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Abstract. In the framework of Impagliazzo’s five worlds, a distinction is often made between two
worlds, one where public-key encryption exists (Cryptomania), and one in which only one-way func-
tions exist (MiniCrypt). However, the boundaries between these worlds can change when quantum
information is taken into account. Recent work has shown that quantum variants of oblivious transfer
and multi-party computation, both primitives that are classically in Cryptomania, can be constructed
from one-way functions, placing them in the realm of quantum MiniCrypt (the so-called MiniQCrypt).
This naturally raises the following question: Is it possible to construct a quantum variant of public-
key encryption, which is at the heart of Cryptomania, from one-way functions or potentially weaker
assumptions?
In this work, we initiate the formal study of the notion of quantum public-key encryption (qPKE),
i.e., public-key encryption where keys are allowed to be quantum states. We propose new definitions
of security and several constructions of qPKE based on the existence of one-way functions (OWF),
or even weaker assumptions, such as pseudorandom function-like states (PRFS) and pseudorandom
function-like states with proof of destruction (PRFSPD). Finally, to give a tight characterization of
this primitive, we show that computational assumptions are necessary to build quantum public-key
encryption. That is, we give a self-contained proof that no quantum public-key encryption scheme can
provide information-theoretic security.

1 Introduction

The use of quantum resources to enable cryptographic tasks under weaker assumptions than clas-
sically needed (or even unconditionally) were actually the first concrete proposals of quantum
computing, with the seminal quantum money protocol of Wiesner [Wie83] and the key-exchange
protocol of Bennett and Brassard [BB84]. Ever since, the field of quantum cryptography has seen
a surge of primitives that leverage quantum information to perform tasks that classically require
stronger assumptions, or are downright impossible. Recent works [BCKM21,GLSV21] have shown
that there exist quantum protocols for oblivious transfer, and therefore arbitrary multi-party com-
putation (MPC), based solely on the existence of one-way functions (OWF) [BCKM21,GLSV21], or
pseudorandom states (PRS) [JLS18], which potentially entail even weaker computational assump-
tions [Kre21,KQST22]. It is well-known that, classically, oblivious transfer and MPC are “Crypto-
mania” objects, i.e., they can only be constructed from more structured assumptions that imply
public-key encryption (PKE). Thus, the above results seem to challenge the boundary between
Cryptomania and MiniCrypt, in the presence of quantum information. Motivated by this state of
affairs, in this work we investigate the notion of PKE itself, the heart of Cryptomania, through the
lenses of quantum computing. That is, we ask the following question:

Does public-key encryption (PKE) belong to MiniQCrypt?
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Known results around this question are mostly negative: It is known that PKE cannot be con-
structed in a black-box manner from OWFs [IR90], and this result has been recently re-proven in
the more challenging setting where the encryption or decryption algorithms are quantum [ACC+22].
However, a tantalizing possibility left open by these works is to realize PKE schemes from OWFs
(or weaker assumptions), where public-key or ciphertexts are quantum states.

1.1 Our results

In this work we initiate the systematic study of quantum public-key encryption (qPKE), i.e., public-
key encryption where public-keys and ciphertexts are allowed to be quantum states. We break down
our contributions as follows.

1. Definitions. We provide a general definitional framwork for qPKE, where both the public-key
and ciphertext might be general quantum states. In the classical setting, there is no need to provide
oracle access to the encryption, since the public-key can be used to implement that. In contrast, if
the public-key is a quantum state, it might be measured during the encryption procedure, and the
ciphertexts might depend on the measurement outcome. In fact, this is the approach taken in some of
our constructions. This motivates a stronger security definition, similar to the classical counterpart,
in which the adversary gets additional access to an encryption oracle that uses the same quantum
public-key that is used during the challenge phase. We define IND-CPA-EO (respectively, IND-
CCA-EO) security by adding the encryption oracle (EO) to the standard IND-CPA (respectively,
IND-CCA) security game.

2. Constructions. With our new security definition at hand, we propose three protocols for im-
plementing qPKE from OWF and potentially weaker assumptions, each with its own different
advantages and disadvantages. More concretely, we show the existence of:

1. A qPKE scheme with quantum public-keys and classical ciphertexts that is IND-CCA-EO7

secure, based on post-quantum OWF, in Section 4.1.
2. A qPKE scheme with quantum public-key and quantum ciphertext that is IND-CCA1 secure,

based on pseudo-random function-like states (PRFS) with super-logarithmic input-size8, in
Section 4.2. Since this scheme is not EO secure, each quantum public-key enables the encryption
of a single message.

3. A qPKE scheme with quantum public-key and classical ciphertext that is IND-CPA-EO secure
based on pseudo-random function-like states with proof of destruction (PRFSPDs), in Section 5.

We wish to remark that it has been recently shown that OWF imply PRFS with super-logarithmic
input-size [AQY22] and PRFSPDs [BBSS23]. Therefore, the security of the second and third pro-
tocols is based on a potentially weaker cryptographic assumption than the first one. Furthermore,
PRFS with super-logarithmic input-size are oracle separated from one-way functions [Kre21]; there-
fore, our second result shows a black-box separation between a certain form of quantum public-key
encryption and one-way functions. On the other hand, for the other two constructions, even if the

7 Throughout this paper, unless explicitly specified, by IND-CCA we refer to the notion of adaptive IND-CCA2
security.

8 Note that PRS implies PRFS with logarithmic size inputs, but no such implication is known for super-logarithmic
inputs.
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public-key is a quantum state, the ciphertexts are classical and, furthermore, one quantum public-
key can be used to encrypt multiple messages. The first protocol is much simpler to describe and
understand since it only uses standard (classical) cryptographic objects. Moreover, we show that
this scheme guarantees the notion of adaptive CCA2 security and is the only scheme that achieves
perfect correctness.

3. Lower Bounds. To complete the picture, we demonstrate that information-theoretically secure
qPKE does not exist. Due to the public-keys being quantum states, this implication is much less
obvious than for the classical case. In fact, some of the existing constructions of qPKE [Got05]
have been conjectured to be unconditionally secure, a conjecture that we invalidate in this work.
While this general statement follows by known implications in the literature (see Section 6 for
more details), in this work we present a self-contained proof of this fact, borrowing techniques from
shadow tomography, which we consider to be of independent interest.

1.2 Technical overview

In this section, we provide a technical overview of our results. In Section 1.2.1, we explain the
challenges and choices to define qPKE and its security definition. In Section 1.2.2, we present 3
instantiations of qPKE, each based on a different assumption and with different security guarantees.
Ultimately, Section 1.2.3 is dedicated to the impossibility of information-theoretically secure qPKE
and a high-level overview of the proof technique.

1.2.1 Definitions of qPKE

In order to consider public-key encryption schemes with quantum public-keys, we need to revisit
the traditional security definitions. In the case of quantum public-keys, there are several immediate
issues that require revision.

The first issue is related to the access the adversary is given to the public-key. In the classical-
key case (even with quantum ciphertexts), the adversary is given the classical public-key pk. Given
a single quantum public-key, one cannot create arbitrary number of copies of the quantum public-
key, due to no-cloning. Hence, to naturally extend notions such as IND-CPA security, we provide
multiple copies of the quantum public-key to the adversary (via the mean of oracle access to the
quantum public-key generation algorithm).

The second issue concerns the quantum public-key’s reusability. Classically, one can use the
public-key to encrypt multiple messages. With quantum public-keys, this might not be the case:
the quantum public-key might be consumed during the encryption. In a non-reusable scheme, the
user needs a fresh quantum public-key for every plaintext they wish to encrypt. This is not only a
theoretical concern: in the PRFS-based construction (see Section 4.2), part of the quantum public-
key is sent as the (quantum) ciphertext, so clearly, this construction is not reusable.

Thirdly, it could be the case that in a reusable scheme, each encryption call changes the public-
key state ρqpk in an irreversible way. Hence, we make a syntactic change: Enc(ρqpk ,m) outputs
(ρ′qpk , c), where c is used as the ciphertext and ρ′qpk is used as the key to encrypt the next message.
Note that in this scenario the updated public-key is not publicly available anymore and is only held
by the party who performed the encryption.

Lastly, the syntactic change mentioned above also has security effects. Recall that classically,
there is no need to give the adversary access to an encryption oracle, since the adversary can generate
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encryption on their own. Alas, with quantum public-keys, the distribution of ciphers might depend
on the changes that were made to the quantum public-key by the challenger whenever the key
is used to encrypt several messages. Therefore, for reusable schemes, we define two new security
notions, denoted CPA-EO and CCA-EO, that are similar to CPA and CCA but where the adversary
is given access to an encryption oracle (EO). We note there are several works considering the notions
of chosen-ciphertext security in the quantum setting, because it is not clear how to prevent the
adversary from querying the challenge ciphertext, if it contains a quantum states. However, we
only consider CCA-security for schemes with classical ciphertexts, and therefore this issue does not
appear in this work.

Pure vs Mixed States. We mention explicitly that we require our public-keys to be pure states.
This is motivated by the following concern: there is no general method to authenticate quantum
states. One proposal to ensure that the certificate authority (CA) is sending the correct state is
to distribute various copies of the keys to different CAs and test whether they are all sending the
same state [Got05]. This ensures that, as long as at least one CA is honest, the user will reject
a malformed key with some constant probability. However, this argument crucially relies on the
public-key being a pure state (in which case comparison can be implemented with a SWAP-test).
On the other hand, if the public-key was a mixed state, there would be no way to run the above
test without false positives.

We also mention that, if mixed states are allowed, then there is a trivial construction of qPKE
from any given symmetric encryption scheme (SKE.key-gen, SKE.Enc,SKE.Dec), as also observed
in [MY22a, Theorem C.6], which we describe in the following. To generate the keys, we use the
output of SKE.key-gen as the secret-key and use it to create the uniform mixture

1
2n

∑
x∈{0,1}n

|x⟩⟨x| ⊗ |Encsk(x)⟩⟨Encsk(x)| (1)

as the public-key. The ciphertext corresponding to a message m is given by (Encx(m),Encsk(x)).
To decrypt, the decryptor would first recover x by decrypting the second element in the ciphertext
using sk, and then recover m by decrypting the first item using x as the secret key.

1.2.2 Constructions for qPKE
As previously mentioned, we propose in this work three schemes for qPKE, based on three different
assumptions, each providing a different security guarantee.

qPKE from OWF. Our first instantiation of qPKE is based on the existence of post-quantum
OWFs. For this construction, we aim for the strong security notion of indistinguishability against
adaptive chosen ciphertext attacks with encryption oracle referred to as IND-CCA-EO. We start
with a simple bit-encryption construction that provides IND-CCA security and we discuss how one
can modify the scheme to encrypt multi-bit messages and also provide EO security.

