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Abstract. The recent development of pseudorandom correlation gener-
ators (PCG) holds tremendous promise for highly efficient MPC proto-
cols. Among other correlations, PCGs allow for the efficient generation of
oblivious transfer (OT) and vector oblivious linear evaluations (VOLE)
with sublinear communication and concretely good computational over-
head. This type of PCG makes use of a so-called LPN-friendly error-
correcting code. That is, for large dimensions the code should have very
efficient encoding and have high minimum distance.
We investigate existing LPN-friendly codes and find that several can-
didates are less secure than was believed. Beginning with the recent
expand-accumulate codes, we find that for their aggressive parameters,
aimed at good concrete efficiency, they achieve a smaller [pseudo] min-
imum distance than conjectured. This decreases the resulting security
parameter of the PCG but it remains unclear by how much. We addi-
tionally show that the recently proposed and extremely efficient silver
codes achieve only very small minimum distance and result in concretely
efficient attacks on the resulting PCG protocol. As such, silver codes
should not be used.
We introduce a new LPN-friendly code which we call expand-convolute.
These codes have provably high minimum distance and faster encoding
time than suitable alternatives, e.g. expand-accumulate. The main con-
tribution of these codes is the introduction of a convolution step that
dramatically increases the minimum distance. This in turn allows for
a more efficient parameter selection which results in improved concrete
performance. In particular, we observe a 3 times improvement in running
time for a comparable security level.

1 Introduction

The use of correlated randomness has emerged as the de facto method for ef-
ficient multiparty computation (MPC) and other cryptographic protocols. One
of the most fundamental examples is the oblivious transfer correlation which
drives a large fraction of efficient MPC protocols. Therefore the efficient genera-
tion of such correlated randomness is of paramount importance for realizing the
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real-world potential of these protocols. The recent development of pseudoran-
dom correlation generators (PCG)[12] has been suggested as the preferred way
of generating this correlation due to extremely good communication overhead,
typically sublinear, and compelling computational overheads. However, more re-
search is needed to realize the true potential of these techniques. This includes
an improved understanding of the underlying security assumptions and better
computational efficiency.

A PCG overview. The two party PCG protocols we will focus on have the
following structure. During a concretely efficient setup phase, the parties will
interactively generate random vectors a⃗′, b⃗′, c⃗′ ∈ Fn and a scaler ∆ ∈ F such
that

a⃗′∆+ b⃗′ = c⃗′

One party will hold a⃗′, b⃗′ while the other holds c⃗′, ∆. These values are uniformly
distributed with the caveat that a⃗′ is extremely sparse. The protocol then trans-
forms these a⃗′, b⃗′, c⃗′ vectors into unformly random vectors a⃗, b⃗, c⃗ ∈ Fk that have
the same correlation, a⃗∆ + b⃗ = c⃗. Typically, k will be large such as 220. This
correlation is known as vector oblivious linear evaluation (VOLE) which is used
by several state of art protocols for zero-knowledge and private set intersection.
Alternatively, the VOLE correlation can be efficiently converted into k oblivious
transfer (OT) correlations which are used by countless protocols.

The core idea of the transformation is to multiply the a⃗′, b⃗′, c⃗′ vectors by
the transpose of an error correcting generator matrix G. This effectively com-
presses these vectors to obtain a⃗ = a⃗′GT, b⃗ = b⃗′GT, c⃗ = c⃗′GT. Given that the
error correcting code G has high minimum distance, the sparse vector a⃗′ will
be compressed into a slightly shorter but uniformly random vector a⃗. Or more
formally, a⃗ is indistinguishable from uniform if the dual LPN assumption holds
for G (see Section 2.4).

The main overhead in these protocols is the multiplication with the error
correcting code G. Various codes have been proposed with the main challenge
being that G must have high minimum distance to argue security while also
having efficient multiplication.

1.1 Our Contributions

We propose a new class of error-correcting codes with provably high minimum
distance which are optimized for use in very large learning parity with noise
(LPN) instances for Pseudorandom Correlation Generators (PCG). We name
the codes Expand Convolute after the recent Expand Accumulate codes of Boyle
et al. [10] and convolutional codes (see Section 2.5 and [7]) that we build on.
Our new codes offer several compelling features. First is that they achieve linear
minimum distance (in the code length) which implies that our codes can prov-
ably prevent a very large class of attacks when used for LPN and pseudorandom
correlation generators. At the same time our codes are very efficient. The encod-
ing/matrix multiply time requires near-linear time and concretely outperforms
the prior art [10]. Our code takes Expand Accumulate codes as a starting point
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and replaces the accumulation with a convolutional code that we design. Each
step of the convolution is mildly less efficient but allows for a drastically bigger
rate, e.g. 0.6 as opposed to 0.2. This in turn allows our code to be much more
efficient, approaching a 2.8 = 0.6/0.2 times improvement in the overall running
time of the final pseudorandom correlation generator. Alternatively, our con-
struction can decrease the expander parameter by approximately 2 times which
similarly improves performance. Finally we introduce a systematic version of our
code that achieves a further 1.5× running time improvement at the expense of
a small decrease of minimum distance.

When analyzing the concrete parameters of our new code we observe that the
aggressive parameters proposed by [10] for their code fall short of their claimed
security level. In particular, we are able to empirically find (pseudo) minimum
distances of their code that are 30× smaller than conjectured. It does not ap-
pear that this results in a practical attack on their construction but certainly
decreased their security margin. Due to having a similar structure, one can ap-
ply similar techniques to our code. However, as expected we observe that our
introduction of a convolution results in a much higher pseudo minimum distance
(i.e. the smallest weight codeword that can efficiently be computed).

Our third contribution is demonstrating that the recent Silver codes [14]
achieve only sublinear minimum distance and are unsuitable for use in LPN. The
compelling feature of Silver was extremely good computational performance. The
techniques used to get this efficiency also made proving bounds on the minimum
distance of these codes difficult. The authors instead chose to rely on empirical
methods for estimating the minimum distance of small codes and extrapolated
the distance for the large codes used by PCGs. The authors conjectured their
code achieved linear minimum distance with their empirical bounds as support-
ing evidence. However, we show that the Silver codes only achieve poly log
minimum distance which leads to a concretely efficient distinguisher for their
PCG construction based on LPN.

Compared to our new codes, the encoding procedure for Silver is several times
faster. However, given the sublinear distance of Silver, some added overhead over
the silver codes appears necessary. Moreover, our new codes are the fastest known
codes that also achieve provable linear minimum distance. In particular, we are
twice as fast as [10] for comparable security.

1.2 Technical Overview of Expand Convolute

Both our new expand convolute code and the prior art of expand accumulate [10]
describe the generator matrix G ∈ {0, 1}k×n as the multiplication of two other
matrices, an expander B ∈ {0, 1}k×n and a convolution C ∈ {0, 1}n×n, such that
G = BC. The expander B is highly sparse with row (and column) hamming
weight being O(log k). Informally, the expander mixes disparate parts of the
message together. The convolution C is an upper triangular matrix with a special
structure, see Section 2.5. In particular, given y⃗ = x⃗C, then for all i, we can write
yi as a linear combination of xi and yi−1, . . . , yi−m for some small parameter
m. Informally, the convolution can be thought of as performing thorough local
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mixing of the last m outputs and xi. Together, the expander and convolution
perform both global and local mixing which give it strong minimum distance
properties.

The structure of B,C gives a natural algorithm for computing x⃗G. For
i = 1, . . . , n, we sum the O(log k) positions of x⃗ that are indexed by the ith

column of B, i.e. ti = ⃗B·,i · x⃗ and use that to update the convolution as
yi = ti +

∑
j=1,...,m αi,jyi−j , where αi,j are the random coefficients that de-

fine the convolution. Setting m = 1 and all of the convolution coefficients αi,1 to
be 1, we obtain the expand accumulate codes. In contrast, we will define m ≈ 20
and uniformly sample the convolution coefficients.

The critical security property that we must guarantee is that the code gen-
erated by G has high minimum distance. This is equivalent to requiring that
low (non-zero) hamming weight codewords y⃗ = x⃗G do not exist. For some iter-
ation i, we refer to the state ⃗σi of the convolution as the previous m outputs,
i.e., a column vector ⃗σi = (yi−1, . . . , yi−m)T. For the sake of contradiction, let
us assume x⃗ results in a low weight codeword y⃗ = x⃗BC, i.e., y⃗ is mostly zero.
Next observe that when the state σi is non-zero, the next output yi = 1 with
probability 1/2 over the random choices of αi,j , a.k.a C. Therefore, except with
negligible probability, for y to be low weight, the state must be zero most of the
time.

This brings us to the core idea of our construction. The probability that con-
volution state can transition to the zero state from non-zero is roughly propor-
tional to 2−m. Observe that while the state is non-zero there is a 1/2 probability
of getting yi = 1 (over the choices of αi,j , a.k.a C). Given that yi = 1, at least
m more iterations are required before the state can possibly transition to zero.
In particular, if yi = 1 then yi+1 = ... = yi+m = 0 must happen to transi-
tion to the zero state ⃗σi+m+1 = (yi+1, ..., yi+m) = ⃗0. Given that for j ∈ [m],
PrC [yi+j = 1 | yi = 1] = 1/2, we have the probability of transiting to state zero
at step i+m given yi = 1 is 2−m, i.e. PrC [ ⃗σi+m+1 = 0 | yi = 1] = 2−m. We note
that formalizing this intuition for all i requires significant nuance due to the fact
that these events are not all independent, e.g. when yi = 0.

By setting m = O(log k), in expectation any given message x⃗ will not transi-
tion to the all zero state and is likely to have high weight. In particular, a larger
m results in higher minimum distance. In contrast, the expand accumulate code
has m = 1 and therefore can easily transition back to the zero state.

While the conceptual idea of making the state larger is simple, the main
challenge lies in proving exactly how much increasing m helps. To achieve this
we model the process of generating y⃗ as a walk on a Markov chain, where the
randomness is over the choice of B,C. Unfortunately, naively modeling this
process results in extremely loose bounds and suggests a larger m is bad. We
show a series of transformations between related Markov chains such that a final
chain can yield tight bounds on the minimum distance of the code.

Organization. We begin in Section 2 by reviewing background material and the
closely related expand accumulate codes of [10]. We then introduce the Silver
codes of [14] in Section 3 and discuss why they achieve sublinear minimum
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distance. In Section 5 we introduce our new codes. We present two different
convolutional codes which we call non-wrapping and wrapping, where the latter
achieves better practical performance. Building on these convolutional codes we
design our final codes in a manner similar to expand accumulate codes, with the
main difference being that our codes achieve a much better rate and or a more
efficient expander.

2 Preliminaries

2.1 Notation

[a, b] denotes the set {a, ..., b} with [n] being shorthand for [1, n]. Let [a, b]R be the
interval a to b over the real values. (a, b] and [a, b) denotes the range excluding
the first and last element, respectively. Let x⃗ ∈ Rn be a row vector over a
domain R of length n. xi denotes the ith element. Alternatively, let x⃗ ∈ RV for
a set V denote a vector of length |V | and is index by elements of V . Let ⃗y be a
column vector. Let (x1, ..., xn) denote a row vector. For a set S, let x⃗S denote the
subvector index by S, i.e. (xS1

, ..., xS|S|). We use upper case to denote matrices,

e.g. M . Mi denotes the ith row and M·,i denotes the ith column of M . MT and
x⃗T are the transpose of a matrix and vector respectively.

2.2 Background on Markov Chains

Markov chain. A Markov chain is defined by a finite set V of state space
and transition matrix P ∈ RV×V s.t. all rows sum to 1 with > 0 entries. For
u⃗, v⃗ ∈ V , Pu,v is the probability of transitioning from state u⃗ to v⃗. P thus
naturally describes a random walk:
Let ν⃗ ∈ RV denote a distribution over the state space, so νv is the probability
of sampling state v. Sample a state x0 ← ν⃗. For i ∈ [n], sample xi ← Pxi−1

.

Stationary distribution. The stationary distribution ν⃗ ∈ RV of a Markov
chain is a distribution over V such that ν⃗P = ν⃗ (e.g. = ν⃗ is a left eigenvector
for eigenvalue λ1 = 1)

Irreducible. A Markov chain is irreducible if any state can be reached from
any other state in a finite number of steps. It is well known that if a chain is
irreducible, it has a unique stationary distribution.

Reversible. A chain is irreducible reversible if ∀u, v ∈ V, νuPu,v = νvPv,u.

Expander Hoeffding Bound. For a function f : V → [0, 1], let µ = Ex←ν⃗ [f(x)]
be the expected value under distribution ν⃗. Consider the likelihood that the ran-
dom variable Sn =

∑
i∈[n] f(xi) deviates a lot from Ex←ν⃗ [Sn], where (x1, . . . , xn)

is an n-step random walk on the chain. This distribution is closely related to the
second eigenvalue λ2 of P by the following theorem.

Theorem 1 (Expander Hoeffding Bound). Let (V, P ) denote a finite, irre-
ducible and reversible Markov chain, with stationary distribution π⃗ and second
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largest eigenvalue λ2. Let f : V → [0, 1] with µ = Ex←π⃗ [f(x)], and consider
Sn =

∑
i∈[n] f(xi) with x0 ←π⃗ V and x1, . . . , xn is a random walk which starts

from x0. Then for λ̃2 = max(0, λ2), and any ϵ > 0, the following concentration
bounds hold:

Pr [Sn > nµ+ ϵ] ≤ exp

(
−2ϵ

2

n
· 1− λ̃2
1 + λ̃2

)

Pr [Sn < nµ− ϵ] ≤ exp

(
−2ϵ

2

n
· 1− λ̃2
1 + λ̃2

)
Corollary for other starting distributions. We care about the special case
where the starting distribution is fixed to be a specific v ∈ V . The bound for
this case is (from the total probability rule):

Pr [Sn > nµ+ ϵ] ≤ 1

πv
exp

(
−2ϵ

2

n
· 1− λ̃2
1 + λ̃2

)

Pr [Sn < nµ− ϵ] ≤ 1

πv
exp

(
−2ϵ

2

n
· 1− λ̃2
1 + λ̃2

)

2.3 Coding Theory

Generator Matrix. Let k < n ∈ N. Let G ∈ Rk×n be a k × n matrix over
the field R, it generates the set of codewords C := {c⃗ = x⃗G | x⃗ ∈ Rk} where
c⃗ is a codeword of the linear code C, and x⃗ is any input k-length vector. G is
the generator matrix of C. Often it will be useful to consider a family of error
correcting codes that can be sampled from by some randomized procedure C.

Standard Form. The standard form for a generator matrix is, G = [Ik|P ]
where Ik is the k × k identity matrix and P is a k × m′ matrix, where m′ =
n − k. When the generator matrix is in standard form, the code C is said to
be systematic and the message can be read directly from the first k positions
codeword, i.e. c = Gx⃗ = [x⃗|p⃗] for some parity information p⃗ ∈ Rm. An arbitrary
generator matrix G′ can be placed in standard form by performing elementary
row operations and possibly column swaps.

Parity Check Matrix. The matrix H ∈ Rm′×n representing a linear function
ϕ : Rn → Rn−k whose kernel is C is called a parity check matrix of C. Equiva-
lently, H is a matrix whose kernel, a.k.a. null space, is C, i.e. C = {c⃗ | Hc⃗T = 0}.
It can be verified that H is a m′ × n matrix. The code generated by H is called
the dual code of C, denoted by C⊥.
Minimum Distance. The distance d of a linear code C can be defined as the
minimum number of positions of a codeword c⃗ ∈ C which must be modified
to produce another codeword c⃗′. Equivalently, it is the minimum number of
linearly dependent columns of the parity check matrix H. Due to the linearity
of C, it is easy to see that d is equal to the minimum weight non-zero codeword.
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Computing the minimum distance for an arbitrary linear code C is known to be
NP-complete [22].

