
On Active Attack Detection in

Messaging with Immediate Decryption

Khashayar Barooti Daniel Collins Simone Colombo
Löıs Huguenin-Dumittan Serge Vaudenay

EPFL, Lausanne, Switzerland
{khashayar.barooti,daniel.collins,simone.colombo,
lois.huguenin-dumittan,serge.vaudenay}@epfl.ch

Abstract

The widely used Signal protocol provides protection against state ex-
posure attacks through forward security (protecting past messages) and
post-compromise security (for restoring security). It supports immediate
decryption, allowing messages to be re-ordered or dropped at the proto-
col level without affecting correctness. In this work, we consider strong
active attack detection for secure messaging with immediate decryption,
where parties are able to immediately detect active attacks under certain
conditions. We first consider in-band active attack detection, where par-
ticipants who have been actively compromised but are still able to send a
single message to their partner can detect the compromise. We propose
two complementary notions to capture security, and present a compiler
that provides security with respect to both notions. Our notions generalise
existing work (RECOVER security) which only supported in-order mes-
saging. We also study the related out-of-band attack detection problem by
considering communication over out-of-band, authenticated channels and
propose analogous security notions. We prove that one of our two notions
in each setting imposes a linear communication overhead in the number
of sent messages and security parameter using an information-theoretic
argument. This implies that each message must information-theoretically
contain all previous messages and that our construction, that essentially
attaches the entire message history to every new message, is asymptot-
ically optimal. We then explore ways to bypass this lower bound and
highlight the feasibility of practical active attack detection compatible
with immediate decryption.

This is the full version of a paper with the same title appearing at CRYPTO 2023. See
Appendix I for how this document has been revised over time.

1

Contents

1 Introduction 4
1.1 Our contributions . 5
1.2 Paper overview . 6
1.3 Additional related work . 9

2 Notation 9

3 (Authenticated) ratcheted communication 10

4 In-band active attack detection: RECOVER 15
4.1 A RID-secure RC . 17

5 Out-of-band active attack detection: UNF 20
5.1 RID RC⇒ UNF ARC . 20
5.2 A UNF-secure ARC scheme . 22

6 Communication costs for attack detection 24
6.1 Communication cost of r-RID RC 25
6.2 Communication cost of r-UNF ARC 30

7 Performance and security trade-offs 30
7.1 On the practicality of s-RID and s-UNF security 30
7.2 Lightweight bidirectional authentication 31
7.3 Reducing bandwidth for UNF security 32

8 Conclusion 32

A Primitives 38
A.1 Hash function . 38
A.2 Incremental hash function . 38

B Proofs for Theorem 1 and Theorem 2 39
B.1 Proof for Theorem 1 . 39
B.2 Proof for Theorem 2 . 41

C Optimizing the s-RID construction 42

D Proof for Theorem 4 44

E Proof of Theorem 6 45

F Deferred optimisations 46
F.1 Lightweight three-move authentication 46
F.2 ARC pruning-based optimization 50

G Bandwidth-optimized UNF-security 53

2

H Puncturable encryption lower bound 54
H.1 Lower bound . 56

I Changelog 60
I.1 December 6 2023 . 60

3

1 Introduction

Since the Snowden revelations and given the unprecedented rise of mass surveil-
lance, several messaging solutions strengthened their security guarantees. The
susceptibility to state exposure attacks pushed both researchers and practi-
tioners to develop ratcheting-based schemes, which enables forward secrecy—
confidentiality of messages sent before a state exposure—and post-compromise
security—automatic healing of confidentiality upon compromise [15].

The asynchronicity of messaging and the unreliability of some network pro-
tocols drove the design of ratcheting-based schemes with immediate decryp-
tion [1, 16, 32], i.e., the support of out-of-order delivery and message loss on
the protocol level. This property ensures that legitimate messages can be im-
mediately decrypted by the receiver upon arrival and placed correctly among
other received messages. Furthermore, communication can continue even if some
messages are permanently lost. The Signal protocol, the current de-facto mes-
saging standard, supports immediate decryption. By contrast, many schemes
in the literature fail if even a single message is lost (see [7, 11, 14, 21, 33] for a
non-exhaustive list).

The aforementioned security notions do not guarantee message authentica-
tion when the adversary impersonates parties, e.g., through state compromise.
The lack of authentication implies that parties cannot detect active attacks. A
recent phishing attack against Signal’s phone number verification service en-
abled attackers to re-register accounts to another device, demonstrating the
practicality of impersonation attacks via secret state compromise [37]. Similar
attacks that steal verification codes to hijack accounts affect a plethora of mes-
saging applications. The proliferation of spyware such as Pegasus represents an
additional—and worrying—threat for secret exfiltration [35].

The most widely used mechanisms for detecting active attacks use an out-
of-band authenticated channel. All such mechanisms we are aware of, either
deployed in practice [29] or proposed in the literature [17, 19] assume such a
channel. Solutions like Signal’s safety numbers [29] enables parties to authen-
ticate long-term keys by comparing QR codes in person. However, as observed
by Dowling and Hale [18, 19], Signal’s approach—and all similar methods to
our knowledge—fails to provide guarantees after a user’s state is exposed, since
safety numbers only authenticate initial keys (for Signal, the keys that the X3DH
key agreement protocol generates).

To remedy this situation, Dowling and Hale [19] proposed to add an addi-
tional authentication key to each iteration of Signal’s asymmetric ratchet for on-
demand use in out-of-band authentication. Their construction allows parties to
immediately—that is, without additional communication rounds—authenticate
their entire asymmetric ratchet out of band. However messages forged under
symmetric keys will never be detected. The only other construction in the liter-
ature to our knowledge, proposed by Dowling, Günter and Poirrier [17], requires
three rounds of in-band communication before an out-of-band hash comparison
can take place. Contrary to Dowling and Hale’s solution, this approach authen-
ticates all messages (albeit does not formally treat out-of-order messages), but

4

imposes additional rounds, which is especially problematic in the presence of an
active adversary. This raises our first research question:

1. Can we authenticate all messages in a single round of out-of-band com-
munication to detect active attacks in the immediate decryption setting?

Out-of-band authentication is not always practical or even possible. A conve-
nient alternative is to detect active attacks in-band, i.e., using the same channel
as the messaging protocol. The adversary can, in the worst case, block all
messages sent by honest parties, thereby forcing users to resort to out-of-band
communication, but mounting such a persistent attack requires considerable
resources. Durak and Vaudenay [21] introduce RECOVER security: if a party
receives a forgery, then this party does not accept subsequent messages sent
honestly by his counterpart. Caforio et al. [11] extend RECOVER security to
enable a party to detect whether their partner was compromised, i.e., whether
they received a forgery. By contrast to out-of-band authentication, no additional
messages are required to support attack detection: in-band ciphertexts contain
the authentication information. However, these notions and the corresponding
constructions assume in-order message delivery and fail on message dropping.
This raises a second question, first suggested by Alwen et al. [1]:

2. Can we achieve extended RECOVER security—immediate in-band active
attack detection—while supporting immediate decryption?

To detect active attacks, parties need to authenticate their entire message
history: each message may be a forgery, i.e., the result of an active attack. With
immediate decryption, parties cannot be sure which messages their partner has
received until they receive an honest reply from them. Intuitively, each message
needs to “contain” the message history up until when it was sent. We prove
this intuition, which motivates the exploration of performance/security trade-
offs and optimisations. In this regard, existing protocols for both in-band and
out-of-band active attack detection represent only a subset of the potential
design space. Consequently we also ask:

3. What are the communication costs of in- and out-of-band active attack
detection for messaging with immediate decryption, and what useful per-
formance/security trade-offs can be made?

1.1 Our contributions

In this paper, we explore the aforementioned questions. In more detail:

• We introduce (Section 3) a new primitive that we call authenticated ratch-
eted communication, which captures immediate decryption and models
communication through both insecure in-band and authentic out-of-band
channels.

• In Section 4, we formalise in-band active attack detection for immediate
decryption, by extending RECOVER security [11, 21], with two notions,

5

namely r-RID and s-RID security, for detecting active attacks towards the
receiver and on reception of messages from the sender after they were at-
tacked; combined, these two notions comprise RID (recover with immediate
decryption) security. We propose a scheme secure under these notions.

• We consider out-of-band active attack detection for immediate decryption
messaging in Section 5. We introduce notions r-UNF and s-UNF (which
combine to UNF for unforgeable), which are analogous to the notions for
in-band detection. Demonstrating their similarity, we construct an UNF-
secure scheme from a RID-secure scheme. We also construct an UNF-secure
ARC scheme given a RC scheme.

• In Section 6, we prove with an information-theoretic argument that ci-
phertexts in a scheme satisfying either r-RID or r-UNF security must grow
linearly in the number of messages sent. As our constructions demon-
strate, s-RID and s-UNF security are comparatively cheaper and practical.

• In Section 7, we consider different ways to bypass the aforementioned lower
bounds. First we discuss ways to optimize the s-RID-secure scheme. We
show how one can drastically reduce the overhead as long as the commu-
nication between the two parties is balanced. We present the details in
Appendix C and we believe is the most suitable scheme for use in practice
that we propose. We also focus on optimizing the authenticated out-of-
band channel variant, by exploring pruning-based optimizations, where
parties securely prune messages as soon as they are authenticated. We
finally discuss the performance advantages resulting from a three-move
authentication procedure.

1.2 Paper overview

We assume a network where parties communicate over two types of channels:
insecure channels and out-of-band authenticated channels. The adversary has
full control over insecure channels. In particular, she can read, deliver, modify
and delay messages. In the authenticated channels, the integrity and authen-
ticity of the messages are protected, that is, the adversary can read, deliver,
duplicate and delay messages but not modify them. In the Signal application,
the insecure channel is the usual network, whereas the out-of-band channel is
that used for safety number verification [29], typically in-person.

(Authenticated) ratcheted communication. We introduce a syntax for
ratcheted communication (RC) in which sent and received messages are associ-
ated with totally ordered ordinals (epoch/index pairs in Signal [1]). Ordinals
enable our protocol to support immediate decryption [1], i.e., message loss and
re-ordering on the network. We build on this syntax to define authenticated
ratcheted communication, or ARC, which comprises two additional functions
AuthSend and AuthReceive. A party can use AuthSend to send an authentica-
tion tag through the out-of-band channel that the counterpart processes with

6

AuthReceive. AuthSend outputs an ordinal that is at least as large as the last
sent ordinal for that party. AuthReceive, if successful, should authenticate all
messages up to that ordinal; this is captured in UNF security. Our notion
ORDINALS enforces these semantics even in presence of forgeries.

RID security. We revisit the definitions of RECOVER security [11, 21] in the
immediate decryption setting. We define two complementary security notions
for RID security:

• r-RID ensures that the receiver of a forgery does not accept honest messages
with ordinals larger than that of the forgery.

• s-RID security enables a party to detect if their counterpart has ever re-
ceived a forgery (i.e., a forgery from the sender).

If a scheme is both r-RID- and s-RID-secure, then it is RID-secure. These notions
are orthogonal to forward security and post-compromise security.

We propose a construction that transforms any ratcheted communication
scheme into a provably RID-secure one. In the construction, both parties keep
track of messages they have sent and received. Every time they send a message,
they attach all messages (i.e., the ciphertexts from the underlying RC) they have
sent and received so far to their ciphertext. When a party receives a message
that “contradicts” what it has sent or received, it can deduce that an active
attack took place.

To reduce bandwidth, parties send ordinals and hashes of messages, instead
of complete ciphertexts. For r-RID security, a receiver P compares the input
message and the sender P’s supposed set of sent messages with what P has
received previously. For s-RID, it suffices for a receiver P (who knows exactly
what it sent) to check whether the sender claims to have received anything that
P did not send. Here, P only needs to send a single hash alongside the set of
received ordinals (which are generally smaller than hashes), since P can recom-
pute the hash locally. Since the channel is insecure, parties need to perform a
series of checks on the ciphertexts to prevent the adversary from tampering with
the sets of sent and received messages sent. Both r-UNF- and s-UNF-security
build on the collision resistance of the hash function.

UNF security. We define notions analogous to r-RID and s-RID for authen-
ticated ratcheted communication schemes. The r-UNF (receiver unforgeable)
notion ensures that a party does not accept authentication tags after receiving
a forgery, whereas s-UNF (sender unforgeable) ensures that a party does not ac-
cept authentication tags coming from a counterpart that received a forgery. We
show that a RID-secure scheme can be turned into a UNF-secure scheme. The
transformation highlights the similarity between RID and UNF security. In the
former, parties authenticate all messages they have sent and received in band,
whereas in the latter the messages are authenticated out of band. Concretely,
the transformation uses the ciphertext of a RID-secure RC scheme as the au-
thentication tag for an ARC scheme, by moving authentication material to the
out-of-band channel.

7

Communication costs. We prove a linear lower bound on the ciphertext size
of any r-RID-secure RC: each ciphertext must capture all information contained
in previously sent ones. In fact, the security notion requires that the receiving
party is able to immediately detect if any subset of previous ciphertexts contains
a forgery, since the sender does not know what has been received and ciphertexts
can be arbitrarily re-ordered or dropped.

For the proof, we construct an (inefficient) encoder/decoder pair for a list
of input messages (m1, . . . ,mn) and randomness R, that uses the r-RID RC to
compress the input. More precisely, the encoder uses the RC to send messages
(m1, . . . ,mn) with randomness R to get a list of ciphertexts (ct1, . . . , ctn), and
outputs only (ctn, R). Next, the decoder uses the RC to receive ciphertext ctn,
generates every possible ct1 for all possible messages m1 with randomness R
and attempts to successfully receive one of them. If this succeeds, it means
m1 was the same message as the one input to the encoder (i.e., the “honest”
one). Then, the decoder continues with m2 and so on, eventually outputting
(m1, . . . ,mn, R). Finally, by setting the distributions of the messages and ran-
domness as uniform, one can argue by Shannon’s theorem that the ciphertext
space must be exponentially large in n · |mi|. The formal proof is actually
more complicated as the r-RID security does not need to be perfect and many
ciphertexts might be successfully received when decoding.

Then, following a nearly identical proof, we prove a linear lower bound on
the authentication tag size of any r-UNF-secure ARC. These proofs might be
of independent interest. Following similar arguments we show that the state
(i.e. secret key) of any public key puncturable encryption (PKPE) scheme must
grow linearly with the number of punctures.

Practical active attack detection. We explore how to overcome the linear
communication complexity that r-RID and r-UNF impose. We first observe that
ciphertexts can be much smaller to achieve s-RID or s-UNF security. As noted
above, it suffices for P to send a single hash of all received messages with the
corresponding ordinals, since partner P can recompute the hash if it stores all
messages it sends. Assuming each ordinal uses c space, ciphertexts reduce in
size from O(n(λ+ c)) to O(λ+ nc) given P has received n messages.

Motivating this comparison, we observe that parties achieve r-RID/r-UNF-
like guarantees after one round of communication from s-RID/s-UNF security.
If P detects that their partner P has received a forgery, P can let P know, and
thus P can learn that they have received a forgery (which is what r-RID/r-UNF
guarantee). We formalise this by proposing a lightweight three-move protocol,
and a corresponding security model, over the out-of-band channel which provides
bidirectional message authentication. Participant P (resp. P) sends their set of
received messages to their partner in the first and second moves. In the second
and third moves, P (resp. P) sends a bit that indicates whether the set of
received messages was consistent with what they actually sent.

In the aforementioned protocols, performance degrades linearly in the num-
ber of exchanged messages, even for s-RID/s-UNF security. We observe that

8

for UNF security the authentication tags can be compressed over time by in-
cluding acknowledgements in tags. Since the out-of-band channel is authentic,
parties are sure that the authentication information—that is, the sets of sent
and received messages—coming from the counterpart is correct. This enables
parties to prune already authenticated messages. For r-RID security, pruning-
based optimizations are more difficult to obtain, since parties do not know which
messages are authentic, i.e., have really been sent or received by the counterpart.

1.3 Additional related work

A growing line of work considers the performance and security of messaging
in both the two-party [6, 7, 11, 21, 26, 34] and more general group settings [2–4]
settings. Some of these works provide similar [26] and sometimes weaker [27]
guarantees for in-band active attack detection assuming in-order communica-
tion. To our knowledge, in-band active attack detection is not explicitly explored
in group messaging, but schemes like MLS ensure that if the state of two parties
is forked then their states become incompatible, in some protocol-specific sense.

Naor et al. [30] introduced the concept of immediate key delivery for key
exchange: if one goes offline, the remaining ones should be able to complete
it successfully by returning a shared secret. This property is orthogonal to
immediate decryption as it focuses on keys instead of messages.

Apart from Durak and Vaudenay and Caforio et al. who introduced the
RECOVER notions, Dowling et al. [20] provide r-RECOVER, but not s-RECOVER
security via signatures, while providing anonymity guarantees even upon state
exposure. Dowling et al. [17] frame their authentication guarantees as follows: if
no long-term keys are compromised, then all messages exchanged are authentic.
Otherwise, active attacks can be detected out-of-band. They achieve this by
signing all messages with long-term keys. Our protocols and security notions
can be adapted to achieve these guarantees. In distributed computing, the
problem is formalised in terms of accountability, which enables parties to detect
faulty (Byzantine) nodes [12, 23]. In multi-party computation, a line of work
has explored security with identifiable abort [24] which ensures that if parties
fail to compute a given function, they can identify the party that caused the
failure.

The encoder/decoder technique that we use to prove the lower bounds in Sec-
tion 6 and Appendix H have been used before in cryptography [25, 28]. While
the basic idea is the same, the technical details of the proofs are not comparable
as the primitives are different. Related work in group messaging achieves com-
munication lower bounds in a symbolic model of execution [9] and in a black-box
impossibility setting [8].

2 Notation

We consider two parties, A and B. Let P be one party (A resp. B) and P be their
partner (B resp. A). We use maps, or associative arrays, which associate keys

9

with values: m[·]← x defines a new map with values initially set to x and m[k]
returns the element indexed by key k. Keys are tuples of any length n ≥ 1. We
index maps with integers starting from 1; in this case, m[a : b] returns the list
of elements whose keys are between a and b. We access the element of a tuple
using the dot notation. The function length(m) returns the number of keys in
map m. The empty string is denoted by ε. Given a set S, S∗ (respectively Sn)
is the set of all strings of arbitrary length (resp. of length n) whose elements
are in S. PPT abbreviates ‘probabilistic polynomially bounded’, which we use
in the context of algorithms bounded in terms of the security parameter λ.

3 (Authenticated) ratcheted communication

In this section we introduce the ratcheted communication (RC) cryptographic
primitive and an extension authenticated ratcheted communication (ARC) sup-
porting out-of-band authentication. These primitives augment classic ratcheted
secure messaging schemes [1,11,27] in two ways: (i) sent and received messages
are associated with ordinals, and, for ARC, (ii) the syntax encompasses two
additional stateful algorithms AuthSend and AuthReceive.

Ordinals associated with messages enable a party to (1) order incoming
messages immediate decryption setting; (2) keep track of how many messages
have passed through the communication channel; and (3) infer which messages
have been authenticated using the out-of-band channel. Ordinals of the form
num can be elements of any set on which a total order is defined. In Alwen et
al.’s [1] and Bienstock et al.’s [10] modelling of the Signal protocol, an ordinal
num is defined as a pair of integers (e, c) such that (e, c) < (e′, c′) if e < e′ or
both e = e′ and c < c′. We formally define an RC scheme below.