Our first scheme assumes the existence of a quantum-secure pseudorandom function (PRF),
which can be built from quantum-secure one-way functions [Zha12]. Given a PRF ensemble {fk}k,
the public key consists of a pair of pure quantum states qpk = (|qpk 0⟩, |qpk 1⟩) and the secret key
consists of a pair of bit-strings dk = (dk0, dk1) such that, for all b ∈ {0, 1},

|qpk b⟩ = 1√
2n

∑
x∈{0,1}n

|x, fdkb
(x)⟩,
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where fk denotes the quantum-secure PRF keyed by k. To encrypt a bit b, one simply measures all
qubits of |qpk b⟩ in the computational basis. The result takes the form (x, fdkb

(x)) for some uniformly
random x ∈ {0, 1}n and this is returned as the ciphertext, i.e., (qc0, qc1) = (x, fdkb

(x)).
To decrypt a ciphertext (qc0, qc1), we apply both fdk0 and fdk1 to qc0 and return the value

of b ∈ {0, 1} such that fdkb
(qc0) = qc1. In case this does happen for neither or both of the keys, the

decryption aborts.
The IND-CCA security of the simple bit-encryption scheme can be proven with a hybrid ar-

gument (see Appendix A). However, there are a few caveats to the scheme that can be pointed
out. First, the scheme is not reusable. It can be easily noticed that after using a public-key for an
encryption, the public-key state collapses, meaning that all the subsequent encryption calls are de-
randomized. This would mean if the same public-key is reused, it can not even guarantee IND-CPA
security as the encryption is deterministic.

The second issue is lifting this CCA-secure bit-encryption scheme to a many-bit CCA-secure
encryption scheme. Note that although not trivial, as proven by Myers and Shelat [Ms09], classi-
cally it is possible to construct CCA-secure many-bit encryption from CCA-secure bit-encryption.
However, the argument cannot be extended to qPKE in a generic way. The main issue is that
the construction from [Ms09], similar to the Fujisaki-Okamoto transform, derandomizes the en-
cryption procedure for some fixed random coins. Later these fixed random coins are encrypted
and attached to the ciphertext, so that the decryptor can re-encrypt the plaintext to make sure
they were handed the correct randomness. Looking at our construction, it is quite clear that it is
not possible to derandomize the encryption procedure as the randomness is a consequence of the
measurement.

Let us show how the same approach can be modified to circumvent the issues mentioned. Our
main observation is that we can use public-keys of the form mentioned before for a key agree-
ment stage and then use the agreed key to encrypt many-bit messages with a symmetric-key
encryption scheme (SKE). Let us elaborate. Let {fk}k be a PRF family and (SE.Enc,SE.Dec) be a
symmetric-key encryption scheme. Note that quantum-secure one-way functions imply a quantum-
secure PRF [Zha12], and post-quantum IND-CCA symmetric encryption [BZ13a]9. Consider the
following scheme: the secret key dk is a uniformly random key for the PRF, and for a fixed dk, the
quantum public-key state is

|qpk dk⟩ = 1√
2λ

∑
x∈{0,1}λ

|x⟩|fdk(x)⟩. (2)

The encryption algorithm will then measure |qpk dk⟩ in the computational basis leading to the
outcome (x∗, y∗ = fdk(x∗)). The ciphertext of a message m is given by (x∗,SE.Enc(y∗,m)). To
decrypt a ciphertext (x̂, ĉ), we first compute ŷ = fdk(x) and return m̂ = SE.Dec(fdk(x̂), ĉ).

We emphasize that this scheme is reusable since it allows the encryption of many messages using
the same measurement outcome (x∗, fdk(x∗)). Using a hybrid argument, it can be shown that if
the underlying SKE guarantees IND-CCA security, this construction fulfills our strongest security
notion, i.e. IND-CCA-EO security. A formal description of the scheme, along with a security proof
can be found in Section 4.1.

QPKE from PRFS. The second construction we present in this paper is an IND-CCA1 secure
public-key scheme based on the existence of pseudorandom function-like state generators. Our

9 IND-CCA SKE can be built from an IND-CPA SKE and a MAC using the encrypt-then-MAC paradigm.
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approach is based on first showing bit-encryption, and the discussion regarding how to lift that
restriction is discussed in Section 4.2. The ciphertexts generated by our scheme are quantum states,
and as the public-keys of this construction are not reusable, we do not consider the notion of EO
security. A family of states {|ψk,x⟩}k,x is pseudo-random function-like [AQY22] if

1. There is a quantum polynomial-time algorithm Gen such that

Gen(k,
∑

x

αx|x⟩) =
∑

x

αx|x⟩|ψk,x⟩, and

2. No QPT adversary can distinguish (|ψ1⟩, ..., |ψℓ⟩) from (|ϕ1⟩, ..., |ϕℓ⟩), where |ψi⟩ =
∑

x α
i
x|x⟩|ψk,x⟩,

|ϕi⟩ =
∑

x α
i
x|x⟩|ϕx⟩, and {|ϕx⟩}x are Haar random states and the states |σi⟩ =

∑
x α

i
x|x⟩ are

chosen by the adversary.

We continue by providing a high-level description of the scheme. The key generation algorithm
picks a uniform PRFS key dk and generates the corresponding public-keys as stated below:

1√
2λ

∑
x∈{0,1}λ

|x⟩|ψdk,x⟩⊗n, (3)

where {|ψk,x⟩}k,x is a PRFS family, the size of the input x is super-logarithmic in the security
parameter and n is a polynomial in the security parameter.

To encrypt a bit m, the encryptor will then measure the first register of |qpk ⟩ to obtain x∗ and
the residual state after this measurement will be of form |x∗⟩|ψdk,x∗⟩⊗n. They also sample a uniform
key dk1 and compute the state |ψdk1,x∗⟩ then compute the ciphertext c = (x∗, ρ) where

ρ =
{
|ψdk,x∗⟩⊗n, if m = 0
|ψdk1,x∗⟩⊗n, if m = 1

. (4)

To decrypt a ciphertext (x̂, ρ̂), we first compute n copies of the state |ψdk,x̂⟩ and performs a SWAP
tests between each copy and the subsystems of ρ̂ with the same size as |ψdk,x̂⟩. If all the SWAP
tests return 0 the decryption algorithm returns m̂ = 0 and otherwise it returns m̂ = 1. For a large
enough n, our scheme achieves statistical correctness.

We prove that this construction guarantees IND-CCA1 security by a hybrid argument in Sec-
tion 4.2. We emphasize that as the ciphertexts of the scheme are quantum states it is challenging
to define adaptive CCA2 security.

QPKE from PRFSPDs. Our third scheme is based on pseudo-random function-like states with
proof of destruction (PRFSPDs), which was recently defined in [BBSS23]. The authors extended
the notion of PRFS to pseudo-random function-like states with proof of destruction, where we have
two algorithms Destruct and Ver , which allows us to verify if a copy of the PRFS was destructed.

We will discuss now how to provide non-reusable CPA security security10 of the encryption of
a one-bit message and we discuss later how to use it to achieve reusable security, i.e., CPA-EO
security. The quantum public-key in this simplified case is

1√
2λ

∑
x∈{0,1}λ

|x⟩|ψdk,x⟩. (5)

10 Meaning that one can only encrypt once using a |qpk ⟩.
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The encryptor will then measure the first register of |qpk ⟩ and the post-measurement state is
|x∗⟩|ψdk,x∗⟩. The encryptor will then generate a (classical) proof of destruction π = Destruct(|ψdk,x∗⟩).
The encryption procedure also picks dk1 uniformly at random, generated |ψdk1,x∗⟩ and generates
the proof of destruction π′ = Destruct(|ψdk1,x∗⟩). The corresponding ciphertext for a bit b is given
by c = (x∗, y), where

y =
{
π′, if b = 0
π, if b = 1

.

The decryptor will receive some value (x̂, ŷ) and decrypt the message b̂ = Ver (dk, x̂, ŷ). The proof
of the security of the aforementioned construction follows from a hybrid argument reminiscent of
the security proof of the previous schemes (see Section 5). Notice that repeating such a process in
parallel trivially gives a one-shot security of the encryption of a string m and moreover, such an
encryption is classical. Therefore, in order to achieve IND-CPA-EO secure qPKE scheme, we can
actually encrypt a secret key sk that is chosen by the encryptor, and send the message encrypted
under sk. We leave the details of such a construction and its proof of security to Section 5.

1.2.3 Impossibility of Information-Theoretically Secure qPKE

So far, we have established that qPKE can be built from assumptions weaker than the ones required
for the classical counterpart, and potentially even weaker than those needed to build secret-key
encryption classically. This naturally leads to the question of whether it is possible to build an
information-theoretically secure qPKE. In the following, we present a self-contained proof of this
fact, using techniques from the literature on shadow tomography. Although proving the impossibility
for classical PKE is immediate, there are a few challenges when trying to prove a result of a similar
flavor for qPKE. Even when considering security against a computationally unbounded adversary,
there is a limitation that such adversary has, namely, they are only provided with polynomially
many copies of the public-key.

The first step of the proof is reducing winning the IND-CPA game to finding a secret-key/public-
key pair (dk, |qpk dk⟩) such that

⟨qpk ∗|qpk dk⟩ ≈ 1.

In other words, we show that if |qpk dk⟩ is relatively close to |qpk ∗⟩, there is a good chance that dk
can decrypt ciphertexts encrypted by |qpk ∗⟩ correctly. A formal statement and the proof of this
argument can be found in Lemma 1.

Given this lemma, the second part of the proof consists in constructing an adversary that
takes polynomially many copies of |qpk ∗⟩ as input and outputs (dk, |qpk dk⟩) such that |qpk dk⟩ is
relatively close to |qpk ∗⟩. The technique to realize this adversary is shadow tomography, which
shows procedures to estimate the values ⟨qpk dk|qpk ∗⟩ for all (|qpk dk⟩, dk) pairs. Note that doing this
naively, i.e. by SWAP-testing multiple copies of |qpk ∗⟩ with each |qpk dk⟩, would require exponentially
many copies of the public-key |qpk ∗⟩. The way we circumvent this problem is by using the a recent
result by Huang, Kueng, and Preskill [HKP20]. Informally, this theorem states that for M rank
1 projective measurements O1, . . . , OM and an unknown n-qubit state ρ, it is possible to estimate
Tr(Oiρ) for all i, up to precision ϵ, by only performing T = O(log(M)/ϵ2) single-copy random
Clifford measurements on ρ.

Employing this theorem, we show that a computationally unbounded adversary can estimate all
the values ⟨qpk dk|qpk ∗⟩ from random Clifford measurements on polynomially many copies of |qpk ∗⟩.
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Having the estimated values of ⟨qpk dk|qpk ∗⟩ the adversary picks a dk such that the estimated value
is relatively large and uses this key to decrypt the challenge ciphertext. Now invoking Lemma 1 we
conclude that the probability of this adversary winning the IND-CPA game is significantly more
than 1/2.