Relating the Generator and Parity Check Matrices A generator matrix
can be used to construct the parity check matrix for a code (and vice versa). If
the generator matrix G is in standard form, G = [Ik|P ] then the parity check
matrix for C is H = [−PT|In−k] where PT is the transpose of the matrix P and
In−k is the m′ ×m′ identity matrix.

2.4 Syndrome Decoding and Learning Parity with Noise

Our constructions follows the recent line of works [10,14,11,12] to propose a new
variant of the learning parity with noise (LPN) assumption (more accurately, a
type of syndrome decoding assumption). The learning parity with noise assump-
tion is one of the most fundamental assumptions of cryptography, introduced in
the work of [8]; related problems were used even earlier [18]. The LPN assump-
tion over a field R states, informally, that (A,A · ⃗s + ⃗e) can not efficiently be

distinguished from (A, ⃗b), where A is sampled from some ensemble of matrices,
⃗s is a uniform secret vector over R, ⃗e is a noise vector sampled from some dis-

tribution over sparse R-vectors. ⃗b is a uniform vector over R. More formally, we
define the LPN assumption over R with dimension m′, number of samples n,
w.r.t. a code generation algorithm C, and a noise distribution D:

Definition 1 (Primal LPN [14]). Let D(R) = {Dm′,n(R)}m′,n∈N denote a se-
quence of efficiently sampleable distributions indexed by a pair of integers (m′, n)
over a ring R, such that for any m′, n ∈ N, Im(Dm′,n(R)) ⊆ Rn. Let C be a
probabilistic code generation algorithm such that C(m′, n,R) outputs a matrix
A ∈ Rn×m′

. For dimension m′ = m′(κ), number of samples (or block length)
n = n(κ), and ring R = R(κ), the (primal) (D,C,R)-LPN(m′, n) assumption
states that

{(A, ⃗b) s.t. A← C(m′, n,R), ⃗e← Dm′,n(R), ⃗s← Rm
′
, ⃗b← A · ⃗s+ ⃗e}

c
≈ {(A, ⃗b) s.t. A← C(m′, n,R), ⃗b← Rn}.

This definition captures not only LPN type assumptions but also assump-
tions such as LWE or the multivariate quadratic assumption. For our purposes,
we restrict the assumptions such that the noise distribution outputs sparse vec-
tors with high probability. The standard LPN is obtained by sampling A as
A← {0, 1}n×m′

, i.e. a uniformly random binary matrix, and sampling the noise
distribution as ⃗e ← Bernr ({0, 1}), i.e. the binary Bernoulli distribution where
for all i, Pr[ei = 1] = r. Other distributions such as regular noise have been
proposed [11], where ⃗e is the concatenation of t unit vectors of length N/t, to
achieve improved running times for target applications.

The assumption comes in two equivalent forms, the “primal” as described
above, and the “dual”. The latter formulation considers the linear error correct-
ing code C where A is the transpose of the parity check matrix of the linear
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code C. Let H = AT and G be the parity and generator matrix of C, the hard-
ness of distinguishing HT · ⃗x + ⃗e from random is equivalent to the hardness of
distinguishing G · (HT · ⃗x+ ⃗e) = G · ⃗e = e⃗ ·GT from random (since GT ·H = 0).

The Linear Test Framework. Recent works[12,11,14,10] have built on the
observation that, with a few exceptions, essentially applicable attacks fall within
the so called linear test framework. These attacks have been based on Gaussian
elimination and the BKW algorithm [17] and variants based on covering codes,
information set decoding attacks [19,20], statistical decoding attacks [3,16,15],
generalized birthday attacks, linearization attacks, attacks based on finding low
weight code vectors [23], or on finding correlations with low-degree polynomi-
als [2,9]. The linear test framework essentially states that for each of these distin-
guishers D, there exists a related adversary A that takes as input A and outputs
a test vector v⃗ such that the distinguishing power of D(A, ⃗b) is no better than

v⃗ · ⃗b where ⃗b is the LPN sample.

The linear test framework is useful for two primary reasons. First is that it is
expressive enough to capture all relevant attacks on LPN. Secondly, when LPN
is instantiated with a code with high minimum distance d, one can prove that
the advantage of a linear test distinguisher is negligible. If the weight of v⃗ is at
most d, then the rows of A will be d-wise linearly independent and therefore
v⃗ · (A ⃗s+ ⃗e) will be uniformly random because ⃗s is uniformly random. Therefore,
for the distinguisher to succeed, it must output a test vector v⃗ with weight greater
than d. However, in this case, one can parameterize the noise distribution to be
sufficiently high that v⃗ · ⃗e is close to uniform.

We note that there are a few notable exceptions to the linear test framework.
These exceptions all take advantage of special algebraic structure within the code
(e.g. Reed-Solomon) or noise distribution. However, none of these exceptions are
directly applicable to our setting[10].

Pseudo Minimum Distance. The original formulation of the linear test frame-
work focuses on the existence of the minimum weight codeword to argue the
security of LPN. The recent work [10] made explicit the observation that it is
possible for an LPN instance A to be secure per Definition 2 yet have small min-
imum distance4. In particular, the observation is that if codewords with small
weight exist but are computationally infeasible to find, then LPN should remain
secure. [10] defines pseudo minimum distance to be the weight of the smallest
weight codeword that can be efficiently computed. Given that computing the
minimum weight codeword is known to be NP-Complete, it is very likely that
for some codes the difference between pseudo and actual minimum distance could
be quite large, possibly even asymptotically different. [10] formalizes this idea
([10], Definition 3.12) and proposes the use of pseudo minimum distance when
performing parameter selection.

Minimum Distance vs. Noise Rate. In this discussion, we have focused
on the need for high [pseudo] minimum distance. This raises the question of

4 Or more accurately, have a small enough LPN noise rate such that ⃗e does not suffi-
ciently intersect a test vector with minimum distance weight with high probability.
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exactly how high it needs to be for LPN to be secure. For any given minimum
distance d, one needs to set the noise rate of the error vector ⃗e sufficiently high
so that (linear) attacks with weight at least d are sufficiently likely to intersect
with it. As such, one can also consider using a code with a smaller distance
d′ < d and compensate for this by having a higher noise rate, or vice versa. [10]
makes extensive use of this tradeoff and considers the use of relatively moderate
minimum distance codes with a high noise rate. This has some impact on the
communication complexity and running time of the final protocols.

LPN-friendly Codes. Many codes have been conjectured to result in secure
LPN instantiations. As mentioned, the original formulation samples A as a uni-
formly random linear code. Alekhnovich [4] proposed sampling A as a sparse
random matrix, i.e. a random LDPC code. Many works have also proposed
LPN-friendly codes in the context of the NIST post-quantum completion [5,1,13]
which were also used by [11]. It is believed that these codes offer strong secu-
rity but fall short of the desired running time performance. The recent works of
[14] and [10] have both proposed new classes of codes LDPC/Turbo code which
aim for improved running times. With the exception of [14], all of these codes
have instantiations which yield proofs of security in the linear test framework.
However, we show that [14] is not LPN-friendly due to having small minimum
distance.

2.5 Convolutional Codes

An important building block for the error correcting codes considered in this
work are convolutional codes. These codes differ from the previously mentioned
block codes in that they are capable of encoding an unbounded stream of data.
A convolutional code maintains an internal state σi ∈ {0, 1}m for each time step
i. The length m of this state is referred to as the state size or memory size.
There exists a state transition function ST that takes in the current time step
i, current state σi and the next message bit xi. ST outputs the codeword bit ci
and the new state σi+1. That is, for i ∈ [n], (ci, σi+1) = ST(i, xi, σi) where
σ1 = 0. More generally, one can consider a state transition function that takes
in multiple message bits at a time and output multiple bits. In this way, one is
able to achieve a non-rate 1 code. However, for our purposes, this definition will
suffice.

All convolutional codes we consider will be linear and as such there exists a
matrix Mi ∈ {0, 1}(m+1)×(m+1) such that ST(i, xi, σi+1) = (xi||σ⃗i) ·Mi. The
generator matrix for a convolutional code (for a fixed block size n) is then an
upper triangular matrix A ∈ {0, 1}n×n. Moreover, all of the convolutions we con-
sider are recursive where σi = ci−[m] and therefore the convolution can be com-
puted using an update column vector ⃗αi ∈ {0, 1}m such that ci = xi+ ⃗αic⃗i−[m].
That is, each codeword bit is a linear combination of the previous m codeword
bits and the corresponding message bit.

The simplest convolutional code we consider is an accumulator. This code
has a state size of m = 1 and for all i, ⃗αi = (1), each output ci = xi + ci−1.
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Looking forward, we will consider more complicated convolutional codes where
m = O(log n) and ⃗αi are sampled at random from some distribution.

3 Minimum Distance of Silver Codes

We begin by presenting the negative result that the Silver codes presented in
[14] do not achieve linear [pseudo] minimum distance as conjectured. These codes
were specifically designed for high efficiency LPN. The core design criteria were
high minimum distance and (near) linear time encoding. We demonstrate that
the Silver codes have a minimum distance upper bounded bymw2 = O(log3(n)),
where m ∈ {47, 63} is the memory size of their convolutional code and w ∈
{5, 11} is the number of diagonals in their left matrix. While Silver gives con-
crete values for m,w, we assume based on their claims that asymptotically they
grow logarithmically, which technically means they obtain a O(n log n) running
time. Next, we present the necessary details on the Silver codes which enable
our concretely efficient LPN distinguisher along with identifying structural weak-
nesses of their construction. On the positive side, we identify sever several good
design choices in their construction which we will build off of in Section 5.

Silver Codes. Arguably, one reason that the sublinear minimum distance of
Silver was not previously observed is due to the somewhat complicated presen-
tation of the code itself. Here we will present a simplified version of the code
that has several unnecessary details removed5.

Silver is a linear systematic code in that the codeword c ∈ {0, 1}n of message

x⃗ ∈ {0, 1}k is composed of c⃗ = (x⃗||c⃗′). Their encoder can be broken into two
phases, linear sums L and a recursive convolution A with a state size of m ∈
{47, 63}, where c⃗′ = x⃗LA. L ∈ {0, 1}k×k is an extremely sparse and highly
structured matrix that is the addition of w rotations of the identity matrix. The
convolution A is an upper triangular matrix with state size m ≈ 16.

A recursive convolution code offers a more efficient encoding algorithm than
naively multiplying by A. In particular, the ith bit of y⃗ = x⃗A is a linear combi-
nation of the previous m output bits and xi, i.e. yi = xi+(yi−1, ..., yi−m) · ⃗αi. For
our purposes, we can assume ⃗αi is uniformly random. An alternative descrip-
tion of A is with its parity check matrix which essentially consists of a width m
diagonal band of zeros and ones defined as a function of the ⃗α coefficients above.

Sublinear Minimum Distance. The state size m of the convolution immedi-
ately places an upper bound on the minimum distance of I||A, sometimes referred
to as the free distance of A in the context of convolutional codes. Consider the fol-
lowing, at some index xi = 1 and for i′ ∈ [i+1, i+m], set xi′ := (xi−1, ..., xi−m)· ⃗α.
At all other positions let x⃗ be zero. Such an x⃗ will result in the state of the
convolution return to all zeros after m iterations. Here we refer to the state of
the convolution as the last m outputs which in turn define the next output. As
such, the minimum distance of I||A is upper bounded by m+ 1.

5 These removals will not influence the minimum distance.
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For Silver, it is not as simple to get the state of the convolution to return
to zeros. Let us first focus on the code formed by the generator matrix LA ∈
{0, 1}k×n. Let q1, ..., qw ∈ [k] be the rotations of the identity matrix that form:

L =
∑
j∈[w]

shift(Ik, qj).

As such z⃗ = x⃗L has the structure that zi =
∑
j∈[w] xi+qj . For simplicity let

q1 = 0 and assume that the distances between any pair of qj is greater than
mw. Ostensibly, the logic behind Silver is that one is not able to find a value
for x⃗ such that state of the convolution will quickly return to zero whenever it
turns on. Of course one could always choose xi, ..., xi+m such that the state of
convolution at iteration i quickly goes to zero but the other w− 1 locations that
xi is mapped to will remain at a non-zero state with high probability.

Unfortunately, this need not be the case. Let xi = 1 and consider xi+1, ...xi+mw.
Let the rest of x⃗ be zero. Due to the structure of the convolution the state of
the convolution at iterations i + mw + {q1, ..., qw} will be a linear function F
of xi+1, ...xi+mw. Moreover, the total size of the convolution states at these w
iterations will be mw. As such, assuming F is bijective then one can solve for
xi+1, ..., xi+mw such that F (xi+1, ..., xi+mw) = 0mw.

Therefore, one can choose x⃗ such that after mw iterations the convolution
will return to the zero state at all of the w iterations that xi was mapped to.
This will contribute at most mw2 ones to the codeword while the rest is all
zeros. Since the overall code is of the form (x⃗||x⃗LA), the minimum distance will
be at most mw + mw2 where the first term is due to x⃗ itself. Therefore one
can conclude the [pseudo] minimum distance is O(log3(n)). See Section D for
additional comments on Silver.

4 Expand Accumulate Codes

Expand-accumulate codes (EA) were recently introduced by Boyle et al. [10].
Among other compelling features, EA offers concretely good encoding time and
provable minimum distance under certain instantiations. To achieve better con-
crete performance [10] suggests the use of “aggressive” parameters which are
not compatible with their proof of minimum distance but are plausibly secure.
We show that these parameters fall short of their conjectured pseudo minimum
distance by as much as 30× for a code of size k = 220. It is unclear to us if
this decrease results is a practical LPN distinguisher but, nonetheless, it is of
concern and decreases their security margin. More generally, we show that for
an EA code to have linear [pseudo] minimum distance, these parameters must
grow with k. EA codes can be described using

– A sparse expander B ∈ {0, 1}k×n, each row having approximate w weight.
– An accumulator matrix A ∈ {0, 1}n×n.

Encoding is performed as c⃗ = (x⃗B)A, i.e. G = BA. First the message x⃗ is
expanded by B, i.e. y⃗ = x⃗B. Concretely, each position yi will be a sum of
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approximately w(k/n) ≈ w/2 entries in x⃗. Accumulating as c⃗ = y⃗A correspond
to taking the prefix sum of each entry, i.e. ci =

∑
j∈[i] yj .

4.1 On the minimum distance of EA

[10] proposes several different distributions for B and error vector ⃗e. [10] proved
that their code for certain parameter regimes has high minimum distance, where
B is sampled using a Bernoulli distribution. In particular, let EA(k, n, pw) =
BA refer to the process of sampling B ∈ {0, 1}k×n where Bi,j ← Berpw with
pw = w/n for w = Ω(log n). As such, the rows of B have expected weight w
with Pr[Bi,j = 1] = pw. Concretely, w ≈ 2.5 lnn was proposed. Below we will
review the proof of high minimum distance for this case. [10] also suggests more
aggressive parameters with each row of B being randomly sampled with a small
fixed hamming weight, e.g. w = 7. Focusing on the Bernoulli distribution, the
sequence (y1, . . . , yn) = x⃗(BA) can be modeled as a n-step random walk (over
the randomness of B) on a Markov chain with state space {0, 1}. That is, at
step i of the walk, the current state will be yi.

In particular, one can visualize this process by focusing on the state of the
accumulator. Instead of first computing x⃗B and then accumulating the result,
consider the scenario where the accumulator state at iteration i is updated with
x⃗ ⃗B·i. Whenever this update is one, the single bit state of the accumulator will
flip and equivalently we will have yi = yi−1⊕1. This formulation naturally lends
itself to being modeled as a Markov chain with the accumulator state being the
state space, i.e. {0, 1}, and transition probability from 0 → 1 or 1 → 0 being

pr = Pr[x⃗ ⃗B·i]. Additionally, recall that the column ⃗B·i is sampled as Berkpw and

therefore pr is a function of r = HW(x⃗), pw when ⃗B·i is viewed as a random
variable. Looking forward, we can bound the value of pr using the Piling-up
lemma (2). The proof perform a case analysis of r = HW(x⃗) for r = 1, r <
Ω( lognn ) and otherwise. Analyzing the behavior of the chain for each case, via its
spectral gap (e.g. convergence rate) and then using an expander Hoeffding bound
(concentration bound for Markov chains), it can be shown that the random
walk (y1, . . . , yN ) is unlikely to spend too much time on state 0, or equivalently,
HW(x⃗G) is unlikely to be too small. In particular, [10] proved the following.