Definition 1 (Ratcheted communication (RC)). A ratcheted communication
(RC) scheme comprises the following PPT algorithms:

• Setup(1λ) → pp takes the security parameter λ ∈ N, expressed in unary,
and outputs public parameters pp.

• Init(pp)→ (stA, stB, z) takes public parameters pp and outputs a state stP
for P ∈ {A,B}, and public information z.

• Send(stP , ad, pt)→ (st′P , num, ct) takes a state stP , associated data ad and
a plaintext pt and outputs a new state st′P , an ordinal num and ciphertext
ct.

• Receive(stP , ad, ct)→ (acc, st′P , num, pt) takes a state stP , associated data
ad and ciphertext ct and outputs an acceptance bit acc ∈ {true, false},
state st′P , ordinal num and plaintext pt.

The Receive algorithm returns dummy st′P , num, pt which are ignored when
acc = false.

10

Remark 1. Signal can be viewed as an RC. In the work of Alwen et al. [1], a
secure messaging scheme consists of an initialisation algorithm and party-specific
Send and Receive algorithms with no associated data. The Receive algorithms,
but not the Send algorithms, output an epoch/index pair (e, i) ∈ N2 which
plays the role of an ordinal. Signal as defined by Alwen et al. [1] can thus be
considered an RC by modifying its Send algorithm to output each (e, i) pair as
an ordinal and enforcing that ad = ⊥ is always input to Send and Receive.

In an ARC, parties rely on AuthSend and AuthReceive to authenticate the
communication using a (possibly narrowband) out-of-band authenticated chan-
nel. AuthSend inputs state and outputs an updated state, an authentication
tag and an ordinal, whereas AuthReceive takes a state and an authentication
tag to output an authentication bit, an updated state and an ordinal. Intu-
itively, the authentication tag is sent via the out-of-band authenticated channel
and it enables the receiver to detect active attacks using the AuthReceive algo-
rithm. Participants can decide when to invoke the algorithms and thus use the
authentication tag on-demand, e.g., when an out-of-band channel is available.

AuthSend and AuthReceive outputs ordinals with the same semantics as Send
and Receive. Namely, the num that AuthSend outputs is greater or equal to the
last num that Send outputs; besides ordering authentication tags with respect
to messages the party has sent or received, the ordinal indicates which mes-
sages (all up until num) the authentication tag authenticates. Similarly, for
AuthReceive, the ordinal num indicates that all messages with num′ ≤ num have
been authenticated with the received tag.

Definition 2 (Authenticated ratcheted communication (ARC)). An authen-
ticated ratcheted communication (ARC) scheme comprises the following PPT
algorithms:

• Setup, Init, Send, Receive defined as in RC (Definition 1).

• AuthSend(stP)→ (st′P , num, at) takes a state stP and outputs a new state
st′P , an ordinal num and an authentication tag at.

• AuthReceive(stP , at) → (auth, st′P , num) takes a state stP and authenti-
cation tag at and outputs an authentication bit auth ∈ {true, false}, an
updated state st′P and an ordinal num.

The AuthReceive algorithm returns dummy st′P , num which the scheme ignores
when auth = false.

Remark 2. One could alternatively define AuthSend/AuthReceive to output sets
of ordinals, rather than single ones, corresponding to which messages have been
authenticated. Our security notions ensure that this information can be effi-
ciently computed by parties using the ordinal that the algorithms output.

We define correctness for an RC and ARC scheme with the CORRECT game
presented in Fig. 1. The game takes a security parameter and a schedule sched as
inputs. We use a schedule to model the message flow between the participants,

11

which can (1) send a message, (2) receive a message, and for ARC only, (3) send
an authentication tag, or (4) receive a sent authentication tag. More precisely,
sched is an ordered list of instructions either of the form (P, “send”, ad, pt),
(P, “rec”, j), and for ARC only, (P, “authsend”), and (P, “authrec”, j), where
P ∈ {A,B}, ad denotes associated data, pt denotes a plaintext, and j ∈ N
indicates either the (ad, ct) pair or the at to be received—that is, to be processed
by Receive or AuthReceive respectively.

Game CORRECT(1λ, sched)

1 : pp← Setup(1λ); (stA, stB, z)← Init(pp)

2 : ad∗[·], pt∗[·], ct∗[·], at∗[·]← ⊥; received[·], sent[·]← false; sent-num← 0

3 : for i = 1 to length(sched) do

4 : if sched[i] parses as (P, “send”, ad, pt) for ad, pt then

5 : (stP , num, ct)← Send(stP , ad, pt)

6 : (num′
, ·)← ptP [i− 1]

7 : if i > 1 ∧ num′ ≥ num then return 1

8 : sent[i]← true; adP [i]← ad; ptP [i]← (num, pt); ctP [i]← ct; sent-num← num

9 : elseif sched[i] parses as (P, “rec”, j) for j ∈ N then

10 : if ¬sent[j] ∨ received[j] ∨ atP [j] ̸= ⊥ then continue

11 : (acc, st′P , num, pt)← Receive(stP , adP [j], ctP [j])

12 : if ¬acc ∨ ((num, pt) ̸= ptP [j]) then return 1

13 : received[j]← acc; stP ← st′P

14 : elseif sched[i] parses as (P, “authsend”) then

15 : (stP , num, at)← AuthSend(stP)

16 : if num < sent-num then return 1

17 : sent[i]← true; atP [i]← (num, at); sent-num← num

18 : elseif sched[i] parses as (P, “authrec”, j) for j ∈ N then

19 : if ¬sent[j] ∨ received[j] ∨ atP [j] = ⊥ then continue

20 : (numP , atP)← atP [j]

21 : (auth, st′P , num)← AuthReceive(stP , atP)

22 : if ¬auth ∨ num ̸= numP then return 1

23 : received[j]← true; stP ← st′P

24 : return 0

Figure 1: Correctness game for an RC/ARC scheme. Highlighted statements
are only executed for when considering an ARC.

A correct (A)RC scheme must recover the correct plaintext from the corre-
sponding associated data/ciphertext pair. Moreover, the scheme must satisfy
the following properties.

• Subsequent calls to the Send algorithm outputs increasing ordinals (line 7
in Fig. 1).

• Ordinals are equal for corresponding calls to Send (resp. AuthSend for
ARC) and Receive (resp. AuthReceive for ARC) (lines 12 and 22).

• For ARC, AuthSend outputs an ordinal greater or equal to the ordinal
returned by the last call to Send.

We encode these properties in the CORRECT game for clarity. We require that

12

these properties hold in the adversarial setting (in particular when forgeries are
received) and enforce them in the ORDINALS game presented in Fig. 3. We
formally define correctness for an (A)RC scheme in Definition 3.

Definition 3 (CORRECT). Consider the correctness game CORRECT presented
in Fig. 1. An RC (resp. ARC) scheme is correct if, for all λ ∈ N, and all sequences
of the form sched with elements of the form (P, “send”, ad, pt), (P, “rec”, j),
(resp. also of the form (P, “authsend”), (P, “authrec”, j)), for P ∈ {A,B}, we
have Pr[CORRECT(1λ, sched)⇒ 1] = 0.

Remark 3. Correctness states that AuthSend must output an ordinal greater or
equal to the ordinal that the last call to Send returned. If AuthSend does not
increase the ordinal, then it is clear which messages are authenticated; if the
ordinal increases in AuthSend, the application designer must keep track of the
last num that Send returned to infer what the tag authenticates. Nonetheless,
the latter case may be desirable to ensure that all ordinals output by Send and
AuthSend are distinct.

Security notions for RC and ARC schemes build on a common set of oracles,
introduced in Fig. 2. The SEND (resp. RECEIVE) oracle enables the adversary
to send (resp. receive) a message on behalf of a party P. In SEND, the caller can
specify the randomness used by Send or let the challenger sample randomness
uniformly. For ARC, AUTHSEND enables the adversary to send an authentica-
tion tag on behalf of a party P, whereas AUTHRECEIVE handles AuthReceive.
The oracles EXPpt(j) and EXPst(j) expose plaintexts and states, respectively.

The oracles of Fig. 2 models a communication network composed of inse-
cure in-band and authentic out-of-band channels. The SEND and RECEIVE
oracles enable the adversary to read, deliver, modify and delay messages, but
AUTHSEND and AUTHRECEIVE do not allow the modification of authentication
tags.

Remark 4. We assume an always-authentic out-of-band channel. To our knowl-
edge, all deployed solution for out-of-band authentication and relevant litera-
ture [17,18] assume this. One can define a stronger model where the out-of-band
channel is authentic only in some cases, e.g., the tampering rate is bounded, or
multiple out-of-band channels exist but the adversary can compromise only a
subset of them. As a not-always-authentic out-of-band channel is a stronger
version of an insecure in-band channel, the discussions in Section 4 apply.

For RC and ARC schemes we require that even in the presence of an ad-
versary that injects forgeries, the Send and Receive (as well as AuthSend and
AuthReceive for ARC schemes) algorithms output correct ordinals. An RC or
ARC scheme has correct ordinals if (1) the Send algorithm always outputs in-
creasing ordinals with respect to all previously sent or received ordinals; (2)
corresponding calls to Send and Receive (resp. to AuthSend and AuthReceive)
output the same ordinal; and (3) for an ARC scheme, AuthSend outputs an
ordinal greater or equal to the ordinal returned by the last call to Send. We
consider these properties in CORRECT (Fig. 1), but they must hold also in

13

Oracle SEND(P, ad, pt, r)
1 : i← i+ 1

2 : if r = ε then r←$R
3 : (stP , num, ct)← Send(stP , ad, pt; r)

4 : state[i]← stP
5 : plaintext[i]← pt

6 : log[i]← (“send”,P, num, ad, ct)

7 : return (num, ct)

Oracle AUTHSEND(P)
1 : i← i+ 1

2 : (stP , num, at)← AuthSend(stP)

3 : auth[(P, i)]← at

4 : state[i]← stP
5 : log[i]← (“authsend”,P, num, at)

6 : return (num, at)

Oracle EXPpt(j)

1 : i← i+ 1

2 : log[i]← (“ptexp”, j)

3 : return plaintext[j]

Oracle RECEIVE(P, ad, ct)
1 : (acc, st, num, pt)← Receive(stP , ad, ct)

2 : if ¬acc then return ⊥
3 : i← i+ 1

4 : stP ← st; state[i]← stP
5 : plaintext[i]← pt

6 : log[i]← (“rec”,P, num, ad, ct)

7 : return num

Oracle AUTHRECEIVE(P, j)
1 : at← auth[(P, j)]
2 : if at = ⊥ then return ⊥
3 : (auth, st, num)← AuthReceive(stP , at)

4 : if ¬auth then return ⊥
5 : i← i+ 1

6 : stP ← st; state[i]← stP
7 : log[i]← (“authrec”,P, num, at)

8 : return num

Oracle EXPst(j)

1 : i← i+ 1

2 : log[i]← (“stexp”, j)

3 : return state[j]

Figure 2: Oracles which use variables state, plaintext, log, auth, st∗ and i, all
initialized in games where the oracles are used. AUTHSEND and AUTHRECEIVE
are only used when considering ARC.

presence of forgeries. We formalize this notion with the ORDINALS game in
Fig. 3.

In this game the challenger verifies three predicates, which correspond to
the conditions for correct ordinals presented above. In Definition 4 we formalize
ORDINALS-security for (A)RC schemes.

Definition 4 (ORDINALS). Consider the ORDINALS game in Fig. 3. We say
that an (authenticated) ratcheted communication scheme is ORDINALS secure
if, for all possibly unbounded adversaries A we have Pr[ORDINALSA(1λ) ⇒
1] = 0.

Remark 5. The ORDINALS game in Fig. 3 is not suited to the case where
ordinals can be arbitrary and in particular collide between parties. Thus, each
party must be associated with disjoint ordinals: practical schemes like the Signal
protocol do this by associating one party with even epochs and the counterpart
with odd epochs.

14

Game ORDINALSA(1λ)

1 : pp← Setup(1λ); (stA, stB, z)← Init(pp)

2 : state[·], plaintext[·], log[·], auth[·], st∗ ← ⊥
3 : i← 0

4 : ASEND,RECEIVE,EXPpt,EXPst,AUTHSEND,AUTHRECEIVE
(z)

5 : if ∃ P, num, num′
, ad, ct, x, y :

6 : not-increasing(log,P, num, num′
, x, y) ∨ different(log,P, num, num′

, ad, ct, at) ∨
7 : auth-monotonic(log,P, num, x) then

8 : return 1

9 : return 0

not-increasing(log,P, num, num′, x, y)

1 : return ((“send”,P, num, ·, ·) = log[x] ∨ (“rec”,P, num, ·, ·) = log[x]) ∧

2 : (“send”,P, num′
, ·, ·) = log[y] ∧ (0 < x < y) ∧ (num ≥ num′

)

different(log,P, num, num′, ad, ct, at)

1 : return (((“send”,P, num, ad, ct) ∈ log ∧ (“rec”,P, num′
, ad, ct) ∈ log)) ∨

2 : ((“authsend”,P, num, at) ∈ log ∧ (“authrec”,P, num′, at) ∈ log))) ∧ (num ̸= num′
)

auth-monotonic(log,P, num, x)

1 : num′ ← 0

2 : if (“send”,P, ·, ·, ·) ∈ log then num′ ← max
{
num′′

: (“send”,P, num′′
, ·, ·) = log[y] ∧ y < x

}
3 : return (“authsend”,P, num, ·, ·) = log[x] ∧ (num < num′

)

Figure 3: ORDINALS game. Highlighted statements are only considered for an
ARC.

4 In-band active attack detection: RECOVER

In this section we consider in-band active attack detection in the immediate
decryption setting.

Caforio et al. [11] define RECOVER security, which encompasses both
r-RECOVER security and s-RECOVER security, by assuming that the channel
ensures in-order message delivery. Intuitively, r-RECOVER security prevents a
party from being able to deliver an honest message after delivering a forgery,
and s-RECOVER security allows a party to detect and stop communication when
their partner has delivered a forgery. We extend these notions to handle out-
of-order message delivery by introducing r-RID and s-RID, which we present
in Fig. 4 and illustrate in Fig. 5. Combined, these two properties ensure RID
security. Note that these definitions are orthogonal to the usual forward and
post-compromise security notions that the ratcheting literature considers [1, 7].

The winning condition in RID consists of three predicates:
• forgery verifies whether a forgery was accepted by one of the participants
by taking into account both injection and modification of messages. In
the predicate, we denote the impersonated party as P and the recipient

15

of the forgery as P.
• bad-P checks whether the recipient of the forgery manages to detect the
attack. This predicate corresponds to r-RID security.

• bad-P establishes whether P, i.e., the participant that the adversary im-
personates to send the forgery, fails to detect the attack. Since P is the
recipient of the forgery, the detection of the attack by P relies on a ci-
phertext sent by P and honestly delivered. This predicate corresponds to
s-RID security.

The game imposes that if forgery returns true, then at least one between
bad-P and bad-P must return true for the adversary to win the game.

Definition 5 (RID). A RC is (q, t, ϵ)-r-RID (resp. s-RID) secure, if for all adver-
saries A which make at most q oracle queries and which run in time at most t,
we have: Pr[r-RIDA(1λ)⇒ 1] ≤ ϵ (resp. Pr[s-RIDA(1λ)⇒ 1] ≤ ϵ), where game
r-RIDA (resp. s-RIDA) is defined in Figure 4.

Game r-RIDA(1λ) s-RIDA(1λ)

1 : pp← Setup(1λ); (stA, stB, z)← Init(pp)

2 : state[·], plaintext[·], log[·]← ⊥
3 : auth[·], st∗ ← ⊥
4 : i← 0

5 : AO
(z)

6 : if ∃ P, num, num′
, ad, ct, ad′, ct′, x, y :

7 : forgery(log,P, num, ad, ct, x) ∧

8 : bad-P(log,P, num, num′, ad′, ct′) then

9 : bad-P(log,P, num′
, ad′, ct′, x, y) then

10 : return 1

11 : return 0

Game RIDA(1λ)

1 : return r-RIDA
(1

λ
) ∨ s-RIDA

(1
λ
)

forgery(log,P, num, ad, ct, x)

1 : return (“send”,P, num, ad, ct) /∈ log ∧

2 : (“rec”,P, num, ad, ct) = log[x]

bad-P(log,P, num, num′, ad′, ct′)

1 : return (“rec”,P, num′
, ad′, ct′) ∈ log ∧

2 : (“send”,P, num′
, ad′, ct′) ∈ log ∧

3 : (num < num′
)

bad-P(log,P, num′, ad′, ct′, x, y)
1 : return (y > x) ∧

2 : (“send”,P, num′
, ad′, ct′) = log[y] ∧

3 : (“rec”,P, num′
, ad′, ct′) ∈ log

Figure 4: r-RID, s-RID and RID games for O =
{SEND,RECEIVE,EXPpt,EXPst}.

Although r-RID seems to be a stronger than s-RID at first glance, the two
notions are not comparable. There exist schemes which provide r-RID and not
s-RID security and vice versa, e.g., the scheme proposed in Figure 6 if the checks
for either r-RID or s-RID are removed from the checks subroutine.

However, we note the following link between both notions. Suppose we use
a s-RID scheme. This means that P is able to know that P received a forged
message. Then, if P sends an “abort” message to P, P would be able to detect
the forgery after one honest round-trip of messages. In other words, s-RID RC
schemes can be transformed (by adding an “abort” message) into RC schemes
with a weak variant of r-RID security: r-RID after a honest round-trip.

16

Sender P Receiver P

(num1, ct1)

...

(numm, ctm)

(num, ct) log[x]

...

num′ > num (num′, ct′) win?

Receiver P Sender P

(num1, ct1)

...

(numm, ctm)

log[x] (num, ct)

...

log[y] (num′, ct′) win?

Figure 5: Visualizing r-RID (left) and s-RID (right). Each figure showcases an
adversary’s winning condition in the respective game. The dashed arrows are
forged messages. If P accepts the message at time “win?” then the adversary
wins.

Remark 6. Suppose A sends messages with num ∈ {1, . . . , 5}, B receives a
forgery with num = 1000, and then A sends messages with num ∈ {6, . . . , 10}.
If B never sends, i.e., A is the sender and B the receiver, RID-security only
guarantees that the forgery might be detected when A sends the honest mes-
sage with num′ = 1001. (cf. the condition “num < num′” in predicate bad-P in
Fig. 4.). Intuitively, B should be able to detect the forgery on receipt of honest
message with num = 6 since this message is “independent” of the forgery with
num = 1000. By the not-increasing predicate of the ORDINALS security, all
messages that A sends after one round-trip will have num > 1000, so such an
attack will nevertheless be eventually detected. Fine-grained security captur-
ing these scenarios can be formalised by tracking state exposures and message
delivery timing at the cost of greater definitional complexity; we leave it open
to do so. Some forgeries will be defeated by our construction below but it is
likely required to leverage the security of the underlying RC to build a secure
scheme. Looking ahead, this remark also applies to UNF ARC schemes defined
in Section 5.

4.1 A RID-secure RC

In this section we build a RID-secure RC scheme given a correct and ORDINALS-
secure RC scheme and a collision-resistant hash function H (Definition 8). We
present our transformation in Figure 6.

