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Abstract. For many latency-critical operations in computer systems, like memory
reads/writes, adding encryption can have a big impact on the performance. Hence,
the existence of cryptographic primitives with good security properties and minimal
latency is a key element in the wide-spread implementation of such security measures.
In this paper, we introduce two new families of low-latency permutations/block
ciphers called Sonic and SuperSonic, inspired by the Simon block ciphers.
Keywords: low-latency, Simon, Sonic, SuperSonic, Feistel structure, gate-delay-
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1 Introduction
Low-latency ciphers are designed to encrypt and decrypt data with minimal delay, making
them suited for pointer encoding or memory encryption where the latency is a critical
element for the efficiency of a system. Their design is an interesting challenge because it
involves finding a different trade-off than the usual one in cryptography: between security
and total cost of computation. In low-latency ciphers the trade-off is between security and
the latency of an optimized hardware implementation. It is determined by the critical path
of the circuit, its worst-case gate delay. This alternative trade-off can result in unusual
designs.

In this mindset we look at an existing design, the family of block ciphers Simon [BSS+13].
The distinguishing feature of Simon is its lightweight Feistel round function, that can be
implemented in a circuit with a short critical path. Still, this does not translate to low
latency for Simon as a high number of rounds are required. Therefore, we investigated
ways to strengthen the round function without increasing its critical path. To do so, we
introduce a variant of the Feistel construction that we call gate-delay-balanced Feistel. In
this construction all paths through the round function have similar latency.

We introduce two cipher families that have the gate-delay-balanced Feistel structure
called Sonic and SuperSonic. The constructions lend themselves to serve as cryptographic
permutations or the datapath in block ciphers or tweakable block ciphers, where the round
function takes as parameter a round constant in the case of a permutation and round
key in the case of a (tweakable) block cipher. As opposed to the Simon block ciphers,
for the members of our cipher families the inverse is not necessarily light. This is due to
the fact that the inverse round function features the inverse of a mapping that we added
to one of the Feistel branches. The parameters of this mapping can be chosen such that
its inverse is light, e.g., it is an involution. With other choices implementing its inverse
will have a high cost in number of operations and gate delay. However, such choices are
advantageous for the differential and linear propagation properties for the round function
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Table 1: Parameters for each Sonic v0.1 and SuperSonic v0.1 ciphers.

cipher word size (w) block size (b) number of target security
[bits] [bits] rounds [bits]

Sonic256 128 256 24 128
Sonic512 256 512 24 128

SuperSonic256 128 256 21 128
SuperSonic512 256 512 21 128

and less rounds are required for a given target security strength. So there is a trade-off
between the latencies of the forward and inverse computation.

The purpose of this note is to introduce our new design idea and we limit ourselves to
permutations that we denote as Sonic v0.1 and SuperSonic v0.1. Both families have
two members: one permutation with width 256 bits and one with width 512 bits. For
all 4 permutations we make a 128-bit security claim, when used in the Even-Mansour
[EM91,EM97] construction. We give an overview of the permutations introduced in this
paper in Table 1.

We chose a version number of 0.1 for the following reasons. First, the choice of
parameters in our permutation instances is based on a preliminary analysis. We plan to
do a more in-depth analysis that will likely make us change their values. Second, we have
chosen for a θ mapping with a heavy inverse, making the permutations proposed in this
paper not well suited for modes of use that require the inverse. For some use cases like
memory encryption that required fast read and can afford slower write heavy inverse is
not a problem. We are planning to investigate different trade-offs with respect to those
aspects. Third, our permutations are suited for use in other constructions such as sponge
or duplex that may require fewer rounds and will certainly require additional security
claims. Fourth, for smaller widths, (tweakable) block ciphers might be a better choice
than permutations and we may extend the range of the families.

In the remainder of this note, we will introduce notation in Section 2, provide specifica-
tions for Sonic v0.1 and its design rationale in Section 3, do the same for SuperSonic
v0.1 in Section 4 and finally give a formal security claim in Section 5.