Lemma 1 (Core EA Lemma). Let k, n ∈ N, k ≤ n. Fix pw ∈ (0, 12 ), δ > 0,
β = 1

2 − δ. Let r ∈ n, x ∈ {0, 1}
k s.t. HW(x) = r, define ξr = (1− 2pw)

r, then:

Pr [HW(x⃗G) < δn|G← EA(k, n, pw)] ≤ 2 exp
(
−2nβ2 · ( 1−ξr1+ξr

)
)

The final proof of minimum distance can then be achieved by taking a union
bound over all x⃗ ∈ {0, 1}k. For w = Ω(log(n)), EA shows that with probability
at least 1− 1

poly(n) the code has minimum distance Ω(n), Concretely, EA suggest

the use of w ≈ 2.5 lnn which translates to w = 36 for k = 220. Alternatively,
setting w = Ω(log2(n)) results in linear minimum distance except with negligible
probability 1−O(n− log(n)).
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In further pursuit of better concrete efficiency, [10] proposes a set of aggressive
parameters where w is set to be relatively low. In particular, for code sizes
k ∈ {220, 225, 230}, [10] proposes the use of w ∈ {7, 9, 11}. For each of these 9
combinations, [10] conjecture concrete lower bounds on the pseudo minimum
distance of the code (see Figure 9 [10]). The pseudo minimum distances being
conjectured are significantly higher than what can be obtained from their proof
of minimum distance. EA reconcile this difference by noting that their proof
likely has some slack and with the notion of pseudo minimum distance of a
code, see Section 2.4.

Building on the notion of pseudo minimum distance and intuition from their
proof, [10] goes on to conjecture that if they have small pseudo minimum dis-
tance, then with high probability these will correspond to weight 1 messages, i.e.
a row of G = EA will have small weight. They then sample G 100 times and for
n ∈ {29, 210, ..., 215} and record the minimum weight row. From these they ex-
trapolate that the minimum distance goes as δn where δ = 0.4633e−0.101 log2(n)

for w = 7. Moreover, they give an informal conjecture that finding a lower weight
codeword is hard. Next we show that this is false. In particular, we give an im-
proved analysis that shows how to find higher weight messages that result in
lower weight codewords. For example, with a similar number of samples of G we
were able to find codewords with a δ 30× smaller than conjectured.

4.2 Smaller Weight EA Codewords

We present a more general analysis that will in fact also apply to our construc-
tion. This analysis borrows ideas developed for proving that certain Turbocodes
have sublinear distance [6]. Let m be the state size of the convolution, e.g. m = 1
for EA. The intuition of the analysis is that when w is small, one can find a small
number of small regions over [n] such that many rows of B are non-zero exclu-
sively in the regions. The state space of the accumulator at the end of these w
regions has a combined size of 2mw. Therefore, if one can find mw rows of B
that are non-zero exclusively in the regions, then there must exist as assignment
to the corresponding message bits such that the state of the accumulator is zero
at the end of these regions. Let x be zero outside this assignment and therefore
the overall weight of the codeword can at most be the total size of these small
regions. For the special case of an accumulator with m = 1, it suffices to find
two rows of B that map to the same w regions. Next, we describe the process
of finding these regions and show that it implies a sublinear minimum distance
when w is a constant and m is sublinear. For i ∈ [k], j ∈ [w], let σj(i) ∈ [0, n)
denote the j’th position that xi was mapped to by Bi when using zero indexing.
That is Bi,σj(i)+1 = 1 and otherwise is zero. For some parameter β ≪ n, divide
the range [n] up into β evenly sized regions, where each region has size µ = n/β.
For each row Bi, let us define its signature as Si = {σ1(i)/µ, ..., σw(i)/µ}. Let
the domain of Si be S and note that |S| ≤ βw since σj(i) ∈ [0, β − 1]. By the pi-
geon hole principle, there must exist a U ⊂ [k], T ∈ S such that ∀u ∈ U, Su = T
and |U | ≥ k/βw. Wlog, let us assume |T | = w. Let t1, ..., tw ∈ [n] index the
end of these w regions in T . The state space of the convolution at these steps
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has a combined size of 2mw. There are 2|U | assignments to the message bits xu
for u ∈ U and therefore if |U | > mw, then there must exist two distinct input
strings x, y ∈ {0, 1}k which are zero outside U such that their states at steps
t1, ..., tw are equal. x + y is then encoded into a codeword with weight at most
µw = nw/β. Therefore if we set

β =

(
k

wm

)1/w

=⇒ |U | ≥ k(
( k
wm )1/w − 1

)w ≥ k(
k
wm

) = wm,

|U | will be sufficiently large and therefore x, y must exist s.t. HW(x + y) is
sublinear. Moreover, for EA, A is an accumulator where all transitions are the
same and having m = 1, the size of U need only be 2. Concretely, for k =
220, w = 7 we can set β = 7.5 and obtain a minimum distance upper bound of
δn where δ = 0.93. Increasing k to 230 and setting β = 18.6, we obtain δ = 0.38.
These upper bounds on δ are significantly larger than those suggested by the EA
empirical analysis. However, these bounds hold with probability 1 and therefore
are not tight on average.

To get more accurate average case bounds, we implement the analysis and
find that δ decreases significantly. We extend the basic analysis above to consider
signatures Su that are almost equal to T . For example, if Su is equal to T except
in one position it is off by 1. By setting β = 10, we were able to find that most
codes with k = 220, w = 7 have minimum distance at most δ = 0.01 and as small
as 0.002 over a few hundred trials. That is a reduction in minimum distance of
6× to 30× over what was reported by [10]. We observed similar trends for other
parameters.

Looking forward, one should note that the effectiveness of this search falls
off dramatically as we increase the state size m. Even for moderate such as m =
25, w = 7, the theoretical bound on δ passes 1 and therefore is not meaningful.

5 Expand Convolute Codes

In this section, we introduce expand-convolute codes, which are defined by the
product G = BC for a sparse expanding matrix B and a convolution matrix C.
We conjecture that the LPN problem is hard to solve for this matrix ensemble
and provide theoretical evidence for this conjecture by demonstrating that it
resists attacks in the linear test framework.

5.1 Defining Expand Convolute Codes

Expand Matrix. For a ring R and parameters w, k, n ∈ N with w ≪ k ≤ n,
an expanding matrix B ∈ Rk×n is an k×n matrix over R with each row having
(approximately) w non-zero entries. In our provable instantiation, every entry
of B is sampled as Bi,j ← Berpw(R), where pw = w

n . Fixed row weight w is also
conjectured to have similar minimum distance [10].
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Convolute Matrix. For a ring R and parameters m,n ∈ N with m ≤ n, a
convolutional code generator matrix C ∈ Rn×n is an n × n upper-triangular
matrix over R with state size m. That is, C has 1’s on its diagonal and entries
below the diagonal being some linear combination of the following m columns.
Concretely, for any i ∈ [n], there exist αi,1, . . . , αi,m ∈ R such that

C·,i = ⃗idi,n +
∑
j∈[m]

αi,jC·,i+j

where ⃗idi,n is the n × 1 column vector over R whose i’th entry is 1 and all
other entries are 0. In our provable instantiation, C is to sampled such that each
αi,j ← Berpc(R), for pc = 1

2 . The expand convolute generator matrix is defined
as G = BC. We denote this sampling procedure by ECGen(w,m, k, n, pc,R).

5.2 The EC-LPN Assumption

In this work, we provide a new (dual) LPN-type assumption connected to expand
convolute codes which we term EC-LPN. It is obtained by specializing Definition
1 to the case where the code generation algorithm samples G← ECGen.

Definition 2 (EC-LPN). Let D(R) = {Dn(R)}n∈N denote a family of ef-
ficiently sampleable distributions over a ring R, such that for any n ∈ N,
Im(Dn(R)) ⊆ Rn. For a dimension k = k(κ), number of samples n = n(κ),
expansion weight w = w(κ) ∈ [n], state size m = m(κ) ∈ [n], convolving den-
sity pc = pc(κ) ∈ [0, 1] and ring R = R(κ), the (D,R)-EC-LPN(w,m, k, n, pc)
assumption states that

{(G, ⃗b) s.t. G← ECGen(w,m, k, n, pc,R), ⃗e← Dn(R), ⃗b← G ⃗e}
c
≈ {(G, ⃗b) s.t. G← ECGen(w,m, k, n, pc,R), ⃗b← Rk}.

In order to provide evidence for the EC-LPN assumption, we will show that
it is secure against linear tests, at least when R = F2, w,m = Θ(log n) and
pc =

1
2 . To do this, it suffices to show that the minimum distance of the expand

convolute code is large (with high probability). To that end, we try to bound
the probability that a message vector is mapped to a codeword of low weight
using the roadmap below:

1. We consider a fixed message x⃗ ∈ Fk2 and imagine revealing the coordinates
of the random vector x⃗G one at a time, where G← ECGen, and observe that
this can be viewed as a random walk on a Markov chain (Section 5.2.1).

2. The state space of this Markov chain exactly corresponds to the various
possible values of the internal state σ of the code. In general, this would be
of size 2m. However, when pc =

1
2 , it turns out that the state space shrinks

to be of size m+ 1, which is easier to analyze (Section 5.2.2).
3. However, this Markov chain is not reversible and hence we are not in a

position to apply the Hoeffding bound to characterize it (Section 5.2.3).
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4. We instead resort to analyzing a much simpler reversible chain (Section
5.2.4 and Section 5.2.6), and comparing the behavior of the two chains via
a coupling argument (Section 5.2.5).

We formalize all these details ahead, the security analysis in Section 5.2.7.

5.2.1 Understanding the Markov chain For parameters w,m, k, n ∈ N
with w,m, k ≤ n and 0 ≤ pc ≤ 1, let G = BC be G← ECGen(w,m, k, n, pc,F2).
Consider a fixed message x⃗ ∈ Fk2 . Define R = k

n to be the rate of the code.
Consider the codeword y⃗ ∈ Fn2 given by y⃗ = x⃗G. We see that the bits of y can
be computed iteratively (in reverse) as follows:

y1 = x⃗B·,1

yi = x⃗B·,i +
∑
j∈[m]

αi,jyi+j ,∀i ∈ [2, n]

We can view this as a recursive process with an internal state σi at step i
given by σ⃗i = (yi−1, . . . , yi−m). In step 1, let y1 = x⃗B·,1 and add y1 to σ⃗2 as
σ⃗2 = (0, . . . , 0, y1). In step i ∈ [2, n], let yi = x⃗B·,i + ⃗αi · σ⃗i. Now, note that

Pr[yi = 1|σ⃗i] = Pr
B·,i

[x⃗B·,i = 0] · Pr
⃗αi

[ ⃗αiσ⃗i = 1] + Pr
B·,i

[x⃗B·,i = 1] · Pr
⃗αi

[ ⃗αiσi = 0]

The above follows from a few observations. Firstly, B and C are sampled inde-
pendently in the sampling of G, which means that B·,i and ⃗αi are independent.
Secondly, σ⃗i is independent of both B·,i and ⃗αi. To estimate the probabilities
above, we recall the piling-up lemma below.

Lemma 2 (Piling-up Lemma). For any 0 < q < 1
2 and t ∈ N, given t random

variables (X1, . . . , Xt) that are i.i.d. according to Berq, it holds that

Pr

[
t⊕
i=1

Xi = 0

]
=

1

2
+

(1− 2q)t

2

Let r = HW(x⃗). By Lemma 2, PrB·,i [x⃗B·,i = 0] = 1
2 + (1−2pw)r

2 where pw = w
n .

By Lemma 2, we also have that Pr ⃗αi
[ ⃗αiσ⃗i = 0] = 1

2 as pc = 1
2 . We note,

however, that the last equation above only holds as long as σ⃗i ̸= (0, . . . , 0).
Indeed, Pr ⃗αi

[ ⃗αiσi = 0] = 1 if σi = (0, . . . , 0). Thus, Pr[yi = 1|σ⃗i ̸= 0] = 1
2 and

Pr[yi = 1|σ⃗i = 0] = 1
2 −

(1−2pw)r
2 . We define pr :=

1
2 −

(1−2pw)r
2

We now begin to view the recursive encoding process described before as a
walk on a Markov chain whose state space is the set of all possible values of the
internal state σ. We begin at σ⃗1 = (0, . . . , 0). The random walk of n steps then
moves as σ⃗2, . . . , σ⃗n. Since σ⃗i are binary vectors of size m, the size of the state
space is 2m. At any step i ∈ [n], we move from σ⃗i−1 to σ⃗i. Note that given σ⃗i−1,
σ⃗i can be only one of two different values, depending on whether yi is 0 or 1.
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We denote these two values by σ⃗
(0)
i and σ⃗

(1)
i . From our above calculation,

Pr
[
σ⃗i−1 → σ⃗

(1)
i |σ⃗i−1 ̸= 0

]
=
1

2

Pr
[
σ⃗i−1 → σ⃗

(1)
i |σ⃗i−1 = 0

]
=pr

5.2.2 Shrinking the Markov chain It turns out that the above Markov
chain can be shrunk to have only m + 1 states as opposed to 2m. This can be
done by combining states in the original chain. We note that this possibility
arises specifically because we have considered the case of pc =

1
2 which induces

a lot of symmetry in the transitions.
We can group states based on the suffix of the m bits representing the state.

In particular, all states whose last bit is 1 can be combined. All states whose
last two bits are 10 can be combined. All states whose last three bits are 100
can be combined. And so on, until the last remaining state is all zeros 0m state.
We will name these states 1, 01, 02, . . . , 0m−1, 0m. Note that there are m + 1 of
them. This chain is described in Figure 1. From our calculations above, we see
that we have only three types of transitions:

Pr [0m → 1] = pr, Pr [0m → 0m] = 1− pr

and all other transitions are with probability 1
2 .

To see the correctness, consider the following. Suppose that at a certain point
in the random walk, we have internal state σ whose last ℓ + 1 bits are 10ℓ and
hence we are in the shrunk state 0ℓ. After one more step in the walk, the internal
state will be either 10ℓ+1 or 10ℓ1. This means that we will either be in the shrunk
state 0ℓ+1 or 1. The transition probabilities of both of these are 1

2 , as long as
ℓ < m. If ℓ = m, after one more step in the walk, the internal state will be either
0m or 0m−11. This means that we will either be in the shrunk state 0m or 1.
The transition probabilities of these are 1− pr and pr respectively.

In other words, the Markov chain does not need to keep tract of the actual
state of the convolution (with its 2m possible states) but instead just if there has
been a 1 transition in the last m transitions. Looking forward we will effectively
shrink the chain to two via a Markov chain coupling.

5.2.3 Random Walks and Minimum Distance Recall that our overall
goal was to show that the minimum distance of G is large (with high probability)
and that we are attempting to show this by arguing that for any message x⃗, the
weight of y⃗ = x⃗G is large (with high probability). It is easy to see that the weight
of y⃗ is the number of steps in the n step random walk in the Markov chain we
have in Figure 1 that we are in the state 1 (this is because the last bit of the
state corresponds to the codeword bit). One strategy to estimate the amount of
time we spend in a state in a random walk on a Markov chain is to estimate the
stationary distribution of the chain and then use a concentration bound of some
sort, for instance, the expander Hoeffding bound (Theorem 1). The Markov chain
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Fig. 1. The m+ 1 state Markov chain representing the encoding process.

we have in Figure 1 is unfortunately not reversible, and bounds for irreversible
Markov chains are unfortunately not tight enough for our purposes. Therefore,
we take a different approach.