Scheme description. Each party P keeps track of every message it has sent
and received (in S and R, respectively). This information is communicated to
P every time P calls Send (via variables S and R′).

The Send procedure prepares the set R′, which contains the ordinals and a
hash of all received messages (line 3). This step can be optimized by using an
incremental hash function as we discuss in Section 7.1. Next, it calls RC.Send
with input (ad′, pt) where ad′ = (ad,S,R′) is the associated data. The ciphertext

17

RRC.Setup(1λ)

1 : pp0 ← RC.Setup(1λ)

2 : hk← H.KGen(1λ)

3 : hk′ ← H.KGen(1λ)

4 : pp← (pp0, hk, hk
′
)

5 : return pp

RRC.Send(stP , ad, pt)

1 : (st′P , hk, hk′, S,R, ·, ·)← stP

2 : nums′ ← {num′
: (num′

, ·) ∈ R}

3 : R′ ← (nums′,H.Eval(hk′,R))

4 : ad′ ← (ad, S,R′
)

5 : (stP .st′P , num, ct′)← RC.Send(st′P , ad′, pt)

6 : ct← (ct′, S,R′
)

7 : h← H.Eval(hk, (num, ad, ct))

8 : stP .S← S ∪ {(num, h)}
9 : return (stP , num, ct)

RRC.Receive(stP , ad, ct)

1 : (ct′, SP
,RP

)← ct

2 : (st′P , hk, hk′, ·,R, Sack,max-num)← stP

3 : ad′ ← (ad, SP
,RP

)

4 : (acc, st′P , num, pt)← RC.Receive(st′P , ad′, ct′)

5 : if ¬acc then return (false, stP ,⊥,⊥)
6 : h← H.Eval(hk, (num, ad, ct))

7 : if checks(stP , ct, h, num) then

8 : return (false, stP ,⊥,⊥)
9 : stP .R← R ∪ {(num, h)}

10 : stP .Sack ← Sack ∪ SP

11 : stP .st′P ← st′P

12 : return (acc, stP , num, pt)

RRC.Init(pp)

1 : (pp0, hk, hk
′
)← pp

2 : (st′A, st
′
B, z

′
)← RC.Init(pp0)

3 : max-num← 0

4 : S,R, Sack ← ∅

5 : stA ← (st′A, hk, hk
′
, S,R, Sack,max-num)

6 : stB ← (st′B, hk, hk
′
, S,R, Sack,max-num)

7 : z ← (z
′
, pp)

8 : return (stA, stB, z)

checks(stP , ct, h, num)

1 : (nums′, h′
)← ct.R

2 : R∗ ← {(num′
, ·) ∈ stP .S : num′ ∈ nums′)}

3 : s-bool← (H.Eval(stP .hk′,R∗
) ̸= h

′
)

4 : R′ ← {(num′
, ·) ∈ stP .R : num′ ≤ num}

5 : r-bool← (R′ ̸⊆ ct.S)

6 : r-bool← r-bool ∨

7 : (∃(num∗
, ·) ∈ ct.S : num∗ ≥ num)

8 : if num < stP .max-num then

9 : r-bool← r-bool ∨ ((num, h) ̸∈ st.Sack)

10 : r-bool← r-bool ∨ (ct.S ̸⊆ st.Sack)

11 : Sack
′ ← {(num′

, ·) ∈ stP .Sack :

12 : num′
< num}

13 : r-bool← r-bool ∨ (Sack
′ ̸⊆ ct.S)

14 : else

15 : stP .max-num← num

16 : r-bool← r-bool ∨

17 : (∃(num′
, ·) ∈ st.Sack \ ct.S :

18 : num′
< stP .max-num)

19 : return r-bool ∨ s-bool

Figure 6: RID-secure RC scheme RRC based on a RC scheme RC (Definition 1).
RRC requires the following variables: max-num represents the largest received
num. S is the set of (num, h) pairs; R is the set of received (num, h) pairs; Sack is
the set of (num, h) which are expected to be received (according to the received
ciphertext ct). All sets are append-only.

ct contains both ct′ and sets S and R′. Finally, it adds the pair (num, h) to S
(line 8), where the hash h is computed as H.Eval(stP .hk, (ad, ct)), where ct =
(ct′,S,R′). Intuitively, (num, h) acts as a summary of P’s state after calling
RC.Send which can be checked by P for inconsistency.

When P invokes Receive, the procedure calls RC.Receive, which outputs

num ̸= ⊥ if the call is successful. Since ct contains RP , P checks that what
P received so far was correct (line 3 in checks). In addition, using the S set

18

contained in the ciphertext ct, P can further check whether the ciphertexts it
received so far have indeed been sent by P. This is verified from lines 5 to 18 of
checks. Some checks detect tampering of ct by the adversary (e.g. ct.S should
not contain ordinals larger than the one of the current ciphertext, or if ct was
sent earlier than another ciphertext already received, ct.S should be consistent
with messages already acknowledged, etc.). If everything verifies, Receive stores
(num, h) in R and adds ct.S to the set of acknowledged messages (lines 9 and 10).

Remark 7. The sets S and R′ included in the ciphertext are also included in
the authenticated data passed to the underlying RC: the tuple (S,R′) is always
authenticated in Fig. 6. This is actually not needed for RID security, but for
authentication and confidentiality. Even if we do not define authentication and
confidentiality for (A)RC, we use authenticated encryption for completeness.

Remark 8. In case of forgery detection the scheme outputs the generic error
symbol ⊥. In practice it could be necessary to distinguish between different
kinds of errors. For instance, a RID forgery made by an adversary that exposed
the state could be interpreted by the application as a failure of the underlying
RC.Receive function. In that case, the application could decide to continue and
accept subsequent ciphertexts, although this should not happen.

Security analysis. Correctness of the RRC scheme follows from the correct-
ness of the underlying scheme RC and the fact that the checks always outputs
false when only honest messages are received. Similarly, ORDINALS-security
follows from the ORDINALS-security of RC, as RRC outputs the num that RC
outputs. As the next theorems state, the construction of Fig. 6 is r-RID-secure
(Theorem 1) and s-RID-secure (Theorem 2). The construction is therefore RID-
secure.

Theorem 1. Let H be a (tcr, ϵcr) collision resistant hash function. Then RRC
(defined in Figure 6) is a (q, t, ϵcr)-r-RID-secure RC where tcr ≈ t and q is upper
bounded by t.

The r-RID security of RRC reduces to the collision resistance of the hash
function H. We present the complete proof in Appendix B.1.

Theorem 2. Let H be a (tcr, ϵcr) collision resistant hash function. Then RRC
(defined in Figure 6) is a (q, t, ϵcr)-s-RID-secure RC where tcr ≈ t and q is upper
bounded by t.

The s-RID security of RRC reduces to the collision resistance of the hash
function H. We present the complete proof in Appendix B.2.

Optimization. The s-RID notion imposes less average overhead than r-RID:
the construction can be further optimized and still provide s-RID security. We
give here an intuition about this optimization and present the details in Ap-
pendix C.

In the optimized version, parties keep track of epochs. Party A starts with
epoch = 0 and B with epoch = 1. While sending each message parties attach

19

the epoch alongside. If epochA = t, A does not accept any messages with
epoch > t+ 1 and if A receives a message with epoch = t+ 1 they update their
epoch ← t + 2. The observation is that epoch values only increase when both
parties have received a message. Using this fact, it can be shown that it suffices
to convey information about the messages received in the last two epochs to
provide s-RID security. If an honest message was sent from A to B after A
received a forged message, either this forgery was received in the last 2 epochs,
or there was another forgery and honest message pair after it, as otherwise the
epoch values would be out of sync. Although this optimization does not change
the worst-case complexity of Fig. 6, if the direction of the conversation changes
frequently enough the overhead significantly decreases.

5 Out-of-band active attack detection: UNF

In-band active attack detection is not always possible, as an adversary may block
all honest messages in the network. For example, modern messaging solutions
use a possibly malicious third party server to relay messages between partici-
pants, thereby introducing a single point of failure for in-band communication.
This brings us to consider out-of-band active attack detection.

An ARC scheme is unforgeable if, as soon as one of the two parties accepts
a forgery, both parties can detect this out-of-band. We formalize this security
notion through the UNF game (Fig. 7), which, similarly to RID, encompasses
r-UNF and s-UNF. The winning condition in UNF consists of three predicates:
forgery, bad-P (corresponds to r-UNF) and bad-P (corresponds to s-UNF) that
are essentially the same as the predicates that we use to define RID security
(Definition 5), except they rely on authentication tags instead of ciphertexts for
forgery detection.

Definition 6 (UNF). Consider the r-UNF (resp. s-UNF) game in Fig. 7. We say
that an ARC scheme is (q, t, ϵ)-r-UNF (resp. s-UNF) secure if, for all adversaries
A which make at most q oracle queries, and which run in time at most t, we
have: Pr[r-UNFA(1λ)⇒ 1] ≤ ϵ (resp. Pr[s-UNFA(1λ)⇒ 1] ≤ ϵ).

Remark 9. As for RC schemes, we do not define message indistinguishability
for ARC schemes. All the schemes include in the authentication tag only public
material, i.e., messages that have already transited through the insecure channel.
Since the adversary already has access to the entire transcript of the insecure
channel, the authentication material does not give any additional advantage for
distinguishing.

5.1 RID RC⇒ UNF ARC

We show in this section that RID-secure RC schemes imply UNF-secure ARC
ones. More precisely, one can easily build an UNF-secure ARC scheme from
a RID-secure RC. The ARC scheme uses the Setup, Gen, Init, Send, Receive
function of RC. To send an authentication tag with AuthSend, the ARC scheme

20

Game r-UNFA(1λ) s-UNFA(1λ)

1 : pp← Setup(1λ); (stA, stB, z)← Init(pp)

2 : state[·], plaintext[·], log[·]← ⊥
3 : auth[·], st∗ ← ⊥
4 : i← 0

5 : AO
(z)

6 : if ∃ P, num, num′
, ad, ct, at, x, y :

7 : forgery(log,P, num, ad, ct, x) ∧

8 : bad-P(log,P, num, num′, at) then

9 : bad-P(log,P, num′
, at, x, y) then

10 : return 1

11 : return 0

Game UNFA(1λ)

1 : return r-UNFA
(1

λ
) ∨ s-UNFA

(1
λ
)

forgery(log,P, num, ad, ct, x)

1 : return (“send”,P, num, ad, ct) /∈ log ∧

2 : (“rec”,P, num, ad, ct) = log[x]

bad-P(log,P, num, num′, at)

1 : return (“authrec”,P, num′
, at) ∈ log ∧

2 : (num ≤ num′
)

bad-P(log,P, num′, at, x, y)
1 : return (y > x) ∧

2 : (“authsend”,P, num′
, at) = log[y] ∧

3 : (“authrec”,P, num′
, at) ∈ log

Figure 7: r-UNF, s-UNF and UNF games for O = {SEND,RECEIVE,EXPpt,
EXPst,AUTHSEND,AUTHRECEIVE}.

calls the Send function on a dummy message to generate a ciphertext ct that
acts as the authentication tag. The function AuthReceive is then implemented as
a Receive call on the authentication tag/ciphertext. The construction is detailed
in Figure 8.

Then, we can show the following theorem, which also implies that the scheme
of Fig. 8 is also r-UNF- and s-UNF-secure.

Theorem 3. Let RRC be a RC scheme and RC-ARC be the ARC scheme built
out of RRC as shown in Figure 8. If RRC is RID, ORDINALS-secure and correct,
then RC-ARC is UNF-, ORDINALS-secure and correct.

Proof. Correctness follows from the correctness of the underlying scheme RRC
and the use of domain separation for tags and ciphertexts.

Now, we sketch the proof that RID security of RRC implies UNF security
of RC-ARC. For any adversary A playing the UNF game with RC-ARC, we
build a RID adversary B for RRC. Each query made by A to the oracles SEND,
RECEIVE, EXPpt, EXPst are forwarded by B to its own corresponding oracles
(and domain separation is correctly implemented where needed). Queries of
the form AUTHSEND(P) are simulated by B querying at′ ← SEND(P, 0, 0) and
setting at ← (1, at′), which perfectly simulates the generation of a tag in ARC.
Finally, AUTHRECEIVE queries are simulated using the RECEIVE oracle on the
tag/ciphertext. B can perfectly simulate the UNF game for A.

Now, let us assume that the UNF adversary A wins with the forgery and
bad-P predicates evaluating to true. It means a forgery was received by a party
P, then, later, that party sent a tag (i.e. a ciphertext in the RID game played by
B) that is honestly and successfully delivered to a party P. That implies that
in the RID game played by B, a party received a forgery, then sent a message

21

RC-ARC.Setup(1λ)

1 : return RRC.Setup(1λ)

RC-ARC.Init(pp)

1 : return RRC.Init(pp)

RC-ARC.Send(stP , ad, pt)

1 : ct′ ← RRC.Send(stP , ad, pt)

2 : ct← (0, ct′)

3 : return ct

RC-ARC.Receive(stP , ad, ct)

1 : (b, ct′)← ct

2 : if b ̸= 0 then return (false,⊥,⊥,⊥)

3 : return RRC.Receive(stP , ad, ct′)

RC-ARC.AuthSend(stP)

1 : (st′P , num, ct)← RRC.Send(stP , 0, 0)

2 : return (st′P , num, (1, ct))

RC-ARC.AuthReceive(stP , at)

1 : (b, at′)← at

2 : if b ̸= 1 then return (false,⊥,⊥)

3 : (acc, st′P , num, pt)← RRC.Receive(stP , 0, at′)

4 : return (acc, st′P , num)

Figure 8: UNF-secure ARC scheme based on a RID-secure RC scheme RRC.

that was successfully delivered, which is a winning condition for B.
The second case is when the UNF adversary A wins with the forgery and

bad-P predicates evaluating to true. This means that a forgery was received by
a party P with ordinal num, then a tag with ordinal num′ ≥ num was successfully
received. Note that in our RC-ARC construction the tags are ciphertexts, thus
the ordinals are strictly increasing, i.e., num′ > num. Therefore, in the RID
game played by B, a forgery with ordinal num was received by P, then later
a honest ciphertext with ordinal num′ > num was successfully delivered to P,
making the bad-P predicate in the RID game true.

Hence, for any adversary A winning the UNF game, there exists a RID ad-
versary B that wins with at least the same probability.

ORDINALS-security follows from the construction.

5.2 A UNF-secure ARC scheme

We present a non-optimized UNF-secure ARC scheme given a RC scheme (Defi-
nition 1), i.e. we define the two additional algorithms AuthSend and AuthReceive.
We present our scheme in Fig. 9.

Scheme description. The Send and Receive procedures call the respective
procedures of the underlying RC scheme. The Send procedure stores the hash
of (ad, ct) for the message being sent, together with the corresponding num
that the underlying RC.Send algorithm returns. The tuple composed of num
and the hash is stored in a set S, which is in turn stored in the internal state
of the party. The Send algorithm also updates the ordinal num in the state.
The Receive procedure verifies if the RC.Receive algorithm accepts the inputs
and that the received message is not a forgery on a previously authenticated
message, which is by construction contained in Sack. If both checks pass, Receive

22

ARC.Setup(1λ)

1 : pp0 ← RC.Setup(1λ); hk← H.KGen(1λ)

2 : return (pp0, hk)

ARC.Init(pp)

1 : (pp0, hk)← pp

2 : (st′A, st
′
B, z

′
)← RC.Init(pp0)

3 : num,max-num← −1; S,R, Sack ← ∅

4 : stA ← (st′A, hk, S,R, Sack, num,max-num)

5 : stB ← (st′B, hk, S,R, Sack, num,max-num)

6 : z ← (z
′
, pp)

7 : return (stA, stB, z)

ARC.Send(stP , ad, pt)

1 : (st′P , hk, S, ·, ·, num, ·)← stP

2 : (stP .st′P , num, ct)← RC.Send(st′P , ad, pt)

3 : h← H.Eval(hk, (ad, ct))

4 : stP .S← S ∪ {(num, h)}
5 : stP .num← num

6 : return (stP , num, ct)

ARC.AuthSend(stP)

1 : (·, ·, S,R, ·, num, ·)← stP

2 : at← (S,R, num)

3 : return (stP , num, at)

ARC.Receive(stP , ad, ct)

1 : (st′P , hk, ·,R, Sack, ·,max-num)← stP

2 : (acc, st′P , num, pt)← RC.Receive(st′P , ad, ct)

3 : if ¬acc then return (false, stP ,⊥,⊥)
4 : h← H.Eval(hk, (ad, ct))

5 : if num ≤ max-num ∧ (num, h) /∈ Sack then

6 : return (false, stP ,⊥,⊥)
7 : stP .R← R ∪ {(num, h)}

8 : stP .st′P ← st′P

9 : return (acc, stP , num, pt)

ARC.AuthReceive(stP , at)

1 : (·, ·, S,R, Sack, num,max-num)← stP

2 : (SP
,RP

, numP
)← at

3 : // P received a forgery

4 : if RP ⊈ S then return (false, stP , num)

5 : RP
⊆ ← {(num, ·) ∈ R : num ≤ numP}

6 : // P received a forgery

7 : if RP
⊆ ⊈ SP

then return (false, stP , num)

8 : stP .Sack ← Sack ∪ SP

9 : stP .max-num← max{max-num, numP}

10 : return (true, stP , numP
)

Figure 9: UNF-secure ARC scheme based on a RC scheme RC (Definition 1).
The scheme uses four additional variables compared to RC: S is the set of sent
(num, h); R is the set of received (num, h); Sack is the set of (num, h) which
are expected to be received (according to the received authentication tag at);
max-num represents the largest num received in an at. All sets are append-only.
For simplicity of exposition, we omit the optimisation where R is sent as a single
hash and n ordinals as done in Fig. 6 for RID security.

stores the hash of (ad, ct) together with the ordinal num returned by RC.Receive
in a set R.

AuthSend puts in the authentication tag at the hashes of the sent and received
messages together with the last num returned by RC.Send. Intuitively, the num
in the authentication tag at indicates which messages are authenticated in the S
messages. Since the adversary can reorder messages both in the normal channel
and in the out-of-band channel, the ordinal indicates to the recipient of the
authentication tag which messages they should compare against at. AuthReceive
parses the authentication tag and checks whether the messages received by the
counterpart are in the local S set. Then it verifies whether the local set of
received messages, without the messages not encompassed by at, is a subset of
the messages sent by the counterpart. If one of these conditions is not satisfied,
then a forgery is detected. The sent messages authenticated by the counterpart
are stored in a set Sack. Receive uses this set to avoid forgeries on already

23

authenticated num’s.

Remark 10. The size of the authentication tags and the state of each party in
the scheme of Fig. 9 is linear in the number of sent and received. Messages
can nevertheless be efficiently exchanged out-of-band in practice, e.g., using
Bluetooth. Otherwise, parties can send authentication information over the
insecure channel and authenticate it using the out-of-band channel by hashing
and comparing digests [31]. If we assume that the underlying network channel
is ordered (e.g., by using TCP), then the hashes of the last sent and received
messages suffice to detect forgeries [11].

Security analysis. We now analyze the security properties of the scheme in
Fig. 9. Correctness of the scheme follows from the correctness of the underlying
RC scheme. Similarly, ORDINALS security follows from the ORDINALS security
of RC, as the scheme of Fig. 9 outputs the same num that RC outputs.