1.3 Related works

The notion of qPKE was already considered in the literature, although without introducing formal
security definitions. For instance, Gottesman [Got05] proposed a candidate construction in an
oral presentation, without a formal security analysis. The scheme has quantum public-keys and
quantum ciphers, which consumes the public-key for encryption. Kawachi et al. [KKNY05] proposed
a construction of qPKE (with quantum keys and ciphertexts) from a newly introduced hardness
assumption, related to the graph automorphism problem. [OTU00] defines and constructs a public-
key encryption where the keys, plaintexts and ciphers are classical, but the algorithms are quantum
the (key-generation uses Shor’s algorithm). One of the contributions of this work, is to provide a
unifying framework for these results, as well as improve in terms of computational assumptions and
security guarantees.

In [NI09], the authors define and provide impossibility results regarding encryption with quan-
tum public-keys. Classically, it is easy to show that a (public) encryption scheme cannot have
deterministic ciphers; in other words, encryption must use randomness. They show that this is also
true for a quantum encryption scheme with quantum public-keys. In [Dol20], a secure encryption
scheme with quantum public keys based on the LWE assumption is introduced. That work shows
(passive) indistinguishable security, and is not IND-CPA secure.

In [MY22b,MY22a], the authors study digital signatures with quantum signatures, and more
importantly in the context of this work, quantum public-keys.

The study of quantum pseudorandomness and its applications has recently experienced rapid
advancements. One of the most astonishing aspects is that PRS (Pseudorandom states) and some
of its variations are considered weaker than one-way functions. In other words, they are implied
by one-way functions, and there exists a black-box separation between them. However, it has been
demonstrated that these primitives are sufficient for many applications in Minicrypt and even
extend beyond it. A graph presenting the various notions of quantum pseudorandomness and its
application is available at https://sattath.github.io/qcrypto-graph/.

1.4 Concurrent and subsequent work

This work is a merge of two concurrent and independent works [BMW23,GSV23], with a unified
presentation and more results.

In a concurrent and independent work, Coladangelo [Col23] proposes a qPKE scheme with a
construction that is very different from ours, and uses a quantum trapdoor function, which is a new
notion first introduced in their work. Their construction is based on the existence of quantum-secure
OWF. However, in their construction, each quantum public-key can be used to encrypt a single
message (compared to our construction from OWF, where the public-key can be used to encrypt
multiple messages), and the ciphertexts are quantum (whereas our construction from OWF has
classical ciphertexts). They do not consider the stronger notion of IND-CCA security.

Our paper has already generated interest in the community: Two follow-up works [KMNY23,MW23]
consider a stronger notion of qPKE where the public-key consists of a classical and a quantum part,
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and the adversary is allowed to tamper arbitrarily with the quantum part (but not with the classi-
cal component).11 The authors provide constructions assuming quantum-secure OWF. While their
security definition is stronger, we remark that our approach is more general, as exemplified by the
fact that we propose constructions from potentially weaker computational assumptions. In [BS23],
the authors give another solution for the quantum public-key distribution problem using time-
dependent signatures, which can be constructed from quantum-secure OWF, but the (classical)
verification key needs to be continually updated.

2 Preliminaries

2.1 Notation

Throughout this paper, λ denotes the security parameter. The notation negl(λ) denotes any function
f such that f(λ) = λ−ω(1), and poly(λ) denotes any function f such that f(λ) = λO(1). When
sampling uniformly at random a value a from a set U , we employ the notation a ←$ U . When
sampling a value a from a probabilistic algorithm A, we employ the notation a ← A. Let |·|
denote either the length of a string, or the cardinal of a finite set, or the absolute value. By PPT
we mean a polynomial-time non-uniform family of probabilistic circuits, and by QPT we mean a
polynomial-time family of quantum circuits.

2.2 Quantum Information

For a more in-depth introduction to quantum information, we refer the reader to [NC16]. We denote
by HM a complex Hilbert space with label M and finite dimension dimM . We use the standard
bra-ket notation to work with pure states |ψ⟩ ∈ HM . The class of positive, Hermitian, trace-one
linear operators on HM is denoted by D(HM ). A quantum register is a physical system whose set
of valid states is D(HM ); in this case we label by M the register itself. The maximally mixed state
(i.e., uniform classical distribution) is written as I/ dimM on M .

The support of a quantum state ϱ is its cokernel (as a linear operator). Equivalently, this is
the span of the pure states making up any decomposition of ϱ as a convex combination of pure
states. We will denote the orthogonal projection operator onto this subspace by P ϱ. The two-
outcome projective measurement (to test if a state has the same or different support as ϱ) is then
{P ϱ, I − P ϱ}.

A quantum t-design (for a fixed t) is a probability distribution over pure quantum states which
can duplicate properties of the probability distribution over the Haar measure for polynomials of
degree t or less. A quantum t-design with n-qubit output can be efficiently implemented with a
random poly(t, n)-size quantum circuits.

We recall the SWAP test on two quantum states |ψ⟩, |ϕ⟩ which is an efficient algorithm that
outputs 0 with probability 1

2 + 1
2 |⟨ψ|ϕ⟩|

2. In particular, if the states are equal, the output of SWAP
test is always 0.

Next, we state a well-known fact about the quantum evaluation of classical circuits.

11 Because of this stronger security definition, here the notion of public-keys with mixed states is meaningful since
there is an alternative procedure to ensure that the key is well-formed (e.g., signing the classical component).
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Fact 1. Let f : {0, 1}n → {0, 1}m be a function which is efficiently computable by a classical circuit.
Then there exists a unitary Uf on (C2)⊗n+m which is efficiently computable by a quantum circuit
(possibly using ancillas) such that, for all x ∈ {0, 1}n and y ∈ {0, 1}m,

Uf : |x⟩|y⟩ 7→ |x⟩|y ⊕ f(x)⟩.

2.3 Quantum-Secure Pseudorandom Functions

Throughout this work, we often refer to a pseudorandom function (PRF) first introduced in [GGM86].
This is a keyed function, denoted PRF, that can be evaluated in polynomial time satisfying a certain
security property. In this work, we require PRF to be quantum-secure, which, loosely speaking, says
that an adversary with oracle access to PRF cannot distinguish it from a truly random function,
even given superposition queries. It is known that quantum-secure PRF can be constructed from
any quantum-secure one-way function [Zha12].

Definition 1 (Quantum-secure PRF). We say that a keyed family of functions {fk}k is a
quantum-secure pseudorandom function (PRF) ensemble if, for any QPT adversary A, we have∣∣∣Pr

[
1← A(1λ)fk

]
− Pr

[
1← A(1λ)f

]∣∣∣ ≤ µ(λ),

where k $←− {0, 1}λ, f is a truly random function, and the oracles can be accessed in superposition,
that is, they implement the following unitaries

|x⟩|z⟩
Ufk7−−→ |x⟩|z ⊕ fk(x)⟩ and |x⟩|z⟩

Uf7−−→ |x⟩|z ⊕ f(x)⟩,

respectively.

2.4 Post-Quantum IND-CCA Symmetric-Key Encryption

We briefly recall the definition of a symmetric-key encryption scheme (SKE).
Definition 2. An SKE consists of 2 algorithms with the following syntax:
1. Enc(sk, pt): a PPT algorithm, which receives a symmetric-key sk ∈ {0, 1}λ and a plaintext pt,

and outputs a ciphertext ct.
2. Dec(sk, ct): a deterministic polynomial-time algorithm, which takes a symmetric-key sk and a

ciphertext ct, and outputs a plaintext pt.

We say that a SKE scheme is perfectly correct if for every plaintext pt ∈ {0, 1}∗ and symmetric-
key sk ∈ {0, 1}λ, Dec(sk,Enc(sk, pt)) = pt.

Definition 3. An SKE is post-quantum IND-CCA secure if for every QPT adversary A := (A1,A2),
there exists a negligible function ϵ such that the following holds for all λ:

Pr


b̃ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

sk $←− {0, 1}λ

pt0, pt1 ← A
Enc(sk,·),Dec(sk,·)
1 (1λ)

b
$←− {0, 1}

ct∗ ← Enc(sk, ptb)
b̃← AEnc(sk,·),Dec∗(sk,·)

2 (ct∗, 1λ)


≤ 1/2 + ϵ(λ),

Where Dec∗(sk, ·) is the same as Dec(sk, ·) but returns ⊥ on input the challenge ciphertext ct∗.
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Note that as the adversary is not given superposition access to the Enc, Dec oracles one can build
post-quantum IND-CCA SKE from quantum-secure OWF the same way as it is done classically
with message authentication codes.

2.5 Pseudorandom Function-Like State (PRFS) Generators

The notion of pseudorandom function like states was first introduced by Ananth, Qian and Yuen
in [AQY22]. A stronger definition where the adversary is allowed to make superposition queries to
the challenge oracles was introduced in the follow-up work [AGQY22]. We reproduce their definition
here:

Definition 4 (Quantum-accessible PRFS generator). We say that a QPT algorithm G is a
quantum-accessible secure pseudorandom function-like state generator if for all QPT (non-uniform)
distinguishers A if there exists a negligible function ϵ, such that for all λ, the following holds:∣∣∣∣∣ Pr

k←{0,1}1λ

[
A
|OPRFS(k,·)⟩
λ (ρλ) = 1

]
− Pr
OHaar

[
A
|OHaar(·)⟩
λ (ρλ) = 1

]∣∣∣∣∣ ≤ ϵ(λ),

where:

– OPRFS(k, ·), on input a d-qubit register X, does the following: it applies an isometry channel
that is controlled on the register X containing x, it creates and stores G1λ(k, x) in a new register
Y. It outputs the state on the registers X and Y.

– OHaar(·), modeled as a channel, on input a d-qubit register X, does the following: it applies a
channel that controlled on the register X containing x, stores |ϑx⟩⟨ϑx| in a new register Y,
where |ϑx⟩ is sampled from the Haar distribution. It outputs the state on the registers X and Y.

Moreover, A1λ has superposition access to OPRFS(k, ·) and OHaar(·) (denoted using the ket notation).
We say that G is a (d(λ), n(λ))-QAPRFS generator to succinctly indicate that its input length

is d(λ) and its output length is n(λ).

2.6 Quantum Pseudorandomness with Proofs of Destruction

We import the definition of pseudorandom function-like states with proofs of destruction (PRFSPD)
from [BBSS23].

Definition 5 (PRFS generator with proof of destruction). A PRFSPD scheme with key-
length w(λ), input-length d(λ), output length n(λ) and proof length c(λ) is a tuple of QPT algorithms
Gen,Destruct ,Ver with the following syntax:

1. |ψx
k⟩ ← Gen(k, x): takes a key k ∈ {0, 1}w, an input string x ∈ {0, 1}d(λ), and outputs an n-qubit

pure state |ψx
k⟩.