2 Notation
In this paper we specify all processing as operating on w-bit words, that we denote by
lowercase letters like x and y.

We denote the bit in position i in word x by xi, where i ranges from 0 to w − 1. We
denote use the following notation for operations on words:

• x : bitwise not (or complement)

• x || y: concatenation

• x⊕ y : bitwise addition

• x ∧ y : bitwise and

• x ∨ y : bitwise or
Furthermore, we make use of the shift operation, cyclic shift operation, and multiplica-

tive shuffle. We express the shift over an offset of t positions by σt:

y = σt(x) : yi ←

{
xi+t if i < w − t ,

0 otherwise .
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We express the cyclic shift over an offset of t positions by τ t:

y = τ t(x) : yi ← x(i+t) mod w ∀i ,

where it can be seen as t iterations of τ1(·) which we simply denote by τ(·). We denote
the multiplicative shuffle with factor s by πs:

y = πs(x) : yi ← x(s×i) mod w ∀i .

3 Sonic
In this section, by specify the Sonic v0.1 cipher and provide a design rationale.

3.1 Specification of Sonic v0.1
Sonic is an iterated permutation with a balanced Feistel-like round function where
processing is performed on both parts of the state. It applies 24 round functions and its
block length is 2w while all operations are performed on w-bit words.

Round Function: The round function operates on two w-bit words denoted x and y and
takes as parameter a round constant cr:

x || y ← π15
(
γ(x)⊕ τ12(x)⊕ y

)
|| θ(x)⊕ cr ,

where θ and γ are a bijective linear function and a nonlinear function respectively defined
by

θ(x) = τ(x)⊕ τ8(x)⊕ τ10(x) ,

γ(x) = x ∧ τ(x) .

We provide a more formal specification of the Sonic v0.1 permutations in Algorithm 1
and compare the round function of Sonic with that of Simon in Figure 1.

Algorithm 1 Definition of Sonic v0.1
Parameters: number of rounds q
Input: 2w-bit state s
Output: 2w-bit state t
x || y ← s with x and y both w bits long
for r from 1− q up to 0 do (x, y) = R[cr](x, y)
t← x || y

The round function R[cr]:
z ← x ∧ τ(x) ▷ γ
y ← y ⊕ τ12(x)⊕ z
y ← π15(y)
x← τ(x)⊕ τ8(x)⊕ τ10(x) ▷ θ
x← x⊕ cr

(x, y)← (y, x) ▷ swap
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Figure 1: Comparison of round functions of Simon, Sonic, and SuperSonic.

Table 2: The compact round constants er used in Sonic and SuperSonic ciphers.

r -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15
er 01 20 0c 82 70 12 46 d9 0d a2 7c 90 36 cb 4b

r -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
er 7b 71 32 4a 5b 7d b0 3a 49 3b 69 37 eb 47 f9

Round Constants: The round constants cr of Sonic v0.1 are w-bit words and the bits
with non-zero values are all in positions with index i a multiple of w/8. For each round
constant cr we can define an equivalent 8-bit compact constant er and their relation is

ci ←

{
e 8

w ×i if i divides w
8 ,

0 otherwise .

The round constants are computed recursively, with er+1 computed from er applying
the linear mapping:

er+1 ← τ3(er)⊕ σ2(er) .

We specify the compact round constants in Table 2.
For the numbering of the rounds we fix the number of the last round to 0 and count

backwards. In the nominal case Sonic v0.1 has 24 rounds and they are numbered
−23,−22, . . . , 0. The result is that instances of Sonic v0.1 with different number of rounds
will have the same round constant in the last round but different ones in the first round.
For instance, for full-round Sonic, the first and the last used round constant values are 46
and f9, respectively.

