
Additive Randomized Encodings and Their Applications

Shai Halevi* Yuval Ishai� Eyal Kushilevitz† Tal Rabin�

June 7, 2023

Abstract

Addition of n inputs is often the easiest nontrivial function to compute securely. Motivated
by several open questions, we ask what can be computed securely given only an oracle that
computes the sum. Namely, what functions can be computed in a model where parties can only
encode their input locally, then sum up the encodings over some Abelian group G, and decode
the result to get the function output.

An additive randomized encoding (ARE) of a function f(x1, . . . , xn) maps every input xi

independently into a randomized encoding x̂i, such that
∑n

i=1 x̂i reveals f(x1, . . . , xn) and
nothing else about the inputs. In a robust ARE, the sum of any subset of the x̂i only reveals
the residual function obtained by restricting the corresponding inputs.

We obtain positive and negative results on ARE. In particular:

� Information-theoretic ARE. We fully characterize the 2-party functions f : X1 × X2 →
{0, 1} admitting a perfectly secure ARE. For n ≥ 3 parties, we show a useful “capped
sum” function that separates statistical security from perfect security.

� Computational ARE. We present a general feasibility result, showing that all functions
can be computed in this model, under a standard hardness assumption in bilinear groups.
We also describe a heuristic lattice-based construction.

� Robust ARE. We present a similar feasibility result for robust computational ARE based
on ideal obfuscation along with standard cryptographic assumptions.

We then describe several applications of ARE and the above results.

� Under a standard cryptographic assumption, our computational ARE schemes imply the
feasibility of general non-interactive secure computation in the shuffle model, where mes-
sages from different parties are shuffled. This implies a general utility-preserving compiler
from differential privacy in the central model to computational differential privacy in the
(non-robust) shuffle model.

� The existence of information-theoretic robust ARE implies “best-possible” information-
theoretic MPC protocols (Halevi et al., TCC 2018) and degree-2 multiparty randomized
encodings (Applebaum et al., TCC 2018). This yields new positive results for specific
functions in the former model, as well as a simple unifying barrier for obtaining negative
results in both models.

*Algorand Foundation
�Technion - Israel Institute of Technology
�University of Pennsylvania

Contents

1 Introduction 1
1.1 Our Contribution . 2
1.2 Open Questions . 4
1.3 Related Work . 5

2 Overview of Techniques 5
2.1 Information-Theoretic ARE . 6
2.2 Computational ARE . 7
2.3 Robust ARE . 7
2.4 Applications . 8

3 Additive Randomized Encoding: Definitions and Properties 10
3.1 ARE Security . 11
3.2 Basic Properties of ARE . 13

3.2.1 ARE “over the integers” . 13

4 Information-Theoretic ARE 13
4.1 ARE for Capped Sum . 15
4.2 Negative Results for Perfectly Secure ARE . 17

4.2.1 Discrete Fourier Transform for Distributions 17
4.2.2 Vector Multiplication Programs . 18
4.2.3 The Relation between VMPs and Perfectly Secure AREs 19
4.2.4 Functions Admitting VMP . 19
4.2.5 A Negative Result for Statistically Secure ARE? 21

5 Computational ARE from Bilinear Maps 21
5.1 A Pairing-Based Two-Party Equality Scheme . 22

5.1.1 Background: Pairing Groups and Squaring XDH 22
5.1.2 ASDH Reduces to Squaring XDH . 25
5.1.3 Aside: A Direct ARE Scheme for OT . 25

5.2 From Equality to Any Small Function . 27
5.3 Computational ARE for General Functions . 28

6 Robust ARE via Obfuscation 28
6.1 Resettable MPC . 28
6.2 Obfuscation . 29
6.3 Constructing Robust ARE . 30

6.3.1 Security Analysis . 30

7 From ARE to Multiparty Randomized Encoding 31

A Attempted Negative Results for Statistical ARE 38

B Lattice-Based candidate for Computational ARE 40
B.1 Implementing Step 2 . 42
B.2 Analysis . 42

1 Introduction

Secure multiparty computation (MPC) [Yao86, GMW19, BOGW88, CCD88] enables n parties to
evaluate a distributed function f(x1, . . . , xn) on their local inputs, while revealing nothing except
the output of f . Most of the questions about the general feasibility of MPC in different models
have already been settled, shifting the focus of most research in the area to improved efficiency.
The current work is motivated by several remaining questions on the feasibility front. Unless stated
otherwise, we consider here security in the presence of semi-honest parties, who send messages as
instructed by the protocol.

� Non-interactive MPC in the shuffle model [IKOS06]. Is it possible to compute every
function f securely (with either information-theoretic or computational security) by having
the parties simultaneously send anonymous messages to an evaluator? The evaluator should
be able to recover f(x1, . . . , xn) from the shuffled messages, but learn nothing else about the
inputs.

� Best-possible information-theoretic MPC [HIKR18]. Does every function f admit an
information-theoretic MPC protocol that offers security against t < n/2 corrupted parties
while only revealing to t ≥ n/2 corrupted parties the residual function of f obtained by fixing
the inputs of honest parties?

� Minimal complete primitive for MPC [ABT21, ABG+20]. Is it possible to compute
every function f with information-theoretic security against any number of corrupted parties,
by using a single call to a degree-2 function g, or alternatively parallel calls to functions gi,j
that depend on only 2 inputs and make their outputs public?

When f is just the n-party addition function over a finite Abelian group, then the answer to all of the
above questions is “yes.” The addition function is also attractive from an (asymptotic and concrete)
efficiency perspective, and several lines of works propose optimized protocols and applications of
secure addition in the context of federated learning [BIK+17], private analytics [CB17], and more.
In light of this, it is natural to ask:

What can be computed securely given only an oracle for addition?

Additive Randomized Encoding. We capture this question via the new notion of an additive
randomized encoding (ARE). Given a function f(x1, . . . , xn) and an Abelian group G, an ARE
scheme for f over G is defined by n randomized local encoding functions Enci, mapping each input
xi to a group element x̂i ∈ G, and a decoder Dec(ŷ), mapping the sum of the encodings ŷ =

∑n
i=1 x̂i

(over G) to an output y. It will sometimes be convenient to consider ARE as a non-interactive
protocol, referring to x̂i as the ARE message of party Pi.

An ARE as above should satisfy the following correctness and security requirements. The
correctness requirement is that the above process results in y = f(x1, . . . , xn). The security re-
quirement is that the sum ŷ reveals nothing about the inputs except the output of f . This can be
viewed as an instance of the standard notion of a randomized encoding (RE) of functions [AIK06],
where the encoding f̂ of f is restricted to “adding up local randomized functions.” See Section 1.3
for further discussion of the relation with RE and its multiparty variant from [ABT21].

1

As a simple example, consider the following ARE for the OR of n input bits: given a group G,
an input xi = 0 is encoded as x̂i = 0 and xi = 1 is encoded as a uniformly random element of G. If
OR(x) = 0 then the sum ŷ of encodings is 0, while if OR(x) = 1 then ŷ is random in G, so security
is perfect. Correctness error occurs with probability 1/|G|, if OR(x) = 1 but the sum of the ARE
messages turns out to be 0 by chance.

Robust ARE. The above notion of ARE is natural when the encoded output ŷ is revealed to an
external party, who does not collude with any of the n parties. For the case where ŷ can be learned
by a coalition T ⊆ [n] of corrupted parties, we need to account for the fact that corrupted parties
can learn the sum ŷH of the encodings x̂i generated by the set of honest parties H = [n] \ T . This
allows them to compute the value f(x∗T , xH) for any x∗T of their choice. We say that an ARE is
robust if this is the only information that can be deduced from ŷH . It is not hard to verify that the
above ARE scheme for OR is robust in this sense.

1.1 Our Contribution

In this work we study the feasibility of ARE and robust ARE for general functions f , with perfect,
statistical, and computational security, apply our positive results towards solutions for the first two
motivating questions discussed above, and highlight ARE as a new barrier for obtaining negative
answers to the last two motivating questions.

Information-theoretic ARE. In the information-theoretic setting, we obtain both positive and
negative results. In particular, we fully characterize the 2-party functions f : X1 × X2 → {0, 1}
admitting a perfectly secure (but possibly statistically correct) ARE. These are precisely the func-
tions f that can be written as g(f1(x1), f2(x1)) for some Boolean functions f1 and f2. This means
that, when insisting on perfect security, OR and XOR are the only two-party Boolean functions
that can be realized (up to local preprocessing of inputs and postprocessing of the output).