2. p ← Destruct(|ϕ⟩): takes an n-qubit quantum state |ϕ⟩ as input, and outputs a c-bit classical
string, p.

3. b ← Ver (k, x, q): takes a key k ∈ {0, 1}w, a d-bit input string x, a c-bit classical string p and
outputs a boolean output b.

Correctness. A PRFSPD scheme is said to be correct if for every x ∈ {0, 1}d,

Pr
k

u←−{0,1}w

[1← Ver (k, x, p) | p← Destruct(|ψx
k⟩); |ψx

k⟩ ← Gen(k, x)] = 1
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Security.

1. Pseudorandomness: A PRFSPD scheme is said to be (adaptively) pseudorandom if for any
QPT adversary A, and any polynomial m(λ), there exists a negligible function negl(λ), such
that

| Pr
k←{0,1}w

[A|Gen(k,·)⟩(1λ) = 1]

− Pr
∀x∈{0,1}d,|ϕx⟩←µ(C2)⊗n

[A|Haar
{|ϕx⟩}

x∈{0,1}d (·)⟩(1λ) = 1]| = negl(λ)

where ∀x ∈ {0, 1}d, Haar {|ϕ
x⟩}

x∈{0,1}d (x) outputs |ϕx⟩. Here we note that A gets quantum access
to the oracles.

2. Unclonability-of-proofs: A PRFSPD scheme satisfies Unclonability-of-proofs if for any QPT
adversary A in cloning game (see Game 1), there exists a negligible function negl(λ) such that

Pr[Cloning-ExpA,PRFSPD
λ = 1] = negl(λ).

Game 1 Cloning-ExpA,PRFSPD
λ

1: Given input 1λ, Challenger samples k ← {0, 1}w(λ) uniformly at random.
2: Initialize an empty set of variables, S.
3: A gets oracle access to Gen(k, ·), Ver (k, ·, ·) as oracle.
4: for Gen query x made by A do
5: if ∃ variable tx ∈ S then tx = tx + 1.
6: else Create a variable tx in S, initialized to 1.
7: end if
8: end for
9: A outputs x, c1, c2, . . . , ctx+1 to the challenger.

10: Challenger rejects if ci’s are not distinct.
11: for i ∈ [m + 1] do bi ← Ver (k, x, ci)
12: end for
13: Return ∧m+1

i=1 bi.

3 Definitions of qPKE

In this section, we introduce the new notion of encryption with quantum public keys (Definition 6).
The indistinguishability security notions are defined in Section 3.1 and Section 3.2.

Definition 6 (Encryption with quantum public keys). Encryption with quantum public keys
(qPKE) consists of 4 algorithms with the following syntax:

1. dk ← Gen(1λ): a QPT algorithm, which receives the security parameter and outputs a classical
decryption key.

12



2. |qpk ⟩ ← QPKGen(dk): a QPT algorithm, which receives a classical decryption key dk, and outputs
a quantum public key |qpk ⟩. In this work, we require that the output is a pure state, and that t
calls to QPKGen(dk) should yield the same state, that is, |qpk ⟩⊗t.

3. (qpk ′, qc) ← Enc(qpk ,m): a QPT algorithm, which receives a quantum public key qpk and a
plaintext m, and outputs a (possibly classical) ciphertext qc and a recycled public key qpk ′.

4. m ← Dec(dk, qc): a QPT algorithm, which uses a decryption key dk and a ciphertext qc, and
outputs a classical plaintext m.

We say that a qPKE scheme is correct if for every message m ∈ {0, 1}∗ and any security
parameter λ ∈ N, the following holds:

Pr

Dec(dk, qc) = m

∣∣∣∣∣∣∣
dk← Gen(1λ)

|qpk ⟩ ← QPKGen(dk)
(qpk ′, qc)← Enc(|qpk ⟩,m)

 ≥ 1− negl(λ),

where the probability is taken over the randomness of Gen , QPKGen , Enc and Dec. We say that the
scheme is reusable if completeness holds to polynomially many messages using a single quantum
public key. More precisely, we say that a qPKE scheme is reusable if for every security parameter
λ ∈ N, polynomial number of messages m1, . . . ,mn(λ) ∈ {0, 1}∗, the following holds:

Pr

∀i ∈ [n(λ)], Dec(dk, qci) = mi

∣∣∣∣∣∣∣∣∣∣∣∣

dk← Gen(1λ)
|qpk 1⟩ ← QPKGen(dk)

(qpk 2, qc2)← Enc(|qpk 1⟩,m1)
...

(qpk n+1, qcn)← Enc(|qpk i⟩,mn(λ))

 ≥ 1− negl(λ).

3.1 Security Definitions for qPKE with Classical Ciphertexts

In this section, we present a quantum analogue of classical indistinguishability security for qPKE
with classical ciphertexts. We note that there are few differences. Firstly, since in general the
public keys are quantum states and unclonable, in the security games, we allow the adversary
to receive polynomially many copies of |qpk ⟩, by making several calls to the QPKGen(dk) oracle.
Secondly, in the classical setting, there is no need to provide access to an encryption oracle since
the adversary can use the public key to apply the encryption themself. In the quantum setting,
this is not the case: as we will see, the quantum public key might be measured, and the ciphertexts
might depend on the measurement outcome. Furthermore, the quantum public key can be reused
to encrypt multiple different messages. This motivates a stronger definition of indistinguishability
with encryption oracle, in which the adversary gets oracle access to the encryption, denoted as
IND-ATK-EO security, where ATK can be either chosen-plaintext attacks (CPA), (adaptive or
non-adaptive) chosen-ciphertext attacks (CCA1 and CCA2).

We define the oracles O1,O2 depending on the level of security as follows.

ATK
CPA
CCA1
CCA2

Oracle O1

∅
Dec(dk, ·)
Dec(dk, ·)

Oracle O2

∅
∅
Dec∗(dk, ·)
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Game 2 Indistinguishability security with an encryption oracle (IND-ATK-EO) for encryption
with quantum public key and classical ciphertext schemes.
1: The challenger generates dk← Gen(1λ).
2: The adversary gets 1λ as an input, and oracle access to QPKGen(dk).
3: The challenger generates |qpk ⟩ ← QPKGen(dk). Let qpk 1 := |qpk ⟩.
4: For i = 1, . . . , ℓ, the adversary creates a classical message mi and send it to the challenger.
5: The challenger computes (qc

i
, qpk

i+1)← Enc(qpk
i
, mi) and send qc

i
to the adversary.

6: During step (2) to step (5), the adversary also gets classical oracle access to an oracle O1.
7: The adversary sends two messages m′

0, m′
1 of the same length to the challenger.

8: The challenger samples b ∈R {0, 1}, computes (qc∗, qpk
l+2)← Enc(qpk

ℓ+1, m′
b) and sends qc∗ to the adversary.

9: For i = ℓ + 2, . . . , ℓ′, the adversary creates a classical message mi and send it to the challenger.
10: The challenger computes (qc

i
, qpk

i+1)← Enc(qpk
i
, mi) and send qc

i
to the adversary.

11: During step (9) to step (10), the adversary also gets classical oracle access to an oracle O2. Note that after step
(7), the adversary no longer gets access to oracle O1.

12: The adversary outputs a bit b′.
We say that the adversary wins the game (or alternatively, that the outcome of the game is 1) iff b = b′.

Here Dec∗(dk, ·) is defined as Dec(dk, ·), except that it return ⊥ on input the challenge ciphertext
qc∗.

Definition 7. A qPKE scheme is IND-ATK-EO secure if for every QPT adversary, there exists a
negligible function ϵ such that the probability of winning the IND-ATK-EO security game (Game 2)
is at most 1

2 + ϵ(λ).

Remark 1. The definition presented in Definition 7 is stated for the single challenge query setting.
Using the standard hybrid argument, it is straightforward to show that single-challenge definitions
also imply many-challenge definitions where the adversary can make many challenge queries.

Remark 2. Note that the IND-CCA2-EO definition is only well-defined for schemes with classical
ciphertexts. The other two notions are well-defined even for quantum ciphertexts, though we do
not use those.

3.2 Security Definitions for qPKE with Quantum Ciphertexts

We now give a definition for qPKE with quantum ciphertexts. In the case of adaptive chosen
ciphertext security, the definition is non-trivial due to the no-cloning and the destructiveness of
quantum measurements. We note there are indeed several works considering the notions of chosen-
ciphertext security in the quantum setting: [AGM18] defines chosen-ciphertext security for quantum
symmetric-key encryption (when the message is a quantum state), and [BZ13b,CEV22] defines
chosen-ciphertext security for classical encryption under superposition attacks. However, extending
the technique from [AGM18] to the public-key setting is non-trivial, and we leave this open problem
for future work. In this section, we only consider security notions under chosen-plaintext attacks
and non-adaptive chosen-ciphertext attacks.

Even though one can similarly define security notions with encryption oracle for schemes with
quantum ciphertexts as in Section 3.1, we note that in all constructions of qPKE with quantum
ciphertexts present in this work are not reusable, and thus we do not present the definition in
which the adversary has oracle access to the encryption oracle (with reusable public keys) for the
sake of simplicity. However, we note that the adversary still gets access to the encryption oracle in
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which a new fresh copy of the public key is used for each invocation. We denote these notions as
IND-ATK, where ATK is either chosen-plaintext attacks (CPA) or non-adaptive chosen-ciphertext
attacks (CCA1).

Game 3 IND-ATK security game for encryption with quantum public key and quantum ciphertexts
schemes.
1: The challenger generates dk← Gen(1λ).
2: The adversary A1 gets 1λ as an input, and oracle access to QPKGen(dk), Enc(qpk , ·) and O1, and sends m0, m1 of

the same length to the challenger. A1 also output a state |st⟩ and sends it to A2.
3: The challenger samples b ∈R {0, 1}, generates |qpk ⟩ ← QPKGen(dk) and sends c∗ ← Enc(|qpk ⟩, mb) to the adversary
A2.

4: A2 gets oracle access to QPKGen(dk), Enc(qpk , ·).
5: The adversary A2 outputs a bit b′.

We say that the adversary wins the game (or alternatively, that the outcome of the game is 1) iff b = b′.

The oracles O1 is defined depending on the level of security as follows.

ATK
CPA
CCA1

Oracle O1

∅
Dec(dk, ·)

Definition 8. A qPKE scheme with quantum ciphertexts is IND-ATK secure if for every QPT
adversary A := (A1,A2), there exists a negligible function ϵ such that the probability of winning the
IND-ATK security game (Game 3) is at most 1

2 + ϵ(λ).