5.2.4 A Reversible Markov chain We will study a different, related, but
reversible Markov chain described in Figure 2. This chain has only two states,
namely a 0 state and a ? state, and the following transition probabilities:

Pr [0→ 0] = 1− pr, Pr [0→?] = pr

Pr [?→ 0] = 2−(m+θm), Pr [?→?] = 1− 2−(m+θm)

At a high level, the 0 state in this reversible chain is meant to capture the 0m
in our previous chain, and the ? state in the reversible chain is meant to emulate
all the other states of the other chain. Unlike our previous shrinking, this isn’t a
transformation that preserves functionality. Indeed, the chains in Figures 1 and
2 are different. However, posit that they are very closed related for the following
reason. Firstly note that the states 0m and 0 in the two chains are identical in
a sense. Furthermore, in the chain in Figure 1, the shortest path that takes you
from 1 back to 0m is a of length m, each transition having a probability of 1

2 ,

while in the chain in Figure 2, the transition probability from ? to 0 is 2−(m+θm)

for some θm > 0. Thus, in this reversible Markov chain, leaving the 0 state is
about as hard as in our other chain, and hence we hope that we can relate the
time spent in states 1 and ? on random walks on the two chains. If we succeed in
doing so, then we can use the expander Hoeffding bound to find the time spent
in ? in the reversible chain and use that to argue about the time spent in 1 in
the other chain, which is what we set out to do.

One final note before we move ahead is regarding the ?. Firstly, the reason for
using ? instead of 1 is because the ? emulates states 1, 01, . . . , 0m−1 in the other
chain, and we are actually only interested in the time spent in 1 in the other
chain. Looking ahead, we will come up with a way of estimating what fraction
of time spent in ? will account for the time spent in 1.

5.2.5 Relating the two chains : A Coupling Recall that our strategy is to
relate the behavior of the irreversible chain in Figure 1 with that of the reversible
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pr

2−(m+θm)

1− pr

1− 2−(m+θm)

Fig. 2. The 2-state reversible chain which we compare to.

chain in Figure 2, which is much easier to study.

We will consider random walks on both of the Markov chains. In the case of the
irreversible chain, we count the number of time steps spent in state 1. In the case
of the reversible chain, every time we are in the ? state, we flip a coin and with
probability 1

2 , we count it. That is, in expectation, we count approximately half
the number of time steps spent in state ?. In this section, we will relate these
counts by proving the theorem below.

Theorem 2. Let n denote the length of the random walks performed on the
chains in Figures 1 and 2, where m ≥ log n + 2. Starting from state 0m of the
irreversible chain (Figure 1), let Xi be the indicator of being in state 1 at step i.
Starting from state 0 of the reversible chain (Figure 2), let Yi be the indicator of
being in state ? at step i and then uniformly mapping ? to {0, 1} (with probability
1
2). Fix δ ∈ [0, 1] and k̂ > 0. Then, there exists θm ∈ [0, 1) such that

Pr

∑
i∈[n]

Xi ≤ δn− k̂(m− 1)

 ≤ 1

1− exp
(
− δ̃r k̂

2+δ̃r

) Pr

∑
i∈[n]

Yi ≤ δn


where δ̃r =

k̂
n·2−(m+θm)·pr

.

Conjecture: Theorem 2 holds for all m ≥ 2.

In order to prove Theorem 2, we will induce a coupling on the random walks
on the two Markov chains (Lemma 7). In order to perform the coupling, we walk
through a series of lemmas that estimate the required probabilities. We begin
with bounding the probability of having a run of length i without returning to
the zero state (0 or 0m)

Lemma 3 (Reversible Run of ?’s). Starting from state ? in the reversible
chain (Figure 2), let qi to be the probability of going to state 0 for the first time

exactly at step i+ 1. We have qi =
(
1− 2−(m+θm)

)i · 2−(m+θm)

Proof. Starting at state ?, the only such possible path stays in the ? for i steps
and transitions from state ? to state 0 in the last step.
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Lemma 4 (Irreversible Run of 1’s). Starting from state 1 in the irreversible
chain (Figure 1), let pi to be the probability of going to state 0m for the first time
exactly at step i+m. Then for i ∈ [n], m ≥ log n+ 2 and θm = 0,

pi < qi

Conjecture: For all m ≥ 2, there exists θm ∈ (0, 1) such that for all i ≥ 1,∑
j∈[i]

pj <
∑
j∈[i]

qj

Proof. See Appendix B.1.

We are now going to define our coupling. To aid in the description of the
coupling, we first describe two processes (Processes 1 and 2) that will faithfully
perform random walks on the two chains (Lemmas 5 and 6). In particular, we will
first re-characterise the process of performing a random walk to sample the walk
as several sub-walks (see Appendix C). First we will define the function S0 that
will sample the size of the sub-walk with state transitions 0m → . . .→ 0m → 1.
Then we will define the function S1 that will sample the size of the sub-walk
with the form 1 → . . . → 0m−1 → 0m, that is, start at state 1 and end once
state 0m is reached. Such walks might visit state 1, 01, . . . , 0m−1 many times but
0m only once. Constructing the overall walk can then be achieved by alternating
calls to S0 and S1 (along with sampling a specific sub-walks that is consistent
with S1).

Process 1 (Irreversible Chain). For each i ∈ N, let τi = (1 − pr)
i−1pr and

ηi =
∑i−1
j=1 τj. So, we have η1 = 0, η2 = τ1, η3 = τ1 + τ2, . . .,

∞∑
i=1

τi = pr

∞∑
i=0

(1− pr)i =
pr

1− (1− pr)
= 1

That is, ηi → 1 as i→∞. Also, ηi is trivially monotonically increasing. Define
the monotonically increasing step function S0 : [0, 1]R → N where S0(0) = 1 and
for p ∈ (0, 1]R, S0(p) = k such that p ∈ (ηk, ηk+1].

Define ζ1 = 0 and ζi =
∑i−1
j=1 pj for i ∈ N. We also have

∞∑
j=1

pi = 1

That is, ζi → 1 as i→∞. Also, ζi is trivially monotonically increasing. Define
the monotonically increasing step function S1 : [0, 1]R → N where S1(0) = m
and S1(p) = k +m− 1 such that p ∈ (ζk, ζk+1].

Let X̃ be the random variable denoting the output of Algorithm 1 (see Ap-
pendix B.5) which on input S0, S1 samples a walk by alternating calls to S0, S1

and constructing sub-walks of that length.
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Lemma 5 (Random walk on irreversible Markov chain). Let X̃ be the
random variable described by Process 1. Then X̃ follows the same distribution
as a random walk on the irreversible chain (Figure 1).

See Appendix B.2 for a proof of Lemma 5.

Process 2 (Reversible Chain). Let S′0 = S0. Define ι1 = 0 and ιi =
∑i−1
j=0 qj

for i ∈ N. We also have
∑∞
j=1 qj = 1 That is, ιi → 1 as i → ∞. Also, ιi

is trivially monotonically increasing. Define the monotonically increasing step
function S′1 : [0, 1]R → N where S′1(0) = 1 and S1(p) = k such that p ∈ (ιk, ιk+1].
Let Ỹ be the random variable denoting the output of Algorithm 2 (see Appendix
B.5) on input S′0, S

′
1.

Lemma 6 (Walk on reversible chain). Let Ỹ be the random variable de-
scribed by Process 2. Then Ỹ follows the same distribution as a random walk on
the reversible chain (Figure 2), where the ?’s are set to 1 or 0 with probability
1
2 .

Proof. Similar to the proof of Lemma 5.

We are now ready to define our coupling. We will essentially couple Process
1 and Process 2 that perform random walks on the irreversible and reversible
chains, respectively, by having them use the same random coins, which we recall
are (p0, . . . , p∗), (q0, . . . , q∗). We will use this coupled way of producing random
walks on the two chains to compare the hamming weights of the random walks
produced by the two processes (Lemma 7). Since S0 = S′0, most of the work in
the proof of Lemma 7 is with regard to relating S1 and S′1. In Figure 3 we give
an illustration of how S1 and S′1 partition the [0, 1] interval, annotated with all
the possible sub-walks associated with each of the segments. For example, in the
segment p ∈ (ι1, ι2], S

′
1(p) = 1, and hence a sub-walk on the reversible chain

would correspond to a single ?, while in the segment p ∈ (ζ1, ζ2], S1(p) = m, and
hence a sub-walk on the irreversible chain would correspond to 10m−1, i.e., the
walk 1→ 01 → . . . 0m−1 → 0m.

Recall that ιi =
∑i−1
j=1 qj and ζi =

∑i−1
j=1 pj . From Lemma 4, for all i ∈ [n],

m ≥ log n + 2 and θm = 0, pi < qi, and hence ιi < ζi for all 2 ≤ i ≤ n (from
our conjecture, for all m ≥ 2, there exists θm ∈ (0, 1) such that for all i ≥ 1,∑
j∈[i] pj <

∑
j∈[i] qj , i.e., ιi < ζi for all i ≥ 2). The dotted lines materialize the

Lemma 4 (and our conjecture). This picture can be used to aid in our conclusion
that ∀p ∈ [0, 1], S1(p) − (m − 1) ≥ S′1(p) (where the m − 1 corresponds to the
additional 0m−1 that strings annotating the partition of S1 have), although we
will provide a formal proof of this in Lemma 7. This conclusion will allow us
to prove that with high probability, the hamming weights of the random walks
produced by the two processes cannot be that different, in particular, that the
hamming weight of the random walk produced by Process 1, the process of
interest, cannot be much smaller than the hamming weight of the random walk
produced by Process 2, which we will lower bound in Section 5.2.6.
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.
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Fig. 3. Example of partitioning [0, 1] by S1 and S′
1 (not at scale).

Lemma 7 (Coupling). Consider the random variable Z which outputs (ZX̃ , ZỸ )
by following Processes 1 and 2 run on the same randomness p0, . . . , p∗ and

q0, . . . , q∗. Fix k̂ > 0. Define δ̃r = k̂
n·2−m·pr . Then, we have with probability

at least 1− exp
(
− δ̃r k̂

2+δ̃r

)
:

HW(ZX̃) ≥ HW(ZỸ )− k̂(m− 1)

Proof. The proof of this comes in two parts, first we show that the non-zero
sub-walks (of length S1, S

′
1) will have the property that the reversible chain (S′1)

will be sufficiently shorter. As such, produce fewer ones. Secondly, because the
reversible chain’s non-zero sub-walks are shorter it will need to perform more
sub-walks to reach a walk length of n. We show that this is unlikely to produce
more than k(m− 1) additional ones.

Note that the states 0m and 0 are identical, and S0 and S′0 are partitioned
similarly. Since we use the same randomness for both, the draws on S0 and S′0
will give the same number of 0s in both ZX̃ and ZỸ . We also use the same
randomness to determine the number of 1s inside the convolution (portion of
the walk spent outside the 0m state) in the irreversible chain and to decide on
the real value of ? in the reversible chain. In particular, both processes sample
the t⃗ vectors using randomness q1, . . . , q∗. Therefore, if we concatenate all such
t⃗, they will produce the same string with the exception that the irreversible
chain sometimes overwrites the state as a one. However, this only increases the
inequality and therefore safe to ignore.

We show that for the same p, we always have S1(p) ≥ S′1(p) + (m − 1). We
have |S1(0)| ≥ |S′1(0)|+ (m− 1) by definition. We have S1(p) = k + (m− 1) for
k such that p ∈ (ζk, ζk+1] and S

′
1(p) = k for k such that p ∈ (ιk, ιk+1]. Consider

p ∈ (ζk, ζk+1] for some k ∈ N. The claim is true as long as p ≤ ιk+1. We thus
show that ζk+1 ≤ ιk+1. We have

ζk+1 =

k−1∑
j=0

pj <

k−1∑
j=0

qj = ιk+1

as we can bound the sum term by term provably when m ≥ log n + 2 from
Lemma 4, and bound the sums conjecturally when m ≥ 2. We thus have that
∀p, S1(p) ≥ S′1(p) + (m− 1).
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However, because a draw on S1 outputs a sequence with a trailing m− 1 0’s,
we may have more draws on S′1 than on S1. Once the ZX̃ process has ended, it
remains to draw for ZỸ a number of steps at most equal to the number of times
we have reached state 1 for the first time starting from state 1 and going through
0 exactly once. Let us denote by E the Bernoulli random variable for which a
success is looping through the simplified chain, we thus have Pr [E] = pr

2m+θm
.

We now consider Ẽ to be the binomial random variable which consists of n
independent trials of E. We have E[Ẽ] = µ = n2−(m+θm)pr. A Chernoff bound

gives us that Pr
[
Ẽ ≥ (1 + δ)µ

]
≤ exp

(
− δ2µ

2+δ

)
. So by setting δ̃r =

k̂
µ , we have

Pr
[
Ẽ ≥ µ+ k̂

]
≤ exp

(
− δ̃rk̂

2 + δ̃r

)

We are now ready to prove Theorem 2. Due to lack of space, we defer the proof
to Appendix B.3.

5.2.6 Analysis of the reversible chain We now formally analyze the be-
havior of a random walk on the reversible chain and the conversion of ?’s to 1’s
in order to bound Pr

[∑
i∈[n] Yi ≤ δn

]
. This gives rather tedious expressions that

are hard to get a handle on analytically (but they do give significantly better
parameters with empirical estimation). And so, we end this section by analyzing
another reversible chain which gives bounds that are much more amenable to
analytical manipulation.

Bounds for empirical estimation.We are trying to bound Pr
[∑

i∈[n] Yi ≤ δn
]

from before, namely, the probability that a random walk on the reversible chain
does not produce enough 1’s. We bound this by first looking at the number
of time steps spent in the ? state and then bounding how many of them get
converted to 1’s with probability 1

2 . It is easy to check that the 2-state chain
is irreducible. One can easily estimate the stationary distribution π⃗r and the
second largest eigenvalue λr as

π⃗r =

(
2−(m+θm)

pr + 2−(m+θm)
,

pr
pr + 2−(m+θm)

)
λr = 1− pr − 2−(m+θm)

We can also then check the detailed balance conditions to ascertain that the
chain is also reversible.

