implementation
which utilizes PCS, each with and without the optimization of [COR22] described in
Section 3.1. We note that the optimization is applied only on the implementations of
4186-isogeny computation. For the isogeny computation, there are two rounds for each
ℓe-isogeny computed: the first round includes the computation of (ϕ, E′) from (E, R) and
the computation of three image points ϕ(P1), ϕ(P2), ϕ(P3) for some given points P1, P2, P3,
while the second round includes only the computation of (ϕ, E′) from (E, R).

It is clear from Table 3 a reduction in the execution times when there are more cores
available. Overall, our implementations have better speed compared to [COR22], and the
reduction percentage increases when there are more cores. For implementations including
the optimization of [COR22], the maximum reduction is up to 14.36% for the second
round of 4186-isogeny computation with four cores. For implementations without the
optimization, the maximum reduction is up to 16.79% also for the second round of 4186-
isogeny computation with four cores. These results show the significance of strategy-level
optimization for low-latency parallel isogeny computation.

When the aforementioned implementations of isogeny computation is employed to build
the complete isogeny-based protocol SIKEp751, we observe superior results with PCS. We
refer the interested readers to the appendix for details.

12 Vectorized and Parallel Computation of Large Smooth-Degree Isogenies using PCS

Table 3: Execution times of various isogeny computation implementations (in million
CPU cycles). The first round includes the computation of (ϕ, E′) from (E, R) and three
image points ϕ(P1), ϕ(P2), ϕ(P3) for some points P1, P2, P3. The second round includes
only the computation of (ϕ, E′) from (E, R). (∗) denotes implementations utilizing the
optimization by [COR22] described in Section 3.1. The % reduction shows how much the
execution time of our implementation (the row above) is reduced from that of [COR22]
(the row before).

Cores Implementation 4186-isogeny 3239-isogeny
Round 1 Round 2 Round 1 Round 2

1 [COR22] 22.96 18.85 25.98 22.16

2

[COR22] 20.60 16.47 23.23 19.39
This work 18.78 14.68 21.24 17.42
% reduction 8.83 10.87 8.57 10.16
[COR22] (∗) 16.30 14.69
This work (∗) 14.76 12.85
% reduction 9.45 12.53

3

[COR22] 19.53 15.42 21.87 18.06
This work 17.65 13.53 19.60 15.79
% reduction 9.63 12.26 10.38 12.57
[COR22] (∗) 14.95 13.32
This work (∗) 13.34 11.71
% reduction 10.77 12.09

4

[COR22] 19.09 14.89 21.03 17.15
This work 16.62 12.39 18.68 14.80
% reduction 12.94 16.79 11.17 13.70
[COR22] (∗) 14.08 12.67
This work (∗) 12.81 10.85
% reduction 9.02 14.36

4 AVX-512 and Multi-Core Implementation using PCS
We present in this section our second strategy-level-optimized software implementation of
isogeny computation designed for processors supporting AVX-512. We first consider the
execution environment for the implementation and propose a modified version of CPCP∗

K

that suits better in this setting. We then apply the PCS technique to an implementation of
isogeny computation that uses AVX-512 instructions and multi-threading. Lastly, timing
results comparing previous implementations with ours are presented.

4.1 Constructing Better Strategies using Modified PCP
We consider the implementation of [CFGR22] as a starting point. As mentioned in Section
2.4, their implementation sees 512-bit vectors as eight elements. Although in Section 2.4 we
described the usage at the low-level operations a⊕ a′, the idea can be applied to a higher
level of isogeny evaluations. Here, we define n-way isogeny evaluation for n ∈ {8, 4, 2, 1} as
representing n elliptic curve points in one vector and evaluating n points simultaneously.
They are designed so that we use as many as possible vector elements, although there are
less than eight points to be evaluated and, as a consequence, less points evaluated implies
less execution time. As an example, we performed an experiment to obtain execution times
for each number of points evaluated concurrently by 4-isogeny. The experiments were
performed on an Intel(R) Core(TM) i5-11400 processor. Table 4 below shows the results.

K. Phalakarn, V. Suppakitpaisarn, F. Rodríguez-Henríquez, M. A. Hasan 13

Table 4: Execution times of [CFGR22] for different number of points evaluated concurrently
by 4-isogeny. (∗) denotes cases where some vector elements are unused.

Points evaluated 1 2 3 4 5 6 7 8

Computation 1-way 2-way 4-way
(∗) 4-way

4-way
then

1-way

4-way
then

2-way

8-way
(∗) 8-way

Execution time
(CPU cycles) 4900 5800 9300 9400 13600 14500 16400 16500

Based on these results, it is obvious that the execution times differ for different number
of points evaluated in the AVX-512 implementation. Therefore, using the equation CPCP∗

K

with K = 8 to construct strategies in this execution environment is not accurate and might
not give us the best speed-up, as PCP assumes that K evaluations take time equal to one
evaluation. Therefore, before we apply the PCS technique, we should modify PCP first in
order to obtain better strategies for the current setting.