4 Constructions of CCA-Secure qPKE

In this section, we present our qPKE constructions from OWF and PRFS and prove that their CCA
security. The former (given in Section 4.1) has classical ciphertexts, and allows to encrypt arbitrary
long messages. The latter (given in Section 4.2) has quantum ciphertexts, and only allows to encrypt
a single-bit message. However, we note that the latter is based on a weaker assumption than the
former. Finally, in Section 4.3, we give a remark on the black-box construction of non-malleable
qPKE from CPA-secure qPKE using the same classical approach.

4.1 CCA-Secure Many-Bit Encryption from OWF

We start by presenting a simple qPKE construction from OWF which prove that it provides our
strongest notion of security, i.e. IND-CCA-EO security. The scheme is formally presented in Con-
struction 1. The ciphertexts produced by the scheme are classical, and the public-keys are reusable.
The cryptographic components of our construction are a quantum secure PRF family {fk} and a
post-quantum IND-CCA secure symmetric-key encryption scheme (SE.Enc, SE.Dec) which can both
be built from a quantum-secure OWF [Zha12,BZ13a].

Construction 1 (IND-CCA-EO secure qPKE from OWF).

• Assumptions: A family of quantum-secure pseudorandom functions {fk}k, and post-quantum
IND-CCA SKE (SE.Enc,SE.Dec).
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• Gen(1λ)
1. dk $←− {0, 1}λ
2. |qpk ⟩ ←

∑
x∈{0,1}λ |x, fdk(x)⟩

• Enc(|qpk ⟩,m)
1. Measure |qpk ⟩ to obtain classical strings x, y.
2. Let c0 ← x and c1 ← SE.Enc(y,m).
3. Output (c0, c1)

• Dec(dk, (c0, c1))
1. Compute y ← fdk(c0).
2. Compute m← SE.Dec(y, c1) and return m.

It can be trivially shown that the scheme achieves perfect correctness if the underlying SKE
provides the perfect correctness property.

Theorem 1. Let {fk}k be a quantum secure PRF and (SE.Enc, SE.Dec) be a post-quantum IND-
CCA secure SKE. Then, the quantum qPKE given in Construction 1 is IND-CCA-EO secure.

Proof. We proceed with a sequence of hybrid games detailed in

– Hybrid H0: This is the IND-CCA game with Π with the challenge ciphertext fixed to (x∗, c∗) =
Enc(|pk⟩,m′0).

– Hybrid H1: This is identical to H0 except instead of measuring |qpk ⟩ when the adversary
queries the encryption oracle, the challenger measures a copy of |qpk ⟩ in advance to obtain
(x∗, y∗ = fdk(x∗)) and answers queries to the encryption oracle using (x∗, y∗) instead. The
decryption oracle still returns ⊥ when queried (x∗, c∗). This change is only syntactical so the
two hybrids are the same from the adversary’s view.

The hybrids H2 to H5 have 2 main goals: (i) to decorrelate the encryption/decryption oracles
Dec∗,Enc from the public-keys handed to the adversary and (ii) to remove the oracles’ dependency
on dk.

– Hybrid H2: This is identical to H1, except (x∗, y∗) is removed from the copies of |qpk ⟩ handed
to the adversary. More precisely, the adversary is handed |qpk ′⟩ of the following form:

|qpk ′⟩ = 1√
2|x∗| − 1

∑
x:x ̸=x′

|x⟩|fdk(x)⟩ (6)

The decryption oracle still returns ⊥ when queried on the challenge ciphertext. Note that |qpk ⟩
and |qpk ′⟩ have negl(λ) trace distance so the advantage of distinguishing H1 and H2 is negl(λ).

– Hybrid H3: This (inefficient) hybrid is identical to H2 other than fdk being replaced with a
truly random function f , i.e. the public-keys are change to:

|qpk ′⟩ = 1√
2|x∗| − 1

∑
x:x ̸=x′

|x⟩|f(x)⟩ (7)

The encryption and decryption oracle can be simulated by oracle access to f . The decryption
oracle returns ⊥ when queried (x∗, c∗). The indistinugishability of H3 and H2 follows directly
from pseudorandomness property of {fk}k.
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– Hybrid H4: This hybrid is identical to H3 other than y∗ being sampled uniformly at random.
Upon quering (c0, c1) to the decryption oracle if c0 ̸= x∗, the oracle computes y = f(c0)
and returns m = SE.Dec(y, c1). In case c0 = x∗ and c1 ̸= c∗, the decryption oracle re-
turns m = SE.Dec(y∗, c1). On (x∗, c∗) the oracle returns ⊥. The encryption oracle returns
(x∗,SE.Enc(y∗,m)) when queried on m. As x∗ does not appear in any of the public-keys this
change is only syntactical.

– Hybrid H5: This hybrid reverts the changes of H3, i.e. dk′ is sampled uniformly at random
and the public-keys are changed as follows:

|qpk ′⟩ = 1√
2|x∗| − 1

∑
x:x ̸=x′

|x⟩|fdk′(x)⟩ (8)

With this change, on query (c0, c1) if c0 ̸= x∗, the decryption oracle computes y = fdk′(c0)
and returns m = SE.Dec(y, c1). In case c0 = x∗, the decryption oracle simply returns m =
SE.Dec(y∗, c1) when c1 ̸= c∗ and ⊥ otherwise. The encryption oracle is unchanged from H4.
The indistinguishability of H4 and H5 follows from the pseudorandomness of f and the fact
that |qpk ′⟩ and (x∗, y∗) are decorrelated. The hybrid is efficient again.

The next step is to remove the dependency of the encryption and decryption oracles on y∗. This is
done by querying the encryption and decryption oracles of the SKE.
– Hybrid H6: Let SE.OEnc and SE.ODec∗ be two oracles implementing the encryption and de-

cryption procedures of SE with the key y∗. SE.ODec∗ returns ⊥ when queried y∗. In this hybrid,
we syntactically change the encryption and decryption oracle using these two oracles. To im-
plement the encryption oracle, on query m we simply query SE.OEnc on message m and return
(x∗,SE.OEnc(m)). To simulate the decryption oracle, on query (c0, c1) we act the same as in H5
when c0 ̸= x∗, but on queries of form (x∗, c) we query SE.ODec∗ on c and return SE.ODec∗(c).
Due to the definition of OEnc and ODec∗ these changes are also just syntactical. Note that
although SE.ODec∗ always returns ⊥ on y∗, it is only queried when c0 = x∗, i.e. to cause this
event the decryption oracle should be queried on the challenge ciphertext (x∗, c∗).

– Hybrid H7: We provide the adversary with x∗,SE.OEnc, SE.ODec∗, instead of access to the
encryption and decryption oracle. Note that the adversary can implement the encryption and
decryption oracles themselves by having access to x∗, SE.OEnc, SE.ODec∗ and sampling a uni-
form dk′ themselves and vice versa (SE.ODec∗ can be queried on c by querying the decryption
oracle (x∗, c) and SE.OEnc can be queried on m by querying the encryption oracle on m). This
demonstrates that the hybrids are only syntactically different and hence are indistinguishable.

– Hybrid H8: This hybrid is identical to H7 with the only difference that the challenge ciphertext
is swapped with (x∗,SE.OEnc(0)). Now notice that any adversary that can distinguish H8 from
H7 can effectively break the IND-CCA security of SE. Hence, the indistinguishability of the two
hybrids follows directly from the IND-CCA security of SE.
Following the same exact hybrids for challenge ciphertext Enc(|qpk ⟩,m′1) we can deduce that
the scheme is IND-CCA-EO secure.

4.2 CCA1-Secure Many-Bit Encryption from PRFS
We continue by presenting a CCA1-secure bit-encryption from PRFS. Extending this scheme to
polynomially many bits is discussed at the end of this section, see Remark 3. The description of
the scheme is given below in Construction 2.
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Construction 2 (IND-CCA1 secure qPKE from PRFS).

• Assumptions: A PRFS family {|ψdk,x⟩}dk,x with super-logarithmic input-size. Let n := n(λ).
• Gen(1λ)

1. Output dk←R {0, 1}λ.
• QPKGen(dk)

1. Output |qpk ⟩ ←
∑

x |x⟩R|ψdk,x⟩⊗n
S , where x ∈ {0, 1}ω(log λ).

• Enc(|qpk ⟩,m) for m ∈ {0, 1}
1. Measure the R registers of |qpk ⟩ to obtain a classical string x. Let |ϕ⟩ := |ψdk,x⟩⊗n denote

the residual state.
2. If m = 0, output the ciphertext as (x, |ϕ⟩).
3. Else, sample a uniformly random key dk1, and output the ciphertext as (x, |ψdk1,x⟩⊗n).

• Dec(dk, (x, Ψ))
1. Compute |ψdk,x⟩⊗n and perform n SWAP tests for each subsystem of Ψ of the same size as
|ψdk,x⟩ with |ψdk,x⟩.

2. If the outcome of the SWAP tests is 0 all the time, output 0, otherwise output 1.

Our scheme described in Construction 2 has correctness, which follows from the correctness of
the (parallel amplification) of SWAP test.

Theorem 2. Construction 2 has correctness.

Proof. The correctness of the scheme follows from the fact that the states |ψdk1,x⟩ are relatively well
spread out for a random choice of dk. This is due to the pseudorandomness of the state generator.
Note that if in step 3 instead of picking dk1 randomly and computing |ψdk1,x⟩, the encryption
algorithm could sample |ϑ⟩⊗n, from the Haar measure, the expected probability of n SWAP tests
between |ψx,dk⟩ and |ϑ⟩ all returning 0 would be 2−n. Hence, if the probability is more than negligibly
apart for n SWAP tests between |ψx,dk1⟩ and |ψx,dk⟩ for a random choice of dk1, with a Chernoff
bound argument one can show that this would lead to a distinguisher for the PRFS. Hence, for n
polynomial in λ the scheme has negligible correctness error.

Theorem 3. The construction in Construction 2 is IND-CCA1 secure (see Definition 8), assuming
{|ψdk,x⟩}dk,x is a PRFS with super-logarithmic input-size.

Proof. We prove the theorem via a series of hybrids.

– Hybrid H0. The original security game as defined in Definition 8.
– Hybrid H1. This is identical to hybrid H0, except that the challenger, instead of measuring
|qpk ⟩ when the adversary queries the encryption oracle for the first time, the challenger measures
(the R registers of) this state before providing the copies of |qpk ⟩ to the adversary. Note that by
measuring |qpk ⟩ in the computational basis, the challenger would obtain a classical uniformly
random string x∗, let the residual state be |ϕ∗⟩ := |ψdk,x∗⟩⊗n.
Note that the two operations corresponding to the challenger’s measurement of |qpk ⟩ and the
creation of the copies of |qpk ⟩ given to the adversary commute. Thus, the distribution of the two
hybrids are identical and no adversary can distinguish H0 from H1 with non-zero advantage.
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– Hybrid H2. This is identical to hybrid H1, except that the challenger samples x∗ as in the
previous hybrid, and instead of providing |qpk ⟩ to the adversary, it provides

|qpk ′⟩ := 1√
2|x∗| − 1

∑
x:x ̸=x∗

|x⟩|ψdk,x⟩⊗n.