For n ≥ 3 parties, we consider a natural “capped sum” function that adds up integer-valued
inputs and reveals the sum only if it is at most (alternatively, at least) some predetermined thresh-
old θ. (Otherwise the only bit of information revealed is that the threshold has been met.) We
also consider a variant that includes “payloads,” that are revealed when the sum does not exceed
the threshold. The capped sum functionality is motivated by applications related to anonymous
communication. We present an ARE for capped sum (including the “payload” variant) in which
both correctness and security are statistical, and apply this towards an ARE for multiplication
modulo an arbitrary integer m. We prove that there is no perfectly secure ARE for capped sum,
thus providing a provable separation between perfect and statistical security for ARE. All of our
constructions of information-theoretic ARE schemes are in fact robust. We leave open the exis-
tence of statistically secure ARE for general (or even constant-size) functions, and describe a failed
attempt in this direction in Appendix A.

Computational ARE. We present a general feasibility result, showing that all polynomial-time
computable functions admit a computationally secure ARE, under a standard hardness assumption
in bilinear groups. An optimized variant of this scheme is quite practical: each party needs to send
only a constant number of group elements per input bit, and additionally one of the parties needs
to generate and send a standard garbled circuit for f . We also describe a heuristic lattice-based

2

construction that we conjecture to be secure. These constructions do not realize the stronger notion
of robust ARE that we discuss next.

Robust computational ARE. The necessity of revealing the residual function in robust ARE
means that robust ARE for general functions (over large input domains) implies obfuscation. We
show that the converse is in a sense also true. Using resettable MPC [GS09, GM11] (which can
be based on standard cryptographic assumptions), we obtain a general feasibility result for robust
ARE based on ideal obfuscation.1 The ideal obfuscation model, which was used to establish several
recent results in cryptography, is similar in spirit to other generic models, such as the random
oracle model. A formal support for this view was recently given in [JLLW22]. To get a (heuristic)
standard-model construction, the ideal obfuscation oracle can instantiated using indistinguishability
obfuscation. Alternatively, our robust ARE can be provably realized (under standard assumptions)
in the pseudorandom oracle model of [JLLW22].

Application 1: Non-interactive MPC in the shuffle model. The shuffle model assumes that
parties can send anonymous messages which are effectively shuffled before arriving to their destina-
tion. (Each party may send multiple messages.) First studied in the context of MPC [IKOS06], the
shuffle model is currently a popular model for distributed differential privacy [CSU+19, EFM+20],
offering better privacy-utility tradeoffs than the distributed local model while requiring less trust
than the central model.

An MPC protocols for addition in the shuffle model was given in [IKOS06] (see [GMPV20,
BBGN20] for a tighter analysis). Combining this protocol with our computational ARE construc-
tions, we get the first general feasibility results for (computationally secure, non-interactive) MPC
in the shuffle model. Depending on the kind of ARE used, one either gets a non-robust (and
practical) protocol under a standard cryptographic assumption, or an optimally robust (but cur-
rently impractical) protocol under strong assumptions. The ARE-based protocols do not involve
any setup, thus providing qualitative advantages over alternative models for non-interactive MPC
such as the PSM model [FKN94] or robust non-interactive MPC with public-key setup [HIJ+17].
The non-robust variant of the protocol implies a general utility-preserving compiler from differential
privacy in the central model to computational differential privacy in the (non-robust) shuffle model.
We do not know how to usefully apply robust ARE towards differential privacy in the robust shuffle
model, and leave this as an interesting open question.

Application 2: Best-possible Information-Theoretic MPC. The notion of Best-possible
Information-Theoretic MPC (BIT-MPC), introduced in [HIKR18], considers a stronger variant of
the standard notion of information-theoretic security for MPC, which is in a sense the best possible.
In the standard notion of IT-MPC for f , there are t < n/2 corrupted parties, and the protocol
should guarantee that corrupted parties learn nothing except the output. The notion of BIT-MPC
makes the additional requirement that even a majority of t corrupted parties should not learn more
than the residual function obtained from f by fixing the inputs of the honest parties. It was shown
in [HIKR18] that this information must be leaked, hence BIT-MPC indeed provides the best possible
security. The main question left open by [HIKR18] is whether all functions can be realized in this

1A combination of resettable MPC and ideal obfuscation was informally proposed in [HIJ+17] in the related context
of non-interactive MPC (see Section 1.3). It was recently used in [BIK+22] in a very different context: constructing
a counterexample to a dream version of Yao’s XOR lemma.

3

model, regardless of efficiency. We connect this question to ARE, by showing that any perfectly
(resp., statistically) secure robust ARE for f implies a perfectly (resp., statistically) BIT-MPC
protocol for f . This allows transferring our positive results, such as the ones for variants of capped-
sum, into the BIT-MPC setting. Moreover, obtaining negative results for (robust) statistical ARE
is a necessary condition, which may be viewed as a barrier, for ruling out BIT-MPC protocols for
general functions.

Application 3: Barrier for Multiparty Randomized Encoding. Finally, we show that a
(hypothetical) robust information-theoretic ARE would imply an optimal construction ofmultiparty
randomized encodings (MPRE) [ABT21] and thus, again, can be viewed as a barrier for settling a
well-known open problem. In an MPRE for f(x1, . . . , xn), each input xi can be preprocessed “for
free” by a local encoder before feeding it into a global encoder f̂ whose output is made public.
MPRE requires that even from the point of view of insiders, the output of f̂ must reveal no more
information about the other inputs than what follows from their own inputs and the output of f .
The (effective) degree of an MPRE is the algebraic degree of f̂ . ARE can be viewed as a variant of
MPRE with degree 1, but where security is only guaranteed against an outsider who observes the
output. Robust ARE also falls short of meeting the MPRE requirement because of the leakage of
the residual function. However, we show that robust ARE can still be used to construct standard
MPRE with degree 2. This should be contrasted with the best known information-theoretic MPRE
constructions, which either have degree 3 [ABT21, ABG+20] or alternatively have degree 2 but are
only secure against 2n/3 corrupted parties [AIKP22]. In fact, our transformation only requires a
robust MPRE for a simple (and constant-size) 3-party function. Thus, a robust statistical ARE for
such functions would settle the main open question in this area.

We note that while our computational construction of robust ARE implies computational degree-
2 MPRE, such a result was already known based on the much weaker assumption that oblivious
transfer exists [ABT21]. The significance of the ARE-to-MPRE transformation is that it gives
another barrier for ruling out degree-2 MPRE: such a negative result requires ruling out statistical
robust ARE for a constant-size 3-party function. Another (23-year old) barrier for the MPRE ques-
tion is ruling out standard statistically secure degree-2 RE for general functions [IK00, ABG+20].
While the two barriers seem technically incomparable (see Section 1.3 below for discussion), we
believe that the ARE barrier may be easier to make progress on because of the simpler additive
structure. For the BIT-MPC question, ARE give the first simple barrier for proving negative re-
sults: the degree-2 RE barrier does not seem to apply, since BIT-MPC protocols are not known to
follow from degree-2 RE.

1.2 Open Questions

Our work leaves many questions about ARE open. The main open question is whether all functions
admit a statistically secure (robust or non-robust) ARE. This is open even for very simple functions,
such as equality of two inputs from the domain {0, 1, 2}, which can be shown to be complete for
non-robust ARE (Theorem 5.10). We strongly conjecture that the answer is negative. However, we
were not able to prove this conjecture, and document in Appendix A the closest we got: a negative
result under an alternative security definition that replaces the standard l1 (statistical) distance
between distributions by l2 distance.

Other questions for information-theoretic ARE include extending our full characterization for
perfectly secure ARE beyond two parties, and ruling out an ARE for OR with perfect correctness.

4

For (non-robust) computational ARE, the main question is to better understand the required
assumptions. Can we use other “public-key” assumptions, such as DDH or LWE? Is public-key
cryptography even needed? Are there any general connections with other cryptographic primitives?

Finally, can we construct robust ARE (for constant-size functions) from iO and standard cryp-
tographic assumptions, avoiding the use of ideal obfuscation?

1.3 Related Work

Randomized encoding of functions. It is often useful to replace a given function f by a
“simpler” randomized function f̂ whose output can be used to recover the output of f but reveals no
additional information about the input. This was formalized by the abstract notion of randomized
encoding (RE) of functions [IK00, AIK06], which has found many applications in cryptography and
beyond (see [Ish13, App17] for surveys). ARE can be viewed as an instance of RE where the notion
of simplicity is “adding up local randomized functions.”