The UNF-security of the ARC scheme presented in Fig. 9, lies in the collision
resistance of the hash function that the scheme uses. When one party P wants
to authenticate the communication it produces an authentication tag containing
the hashes of all the messages inboxed and outboxed by P. These hashes can be
compared with the counterpart P to detect if any forgery has been received and
accepted by one of the participants. In what follows we prove that the scheme
of Fig. 9 is UNF-secure.

Theorem 4 (Unforgeability of ARC). Let H be a (tcr, ϵcr)-collision resistant
hash function (Definition 7). Then the ARC scheme, that we present in Fig. 9,
is (q, t, ϵcr)-UNF secure ARC scheme where t ≈ tcr.

We reduce the UNF-security of the scheme described in Fig. 9 to the collision
resistance of the hash function H. The complete proof is given in Appendix D.

6 Communication costs for attack detection

We study in this section the size of both ciphertexts and authentication tags
of r-RID RC and r-UNF ARC schemes, respectively. In particular, all our con-
structions of such schemes imply a linear growth of ciphertexts (and tags) in
the number of messages sent, in the worst case. We show here that one cannot
hope for better by proving two lower bounds. More precisely, we show that
the ciphertext space (resp. tag space) of a r-RID RC (resp. r-UNF ARC) grows
exponentially in the number of messages sent. Note that we cannot prove a
lower bound on the ciphertext size directly as it is always possible that some
ciphertext is small. However, our bounds imply that at least n bits are required
to represent any ciphertext or tag in their respective domain after the n-th
message.

24

6.1 Communication cost of r-RID RC

In what follows, we consider a RC that is perfectly correct: for all randomness r,
valid states stP and associative data ad, the function Send(stP , ad, ·; r) mapping
a plaintext to a ciphertext is injective.

The next theorem proves that ciphertext size in a r-RID RC grows linearly in
the number of messages (times either the security parameter or message size).

Theorem 5. Let Π be a perfectly correct RC, ns and λ be fixed, and Tλ,ns
be

the time complexity of the (efficient) adversary given on the left of Figure 10.
In addition, let γ ∈ Z be such that for all adversaries A running in at most time
Tλ,ns

which send at most ns messages, we have: Pr[r-RIDAΠ (1
λ)⇒ 1] ≤ 1

2γ . Let
M = {0, 1}n and C = {0, 1}k be the plaintext and ciphertext space associated
to Π, respectively. Then,

k ≥ n+ (ns − 1)(γ − 2), if γ ≤ n

k ≥ 2 + ns(n− 2), if γ > n.

A third lower bounds gives

k ≥ nns −
1

1− 2nns

2γ

,

which is tighter for low values of n (e.g. n = 1, 2) and when γ > n+ log(ns).

Proof. We show that if k is smaller than the given bounds, one can build an
encoder/decoder for a uniform source s.t. the expected bit-length of a codeword
is strictly lower than the entropy (i.e. the log of the size of the sampling set),
contradicting Shannon’s source coding theorem.

More formally, we consider a source that samples uniformly at random from
the set {0, 1}n×ns×{0, 1}r, where r is the maximal number of bits (i.e. random
coins) needed by the two procedures Setup and Init of Π and ns invocations
of Send. We present an encoder and decoder for such a source in Figure 11
(the non-boxed instructions in the encoder, and the decoder shown on the left).
First assume that the RC used in the encoder/decoder has perfect r-RID security.
Then, the sender sends ns honestly generated ciphertexts ct1, . . . , ctns

, and the
receiver receives the last ciphertext ctns

. By perfect r-RID security, for any
i < ns, any ciphertext ct′i ̸= cti should be rejected by the receiver. Thus, one
can build an (inefficient) decoder that tests all ct′i to find the correct one and
recovers the corresponding message. In a sense, all cti must be encoded in the
last ciphertext ctns

. The actual encoding is more complicated as if the r-RID
security is not perfect, there will be a number of false positives (i.e. ct′i ̸= cti
but ct′i is accepted by the receiver). Note that w.l.o.g., we omit the associated
data throughout the proof (or assume ad = ⊥) as it plays no role.

Lemma 1. Our encoder (Figure 11) is perfectly correct, i.e.

Pr[Decode(Encode(m1, . . . ,mns
, R)) = (m1, . . . ,mns

, R)] = 1 .

25

Proof. The value R output by Decode is the same as the one input in Encode.
Since the initial states depend only on R and Π is correct, ctns will decrypt
to mns

. The states stiA will be identical in both the encoding and decoding
procedures as they are generated from sti−1A , the previously recovered message
mi−1 and randomness Ri. This implies that the sets of accepting messages Si

will be the same as they depend only on st1B and sti−1A . In addition, by the
perfect correctness of Π, each message mi will be in the corresponding set Si.
Hence, the decoder can recover each message mi by reading Si at the index
given in the input.

Lemma 2. Let C be the random variable corresponding to the codeword length
output by Encode. In addition, let Fi := Si \ {mi} be the set of false positives,

where Si andmi are as in Encode. Then, E[C] ≤ k+r+
∑ns−1

i=1 1+log(E[|Fi|]+1).

Proof. By design, the encoder outputs a codeword of k + r +
∑ns−1

i=1 ⌈log(|Si|)⌉
bits. Therefore, we have

E[C] = k + r +

ns−1∑
i=1

E[⌈log(1 + |Fi|)⌉] ≤ k + r +

ns−1∑
i=1

1 + E[log(1 + |Fi|)]

which is upper bounded by k + r +
∑ns−1

i=1 1 + log(E[|Fi|] + 1), by the linearity
of expectation and the definition of Fi, the fact that ⌈x⌉ ≤ 1 + x, and Jensen’s
inequality, respectively.

Finally, we show the following key lemma.

Lemma 3. Let Fi, i ∈ [ns−1] be defined as above and n, γ as in the statement
of the Theorem. Then, E[|Fi|] ≤ 2n−γ .

Proof. We proceed by contradiction. That is, we show that if E[|Fi|] > 2n−γ ,
then there exists an adversary Ai s.t. Pr[r-RID

Ai

Π (1λ)⇒ 1] > 1
2γ .

We present such an adversary Ai on the left of Figure 10. The adversary
samples ns messages m1, . . . ,mns

at random and makes A send these with ran-
domness R1, . . . , Rns , respectively. Then, Ai makes B receive the last cipher-
text ctns . Next, Ai samples a random message m, sends it using state sti−1A

and randomness Ri to get a ciphertext ct and makes B receive it. Now, as
ctns

is sent after ct (ctns
is sent with stns−1

A and ct with sti−1A), ctns
and ct

will decrypt respectively to numns
and numi s.t. numns

> numi by correctness.
Then, if m ̸= mi, then ct is different from the i-th ciphertext cti (as we assume
Send(sti−1A , ·;Ri) is injective). Therefore, if ct is accepted and m ̸= mi, then
ct and numi satisfy the forgery predicate of the r-RID game in Figure 4. In
addition, as ctns

is sent and delivered honestly, the conditions on lines 7 and 8
of the r-RID game always hold for numns

and ctns
, and the adversary wins (i.e.

the bad-P predicate is satisfied). We call this event win.
We now compute the probability that win happens, which is the probability

that cti ̸= ct and B accepts ct. Let m1, . . . ,mns and the whole randomness R
(R = R−1, R0, . . . , Rns) be fixed. As before, let Si be the set of messages m s.t.

26

Ai

1 : m1, . . . ,mns ←$ {0, 1}n×ns

2 : R−1, R0, . . . , Rns ←$ {0, 1}r

3 : for j ∈ {1, . . . , ns} do
4 : if j = i then

5 : sti−1
A ← EXPst(A)

6 : (ctj , numj)← SEND(A, ∅,mj , Rj)

7 : RECEIVE(B, ∅, ctns)

8 : m←$ {0, 1}n

9 : , , ct← Send(sti−1
A ,m;Ri)

10 : RECEIVE(B, ∅, ct)
11 : return B

Ai

1 : m1, . . . ,mns ←$ {0, 1}n×ns

2 : R−1, R0, . . . , Rns ←$ {0, 1}r

3 : for j ∈ {1, . . . , ns} do
4 : if j = i then

5 : sti−1
A ← EXPst(A)

6 : (ctj , numj)← SEND(A, ∅,mj , Rj)

7 : (numat, at)← AUTHSEND(A)

8 : iat ← index of at

9 : AUTHRECEIVE(B, iat)

10 : m←$ {0, 1}n

11 : , , ct← Send(sti−1
A ,m;Ri)

12 : RECEIVE(B, ∅, ct)
13 : return B

Figure 10: Adversary for the proof of Theorem 5 (resp. Theorem 6) on the left
(resp. on the right).

Receive(st1B , ct) accepts, for ct = Send(sti−1A ,m;Ri). Note that since Si depends
only (m1, . . . ,mns

, R) (which are now fixed), it is deterministic. Therefore,
conditioned on m1, . . . ,mns

, R, we have

Pr
m
[win] = Pr

m
[m ∈ Si ∧m ̸= mi] = Pr

m
[m ∈ Fi] =

|Fi|
2n

as m is sampled uniformly at random. Hence, overall

Pr
m,m1,...,mns ,R

[win] = Em1,...,mns ,R
[Pr
m
[m ∈ Fi]] =

E[|Fi|]
2n

.

Note that both the source and the adversary sample m1, . . . ,mns , R uniformly

at random. Finally, if E[|Fi||] > 2n−γ , then Pr[win] > 2n−γ

2n = 2−γ , which leads
to the contradiction.

By the previous lemma, we have log(E[|Fi|]+1) ≤ log(2n−γ+1) ≤ max(0, n−γ)+
1 . Plugging this result into Lemma 2, we get E[C] ≤ k+r+(ns−1)(max(0, n−
γ)+2). In addition, as our encoder outputs a uniquely decodable code, we know
that nsn+ r ≤ E[C] by Shannon’s source coding theorem. Hence, we get

k + r + (ns − 1)(n− γ + 2) ≥ nsn+ r ⇐⇒ k ≥ n+ (ns − 1)(γ − 2)

if γ ≤ n and otherwise

k + r + (ns − 1)2 ≥ nsn+ r ⇐⇒ k ≥ 2 + ns(n− 2).

Now that the first two lower bounds have been shown, we prove the final bound
in the following lemma.

27

Encode(m1, . . . ,mns , R)

1 : parse R−1, R0, . . . , Rns ← R; pp← Setup(1λ;R−1); st0A, st
0
B, z ← Init(pp;R0)

2 : for i ∈ {1, . . . , ns} do // send the ns messages

3 : stiA, num, cti ← Send(sti−1
A ,mi;Ri)

4 : acc, st1B, num,m′
ns
← Receive(st0B, ctns) // Receive ctns : m

′
ns

= mns by perfect corr.

5 : // Collecting false positives + correct messages:

6 : for i ∈ {1, . . . , ns − 1} do
7 : Si ← ∅
8 : for m ∈ {0, 1}n do

9 : , , ct′ ← Send(sti−1
A ,m;Ri)

10 : acc, , ,m′ ← Receive(st1B, ct
′)

11 : if acc then

12 : if m ̸= mi then return (0,m1, . . . ,mns , R)

13 : Si ← Si ∪ {m}
14 : Li ← sort(Si)

15 : ei ← index of mi in Li (in binary with ⌈log(|Li|)⌉ bits)
16 : encode ctns with k bits

17 : return (1, ctns , R)

18 : return (ctns , R, e0∥ . . . ∥ens−1)

Decode(ctns
, R,E)

1 : parse R−1, R0, . . . , Rns ← R

2 : pp← Setup(1λ;R−1)

3 : st0A, st
0
B, z ← Init(pp;R0)

4 : acc, st1B, num,mns ← Receive(st0B, ctns)

5 : // Collecting false positives:

6 : for i ∈ {1, . . . , ns − 1} do
7 : Si ← ∅
8 : for m ∈ {0, 1}n do

9 : , , ct′ ← Send(sti−1
A ,m;Ri)

10 : acc, , ,m′ ← Receive(st1B, ct
′)

11 : if acc then Si ← Si ∪ {m}
12 : Li ← sort(Si)

13 : ei ← read next ⌈log(|Li|)⌉ bits of E
14 : mi ← Li[ei]

15 : stiA, , ← Send(sti−1
A ,mi;Ri)

16 : return (m1, . . . ,mns , R)

Decode(b, data, R)

1 : if b = 0 then

2 : (m1, . . . ,mns)← data

3 : return (m1, . . . ,mns , R)

4 : else ctns ← data

5 : parse R−1, R0, . . . , Rns ← R

6 : pp← Setup(1λ;R−1); st0A, st
0
B, z ← Init(pp;R0)

7 : acc, st1B , num,mns ← Receive(st0B, ctns)

8 : // Collecting false positives:

9 : for i ∈ {1, . . . , ns − 1} do
10 : Si ← ∅
11 : for m ∈ {0, 1}n do

12 : , , ct′ ← Send(sti−1
A ,m;Ri)

13 : acc, , ,m′ ← Receive(st1B, ct
′)

14 : if acc then mi ← m

15 : stiA, , ← Send(sti−1
A ,mi;Ri)

16 : return (m1, . . . ,mns , R)

Figure 11: Encoder without (resp. with) boxed instructions and decoder on
the left (resp. right) for proving the first 2 (resp. third) lower bound(s) in
Theorem 5.

Lemma 4. Let k, n, ns, γ as in the statement of the theorem. Then,

k ≥ nns −
1

1− 2nns

2γ

.

28

Proof. In order to prove this lemma, we build another encoder/decoder pair
very similar to the previous one. They are shown in Figure 11 (with the boxed
instructions for the encoder and the boxed decoder on the right). The only
difference in the encoder is that if one false positive is found, the encoder outputs
a bit set to zero and the trivial encoding of the input. Let’s call this event fail.
If fail does not occur, a bit set to 1, the last ciphertext and the randomness are
output.

In the decoder, either the first bit of the input is set to 0 and the input is
returned straightaway, or b = 1 and the decoder proceeds as before. However, as
there are no false positives, the mi can be recovered without using the indices
ei (i.e. the correct message would be the only element of Si). Overall, the
expected codeword length is E[C] = 1+αnns+(1−α)k+r, where α := Pr[fail],
as if fail occurs a trivial encoding (on 1+nns+r bits) is used, and otherwise the
encoder outputs 1 + k + r bits. By Shannon source coding theorem, we obtain

1 + αnns + (1− α)k + r ≥ nns + r ⇐⇒ k ≥ nns −
1

1− α

In addition, we have α := Pr[fail] = Pr[∪ns−1
i=1 {|Fi| ≥ 1}] ≤ ∑ns−1

i=1 Pr[|Fi| ≥ 1]
as fail occurs if at least one of the sets of false positives Fi contains an element.
Then, we have Pr[|Fi| ≥ 1] ≤ E[|Fi|] ≤ 2n−γ , where the first inequality follows
from Markov’s inequality and the second from Lemma 3. Overall, we get α ≤
ns2

n

2γ . Hence,

k ≥ nns −
1

1− α
≥ nns −

1

1− 2nns

2γ

.

Finally, some algebra shows that this bound is tighter than the second one when

2γ ≥ 2nns
2− 2ns

3− 2ns
,

that is, when γ is larger than ≈ n+ log(ns).

On non-perfect correctness. For simplicity in the proof, we only consid-
ered RC schemes which are perfectly correct. Note, however, that it should be
possible to obtain a slightly worse bound for RC schemes that are not perfectly
(computationally or statistically) correct. In more detail, perfect correctness
is used twice in the proof of Theorem 5: 1. in the encoder to argue that the
encoded messages will decrypt properly and 2. in the reduction to argue that
m ̸= mi ⇒ ct ̸= cti. Then, if the probability that a correctness error arises is
at most δ, we can argue as follows. In case 1., we can simply use the trick of
the 3rd bound (i.e. output the trivial encoding if the encoded message does not
decrypt properly) to get the same bounds −1/(1− δ · ns). Then, in case 2., we
will have Pr[win] > 2−γ − δ as we need to take into account the probability that
m triggers a correctness error. This might incur an additional ≈ −log(δ) loss in
the bound. Overall the proof still holds with δ > 0, and if it is small then the
bounds remain nearly identical.

29

6.2 Communication cost of r-UNF ARC

We consider a perfectly correct ARC (i.e. the function Send(stP , ad, ·; r) is injec-
tive for all randomness r, valid states stP and associative data ad). The following
theorem states that the tag size of a secure ARC grows linearly in the number
of messages (times either the security parameter or message size).

Theorem 6. Let Π be a perfectly correct ARC, ns and λ be fixed, and Tλ,ns be
the time complexity of the (efficient) adversary given on the right of Figure 10.
In addition, let γ ∈ Z be such that for all adversaries A running in at most time
Tλ,ns

which send at most ns messages, we have: Pr[r-UNFAΠ (1
λ)⇒ 1] ≤ 1

2γ . Let
M = {0, 1}n and T = {0, 1}k be the plaintext and tag space associated to Π,
respectively. Then, k ≥ ns(γ − 2), if γ ≤ n, and k ≥ ns(n − 2), if γ > n. A
third lower bounds gives

k ≥ nns −
1

1− 2n(ns+1)
2γ

,

which is tighter for low values of n (e.g. n = 1, 2) and when γ > n+ log(ns).

The proof is nearly identical to the one of Theorem 5; we present the differ-
ences in Appendix E.

7 Performance and security trade-offs

In Section 6 we showed that r-RID and r-UNF impose a linear communication
complexity for RC and ARC schemes. In this section we explore ways to bypass
these lower bounds and propose practical protocols for active attack detection.
We first argue that s-RID/s-UNF security can be achieved at a much lower
cost than the counterparts r-RID/r-UNF. Motivating this analysis, we propose
a lightweight three-move protocol that authenticates communication in both
direction over the out-of-band channels. Noting that ciphertexts size is un-
bounded in the schemes that we presented up to this point, we then propose an
optimised scheme for UNF security that prunes unnecessary messages included
in authentication tags.

7.1 On the practicality of s-RID and s-UNF security

Notion r-RID s-RID

Overhead O(n(λ+ c)) O(λ+ nc)

Optimized overhead (App. C) N/A O(λ+ nfreshc)

Table 1: Overhead induced by the two RID security notions. We assume that
n messages are received and c is the space needed to encode an ordinal. The
variable nfresh refers to the number of messages received in the last two epochs.

30

We focus here on s-RID security, but similar arguments hold for s-UNF secu-
rity. The RRC scheme in Fig. 6 achieves s-RID security by sending to the counter
part the list of received nums and an hash of the R set. Informally, this suffices
for security because a party can immediately detect when their counterpart has
received a forgery (by keeping in state their sent messages and recomputing the
hash). Table 1 summarizes the overheads of the two notions together with the
optimization presented in Appendix C, where we show that it is enough to only
send information about messages received during the two last epochs. This sig-
nificantly reduces the overhead for the scenarios in which the communication is
“balanced”.

One can reduce ciphertext size further by optimising for the “good case”
scenario where messages are delivered in-order; in this case, ordinals can be
encoded in ranges. For epochs with no lost messages, it suffices to encode
only the last index. In any case, as the size of a single message in today’s
secure messaging applications can be several kilobytes, the overhead that s-RID
imposes seems reasonable. We leave a deeper and concrete analysis to determine
the impact of RID/UNF security in practice to future work.