For CPCP∗

K (e, k), the equation focuses on the number of cores k available to perform
operations. We instead focus on the number of operations to be performed. We elaborate
our intuition with the following figure.

Figure 5: Computing the costs of strategies using modified PCP: We need one isogeny
evaluation when moving from S2 to S1 and two evaluations from S4 to S3.

Suppose we decompose strategy S to S1 and S2. The costs of point multiplications
(shown as a blue vertical thin line) can be determined. One isogeny evaluation connecting
S2 and S1 (shown as a red horizontal thin line) can also be calculated. For S2, we see that
there is a line representing isogeny evaluations above the triangle of S2. This line needs to
be taken into account when we perform operations of S2. While PCP says that this line
will occupy one core of the processor and we are left with K − 1 cores, we otherwise take a
note that there is one line included with S2. Recursively, S2 is then decomposed to S3
and S4. Since we noted that there is one line above S2 triangle, we can infer that there
will be one line above S3 triangle and two lines above S4 triangle. Also, we know that the
number of isogeny evaluations between S3 and S4 (shown as red horizontal thin lines) is
two, which is equal to the number of lines above the S4 triangle.

To formalize this intuition, let CMP∗(e, r) denote the lowest cost of strategies for ℓe-
isogeny when there are r lines above the strategy triangle. What we would like to find is
thus CMP∗(e, 0). The dynamic programming equation for the modified PCP is as follows:

CMP∗
(e, r) ={

0 if e = 1,

min
0<i<e

{CMP∗
(i, r + 1) + CMP∗

(e− i, r) + fmul(e− i) + fiso(r + 1)} otherwise.

The function fmul(n) denotes the cost of serially performing n point multiplications by [ℓ],
and the function fiso(n) denotes the cost of performing n isogeny evaluations. If we let

14 Vectorized and Parallel Computation of Large Smooth-Degree Isogenies using PCS

fmul(n) = n · cmul and fiso(n) = ⌈n/K⌉ · ciso, our CMP∗ will be CPCP∗ . In other words, our
equation is a generalization of PCP.

In the setting of AVX-512, the values of fiso(n) for 1 ≤ n ≤ 8 are taken according to
Table 4. When n > 8, it is not straighforward to say that fiso(n) = fiso(n− 8) + fiso(8).
For an example of n = 10, we can split the computation to 8 + 2, 6 + 4, or even 4 + 4 + 2.
To obtain the optimal computation, we need another dynamic programming equation:

fiso(n) =
{

See Table 4 if 0 ≤ n ≤ 8,

min
1≤i≤8

{fiso(n− i) + fiso(i)} otherwise.

Lastly, for the value of fmul(n), it is almost linear to n. Based on our experiment, [CFGR22]
gave fmul(n) = 5200n + 800 (in CPU cycles) for point multiplications by [4].

4.2 Applying PCS to AVX-512 Implementation
After obtaining better strategies, we are ready to apply the PCS technique to them in order
to get a more efficient implementation. Since the main advantage of PCS is to perform
point multiplications and isogeny evaluations simultaneously but vectorization works well
with a single type of operation at a time, we decided to consider multi-threading for our
AVX-512 implementation. In particular, we utilize AVX-512 instructions and also two to
four cores of the multi-core processor. To the best of our knowledge, this work is the first
to combine both vectorization and multi-core processor for isogeny computation.

Revisiting Modified PCP. For K ∈ {2, 3, 4} cores, we can perform up to 8K isogeny
evaluations at a time. Hence, we revisit our CMP∗ equation for necessary modifications.

The only thing we need to modify is the function fiso(n). Now Table 4 can be used for
n up to 8K. The same issue happens for n > 8K. Nonetheless, the fix is straightforward.

fiso(n) =
{

See Table 4 for ⌈n/K⌉ if 0 ≤ n ≤ 8K,

min
1≤i≤8K

{fiso(n− i) + fiso(i)} otherwise.

Balancing Times of Two Operations. Under PCS, point multiplications by [ℓ] and
isogeny evaluations are allowed to be performed in parallel on different cores. To effectively
perform both, their execution times should not differ much. For example, we see that
performing one point multiplication by [4] takes time fmul(1) = 6000 and performing 2-way
4-isogeny evaluations takes time fiso(2) = 5800. Therefore, it is effective to perform one
point multiplication by [4] on one core and 2-way 4-isogeny evaluations on another.

Modifying PCS. The PCS technique can be applied to our setting with some changes.
To obtain low-latency implementation, we consider two issues. The first one is the balance
of operations previously mentioned. By the proof of [HK18], any two point multiplications
by [ℓ] in a strategy constructed by CPCP∗ or CMP∗ cannot be computed at the same time.
This implies that, if one core is used to perform point multiplications, then other remaining
cores will be used for isogeny evaluations or left idle. In the former case, the execution
times of other cores should be close to the core performing point multiplications. In
Algorithm 3 which is a modified version of Algorithm 1, these are shown in Lines 15–18.