The main open question about RE is the existence of statistically secure degree-2 RE for all
(constant-size) functions. This question, first posed in [IK00], is open for over 20 years, and has
been put forward as a barrier for solving other questions [AHI+17, ABG+20]. We note that the
class of functions admitting (statistical) degree-2 RE seems incomparable to the class of functions
admitting (statistical) ARE, even when restricting the ARE model to allow a single bit of input
per party. On the one hand, the mod-2 inner product function trivially has a degree-2 RE whereas
it is conjectured not to have ARE. (In the case of perfect security, this provably follows from our
2-party characterization.) On the other hand, the capped sum function has (statistical) ARE, but
it seems reasonable to conjecture that it has no degree-2 RE. (A natural implementation of our
ARE scheme in the RE setting would lead to a degree-3 RE.)

Multiparty randomized encoding. As discussed above, MPRE [ABT21] is a natural extension
of RE to the multi-party setting. Viewed as an MPRE, ARE maximizes the simplicity of the global
encoder, but (inherently) does so at the expense of sacrificing full security against insiders. For
standard (non-robust) ARE, the only security requirement is against an outsider who obtains the
output of f̂ , whereas a robust ARE offers the best-possible security against insiders.

Non-interactive MPC. ARE serves as a natural tool for non-interactive MPC in different mod-
els. Unlike existing models for non-interactive MPC, including the well-studied PSMmodel [FKN94]
or its robust variants from [BGI+14, HIJ+17, AAP19], ARE does not require any form or correlated
randomness or public-key setup.

Organization. In Section 2 we provide a technical overview of our results. A more detailed
treatment can then be found in Sections 3 (definitions), 4 (information-theoretic constructions and
lower-bounds), 5 (computational constructions), 6 (robust ARE), and 7 (some applications).

2 Overview of Techniques

In this section we give a detailed but informal overview of the technical ideas behind our main
results.

5

2.1 Information-Theoretic ARE

Our positive results for information-theoretic AREs, consist of randomization techniques for the
functions in question. We start by recalling the simple example of OR of n input bits described in
the introduction: xi = 0 is encoded as a 0, while xi = 1 is encoded as a uniformly random value in
G. If OR(x) = 0 then the sum of encodings is 0 while if OR(x) = 1 then the sum of encodings is
random in G. Privacy is therefore perfect, and correctness error occurs with probability 1/|G|. Note
that this is in fact a robust ARE, since the sum of a subset of the ARE messages only reveals the OR
of the corresponding inputs, which coincides with the residual function restricted to these inputs. 2

This OR protocol can be extended to compute the MAX function (maximum of n integers), though
the communication complexity in this case scales exponentially with the bit-length of the inputs.

A more interesting example is the capped-sum function where the output is the sum of the
inputs (over the integers), unless the sum exceeds some pre-set cap θ, in which case the output is
just θ. Beyond being a natural example, it also serves as a building block for other constructions
(such as ARE for product modulo m) and can be extended to a variant with payloads that can be
motivated by anonymity-related applications. To get an ARE scheme for capped sum, each input
xi is encoded as a random θ × θ matrix with rank xi, over a sufficiently large finite field. The
observation is that up to θ, the rank of the sum is equal, with high probability, to the sum of the
ranks: in that range, a sum of random matrices of ranks xi is close to a random matrix of rank∑

i xi. And, of course, the rank can never exceed θ. In this case, both correctness and security of
the ARE are statistical.

We also present several negative results for perfectly-secure information-theoretic AREs. Among
other things, we show that the above capped sum function cannot have a perfectly-secure ARE,
and the statistical security in our solution is necessary. In this overview, it is convenient to restrict
attention to two-argument functions f(x, y). The (randomized) encoding for every value of x is
associated with some probability distribution px and, similarly, every y is associated with some
probability distribution qy. The sum of the two encodings for inputs (x, y) is therefore distributed
according to the convolution of the two distributions, px ∗ qy. A convenient way to look at con-
volutions is by switching to the Fourier representation of the distributions. While each entry in
px ∗ qy (viewed as vectors) depends on all the entries of px and qy, in the Fourier representation
each entry depends only on the corresponding entries in the transforms of px and of qy. Namely,
p̂x ∗ qy = p̂x ⊙ q̂y, where ⊙ denotes entry-wise product and p̂ denotes the Fourier representation of
p.

We then define a notion of a Vector Multiplication Program (VMP) for the function f . This is
a collection of (complex) vectors vx for each input value x, vectors wy for each input value y, and
distinct vectors uz for each output value z, such that for all (x, y) we have vx ⊙ wy = uf(x,y). It
follows from the above discussion that if there is a perfectly-secure ARE for f(x, y) then there is also
a VMP for f . Using the simplicity of the VMP framework, we are able to obtain, for example, an
exact characterization of the two-argument Boolean functions that admit a perfectly-secure ARE.
Concretely, this is exactly the set of functions f(x, y) that can be expressed as g(f1(x), f2(y)), for
Boolean f1, f2.

2In the following we will not refer to robustness, though all of our ARE constructions in the information-theoretic
setting are in fact robust.

6

2.2 Computational ARE

Central to our treatment of computational ARE is the observation that the two-party equality
function is complete in some sense, even over domains of fixed size (see below). We therefore begin
by describing a pairing-based two-party ARE scheme for the equality function. The starting point
for that scheme is considering the equation

(s1 + s2)(x1s1 − x2s2)
?
= (x1s

2
1 − x2s

2
2)

and noting that the cross-terms s1s2 are canceled out if and only if x1 = x2. This suggests a
protocol where P1(x1) sends (s1, x1s1, x1s

2
1) for a random s1, and P2(x2) sends (s2,−x2s2,−x2s22)

for a random s2. If x1 = x2 = x, then the sum of these two vectors is of the form (s1 + s2, x(s1 −
s2), x(s

2
1 − s22)), and the evaluator can check that the last element equals the product of the first

two. If x1 ̸= x2 then the product of the first two will have additional terms that depend on the
random s1, s2, so it will not be equal to the third term (except with a negligible probability).

Of course, sending the terms above “in the clear” will be insecure, in particular the evaluator
can learn the difference x1−x2. To avoid that, we encode those terms “in the exponent” and rely on
DDH-like assumptions. Since evaluation requires computing the product, we use pairing-friendly
groups that allow us to perform this multiplication in the exponent. More details are provided in
Section 5.1. In the appendix we also describe a heuristic construction that attempts to replicate
this structure with a lattice-based construction.

Once we have a scheme for equality, we can build from it a scheme for all other boolean
functions with small domains: Party P2(x2) prepares a list of all the possible inputs x1 such that
f(x1, x2) = 1, then run an equality ARE for each one to see if P1’s input is any of them. To ensure
security, P2 needs to pad the list so as to always run the same number of equality tests, and shift
it by a random amount to hide which of these instances matches. See Section 5.2.

Having access to ARE schemes for all boolean functions of small domains, we use it to get 1-
out-of-2 oblivious-transfer (OT), and combine it with a standard garbling technique (e.g., [AIK06])
to get a computational ARE for any multiparty function f . That is, one party (say P1) will prepare
a garbled circuit and send it to the evaluator, and will also engage in an OT instance with each
other party for each bit of the input labels for that circuit. See Section 5.3. We also observe that
the structure of the equality ARE scheme from Section 5.1 makes it easy to modify so as to get
directly a scheme for OT, bypassing some of the generic transformations above. This optimization,
described in Section 5.1.3, leads to a practical protocol in which the communication includes a
standard garbled circuit along with a constant number of group elements per input bit.

2.3 Robust ARE

We note that general robust ARE over large input domains implies obfuscation. We therefore
construct robust ARE using obfuscation. A natural approach is to start from a “sufficiently robust”
interactive protocol, and obfuscate its next-message function. Of course, doing so means that the
adversary can reset the honest parties, so the underlying interactive protocol must achieve best-
possible security even with a resetting adversary.

A first attempt at getting a robust ARE for f(x1, . . . , xn) is therefore to start from a resettable-
secure MPC protocol for f [GS09, GM11], then obfuscate its next message function (with the input
and randomness of each party hard-wired). Of course, this does not use the summation oracle of
ARE, and so (unsurprisingly) it is insecure. To see the problem, note that the adversary can reset

7

any subset of the honest parties, then run the protocol with these parties fixed and the inputs to
all other parties chosen arbitrarily. In other words, the adversary gets access to the full residual
function of f(x1, . . . , xn), where it can substitute any subset of the inputs. In contrast, a robust
ARE scheme can only leak the (standard) residual function, where the inputs of all the honest
parties are fixed.