In Fig. 6, the entire set of received messages is hashed (using a regular hash
function) every time a message is sent by P. Consequently, when P receives
a new message, the entire hash must be re-computed when P sends their next
message. To avoid this, the scheme can use an incremental hash function (Def-
inition 9) such that, when a message is received, an efficient operation only
depending on the new message and the previous digest can be executed to de-
rive the new digest. Hash digests can be as small as a group element [13]. This
enables parties to prune their set of sent/received messages in state. For exam-
ple, if P receives a message m claiming that P has received the first k messages
from P, and P has received messages for all possible ordinals that precede the
ordinal of m, then P can safely store just the incrementally-hashed value cor-
responding to the first k messages, since P can no longer claim to have only
received a strict subset of the k messages.

Remark 11. The RID-secure RC of Fig. 6 sends the set of received ordinals for
authentication (line 2 of the RRC.Send algorithm). Since ordinals are elements
of a set on which a total order is defined, a simple optimization—that could
reduce the overhead by up to 50%—consists in sending the smallest set among
the set of received ordinals or the set of not received ordinals alongside a bit
indicating which type of set has been sent. This optimization applies to all
schemes that send sets of ordinals.

7.2 Lightweight bidirectional authentication

We propose a three-move bidirectional authentication protocol. Fig. 12 de-
scribes the protocol at a high level. Parties include in the authentication tag
only the set of received messages. The receiver of the tag compares then the set
of received messages from the counterpart with the set of sent messages. We
envision this approach to be used when participants meet in person or online

31

Active Attack Detection for Messaging 29

P P

AuthSend(stP) RP

AuthReceive(stP , at)

RP , at-succ AuthSend(stP)

AuthReceive(stP , at)

AuthSend(stP) at-succ

AuthReceive(stP , at)

Fig. 11: Description of the three-move authentication procedure. The boolean
at-succ indicates whether the counterpart’s set of received messages is a subset
of the local set of sent messages.

of received messages. The receiver of the tag compares then the set of received
messages from the counterpart with the set of sent messages. We envision this
approach to be used when participants meet in person or online and can both
authenticate the respective views of the conversation at the same time. This is
already required in Signal—with the verification of safety numbers [Mar17]—and
other messaging solutions. We defer our formal investigation of the scheme to
Appendix F.1.

7.3 Reducing bandwidth for UNF security

In Figure 12, we present a scheme that optimises bandwidth consumption for
UNF security. A complete description and security proof are in Appendix F.2.
Our scheme takes advantage of the fact that messages sent out-of-band cannot be
forged. Suppose that P sends an authentication tag to P, then P acknowledge
the reception of the tag to P. At this point, P no longer needs to send the
information that P has already obtained. As usual, our scheme supports out-
of-order communication even on the authenticated channels. This approach is
complicated by the fact that parties have to keep track of, e.g., which tags their
partner has received to determine what is safe to prune from state (in Sat-Seen).
This state management incurs overhead itself but is expected to be much less
than the communication performed in-band: in practice, most of the time parties
can expect that out-of-band communication occurs in lock-step.

The following theorem states that pruning preserves security.

Theorem 7. Let H be a (tcr, ✏cr)-collision resistant hash function (Defini-
tion 7). Then the ARC-OP scheme (Fig. 12) is correct, ORDINALS secure, and
(q, t, ✏cr)-UNF secure, where t ⇡ tcr.

Figure 12: Description of the three-move authentication procedure. The boolean
at-succ indicates whether the counterpart’s set of received messages is a subset
of the local set of sent messages.

and can both authenticate the respective views of the conversation at the same
time. This is already required in Signal—with the verification of safety num-
bers [29]—and other messaging solutions. We defer our formal investigation of
the scheme to Appendix F.1.

7.3 Reducing bandwidth for UNF security

In Figure 13, we present a scheme that optimises bandwidth consumption for
UNF security. A complete description and security proof are given in Ap-
pendix F.2. Our scheme takes advantage of the fact that messages sent out-
of-band cannot be forged. Suppose that P sends an authentication tag to P,
then P acknowledge the reception of the tag to P. At this point, P no longer
needs to send the information that P has already obtained. As usual, our scheme
supports out-of-order communication even on the authenticated channels. This
approach is complicated by the fact that parties have to keep track of, e.g.,
which tags their partner has received to determine what is safe to prune from
state (in Sat-Seen), which incurs relatively small overhead in typical executions.

The following theorem states that pruning preserves security.

Theorem 7. LetH be a (tcr, ϵcr)-collision resistant hash function (Definition 7).
hash function. Then the ARC-OP scheme (Fig. 13) is correct, ORDINALS secure,
and (q, t, ϵcr)-UNF secure, where t ≈ tcr.

The collision resistance of the hash function implies UNF-security and this
is not affected by the pruning operations. The complete proof is given in Ap-
pendix F.2.

8 Conclusion

This work considers active attack detection for secure messaging with immedi-
ate decryption, including its its inherent performance limitations and how to
overcome them. We conclude with some avenues for future work: 1) Analyze
the practical overhead of in- and out-of-band authentication; and 2) Define RID

32

ARC-OP.Setup(1λ)

1 : pp0 ← RC.Setup(1λ); hk← H.KGen(1λ)

2 : return (pp0, hk)

ARC-OP.Init(pp)

1 : (pp0, hk)← pp

2 : (st′A, st
′
B, z

′
)← RC.Init(pp)

3 : num,max-num, cntat,max-cntat ← 0

4 : S,R, Sack, Sat, Sat-Seen← ∅

5 : stA ← (st′A, hk, S,R, Sack, num,max-num,

6 : cntat,max-cntat, Sat, Sat-Seen)

7 : stB ← (st′B, hk, S,R, Sack, num,max-num,

8 : cntat,max-cntat, Sat, Sat-Seen)

9 : z ← (z
′
, pp)

10 : return (stA, stB, z)

ARC-OP.Send(stP , ad, pt)

1 : (st′P , hk, S, · · ·)← stP

2 : (stP .st′P , num, ct)← RC.Send(st′P , ad, pt)

3 : h← H.Eval(hk, (ad, ct))

4 : stP .S← S ∪ {(num, h)}
5 : stP .num← num

6 : return (stP , num, ct)

ARC-OP.Receive(stP , ad, ct)

1 : (st′P , hk, ,R, Sack, ,max-num, · · ·)← stP

2 : (acc, st′P , num, pt)← RC.Receive(st′P , ad, ct)

3 : if ¬acc : return (false, stP ,⊥,⊥)
4 : h← H.Eval(hk, (ad, ct))

5 : if num ≤ max-num ∧ (num, h) /∈ Sack :

6 : return (false, stP ,⊥,⊥)
7 : stP .R← R ∪ {(num, h)}

8 : stP .st′P ← st′P

9 : return (acc, stP , num, pt)

ARC-OP.AuthSend(stP)

1 : (, , S,R, , num, , cntat, , Sat-Seen)← stP

2 : at← (S,R, num, cntat, Sat-Seen)

3 : stP .cntat ← stP .cntat + 1

4 : stP .Sat[stP .cntat]← S

5 : stP .Sat-Seen← ∅
6 : return (stP , num, at)

ARC-OP.AuthReceive(stP , at)

1 : (, , S,R, Sack, num,max-num,

2 : cntat,max-cntat, Sat,)← stP

3 : (SP
,RP

, numP
, cntat

P
, Sat-Seen

P
)← at

4 : RP
⊆ ← {(num,) ∈ R : num ≤ numP}

5 : if cntat
P ≤ max-cntat :

6 : prune(stP ,RP
, cntat

P
, Sat-Seen

P
,RP

⊆)

7 : return (true, stP , numP
)

8 : // P received a forgery

9 : if RP ⊈ S : return (false, stP , num)

10 : // P received a forgery

11 : if RP
⊆ ⊈ SP

: return (false, stP , num)

12 : stP .Sack ← stP .Sack ∪ SP

13 : stP .max-num← max{max-num, numP}

14 : stP .max-cntat ← max{cntatP , stP .max-cntat}

15 : prune(stP ,RP
, cntat

P
, Sat-Seen

P
,RP

⊆)

16 : return (true, stP , numP
)

prune(stP ,R
P , cntat

P ,Sat-Seen
P ,RP⊆)

1 : stP .Sat-Seen← stP .Sat-Seen ∪ {cntatP}

2 : stP .R← stP .R \ RP
⊆

3 : for i ∈ Sat-Seen
P

do

4 : stP .S← stP .S \ stP .Sat[i]; stP .Sat[i]← ∅

Figure 13: Optimised UNF-secure ARC scheme ARC-OP based on a RC scheme
RC (Definition 1). The sets S, R and Sack are as in Fig. 6. The variable max-num
represents the largest num received in an at. The counters cntat and max-cntat
keep track of how many at have been sent and largest cntat received in an at,
respectively. Sat-Seen is the list of cntat of received at since the last sent one;
Sat[i] contains the content of S sent in the ith at.

and UNF notions and corresponding constructions in the group setting.

33

Acknowledgements. Khashayar Barooti and Löıs Huguenin-Dumittan are
supported by a grant (project no. 192364) of the Swiss National Science Foun-
dation (SNSF). We thank Olivier Becker and Nathan Duchesne for pointing
out bugs in our constructions and proofs, and the anonymous reviewers of this
paper for their feedback, notably the reviewer who proposed the epoch-based
s-RID optimisation.

34

References

[1] Alwen, J., Coretti, S., Dodis, Y.: The Double Ratchet: Security Notions,
Proofs, and Modularization for the Signal Protocol. In: EUROCRYPT
(2019)

[2] Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Modular Design of Secure
Group Messaging Protocols and the Security of MLS. In: CCS (2021)

[3] Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key
agreement with active security. In: TCC (2020)

[4] Alwen, J., Jost, D., Mularczyk, M.: On the insider security of mls. In:
CRYPTO (2022)

[5] Balfanz, D., Smetters, D.K., Stewart, P., Wong, H.C.: Talking to strangers:
Authentication in ad-hoc wireless networks. In: NDSS (2002)

[6] Balli, F., Rösler, P., Vaudenay, S.: Determining the core primitive for
optimally secure ratcheting. In: ASIACRYPT (2020)

[7] Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratch-
eted Encryption and Key Exchange: The Security of Messaging. In:
CRYPTO (2017)

[8] Bienstock, A., Dodis, Y., Garg, S., Grogan, G., Hajiabadi, M., Rösler, P.:
On the Worst-Case Inefficiency of CGKA. In: TCC (2022)

[9] Bienstock, A., Dodis, Y., Rösler, P.: On the price of concurrency in group
ratcheting protocols. In: TCC (2020)

[10] Bienstock, A., Fairoze, J., Garg, S., Mukherjee, P., Raghuraman, S.: A
More Complete Analysis of the Signal Double Ratchet Algorithm. In:
CRYPTO (2022)

[11] Caforio, A., Durak, F.B., Vaudenay, S.: Beyond Security and Efficiency:
On-Demand Ratcheting with Security Awareness. In: PKC (2021)

[12] Civit, P., Gilbert, S., Gramoli, V., Guerraoui, R., Komatovic, J., Milose-
vic, Z., Serendinschi, A.: Crime and punishment in distributed byzantine
decision tasks. Cryptology ePrint Archive (2022)

[13] Clarke, D.E., Devadas, S., van Dijk, M., Gassend, B., Suh, G.E.: Incre-
mental Multiset Hash Functions and Their Application to Memory Integrity
Checking. In: ASIACRYPT (2003)

[14] Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A
formal security analysis of the signal messaging protocol. In: EuroS&P
(2017)

35

[15] Cohn-Gordon, K., Cremers, C., Garratt, L.: On Post-compromise Security.
In: CSF (2016)

[16] Cremers, C., Zhao, M.: Provably post-quantum secure messaging with
strong compromise resilience and immediate decryption. IACR Cryptol.
ePrint Arch. (2022)

[17] Dowling, B., Günther, F., Poirrier, A.: Continuous authentication in secure
messaging. In: ESORICS (2022)

[18] Dowling, B., Hale, B.: There Can Be No Compromise: The Necessity
of Ratcheted Authentication in Secure Messaging. IACR Cryptol. ePrint
Arch. p. 541 (2020)

[19] Dowling, B., Hale, B.: Secure Messaging Authentication against Active
Man-in-the-Middle Attacks. In: EuroS&P (2021)

[20] Dowling, B., Hauck, E., Riepel, D., Rösler, P.: Strongly anonymous ratch-
eted key exchange. In: ASIACRYPT (2022)

[21] Durak, F.B., Vaudenay, S.: Bidirectional Asynchronous Ratcheted Key
Agreement with Linear Complexity. In: IWSEC (2019)

[22] Green, M.D., Miers, I.: Forward secure asynchronous messaging from punc-
turable encryption. In: S&P (2015)

[23] Haeberlen, A., Kouznetsov, P., Druschel, P.: Peerreview: Practical ac-
countability for distributed systems. SIGOPS 41(6), 175–188 (2007)

[24] Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with
identifiable abort. In: CRYPTO (2014)

[25] Jacob, R., Larsen, K.G., Nielsen, J.B.: Lower bounds for oblivious data
structures. In: SODA (2019)

[26] Jaeger, J., Stepanovs, I.: Optimal Channel Security Against Fine-Grained
State Compromise: The Safety of Messaging. In: CRYPTO (2018)

[27] Jost, D., Maurer, U., Mularczyk, M.: Efficient Ratcheting: Almost-
Optimal Guarantees for Secure Messaging. In: EUROCRYPT (2019)

[28] Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious ram lower bound!
In: CRYPTO (2018)

[29] Marlinspike, M.: Safety number updates. https://signal.org/blog/
verified-safety-number-updates/ (2017), accessed: 22-05-2022

[30] Naor, M., Rotem, L., Segev, G.: Out-Of-Band Authenticated Group Key
Exchange: From Strong Authentication to Immediate Key Delivery. In:
ITC (2020)

36

https://signal.org/blog/verified-safety-number-updates/
https://signal.org/blog/verified-safety-number-updates/

[31] Pasini, S., Vaudenay, S.: An optimal non-interactive message authentica-
tion protocol. In: CT-RSA (2006)

[32] Pijnenburg, J., Poettering, B.: On Secure Ratcheting with Immediate De-
cryption. In: ASIACRYPT (2022)

[33] Poettering, B., Rösler, P.: Asynchronous ratcheted key exchange. IACR
Cryptol. ePrint Arch. p. 296 (2018)

[34] Poettering, B., Rösler, P.: Towards Bidirectional Ratcheted Key Exchange.
In: CRYPTO (2018)

[35] Scott-Railton, J., Campo, E., Marczak, B., Razzak, B.A., Anstis, S.,
Böcü, G., Solimano, S., Deibert, R.: CatalanGate: Extensive Mercenary
Spyware Operation against Catalans Using Pegasus and Candiru. https:
//citizenlab.ca/2022/04/catalangate-extensive-mercenary-
spyware-operation-against-catalans-using-pegasus-candiru/

(2022), accessed: 22-05-2022

[36] Stäuble, M.: Data structures for puncturable encryption, bachelor thesis
(2021)

[37] Support, S.: Twilio Incident: What Signal Users Need to Know. https:
//support.signal.org/hc/en-us/articles/4850133017242 (2022), ac-
cessed: 03-10-2022

37

https://citizenlab.ca/2022/04/catalangate-extensive-mercenary-spyware-operation-against-catalans-using-pegasus-candiru/
https://citizenlab.ca/2022/04/catalangate-extensive-mercenary-spyware-operation-against-catalans-using-pegasus-candiru/
https://citizenlab.ca/2022/04/catalangate-extensive-mercenary-spyware-operation-against-catalans-using-pegasus-candiru/
https://support.signal.org/hc/en-us/articles/4850133017242
https://support.signal.org/hc/en-us/articles/4850133017242

A Primitives

A.1 Hash function

Definition 7 (Hash function). A hash function H consists of PPT algorithms
Gen and Eval such that:

• Gen(1λ)→ hk takes a unary string 1λ and outputs hash key hk.

• Eval(hk, pt) → h inputs a hash key hk and a message pt ∈ {0, 1}∗ and
outputs digest h.

Game CRAH(1
λ)

1 : hk← Gen(1λ)

2 : m1,m2 ← A(hk)
3 : if H.Eval(hk,m1) = H.Eval(hk,m2) ∧m1 ̸= m2 then return 1

4 : return 0

Figure 14: Collision resistance of a hash function H.

Definition 8 (Collision resistance). We say that a hash function H is (t, ϵ)-
collision resistant if, for all adversaries A running in time at most t, we have:

Pr[CRAH(1
λ)⇒ 1] ≤ ϵ,

where game CRAH is defined in Fig. 14.

A.2 Incremental hash function

Clarke et al. [13] define incremental multiset hash functions and multiset colli-
sion resistance. That is, a hash function which takes a set of elements as input,
where the digest can be updated with an operation with complexity propor-
tional to the number of elements added/removed. For our purposes, it suffices
to consider an incremental set hash function and set collision resistance.

Definition 9 (Incremental set hash function). An incremental set hash function
H consists of the following PPT algorithms:

• IncGen(1λ) ←$ hk: This probabilistic algorithm takes a unary string 1λ and
outputs hash key hk.

• IncEval(hk, S = {m1, . . . ,mk}) → hS : This deterministic algorithm takes
a hash key hk and set S and outputs digest hS .

• IncEval(hk, h, Sh = {m′1, . . . ,m′k′}, S = {m1, , . . . ,mk}) → hS∪Sh
: This

deterministic algorithm takes a hash key hk, digest h, set Sh (associated
with h) and set S and outputs a digest hSh∪S .

38

Game SCRAH(1
λ)

1 : hk←$H.IncGen(1λ)
2 : (S1 = {mi}i, S2 = {m′

j}j)←$A(hk)
3 : if H.IncEval(hk, S1) = H.IncEval(hk, S2) ∧ (S1 ̸= S2) :

4 : return 1

5 : return 0

Figure 15: Set collision resistance of an incremental set hash function H.

Definition 10 (Set collision resistance). A family of incremental set hash func-
tion H is (t, ϵ)-set collision resistant, if for any adversary A running in at most
time t the following holds

Pr[SCRAH(1
λ)⇒ 1] ≤ ϵ

We refer the reader to Clarke et al. [13] for more details about incremental
set hash functions.

B Proofs for Theorem 1 and Theorem 2

In this section we provide the omitted proofs and details in Section 4.1. We
start by proving Theorem 1.

B.1 Proof for Theorem 1

Theorem 1. Let us assume there exists an adversary Ã playing the r-RID game,
running in time t̃ and making at most q̃ queries. Let us call the advantage of
this adversary ϵ̃, hence we have

Pr[r-RIDÃRRC(1
λ)⇒ 1] = ϵ̃.

Let E be an event that occurs when r-RIDRRC(Ã) outputs 1 The proof strategy
is to construct an adversary A∗, running in time ≈ t̃ such that

Pr[CRA
∗

H (1λ)⇒ 1 | E] = 1.

By definition of r-RID, E occurring means that there exist
P, (num, ad, ct), (num′, ad′, ct′), x such that bad-P(log,P, num, num′, ad′, ct′)
and forgery(log,P, num, ad, ct, x) are both true. This means that the mes-
sage with ordinal num was not sent by P but received at some point by P
(log[x] = (“rec”,P, num, ad, ct)), and the message with ordinal num′ was also
received and was actually sent by P. Moreover, num < num′.