The second issue we consider is the number of isogeny evaluations performed at one
time when no point multiplication is available. Under PCP, since K evaluations take time
equal to one evaluation, it is best to greedily perform as many evaluations as possible.
However, for AVX-512, that is not the case. As an example, suppose K = 4 and there
are currently 25 isogeny evaluations to be performed. We could perform seven of them on
one core and six on three other cores. This will take time fiso(7). However, it is better

K. Phalakarn, V. Suppakitpaisarn, F. Rodríguez-Henríquez, M. A. Hasan 15

to perform only 24 of them and leave one for later, taking time fiso(6). This has not
been considered before because of the design principle of PCP used in all implementations.
Thus, our first step is to perform isogeny evaluations as a multiple of K.

We can optimize this further. By looking at Table 4 and Section 2.4, it is more effective
to perform one, two, four, eight isogeny evaluations at a time on each core. For the example
of 25 evaluations, we can perform only 16 of them, rather than 24, with the cost of fiso(4).
By this scheduling, we could effectively utilize AVX-512 instructions. This optimization
appears in Lines 19–26 of Algorithm 3.

Algorithm 3: Modified PCS for K-Core AVX-512 Implementation

. . . (Lines 1–11 are the same as in Algorithm 1)
12 while VS ̸= ∅ do
13 t← t + 1
14 V ′ ← {v ∈ VS : in-degree(v) = 0}
15 if there exists (i, j) ∈ V ′ such that ⟨(i, j − 1), (i, j)⟩ ∈ E∗

S then
16 V ′ ← {2(K − 1) vertices in V ′ \ {(i, j)} with highest L(·)}
17 St ← {(i, j)} ∪ V ′

18 costt ← max{fmul(1), fiso(⌈#V ′/(K − 1)⌉)}
19 else
20 n← #V ′

21 if 8K ≤ n then n← 8K
22 if 4K ≤ n < 8K then n← 4K
23 if 2K ≤ n < 4K then n← 2K
24 if K ≤ n < 2K then n← K
25 St ← {n vertices in V ′ with highest L(·)}
26 costt ← fiso(⌈n/K⌉)
27 Append St to S

28 Remove all vertices in St and their out-going edges from S
29 cost← cost + costt

30 return (cost, S)

4.3 Implementation Results
We implement our second strategy-level-optimized isogeny computation which uses AVX-
512 and two-to-four cores, including optimizations in Sections 4.2 and 3.2. The implemen-
tations are based on the SIKEp751 parameter set, where the underlying field is Fp2 with
p = 23723239 − 1. We computed two isogenies of degree 4186 and 3239, respectively. Then,
we execute them on an Intel(R) Core(TM) i5-11400 processor, together with other existing
works. As usual, we disable the Intel Hyper-Threading and Intel Turbo Boost technologies
for reproducibility. For benchmarking, we employ the same set of parameters, including
the prime and the extension field, used in the works that we compare our results with.

The results are shown in Table 5. In the table, two single-core implementations are
those proposed by [Mic17] with no use of AVX technologies and [CFGR22] with the use
of AVX-512. For two to four cores, we present two implementations for each one of
them: one is obtained by applying PCP (Section 2.2) to strategies constructed from our
modified PCP (Section 4.1), and the other is obtained by applying our modified PCS
(Section 4.2) to strategies constructed from our modified PCP (Section 4.1). For the
isogeny computation, there are two rounds for each ℓe-isogeny computed: the first round
includes the computation of (ϕ, E′) from (E, R) and the computation of three image points
ϕ(P1), ϕ(P2), ϕ(P3) for some given points P1, P2, P3, while the second round includes only
the computation of (ϕ, E′) from (E, R).

16 Vectorized and Parallel Computation of Large Smooth-Degree Isogenies using PCS

Table 5: Execution times of various isogeny computation implementations (in million CPU
cycles). The first round includes the computation of (ϕ, E′) from (E, R) and three image
points ϕ(P1), ϕ(P2), ϕ(P3) for some points P1, P2, P3. The second round includes only the
computation of (ϕ, E′) from (E, R). The % reduction shows how much the execution time
of our best implementation in the eighth row is reduced from that of [CFGR22].

Cores Implementation 4186-isogeny 3239-isogeny
Round 1 Round 2 Round 1 Round 2

1 [Mic17] 20.11 16.49 22.73 19.40
[CFGR22], AVX 8.39 7.71 10.25 9.54

2 This work, AVX, PCP 7.26 6.95 8.63 8.31
This work, AVX, PCS 6.44 6.34 7.80 7.62

3 This work, AVX, PCP 6.64 6.50 7.94 7.75
This work, AVX, PCS 5.89 5.96 7.16 7.13

4
This work, AVX, PCP 6.28 6.26 7.51 7.51
This work, AVX, PCS 5.61 5.75 6.76 6.96
% reduction 33.13 25.42 34.05 27.04

The results clearly show the advantage of using vectorization and multi-core processors
for isogeny computation, as all of our multi-core implementations are faster than [Mic17]
and [CFGR22]. We note that the underlying arithmetic computation of [CFGR22] and ours
are the same. As indicated in the bottom row of Table 5, the reduction is up to 34.05% for
Round 1 of 3239-isogeny when utilizing four cores. Once again, the implementation results
support the importance of optimizing isogeny computation at the strategy-level. Even
though using AVX-512 on a multi-core platform leads to a faster implementation, we may
not obtain the best results if we do not consider optimizations for strategy construction
and evaluation. By changing the parallelization technique from PCP to PCS, the execution
time can be reduced by up to 6.64−5.89