To do better, we extend the function f in a way that allows us to “lock” the inputs of the honest
parties. To wit, we consider the extended function

gf
(
(x1, ρ1, σ1), . . . , (xn, ρn, σn)

)
=

{
f(x1, . . . , xn) if σ1 = · · · = σn =

⊕
i∈[n] ρi,

⊥ otherwise.

Similarly to previous applications combining ideal obfuscation and resettable MPC [HIJ+17,
BIK+22], we use this mechanism to emulate an ideal access to the full residual function of gf ,
enabling the adversary to fix the inputs of any strict subset of the parties. This is done by sending
obfuscations of the next message functions of a resettable MPC protocol for gf , where (similarly
to [BIK+22]) the protocol works over broadcast channels and uses signatures to enforce in-order
executions. In addition to the full residual function of gf , the sum σ = ρ1+. . .+ρn is communicated
to the evaluator via the ARE.

The key point is that given oracle access to the full residual function of gf , the adversary cannot
predict the sum of the ρi’s of a strict subset of the honest parties. The only way for the adversary
to get a matching σ is to use the one that the evaluator received. But this σ ties it also to the ρi’s
of all the other honest parties. Hence, if the adversary uses any inputs of the honest parties then
it must use them all.

2.4 Applications

Application 1: MPC in the shuffle model. The shuffle model was discussed and motivated
above. Here, we outline our construction of MPC protocols in this model. Such a protocol for a
function f is based on two ingredients. The first is an ARE for f over some group G. Using this
ARE, our protocol starts by each party Pi locally encoding its input xi into x̂i. Next, we would
like to compute the encoded output ŷ which is just

∑
i x̂i. This is done, using an addition protocol

for the shuffle model from [IKOS06] (tightly analyzed in [GMPV20, BBGN20]). In this protocol,
the messages of each party are an additive secret sharing (over G) of its input. The value ŷ is
reconstructed by adding up the shuffled shares, and then the ARE decoder is applied to obtain
y = f(x).

Application 2: From ARE to Best-Possible Information-Theoretic MPC. The notion of
Best-possible Information-Theoretic MPC (BIT-MPC), introduced in [HIKR18], considers protocols
that provide best possible type of security, depending on the number of dishonest parties. Namely, it
offers the standard notion of security against a corruption of a minority of parties and, additionally,
offers residual security in case that the adversary corrupts a majority of the parties. The work
of [HIKR18] provides BIT-MPC protocols for certain families of functions (such as OR, and deciding
the solutions of a system of linear equations Ax = b) but rules out efficient BIT-MPC for all
efficiently computable functions. They leave open the question of the possibility of non-efficient
BIT-MPC for all functions, or BIT-MPC for all constant-size functions.

8

We show that information-theoretic robust ARE for a function f can be transformed into
a BIT-MPC for f , hence enriching the set of functions for which such BIT-MPC protocols are
known. Moreover, this also implies that proving negative results for BIT-MPC requires proving
impossibility of statistical ARE, explaining our difficulty of proving such results.

Given such an ARE for f , we construct a BIT-MPC protocol for f as follows. Each party
Pi first uses the ARE to (locally) encode its input xi into x̂i. Then, the parties employ a simple
n-secure addition protocol that computes an additive secret sharing of ŷ =

∑
i x̂i. Finally, they use

a standard information-theoretic MPC protocol (such as the BGW protocol [BOGW88]), secure in
the presence of honest majority, to compute the ARE decoder on the sum of additive shares, which
results in the desired output f(x1, . . . , xn). To argue BIT security, note that if there is a honest
majority, then nothing beyond the output is revealed. On the other hand, if there is a dishonest
majority, then the adversary may learn ŷ. However, the robustness of the ARE, implies that no
more than the residual function of the honest parties’ inputs is leaked by ŷ.

Application 3: Barrier for Multiparty Randomized Encoding. To obtain degree-2 MPRE
from robust ARE, our starting point is that every function g that can be written as the sum of
2-local functions fij(xi, xj) admits a degree-2 MPRE. The main technical challenge is leveraging
robust ARE towards constructing an MPRE of the above form for general functions.

A key difference between the robust ARE model and the MPRE model is that the former
(inherently) has residual function leakage whereas the latter (by requirement) does not. To eliminate
the residual function leakage, we convert f(x1, . . . , xn) into a new N -party function f ′, for N =

(
n
2

)
“virtual parties,” which applies a simple constant-size pairwise multiparty authentication for the
inputs of f . Concretely, for each pair of parties 1 ≤ i < j ≤ n, there is a virtual party Pij whose

input to f ′ is a pair xi,j = (xi,ji , xi,jj). The function f ′ checks that all input pairs are consistent with
some global input vector (x1, . . . , xn), outputting f(x1, . . . , xn) if it is and ⊥ otherwise. Namely,

f ′(x1,2, . . . , xn−1,n) =

{
f(x1, . . . , xn) if ∃x1, . . . , xn s.t. ∀i, j, xi,j = (xi, xj)

⊥ otherwise
.

Note that if f has constant-size input domains then so does f ′.
We now use a robust ARE for f ′ to define an MPRE for f in which the function g is a sum of

2-local functions, which (as noted above) suffices for our purposes. The function g takes from each
party Pi the following inputs: its original input xi, and additional inputs ρij (for all j ̸= i) that
will be used to generate the ARE messages of virtual parties Pij .

Letting Π = (Encij ,Dec) be a robust ARE for f ′ over a group G, the function g is defined as:

g
((
x1, (ρ1j)j ̸=1

)
, . . . ,

(
xn, (ρnj)j ̸=n

))
=

∑
1≤i<j≤n

Encij((xi, xj); ρij ⊕ ρji)

where summation is over G, and Encij((xi, xj); ρ) denotes an ARE encoding for f ′ of input (xi, xj)
(for virtual party Pij) using randomness ρ. By construction, the function g is indeed a sum of 2-
local functions, as required. The output of f can be recovered from the output of g by applying the
ARE decoder Dec of Π. Intuitively, a set of corrupted parties can learn nothing (given their inputs,
randomness, and the output of g) beyond the output of f because the honest parties contribute
secret randomness to the ARE message of each virtual party that involves at least one honest
party. Since the inputs of these virtual parties determine all inputs, the residual function of f ′ with

9

these inputs fixed is determined by the output f(x1, . . . , xn). Finally, we note that by a known
completeness results [ABG+20], applying the above transformation for to a constant-size 3-party
function suffices.

3 Additive Randomized Encoding: Definitions and Properties

Here we define Additive Randomized Encoding (ARE), considering both information-theoretic and
computational security, both with and without robustness. Below we define the ARE syntax in the
most general case, where the function to compute and the group over which the encodings are added
are parameterized by several parameters. In the sequel, not all the parameters will be relevant in all
the settings, and we often omit some of them (e.g., in Section 4, we consider information-theoretic
AREs, in which case setup algorithm, public parameters etc. are not needed, and functions are
often defined over a finite domain).

Definition 3.1 (ARE Syntax). Let f : ({0, 1}∗)∗ → {0, 1}∗ be a multiparty function. An ARE
scheme for f is a triple of algorithms Π = (Setup,Enc,Dec) with the following syntax:

� Setup(1λ, 1n, 1ℓ) → pp is a PPT setup algorithm that, given security parameter λ, number
of parties n, and input length ℓ, generates public parameters pp. The public parameters
include λ, n, ℓ, and an explicit description of an Abelian group G. They can also include some
randomness, such as random generators of G and/or a common reference string (CRS). We
will sometimes eliminate Setup and consider G as being fixed.

� Enc(pp, i, xi)→ x̂i is a PPT encoding algorithm that maps an input xi of party i to a group
element from G. We refer to x̂i as the encoding of xi, or the ARE message of party i.

� Dec(pp, ŷ)→ y is a PPT decoding algorithm that maps a group element ŷ ∈ G to an output
y.

Π is correct, with a possible error of ϵ = ϵ(λ), if for all λ, n, ℓ, and x1, . . . , xn ∈ {0, 1}ℓ:

Pr

 pp← Setup(1λ, 1n, 1ℓ);
x̂i ← Enc(pp, i, xi);
ŷ =

∑n
i=1 x̂i

: Dec(pp, ŷ) = f(x1, . . . , xn)

 ≥ 1− ϵ(λ),

where summation is taken over the group G specified by pp. In the statistical and computational
settings, we require by default that ϵ is negligible in the security parameter.