Moreover, in the challenge query, the challenger uses (x∗, |ϕ∗⟩) for the encryption of the chosen
message m, without measuring a fresh copy of |qpk ⟩ (that is, it skips the first step of the
encryption algorithm). We note that this state |qpk ′⟩ can be efficiently prepared.
The distinguishing probability of the two hybrids H1 and H2 implies that we can distinguish the
following quantum states |qpk ⟩⊗p⊗|x∗⟩ and |qpk ′⟩⊗p⊗|x∗⟩ with the same probability, but these
two quantum states have negl(λ) trace-distance for any polynomial p. Therefore, any adversary
can only distinguish H1 and H2 with success probability at most negl(λ).

– Hybrid H3. This (inefficient) hybrid is identical to H2, except that the challenger uses a Haar
oracle OHaar to generate |qpk ′⟩ in place of |ψdk,·⟩. In particular, the quantum public key in the
hybrid H3 is computed as:

|qpk ′⟩ ←
∑

x:x ̸=x∗
|x⟩ ⊗ |ϑx⟩⊗n,

where each |ϑx⟩ is an output of OHaar on input x. The decryption oracle is the same as the
decryption algorithm with the difference that OPRFS (the algorithm generating the PRFS) is
swapped with OHaar. The crucial point here is that the decryption oracle only uses the PRFS
in a black-box way (in particular, it only uses OPRFS and does not use O†PRFS).
Note that the decryption oracle can return ⊥ on query (x∗, ·). This can not be used to distinguish
the two hybrids as the adversary has a negligible chance of querying x∗ as x∗ is picked uniformly
at random. The adversary is only provided with the value of x∗ when given the challenge
ciphertext, at which point they do not have access to the decryption oracle anymore.
We note that the adversary does not have direct access to this OHaar, but only via the decryption
oracle. By pseudorandomness property of |ψdk,·⟩, we have that H2 and H3 are computationally
indistinguishable.

– Hybrid H4. In this hybrid, we revert the changes in H3, except that the challenger samples a
uniformly random key dk′ to compute all states in |qpk ′⟩, except for the one used to encrypt the
challenge query. In particular, the public key |qpk ′⟩ is now generated using the PRFS generator
with the key dk′, and the secret key dk and its public counterpart (x∗, |ψdk,x∗⟩⊗n) are used for
the challenge encryption. We note that the hybrid is now efficient again. Similar to the previous
argument, H3 and H4 are also computationally indistinguishable due to pseudorandomness
property of |ψdk′,·⟩.

– Hybrid H5. This hybrid is identical to H4, except that in the challenge query, instead of
encrypting 0 as (x∗, |ψdk,x∗⟩⊗n), the challenger encrypts 0 as (x∗, |ϑx∗⟩⊗n), where each |ϑx⟩ is
an output of OHaar on input x.
Notice that in this hybrid, the secret key dk and its public counterpart (x∗, |ψdk,x∗⟩)⊗n) are not
correlated with any of other variables in the hybrid. Furthermore, after receiving the challenge
ciphertext, the adversary no longer gets access to the decryption oracle. By the pseudorandom-
ness property of |ψdk,x∗⟩, we have that H4 and H5 are computationally indistinguishable.
Furthermore, in this final hybrid, the adversary needs to distinguish the output of PRFS with
a uniformly random key dk1 (for encryption of 1) and the output of a Haar random oracle (for
encryption of 0). By the same argument as above, the winning advantage of the adversary is
also negligible.
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Overall, since all hybrids are negligibly close and the winning advantage of the adversary in the
last hybrid in negligible, we conclude the proof.

Remark 3. We sketch here how to achieve many-bit encryption (i.e., non-restricted length encryp-
tion) from our scheme present above. We do this through several steps.

– The scheme stated in Construction 2 can easily be extended to a length-restricted scheme, by
applying bit-by-bit encryption.

– Given a qPKE length-restricted CCA1 encryption, and a (non-restricted length) symmetric key
encryption, we can define a hybrid encryption scheme, where the qPKE scheme is used first
to encrypt a random (fixed length) secret key, which is later used to encrypt an arbitrarily
long message. The entire scheme is CPA- (respectively, CCA1-) secure if the symmetric key
encryption has CPA- (respectively, CCA1-) security.

– Finally, we note that the following many-bit symmetric key encryption scheme can be proven
to be CCA1 secure, using the same proof strategy as in Theorem 3, based on the existence of
PRFS alone. Given a secret key dk, to encrypt a message m ∈ {0, 1}ℓ, we sample ℓ distinct
uniformly random strings xi, and compute |ψdk,xi

⟩⊗n. Then each bit mi will be encrypted using
as (xi, |ψdk,xi

⟩⊗n) if mi = 0, or (xi, |ψdk′,xi
⟩⊗n) if mi = 1 for a fresh key dk′.

Remark 4. We note that in Construction 2, any PRFS family with super-logarithmic input-size and
logarithmic output-size is sufficient. In this case, it is possible to replace the quantum ciphertext
with the classical one by using verifiable tomography introduced in [AGQY22].12 Verifiable tomog-
raphy is a tomography algorithm augmented with a verification procedure. Suppose we execute
a tomography algorithm on multiple copies of a state to obtain a classical string u. The verifica-
tion algorithm, given u and the algorithm to create this state, can check if u is consistent with
this state or not. If the state is of logarithmic dimension in λ, both tomography and verification
algorithms are efficient. For our application, we would require verifiable tomography with different-
input correctness. That is, we require that the verification algorithm rejects if u is produced by
tomographing |ψdk′,x⟩ for any dk′ ̸= dk. In this remark, we briefly sketch how to apply verifiable
tomography to Construction 2 to obtain a scheme with classical ciphertexts.

First, notice that the ciphertext in Construction 2 consists of n identical copies of the same
PRFS state. We can execute the tomography algorithm at the end of the encryption algorithm to
obtain a classical string u, which is a classical description of either |ψdk,x⟩⊗n or |ψdk1,x⟩⊗n. Secondly,
the decryption algorithm is changed: instead of performing SWAP tests, it uses the tomography
verification. The correctness of this new scheme follows from the different-input correctness of the
verifiable tomography scheme, and the proof of security remains the same.

4.3 Generic Construction of Non-Malleable qPKE

We remark that known implications from the literature can be used to show that IND-CPA secure
qPKE with classical ciphertexts implies non-malleable qPKE: The work of [CDMW18] shows a
black-box compiler from IND-CPA encryption to non-malleable encryption, which also applies to
the settings of quantum public-keys. The only subtlety is that the compiler assumes the existence
of a one-time signature scheme to sign the ciphertext. In [MY22b,MY22a] it is shown that one-
time signatures (with quantum verification keys) exist assuming one-way state generators, which
12 We thank an anonymous reviewer at TCC for pointing out this nice observation to us.
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in turn are implied by qPKE. Combining the implications of these two works, we obtain a generic
construction of non-malleable qPKE from any IND-CPA secure one.

5 IND-CPA-EO secure qPKE from PRFSPD

In this section, we propose a construction for qPKE from pseudo-random function-like states with
proof of destruction. The construction is reusable, has classical ciphers, and is CPA-EO secure.

We first import the following result that builds symmetric-key encryption from PRFSPD.

Proposition 1 ([BBSS23]). If quantum-secure PRFSPD exists, then there exists a quantum CPA
symmetric encryption with classical ciphertexts.

We give the formal construction for many-bit reusable encryption scheme from PRFSPD in Con-
struction 3.

Construction 3 (IND-CPA-EO secure qPKE from PRFSPD).

• Assumptions: A PRFSPD family {|ψdk,x⟩}dk,x and a quantum symmetric encryption scheme
with classical ciphers {Enc,Dec}.
• Gen(1λ)

1. Let dk0,i ←R {0, 1}λ for all i ∈ [1, λ].
2. Output dk← {dk0,i}i∈[1,λ].

• QPKGen(dk)
1. Output |qpk ⟩ =

⊗
i∈[λ]

1√
2λ

∑
xi∈{0,1}λ |xi⟩|ψdk0,i,xi

⟩.

• Enc(|qpk ⟩,m) for m ∈ {0, 1}∗

1. Let |qpk i⟩ := 1√
2λ

∑
xi∈{0,1}λ |xi⟩|ψdk0,i,xi

⟩, and write |qpk ⟩ as |qpk ⟩ =
⊗

i∈[λ] |qpk i⟩.
2. Measure the left registers of |qpk i⟩ to obtain classical strings xi. Denote the post-measurement

states as |ψ′i⟩.
3. Set yi ← Destruct(|ψ′i⟩).
4. For i ∈ [1, λ], pick dk1,i ← {0, 1}λ and compute |ψdk1,i,xi

⟩.
5. Set y′i ← Destruct(|ψdk1,i,xi

⟩) for all i ∈ [λ].
6. Pick a uniformly random key k ← {0, 1}λ.

7. Set ỹi =
{
y′i , if ki = 0
yi , if ki = 1

.

8. Output (Enc(k,m), ((xi, ỹi))i) as ciphertext and (k, ((xi, ỹi))i) as the recycled public-key.
• Dec(dk, c)

1. Interpret c as (c′, ((xi, ỹi))i).
2. Let k′i = Ver (dk0,i, xi, ỹi) and let k′ = k′0 . . . k

′
λ.

3. Output Dec(k′, c′).

The correctness of our scheme relies on the existence of PRFSPD with pseudorandomness and
unclonability of proofs properties. The proof of correctness can be shown similarly to that of Con-
struction 2. Next, we show that this construction achieves IND-CPA-EO security in Theorem 4.

Theorem 4. If quantum-secure PRFSPD with super-logarithmic input size exists, then there exists
a public-key encryption with classical ciphertexts which is IND-CPA-EO secure.
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Proof. Our construction is given in Construction 3. It uses a PRFSPD family {|ψdk,x⟩}dk,x and a
quantum symmetric encryption scheme with classical ciphers {Enc,Dec}. We prove the security of
our scheme through a series of hybrids.

– Hybrid H0. The original security game as defined in Definition 7.
– Hybrid H1. This is identical to hybrid H0, except that the challenger, instead of measuring
|qpk i⟩ (for all i ∈ [λ]) when the adversary queries the encryption oracle for the first time,
the challenger measures the left register of each |qpk i⟩ before providing the copies of |qpk ⟩ to
the adversary. Note that by measuring |qpk i⟩ in the computational basis, the challenger would
obtain a classical uniformly random string x∗i .
Note that the two operations corresponding to the challenger’s measurement of |qpk ⟩ and the
creation of the copies of |qpk ⟩ given to the adversary commute. Thus, the distribution of the two
hybrids are identical and no adversary can distinguish H0 from H1 with non-zero advantage.