6.64 = 11.30% (4186-isogeny, Round 1, three cores).
When the aforementioned implementations of isogeny computation is employed to build

the complete isogeny-based protocol SIKEp751, we observe superior results with PCS. We
refer the interested readers to the appendix for details. The appendix also includes wall
times of all implementations to show the correspondence to cycle counts.

4.4 Efficiency Analysis
The previous subsection shows 25–34% reduction in the execution time when employing four
cores, compared to the single-core implementation of [CFGR22]. At first glance, four-time
speed-up (or equivalently 75% reduction) might be expected. In this subsection we analyze
the theoretical speed-up together with efficiencies of our strategies and implementations.
For the analysis, we refer to data under the column of 4186-isogeny, Round 2, in Table 5.

In the following, we define the overall computational cost for a strategy designed for
the multi-core setting as the cost of that strategy when it is evaluated using a single core.
The overall computational cost reflects the number of operations in a strategy, while the
multi-core strategy cost depends both on the number of operations and how much we can
parallelize them.

Theoretical Speed-Up. The theoretical single-core strategy cost from [CFGR22] (com-
puted using the modified PCP in Section 4.1) is 5.53 million CPU cycles, and the four-core
strategy cost of that achieved by our four-core implementation (computed by Algorithm 3)
is 3.39 million CPU cycles. By looking only at the theoretical strategy costs, the expected
speed-up is 38.70%. This is 1.5 times higher than what we achieved (25.42%, bottom
row of Table 5) presumably due to the communication overhead among cores. Next, we

K. Phalakarn, V. Suppakitpaisarn, F. Rodríguez-Henríquez, M. A. Hasan 17

analyze the maximum theoretical speed-up. For this, it is common to assume that we have
an infinite number of cores. However, [HK18] and [COR22] described that the highest
level of parallelization is obtained for e− 1 cores as it is not useful to have more than e− 1
cores. For 4186-isogeny, e is 186. In this case, the strategy used for the computation is the
isogeny-based strategy [FJP14] (i.e., all points except for those in the leftmost column are
computed from isogeny evaluations) and its strategy cost is fmul(e− 1) + (e− 1) · fiso(1).
For our current setting, this would result in 1.87 million CPU cycles. Hence, even in the
case of having plentiful cores, the maximum theoretical speed-up is 5.53

1.87 = 2.96 times (or
equivalently 66.20% reduction). We note that the actual speed-up from the implementation
is expected to be less than this due to the synchronization costs.

Strategy Efficiency. When there are more cores available, the strategies used in our
implementations require more computations compared to the one used by [CFGR22].
For the strategy used by our four-core implementation, its overall computational cost
(computed using the modified PCP in Section 4.1) is 6.68 million CPU cycles, which is
higher than that of [CFGR22]. Nonetheless, a higher number of operations allows multiple
cores to concurrently perform the computation, resulting in a lower latency. If we apply
four cores to the strategy of [CFGR22], its strategy cost (computed by Algorithm 3) is 4.76
million CPU cycles, which is higher than ours. Therefore, we could say that we increase the
overall computational cost by 6.68−5.53

5.53 = 20.80%, but reduce the four-core strategy cost
by 4.76−3.39

4.76 = 28.78%. This is preferable in order to have low-latency implementations.

Implementation Efficiency. From the aforementioned results, the efficiency of our ap-
proach decreases when the number of cores increases. One way of looking at the efficiency
of our K-core, K ∈ {2, 3, 4}, implementation is to express it as T1

K·TK
, where Tx is the

execution time of the x-core implementation. For our implementations, the efficiencies are
7.71

2×6.34 = 60.80% for two cores, 7.71
3×5.96 = 43.12% for three cores, and 7.71

4×5.75 = 33.52% for
four cores. The efficiency is expected to decrease when there are more cores as we trade
overall computational cost for latency.

In addition, we run our proposed multi-core implementations utilizing PCS on a single
core to have a better understanding of the extent of any overheads in the execution time
(e.g., due to communication between cores). The corresponding execution times are shown
in Table 6, and we compare theoretical costs and actual running times of our multi-core
implementations and their serializations corresponding to the computation of 4186-isogeny
in Table 7. Assuming that the execution times of the serialized versions correspond to
their theoretical costs, the overhead percentage increases from 0.78−0.64

0.64 = 21.88% for two
cores to 0.57−0.39

0.39 = 46.15% for four cores. This is another indication that having more
cores may not always be beneficial due to an overhead increase.