We will often consider functions f for which n and/or ℓ are fixed. In such cases, these parameters
will be omitted. Also, in some cases we do not need the setup procedure at all, and in the perfect
security setting we do not have a security parameter.

Remark 3.2 (Sending messages to the evaluator). Note that the encoded input could be a vector,
where we use different slots for different purposes. The ARE group in this case is the direct product
of the groups in all the slots.

This syntax allows parties to directly send messages to the evaluator, by allocating a slot in the
vector to one party, where that party puts the message and all other parties put zeros. We use the
shorthand “party Pi sends (xi; yi)” to mean that xi is added to the x’es of all the other parties, and
yi is sent directly to the evaluator.

10

3.1 ARE Security

Our basic security notion, without robustness, asserts that ŷ can be simulated given access to
f(x1, . . . , xn). For any λ, n, ℓ and x1, . . . , xn ∈ {0, 1}ℓ, let us denote by Π

(
1λ, x1, . . . , xn

)
the

output of the process:

Π
(
1λ, x1, . . . , xn

)
:=

{
pp← Setup(1λ, 1n, 1ℓ); x̂i ← Enc(pp, i, xi); ŷ =

∑n
i=1 x̂i;

output (pp, ŷ)

}
.

We often omit some of these parameters, if they are irrelevant in a given context.

Definition 3.3 (ARE Security). An ARE scheme Π = (Setup,Enc,Dec) for f : ({0, 1}∗)∗ →
{0, 1}∗ as in Definition 3.1, is said to be secure if there exists a randomized algorithm Sim, called
a simulator, such that:

Perfect security. For all n, ℓ and x1, . . . , xn ∈ {0, 1}ℓ, Sim
(
1n, 1ℓ, f(x1, . . . , xn)

)
≡ Π

(
x1, . . . , xn

)
.

Statistical security. For some negligible function δ(·), it holds for all λ, n, ℓ and x1, . . . , xn ∈
{0, 1}ℓ, that

SD
(
Sim

(
1λ, 1n, 1ℓ, f(x1, . . . , xn)

)
, Π

(
1λ, x1, . . . , xn

))
≤ δ(λ),

where SD(·, ·) is the statistical distance.

Computational security. Sim is a PPT algorithm, and for all λ, n, ℓ and x1, . . . , xn ∈ {0, 1}ℓ,
Sim

(
1λ, 1n, 1ℓ, f(x1, . . . , xn)

)
and Π

(
1λ, x1, . . . , xn

)
are computationally indistinguishable.

Robustness. The above definition only considers security against the external evaluator who
only sees the sum of the ARE encodings. When the evaluator may collude with a subset of the
parties, we need a stronger notion of robust ARE.

It is easy to see that a collusion between the evaluator and some parties can get the sum of
encodings of the other (honest) parties by subtracting out from ŷ the encodings of the colluding
parties. Below we denote, for any subset of honest parties H ⊂ [n],

ΠH

(
1λ, x1, . . . , xn

)
:=

{
pp← Setup(1λ, 1n, 1ℓ); x̂i ← Enc(pp, i, xi); ŷH =

∑
i∈H x̂i;

output (pp, ŷ)

}
.

Clearly, a collusion of the evaluator with the parties in [n]\H necessarily gets access to the residual
function of the honest parties in H. In the definition below for robust ARE, the simulator will
therefore get access not just to f(x1, . . . , xn), but to the entire residual function.

For any n-party function f , subset H ⊂ [n], and inputs x = (xi : i ∈ H) ∈ ({0, 1}ℓ)|H|, the
residual function defined by H,x is the following function on m = n− |H| inputs:

fH,x(w1, . . . , wm) = f(z1, . . . , zn), where zi =

{
xi if i ∈ H

wji if i /∈ H
,

where ji, for i /∈ H, is the index of i in the set [n] \H.

11

Definition 3.4 (Robust ARE). An ARE scheme Π = (Setup,Enc,Dec) for f : ({0, 1}∗)∗ → {0, 1}∗
as in Definition 3.1, is said to be robust if there exists a simulator Sim with access to a residual-
function oracle, such that:

Perfect robustness. For all n, ℓ, H ⊂ [n], and inputs x = (xi : i ∈ H), Sim
f
H,x

(
1n, H, 1ℓ

)
≡

ΠH

(
x
)
.

Statistical robustness. For some negligible function δ(·), it holds for all λ, n, ℓ, H ⊂ [n], and
inputs x = (xi : i ∈ H), that

SD
(
Sim

f
H,x

(
1λ, 1n, H, 1ℓ

)
, ΠH

(
1λ,x

))
≤ δ(λ),

where SD(·, ·) is the statistical distance.

Computational simulation-robustness. Sim is a PPT algorithm, and for all λ, n, ℓ, H ⊂ [n],

and inputs x = (xi : i ∈ H), Sim
f
H,x

(
1λ, 1n, H, 1ℓ

)
and ΠH

(
1λ,x

)
are computationally

indistinguishable. We will also consider the weaker notion of computational VBB-robustness,
where the order of quantifiers is reversed: for every efficient Boolean distinguisher A there
is an efficient simulator Sim such that A has a negligible advantage distinguishing between

Sim
f
H,x and ΠH .

Indistinguishability robustness. Sim is an unbounded algorithm, and for all λ, n, ℓ, H ⊂ [n],

and inputs x = (xi : i ∈ H), Sim
f
H,x

(
1λ, 1n, H, 1ℓ

)
and ΠH

(
1λ,x

)
are computationally

indistinguishable.

Note that the indistinguishability variant of robustness can be equivalently defined by requiring
that for any H, if x and x′ induce the same residual function (namely, fH,x ≡ fH,x′) then their
partial sums

∑
i∈H x̂i and

∑
i∈H x̂′i are computationally indistinguishable, even given pp.

Remark 3.5 (On the different notions of robust computational ARE). In the 2-party case (n = 2),
the different notions of robust ARE are analogous to corresponding notions of obfuscation. In fact, a
robust ARE for a universal function f implies obfuscation of the corresponding function class. Sim-
ilarly to obfuscation, the simulation and VBB variants are generally impossible to realize [BGI+12].
The VBB variant can potentially be realized for simple but nontrivial classes of functions, such as
evasive functions [BBC+14]. In contrast, the simulation variant is only meaningful in idealized
models, such as the ideal obfuscation model [JLLW22].

We will be particularly interested in “constant-size” functions f , for which both n and ℓ are
bounded. While there is no meaningful notion of obfuscation for constant-size functions, here we
get a meaningful notion, which is stronger than the non-robust notion. (This is similar to the
robust non-interactive MPC model from [BGI+14].) For such constant-size f , all the above notions
of robustness are equivalent, and we refer to the indistinguishability variant by default.

Remark 3.6 (On separating robust ARE from standard ARE). Let f(x, y) be a constant function,
for x, y ∈ {0, 1}. Consider the following ARE for f over Zm: input x is encoded by x itself, while y
is encoded by r ∈R Zm. This ARE satisfies the standard notion of security, as the sum of encodings
is random in Zm, but the evaluator together with the second party learn x (which they should not).

12

3.2 Basic Properties of ARE

We note that if we have ARE schemes for two functions f, f ′ defined over the same set of inputs,
then we also have an ARE for the function g(x) = (f(x), f ′(x)). This is analogous to the standard
concatenation property for randomized encoding of functions.

Claim 3.7 (cf. [AIK14], Fact 3.3). Let f, f ′ be two n-party function. If both functions have perfect
(alternatively, statistical or computational) secure/robust ARE schemes, then the concatenation
function g = (f, f ′) also has an ARE of the same type.

Proof. An ARE Π′′ for g, is obtained by concatenating the two ARE schemes for f, f ′: The public
parameters are concatenated, and so are the encodings. The evaluator decodes each part separately.
The various types of security are easy to verify.

3.2.1 ARE “over the integers”

It is sometimes convenient to convert an ARE for some function f from one group to another. For
that purpose, it is convenient to talk about ARE schemes over the ring of integers Z. While the
syntax in Definition 3.1 requires a finite group, it is often easy to project Z down to some Zt for
large enough t, such that the summation of encodings (almost) never triggers modular reduction.
We refer to such ARE scheme with no modular reduction as being “over the integers.”