3.2 Design Rationale
Consider the structure of a classical Feistel round function, as depicted in Figure 2. In
this round function, the critical path is in the datapath from the input to the left output
word through the f function. Clearly, the combinatorial circuit for this function can
be optimized to minimize the critical path. That is the reason for using an alternative
representation of the f function in Figure 2. It takes as input both left and right words
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Figure 2: Possible critical paths in a Feistel (left) and in a gate-delay-balanced Feistel
round functions (right).

instead of the classical representation that has f operating on the left word and adding its
output to the right word.

In a Feistel round function, the right word of the output is simply a copy of the left
word of the input. We can add processing in this branch increasing the strength of the
round function with limited impact on its critical path. Increased strength in the round
function in turn allows reducing the number of rounds for the same security margin. In
particular, we insert in the branch a linear mixing layer θ, as shown in Figure 2. By
choosing a mixing layer with gate depth smaller than that of the f function, the increase
in gate delay of the round function will be very small.

When we remove the round key addition, the round function of Simon requires two
2-bit XOR gates and one 2-bit AND gate for each bit in the left output word. As illustrated in
Figure 1 this can be implemented with a gate depth of two 2-bit XOR gates. For θ we chose
the well vetted diffusion block of adding three rotated words [DGV91,NIS12,DEMS21,
DMMR20, BDD+23]. A similar concept has been used concurrently in Arion [IIL+23]
to modify Simpira [GM16], although there the function added in the empty branch is
non-linear.

Our θ mapping can be implemented using two 2-bit XOR gates per output bit and with
a gate depth of two 2-bit XOR gates. Therefore, the overall gate depth of the Sonic round
function is two 2-bit XOR gates. Moreover, by adding a third XOR gate we can include the
addition of a round constant (or round key) without increasing the gate depth.

A second modification as compared to the Simon round function is the inclusion of
a multiplicative shuffle, denoted as π in the specification. The concept of multiplicative
shuffle was introduced in [DGV91] and is also used in Subterranean2.0 [DMMR20].
In terms of gate delay, a bit shuffle has negligible cost as it is just wiring. We added
the multiplicative shuffle to improve the increase of degree of the algebraic normal form
expressions of output bits in terms of input bits for reduced-round versions of Sonic v0.1.

4 SuperSonic

In this section, we specify the SuperSonic v0.1 permutations that can be seen as an
enhancement of Sonic and provide a design rationale.
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4.1 Specification of SuperSonic v0.1
The round function and round constants of SuperSonic match those of the Sonic, except
that it applies a different non-linear function γ:

γ(x) =
(
x ∧ τ(x)

)
∨

(
τ3(x) ∧ τ7(x)

)
.

For a comparison with Sonic and Simon, we refer to Figure 1.
Another difference between SuperSonic v0.1 and Sonic v0.1 is the number of rounds:

while Sonic has 24 rounds, SuperSonic has only 21.
The round constant values and numbering in SuperSonic v0.1 is the same as in Sonic

v0.1. For instance, for full-round SuperSonic, the first and the last used round constants
value are a2 and f9, respectively.

4.2 Design Rationale
As it can be seen in Figure 1, in Sonic there are two different types of path from the
output word to the input: several ones with gate depth two 2-bit XOR gates, and one with
one 2-bit AND and one 2-bit XOR gate. In most technologies a 2-bit AND has a lower gate
delay than 2-bit XOR. Therefore, we can replace the 2-bit AND gate corresponding to the γ
function by a more complex circuit with only limited impact on the critical path.

In SuperSonic we replace the 2-bit AND gate by two “stacked” 2-bit NAND gates. More
precisely, the output word of γ in SuperSonic is the bitwise OR of two intermediate words.
Each of these intermediate words is in turn the bitwise AND of two shifted versions of
the input word, one of them complemented. By using De Morgan’s laws we can map
this readily to a two-layer NAND circuit (or to a compact AOI22 gate), known for its small
gate delay. We added the complement operations based on preliminary analysis and this
analysis shows an increase of algebraic degree of the round function from 2 to 4 and an
improvement of the differential and linear propagation properties. This allows us to reduce
the number of rounds compared to Sonic v0.1.