5 Discussion
The implementation results in Sections 3 and 4 show notable speed-ups when applying PCS
with the SIKEp751 parameter set of SIKE as software implementations. In this section,
we discuss the applicability of the proposed techniques to a variety of other settings and
provide some remarks on the cost functions and the optimality of our strategies.

Applicability to Other Settings. The settings considered below include different vector-
ization technologies, alternative implementations of arithmetic in the underlying finite
field, hardware implementation, and other isogeny-based schemes.

Different vectorization technologies. Although AVX-512 is currently the most powerful
extension available, other technologies such as AVX2 may be arguably far more widely
used. When using AVX2, vectors are only of size 256 bits and one will need to adjust
the implementations of point multiplications, isogeny evaluations, and other primitive

18 Vectorized and Parallel Computation of Large Smooth-Degree Isogenies using PCS

Table 6: Execution times of the serialized version of our proposed isogeny computation
implementations (in million CPU cycles).

Implementation 4186-isogeny 3239-isogeny
Round 1 Round 2 Round 1 Round 2

Serialization of 2-core PCS 8.86 8.14 10.09 9.57
Serialization of 3-core PCS 9.63 8.87 11.44 10.24
Serialization of 4-core PCS 10.47 10.04 11.62 11.13

Table 7: Theoretical strategy costs and actual execution times of multi-core and serialized
versions of our 4186-isogeny computation implementations, Round 2 (in million CPU cycles).
The Ratio columns show the ratio between Multi-Core and Serialized columns.

Implementation Theoretical Cost Execution Time
Multi-Core Serialized Ratio Multi-Core Serialized Ratio

2-core PCS 4.06 6.39 0.64 6.34 8.14 0.78
3-core PCS 3.66 7.28 0.50 5.96 8.87 0.67
4-core PCS 3.39 8.65 0.39 5.75 10.04 0.57

arithmetic accordingly. After the implementations of fundamental operations are ready, we
require the execution times of those operations (similar to what is discussed in Section 4.1)
in order to adjust the functions fmul, fiso and apply our proposed techniques. We expect
a similar extent of effectiveness when applying our work with AVX2-supported processors.
It is also of interest to apply our techniques to ARM’s Scalable Vector Extension (SVE).

Alternative arithmetic package. Our techniques are applicable regardless of the im-
plementation of the arithmetic in the underlying field Fp2 . The speed of the arithmetic
operations has a profound influence on the speed of the implementation. This work relies
on the arithmetic implementations of [Mic17, CFGR22] which may no longer represent the
state-of-the-art due to the recent result of [Lon22]. A faster arithmetic level implementation
will likely result in a higher speed-up. For that, one requires the execution times of those
arithmetic operations to adjust with our work.

Hardware implementations. The number of operations that can be performed in parallel
can vary based on implementations and the number of logic gates or FPGA slices available.
The maximum number of operations performed concurrently and their execution times can
be used to customize our work accordingly, similar to earlier discussion. Unlike other works
[KAK16, KAK+20], the operations done in each iteration need to be specified explicitly.
Thus, the control circuit may become complicated and optimizing it can be challenging.

Other isogeny-based schemes. For CSIDH, we have suggested some tweaks at the
beginning of this paper, and several works have studied strategies for the protocol [HLKA20,
CR22]. Nonetheless, while extending our work to CSIDH one also needs to think about
the implementation of Fp arithmetic and the way to handle a case when a sampled point
cannot generate an isogeny. For SQISign, its source code suggests the use of strategies as
an improvement. This would be a natural application of our techniques to SQISign. As
well, one requires the implementation of Fp2 arithmetic designed specifically for its prime.

The Cost Functions. In this work, the cost of a strategy is based solely on two parameters:
the costs of computing point multiplications and isogeny evaluations. This is the approach
used in all existing works, to our best knowledge, for both single-core [FJP14] and multi-
core platforms [HK18, COR22]. Consequently, the theoretical cost may not be a close
approximation of the actual execution time. For better cost computation, one may need
to take into account the costs of synchronization, memory access, etc. However, our
proposal considers strategy construction and evaluation as separate processes. Thus, we

K. Phalakarn, V. Suppakitpaisarn, F. Rodríguez-Henríquez, M. A. Hasan 19

are currently not able to determine the architectural costs during the construction. To
handle this, a new computation model needs to be devised, leading to an open problem.

Optimality of Strategies. Following [PSH22], we randomly construct optimal strategies
under modified PCP and then parse them as inputs to PCS. We search up to 100,000
of such strategies, taking us a few hours. Nevertheless, the search is done only once in
order to find one strategy used for the implementation, and the search time does not
affect the execution time of the cryptographic protocol. Also, while our strategies are
optimal under PCP, we do not claim that they are globally optimal in general due to
several layers of approximation as stated in [PSH22] and since we only search for strategies
with recursive structure as in Figure 1(c). Additional improvements when employing
unstructured strategies may be possible, and the optimality of strategies remains to be an
open problem.