Time spent in the ? state. To bound the time spent in the ? state, we use the
corollary of the expander Hoeffding bound for non-uniform starting distribu-
tions. Note that the reversible chain is also finite and irreducible. Therefore, the
expander Hoeffding bound is applicable. If we consider f such that f(0) = 0 and
f(?) = 1, N? counts the number of time steps the random walk spends in the ?
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state. In this case, µr = π⃗r,? and λ̃2 = λr. We consider a random walk of length
n that starts at the x0 = 0 state. From the corollary of the expander Hoeffding
bound, we have that for any ϵ > 0,

Pr[N? < nµr − ϵ] ≤
(
1 + 2m+θmpr

)
exp

(
−2ϵ

2

n
· 1− λr
1 + λr

)
Let γ ∈ [0, µr)R be a parameter. Setting ϵ = (µr − γ)n, we have Pr [N? ≤ γn] ≤
ργ,r, where

ργ,r =
(
1 + 2m+θmpr

)
exp

(
−2n

(
pr

pr + 2−(m+θm)
− γ
)2

· pr + 2−(m+θm)

2− pr − 2−(m+θm)

)

Converting ?’s to 1’s. Now, note that we convert the ?’s to 1’s independently
with probability 1

2 . Consider the experiment of tossing T independent coins and
counting the number of heads ct. This process can be modeled as a Markov chain
as described in Figure 4. It is easy to check that this chain is irreducible. One can
easily estimate the stationary distribution π⃗ and the second largest eigenvalue
λ as

π⃗ =

(
1

2
,
1

2

)
λ = 0

We can also then check the detailed balance conditions to ascertain that the
chain is also reversible. To bound the number of heads ct obtained while tossing T
independent coins, we bound the time spent in the 1 state of the chain in Figure
4 using the expander Hoeffding bound for the uniform starting distribution,
which is its stationary distribution. Note that the reversible chain is also finite
and irreducible. Therefore, the expander Hoeffding bound is applicable. If we
consider f such that f(0) = 0 and f(?) = 1, ST counts the number of time steps
the random walk spends in the 1 state. In this case, µr = π⃗r,? and λ̃2 = λr. We
consider a random walk of length T that starts at a state x0 sampled according
to the uniform distribution, which is the stationary distribution of the chain.
From the expander Hoeffding bound, we have that for any ϵ > 0,

Pr

[
ST <

T

2
− ϵ
]
≤ exp

(
−2ϵ

2

T

)

0 1

1
2

1
2

1
2

1
2

Fig. 4. The 2-state reversible chain that models coin flips.
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Let β ∈ [0, 12 )R be a parameter. Let N1 denote the number of time steps
spent in the 1 state. Setting ϵ = ( 12 − β)T , we have

Pr [N1 ≤ βT ] ≤ exp

(
−2T

(
1

2
− β

)2
)

= χβ,T

Putting it all together. Thus far, we have estimated separately the probabilities
that our random walk on the reversible chain spends too little time in the ?
state, and that too few ? are converted into 1’s. In theory, we could just add
up these failure probabilities and wrap things up. However, this plays against
us, particularly for concrete parameters. This is because in order to make the
first failure probability, ργ,r small, we would have to keep γ small. Indeed, the
lower γ is, the better our concentration bound works and the lower ργ,r will be.
But, this is antithetical to what we would like in the case of trying to make the
second probability, namely, the probability of converting too few ?’s to 1’s, small.
Indeed, Pr [N1 ≤ βT ] will be smaller for larger T . This push and pull in the two
failure probabilities makes it difficult to achieve good concrete parameters. To
get around this issue, we note that simply adding the probabilities is in a sense
performing a worst-case of worst-case analysis. Rather, we must perform a case-
by-case analysis. For instance, for large γ, ργ,r will not be very small, but χβ,γn
will be tiny. Similarly, on the other end, if γ is small, χβ,γn will not be very
small, but ργ,r will be tiny. The intuition of the upcoming analysis is that we

must leverage this tradeoff in order to estimate Pr
[∑

i∈[n] Yi ≤ δn
]
tightly.

We divide [0, 1] intoK bins of size 1
K . We then use the law of total probability

over the space of the K bins as follows. We have

Pr

∑
i∈[n]

Yi ≤ δn

 ≤ ∑
i∈[K]

Pr

[
N? ∈

[
(i− 1)n

K
,
in

K

]]
·Pr
[
N1 ≤

(
δK

i− 1

)
(i− 1)n

K

]

where Pr
[
N1 ≤

(
δK
i−1

)
(i−1)n
K

]
≤ χ δK

i−1 ,
(i−1)n

K
.

Now, we need to estimate Pr
[
N? ∈

[
(i−1)n
K , inK

]]
. A trivial bound would be

that

Pr

[
N? ∈

[
(i− 1)n

K
,
in

K

]]
≤ Pr

[
N? ≤

in

K

]
= ρ i

K ,r

This would give us

Pr

∑
i∈[n]

Yi ≤ δn

 ≤ ∑
i∈[K]

ρ i
K ,rχ δK

i−1 ,
(i−1)n

K
= ϵδ,r

which would work, but we would like to do even better.

Due to lack of space, we defer this analysis to Appendix B.4.
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Analytical bounds. In order to estimate
∑
i∈[n] Yi analytically, we consider a

different version of the reversible chain, one that implicitly converts ?’s to 0’s
and 1’s independently with probability 1

2 . We present this chain in Figure 5. It
is easy to see that this 3-state chain is identical to the 2-state chain in Figure 2
where we convert ?’s to 0’s and 1’s independently with probability 1

2 . Indeed, the
0 states are identical, and we have split up the ? state into two states, namely, 0?
and 1? that share the probability masses of the ? state. Indeed, now

∑
i∈[n] Yi is

equal to the time spent in the 1? in this new 3-state chain, and we will estimate
that using the expander Hoeffding bound.

0? 0 1?

pr
2

pr
2 2−(m+θm)

2−(m+θm)

1−2−(m+θm)

2

1−2−(m+θm)

2

1− pr

1−2−(m+θm)

2
1−2−(m+θm)

2

Fig. 5. The 3-state reversible chain which we compare to.

It is easy to check that this 3-state chain is irreducible. One can easily esti-
mate the stationary distribution π⃗r and the second largest eigenvalue λr as

π⃗r =

(
2−(m+θm)

pr + 2−(m+θm)
,
1

2
· pr
pr + 2−(m+θm)

,
1

2
· pr
pr + 2−(m+θm)

)

λr = 1− pr − 2−(m+θm)

We can also then check the detailed balance conditions to ascertain that the chain
is also reversible. To bound the time spent in the 1? state, we use the corollary
of the expander Hoeffding bound for non-uniform starting distributions. Note
that the reversible chain is also finite and irreducible. Therefore, the expander
Hoeffding bound is applicable. If we consider f such that f(0) = f(0?) = 0 and
f(1?) = 1, Sn counts the number of time steps the random walk spends in the 1?
state. In this case, µr = π⃗r,1? and λ̃2 = λr. We consider a random walk of length
n that starts at the x0 = 0 state. From the corollary of the expander Hoeffding
bound, we have that for any ϵ > 0,

Pr[Sn < nµr − ϵ] ≤
(
1 + 2m+θmpr

)
exp

(
−2ϵ

2

n
· 1− λr
1 + λr

)
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Setting ϵ = (µr − δ)n, we have Pr
[∑

i∈[n] Yi ≤ δn
]
≤ ϵδ,r, where

ϵδ,r =
(
1 + 2m+θmpr

)
exp

(
−2n

(
1

2
· pr
pr + 2−(m+θm)

− δ
)2

· pr + 2−(m+θm)

2− pr − 2−(m+θm)

)

5.2.7 Completing the Security Analysis In the previous section, we de-

termined ϵδ,r such that Pr
[∑

i∈[n] Yi ≤ δn
]
≤ ϵδ,r. Notice that all the analysis

up until now has been for a fixed hamming weight r ∈ [k] (which we occasionally
suppress in notion for readability). To complete the analysis, we must perform
a union bound over all messages of all possible hamming weights. This way,
we bound the probability that any message is mapped to a codeword of low
hamming weight. This is because

∑
i∈[n]Xi is exactly HW(y⃗) = HW(x⃗G), and

through Theorem 2, we have upper bounded Pr
[∑

i∈[n]Xi ≤ δn− k̂(m− 1)
]

with Pr
[∑

i∈[n] Yi ≤ δn
]
(within a multiplicative factor). Since the code is lin-

ear, we are effectively bounding the probability that the code has low minimum
distance.

Let d(G) denote the minimum distance of the code G where G ← ECGen.
Using Theorem 2, we have

Pr[d(G) < δn− k̂(m− 1)] ≤
∑
r∈[k]

(
k

r

)
1

1− exp
(
− δ̃r k̂

2+δ̃r

)ϵδ,r
where δ̃r = k̂

n·2−(m+θm)·pr
. Using our analytically friendly ϵδ,r from before, we

prove the following theorem.

Theorem 3. Let w,m, k, n ∈ N with w,m, k ≤ n. Define R = k
n . Fix δ ∈ [0, 1]

and k̂ > 0. We assume that the following hold: w = C lnn for some C > 2; m =

Cm log n for some Cm > 1; R ≤ 2
e , C

(
20
41 − δ

)2
> 2 and R < 1

ln 2 ·
e−1
e+1

(
20
41 − δ

)2
;

k̂ ≥ n1−Cm and k̂ ≥ 2 ln 2.
Then, for all sufficiently large n,

Pr

[
d(G) < δn− k̂(m− 1) : G← ECGen

(
w,m, k, n,

1

2
,F2

)]
≤ 2Rn−C(

20
41−δ)

2
+Cm+3

Proof. See Appendix B.5.

For computing our parameters, we use our tighter analysis from the previous
section and empirically estimate the failure probabilities which appear in Table
1. It is evident that we compare rather favorably with [10] boasting much smaller
failure probabilites for their choice as parameters, as well as for the enhanced
choice of rate R = 1

2 . In the following sections we give additional ways of further
improving our results.
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δ [10] (R = 1
5
) Ours (R = 1

5
) Ours (R = 1

2
)

C = 3
0.005 2.77 · 10−4 9.39 · 10−12 2.56 · 10−10

0.02 1.08 · 10−3 3.31 · 10−10 7.32 · 10−9

0.05 1.44 · 10−2 5.25 · 10−8 8.61 · 10−7

C = 2.5
0.005 1.23 · 10−2 1.32 · 10−8 2.32 · 10−7

0.02 3.84 · 10−2 2.57 · 10−7 3.79 · 10−6

0.05 3.58 · 10−1 1.75 · 10−5 2.01 · 10−4

C = 2.3
0.005 5.67 · 10−2 2.37 · 10−7 3.49 · 10−6

0.02 1.65 · 10−1 3.65 · 10−6 4.57 · 10−5

0.05 1 1.77 · 10−4 1.76 · 10−3

C = 1.5
0.005 1 2.26 · 10−2 1.648 · 10−1

0.02 1 1.34 · 10−1 8.81 · 10−1

0.05 1 1 1

Table 1. Comparing failure probabilities for k = 220 between our non-wrapping con-
struction with m = 25 and [10]. For both constructions we have expected row weight
w = C lnn and we assume we start at state 0 (see Section 5.2.8). For [10] we use δ and
for ours δ̃ such that δ̃n− k̂(m− 1) = δn.

δ [10] (R = 1
5
) Ours (R = 1

5
) Ours (R = 1

2
) Ours (R = 4

7
)

C = 3
0.005 1.39 · 10−4 6.28 · 10−14 7.30 · 10−13 1.06 · 10−12

0.02 5.39 · 10−4 2.22 · 10−12 2.09 · 10−11 1.29 · 10−11

0.05 7.21 · 10−3 3.51 · 10−10 2.46 · 10−9 1.53 · 10−9

C = 2.5
0.005 6.16 · 10−3 1.06 · 10−10 7.93 · 10−10 1.08 · 10−9

0.02 1.92 · 10−2 2.06 · 10−9 1.30 · 10−8 8.68 · 10−9

0.05 1.79 · 10−1 1.40 · 10−7 6.89 · 10−7 4.64 · 10−7

C = 2.3
0.005 2.84 · 10−2 2.07 · 10−9 1.30 · 10−8 1.72 · 10−8

0.02 8.25 · 10−2 3.17 · 10−8 1.70 · 10−7 1.17 · 10−7

0.05 7.81 · 10−1 1.54 · 10−6 6.56 · 10−6 4.56 · 10−6

C = 1.5
0.005 1 3.00 · 10−4 9.35 · 10−4 1.11 · 10−3

0.02 1 1.78 · 10−3 5.01 · 10−3 3.91 · 10−3

0.05 1 2.26 · 10−2 5.54 · 10−2 4.32 · 10−2

Table 2. Comparing failure probabilities for k = 220 between our non-wrapping con-
struction with m = 25 and [10]. For both constructions we have expected row weight
w = C lnn and we assume we start in the stationary (see Section 5.2.8). For [10] we
use δ and for ours δ̃ such that δ̃n− k̂(m− 1) = δn.
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5.2.8 Initializing the chain with the stationary distribution The corol-
lary of the Hoeffding bound that we apply introduces a noticable significant
multiplicative factor in the failure probability when the starting distribution is
not the stationary distribution. When defining G = BC where B is a sparse
expander, the initial state of the accumulator is the zero state, which can be
far from the stationary distribution due to having small mass on the zero state.
One can include this discrepancy in the failure bound (Table 1). Alternatively,
one can directly sample the initial state from the stationary distribution to im-
prove the failure bounds (Table 2). Consider the related code G′ = B′C ′ where
B′ = R||B and R ∈ {0, 1}k×m is the matrix that output the accumulator state
after a sufficient number of iterations. In particular, let us assume we have an
upper bound q on the number of steps it takes for a random walk on the Markov
chain to converge from the zero state to the stationary distribution. We can
then sample an expander B̂ ∈ {0, 1}k×q and a convolution Ĉ ∈ {0, 1}q×q and
define R = B̂ · Ĉ · (0q−m×m//Im) That is, consider the process of performing q
iterations of expand accumulate and outputting the state. For the convolution
we use, the state is simply the last m outputs which can be obtained by multi-
plying the whole output by (0q−m×m//Im), where Im is the identity matrix of
size m. For irreducible, reversible Markov chains, it is known that the mixing

time τ(ϵ) ≤ 1
1−λ2

ln
(

1
π∗ϵ

)
for ϵ > 0, where λ2 is the second largest eigenvalue of

the chain. The mixing time estimates the number of steps needed to get ϵ-close
to the stationary distribution. The chains that we have analyzed using the Ho-
effding bound are all irreducible, reversible, and have λ2 = 1 − pr − 2−(m+θm)

and π∗ =
1

1+2mpr
. To obtain a failure probability of 2−λ, it suffices to perform

q = m+λ
pr+2−(m+θm) additional iterations. Alternatively, we conjecture that sam-

pling R as uniform should produce a similar distribution. These results appear
in Table 26, where we can now achieve C = 1.5 and R = 4

7 >
1
2 .

5.3 Optimizations

We additionally present two optimizations to our code that are proven using
natural extensions of our analysis. The first is referred to as wrapping where the
last bit of the convolution is always set to one. This makes the convolution less
likely to transition to the zero state. Secondly we show that our construction
can naturally be made systematic with essentially no loss in minimum distance.
This in turn improves our running by 1.5 times. See Appendix A.

6 Implementation

We implement expand accumulate codes [10] (henceforth EA) and our new ex-
pand convolute codes and report on their running time performance. The code
can be found in the libOTe repository. Running times were obtained on an Intel

6 The R = 4
7
case was analyzed with better precision, which explains why the failure

probability is sometimes smaller than for smaller rate.
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i7 laptop with 8GB of RAM. It is our intention to open-source the code after
publication. Our conclusion is that our code is twice as fast as EA for compara-
ble security. We choose to sample the expander B with fixed row weight w. We
define the rate R of the code as R = k/n and consider R for our code. The unique
parameter for our code is the convolution state size m. We only implement the
wrapping code where the last convolution state transition bit is always 1. We
report our running times of the dual LPN encoding algorithms (i.e. ⃗y = G ⃗e) in
Table 3 for k = 220 outputs. The running time of the associated PCG algorithms
for generating OT and VOLE correlations [14,11] scales proportionally to the en-
coding times due to encoding being the primary overhead. For EA to provably
have an acceptable probability of being linear minimum distance (see Table 1)
they require an approximate expander weight of w = 40. In contrast, our code
for the same distance δ, expander weight w, and state size m = 16 achieves a
1010 times smaller failure probability. Moreover, our code requires 548ms while
EA requires 740ms. For a comparable failure probability, we can decrease w to
w = 21 and obtain a resulting running time of 275ms, a reduction of 2.7×.

EA also proposes aggressive parameters where they set the expander weight
w to be in the range of 7 to 11. For these parameters, they empirically estimate
the (pseudo) minimums distance and conjecture that it should be hard to find
smaller weight codewords. We showed that this is not the case (see 4.2) by finding
moderately smaller codewords. However, this appears to only mildly decrease
their security guarantees. For example, EA with w = 7, we were able to find a
minimum distance nδ for δ as small as δ = 0.002 compared to their conjectured
δ = 0.06. When applying the same techniques to our most aggressive parameters
of w = 5,m = 9, we were able to find a distance as small as δ = 0.03. However,
with little runtime overhead, we suggest increasing the state size to m = 25
which increases the empirical minimum distance found to δ = 0.1. Moreover, the
running time of this code is 74ms compared to the empirically worse minimum
distance code of w = 7 EA with 143ms. In light of these results and Table 2 &
4, we make the following suggestions for our wrapping convolution with k < 226:
aggressive parameters w = 5,m = 25; moderate parameters w = 21,m = 21;
conservative parameters w = 41,m = 25. Note that for k = 220, the effective
non-wrapping state size m is approximately 15 larger. Finally, we also consider
the systematic version of our code (Section A.2) which gives a further 1.5×
speedup with almost no change to minimum distance.
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SUPPLEMENTARY MATERIAL
Disclaimer Case studies, comparisons, statistics, research and recommenda-
tions are provided “AS IS” and intended for informational purposes only and
should not be relied upon for operational, marketing, legal, technical, tax, fi-
nancial or other advice. Visa Inc. neither makes any warranty or representation
as to the completeness or accuracy of the information within this document,
nor assumes any liability or responsibility that may result from reliance on such
information. The Information contained herein is not intended as investment
or legal advice, and readers are encouraged to seek the advice of a competent
professional where such advice is required.