Conveniently, we can convert ARE over Zm to one over the integers, using the standard tech-
nique of adding a sufficiently large random multiple of m.

Claim 3.8 (cf. [AIK14], Claim 5.3). If f has a statistical/perfect secure ARE scheme over Zm,
then it has a statistical ARE over the integers.

Proof. The scheme over the integers has Enc′i(xi) = Enci(xi) + ri · m (over the integers), where
ri ∈R [0, µ − 1] for some parameter µ.3 The decoder just reduce everything modulo m and runs
the original decoder. For security, we note that if the original scheme has n parties and statistical
security upto δ, the new one will have statistical security upto at most δ + n/µ. Choosing µ
sufficiently large gives what we need.

Note that the proof in fact uses only a finite portion of the integers, so we can again view the
resulting scheme as being over some large enough Zt.

This can be useful for proving impossibility results: For example, suppose that we could rule
out statistical ARE schemes for a certain function modulo any prime. Then we can use this to also
rule out ARE over Zm for non-prime moduli: if there were such a scheme over Zm, we could use
this to convert it to an ARE over Zt for a prime t sufficiently larger than m. (See for example the
claim in Section 4.1.)

4 Information-Theoretic ARE

We start with few examples of information-theoretic AREs for some simple (but useful) functions.
We use Di to denote the input domain of the i-th party, and Enci = Enc(⊥, i, ·) to denote its
encoder.

3In the context of information-theoretic AREs it is often convenient to replace the notation Enc(pp, i, xi) by
Enci(xi).

13

Example 4.1. (ARE for the OR function.) Here Di = {0, 1}, for i ∈ [n], and all encoders
Enci are identical: on input xi = 0 output gi = 0, while on input xi = 1 output gi ∈R G. The
decoder Dec on input g = 0 outputs 0 while on any other g ∈ G it outputs 1. Observe that when
OR(x) = 0, all gi’s are 0 and so is their sum g. While if OR(x) = 1, at least one gi is random in
G and therefore so is g. Hence, correctness holds except with probability 1/|G| (if OR(x) = 1 but
still g = 0). security, on the other hand, is perfect: there is a requirement only for inputs x where
OR(x) = 1, and for those inputs g is uniformly random in G which is easily simulatable.

An ARE for the function AND is constructed in a similar way.

Example 4.2. (ARE for the MAX function.) Here, for all i ∈ [n], the input domain is
Di = [M], for some integer M . For some group G0 our ARE will be over G = (G0)

M−1. Specifically,
all encoders Enci are identical: on input xi ∈ Di output a length M − 1 vector with uniform and
independent random elements from G0 in each of the first xi−1 entries and 0’s in all other entries.
The decoder Dec on input g ∈ G outputs the index of the first coordinate of g which is 0 (or M if
no coordinate is 0). Observe that if MAX(x) = m, then the first m − 1 entries of g are random
(because so is any gi that corresponds to xi = m) and the other entries are all 0’s. This implies
perfect security. Correctness error may happen if one of the random entries in g turns out to be 0.
This happens with probability 1/|G0| and so the ARE is correct with probability ≥ (1− 1/|G0|)M−1.
Choosing G0 of appropriate size will guarantee a small error. We note that this ARE can be viewed
as M−1 invocations of the ARE for OR (on carefully selected inputs) but for the purpose of example
we use a direct approach.

Example 4.3. (ARE for an “equality”-type function.) Consider the following two-party func-
tion Equal. The input domains are D1 = D2 = [M], for some integer M . Define Equal(x1, x2) = 0
if x1 ̸= x2 and Equal(x1, x2) = v if x1 = x2 = v. For some group G0 our ARE will be over
G = (G0)

M . The encoders Enci are identical: on input xi ∈ [M] output a length M vector with
0 at the i-th entry and random elements from G0 in all other entries. The decoder Dec on input
g ∈ G outputs the first coordinate of g which is 0 or 0 if no such coordinate exists. Observe that
if x1 ̸= x2 then all entries of g are random, while if x1 = x2 = v then we must have a 0 in entry
v and all other entries are random. Again, this implies perfect security. Correctness error may
happen when x1 ̸= x2 but one (or more) of the entries are 0 (of G0) by chance, or if x1 = x2 = v
but, in addition to the v-th entry, other random entries in g turn out to be 0. Therefore, the ARE
is correct with probability ≥ (1− 1/|G0|)M .

Note that the examples above all refer to symmetric functions and hence it is natural to also
have a “symmetric” ARE, where the encoders corresponding to all inputs are identical.

Example 4.4. (ARE for multiplication modulo a prime.) Let Di = Zp, for some prime p
and let Multp(x) = Πn

i=1xi mod p. Consider the following ARE over G = Zm × Zp−1. Each Enci
works as follows: on input xi = 0 it outputs (ai, bi), where ai ∈R Zm, bi ∈R Zp−1, and for input
xi ̸= 0 it outputs (0, logg xi), where g a generator of Zp. The decoder Dec on input (a, b) ∈ G
outputs 0 if a ̸= 0 and gb mod p if a = 0. Observe that if any of the xi’s is 0 (i.e., Multp(x) = 0)
then the output (a, b) is random in G = Zm × Zp−1, while if Multp(x) = s ̸= 0 then the output
is (0, logg s). This implies perfect security. Correctness error may happen when Multp(x) = 0 but
a = 0 by chance, which happens with probability 1/m.

ARE for Multiplication modulo general integer m (i.e., potentially non-prime) is a corollary of
the ARE for capped sum, presented in the next section.

14

We observe that each of the above AREs is also robust. The following theorem summarizes the
above examples:

Theorem 4.5. There exist statistically-correct (over sufficiently large groups), perfectly-secure,
robust AREs for the functions OR, MAX, Equal and Multp. Concretely, let ϵ > 0 be the de-
sired bound on the correctness error, then our ARE for OR requires a group G of size at least
1/ϵ, our ARE for MAX over the domain [M] requires a group G = (G0)

M−1 with G0 of size
Ω(M/ log 1/(1− ϵ)), our ARE for Equal over the domain [M] requires a group G = (G0)

M with G0

of size Ω(M/ log 1/(1−ϵ)), and our ARE for Multp requires a group G = Zm×Zp−1 with m ≥ 1/ϵ.

4.1 ARE for Capped Sum

In this section, we consider the capped-sum function that returns the sum of inputs x1, . . . , xn,
unless the sum is larger than some cap parameter θ, in which case the function returns θ. For
simplicity, we assume in this section that the input domains are Di = {0, 1}, though our results
can be extended to larger domains (see Remark below). The special cases of θ = 1 and θ = n are
already covered by ORn and SUMn, respectively.

The capped-sum function has several motivations. On the technical side, it serves as a building
block in the construction of other protocols (see below). However, it is also motivated as a stand-
alone functionality. For example, consider a “whistle blowing” scenario in which n parties are
given the opportunity to complain about something/somebody but, for privacy considerations, the
number of complaints will be exposed only if it is above some threshold t. This can be achieved via
a capped-sum protocols, where each party inputs 0 for “complain” and 1 for non-complain. The
cap will be θ = n− t. If there are at most t complaints then the output will be θ. However, if more
than t complaints are cast then the output is some y < θ (which implies n− y complaints).

Claim 4.6. Let f : {0, 1}n → {0, 1, . . . , θ} be the capped sum function with cap θ. Then, there
exists a statistically-secure, robust ARE for f over G = (Fp)

θ2.

Proof. The encoding algorithm Enci on input xi = 0 outputs an all-0 matrix Mi of dimension θ×θ,
and on input xi = 1 it outputs Mi which is a random θ × θ rank-1 matrix, with entries in Fp

(selected by choosing random, length θ vectors ui, vi over Fp and setting Mi = ui × vTi). Denote
M =

∑n
i=1Mi. The decoder on input M outputs rankFp(M). Obviously, this rank is in the range

{0, 1, . . . , θ}.
If

∑n
i=1 xi = s then M is the sum of s rank-1 random matrices (in the special case s = 0, the

input x is uniquely determined; hence, we can assume s ≥ 1). For correctness, we argue that with
high probability rankFp(M) = min(s, θ). For this, let A be a θ × s matrix whose columns are the
corresponding ui’s, and let B be a s × θ matrix whose rows are the corresponding vi’s. It follows
that M = A ·B. Next, we argue that with high probability (depending on p) each of A,B has full
rank min(θ, s) (Lemma 4.7 below) and that the rank of A ·B is also min(θ, s) (Lemma 4.8 below).
The correctness, with high probability, follows.