5 Security Claim
For all four permutations in Table 1, we make a security claim for the block cipher that
we obtain by using the permutation in the Even-Mansour construction [EM97], with a
2w-bit secret key K.

Claim. For a given permutation Perm we define the block cipher BC[Perm]K by

BC[Perm]K(X) = Perm(X ⊕K)⊕K ,

with K a secret key of the same length as the width of the permutation Perm. For
all Perm ∈ {Sonic256, Sonic512, SuperSonic256, SuperSonic512}, the advantage of
distinguishing BC[Perm]K with a uniformly chosen secret key from a random permutation
is upper bounded by

N + M

2128 ,

where N is the computational complexity expressed in number of computations of Perm
(or its inverse) and M is the data complexity in number of queries to BC[Perm]K (or its
inverse).
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6 Implementation Aspects
In the classical Feistel the inverse cipher/permutation simply consists of the same sequence
of operations but with the order of the round constants/keys reversed. However, the
introduction of θ destroys this property: for computing the inverse of the permutation,
the inverse of θ must be implemented.

The θ mapping by itself is lightweight in that each output bit is the sum of only 3
input bits. Its inverse however is rather heavyweight: For w = 128 and w = 256, each
output bit of θ−1 is the sum of 65 and 129 input bits respectively. Hence, implementing
θ−1 necessitates a gate depth of at least seven and eight 2-bit XOR gates respectively.
Furthermore, the high fan-out number of input bits significantly increases the gate delay
of the inverse round function circuit. As a result, for modes of use that require both
low-latency forward and inverse execution of the permutation, Sonic v0.1 and SuperSonic
v0.1 are less suited. However, variants can be specified with a different shift offsets in θ
with a much lighter inverse, e.g., in the extreme case an involutive θ.

Both Sonic and SuperSonic inherit the lightweight round function from Simon. This
lightweight characteristic is not limited to the gate delay of the function but also extends to
the footprint area of the implementation. The Sonic round function can be implemented
using one 2-bit NAND gate and four 2-bit XOR/XNOR gates for each w bit. On the other hand,
the SuperSonic round function can be implemented using an AOI22 gate and four 2-bit
XOR/XNOR gates. It is important to note that these gate counts refer to the combinatorial
circuit of the round functions themselves. To implement the entire cipher, additional layers
of BUF/INV gates are needed to connect the consecutive round functions.

To ensure low-latency performance, our primary objective is to have excellent perfor-
mance in a fully unrolled implementation of Sonic and SuperSonic in ASIC hardware
technology. This means that the entire cipher is implemented in a single combinatorial
circuit without any intermediate register stages. However, to connect the sub-circuits
corresponding to each pair of consecutive round functions, a layer of BUF/INV gates is
applied to serialize the data flow. Our preliminary synthesis results indicate that both
Sonic and SuperSonic exhibit a latency significantly lower than that of Simon-128, the
largest member of Simon family.

Despite having the same gate depth as unkeyed latency-optimized Simon round function
implementation, the implementation of the Sonic and SuperSonic round functions are
likely to have a larger critical path. As a matter of fact, adding θ increases the fan-out of
the bits of the right input word from 4 to 6 and this increases the critical path. Moreover,
applying the stronger γ function in SuperSonic, further increases this number from 6 to
8. However, by applying certain techniques explained in [LMMR21], this increase can be
limited.

In spite of the focus on suitability for low-latency hardware, Sonic performs quite
well in software. Processing in Sonic consists exclusively of three types of operations:
word-wise Boolean operations, cyclic shifts and the multiplicative shuffle. The Boolean
operations can be implemented efficiently with bitwise Boolean instructions. Cyclic shifts
of 128 and 256-bit words can be implemented efficiently on CPUs with word lengths of 32
or 64 bit by using bit interleaving techniques [BDP+12]. As for the multiplicative shuffle,
in [DMMR20] it is described how to avoid computing it altogether by adopting a technique
called π procrastination.
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