6 Conclusion
This work has illustrated how software implementation of large smooth-degree isogeny
computation, specifically with vectorization and parallelism, can be further sped-up at
the strategy-level. For the first implementation, which considers only the multi-core
parallelism, we are able to gain a speed-up when utilizing the modified PCS adapted
for the existing optimization. The execution time is reduced by up to 14.36% in our
implementation compared to that of [COR22]. The second implementation, equipped with
AVX-512 technology and multi-core processors, combines the use of the modified PCP
and PCS in order to provide effective strategies and evaluations crafted for the execution
environment. Our benchmarking shows a reduction in execution time of up to 34.05%
compared to the single-core implementation of [CFGR22] when utilizing up to four cores.
Apart from these, our synchronization handling mechanism is also important in achieving
a low-latency vectorized and parallel software implementation for the isogeny computation.

In this paper, we have also provided commentaries on the applicability of our work to
a variety of other settings including AVX2, hardware implementations, and other isogeny-
based schemes. Moreover, there is a possibility to further speed-up our implementations by
adopting more cores and faster implementation of Fp2 arithmetic operations. Nonetheless,
at some point, adding more cores will not be advantageous due to the increasing synchro-
nization overhead. Thus, it is of interest to investigate the effect of applying our proposed
approaches to the above-mentioned settings and improvements.

Acknowledgement. The authors would like to thank Ruben Niederhagen and the review-
ers for their constructive comments on improving the manuscript. We would also like to
acknowledge the authors of the implementations of [Mic17, CFGR22, COR22] which we
use as basis for our implementations. The first author is supported by the Ripple Impact
Fund through a Ripple Graduate Fellowship. The second author is supported by JSPS
Grant-in-Aid for Transformative Research Areas A grant number JP21H05845.

References
[ALJK18] Reza Azarderakhsh, Elena Bakos Lang, David Jao, and Brian Koziel. EdSIDH:

supersingular isogeny Diffie-Hellman key exchange on Edwards curves. In
Anupam Chattopadhyay, Chester Rebeiro, and Yuval Yarom, editors, Security,
Privacy, and Applied Cryptography Engineering - 8th International Conference,
SPACE 2018, Kanpur, India, December 15-19, 2018, Proceedings, volume
11348 of Lecture Notes in Computer Science, pages 125–141. Springer, 2018.

20 Vectorized and Parallel Computation of Large Smooth-Degree Isogenies using PCS

[BDFLS20] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith.
Faster computation of isogenies of large prime degree. Open Book Series,
4(1):39–55, 2020.

[CD22] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH (preliminary version). Cryptology ePrint Archive, Report 2022/975,
2022. https://eprint.iacr.org/2022/975.

[CFGR22] Hao Cheng, Georgios Fotiadis, Johann Großschädl, and Peter Y. A. Ryan.
Highly vectorized SIKE for AVX-512. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2022(2):41–68, Feb. 2022.

[CJG72] Edward G. Coffman Jr. and Ronald L. Graham. Optimal scheduling for
two-processor systems. Acta Informatica, 1:200–213, 1972.

[CLG09] Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic
hash functions from expander graphs. Journal of Cryptology, 22(1):93–113,
January 2009.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. CSIDH: An efficient post-quantum commutative group action. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part III,
volume 11274 of LNCS, pages 395–427. Springer, Heidelberg, December 2018.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for
supersingular isogeny Diffie-Hellman. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 572–601.
Springer, Heidelberg, August 2016.

[COR22] Daniel Cervantes-Vázquez, Eduardo Ochoa-Jiménez, and Francisco Rodríguez-
Henríquez. Parallel strategies for SIDH: toward computing SIDH twice as fast.
IEEE Trans. Computers, 71(6):1249–1260, 2022.

[CR22] Jesús-Javier Chi-Domínguez and Francisco Rodríguez-Henríquez. Optimal
strategies for CSIDH. Adv. Math. Commun., 16(2):383–411, 2022.

[CS99] Fabián A. Chudak and David B. Shmoys. Approximation algorithms for
precedence-constrained scheduling problems on parallel machines that run at
different speeds. J. Algorithms, 30(2):323–343, 1999.

[CSRT22] Jorge Chávez-Saab, Francisco Rodríguez-Henríquez, and Mehdi Tibouchi.
Verifiable isogeny walks: Towards an isogeny-based postquantum VDF. In
Riham AlTawy and Andreas Hülsing, editors, SAC 2021, volume 13203 of
LNCS, pages 441–460. Springer, Heidelberg, September / October 2022.

[DKL+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski. SQISign: Compact post-quantum signatures from quaternions and
isogenies. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part I, volume 12491 of LNCS, pages 64–93. Springer, Heidelberg, December
2020.

[DMPS19] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable
delay functions from supersingular isogenies and pairings. In Steven D. Gal-
braith and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of
LNCS, pages 248–277. Springer, Heidelberg, December 2019.

https://eprint.iacr.org/2022/975

K. Phalakarn, V. Suppakitpaisarn, F. Rodríguez-Henríquez, M. A. Hasan 21

[DPB17] Javad Doliskani, Geovandro C. C. F. Pereira, and Paulo S. L. M. Barreto.
Faster cryptographic hash function from supersingular isogeny graphs. Cryp-
tology ePrint Archive, Report 2017/1202, 2017. https://eprint.iacr.org/
2017/1202.