We separate the two cases where 1) the message with ordinal num (the
forged message) is received before the message with ordinal num′ (the honest

39

message), and 2) the message with ordinal num′ is received first. We first analyse
the former case.

We argue that unless the adversary found a collision, the message with
ordinal num′ (the honest message) would not have been delivered. Suppose
that the honest message was delivered. Let stP be the state of the re-
ceiver P while receiving message num′, and stP be the state of the sender
P while sending the message (num′, ad′, ct′). As (“rec”,P, num′, ad′, ct′) ∈
log, it means RRC.Receive(stP , ad

′, ct′) → (true, st′P , num
′, pt′), which implies

checks(stP , ct
′, num′,H.Eval(hk, (num′, ad′, ct′)) returned false.

Note that as num ≤ num′, we have

(num,H.Eval(hk, (num, ad, ct))) ∈ R′ and (num,H.Eval(hk, (num, ad, ct))) ∈ ct′.S,

as otherwise r-bool would have been set to true in line 5. Let hf :=
H.Eval(hk, (num, ad, ct)). As (num, hf) ∈ ct′.S, we have

(num, hf) ∈ stP .S (1)

as ct′ was sent by P. This would mean that P did send a message with ordinal
num, let us call it (num, adh, cth). Hence, we have that,

(H.Eval(hk, (adh, cth, num)), num) ∈ stP .S (2)

By combining (1) and (2) and the fact that num can appear only once in stP (due
to the ORDINALS security of RRC), we get that H.Eval(hk, (num, adh, cth)) =
H.Eval(hk, (num, ad, ct)) which gives a collision. This is because (adh, cth) ̸=
(ad, ct) as (“send”,P, num, adh, cth) ∈ log and (“send”,P, num, ad, ct) /∈ log.

Now we discuss the case where (num′, ad′, ct′) is received before (num, ad, ct).
As num ≤ num′, this would mean that while receiving (num, ad, ct), max-num ≥
num′ ≥ num. This would mean (num, h) ∈ stP .Sack, otherwise the condition on
line 9 would have not been satisfied. As Sack is only updated by adding the

elements in SP when a message is received, and as (num, hf) is not in ct∗.S,
for any honest ct∗, there should exist a forged message (num′′, ad′′, ct′′) received
before (ad, ct, num) such that (num, hf ,) ∈ ct′′.S. As we considered (num, num′)
to be the first pair of messages violating the r-RID property, we know that
num′′ > num′ > num.

We split the two cases where (num′′, ad′′, ct′′) is received before
(num′, ad′, ct′) and the case where it is received after (num′, ad′, ct′). Let
us consider the first case. We argue in this case (num′, ad′, ct′) (the honest
message) would not be accepted. As num′′ is received before num′, num′ <
num′′ ≤ max-num. And as r-bool = false, S′ack ⊆ ct′.S (line 12). However
(num, hf) ∈ S′ack, as it was in ct′′.S, hence it should also be in ct′.S, which would
mean hf = H.Eval(hk, adh, cth, num) which is again a collision.

Now let us consider the case where (num′′, ad′′, ct′′) is received after the
message (num′, ad′, ct′). We argue that (num′′, ad′′, ct′′) should not have been
accepted. We split the cases where num′′ ≥ max-num and num′′ < max-num.
Let us consider the later first. As (ad′′, ct′′, num′′) was accepted, and hence

40

r-bool = false, ct′′.S ⊂ Sack (line 10). Now (num, hf) ∈ ct′′.S, so (num, hf) ∈ Sack.
As without loss of generality we can imagine (num′′, ad′′, ct′′) being the first
message vouching for (hf , num), this would mean (num, hf) was added to Sack
by an honest message, i.e. hf = hh which leads to a collision again.

Finally for the case in which num′′ ≥ max-num, again, considering that
(num′′, ad′′, ct′′) is the first message vouching for (hf , num), we have (num, hf) ∈
Sack \ ct′′.S (and so r-bool would be set to true) unless hf = hh. Moreover, at
this point (num′, ad′, ct′) has already been received so, max-num ≥ num′ > num.
Hence, unless hf = hh, r-bool would be set to true in line 7. This con-
cludes the proof that (num′, ad′, ct′), (num, ad, ct) are accepted if and only if
H.Eval(hk, (num, adh, cth)) = H.Eval(hk, (num, ad, ct)).

Now we describe the CR adversary A∗. A∗ runs the initialisation of RRC
by replacing the sampling step of hk with the hk given by the CRH game,
then runs Ã as a subroutine, and computes (“rec”,P, num, adf , ctf) ∈ log, and
(“send”,P, num, adh, cth) ∈ log such that (adf , ctf) ̸= (adh, cth) and hf = hh if
possible. Given E, this pair always exists as we have Pr[CRH(A∗)⇒ 1 | E] = 1.
Moreover, as A∗ is just running Ã as a subroutine and not doing anything extra,
the time it runs is also ≈ t̃. Finally, we have

Pr[CRA
∗

H (1λ)⇒ 1] ≥ Pr[CRA
∗

H (1λ)⇒ 1|E] · Pr[E]

= Pr[r-RIDÃ(1λ)⇒ 1] = ϵ̃ . (3)

Hence, ϵ̃ ≤ Pr[CRA
∗

H (1λ) ⇒ 1]. This means that if H is (tcr, ϵcr)-collision re-
sistant, then PRCrs is (q, t, ϵcr)-r-RID secure with tcr ≈ t which concludes the
proof.

B.2 Proof for Theorem 2

We proceed by presenting the proof for s-RID security of the construction intro-
duced in Figure 6.

Theorem 2. The proof strategy is identical to the one done for proof of Theo-
rem 1. For any adversary Ã playing the s-RID game, we construct an adversary
A∗ playing the CR game with comparable complexity. We first describe the
adversary A∗ in terms of Ã and proceed by proving that A∗ wins at least as
often as Ã.

As with the previous proof we define an event E that occurs only when

s-RIDÃ(1λ)⇒ 1, and we prove that Pr[CRA
∗
(1λ)⇒ 1|E] = 1.

The event s-RIDÃ(1λ) ⇒ 1, means ∃P, num, ad, ct, num′, ad′, ct′, x, y such
that both x < y, (num, pt, ct) is a forged message received by P at time x,
(num′, ad′, ct′) is an honest message sent by P at time y and received by P. As
(num′, ad′, ct′) was received, RRC.checks returned 0.

Let us define hf = H.Eval(hk, (num, ad, ct)). When receiving the forged
message, i.e. at time x, P adds (num, hf) to stP .R. As y > x at time y, (num, hf)
is still in stP .R. Hence num ∈ nums′ for the honest message (num′, ad′, ct′). Now
as (num′, ad′, ct′) was accepted, we have that due to line 3 of checks,

41

H.Eval(hk′,R∗) = H.Eval(hk′, stP .R) .
If R∗ ̸= stP .R we have already found a collision. So let us assume R∗ = stP .R.

Now as (num, hf) ∈ stP .R, we also have that (num, hf) ∈ R∗ ⊂ stP .S.
This would mean that there exists an honest message (num, adh, cth) such

that H.Eval(hk, (num, adh, cth)) = hf . But note that as (num, adh, cth) is an
honest message, (“send”,P, num, adh, cth) ∈ log but (“send”,P, num, ad, ct) /∈
log as the message was forged, hence (num, adh, cth) ̸= (num, ad, ct), which again
yields a collision pair.

Now the CR adversaryA∗ does the following: they run the s-RID adversary Ã
as a subroutine with the hk given by the CR game. They later find P, num, ad, ct
, num′, ad′, ct′, x, y satisfying the condition, in case they exist. Now by exposing
the states of the parties at time y they can find the collision pairs described
above. Hence we have,

Pr[CRA
∗
(1λ)⇒ 1] ≥ Pr[CRA

∗
(1λ)⇒ 1|E] · Pr[E] = Pr[s-RIDÃ(1λ)⇒ 1] (4)

Moreover the run-time of A∗ is roughly the run-time of Ã. This concludes the
proof.

Remark 12. This proof can be trivially extended to the optimized version of the
compiler with respect to set collision resistance.

C Optimizing the s-RID construction

In this section we show how to design an optimized s-RID-secure RC scheme
given a correct and ORDINALS-secure RC scheme and provide a proof sketch.
A formal description of the optimized s-RID-secure RC scheme is given in Fig. 17.
We start with a high-level description of the optimization.

The parties start at epoch = 0 and epoch = 1, respectively. Each time
a party sends a message they also attach their current epoch to the message.
Upon receiving a message, a party P with epoch = t checks whether the epoch
attached to the message received from P is at most t + 1. If the P’s epoch is
exactly t+ 1 the party P updates their epoch to t+ 2. The epoch value of the
parties are always one apart at each time.

To achieve s-RID security the sender does the following. Whenever sending
a message with epoch = t, the sender attaches the num and the accumulated
hash of all messages they received during the time their epoch was t and t− 2.
Meaning, the parties do the same as the original s-RID construction, but only
for the messages they have received in the last 2 epochs.

We continue by stating the main theorem of this section and providing a
proof sketch.

Theorem 8. Let H be a (tcr, ϵcr) collision resistant hash function. Then
s-RID-RC (defined in Fig. 17) is a (q, t, ϵcr)-r-RID-secure RC where tcr ≈ t and
q is upper bounded by t.

42

sketch. Let [(ctf , ·, tf), (cth, ·, th)], be the closest pair of sent-received messages
contradicting the s-RID condition. Meaning (ctf , ·, tf) is a forgery received by
P before they sent the honest message (cth, ·, th) which was received by P. We
consider the time when (cth, ·, th) was sent by P. As mandated by the construc-
tion (cth, ·, th) contained num values and accumulated hash of all messages P
has received at epochs th and th− 2. Following the same argument as the proof
of Theorem 2 one can show that no forgeries, including (ctf , ·, tf), were received
by P while epochP ∈ {th, th − 2}.

The two messages that changes epochP from th − 4 to th − 2 and from
th − 2 to th, were honest messages by P. Let us call them (ctth−3, ·, th −
3) and (ctth−1, ·, th − 1) respectively. Note that, both these messages were
received after (ctf , ·, tf) was received and before (ctf , ·, tf) was sent, as otherwise
(cth, ·, th) would contradict (ctf , ·, tf). Note that between sending the messages
(ctth−3, ·, th−3) and (ctth−1, ·, th−1), epochP was changed meaning P received
a message with epoch = th − 2 that caused the change of epochP . Let us call
this message (ctth−2, ·, th− 2). We argue this message should have been forged.

Let us assume by contradiction that this message was honest. Note that
(ctth−2, ·, th − 2) was sent after (ctth−3, ·, th − 3) was received, hence after
(ctf , ·, tf) was received. Now if (ctth−2, ·, th − 2) is honest it forms a pair with
(ctf , ·, tf) which violates the s-RID condition and has less distance from the orig-
inal pair which is a contradiction. So (ctth−2, ·, th − 2) must have been forged.
A visualisation of the scenario can be found in Fig. 16.

One other observation is that, (ctth−2, ·, th − 2) was received before
(ctth−1, ·, th − 1) was sent, hence, before (cth, ·, th) was received. This shows
that the pair [(ctth−2, ·, th − 2), (ctth−1, ·, th − 1)] also violates the s-RID (for P
and not P) and has less distance than the original pair.

Receiver P Sender P

epoch = tf

...

epoch = th − 3 epoch = th−3

epoch = th − 2

epoch = th − 2

epoch = th − 1 epoch = th − 1

epoch = th

epoch = th

Figure 16: Visualising the proof sketch of Theorem 8. The dotted messages
are forged and the others are honest messages. Intuitively we argue if the last
message did not contradict the first message, the fourth message would have
contradicted the third, therefore violating s-RID in the other direction.

43

s-RID-RC.Setup(1λ)

1 : pp0 ←$ RC.Setup(1λ)

2 : hk←$H.KGen(1λ)

3 : hk′ ←$H.KGen(1λ)

4 : pp← (pp0, hk, hk
′
)

5 : return pp

s-RID-RC.Init(pp)

1 : (pp0, hk, hk
′
)← pp

2 : (st′A, st
′
B, z

′
)←$ RC.Init(pp0)

3 : acked-epoch← 0

4 : epoch← 0

5 : S,Rcurr,Rprev ← ∅

6 : stA ← (st′A, hk, hk
′
, S,Rcurr,Rprev, ep)

7 : stB ← (st′B, hk, hk
′
, S,Rcurr,Rprev, ep)

8 : z ← (z
′
, pp)

9 : return (stA, stB, z)

s-RID-RC.Send(stP , ad, pt)

1 : (st′P , hk, hk′, S,Rcurr,Rprev, epoch)← stP

2 : nums′ ← {num′
: (num′

,) ∈ Rcurr ∪ Rprev}

3 : R′ ← (nums′,H.Eval(hk′,Rcurr ∪ Rprev))

4 : ad′ ← (ad, epoch,R′
)

5 : (stP .st′P , num, ct′)←$ RC.Send(st′P , ad′, pt)

6 : ct← (ct′, epoch,R′
)

7 : h← H.Eval(hk, (num, ad, ct))

8 : stP .S← S ∪ {(num, h)}
9 : return (stP , num, ct)

s-RID-RC.Receive(stP , ad, ct)

1 : (ct′, epochP ,RP
)← ct

2 : (st′P , hk, hk′, S,Rcurr,Rprev, epoch)← stP

3 : ad′ ← (ad, epochP ,RP
)

4 : (acc, st′P , num, pt)← RC.Receive(st′P , ad′, ct′)

5 : if ¬acc : return (false, stP ,⊥,⊥)
6 : h← H.Eval(hk, (num, ad, ct))

7 : if checks(stP , ct, h, num) :

8 : return (false, stP ,⊥,⊥)
9 : stP .Rcurr ← Rcurr ∪ {(num, h)}

10 : stP .st′P ← st′P

11 : // Advance epochs accordingly

12 : if epochP = stP .epoch + 1 :

13 : stP .epoch← stP .epoch + 2

14 : stP .Rprev ← Rcurr

15 : stP .Rcurr ← ∅
16 : return (acc, stP , num, pt)

checks(stP , ct, h, num)

1 : (nums′, h′
)← ct.R

2 : epoch′ ← ct.epoch

3 : if epoch′ > stP .epoch + 1 :

4 : s-bool← 1

5 : R∗ ← {(num′
,) ∈ stP .S : num′ ∈ nums′)}

6 : s-bool← s-bool ∨ (H.Eval(stP .hk′,R∗
) ̸= h

′
)

7 : return s-bool

Figure 17: Optimized s-RID-secure RC scheme given a correct and ORDINALS-
secure RC scheme.

D Proof for Theorem 4

In this section we provide the complete omitted proof for Theorem 4.

Proof. Assume an adversary A playing the UNF game (Fig. 7), which makes at
most q oracle queries and runs in time at most t. We assume the advantage of
A is ϵ, hence by Definition 6 we have Pr[UNFA(1λ) ⇒ 1] = ϵ. We construct
an adversary B, running in time approximately equal to t, which, running A
as a subroutine, wins the collision resistance game for H (Definition 8), that is

Pr[CRB
A

H (1λ)⇒ 1] = 1.

44

The UNF adversary A wins when one party accepts a forgery (predicate
forgery) and at least one of the two parties fails to detect the forgery (predicates
bad-P and bad-P). Suppose there exist P, num, num′, ad, ct, at, x, y such that
forgery(log,P, num, ad, ct, x) = true. We analyze the predicates bad-P and bad-P
separately, starting with the latter.

The forgery predicate states that (“send”,P, num, ad′, ct′) ∈ log and
(“rec”,P, num, ad, ct) = log[x] for some x ∈ N, where (ad′, ct′) ̸= (ad, ct). This
means that (num,H.Eval(hk, (ad′, ct′)) ∈ SP and (num,H.Eval(hk, (ad, ct)) ∈
RP , otherwise the forgery is trivially detected because (num, ·) /∈ RP . Moreover,

by the bad-P predicate we know that RP⊆ ⊆ SP for any num ≤ num′, which im-

plies that (num,H.Eval(hk, (ad′, ct′))) = (num,H.Eval(hk, (ad, ct))). By correct-

ness, (num, ·) can appear only once in SP , respectively in RP , and by assumption
(ad′, ct′) ̸= (ad, ct), therefore we have a collision for H.Eval(hk, ·).

We now analyze the bad-P predicate. The forgery predicate states that
(“send”,P, num, ad′, ct′) ∈ log and (“rec”,P, num, ad, ct) = log[x] for some
x ∈ N, where (ad′, ct′) ̸= (ad, ct), otherwise the forgery is trivially detected.

This implies that (num,H.Eval(hk, (ad, ct)) ∈ RP when ARC.Receive(·, ad, ct)→
(true, ·, num, ·). By the bad-P predicate we know that P sends an authentication
tag at after accepting (ad, ct), since (“authsend”,P, num′, at) = log[y] and y > x,

which means that (num,H.Eval(hk, (ad, ct)) is in the RP that at contains. The
rest of the argument follows the same approach as the previous paragraph.

We give in Fig. 18 the adversary B which plays against the collision resistance
game. B runs the ARC.Setup procedure and replaces the hash key hk′ that
the procedure returns with the hk that the adversary receives from the CR
challenger. After running A as a subroutine, B analyzes the log array to find
the (ad, ct), (ad′, ct′) pairs that represents a forgery and returns those. If A wins
the UNF game, then B wins the CR game almost surely, that is

Pr[CRBH(1
λ)⇒ 1] ≥ Pr[UNFA(1λ)⇒ 1] = ϵ.

Moreover, B runs A as a subroutine and executes an additional negligible
amount of work, so we have t ≈ tcr.

E Proof of Theorem 6

Proof. We only provide the idea of the proof, as it is nearly identical to the one
of Theorem 5. The intuition is that if a party P sends ns messages and then
an authentication tag at to P, then at must contain information about all the
ciphertexts previously sent. This is because P cannot know which message was
ever received by P.

More precisely, the only difference with the proof of Theorem 5 is that we use
at instead of ctns

, the rest follows similarly. In particular, the encoder outputs
the randomness, the tag and the indices of the encoded messages in the sets

45

CR adversary BA(hk)
1 : (1

λ
, hk0)← hk; pp← ARC.Setup(1λ); (pp0, hk

′
)← pp; pp′ ← (pp0, hk)

2 : (stA, stB, z)← ARC.Init(pp′)

3 : state[·], plaintext[·], log[·], auth[·], st∗ ← ⊥; i← 0

4 : AO
(z)

5 : Let num,P, ad, ct, ad′, ct′ :

6 : (“send”,P, num, ad, ct) ∈ log ∧ (“rec”,P, num, ad′, ct′) ∧ (ad, ct) ̸= (ad′, ct′)

7 : return (ad, ct), (ad′, ct′)

Figure 18: Adversary B whereO = {SEND,RECEIVE,AUTHSEND,AUTHRECEIVE,
EXPpt,EXPst} for the proof of Theorem 4.

of correctly received messages. Then, the decoder receives the authentication
tag and tries to receive all possible ciphertexts ct1. Among the ones that are
successfully received, it extracts the correct message using the index provided
by the encoder. Next it moves to receiving all possible ciphertexts ct2 and
so on, until the ns messages are received. In addition, we give on the right
of Figure 10 the adversary that can be used to prove an upper bound on the
number of messages that are correctly received (i.e. the number of messages in
the sets Si in the proof of Theorem 5).