For security, if f(x) = s < θ then M is always the sum of s rank-1 matrices (for such inputs
security is perfect). The case f(x) = θ is more involved, as the larger

∑
xi is the larger the

probability that M = A ·B has full rank, in which case M is a random such matrix. It follows from
Lemma 4.8 that the difference is small.

Lemma 4.7. Let A be a randomly selected m × n matrix over Fp and assume, without loss of
generality, that m ≤ n. Then, A has full rank (i.e., min(m,n)) with probability > (p− 2)/(p− 1).

15

Proof. Select A row-by-row. A has full rank iff each row ai is independent of the previous rows.
The first i − 1 independent rows span pi−1 vectors and so the probability that ai is not one of
them is (pn − pi−1)/pn = 1− 1/pn+1−i. Hence, the probability that all m rows are independent is
Πm

i=1(1 − 1/pn+1−i) ≥ Πn
i=1(1 − 1/pi). To bound this expression, it is convenient to consider the

complement event, where A is singular. This happens with probability at most
∑m

i=1 1/p
n+1−i <∑∞

i=1 1/p
i = 1/(p− 1). The claim follows.

Lemma 4.8. Let B be a full rank matrix of dimension s × θ over Fp. Let A be a random matrix
of dimension θ × s over Fp. Then, rank(AB) = min(s, θ) with high probability.

Proof. Case 1: s ≤ θ. In this case, B has a subset of s columns that form an s×s invertible matrix
B′. By Lemma 4.7, A has rank s with probability ≥ (p− 2)/(p− 1), hence A · B′ also has rank s
and, moreover, it is a submatrix of A ·B which therefore also has rank s.
Case 2: s > θ. By Lemma 4.7, A has rank θ with probability ≥ (p−2)/(p−1), in which case it has
a subset of θ rows that form a θ × θ invertible matrix A′. Since B has rank θ then so does A′ · B
and also A ·B.

We note that, unlike the previous examples, here we only get an ARE with statistical security.
This relaxation is shown below to be necessary.

Remark 4.9. To deal with capped-sum over a larger domain {0, 1, . . . ,m}, we can choose Mi as
a random matrix of rank xi or, to make the analysis similar to the binary case, as the sum of xi
rank-1 random matrices.

Capped sum with payloads. Next, we describe an extension of the capped sum functionality,
that we sometimes refer to as “capped sum with payloads”. Concretely, each party has a pair of
inputs (xi, yi). If the capped-sum of x is below the threshold θ then the ARE reveals this capped-
sum along with

∑n
i=1 yi, while if the capped-sum is at least θ then nothing about y is revealed.

More generally, we can replace
∑n

i=1 yi by any function f(y) for which an ARE over some Zm

exists; we denote this functionality CSf .

Claim 4.10. Let f be a function with an ARE over Zm. Then, there is a statistical ARE for CSf
over Zm′, for sufficiently large m′.

Proof. The idea is to reduce this problem to the standard capped-sum, by increasing the range
from {0, 1, . . . θ} to {0, 1, . . . θ ·β}, where Zβ is the group to which we can transform the ARE for f ,
as described in Section 3.2.1, and is sufficiently large to make sure that there no modular reduction
occurs. Specifically, each xi is first multiplied by β and then we add to it Enci(yi) ∈ Zβ (where Enci
is the encoder described in Section 3.2.1) to get a new input zi for capped-sum (with cap θ · β).

If the sum of xi’s is at least θ then the sum of zi’s is at least θ ·β and so capped-sum reveals no
additional information on the inputs. If the sum of xi’s is some s < θ then the sum of zi’s is < θ ·β
and more precisely, it is s · β (from the xi’s) plus the sum of ARE encodings in Zβ (where here we
use the property of this ARE that no modular reduction occurs). This allows for decoding s and,
from the sum of encodings, decoding also the value f(y) (but no other information about y).

Example 4.11. (ARE for Multiplication over Zm.) Let Di = Zm, for some integer m and
let Multm(x) = Πn

i=1xi mod m. Our ARE for multp reduced multiplication to summation of log xi

16

(in the case that the product is not 0). While (discrete) log is defined in Zp it is not defined in Zm,
hence extra care is required.

We start with the case that m = pe. We write each xi as xi = pei · yi, where yi co-prime with p,
and encode it into the pair (ei, bi), where bi = logg yi for g a generator of the multiplicative group
Z∗
pe (for convenience we view a 0 input as pe). Let e′ =

∑n
i=1 ei. If e′ ≥ e then Multm(x) = 0;

otherwise, it is Πn
i=1xi = pe

′ ·Πn
i=1yi = pe

′ · g
∑n

i=1 bi. Note, that if e′ ≥ e then its exact value should
not be revealed. This is achieved by computing e′ as the capped sum of e1, . . . , en. Moreover, if this
capped sum equals e, the output is 0 and the ARE should not reveal

∑n
i=1 bi. This is immediately

solved via the capped sum with payloads ARE, described above (Claim 4.10).
Finally, we consider the case of general m; that is, m = pe11 · p

e2
2 · · · p

ek
k . In this case, the ARE

is constructed by just applying, for each i ∈ [k], the ARE for Multpeii
(x), which uniquely determine

Multm(x) via the Chinese Remainder Theorem (CRT). Whenever all the ei’s equal 1, we can use
the much more efficient Multpi encodings.

4.2 Negative Results for Perfectly Secure ARE

In this section we present some impossibility results for Information-theoretic AREs. These results
complement the positive results above, and should also be contrasted with the strong positive
results in the computational case, presented in the next section.

Towards these negative results, we start by presenting some tools. We first review some facts
about the Discrete Fourier Transform of functions representing probability distributions. Then we
introduce a new notion that we call “Vector Multiplication Programs” (VMP) that is central to
our negative results, and is motivated by the connection to Fourier Transform, and connect it to
ARE. Finally we use this connection in to prove negative results for perfect information-theoretic
ARE of various functions. Proving negative results for statistical AREs, remains as an intriguing
open problem.

4.2.1 Discrete Fourier Transform for Distributions

The notion of ARE relies on distributions over G, representing the randomized mappings from each
input xi to its encoding; intuitively, we ask that the two distributions

∑
Enc(xi) and

∑
Enc(yi)

are “close” if f(x) = f(y) and are “far” if f(x) ̸= f(y). To analyze such probability distributions,
it is useful to view them as functions pxi : G → R (assigning to each element of the group G its
probability to be chosen as the encoding of a certain value xi), where the group G is assumed to
be finite and Abelian.

The Discrete Fourier Transform (DFT) is a “change of basis” that gives a way to express each
such function in an orthonormal basis that have convenient properties.

The DFT of any function f : G→ C is defined, using a set of basis functions called characters.
For groups of the form Zm, the standard characters are χj : Zm → C, defined by χj(x) = ωjx,
where ω is the m-th root of unity and j ∈ {0, . . . ,m− 1}. The change of basis from f to its Fourier
representation f̂ can be obtained by viewing f as a length m vector and writing f̂ = V ·f , where V
is an m×m (normalized) Vandermonde matrix with Vi,j = ωij/

√
m, for 0 ≤ i, j < m.4 If G = Zn

m

the characters are obtained by products of the above; that is, for α ∈ {0, . . . ,m − 1}n, we have

4The notation f̂ is a standard notation for the Fourier representation of f and is used only in Section 4.2 of this
paper. It is unrelated to the notation of encoding (e.g., x̂i denotes the encoding of xi) that we use in other parts of
the paper, and is standard in the randomized-encoding literature.

17

χα : Zn
m → C defined by χα(x) = Πn

j=1χαj (xj). The general case, where the finite Abelian group
G is expressed as a product of cyclic prime order groups, the characters are similarly obtained via
product of characters of the corresponding cyclic groups.

If p, q : G → R represent two probability distributions, corresponding to two random variable
X,Y over G, then their convolution, denoted by p ∗ q, represents the distribution of the random
variable X + Y .5 That is, for all z ∈ G, we have (p ∗ q)(z) =

∑
x∈G p(x) · q(z − x).

The next theorem (see, e.g., [O’D14, Thm 8.60]) is extremely useful, stating that in the Fourier
representation, the coefficients of the convolution p ∗ q can be obtained simply by multiplying the
corresponding coefficients of p̂, q̂

Proposition 4.12 (Convolution Theorem.). Let p, q : G → R be two distributions. Then, for all
α, p̂ ∗ q(α) = p̂(α) · q̂(α).