These materials and best practice recommendations are provided for infor-
mational purposes only and should not be relied upon for marketing, legal, reg-
ulatory or other advice. Recommended marketing materials should be indepen-
dently evaluated in light of your specific business needs and any applicable laws
and regulations. Visa is not responsible for your use of the marketing materials,
best practice recommendations, or other information, including errors of any
kind, contained in this document.

A Optimizations

A.1 Wrapping Convolutions

In Section E we present a technique that we refer to as wrapping which allows
the convolutions to behave as if it had a larger state size. Recall that at each
iteration, the convolution outputs the next bit as yi = x⃗B·,i + σ⃗i ⃗αi. The next
state σi+1 is then defined as (yi||σi,1, ..., σi,m−1). Essentially, for the code to have
low minimum distance it is necessary for the state to spend a lot of time as 0m.
With high probability this implies that the state must transition from a non-
zero state to the zero state and as such at some step i, state σ⃗i = (0, ..., 0, 1)
transitions to σ⃗i+1 = 0m. For non-wrapping chains this final transition happens
with probability 1/2.

Consider defining αi to always having the last bit defined as 1. As such, for
the critical transition from σ⃗i = (0, ..., 0, 1) to σ⃗i+1 = 0m, it is necessary for
x⃗B·,i = 1. However, this only happens with probability pr, which for small r
is much less than 1/2. As r increases we converge back to the previous case of
1/2 transition probability. When analyzing a wrapping chain of state size m̃, we
thus map for each r ∈ [1, k] the corresponding non-wrapping chain of state size
m̃+ ⌊− log pr⌋ − 1.

However, a close analysis of the proof shows that the primary contributors
to low minimum distance are low weight messages. As such, by defining the
last bit of αi to be 1, we are able to achieve a more robust accumulator. Or
equivalently, we are able to have a smaller state size which leads to more efficient
implementation. Table 4 shows the failure probabilities for a state size m = 5
wrapping chain assuming the conjecture of Lemma 4 holds.
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Empirical analysis, supported by Tables 5,6,7 in Appendix E, seems to show
that, in our parameter range, a wrapping accumulator with m sates gives similar
failure probabilities than a non-wrapping accumulator with approximately m−
log2 p1 states. For example, a non-wrapping chain of size m = 25 is equivalent
to a wrapping chain with m = 9. We note that beyond a certain threshold,
increasing the state size of the wrapping chain may be detrimental if we do not
assume the chain starts with stationary distribution (see Sec.5.2.8). However, we
believe this to be an artifact of the proof.

systematic? no no yes yes

δ
R 1

5
1
2

1
5

1
2

C = 3
0.005 4.31 · 10−11 2.99 · 10−10 9.63 · 10−11 2.5 · 10−9

0.02 1.50 · 10−9 8.46 · 10−9 9.63 · 10−11 2.5 · 10−9

0.05 2.26 · 10−7 9.54 · 10−7 2.29 · 10−7 3.0 · 10−6

C = 2.5
0.005 1.34 · 10−8 2.59 · 10−7 4.64 · 10−8 7.0 · 10−7

0.02 2.59 · 10−7 4.19 · 10−6 4.64 · 10−8 7.0 · 10−7

0.05 1.72 · 10−5 2.13 · 10−4 3.01 · 10−5 2.5 · 10−4

C = 2.3
0.005 2.38 · 10−7 3.82 · 10−6 5.45 · 10−7 6.6 · 106
0.02 3.64 · 10−6 4.94 · 10−5 5.45 · 10−7 6.6 · 106
0.05 1.73 · 10−4 1.83 · 10−3 2.1 · 10−4 1.5 · 10−3

Table 4. Failure probabilities for k = 220 for our systematic and non-systematic con-
structions with wrapping and m = 5 and overall rate R. We have expected row weight
w = C lnn and we assume we start at state 0 (see Section 5.2.8). We use δ̃ such that
δ̃n− k̂(m− 1) = δn.

A.2 Systematic

Our code can also be instantiated in the systematic setting where the codeword
for x ∈ Rk is instantiated as c = x|xG. In this setting the rate of G can be greater
than 1 due to the codeword additionally including the message. In particular, we
consider the code where G = BC, B is an k× k expander and convolution C. G
has rate 1 which results in an overall rate 0.5. The core observation for trivially
extending our minimum distance analysis to this setting is that the union bound
need not be performed for all r = 1, . . . , k, but instead we only r = 1, . . . , t where
t = δk is the target weight of the code, and δ < 1, e.g. δ = 0.05. Moreover, when
performing the union bound for r, the codeword already has at least r ones in it
and therefore r fewer ones must be produced by xG. As we will see in the next
section, our systematic codes are approximately 1.5× faster in terms of running
time. Moverover, the minimum distance behavior is essentially the same between
systematic and non-systematic codes as can be seen in Table 4.
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B Deferred Proofs and Analyses

B.1 Irreversible Run of 1’s: Proof of Lemma 4

Proof. We first want to prove that for all i ≤ n, pi ≤ 1
2 · 2

−m. We know that
for all i, a random walk that visits state 0m for the first time at step i+m has
to transition 1 → 01 → . . . → 0m, which happens with probability 2−m. What
remains to be computed is the probability that a random walk of i steps starting
at state 1 ends at state 1 without ever visiting 0m. This happens with at most
probability 1

2 . We call the walks that end at state 1 without ever visiting 0m
as valid paths, and the other paths as invalid paths. Note that all valid paths
are equally likely to be drawn, in particular, with a probability of 2−i. Half of
all possible walks starting at state 1 end at state 1 in walks of length less than
m, but once we start considering walks of length more than m steps, some of
these walks are considered invalid since they visit 0m. Because all valid paths are
equally likely to be drawn, we have that with probability at most 1

2 , the walk is
valid (has never visited 0m) and ends at state 1. We thus have pi ≤ 1

2 · 2
−m.

Now, note that for all t ≥ 2, we have
(
1− 1

t

)t
> 1

2e . Furthermore, for all n ∈ N
and all m ≥ log n+ 2, we have(

1− 1

2m

)n
> (2e)−

n
2m ≥ (2e)−0.25 >

1

2

This means that for all n ∈ N, m ≥ log n + 2 and i ∈ [n],
(
1− 1

2m

)i
> 1

2 .
We can thus conclude by observing that for m ≥ log n + 2, ∀i ∈ [n], qi =
(1− 2−m)i · 2−m ≥ 1

2 · 2
−m.

We would now like to talk about all m ≥ 2 as opposed to just m ≥ log n+2.
Let Ni,m denote the number of valid walks of length i. Then,

pi = Ni,m · 2−i · 2−m

We will show that Ni,m = F
(m)
i , the ith term in the Fibonacci sequence of order

m. Recall that the Fibonacci sequence of order m, F (m), is defined as

F
(m)
i =


0 i < 0

1 i = 0∑i−m
j=i−1 F

(m)
j i > 0

To help understand why Ni,m = F
(m)
i , we use the help of an example. Figure

6 is an illustration that shows the tree of all possible walks of length i = 5 on
the chain for the case of m = 4. Note that the invalid paths are marked in red.
There are 15 valid paths, that can be partitioned into the following groups:

– 8 valid paths of length 4 which then take the 1→ 1 transition.
– 4 valid paths of length 3 which then takes the 1→ 01 → 1 transitions.
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Fig. 6. All possible paths of 5 steps from state 1 for m = 4

– 2 valid paths of length 2 which then takes the 1→ 01 → 1→ 1 transitions.

– 1 valid path of length 1 which then takes the 1 → 01 → 1 → 1 → 1
transitions.

Thus, the number of valid paths of length 5 for m = 4 satisfies

N5,4 = N4,4 +N3,4 +N2,4 +N1,4

One can easily verify the base cases of this recursion as N1,4 = 1, N1,4 = 1 +
N1,4 = 2, N3,4 = 1+N1,4+N2,4 = 4 and N4,4 = 1+N1,4+N2,4+N3,4 = 8 from

Figure 6. Given this, it is clear that N5,4 = F
(4)
5 . The above argument readily

generalizes to show that Ni,m = F
(m)
i . It is known that

F
(m)
i =

⌊
rim(rm − 1)

(m+ 1)rm − 2m

⌉
=

⌊
rim(rm − 1)

(m+ 1)rm − 2m
+

1

2

⌋
≤ rim(rm − 1)

(m+ 1)rm − 2m
+

1

2

where rm is the real root of x+ x−m − 2 that is closest to 2.

Claim. For all m ≥ 2, 2
(
1− 1

2m

)
< rm < 2

(
1− 1

2m+1

)
.

Proof. Using elementary calculus, one can easily verify that the real function

f(x) = x + x−m has a local minimum at x = m
1

m+1 ∈
(
1, 32

)
, for all m ≥ 2.

Furthermore, for x > m
1

m+1 , f(x) is increasing. Note that f(2) > 2, and it

can also be easily verified that f
(
m

1
m+1

)
< 2 for all m ≥ 2. Therefore, rm ∈(

m
1

m+1 , 2
)
. Note that 2

(
1− 1

2m+1

)
∈
(
m

1
m+1 , 2

)
for all m ≥ 2. Now,

f

(
2

(
1− 1

2m+1

))
= 2

(
1− 1

2m+1

)
+

(
2

(
1− 1

2m+1

))−m
= 2 +

(
2

(
1− 1

2m+1

))−m
− 2−m

> 2
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as 2
(
1− 1

2m+1

)
< 2. Therefore, rm < 2

(
1− 1

2m+1

)
. Similarly, note that 2

(
1− 1

2m

)
∈(

m
1

m+1 , 2
)
for all m ≥ 2. Now,

f

(
2

(
1− 1

2m

))
= 2

(
1− 1

2m

)
+

(
2

(
1− 1

2m

))−m
= 2 +

(
2

(
1− 1

2m

))−m
− 2−(m−1)

< 2

as
(
1− 1

2m

)m
> 1

2 for all m ≥ 2. Therefore, rm > 2
(
1− 1

2m

)
.

From our claim, rm = 2
(
1− 2−(m+ψm)

)
for some ψm ∈ (0, 1). It can be

verified that the ratio rm−1
(m+1)rm−2m decreases asm increases, rapidly approaching

1
2 from above, as rm approaches 2. Therefore, crudely, we expect F

(m)
i ≈ 1

2r
i
m

and therefore pi ≈ 2−(m+1)
(
1− 2−(m+ψm)

)i
. It then seems plausible to consider

setting θm ≈ ψm to have pi < qi for all i ≥ 1 as 2−(m+1) < 2−(m+ψm) for
ψm < 1. However, this does turn out to be a crude approximation. For example,
in the case of m = 4 and m = 5, we do have p4 > q4 and p5 > q5 for θ4 = ψ4

and θ5 = ψ5. While the margin of error in estimating r4, r5 and ψ4, ψ5 might
be responsible for this empirical observation, it does question whether we can
achieve pi < qi for all i ≥ 1.

However, even in cases such as the above, we do observe that for all i ≥ 1,∑
j∈[i] pj <

∑
j∈[i] qj when θm = ψm. From empirical observations, it seems

like i = m might be the only problematic value of i where pi might perhaps
be larger than qi, but for all other values of i, it appears that pi < qi and this
more than compensates for the case of i = m and satisfies

∑
j∈[i] pj <

∑
j∈[i] qj

when θm = ψm. We provide evidence of this in Figure 7. We thus conjecture
that for each m ≥ 2, there exists θm = ψm ∈ (0, 1) such that for all i ≥ 1,∑
j∈[i] pj <

∑
j∈[i] qj where rm = 2

(
1− 2−(m+ψm)

)
is real root of x + x−m − 2

closest to 2.

B.2 Random walk on irreversible Markov chain: Proof of Lemma 5

Proof. At a high level, a random walk on the irreversible chain can be described
completely as: “The walk left 0 after i1 steps, then went back to 0 after j1 steps,
. . . ,” where the number of steps ik, jk are drawn from the correct distribution.
Moreover, the non-zero sub-walk is uniformly sampled conditioned on not get-
ting m zeros in a row (except at the end) as is required. By construction, our
process samples the number of steps for each of these sub-walks exactly as per
the distribution induced by the transition probabilities in the irreversible chain.

In more detail, let us understand more closely the values ηi and ζi. Recall that
τi = (1−pr)i−1pr. In the irreversible chain (Figure 1), this corresponds exactly to
the probability of the event of starting at the state 0m, staying there for the next
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Fig. 7. Plots of the difference of partial sum
∑

j∈[i](pj − qj) for 1 ≤ i ≤ 200 and 3 ≤
m ≤ 10. The horizontal axes of the plots are i and the vertical axes are

∑
j∈[i](pj−qj).

i−1 steps, and exiting on exactly step i. The value ηi was defined as ηi =
∑i−1
j=1 τj ,

and hence ηi is the probability that of the event of starting at the state 0m and
exiting before i steps. The claims regarding ηi being monotonically increasing
and ηi → 1 as i→∞ now follow intuitively as well. The monotonically increasing
step function S0 can now be seen as S0(p) is the unique k such that p is more than
the probability of exiting before k steps but is at most the probability of exiting
before k + 1 steps. Thus, if we sample p ← [0, 1], 0m → 0m → . . .→ 0m → 1︸ ︷︷ ︸

S0(p) steps

is

a uniformly random sample of a random walk in the irreversible chain starting
at 0m and ending as soon as we reach 1. This is how we will use S0 to sample
sub-walks on the irreversible chain starting at 0m and ending when we reach 1.

We can look at ζi in a similar manner. Recall that in the irreversible chain
(Figure 1), pi corresponds exactly to the probability of the event of starting at
the state 1 and reaching the state 0m for the first time on exactly step i +m.
The value ζi was defined as ζi =

∑i−1
j=1 pj , and hence ζi is the probability that of

the event of starting at the state 1 and reaching the state 0m for the first time
before i+m steps. The claims regarding ζi being monotonically increasing and
ζi → 1 as i → ∞ now follow intuitively as well. The monotonically increasing
step function S1 can now be seen as S1(p) = k +m − 1 for the unique k such
that p is more than the probability of reaching the state 0m for the first time
before k +m steps but is at most the probability of reaching the state 0m for
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the first time before k +m+ 1 steps. Thus, if we sample p← [0, 1],

1→ . . . . . . . . .︸ ︷︷ ︸
S1(p)−m−1 steps

→ 1

︸ ︷︷ ︸
S1(p)−m steps

→ 01 → 02 → . . . 0m−1 → 0m

︸ ︷︷ ︸
S1(p) steps

is a uniformly random sample of a random walk in the irreversible chain starting
at 1 and ending as soon as we reach 0m. This is how we will use S1 to sample
sub-walks on the irreversible chain starting at 1 and ending when we reach 0m.
As shown above, the last m steps must be 1 → 01 → 02 → . . . → 0m−1 → 0m,
and the one step before that, if it exists, must bring us back to 1. Thus, we still
have to describe how to sample the sub-walk of S1(p)−m− 1 steps, but that is
just a simple Bernoulli distribution with parameter 1

2 , as transitions from each
of the states 1, 01, . . . , 0m−1 have probability 1

2 . Care must be taken, however,
to ensure that we don’t take the 0m−1 → 0m transition since that would end the
sub-walk prematurely, but this is easy to do using bookkeeping.