F Deferred optimisations

In this appendix, we detail some techniques that can be used to overcome the
inherent inefficiency of r-RID/r-UNF security.

F.1 Lightweight three-move authentication

We formalise our three-move protocol by proposing an appropriate security
model, describing the construction itself in detail alongside a security proof.

Security model. We modify the UNF game (Section 5) by requiring the ad-
versary to run authentication sessions in sequence. We present the correspond-
ing game in Figure 19.

When the adversary, through the AUTHSEND′ oracle, starts the authenti-
cation protocol with initial sender P, the adversary’s access to AUTH∗, SEND′
and RECEIVE′ oracles is restricted until the three-move authentication session
is completed between P and P. This is encoded in the next-oob-op variable.
This simplifies the exposition, but it is not necessary in particular to restrict
SEND′ and RECEIVE′ calls in practice, even though parties who authenticate
in person would generally not send messages during this time. To handle this,
parties can simply buffer messages during authentication that are authenticated
in the next authentication session. However, buffering messages implies that an
attack carried out during the out-of-band authentication will not be detected

46

until the next authentication protocol. For this reason we block in-band com-
munication during the three-move protocol and we encourage this restriction
to be maintained also in practice. We note also that parties are guaranteed
slightly weaker security than in the UNF game. Namely, after receiving the first
authentication message, the receiver can deduce that their counterpart has not
received a forgery but not that they themselves have until they receive the third
message in the protocol.

In Definition 11 we define 3M-UNFORGEABLE-security for ARC schemes.

Definition 11 (3M-UNFORGEABLE). Consider the 3M-UNFORGEABLE game
presented in Fig. 19. We say that an ARC scheme is (q, t, ϵ)-3M-UNFORGEABLE
secure if, for all adversaries A which make at most q oracle queries, and which
run in time at most t, we have: Pr[3M-UNFORGEABLEA(1λ)⇒ 1] ≤ ϵ.

Game 3M-UNFORGEABLEA(1λ)

1 : auth-state[·]← 0; next-oob-op← ⊥

2 : play UNF with AO
(z)

Oracle SEND′(P, ad, pt, r)
1 : if auth-state[P] ̸= 0 then return ⊥
2 : return SEND(P, ad, pt, r)

Oracle RECEIVE′(P, ad, ct)
1 : if auth-state[P] ̸= 0 then return ⊥
2 : return RECEIVE(P, ad, ct)

Oracle AUTHSEND′(P)
1 : if next-oob-op ̸∈ {(P, “authsend”),⊥} then

2 : return ⊥
3 : i← i + 1

4 : (stP , num, at)← AuthSend(stP)

5 : auth[(P, i)]← at; state[i]← stP

6 : init← 1{auth-state[P] = 0}
7 : auth-state[P]← auth-state[P] + 1 mod 3

8 : log[i]← (“authsend”,P, num, at, init)

9 : next-oob-op← (P, “authrec”, i)
10 : return (at, num)

forgery(log,P, num, ad, ct, x)

1 : return (“send”,P, num, ad, ct) /∈ log ∧

2 : (“rec”,P, num, ad, ct) = log[x]

Oracle AUTHRECEIVE′(P, j)
1 : if next-oob-op ̸= (P, “authrec”, j) then

2 : return ⊥

3 : at← auth[(P, j)]
4 : if at = ⊥ then return ⊥
5 : (auth, st, num)← AuthReceive(stP , at)

6 : if ¬auth then return ⊥
7 : i← i + 1

8 : auth-state[P]← auth-state[P] + 1 mod 3

9 : if auth-state[P] = 0 ∧

10 : auth-state[P] = 0 then

11 : next-oob-op← ⊥
12 : else

13 : next-oob-op← (P, “authsend”)
14 : stP ← st; state[i]← stP

15 : log[i]← (“authrec”,P, num, at)

16 : return num

bad-P(log,P, num′, at, x, y)
1 : return (y > x) ∧

2 : (“authsend”,P, num′
, at, ·) = log[y] ∧

3 : (“authrec”,P, num′
, at) ∈ log

bad-P(log,P, num, num′, at)

1 : return num ≤ num′ ∧

2 : (“authrec”,P, num′
, at) ∈ log ∧

3 : (“authsend”,P, num′, at, false) ∈ log

Figure 19: 3M-UNFORGEABLE game for O = {SEND′,RECEIVE′,AUTHSEND′,
AUTHRECEIVE′, EXPpt,EXPst}. Highlighted statements correspond to differ-
ences relative to the UNF game (Fig. 7).

47

Remark 13. The oracles in Figure 19 mandate that the participants send all
messages in authentication via the out-of-band channel. By providing no secu-
rity guarantees on the first message (i.e., delaying guarantees for the receiver
until receiving the third message), it is possible to send the first message in the
protocol over the in-band channel and then authenticate it in the second message
with an additional hash [31]. Consequently, the protocol can be made essen-
tially non-interactive out-of-band: the counterpart to the initiator can simply
send the message out-of-band, and the bit can be determined easily via deter-
mining e.g. QR code scanning success/failure. By contrast, solutions like safety
numbers require both parties to scan QR-codes out-of-band.

Scheme description. We present a 3M-UNFORGEABLE-secure scheme in
Figure 20. The AuthSend and AuthReceive procedures encode the three-move
authentication protocol of Figure 12. To identify the different states of the
bidirectional authentication, we borrow the terminology from TCP and refer
to SYN, SYN-ACK, and ACK messages and roles. When a party P first calls
AuthSend, it takes the SYN role and sends to P the set of received messages
and the current num, i.e., at← (R, num); this set is stored in a separate set Rat.
As described below, we use Rat in AuthReceive to optimize the scheme. The
counterpart P replies with a SYN-ACK message, containing its set of received
messages, the current ordinal num and the bit at-succ. The bit at-succ indicates
whether P’s set of received messages is included in P’s set of sent messages
(line 10), i.e., at-succ indicates whether the authentication of P’s set of received
messages was successful. As the counterpart, P stores the current set of received
messages in Rat. Upon receiving the SYN-ACK message, the initiator P checks

whether at-succP = true and rejects the authentication tag otherwise. P then
sends the ACK message at ← (num, at-succ). Finally, P calls AuthReceive to
process the ACK message. The party checks the at-succ variable to verify that

the set RP is a subset of SP . If the check passes, the authentication protocol
ends.

The optimization of the scheme consists in pruning the set of received mes-
sages as soon as the counterpart authenticates them. This reduces the size of
the authentication tags, since parties include in at only the received messages
that have not been authenticated yet. The AuthReceive algorithm on line 11
checks whether the counterpart authenticated set of received messages R. If
this is the case, all the authenticated messages are stored in Rack—this set is
used in the Receive algorithm to avoid replay attacks—and at the same time
those messages are removed from R thanks to set Rat, thereby reducing the size
of the next authentication tag and memory consumption. After the pruning,
the R set contains only received messages that the counterpart still needs to
authenticate.

Remark 14. Dowling et al. [17] propose a scheme that is broadly similar to ours.
In particular, their protocol uses three moves in-band to allow parties to agree on
a common set of respectively received messages R and R′. Then, to authenticate
messages and detect active attacks, parties compare a hash H(R,R′) for hash

48

3M-ARC.Setup(1λ)

1 : // As in Figure 9

2 : return ARC.Setup(1λ)

3M-ARC.Init(pp)

1 : (pp0, hk)← pp

2 : (st′A, st
′
B, z)←$ RC.Init(pp0)

3 : num← ⊥
4 : S,R,Rack,Rat ← ∅
5 : role-at, at-succ← ⊥

6 : stA ← (st′A, hk, S,R, num, role-at,

7 : at-succ,Rack,Rat)

8 : stB ← (st′B, hk, S,R, num, role-at,

9 : at-succ,Rack,Rat)

10 : z ← (z
′
, pp)

11 : return (stA, stB, z)

3M-ARC.Send(stP , ad, pt)

1 : // As in Figure 9

2 : return ARC.Send(stP , ad, pt)

3M-ARC.AuthSend(stP)

1 : (, , ,R, num, role-at, at-succ, ,Rat)← stP

2 : if role-at = ⊥ then

3 : stP .role-at← SYN

4 : at← (R, num); stP .Rat ← R

5 : elseif role-at = SYN-ACK :

6 : at← (R, num, at-succ)

7 : stP .Rat ← R; stP .at-succ← ⊥
8 : else // role-at = ACK

9 : at← (num, at-succ)

10 : stP .role-at, stP .at-succ← ⊥
11 : return (stP , num, at)

3M-ARC.Receive(stP , ad, ct)

1 : (stP , hk, ,R, , , ,Rack,)← stP

2 : (acc, st′P , num, pt)← RC.Receive(st′P , ad, ct)

3 : if ¬acc then return (false, stP ,⊥,⊥)
4 : h← H.Eval(hk, (ad, ct))

5 : if ∃ h
′
: (num, h

′
) ∈ Rack ∧ h ̸= h

′
then

6 : return (false, stP ,⊥,⊥)
7 : R← R ∪ {(num, h)}
8 : stP ← (stP , hk, ,R, , , ,Rack,)

9 : return (acc, stP , num, pt)

3M-ARC.AuthReceive(stP , at)

1 : (, , S,R, , role-at,

2 : at-succ,Rack,Rat)← stP

3 : RP ← ∅; at-succP ← true

4 : if role-at = ⊥ then

5 : role-at← SYN-ACK; (RP
, numP

)← at

6 : elseif role-at = SYN :

7 : (RP
, numP

, at-succP)← at

8 : else // receive ACK case

9 : (numP
, at-succP)← at

10 : at-succ← (RP ?
⊆ S) // Boolean

11 : if at-succP then

12 : Rack ← Rack ∪ Rat; R← R \ Rat

13 : Rat ← ∅
14 : else // failure

15 : return (false, stP , num)

16 : stP ← (, , S,R, num, role-at,

17 : at-succ,Rack,Rat)

18 : return (at-succ, stP , numP
)

Figure 20: Optimised 3M-UNFORGEABLE-secure ARC scheme 3M-ARC based
on a RC scheme RC (Definition 1). ARC refers to the unoptimised ARC defined
in Figure 9. We assume ARC.Send updates local variable num. As before, the
representation of R communicated can be optimised to contain only a single
hash.

function H out-of-band. Note however that they do not consider RID security
and that they do not formally treat out-of-order message delivery.

The correctness of 3M-ARC can be shown using the underlying correctness of
RC.

49

Security analysis. ORDINALS security is inherited from the underlying RC
scheme. As usual, we argue that 3M-UNFORGEABLE security follows from the
collision resistance of the underlying hash function.

Theorem 9 (Unforgeability of 3M-ARC). LetH be a (tcr, ϵcr)-collision resistant
hash function (Definition 7). Then the 3M-ARC scheme, that we present in
Fig. 20 is (q, t, ϵcr)-3M-UNFORGEABLE secure ARC scheme where t ≈ tcr.

Proof. We proceed similarly to the proof of Theorem 4. Without loss of gen-
erality, we analyze the authentication of P, who we assume to be the initiator,
towards P. The adversary cannot call the SEND′ and RECEIVE′ oracles once
the authentication process is started, therefore the sets S and R of both parties
are fixed until the completion of the protocol.

To authenticate the set of received messages RP , P first sends at ←
(RP , num) to P. To verify the authenticity of RP , the party P verifies whether

RP ⊆ SP . By the arguments of the proof for Theorem 4, this reduces to the
collision-resistance of the hash function H where the reduction runs in time
t ≈ tcr. After receiving the first tag, P is able to detect forgeries received by P
but not by itself. This is taken into account in the 3M-UNFORGEABLE game
(line 3 in bad-P), which states that a forgery received by P is valid only if it is not
detected after receiving the second or third tag in the authentication process.

Then, when receiving the second tag (RP , numP , at-succP) from P, P is able to

tell if itself received a forgery if the at-succP = false. By the same arguments as

before, P can tell whether P received a forgery by checking RP ⊆ SP . Finally,
upon receiving the third tag, P can detect a forgery using at-succP .

The optimization maintains 3M-UNFORGEABLE-security. Recall that the
goal of the optimization (lines 11-13 in Fig. 20) is to reduce the size of the R set
by storing authenticated messages in Rack. To achieve this reduction, the party
executing AuthReceive removes from R the set Rat, which is the set of received
messages authenticated by the counterpart through the at-succ variable. Since
by construction all the messages in Rat have been already authenticated by the
counterpart, removing them from R does not remove unauthenticated messages
from R.

F.2 ARC pruning-based optimization

In Section 5 we argue that is is possible to build an UNF-secure ARC scheme
from a correct and ORDINALS-secure RC scheme. We defer the scheme and
its security analysis to Section 5.2, since the construction is very similar to
Fig. 6, except that ARC schemes use authentication tags instead of ciphertexts
to exchange authentication information.

In this section we explore the optimization opportunities that the authenti-
cated out-of-band channel gives: the adversary cannot tamper with authentica-
tion tags, which enable parties to prune messages from memory—and therefore
to reduce bandwidth—as soon as authenticated tags are received.

50

Scheme description (Figure 13.) The Send procedure stores the hash of
(ad, ct) for the message being sent, together with the corresponding num that
the underlying RC.Send algorithm returns. The algorithm stores (num, h) in a
set S, which is in turn stored in the party’s internal state. The Send algorithm
also updates the ordinal num in the state.

The Receive procedure verifies whether the RC.Receive algorithm accepts the
inputs and verifies that the received message is not a forgery on a previously
authenticated message, which is by construction contained in Sack. If both
checks pass, Receive stores the hash of (ad, ct) together with the ordinal num
returned by RC.Receive in a set R.

The AuthSend procedure is similar to the unoptimized one, except that (1)
it stores the set of sent messages S authenticated within the current at into an
array Sat, indexed by counter cntat, and (2) it empties the set Sat-Seen, which
is already in at and whose goal is to communicate to the other parties which
authentication tags the AuthReceive function processed, as explained later.

AuthReceive behaves like ARC.AuthReceive, but with optimizations. It firstly

verifies whether cntat
P ≤ max-cntat. The goal of this check is to avoid processing

old authentication tags, since AuthReceive already authenticated their content

with the newer (in terms of cntat
P) tag. The max-num-at keeps indeed track

of the most recent authentication tag that the procedure processed. In other
words, older tags either contain less information than newer, already accepted
tags or they contain outdated information that has already been verified and
pruned. AuthReceive also performs garbage collection. It first stores the counter
of the input at into Sat-Seen, which will be sent to the counterparty in the next
call to AuthSend. Then it removes the already authenticated messages from
memory. The party already authenticated the subset RP⊆ and it can remove
the corresponding messages from the set R, which represents now the set of
currently unauthenticated received messages. Similarly, AuthReceive uses the
set of authentication tags that the counterpart already processed to prune the
set of sent messages. In detail, the pruning of sent messages works as follows.

When a party P receives a set of messages Sat
P [cntat] ← S sent by the

counterpart with the authentication tag number cntat, it stores them in a set
Sack. Then, when P sends a subsequent authentication tag back to P, it in-
forms P that the authentication tag cntat was received using the Sat-Seen

P

set. When this tag is delivered, P can remove the acknowledged messages

Sat
P [cntat] for all counters in Sat-Seen

P from its set SP . This reduces the size
of the authentication tag as, on every round-trip on the out-of-band channel,
all authenticated messages can be removed from the sets S and R. To reduce
the size even further, we can use hashing optimization for the received set.
Instead of sending R = {(num1, h1), . . . , (numk, hk)} in AuthSend, one can send
R′ = {(num1, . . . , numk),H.Eval(hk, h1, . . . , hk)}. On reception, AuthReceive can
recompute the hashes of the single messages and authenticate R′. Pruning does
not affect this optimization, since AuthReceive removes from S only messages
that the counterpart already authenticated. A similar technique was employed
by Dowling et al. [17].

51

Security analysis. We informally argue that the scheme prunes only mes-
sages that have already been authenticated. The procedures use sets stP .S and
stP .R to detect active attacks. AuthReceive prunes stP .R by removing elements
in RP⊆; since the procedure authenticates the elements in RP⊆ at line 11, it is
safe to prune stP .R. AuthReceive prunes stP .S by removing elements in stP [i]

for i ∈ Sat-Seen
P . The set Sat-Seen

P contains counters of the authentication
tags that P sent to P and P correctly received. Moreover, the AuthReceive

procedure updates st.Sat-Seen
P at line 1, i.e., after the integrity checks. Since

the AuthSend stores the set of sent messages S authenticated within the current
at into the array Sat, pruning stP .S only removes messages that have already
been received and authenticated by P.

Recall that the adversary can only delete and replay authentication tags in
the out-of-band channel. We informally discuss how the scheme handles these
cases. Assume P and P exchange some messages, P receives an authentica-

tion tag atP from P and then sends the authentication tag atP ; the adversary
removes atP from the channel. Since the adversary removes atP , P does not

acknowledge the reception of atP to P (because AuthSend empties stP .Sat-Seen
at every invocation). Consequently, P does not prune stP .S: these messages
will be authenticated with the next authentication tag and security is preserved.
The AuthReceive procedure handles adversarial reordering of authentication tags
with counters cntat at line 5.

Formally, we state the security of ARC-OP in the next theorem.

Theorem 10. Let H be a (tcr, ϵcr)-collision resistant hash function (Defini-
tion 7). Then the ARC-OP scheme (Fig. 13) is correct, ORDINALS secure, and
(q, t, ϵcr)-UNF secure, where t ≈ tcr.

Proof. Correctness and ORDINALS-security for the transformation of Figure 13
follow from the scheme in Figure 9.

The scheme is the same as Figure 9 modulo the optimizations we introduced.
The proof of the theorem thus reduces to showing that the optimizations pre-
serve the security properties of the unoptimized ARC scheme ARC (Figure 9).
Observe that stP .R and stP .S are used to detect active attacks. We start by
showing that pruning these sets does not undermine UNF security.

• The set stP .R is pruned by removing elements from RP⊆, which was au-
thenticated on line 11 of AuthReceive. We therefore know that messages
in RP⊆ are honest. Thus, we can stop sending them to P hereafter.

• stP .S is pruned by all sets stP .Sat[i] for i ∈ Sat-Seen
P . By construction

we know that Sat-Seen
P contains counters for which P accepted the au-

thentication tags, since those are included in line 1 of prune. Therefore,
{stP .Sat[i]}i∈Sat-SeenP

contains all messages in stP .S that P correctly re-
ceived and authenticated, which the procedure stores in stP .Sack for future
checks. Hence, P can safely stop sending those and prune S correspond-
ingly.

52

We proceed by showing that UNF security still holds. By the arguments
above, an authentication tag at that the AuthSend procedure generates after
another authentication tag at′, will contain only messages that have not been
authenticated in at′. Therefore the check on line 5 preserves security.

The check on line 9 verifies whether RP ⊆ S. Without pruning, this property
is met in the absence of forgeries as shown for ARC. Assume for contradiction

that RP contains a message not authenticated yet, but S does not contain this
message due to pruning. This means that the message was removed from S
by removing one of the values in stP .Sat whose counter cntat was present in

Sat-Seen
P . Since the counter is present in Sat-Seen

P , we know that P accepted
the authentication tag containing cntat, i.e., P correctly received and authenti-
cated the message. But this means by construction that P pruned the message
from R on line 2 of prune, which leads to a contradiction. Therefore the check
preserves UNF security.