[FJP14] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptol.,
8(3):209–247, 2014.

[FLOR18] Armando Faz-Hernández, Julio César López-Hernández, Eduardo Ochoa-
Jiménez, and Francisco Rodríguez-Henríquez. A faster software implementation
of the supersingular isogeny Diffie-Hellman key exchange protocol. IEEE Trans.
Computers, 67(11):1622–1636, 2018.

[Gra66] Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell system
technical journal, 45(9):1563–1581, 1966.

[HK18] Aaron Hutchinson and Koray Karabina. Constructing canonical strategies for
parallel implementation of isogeny based cryptography. In Debrup Chakraborty
and Tetsu Iwata, editors, INDOCRYPT 2018, volume 11356 of LNCS, pages
169–189. Springer, Heidelberg, December 2018.

[HLKA20] Aaron Hutchinson, Jason T. LeGrow, Brian Koziel, and Reza Azarderakhsh.
Further optimizations of CSIDH: A systematic approach to efficient strategies,
permutations, and bound vectors. In Mauro Conti, Jianying Zhou, Emiliano
Casalicchio, and Angelo Spognardi, editors, ACNS 20, Part I, volume 12146
of LNCS, pages 481–501. Springer, Heidelberg, October 2020.

[Hu61] T. C. Hu. Parallel sequencing and assembly line problems. Operations research,
9(6):841–848, 1961.

[JAC+20] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De
Feo, Basil Hess, Aaron Hutchinson, Amir Jalali, Koray Karabina, Brian Koziel,
Brian LaMacchia, Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost
Renes, Vladimir Soukharev, and David Urbanik. Supersingular Isogeny Key
Encapsulation, 2020. https://sike.org/files/SIDH-spec.pdf.

[JD11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011, pages 19–34.
Springer, Heidelberg, November / December 2011.

[KAK16] Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari Kermani. Fast
hardware architectures for supersingular isogeny Diffie-Hellman key exchange
on FPGA. In Orr Dunkelman and Somitra Kumar Sanadhya, editors, IN-
DOCRYPT 2016, volume 10095 of LNCS, pages 191–206. Springer, Heidelberg,
December 2016.

[KAK+20] Brian Koziel, A.-Bon E. Ackie, Rami El Khatib, Reza Azarderakhsh, and
Mehran Mozaffari Kermani. SIKE’d Up: fast hardware architectures for
Supersingular Isogeny Key Encapsulation. IEEE Trans. Circuits Syst., 67-
I(12):4842–4854, 2020.

[KG19] Dusan Kostic and Shay Gueron. Using the new VPMADD instructions for the
new post quantum key encapsulation mechanism SIKE. In Naofumi Takagi,
Sylvie Boldo, and Martin Langhammer, editors, 26th IEEE Symposium on
Computer Arithmetic, ARITH 2019, Kyoto, Japan, June 10-12, 2019, pages
215–218. IEEE, 2019.

https://eprint.iacr.org/2017/1202
https://eprint.iacr.org/2017/1202
https://sike.org/files/SIDH-spec.pdf

22 Vectorized and Parallel Computation of Large Smooth-Degree Isogenies using PCS

[KJA+16] Brian Koziel, Amir Jalali, Reza Azarderakhsh, David Jao, and Mehran Mozaf-
fari Kermani. NEON-SIDH: Efficient implementation of supersingular isogeny
Diffie-Hellman key exchange protocol on ARM. In Sara Foresti and Giuseppe
Persiano, editors, CANS 16, volume 10052 of LNCS, pages 88–103. Springer,
Heidelberg, November 2016.

[Lon22] Patrick Longa. Efficient algorithms for large prime characteristic fields and
their application to bilinear pairings and supersingular isogeny-based protocols.
Cryptology ePrint Archive, Report 2022/367, 2022. https://eprint.iacr.
org/2022/367.

[Mic17] Microsoft Research. SIDH library, 2017. https://github.com/microsoft/
PQCrypto-SIDH.

[MM22] Luciano Maino and Chloe Martindale. An attack on SIDH with arbitrary
starting curve. Cryptology ePrint Archive, Report 2022/1026, 2022. https:
//eprint.iacr.org/2022/1026.

[PSH22] Kittiphon Phalakarn, Vorapong Suppakitpaisarn, and M. Anwar Hasan.
Speeding-up parallel computation of large smooth-degree isogeny using
precedence-constrained scheduling. In Khoa Nguyen, Guomin Yang, Fuchun
Guo, and Willy Susilo, editors, ACISP 22, volume 13494 of LNCS, pages
309–331. Springer, Heidelberg, November 2022.

[Rob22] Damien Robert. Breaking SIDH in polynomial time. Cryptology ePrint
Archive, Report 2022/1038, 2022. https://eprint.iacr.org/2022/1038.