Finally, we would like to show that X̃, the random variable described by Pro-
cess 1, follows the same distribution as a random walk on the irreversible chain.
X̃ is the random variable denoting the output of Algorithm 1 (see Appendix B.5)
which samples a walk by alternating calls to S0, S1 and constructing sub-walks
of that length. Specifically, Algorithm 1 samples a random walk x⃗ of length n
by sampling sub-walks starting at 0m and 1. Note that x⃗ is a binary vector and
represents being in state 1 using a 1, and being in any of the states 01, . . . , 0m
using a 0. S0 is used to sample a sub-walk starting at state 0m and ending at
state 1, where the sub-walk spends some amount of time in state 0m and then
exits 0m to end in 1. This is done exactly as we described earlier using p = pi
and appending 0S0(pi) to our random walk x⃗. S1 is used to sample a sub-walk
starting at state 1 and ending as soon as it reaches the state 0m. This is done
exactly as we described earlier using p = pi+1. t⃗ represents the part of the walk
that precedes the last m steps → 01 → 02 → . . . 0m−1 → 0m. t⃗ begins with a 1
and then uses Ber 1

2
transitions for S1(pi+1)−m−1 steps, using the randomness

q·. A couple of corner cases need to be handled:

– If we’ve had m− 1 0s, i.e., we’ve been considering the sub-walk 01 → . . .→
0m−1, we must choose the 0m−1 → 1 transition to avoid ending the walk
prematurely, and hence append 1 to t⃗.

– If S1(pi+1) = m, then the sub-walk must be 1 → 01 → . . . → 0m−1 → 0m,
and so we don’t leave state 1 and return to it. In all other cases, we do, and
therefore, t⃗ has an additional 1 appended to its end.

That completes the description of t⃗. The lastm steps are accounted for by finally
appending 0m−17 to x⃗. and appending 0pi to our random walk x⃗. Thus, after
these two sub-walks, we have appended 0S0(pi)∥t⃗∥0m−1 to x⃗ and at this point,

7 We append 0m−1 and note 0m since the very last 0 for the state 0m is already
accounted for by 0S0(pi).
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the walk has returned back to 0m for the first time after leaving it. We do this
repeatedly until we get a walk of length n (if |x⃗| exceeds n, we simply trim it
down to length n by considering its prefix, which maintains the distribution).

This completes the proof that X̃ = x⃗ follows the same distribution as a
random walk on the irreversible chain.

B.3 Coupling: Proof of Theorem 2

Proof. (Theorem 2) For clarity, we abuse notation and always consider the Ham-
ming weight of the string that the random variables output. We have

Pr

∑
i∈[n]

Xi ≤ δn− k̂(m− 1)

 = Pr
[
X̃ ≤ δn− k̂(m− 1)

]
= Pr

[
ZX̃ ≤ δn− k̂(m− 1)

]
=

Pr
[
ZX̃ ≤ δn− k̂(m− 1)|ZỸ ≤ δn

]
· Pr [ZỸ ≤ δn]

Pr
[
ZỸ ≤ δn|ZX̃ ≤ δn− k̂(m− 1)

]
where the last equality is from Bayes’ rule. Due to the total probability law,

Pr
[
ZỸ ≤ δn|ZX̃ ≤ δn− k̂(m− 1)

]
=Pr

[
ZỸ ≤ δn|ZX̃ ≤ δn− k̂(m− 1), ZX̃ ≥ ZỸ − k̂(m− 1)

]
· Pr

[
ZX̃ ≥ ZỸ − k̂(m− 1)

]
+ Pr

[
ZỸ ≤ δn|ZX̃ ≤ δn− k̂(m− 1), ZX̃ < ZỸ − k̂(m− 1)

]
· Pr

[
ZX̃ < ZỸ − k̂(m− 1)

]
≥Pr

[
ZỸ ≤ δn|ZX̃ ≤ δn− k̂(m− 1), ZX̃ ≥ ZỸ − k̂(m− 1)

]
· Pr

[
ZX̃ ≥ ZỸ − k̂(m− 1)

]
Note that

ZX̃ ≤ δn− k̂(m− 1) ∧ ZX̃ ≥ ZỸ − k̂(m− 1) =⇒ ZỸ ≤ δn

Therefore,

Pr
[
ZỸ ≤ δn|ZX̃ ≤ δn− k̂(m− 1), ZX̃ ≥ ZỸ − k̂(m− 1)

]
= 1

From Lemma 7,

Pr
[
ZX̃ ≥ ZỸ − k̂(m− 1)

]
≥ 1− exp

(
− δ̃rk̂

2 + δ̃r

)

Therefore,

Pr
[
ZỸ ≤ δn|ZX̃ ≤ δn− k̂(m− 1)

]
≥ 1− exp

(
− δ̃rk̂

2 + δ̃r

)
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Substituting back, we have

Pr

∑
i∈[n]

Xi ≤ δn− k̂(m− 1)

 ≤ Pr
[
ZX̃ ≤ δn− k̂(m− 1)|ZỸ ≤ δn

]
· Pr [ZỸ ≤ δn]

1− exp
(
− δ̃r k̂

2+δ̃r

)
≤

Pr [ZỸ ≤ δn]

1− exp
(
− δ̃r k̂

2+δ̃r

)
=

1

1− exp
(
− δ̃r k̂

2+δ̃r

) Pr

∑
i∈[n]

Yi ≤ δn



B.4 Tight Analysis of the Reversible Chain

Notice that ρ i
K ,r increases as i increases from 1 to K, while χ δK

i−1 ,
(i−1)n

K
decreases

as i increases from 1 to K. Define

υi = Pr

[
N? ∈

[
(i− 1)n

K
,
in

K

]]

for i ∈ [K]. We have

Pr

∑
i∈[n]

Yi ≤ δn

 ≤ υiχ δK
i−1 ,

(i−1)n
K

=
∑

i∈[K−1]

υi · χ δK
i−1 ,

(i−1)n
K

+ υK · χ δK
K−1 ,

(K−1)n
K

If υK ≤ ρ1,r − ρK−1
K ,r, then

Pr

∑
i∈[n]

Yi ≤ δn

 ≤ ∑
i∈[K−1]

υi · χ δK
i−1 ,

(i−1)n
K

+
(
ρ1,r − ρK−1

K ,r

)
· χ δK

K−1 ,
(K−1)n

K
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If not, let ψK = υK −
(
ρ1,r − ρK−1

K ,r

)
> 0. Then

Pr

∑
i∈[n]

Yi ≤ δn

 ≤ ∑
i∈[K−1]

υi · χ δK
i−1 ,

(i−1)n
K

+
(
ρ1,r − ρK−1

K ,r

)
· χ δK

K−1 ,
(K−1)n

K

+ ψK · χ δK
K−1 ,

(K−1)n
K

≤
∑

i∈[K−1]

υi · χ δK
i−1 ,

(i−1)n
K

+
(
ρ1,r − ρK−1

K ,r

)
· χ δK

K−1 ,
(K−1)n

K

+ ψK · χ δK
K−2 ,

(K−2)n
K

=
∑

i∈[K−2]

υi · χ δK
i−1 ,

(i−1)n
K

+ (υK−1 + ψK)χ δK
K−2 ,

(K−2)n
K

+
(
ρ1,r − ρK−1

K ,r

)
· χ δK

K−1 ,
(K−1)n

K

If υK−1 + ψK ≤ ρK−1
K ,r − ρK−2

K ,r, then

Pr

∑
i∈[n]

Yi ≤ δn

 ≤ ∑
i∈[K−2]

υi · χ δK
i−1 ,

(i−1)n
K

+
(
ρK−1

K ,r − ρK−2
K ,r

)
· χ δK

K−2 ,
(K−2)n

K

+
(
ρ1,r − ρK−1

K ,r

)
· χ δK

K−1 ,
(K−1)n

K

If not, we can define ψK−1 = υK−1 +ψK −
(
ρK−1

K ,r − ρK−2
K ,r

)
> 0 and proceed

as before. Proceeding like this until we cover every term in the summation, we
see that

Pr

∑
i∈[n]

Yi ≤ δn

 ≤ ψ1 +
∑
i∈[K]

(
ρ i

K ,r − ρ i−1
K ,r

)
· χ δK

i−1 ,
(i−1)n

K

≈
∑
i∈[K]

(
ρ i

K ,r − ρ i−1
K ,r

)
· χ δK

i−1 ,
(i−1)n

K

as

ψ1 =
∑
i∈[K]

υi − (ρ1,r − ρ0,r)

≈ 1− (1− 0) = 0

The only slack in the above analysis is with regards to boundary conditions.

Cleaning that, we can upper bound Pr
[∑

i∈[n] Yi ≤ δn
]
as follows. Define

βi,r =

{
1 if pr

pr+2−(m+θm) <
i
K

ρ i
K ,r otherwise

42



and

ωi =

{
1 if δK

i−1 >
1
2

χ δK
i−1 ,

(i−1)n
K

otherwise

Then,

Pr

∑
i∈[n]

Yi ≤ δn

 ≤ ∑
i∈[K]

(βi,r − βi−1)ωi = ϵδ,r

B.5 Linear Minimum Distance: Proof of Theorem 3

Proof. Let d(G) denote the minimum distance of the code G where G← ECGen.
Using Theorem 2, we have

Pr[d(G) < δn− k̂(m− 1)] ≤
∑
r∈[k]

(
k

r

)
1

1− exp
(
− δ̃r k̂

2+δ̃r

)ϵδ,r
where δ̃r =

k̂
n·2−(m+θm)·pr

.

First, consider δ̃r =
k̂

n·2−(m+θm)·pr
. We would like to upper bound 1

1−exp
(
− δ̃r k̂

2+δ̃r

) .
To do so, we need to lower bound δ̃r. The best upper bound we have on pr is

1
2 .

Therefore, we set m = Θ(log n). Let m = Cm log n for some Cm > 1. Then,

δ̃r ≥
2k̂
n

nCm

= 2k̂nCm−1

We set k̂ ≥ n1−Cm . Then, δ̃r ≥ 2. This implies that

δ̃rk̂

2 + δ̃r
=

k̂

1 + 2
δ̃r

≥ k̂

2

Then,
1

1− exp
(
− δ̃r k̂

2+δ̃r

) ≤ 1

1− e− k̂
2

≤ 2

as long as k̂ ≥ 2 ln 2. Therefore,

Pr[d(G) < δn− k̂(m− 1)] ≤ 2
∑
r∈[k]

(
k

r

)
ϵδ,r

Note that k̂(m − 1) = o(n) as long as k̂ = o
(

n
logn

)
, and in this case, we will

have a meaningful guarantee of linear minimum distance as δn−k̂(m−1) = Θ(n).
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We now consider the terms
(
k
r

)
ϵδ,r for various values of r and bound the term

in each case. We will set w = C lnn
n for the remainder of the analysis, for some

C ≥ 2. Recall that

ϵδ,r =
(
1 + 2m+θmpr

)
exp

(
−2n

(
1

2
· pr
pr + 2−(m+θm)

− δ
)2

· pr + 2−(m+θm)

2− pr − 2−(m+θm)

)

Case r = 1. Here, pr = pw = w
n and pr+2−(m+θm)

2−pr−2−(m+θm) ≥ pr
2 = C lnn

2n . Next,

pr
pr + 2−(m+θm)

= 1− 1

nCm−1C log n+ 1
≥ 1− 1

C log n+ 1
≥ 1− 1

41

for n ≥ 220, as Cm > 1 and C ≥ 2. Therefore, for r = 1,(
k

r

)
ϵδ,r ≤ k

(
1 + 2CnCm−1 lnn

)
exp

(
−C

(
20

41
− δ
)2

lnn

)
= R

(
1 + 2CnCm−1 lnn

)
n−C(

20
41−δ)

2
+1

where R = k
n is the rate of the code.

Case 2 ≤ r ≤ n
2C lnn . As before, pr+2−(m+θm)

2−pr−2−(m+θm) ≥ pr
2 . In this case,

pr =
1

2
−
(
1− 2C lnn

n

)r
2

≥ 1

2
−

exp
(
−r 2C lnn

n

)
2

≥ 1

2
−

1− rC lnn
n

2
=
rC lnn

2n

as e−z ≤ 1 − z
2 for all z ∈ [0, 1]. We also have pr ≤ 1

2 . Finally,
(
k
r

)
≤
(
ek
r

)r
=(

eRn
r

)r
. Therefore,(

k

r

)
ϵδ,r ≤

(
eRn

r

)r (
1 +

nCm

2

)
exp

(
−C

(
20

41
− δ
)2

r lnn

2

)

By taking logarithms, it is easy to see that the above bound reduces as r increases
and therefore attains its maximum at r − 2. Thus, for 2 ≤ r ≤ n

2C lnn ,(
k

r

)
ϵδ,r ≤

(
1 +

nCm

2

)
n−C(

20
41−δ)

2
+2

where we have assumed that R ≤ 2
e .

Case r ≥ n
2C lnn . In this case,

pr =
1

2
−
(
1− 2C lnn

n

)r
2

≥ 1

2
−

exp
(
−r 2C lnn

n

)
2

≥ 1

2
−

1
e

2
=

1

2

(
1− 1

e

)
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So, pr+2−(m+θm)

2−pr−2−(m+θm) ≥ pr
2−pr ≥

e−1
e+1 . We also have pr ≤ 1

2 . Finally,
(
k
r

)
≤ 2k = 2Rn.

Therefore, (
k

r

)
ϵδ,r ≤ 2Rn

(
1 +

nCm

2

)
exp

(
−e− 1

e+ 1

(
20

41
− δ
)2

n

)

Observe that if C
(
20
41 − δ

)2
> 2 and R < 1

ln 2 ·
e−1
e+1

(
20
41 − δ

)2
, then the upper

bound above is smaller than the bound in the previous case for sufficiently large
n. Thus, for r ≥ n

2C lnn ,(
k

r

)
ϵδ,r ≤

(
1 +

nCm

2

)
n−C(

20
41−δ)

2
+2

for sufficiently large n, where we have assumed that C
(
20
41 − δ

)2
> 2 and R <

1
ln 2 ·

e−1
e+1

(
20
41 − δ

)2
.

Therefore,

Pr[d(G) < δn− k̂(m− 1)] ≤ 2
∑
r∈[k]

(
k

r

)
ϵδ,r

≤ 2k

(
1 +

nCm

2

)
n−C(

20
41−δ)

2
+2

≤ 2Rn · nCm · n−C(
20
41−δ)

2
+2

which completes the proof.

C Algorithms

We present the algorithms referenced in Section 5.2.5 here (due to lack of space).

D Extended Discussion of Silver

D.1 Silver’s Analysis of Minimum Distance

One could ask how such an oversight was made. One one hand, the authors of
Silver clearly stated that the design has heuristic security and required more
research to build confidence. It is our understanding that the authors focused on
the characterization of minimum distance as the minimum summation columns
in the parity check matrix. In this context it is more difficult to observe the
existence of this linear system. In contrast, our attack is easy to observe once
the basic task is to quickly drive the convolution state to zero. We first observed
this attack only when you consider scaling n be to exponential. In such a setting
this system becomes more apparent.
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Algorithm 1 Randomized process with same distribution as the irreversible
chain (Figure 1). S0 samples the length of the sub-walk at state 0m while S1

samples the length outside state 0m.

Input: S0, S1 : [0, 1]R → N. Output: x⃗ ∈ {0, 1}n.
Randomness: (p0, . . . , p∗), (q0, . . . , q∗)← [0, 1]∗R

x⃗← {0, 1}0; i, j := 0;
while |x⃗| ≤ n do

t⃗← 1;
while |⃗t| < S1(pi+1)−m− 1 do

if t|⃗t |−[m−1] = 0m−1 then

t⃗ := t⃗ ||1;
else

t⃗ := t⃗ ||Ber 1
2
(qj+|⃗t |);

end if
end while
if S1(pi+1) ̸= m then

t⃗ := t⃗ ||1;
end if
x⃗ := x⃗||0S0(pi)||⃗t ||0m−1;
i := i+ 2; j := j + |⃗t |

end while
Return x⃗[n]

Algorithm 2 Randomized process with same distribution as the reversible
chain.