– Hybrid H2. This is identical to hybrid H1, except that the challenger samples x∗i as in the
previous hybrid, and instead of providing |qpk ⟩ to the adversary, it provides

|qpk ′⟩ :=
⊗
i∈[λ]

1√
2|x∗

i | − 1

∑
xi:xi ̸=x∗

i

|xi⟩|ψdk0,i,xi
⟩.

Moreover, in the challenge query, the challenger uses (x∗i , |ψdk0,i,x∗
i
⟩) for all i ∈ [λ] for the

encryption of the chosen message m, without measuring a fresh copy of |qpk ⟩ (that is, it skips
the first step of the encryption algorithm). We note that this state |qpk ′⟩ can be efficiently
prepared.
The distinguishing probability of the two hybrids H1 and H2 implies that we can distinguish
the following quantum states |qpk ⟩⊗p ⊗

⊗
i∈[λ] |x∗i ⟩ and |qpk ′⟩⊗p ⊗

⊗
i∈[λ] |x∗i ⟩ with the same

probability, but these two quantum states have negl(λ) trace-distance for any polynomial p.
Therefore, any adversary can only distinguish H1 and H2 with success probability at most
negl(λ).

– Hybrid H2,i for i ∈ [0, λ]. We define a series of hybrids H2,i, in which H2,0 := H2, and we
denote H2,λ := H3. Each H2,i+1 is identical as H2,i, except that the challenger uses a Haar
oracle OHaari

in place of |ψdk0,i,·⟩. In particular, the quantum public key in the hybrid H2,i is
computed as:

|qpk ′⟩ ←
i⊗

j=1

∑
xj :xj ̸=x∗

j

|xj⟩ ⊗ |ϑxj ⟩ ⊗
λ⊗

j=i+1

∑
xj :xj ̸=x∗

j

|xj⟩|ψdk0,j ,xj
⟩,

where each |ϑxj ⟩ is an output of OHaarj
on input xj . For the challenge encryption query, the

challenger uses (x∗j , |ϑx∗
j
⟩) for all j ∈ [1, i], and (x∗j , |ψdk0,j ,x∗

j
⟩) for all j ∈ [i+ 1, λ].

By pseudorandomness property of |ψdk0,i,·⟩, we have that H2,i and H2,i+1 are computationally
indistinguishable.

– Hybrid H3,i for i ∈ [0, λ]. We define a series of (inefficient) hybrids H3,i, in which H3,0 := H3,
and we denote H3,λ := H4. In each H3,i+1, we revert the changes in H3,i, except that the
challenger samples uniformly random keys dk′i to compute the i-the component in |qpk ′⟩, except
for the one used to encrypt the challenge query.
Similar to the previous argument, H3,i+1 and H3,i are also computationally indistinguishable
due to pseudorandomness property of |ψdk′

i,·⟩.
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– Hybrid H4,i for i ∈ [0, λ]. We define a series of (inefficient) hybrids H4,i, in which H4,0 := H4,
and we denote H4,λ := H5.
Each hybrid H4,i is identical to H4,i+1, except that for the challenge encryption, the challenger
does not sample dk1,i and compute |ψdk1,i,x∗

i
⟩. Instead, the challenger generates |ϑx∗

i
⟩ using a

Haar random oracle OHaari
and uses this state to compute y′i (by applying Destruct to |ϑx∗

i
⟩).

By the pseudorandomness of |ψdk1,i,·⟩, H4,i and H4,i+1 are computationally indistinguishable.
– Hybrid H6. This hybrid is identical to H5, except that now the challenger sets ỹi = yi for all
i for the challenge encryption query.
Note that in this hybrid, both yi and y′i are computed by applying Destruct to a Haar random
state, thus they are output of the same distribution. Therefore, H5 and H6 are identical.

– Hybrid H6,i for i ∈ [0, λ]. We define a series of hybrids H6,i, in which H6,0 := H6, and we
denote H6,λ := H7.
Each hybrid H6,i+1 is identical to H6,i, except now instead of using a Haar random oracle in
encryption of the challenge query, the challenger samples a fresh key dki and uses this key to
compute ỹi which is a proof of destruction of the state |ψdki,x∗

i
⟩.

By pseudorandomness of |ψdki,·⟩, H6,i+1 and H6,i are computationally indistinguishable.
We also note that the hybrid H7 is now efficient again. In this final hybrid, we note that the
secret key k of the symmetric key encryption scheme is uniformly random and independent
from all the other variables in the hybrid. Thus, we can easily reduce the winning probability
of the adversary in this hybrid to the security of the symmetric key encryption scheme, which
is negligible.

Overall, we obtain the winning probability of the adversary in the first hybrid H0 is negligible, and
conclude the proof.

6 Impossibility of Unconditionally Secure qPKE

In the following, we investigate the question on whether qPKE is possible to construct with
information-theoretic security, and we give strong bounds against this. First, let us mention that
a recent work by Morimae et al. [MY22a] shows that an object called quantum pseudo-one-time
pad (QPOTP) implies the existence of efficiently samplable, statistically far but computationally
indistinguishable pairs of (mixed) quantum states (EFI pairs). QPOTP is a one-time symmetric
encryption with quantum ciphertexts and classical keys, whose key length is shorter than the mes-
sage length. qPKE immediately implies the existence of QPOTP, by increasing the message length,
using bit-by-bit encryption. Since EFI pairs cannot exist information-theoretically, this chain of
implications rules out the existence of unconditionally secure qPKE.13

For the sake of completeness, we provide a new and direct proof of the impossibility statement
using a shadow tomography argument.

A Proof from Shadow Tomography. In order to prove our impossibility result, we first show that if
two public-keys |qpk ⟩ and |qpk ∗⟩ are close, if we encrypt a random bit using |qpk ∗⟩, the probability
of decrypting correctly with dk is high, where dk is the corresponding secret-key of |qpk ⟩.

13 This observation was pointed out to us by Takashi Yamakawa.
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Lemma 1. Let λ be the security parameter and Γ = (Gen ,QPKGen ,Enc,Dec) be a qPKE. Let
dk∗, |qpk ⟩∗ be a fixed pair of honestly generated keys and for all decryption keys dk define pdk
to be:

pdk = Pr
[

Dec(dk, qc) = pt
∣∣∣∣∣ pt $←− {0, 1}
(qc, ·)← Enc(qpk ∗, pt)

]

and let |qpk dk⟩ ← QPKGen(dk). For all dk, if
∣∣⟨qpk ∗|qpk dk⟩

∣∣ ≥ 1− ϵ, then pdk ≥ 1−
√

3ϵ.

Proof. Let UEnc be the purified implementation of the encryption procedures, i.e. given the state
|qpk ∗⟩|b⟩|0⟩, UEnc computes the state computed by Enc prior to the measurement. We argue that
for any |qpk dk⟩ which is close to |qpk ∗⟩, the purified ciphertexts generated by the two keys are also
close. For any bit b, the purified ciphertext are defined as ˜qcb = UEnc |qpk ∗⟩|b⟩|0⟩⟨0|⟨b|⟨qpk ∗|U †Enc and
˜qcb
′ = UEnc |qpk dk⟩|b⟩|0⟩⟨0|⟨b|⟨qpk dk|U

†
Enc . We refer to these as purified ciphertexts. Now we can show,

Tr( ˜qcb
˜qcb
′†) = Tr(UEnc⟨qpk ∗|qpk dk⟩|qpk ∗⟩⟨qpk dk|U

†
Enc) (9)

=
∣∣⟨qpk ∗|qpk dk⟩

∣∣2 ≥ (1− ϵ)2 (10)

The transition from Equation (9) to Equation (10) follows from the trace-preserving property of
unitaries. Let {Πb

dk}dk be the POVM corresponding to decrypting a purified ciphertext with key
dk, i.e. the probability of a purified ciphertext qc being decrypted to b by dk is given by Tr(Πb

dkqc).
Now the term pdk can be rewritten as follows:

pdk = 1
2[Tr(Π0

dkq̃c0) + Tr(Π1
dkq̃c1)] (11)

Now note that, Tr(Π0
dkqc ′0) = Tr(Π1

dkqc ′1) = 1− negl(λ) as we assumed Γ has negligible correct-
ness error. Now we can bound pdk as follows,

pdk = 1
2[Tr(Π0

dkq̃c0) + Tr(Π1
dkq̃c1)] (12)

≥ 1− negl(λ)− 1
2[Tr(|Π0

dk(q̃c0 − q̃c ′0)|) + Tr(|Π1
dk(q̃c1 − q̃c ′1)|)] (13)

≥ 1− negl(λ)− 1
2[Tr(|q̃c0 − q̃c ′0|) + Tr(|q̃c1 − q̃c ′1|)] (14)

= 1− negl(λ)− 1
2[
√

1− Tr( ˜qc0
˜qc0
′†) +

√
1− Tr( ˜qc1

˜qc1
′†)] (15)

≥ 1− negl(λ)−
√

2ϵ ≥ 1−
√

3ϵ (16)

The transition from Equation (14) to Equation (15) is due to q̃cb and q̃c ′b being pure states. This
concludes the proof of the lemma.

Given Lemma 1 one can reduce the adversary’s task in the IND-CPA game to finding a decryp-
tion key dk such that the state |qpk dk⟩ ← QPKGen(dk) is close to |qpk ∗⟩ in inner product distance.
The main technique we use to realize this subroutine of the adversary is shadow tomography in-
troduced by Aaronson et al. [Aar18]. At the core of our proof is the following theorem by Huang,
Kueng, and Preskill [HKP20].
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Theorem 5 (Theorem 1 and S16 [HKP20]). Let O1, . . . , OM be M fixed observables and let ρ
be an unknown n-qubit state. Given T = O(log(M/δ)/ϵ2 ×maxi Tr(O2

i )) copies of ρ, there exists a
quantum algorithm that performs measurements in random Clifford basis on each copy and outputs
p̃1, . . . , p̃M such that, with probability at least 1− δ

∀i, |p̃i − Tr(Oiρ)| ≤ ϵ

At a high level, the theorem states that outcomes of polynomially many random Clifford mea-
surements on a state, i.e. a polynomial number of classical shadows, are enough to reconstruct an
estimate of the statistics obtained by measuring an exponential number of observables. Note that,
the post-processing required to reconstruct p̃i values is often inefficient, however for our purpose,
i.e. proving the impossibility of an information-theoretically secure quantum PKE the efficiency of
the procedure is not of concern. Using Theorem 5 we are able to prove the impossibility statement.

Theorem 6. For any security parameter λ and qPKE Γ = (Gen ,QPKGen ,Enc,Dec) there exists a
polynomial m and a computationally unbounded adversary A who can win the IND-CPA game with
significant advantage only given m(λ) copies of the public-key.