[SLLH18] Hwajeong Seo, Zhe Liu, Patrick Longa, and Zhi Hu. SIDH on ARM: Faster
modular multiplications for faster post-quantum supersingular isogeny key
exchange. IACR TCHES, 2018(3):1–20, 2018. https://tches.iacr.org/
index.php/TCHES/article/view/7266.

[Vél71] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de
l’Académie des Sciences de Paris, Série A, 273(4):238–241, 1971.

Appendix A: Benchmarks for SIKEp751
As a supplement, we had integrated both of our optimized isogeny computation implemen-
tations into SIKE [JAC+20], focusing on the SIKEp751 parameter set. Table 8 shows the
implementation results when using our multi-core implementation with the optimization
of [COR22], and Table 9 shows the results when using our AVX-512 and multi-core im-
plementation. Specifically, the first round of isogeny computation in Table 3 and 5 refers
to the key generation phase of SIDH [JD11] and the second round refers to the secret
agreement phase. The reduction percentages, comparing our work with the best existing
result, have the same trend as in our previous benchmarkings.

Appendix B: Wall Time for AVX-512 Implementations
In addition to benchmarking AVX-512 implementations for cycle counts, we also bench-
marked them for wall times (with the Intel Hyper-Threading and Intel Turbo Boost
technologies enabled to replicate actual runnings) as in Table 10. Based on the results,
the cycle counts of all implementations (ref. Table 5) correspond to wall times.

https://eprint.iacr.org/2022/367
https://eprint.iacr.org/2022/367
https://github.com/microsoft/PQCrypto-SIDH
https://github.com/microsoft/PQCrypto-SIDH
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1038
https://tches.iacr.org/index.php/TCHES/article/view/7266
https://tches.iacr.org/index.php/TCHES/article/view/7266

K. Phalakarn, V. Suppakitpaisarn, F. Rodríguez-Henríquez, M. A. Hasan 23

Table 8: Execution times of various SIKE implementations using the SIKEp751 parameter
set (in million CPU cycles). (∗) denotes implementations utilizing the optimization by
[COR22] described in Section 3.1. The % reduction shows how much the execution time
of our implementation (the row above) is reduced from that of [COR22] (the row before).

Cores Implementation KeyGen Encaps Decaps
1 [COR22] 25.98 42.08 45.18

2
[COR22] (∗) 23.28 30.76 35.73
This work (∗) 21.20 27.88 32.18
% reduction 8.93 9.36 9.94

3
[COR22] (∗) 21.95 28.32 33.12
This work (∗) 19.78 25.40 29.59
% reduction 9.89 10.31 10.66

4
[COR22] (∗) 21.01 26.72 31.14
This work (∗) 18.72 23.65 27.74
% reduction 10.90 11.49 10.92

Table 9: Execution times of various SIKE implementations using the SIKEp751 parameter
set (in million CPU cycles). (∗) denotes an implementation where two isogeny computations
in Encaps are combined. The % reduction shows how much the execution time of our best
implementation in the ninth row is reduced from that of [CFGR22] (∗) in the third row.

Cores Implementation KeyGen Encaps Decaps

1
[Mic17] 22.88 36.87 44.21
[CFGR22], AVX 10.26 16.12 17.93
[CFGR22], AVX (∗) 10.26 12.80 17.93

2 This work, AVX, PCP 8.61 14.19 15.64
This work, AVX, PCS 7.77 12.91 14.18

3 This work, AVX, PCP 7.94 13.14 14.43
This work, AVX, PCS 7.24 11.93 13.11

4
This work, AVX, PCP 7.51 12.56 13.79
This work, AVX, PCS 6.76 11.41 12.67
% reduction 34.11 10.86 29.34

Table 10: Execution times of various isogeny computation implementations (in millisec-
onds). The Intel Hyper-Threading and Intel Turbo Boost technologies are enabled.

Cores Implementation 4186-isogeny 3239-isogeny
Round 1 Round 2 Round 1 Round 2

1 [Mic17] 4.693 3.787 5.225 4.445
[CFGR22], AVX 1.958 1.801 2.396 2.233

2 This work, AVX, PCP 1.691 1.630 2.017 1.954
This work, AVX, PCS 1.513 1.506 1.835 1.799

3 This work, AVX, PCP 1.548 1.526 1.872 1.821
This work, AVX, PCS 1.371 1.397 1.670 1.672

4 This work, AVX, PCP 1.471 1.485 1.762 1.768
This work, AVX, PCS 1.310 1.363 1.609 1.637

	Introduction
	Preliminaries
	Large Smooth-Degree Isogeny Computation and Strategies
	Per-Curve Parallel (PCP) Technique
	Precedence-Constrained Scheduling (PCS) Technique
	Intel's Advanced Vector eXtension AVX-512

	Multi-core Implementation using PCS
	Modifying PCS for Speed-up
	Handling Synchronization
	Implementation Results

	AVX-512 and Multi-Core Implementation using PCS
	Constructing Better Strategies using Modified PCP
	Applying PCS to AVX-512 Implementation
	Implementation Results
	Efficiency Analysis

	Discussion
	Conclusion