Input: S′
0, S

′
1 : [0, 1]R → N. Output: x⃗ ∈ {0, 1}n.

Randomness: (p0, . . . , p∗), (q0, . . . , q∗)← [0, 1]∗R
x⃗← {0, 1}0; i, j := 0;
while |x⃗| ≤ n do

t⃗← {0, 1}0;
while |⃗t | < S′

1(pi+1) do
t⃗ := t⃗ ||Ber 1

2
(qj+|⃗t |);

end while
x⃗ := x⃗||0S

′
0(pi)||⃗t;

i := i+ 2; j := j + |⃗t |;
end while
Return x⃗[n];

To compensate for their lack of theoretical bounds Silver employed extensive
use of empirical methods to estimate the minimum distance for small codes.
These methods themselves still appear effective at estimating the minimum dis-
tance in light of our attack. However, these methods have a running time expo-
nential in the length of the code. As a result Silver was only able to evaluate the
codes of size up to n = 800 and observed minimum distance up to 140. How-
ever, our attacks show that the minimum distance of these codes stop growing
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at approximately8 705 or 4, 158 depending on the variant. This is well beyond
what their empirical methods would be able to detect and exactly the central
fear in their methodology. As such, the methodology of measuring the minimum
distance for small codes and extrapolating appears too fragile to be considered
as strong evidence for linear minimum distance.

In light of this one might conclude that the approach taken by Silver was
miss guided. However, we believe this overlooks several innovative ideas put
forth. First is the idea of using automated tools to help guide the design of
certain aspects of the code. This had two impacts on the Silver code. First
is that they changed the accumulator A that was used in the [21] codes (the
inspiration for Silver) to be a convolution. The change was motivated and guided
by their empirical methods and only in retrospect it was identified as a type of
convolutional code which have previously been studied[6]. Looking forward we
will show that this change can, if properly designed, significantly improve the
performance/minimum distance of the code.

D.2 Structural Weaknesses

Another important question is if there exist alterations to Silver that would
restore the conjectured (or provable) linear minimum distance. Unfortunately,
this appears to be very unlikely without very significant changes to the structure
of the code. In particular, one perspective on Silver is that it performs only local
operations. This was an implicit design goal of Silver as cache efficiency was
identified as a critical metric for achieving high performance.

Recall that the input message is first shifted and added to itself, i.e. y = xL.
While these shifts are somewhat non-local, the overall structure of x is preserved.
The convolution can then be computed as a small sliding window of size s over y
which is essentially a purely local operation. As such, the convolution has what
we call non-locality distance of m.

To stress this point, an alternative method of computing Silver would be to
as

shift(x⃗, q1)A+ ...+ shift(x⃗, qw)A

Each term has distance m and therefore composing them can only increase the
non-locality distance by w. It stands to reason that any code that can be com-
puted with w = O(log n) passes over the input with each pass keeping at most
w = O(log n) internal state can not have linear minimum distance.

Indeed, [6] considers a related and stronger class of codes known as parallel
turbo codes. These codes can be characterized as (x⃗, x⃗π1A, ..., x⃗πwA) where πi
are random permutations. For a fixed message size k, it is not hard to see that
such codes should be strictly stronger than Silver due to the permutations es-
sentially mixing x⃗ much more than shifting it can. However, even these stronger
codes are known not to achieve linear minimum distance when w is relatively
small, i.e. w ∈ {5, 11} as Silver specifies. The proof of this follows a similar

8 Computed as sw2+sw
2

.
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structure as our analysis of Silver. The primary difference is that the addition
of the permutation complicates the analysis in that each xi is distributed to w
locations in a random manner. Nevertheless, even with such permutations one
can show that there will exist xi which are all mapped to a small number of
regions and from there the same analysis as Silver applies.

E Relating Wrapping and Non-wrapping Chains

0m 1 01 02 . . . 0m−1

pr
1
2

1
2

1
2

1
2

1− pr

1
2

1
2 1

2

1
2

1
2

1
2

Fig. 8. The (m+ 1)-state non-wrapping Markov chain representing the encoding pro-
cess.

0m−∆ 1 01 02 . . . 0m−∆−1

pr
1
2

1
2

1
2

1
2

1− pr

1
2

1
2 1

2

1
2

1− pr

pr

Fig. 9. The (m−∆+ 1)-state wrapping chain representing the encoding process.

The wrapping chain has a lower probability of returning from the end of the
chain back to the very first 0 state, namely, pr instead of 1

2 . Intuitively, it should
be possible for us to leverage this to remove some of the 0s from the tail of the
long chain. For instance, if pr =

1
4 , then we should be able to get rid of the state

0m−1 in the non-wrapping chain. Ahead, we prove exactly this fact formally.

Theorem 4. Let n denote the length of the random walks performed on the
chains in Figures 8 and 9. Starting from state 0m of the non-wrapping chain
(Figure 8), let Xi be the indicator of being in state 1 at step i. Starting from
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state 0m−∆−1 of the wrapping chain (Figure 9), let Yi be the indicator of being
in state 1 at step i. If pr ≤ 1

2∆+1 , then for all δ ∈ [0, 1], we have:

Pr

∑
i∈[n]

Yi ≤ δn

 ≤ Pr

∑
i∈[n]

Xi ≤ δn


Lemma 8. Denote X̃ the random variable described by Process 3, then X̃ fol-
lows the same distribution as a walk on the non-wrapping chain.

Proof. At a high level, a random walk on the non-wrapping chain can be de-
scribed completely as: “The walk left 0 after i1 steps, then went back to 1 after
j1 steps, 1 after j2 steps, . . . ” where the number of steps ik, jk are drawn from
the correct distribution. Moreover, the non-zero sub-walk is uniformly sampled
conditioned on not getting m zeros in a row (except at the end) as is required.
By construction, our process samples the number of steps for each of these sub-
walks exactly as per the distribution induced by the transition probabilities in
the non-wrapping chain.

The proof of this lemma is similar to the proof of Lemma 5 (see Section
B.2).

Process 3 (Non-wrapping Chain). For each i ∈ N, let τi = (1 − pr)i−1pr and

ηi =
∑i−1
j=1 τi. So, we have η1 = 0, η2 = τ1, η3 = τ1 + τ2, . . .,

∞∑
i=1

τi = pr

∞∑
i=0

(1− pr)i =
pr

1− (1− pr)
= 1

That is, ηi → 1 as i→∞. Also, ηi is trivially monotonically increasing. Define
the monotonically increasing step function S0 : [0, 1]R → N where S0(0) = 1 and
for p ∈ (0, 1]R, S0(p) = k such that p ∈ (ηk, ηk+1].

Define ζ1 = 0 and ζi+1 =
∑i
j=1

1
2j for 1 ≤ i ≤ m and ζm+2 = 1. We also

have

ζm+1 =

m∑
j=1

1

2j
= 1− 1

2m

That is, ζm+2−ζm+1 = 1
2m . Also, ζi is trivially monotonically increasing. Define

the monotonically increasing step function S1 : [0, 1]R → N where S1(0) = 0 and
S1(p) = k − 1 such that p ∈ (ζk, ζk+1] for 1 ≤ k ≤ m+ 1.

Let X̃ be the random variable denoting the output of Algorithm 3 which on
input S0, S1 samples a walk by alternating calls to S0, S1 and constructing sub-
walks of that length.

Lemma 9. Denote Ỹ the random variable described by Process 4, then Ỹ follows
the same distribution as a walk on the wrapping chain.

Proof. Same as Lemma 8.
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Process 4. Let S′0 = S0. Define ι1 = 0 and ιi+1 =
∑i
j=1

1
2j for 1 ≤ i ≤

m−∆− 1, ιm−∆+1 = ιm−∆ + 1−pr
2m−∆−1 , and ιm−∆+2 = 1. We also have

ιm−∆ =

m−∆−1∑
j=1

1

2j
= 1− 1

2m−∆−1

That is, ιm−∆+2−ιm−∆+1 = pr
2m−∆−1 . Also, ιi is trivially monotonically increas-

ing. Define the monotonically increasing step function S′1 : [0, 1]R → N where
S′1(0) = 0 and S1(p) = k− 1 such that p ∈ (ιk, ιk+1] for 1 ≤ k ≤ m−∆+ 1. Let
Ỹ be the random variable denoting the output of Algorithm 4 on input S′0, S

′
1.

Algorithm 3 Randomized process with same distribution as the non-wrapping
chain (Figure 8). S0 samples the length of the sub-walk at state 0m while S1

samples the length outside state 0m.

Input: S0, S1 : [0, 1]R → N. Output: x⃗ ∈ {0, 1}n.
Randomness: (p0, . . . , p∗)← [0, 1]∗R

x⃗← {0, 1}0; i := 0;
convolving := false
while |x⃗| ≤ n do

if convolving then
if S1(pi) = m then

x⃗ := x⃗||10m−1

convolving = false
else

x⃗ := x⃗||10S1(pi)

end if
else

x⃗ := x⃗||0S0(pi)

convolving = true
end if
i := i+ 1

end while
Return x⃗[n]

Lemma 10. Now consider random variable Z which outputs (ZX̃ , ZỸ ) by fol-
lowing the two previous processes ran on the same randomness p0, . . . , p∗. If
pr ≤ 1

2∆+1 , we have:
HW(ZỸ ) ≥ HW(ZX̃)

Proof. Note that the states 0m and 0 are identical, and S0 and S
′
0 are partitioned

similarly. Since we use the same randomness for both, the draws on S0 and S′0
will give the same number of 0s in both ZX̃ and ZỸ . We also use the same
randomness to determine the number of 1s inside the convolution (portion of
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Algorithm 4 Randomized process with same distribution as the wrapping chain
(Figure 9). S′0 samples the length of the sub-walk at state 0m−∆ while S′1 samples
the length outside state 0m−∆.

Input: S′
0, S

′
1 : [0, 1]R → N. Output: x⃗ ∈ {0, 1}n.

Randomness: (p0, . . . , p∗)← [0, 1]∗R
x⃗← {0, 1}0; i := 0;
convolving := false
while |x⃗| ≤ n do

if convolving then
if S′

1(pi) = m−∆ then
x⃗ := x⃗||10m−∆−1

convolving = false
else

x⃗ := x⃗||10S
′
1(pi)

end if
else

x⃗ := x⃗||0S
′
0(pi)

convolving = true
end if
i := i+ 1

end while
Return x⃗[n]

the walk spent outside the 0m/0m−∆ state) in the non-wrapping chain and in
the wrapping chain.

We show that for the same p, we always have S1(p) ≥ S′1(p) and that the
wrapping chain never goes back to the 0m−∆ state sooner than the non-wrapping
one goes back to the 0m state. We have S1(p) = S′1(p) for p ∈

[
0, 1− 1

2m−∆−1

]
by

definition. For p ∈
(
1− 1

2m−∆−1 , 1− pr
2m−∆−1

]
, S′1(p) = m −∆ − 1 and S1(p) ≥

m−∆− 1 as long as 1− pr ≥ 1
2 ⇐⇒ pr ≤ 1

2 . Finally, for p ∈
(
1− pr

2m−∆−1 , 1
]
,

S′1(p) = m − ∆ and S1(p) ≥ m − ∆ as long as pr ≤ 1
2 . We thus have that

∀p, S1(p) ≥ S′1(p).
We know that the wrapping chain goes back to 0 when p ∈ (ιm−∆+1, 1] and

the non-wrapping when p ∈ (ζm+1, 1]. By definition, we have (ιi, ιi+1] = (ζi, ζi+1]
for i ∈ [1,m−∆− 1]. To show that the wrapping chain never goes back to the
0m−∆ state sooner than the non-wrapping one goes back to the 0m state, it
thus suffices to have that the half-open line segment (ζm−∆, ζm+1] be smaller
than (ιm−∆, ιm−∆+1]. By definition, we have ζm−∆ = ιm−∆, so we only require
ζm+1 ≤ ιm−∆+1 which holds as long as pr ≤ 1

2∆+1 .

This means that a draw on S1 can only output an equally long or longer
sequence than a draw on S′1. Hence, we may have the same number or a smaller
number of draws on S1 than on S′1. However, each draw produces e exactly one
1 in both S1 and S′1. Also, note that draws on S0 and S′0 produce only sequences
of 0s and of equal length. Therefore, at the end of the processes, the number of
1s in X̃ equals the number of draws on S1 which is equal to or smaller than the
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number of draws on S′1 which is equal to the number of 1s in Ỹ , thus completing
the proof.

We are now ready to prove our theorem.

Proof. (Theorem 4) For clarity, we abuse notation and always consider the Ham-
ming weight of the string that the random variables output.

Pr

∑
i∈[n]

Yi ≤ δn

 = Pr
[
Ỹ ≤ δn

]
= Pr [ZỸ ≤ δn]
≤ Pr [ZỸ ≤ δn|ZỸ ≥ ZX̃ ] · Pr [ZỸ ≥ ZX̃ ]

= Pr [ZX̃ ≤ δn]

≤ Pr

∑
i∈[n]

Xi ≤ δn



In Tables 5,6,7 we compute the failure probability of our wrapping Expand-
Convolute code for various parameters.

δ Ours (R = 1
5
) Ours (R = 1

2
)

C = 3
0.005 4.19 · 10−12 2.51 · 10−11

0.02 1.46 · 10−10 7.10 · 10−10

0.05 2.20 · 10−8 8.01 · 10−8

C = 2.5
0.005 8.11 · 10−10 2.57 · 10−8

0.02 1.57 · 10−8 4.15 · 10−7

0.05 1.04 · 10−6 2.11 · 10−5

C = 2.3
0.005 1.57 · 10−8 4.08 · 10−7

0.02 2.39 · 10−7 5.27 · 10−6

0.05 1.13 · 10−5 1.95 · 10−3

Table 5. Failure probabilities for k = 220 for our wrapping construction with m = 5.
We have expected row weight w = C lnn and we assume we start at stationary (see
Section 5.2.8). We use δ̃ such that δ̃n− k̂(m− 1) = δn.
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δ Ours (R = 1
5
) Ours (R = 1

2
)

C = 3
0.005 4.61 · 10−14 6.46 · 10−13

0.02 1.63 · 10−12 1.85 · 10−1111

0.05 2.59 · 10−10 2.18 · 10−9

C = 2.5
0.005 7.77 · 10−11 7.01 · 10−10

0.02 1.52 · 10−9 1.15 · 10−8

0.05 1.03 · 10−7 6.10 · 10−7

C = 2.3
0.005 1.52 · 10−9 1.15 · 10−8

0.02 2.33 · 10−8 1.50 · 10−7

0.05 1.14 · 10−6 5.82 · 10−6

Table 6. Failure probabilities for k = 220 for our wrapping construction with m = 16.
We have expected row weight w = C lnn and we assume we start at stationary (see
Section 5.2.8). We use δ̃ such that δ̃n− k̂(m− 1) = δn.

δ Ours (R = 1
5
) Ours (R = 1

2
)

C = 3
0.005 1.60 · 10−11 2.561 · 10−10

0.02 5.66 · 10−10 7.32 · 10−9

0.05 8.99 · 10−8 8.61 · 10−7

C = 2.5
0.005 4.16 · 10−8 2.32 · 10−7

0.02 8.11 · 10−7 3.79 · 10−6

0.05 5.54 · 10−5 2.01 · 10−4

C = 2.3
0.005 7.48 · 10−7 3.49 · 10−6

0.02 1.15 · 10−5 4.57 · 10−5

0.05 5.60 · 10−4 1.77 · 10−3

Table 7. Failure probabilities for k = 220 for our wrapping construction with m = 10.
We have expected row weight w = C lnn and we assume we start at state 0 (see
Section 5.2.8). We use δ̃ such that δ̃n− k̂(m− 1) = δn.
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