Remark 5. Actually our attack allows us to recover the secret key with high probability, and thus
the attack also breaks the one-wayness security of qPKE (which is a weaker security notion than
IND-CPA). Thus, our theorem indeed shows a generic impossibility of unconditionally secure qPKE.

Proof. Let us describe the adversary given m copies of the public-key |qpk ∗⟩ alongside a challenge
ciphertext qc. We set the value of m later in the proof. For a value N , we define the following rank
1 projection ensemble {Π1

dk = |qpk dk⟩⟨qpk dk|
⊗N}dk←Gen(1λ). The adversary tries to find a decryption

key dk such that Tr(Π1
dk|qpk ∗⟩⟨qpk ∗|⊗N ) is relatively large. In order to do so the adversary computes

Tr(Π1
dk|qpk ∗⟩⟨qpk ∗|⊗N ) for all decryption keys dk. By following the procedure from Theorem 5 on

ρ = |qpk ∗⟩⟨qpk ∗|⊗N , the adversary performs random Clifford measurements on

T = O

(
log

(
#{dk|dk← Gen(1λ)}

δ

)
1
ϵ2

Tr(Π1
dk

2)
)

copies of ρ to compute values p̃dk such that with probability 1− δ, for all dk∣∣∣p̃dk − Tr(Π1
dk|qpk ∗⟩⟨qpk ∗|⊗N )

∣∣∣ ≤ ϵ.
Let us set ϵ < 1/6 and δ to be a small constant, e.g. 1/100. Immediately it can be noticed that as
ϵ and δ are constants and Tr(Πdk

12) = 114, T is O(log(#{dk|dk ← Gen(1λ)})) which is poly(λ) as
the key-lengths should be polynomial in the security parameter.

We claim that if the adversary picks any key such that p̃dk > 1/2, they have found a key that
has a high chance of decrypting the challenge ciphertext correctly. Let us elaborate. First of all,
note that the adversary finds at least one such dk with probability at least 1 − 1

100 , as for the
correct decryption key dk∗, Tr(Π1

dk∗ |qpk ∗⟩⟨qpk ∗|⊗N ) = 1 hence p̃dk∗ > 1 − 1/6 with probability at
least 1− 1

100 .
The next thing to show is that any dk such that p̃dk > 1/2 is a good decryption key. Note that

due to Lemma 1 we have,

Tr(Π1
dk|qpk ∗⟩⟨qpk ∗|⊗N ) =

∣∣⟨qpk dk|qpk ∗⟩
∣∣2N (17)

14 this is due to Π1
dk operators being rank-1 projections
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We note that for all dk such that pdk ≤ 1−
√

3
log(N) we have:

pdk ≤ 1−
√

3
log(N) ⇒ ⟨qpk dk|qpk ∗⟩ ≤ 1− 1

log(N) (18)

⇒ Tr(Π1
dk|qpk ∗⟩⟨qpk ∗|⊗N ) ≤ (1− 1

log(N))2N (19)

≤ e−2N/ log(N) ≪ 1/3, for a large enough N (20)

Given our choice of δ, ϵ, this ensures that if the adversary picks any dk such that p̃dk > 1/2, with
probability at least 1− 1

100 we have that,
∣∣∣p̃dk − Tr(Π1

dk|qpk ∗⟩⟨qpk ∗|⊗N )
∣∣∣ ≤ 1/6, Tr(Π1

dk|qpk ∗⟩⟨qpk ∗|⊗N ) >

1/3 hence, pdk > 1−
√

3
log(N) .

As the last step, the adversary uses the dk they obtain from the previous procedure to decrypt
the challenge ciphertext qc∗. By union bound and following the discussion above the adversary’s
advantage to decrypt the challenge ciphertext correctly is greater than 1− 1

100 −
√

3
log(N) which by

setting N to be a large constant is significantly larger than 1/2. Finally note that this adversary
uses m = NT copies of the public-key, where T = poly(λ) and N is a constant, so the total number
of public-key copies used are polynomial in λ.
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A CCA-Secure Bit-Encryption from OWF

In this appendix, we describe a simple quantum public key bit encryption scheme that satisfies the
strong notion of CCA security. The construction relies on a quantum-secure pseudorandom function

PRF : {0, 1}λ × {0, 1}λ → {0, 1}3λ

which, as mentioned earlier in Section 2, can be constructed from any quantum-secure one-way
function. Then our quantum PKE scheme Π = (Gen ,QPKGen ,Enc,Dec) is defined as follows:

– The key generation algorithm Gen(1λ) samples two keys dk0
$←− {0, 1}λ and dk1

$←− {0, 1}λ and
sets dk = (dk0, dk1). The public-key generation QPKGen(dk) prepares the states

|qpk 0⟩ =
∑

x∈{0,1}λ

|x, fdk0(x)⟩ and |qpk 1⟩ =
∑

x∈{0,1}λ

|x, fdk1(x)⟩.
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Where {fdk}dk is a PRF. Note that both states are efficiently computable since the PRF can be
efficiently evaluated in superposition in view of Fact 1. The quantum public key is then given
by the pure state |qpk ⟩ = |qpk 0⟩ ⊗ |qpk 1⟩, whereas the classical secret key consists of the pair
dk = (dk0, dk1).

– Given a message pt ∈ {0, 1}, the encryption algorithm Enc(|qpk ⟩, pt) simply measures |qpk pt⟩
in the computational basis, and outputs the measurement outcome as the classical ciphertext
qc = (x, y) and the post measurement state |x⟩|y⟩.

– Given the ciphertext qc = (x, y), the decryption algorithm Dec(dk, qc) first checks whether
fdk0(x) = y and returns 0 if this is the case. Next, it checks whether fdk1(x) = y and returns 1
in this case. Finally, if neither is the case, the decryption algorithm returns ⊥.

Next, we establish correctness of this scheme.

Theorem 7. If PRF is a quantum-secure pseudorandom function, then the quantum PKE scheme
Π is correct.

Proof. Observe that the scheme is perfectly correct if the ranges of fdk0 and fdk1 are disjoint. By a
standard argument, we can instead analyze the case of two truly random functions f0 and f1, and
the same will hold for fdk0 and fdk1 , except on a negligible fraction of the inputs. Fix the range
of f0, which is of size at most 2λ. Then the probability that any given element of f1 falls into the
same set is at most 2−2λ, and the desired statement follows by a union bound.

Finally, we show that the scheme is CCA-secure. The main tool used in the proof is the one-way
to hiding lemma [AHU19].

Lemma 2 (One-way to hiding). Let G,H : X → Y be random functions and S ⊂ X an
arbitrary set with the condition that ∀x /∈ S,G(x) = H(x), and let z be a random bitstring. Further,
let AH(z) be a quantum oracle algorithm that queries H with depth at most d. Define BH(z) to be
an algorithm that picks i ∈ [d] uniformly, runs AH(z) until just before its ith round of queries to H
and measures all query input registers in the computational basis and collects them in a set T . Let

Pleft = Pr[1← AH(z)], Pright = Pr[1← AG(z)],
Pguess = Pr[S ∩ T ̸= ∅|T ← BH(z)]

Then we have that

|Pleft − Pright| ≤ 2d
√
Pguess and |

√
Pleft −

√
Pright| ≤ 2d

√
Pguess (21)

Theorem 8. If {fdk}dk is a quantum-secure pseudorandom function ensemble, then the quantum
PKE scheme Π is CCA-secure.

Proof. It suffices to show that the CCA experiment with the bit b fixed to 0 is indistinguishable
from the same experiment but with b fixed to 1. To this end we consider a series of hybrids, starting
with the former and ending with the latter:
– Hybrid 0: This is the original CCA experiment except that the bit b fixed to 0.
– Hybrid 1: In this (inefficient) hybrid, we modify hybrid 0 to instead compute |qpk 0⟩ as

|qpk 0⟩ =
∑

x∈{0,1}λ

|x, f(x)⟩,

where f is a truly uniformly random function.
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The indistinguishability between these two hybrids follows by a standard reduction against the
quantum security of PRF: To simulate the desired n copies of |qpk 0⟩, and to answer decryption
queries (except the one that contains the challenge ciphertext), the reduction simply queries the
oracle provided by the PRF security experiment (possibly in superposition). Note that whenever
the oracle implements PRF, then the view of the distinguisher is identical to hybrid 0, whereas if
the oracle implements a truly random function, then the view of the distinguisher is identical to
hybrid 1.

– Hybrid 2: In this (inefficient) hybrid, we modify hybrid 1 such that the challenge ciphertext
is sampled as

x
$←− {0, 1}λ and y

$←− {0, 1}3λ.

The indistinguishability of hybrids 1 and 2 follows from the one-way to hiding lemma (Lemma 2).
Let H be such that H(x) = y and for all x′ ̸= x we set H(x′) = f(x′), and let S = {x}. Let
A be the adversary playing the security experiment. We claim that Af is the adversary playing
in hybrid 1 whereas AH corresponds to the adversary playing hybrid 2: Observe that the public
keys can be simulated with oracle access to f (H, respectively) by simply querying on a uniform
superposition of the input domain, whereas the decryption queries can be simulated by query basis
states. Importantly, for all queries after the challenge phase, the adversary is not allowed to query
x to Dec∗. Hence the set T , collected by B is a set of at most n uniform elements from the domain
of f , along with Q basis states, where Q denotes the number of queries made by the adversary to
the decryption oracle before the challenge ciphertext is issued. By a union bound

Pguess = Pr[T ∩ {x} ≠ ∅] ≤ (n+Q)
2λ

= negl(λ)

since x is uniformly sampled. Applying Lemma 2, we deduce that |Pleft − Pright| is also negligible,
i.e., which bounds the distance between the two hybrids.

– Hybrid 3: In this (efficient) hybrid, we modify hybrid 2 to compute |qpk 0⟩ by using the pseu-
dorandom function fdk0 instead of the truly random function f . That is, we revert the change
done in hybrid 1.

Indistinguishability follows from the same argument as above.

– Hybrid 4: In this (inefficient) hybrid, we modify hybrid 3 to compute |qpk 1⟩ as

|qpk 1⟩ =
∑

x∈{0,1}λ

|x, f(x)⟩

where f is a truly uniformly random function.

Indistinguishability follows from the same argument as above.

– Hybrid 5: In this (inefficient) hybrid, we modify hybrid 4 by fixing the bit b to 1 and computing
the challenge ciphertext honestly, i.e., as

x
$←− {0, 1}λ and y = f(x).
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Indistinguishability follows from the same argument as above.

– Hybrid 6: In this (efficient) hybrid, we modify hybrid 5 to compute |qpk 1⟩ by using the pseu-
dorandom function fdk1 instead of the truly random function f . That is, we revert the change
done in hybrid 4.

Indistinguishability follows from the same argument as above. The proof is concluded by observing
that the last hybrid is identical to the CCA experiment with the bit b fixed to 1.
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