The check on line 11 verifies whether RP⊆ ⊆ SP . Without pruning, this prop-
erty is met in absence of forgeries as shown for ARC. Note that P removes from
R only messages that have been authenticated (on line 2 of prune), therefore RP⊆
only contains unauthenticated messages. Similarly, by the argument presented

in the paragraph above, SP contains messages included in at’s whose counter
was not included in Sat-Seen

P , and therefore unauthenticated messages. We
conclude that this check also preserves UNF security.

Remark 15. ARC-OP (Fig. 13) sends all the authentication material through
the out-of-band channel This might be impractical when the authenticated out-
of-band channel is narrowband, e.g., if parties use QR-codes to authenticate the
communication. We can improve the scheme by using both channels: use the
insecure channel to send the authentication data and the possibly narrowband
authenticated channel to verify the integrity of those data [5]. While the idea
of using both channels for authentication is natural, some security risks might
arise when the scheme does not correctly match the two messages. Since UNF-
security depends on both the messages, and therefore on the messages being
correctly matched, it might be safer to enforce this property at the scheme
level. In Appendix G we propose BW-UNFORGEABLE, a security game that
enforces matching of the two authentication messages at the scheme level.

G Bandwidth-optimized UNF-security

We introduce BW-UNFORGEABLE game in Fig. 21. We say that an ARC scheme
is BW-UNFORGEABLE-secure if participants, after receiving both the message
in the normal channel and the one in the out-of-band channel, can detect a
forgery.

After an initialization phase, the adversary plays with a set of oracles. The
RECEIVE, AUTHRECEIVE, EXPpt and EXPst oracles are defined in Fig. 2. The
SEND′ and AUTHSEND′ oracles are very similar to the ones in Fig. 2, but
they enforce the matching of authentication data, which the party sends in the

53

Game BW-UNFORGEABLEA(1λ)

1 : pp← Setup(1λ); (stA, stB, z)← Init(pp)

2 : state[·], plaintext[·], log[·], auth[·]← ⊥
3 : st∗, queue∗ ← ⊥
4 : authpairs← ∅; i← 0

5 : AO
(z)

6 : if ∃ P, num, ad, ct, at, num′
, ad′, ct′, at′, a, b, x :

7 : (a, b) ∈ authpairs ∧
8 : both-rec(log,P, a, b, num, ad, ct, at) ∧

9 : (bad-P(log,P, num′
, ad′, ct′, x, a) ∨

10 : bad-P(log,P, num, num′
, ad′, ct′, x))

11 : return 1

12 : return 0

both-rec(log,P, a, b, num, ad, ct, at)

1 : return log[a] = (·,P, num, ad, ct) ∧
2 : log[b] = (·,P, num, at) ∧

3 : (“rec”,P, num, ad, ct) ∈ log ∧

4 : (“authrec”,P, num, at) ∈ log

forgery(log,P, num, ad, ct, x)

1 : return (“send”,P, num, ad, ct) /∈ log ∧

2 : (“rec”,P, num, ad, ct) = log[x]

Oracle SEND′(P, ad, pt, r)
1 : if |ad| = 0 return ⊥

2 : b || ad′ ← ad

3 : if b = 1 // To be authenticated

4 : if queueP ̸= ⊥ return ⊥
5 : queueP ← i + 1 // SEND call index

6 : return SEND(P, ad, pt, r)

Oracle AUTHSEND′(P)
1 : if queueP = ⊥ return ⊥
2 : ind← i + 1 // AUTHSEND call index

3 : authpairs← authpairs ∪ {(queueP , ind)}
4 : queueP ← ⊥
5 : return AUTHSEND(P)

bad-P(log,P, num′, ad′, ct′, x, a)
1 : // P received the forgery

2 : return forgery(log,P, num′
, ad′, ct′, x)

3 : ∧ (a > x)

bad-P(log,P, num, num′, ad′, ct′, x)

1 : // P received the forgery

2 : return forgery(log,P, num′
, ad′, ct′, x)

3 : ∧ (num′ ≤ num)

Figure 21: BW-UNFORGEABLE game for O = {SEND′,RECEIVE,AUTHSEND′,
AUTHRECEIVE,EXPpt,EXPst}.

normal channel, and the message that authenticates those data, that the party
sends over the out-of-band channel.

The challenger of the BW-UNFORGEABLE game is very similar to the chal-
lenger of the UNF game. The forgery predicate is the same and we include it
in Fig. 21 for clarity. The predicate both-rec enforces that the adversary must
deliver both components of the authentication, i.e., data and authentication, to
the receiving party. We modify the bad-P and bad-P predicates to determine
which of the two parties P and P accepts a forgery, since this is relevant to the
both-rec predicate.

H Puncturable encryption lower bound

We first recall the notion of public key puncturable encryption as a slightly
simplified version of the original definition by Green and Miers [22] (i.e. each
ciphertext is associated to one tag only in our definition); our result still holds
under their definition.

54

Definition 12 (PKPE). A public key puncturable encryption (PKPE) scheme
is a tuple of four efficient algorithms (KeyGen,Enc,Dec,Punc) associated to a
message space M, a ciphertext space C, a tag space T and a state space ST ,
defined as follows:

• KeyGen(1λ) ←$ (pk, st): This probabilistic algorithm takes the security pa-
rameter λ and outputs the public key pk and a state st ∈ ST .

• Enc(pk,m, τ) ←$ ct: This probabilistic algorithm takes a public key pk, mes-
sage m ∈M and tag τ ∈ T and outputs a ciphertext ct ∈ C.

• Punc(pk, st, τ) → st′: This deterministic algorithm takes a public key pk,
state st ∈ ST and tag τ ∈ T and outputs a new state st′ ∈ ST .

• Dec(st, ct, τ) → m′ : This deterministic algorithm takes a state st ∈ ST ,
ciphertext ct and tag τ ∈ T and outputs a message m′ ∈M∪ {⊥}.

For the sake of simplicity, we will consider perfect correctness only, which is
defined as follows.

Definition 13 (PKPE Correctness). A PKPE is perfectly correct if for all λ,
n ∈ N,m ∈M, (τ1, . . . , τn) ∈ T and τ∗ ∈ T \ {τ1, . . . , τn}, the sequence:

1. (pk, st0)←$ KeyGen(1λ)

2. For i ∈ [n]: sti ← Punc(pk, sti−1, τi)

3. ct∗ ←$ Enc(pk,m, τ∗)

is s.t.
Pr[Dec(stn, ct

∗, τ∗) = m] = 1 .

Finally, we introduce a security notion for PKPE, called OW-PUN-CPA,
defined as follows.

Definition 14 (OW-PUN-CPA). We consider the OW-PUN-CPA game presented
in Figure 22. We say a PKPE scheme PKPE is (q, t, ϵ)-OW-PUN-CPA secure if
for all adversaries A running in time at most t and making at most q queries to
the PUNC oracle we have

Pr[OW-PUN-CPAAPKPE(1
λ)⇒ 1] ≤ ϵ .

Note that we omit the number of queries to EXP in the parameters as at most
1 such query is useful.

In the OW-PUN-CPA game, the adversary can puncture any tag and ex-
pose/corrupt the current state (at most once). Then, it outputs a challenge tag
τ∗. The game gives the encryption of a random message m∗ under the tag τ∗

and the adversary must recover m∗. In addition, it is ensured that the adversary
cannot expose a state sti if τ

∗ was not punctured before the state was created.
This restriction is enforced by returning ⊥ in the EXP oracle when τ∗ ̸∈ P , or

55

Game OW-PUN-CPAAPKPE(1
λ)

1 : (pk, st0)←$ KeyGen(1λ)

2 : m
∗ ←$M

3 : corr← false, P, C ← ∅, i← 0

4 : (τ
∗
, st)←$ APUNC,EXP

(pk)

5 : if corr ∧ τ
∗ ̸∈ C then abort

6 : ct∗ ←$ Enc(pk,m∗
, τ

∗
)

7 : m
′ ←$ APUNC,EXP

(pk, ct∗, st)

8 : return 1m′=m∗

Oracle PUNC(τ)

1 : i← i + 1

2 : sti ← Punc(pk, sti−1, τ)

3 : P ← P ∪ {τ}

Oracle EXP

1 : if corr then

2 : return ⊥
3 : corr← true

4 : if τ
∗
defined ∧ τ

∗ ̸∈ P then

5 : return ⊥
6 : C ← P

7 : return sti

Figure 22: OW-PUN-CPA game.

by making the adversary lose when τ∗ ̸∈ C. Informally, this prevents trivial
wins where an adversary gets a secret state st where τ∗ was not punctured, and
simply recovers mb by decrypting ct∗ with st.

Finally, we stress that if the message space is large enough, this notion is
weaker than IND-PUN-CPA as defined by Green and Miers [22], in the same way
that one-wayness for public key encryption is weaker than IND-CPA. However,
OW-PUN-CPA will be sufficient (and necessary) for our lower bound proof to
go through.

H.1 Lower bound

In order to find a lower bound on the state size of puncturable encryption
schemes, one can apply the same idea used to derive the lower bound on cipher-
text length in r-RID and r-UNF security (Theorem 5 and 6). Informally, one can
even see puncturable encryption as a kind of dual to r-RID RC. Indeed, in the
latter, each ciphertext should embed which past messages have been sent (i.e.
which messages should be valid). In the former, each state update should embed
which tags have been punctured (i.e. which tags should be invalid). Overall, as
we use information-theoretical techniques in the proof (encoder/decoder can be
inefficient), both constructions are somewhat equivalent. Hence, one can prove
the following theorem.

Theorem 11. Let PKPE be a perfectly correct PKPE, λ be fixed, np be the
maximal number of punctures and Tλ,np be the running time of the adversary
(A1,A2) given in Figure 24.
In addition, let γ ∈ Z be s.t. PKPE is (np, Tλ,np

, 1
2γ)-OW-PUN-CPA secure.

Finally, let T = {0, 1}n and ST = {0, 1}k be the tag and state space associated
to PKPE, respectively. Then,

k ≥ log

(
2n

np

)
− 2

1− np

2γ
≥ nnp − nplog(np)−

2

1− np

2γ

where the rightmost expression becomes ≈ (n− log(np))np − 2 when np ≪ 2γ .

Proof. As in the proof of Theorem 5, we show the existence of an en-
coder/decoder that would break Shannon’s coding theorem if the theorem does
not hold.

56

Encode({τ1, . . . , τnp}, R,M)

1 : parse R0, R1 ← R

2 : pk, st0 ← KeyGen(1λ;R0)

3 : for i ∈ {1, . . . , np} do // puncture the np tags

4 : sti ← Punc(pk, sti−1, τi)

5 : // Checking whether encrypting and decrypting with punctured tag is succ.:

6 : for i ∈ {1, . . . , np} do
7 : ct← Enc(pk,M, τi;R1)

8 : if Dec(sti, ct, τi) = M then

9 : fail← true // if fail: output trivial encoding

10 : if fail then

11 : return (0, {τ1, . . . , τnp}, R,M)

12 : else

13 : return (1, stnp
, R,M)

Decode(b, data, R,M)

1 : if b = 0 then // if encoding failed: the input is the trivial encoding

2 : return (data, R,M)

3 : parse stnp
← data // stnp

is on k bits

4 : parse R0, R1 ← R

5 : pk, st0 ← KeyGen(1λ;R0)

6 : S ← ∅
7 : for τ ∈ {0, 1}n do

8 : ct← Enc(pk,M, τ ;R1)

9 : if Dec(stnp
, ct, τ) ̸= M then // if decryption failed, τ was punctured

10 : S ∪ {τ}
11 : return (S,R,M)

Figure 23: Encoder/Decoder for Theorem 11 proof.

The encoder and decoder are presented in Figure 23. We assume the encoder
input is sampled from a source that outputs a random np-sized set of tags, a
random sequence of coins R and a random message M ∈ M. Let S be the
random set of tags. The encoder punctures the initial state st0 on all tags in S
to obtain a state stnp

. Note that encrypting any message M with any tag τ ̸∈ S
and decrypting with stnp

returns M by the perfect correctness of the PKPE
scheme. However, it might be that encrypting and decrypting with τ ∈ S still
returns M , we call this event fail. If that happens, the encoder outputs a bit
set to 0 and the trivial encoding of the input. Otherwise, it outputs 1 and the
punctured state stnp

(and R,M).
If b = 0, the decoding is trivial. If b = 1, the decoder can find all tags

in S by encrypting M with all possible tags and storing those for which the
decryption under stnp

does not hold M . As all tags in S would behave so
(otherwise fail would have occurred in the encoder), S can be recovered. Thus,
the encoder is correct and uniquely decodable (note that the bit indicating a
failure is necessary for this).

57

Γ

1 : sample coins R0, R1

2 : (pk, st)← KeyGen(1λ;R0)

3 : M ←$M
4 : S ←$ Tnp

5 : τ∗ ←$ S
6 : for τ ∈ S do

7 : st← Punc(pk, st, τ)

8 : return 1Dec(st,Enc(pk,M,τ∗;R1))=M

A1(pk)

1 : S ←$ Tnp

2 : τ∗ ←$ S
3 : for τ ∈ S do

4 : PUNC(τ)

5 : stnp
← EXP

6 : return (τ∗, (stnp
, τ∗))

A2(pk, ct
∗, (stnp

, τ∗))

1 : M ′ ← Dec(stnp
, ct∗, τ∗)

2 : return M ′

Figure 24: Intermediary game Γ (left) and adversary A (right) for Theorem 11
proof.

We now prove the following lemma.

Lemma 5. Let fail be defined as above. Then,

Pr[fail] ≤ np

2γ
.

Proof. Let Tnp
:= {T : T ⊆ T , |T | = np} be the set of subsets of T of size np.

Then, let’s consider the game Γ defined on the left in Figure 24. The probability
that this algorithm outputs 1 is the probability that S is a failing set (i.e. fail
occurs) and τ∗ is a tag that triggers fail. Therefore, overall the prob. that the
process outputs 1 is

Pr[Γ⇒ 1] = Pr[τ∗ triggers fail|fail]× Pr[fail] ≥ Pr[fail]

|S|

as τ∗ is sampled uniformly at random from S.
Then, one can see that Γ is exactly the OW-PUN-CPA game played by the

adversary (A1,A2) given on the right in Figure 24. Note that all elements in
such a game have the same distribution as in Γ. Moreover, τ∗ will be in C in
the OW-PUN-CPA game (which is necessary for the adversary to win). Thus,
we will have

Pr[fail]

|S| ≤ Pr[Γ⇒ 1] = Pr[OW-PUN-CPAAPKPE(1
λ)⇒ 1] ≤ 2−γ

where the second inequality follows from the theorem assumption. Hence,
Pr[fail] ≤ np

2γ as |S| = np.

Now, we make the following claim.

58

Claim 1. Let M ∈ {0, 1}ℓ, R0, R1 ∈ {0, 1}r, C be the random variable repre-
senting the length of the output of the encoder and α := Pr[fail]. Then,

E[C] = 1 + α

⌈
log

(
2n

np

)⌉
+ (1− α)k + ℓ+ 2r .

Proof. If fail occurs, the set of tags S will be output by the encoder. As there

are
(
2n

np

)
possible sets, one can represent each set with

⌈
log

(
2n

np

)⌉
bits. If fail

does not occur, the state stnp
is output, which is represented on k bits. Finally,

regardless of fail, a bit, M and R0, R1 are output. These take 1 + ℓ+ 2r bits to
represent.

Then, E[C] ≤ 2 + αlog
(
2n

np

)
+ (1 − α)k + ℓ + 2r and by Shannon’s source

coding theorem we obtain

log

(
2n

np

)
+ ℓ+ 2r ≤ E[C] ≤ 2 + αlog

(
2n

np

)
+ (1− α)k + ℓ+ 2r

as the entropy of the source is log
(
2n

np

)
+ ℓ+ 2r. Finally, we obtain

k ≥ log

(
2n

np

)
− 2

1− α
≥ log

(
2n

np

)
− 2

1− np

2γ

where the second inequality follows from Lemma 5. Using that
(
2n

np

)
≥ 2nnp

n
np
p

, we

can lower bound k further by

Remarks. First, we note that the bound is symmetric due to the binomial
coefficient. That is, if np grows larger than 2n

2 the lower bound decreases. How-
ever, this case is not really relevant as it implies that the number of supported
punctures is larger than 2n

2 , and thus the bound is maximal as A can make
2n

2 punctures. This is also consistent with the fact that one can store the tags
that have already been punctured (as is implicitly done in e.g. pairing-based
schemes [22]) or, on the contrary, store the tags that have not been punctured
yet (e.g. the trivial construction which uses |T | instances of PKE). The state in
the former case would outgrow the state in the latter once the number of tags
punctured exceeds 2n

2 .
Secondly, while the lower bound is shown to work for perfectly correct PKEs,

it can be adapted to the non-perfect setting. One can use the same technique
used for the first lower bounds in Theorem 5. That is, we collect all tags that
make decryption fail in a list and output the index of the correct one in the
encoding. If the probability of a correctness error is at most 1

2δ
, then each index

should fit into ≈ (n − δ) bits. Hence, overall, the lower bound in Theorem 11
would be worsened by a factor ≈ np(n− δ).

Finally, we note that Stauble [36] gave a simple lower bound for a re-
stricted type of puncturable encryption schemes, namely perfectly correct non-
hierarchical data-structure-based puncturable encryption. That is, puncturable

59

encryption schemes that store secret-keys (each one used to decrypt some tags)
in non-hierarchical data structures such as lists (as opposed to hierarchical struc-
tures such as trees). They simply note that in such a setting, if the scheme is
perfectly correct, there should be as many keys as there are tags. To the best
of our knowledge, we are the first to give a lower bound for any PKPE.

I Changelog

I.1 December 6 2023

This revision includes some fixes and minor changes in both writing and figures,
the most notable being:

• The UNF-secure ARC ARC-OP (Figure 13) now perform garbage collection
when tags are input to AuthReceive out-of-order, and the line numbers in
the security proof have been corrected.

• In the 3M-UNFORGEABLE-secure ARC 3M-ARC (Figure 20), AuthReceive
now outputs the correct output bit auth, unused variables have been re-
moved and missing/overloaded variables have been corrected.

• In the pruning-based s-RID-secure RC s-RID-RC (Figure 17), messages are
now only acknowledged for two epochs (rather than four as written before),
which improves performance. The figure has also been simplified.

A table of contents has also been added for convenience.

60

	Introduction
	Our contributions
	Paper overview
	Additional related work

	Notation
	(Authenticated) ratcheted communication
	In-band active attack detection: RECOVER
	A RID-secure RC

	Out-of-band active attack detection: UNF
	RID RC UNF ARC
	A UNF-secure ARC scheme

	Communication costs for attack detection
	Communication cost of r -RID RC
	Communication cost of r -UNF ARC

	Performance and security trade-offs
	On the practicality of s -RID and s -UNF security
	Lightweight bidirectional authentication
	Reducing bandwidth for UNF security

	Conclusion
	Primitives
	Hash function
	Incremental hash function

	Proofs for thm:constrrid and thm:constsrid
	Proof for thm:constrrid
	Proof for thm:constsrid

	Optimizing the s -RID construction
	Proof for th:unfarc
	Proof of thm:lbdarc
	Deferred optimisations
	Lightweight three-move authentication
	ARC pruning-based optimization

	Bandwidth-optimized UNF-security
	Puncturable encryption lower bound
	Lower bound

	Changelog
	December 6 2023