4.2.2 Vector Multiplication Programs

In this section, we present a model that we term Vector Multiplication Programs (VMP), that we
will use for proving our negative results for ARE. For intuition, consider a two-argument function
f : D1 ×D2 → R and assume that we have an ARE over a group G for f . Then, we can associate
with each value x ∈ D1 a probability distribution px : G → R, induced by the encoder Enc1 and,
similarly, with each value y ∈ D2 a probability distribution qy : G → R, induced by the encoder
Enc2. As explained above, the sum of these two random encodings, is distributed as the convolution
px ∗ qy and these distribution, over the different (x, y)’s should satisfy Correctness and Security, as
required by the definition of ARE. Finally, we rely on the Convolution Theorem, that states that if
we represent the probability distributions px, qy using their Fourier representation p̂x, q̂y, then the
Fourier representation of px ∗ qy is simply the coordinate wise multiplication of p̂x, q̂y.

For convenience, we present a definition that corresponds to the simpler case of ARE with
perfect security (but not necessarily perfect correctness). In this case, for any possible output
z ∈ R, all inputs x, y such that f(x, y) = z should have the same px ∗ qy and hence p̂x ∗ qy is the
same, and by the convolution theorem this is just p̂x · q̂y. On the other hand, if f(x, y) ̸= f(x′, y′)
then px ∗ qy, px′ ∗ qy′ are “far” and p̂x ∗ qy, ̂px′ ∗ qy′ are, at least, different. Formally,

Definition 4.13. A Vector Multiplication Program (VMP) for a function f : D1×. . .×Dn → R is a
collection of vectors {vi,xi}i∈[n],xi∈Di

from Cs, for some length s, satisfying the following properties:

� Perfect security: If x,y are such that f(x) = f(y) then ⊙n
i=1vi,xi = ⊙n

i=1 vi,yi , where ⊙
stands for coordinate-wise multiplication of the vectors.

� Weak correctness:6 If x,y satisfy f(x) ̸= f(y) then ⊙n
i=1vi,xi ̸= ⊙n

i=1 vi,yi .

In other words, there are distinct vectors uz ∈ Cs, corresponding to all possible output values
z ∈ R, such that for all x such that f(x) = z, we have ⊙n

i=1vi,xi = uz.

5Actually, convolution can be defined not just for functions that correspond to distributions and also the theorem
applies to the more general case, but in this paper we will only be interested in the restricted case of distributions.

6Since this definition is used for proving negative results, weakening the definition only makes the results stronger.

18

4.2.3 The Relation between VMPs and Perfectly Secure AREs

Next, we formalize the intuition presented in the previous section to show that if a function f
admits a perfectly-secure ARE over G then it also has a VMP with corresponding parameters.
Formally,

Theorem 4.14. Let ϵ < 1/2 and f : D1 × . . .×Dn → R be a function with an ϵ-correct, perfectly
secure ARE over a group G. Then, f admits a VMP, with vectors in C|G|.

Proof. Denote s = |G| and let Enc1, . . . ,Encn be the encoding algorithms of the ARE for f . Let
pi,xi : G → R be the output distribution of Enci(xi). Let vi,xi = p̂i,xi in Cs be the Fourier
representation of pi,xi . We next argue that these vectors form a VMP for f .

By perfect security of the ARE, we know that for all x where f(x) is the same, say z, then∑n
i=1 Enci(xi) is identically distributed; denote this distribution by Vz and note that we can write

Vz as the convolution p1,x1 ∗ . . . ∗ pn,xn . This implies, by the Convolution Theorem, that for all x’s
that are mapped to z we have the same p̂1,x1⊙ . . .⊙ p̂n,xn , which implies, using the definition of the
vectors vi,xi that for all the x’s that are mapped to the same z we have that ⊙n

i=1vi,xi is identical.
A similar argument, using the ϵ-correctness of the ARE, shows that if f(x) ̸= f(y) then ⊙n

i=1vi,xi

and ⊙n
i=1vi,yi are different.

Remark 4.15. The ARE to VMP transformation above, is what we need for our negative results.
Namely, we will show that certain VMPs do not exist and conclude that corresponding AREs cannot
exist. It is possible to show certain transformations also from VMP to ARE. We note that, as far
as we know, no such VMP to ARE transformation respects efficiency. To see this, consider the
example of the two-party MAX function over [M]. A (perfectly correct) VMP for this function, can
use vectors in {0, 1}M−1 as follows: for any z ∈ [M] let v1,z = v2,z = Vz = 0z−11M−z. For all x, y
it follows that v1,x ⊙ v2,y = VMAX(x,y). On the other hand, the best ARE that we know for MAX
(cf. Theorem 4.5) has exponential in M many encodings.

4.2.4 Functions Admitting VMP

We start by considering two-argument boolean functions f (i.e., functions with range R = {0, 1}).
If we also have that the domains are of size 2 (i.e., |D1| = |D2| = 2), then all boolean functions
are either isomorphic to XOR, or isomorphic to OR or constant and hence all have AREs (XOR
and the constant functions in a trivial way, and OR as in Theorem 4.5). Next, we consider boolean
functions with larger domains and show that except for in degenerate cases, no such function admits
a VMP.

Lemma 4.16. Let f : D1 × D2 → {0, 1}. Assume that |D1| ≥ 2, |D2| ≥ 3 (alternatively, that
|D1| ≥ 3, |D2| ≥ 2) and that f is non-redundant (i.e., there are no x, x′ such that f(x, y) = f(x′, y)
for all y, and no y, y′ such that f(x, y) = f(x, y′) for all x). Then, there is no VMP for f .

Proof. Assume for contradiction, that {vx}x∈D1 and {wy}y∈D2 are vectors in Cs, for some s, that
form a VMP for f . Further, denote by u0, u1, the distinct vectors in Cs such that, for all (x, y), if
f(x, y) = b, for b ∈ {0, 1} then vx ⊙ wy = ub. Since u0 ̸= u1 then, for some coordinate j, we have

uj0 ̸= uj1.
Let x ∈ D1 be such that f(x, ·) is not constant (such x exists, as otherwise all rows are

identical). Since, |D2| ≥ 3, there are b ∈ {0, 1} and y1, y2, y3 ∈ D2 such that f(x, y1) = f(x, y2) = b

19

and f(x, y3) = 1− b. Hence, vx ⊙ wy1 = vx ⊙ wy2 = ub and, in particular,

vjx · wj
y1 = vjx · wj

y2 .

Since f is non-redundant, there is some x′ ∈ D1 such that f(x′, y1) ̸= f(x′, y2) which implies that
wy1 ̸= wy2 and, moreover, since uj0 ̸= uj1, we have wj

y1 ̸= wj
y2 . Combining this with the above

equation, we get that vjx = 0. It follows that both uj0, u
j
1 equal 0, contradicting the choice of j.

Combined with our ARE to VMP transformation, we get that no such function admits an ARE.
This leads to characterization of two-party functions with IT-AREs as those that are “isomorphic”
to a 2× 2 boolean function:

Corollary 4.17. Let f : D1×D2 → {0, 1} be a Boolean function. Then, f has information theoretic
perfectly-secure ARE iff f(x, y) = g(f1(x), f2(y)), where f1 : D1 → {0, 1}, f2 : D2 → {0, 1} and
g : {0, 1} × {0, 1} → {0, 1}.

Proof. Let f, g, f1, f2 be as in the claim. Use an ARE (Enc1,Enc2,Dec) for g, that exist for all 2×2
Boolean functions. An ARE for f applies the encoder Enc1 on f1(x), the encoder Enc2 on f2(x),
and uses Dec for decoding.

In the reverse direction, assume that there is an ARE for f . Then, there is an ARE for the
non-redundant version of f , by using f1(x) to map every x to a canonical element of its equivalence
class (say, the “first”), and similarly f2(y) to map every y to a canonical element of its equivalence
class. By the above lemma, non-redundant Boolean functions have ARE only if |D1|, |D2| ≤ 2.
Hence f1, f2 are Boolean and f is of the desired form.

Next, we consider (multiparty) functions f with boolean inputs and outputs, and show a condi-
tion that rules outs the existence of a VMP for most such f ’s and, as a corollary, also perfectly-secure
AREs for them. Clearly this condition does not hold for constant functions or functions isomorphic
to either XOR≤n or OR≤n.

Lemma 4.18. Let f : {0, 1}n → {0, 1}. Assume that for some i ∈ [n], some input value b ∈ {0, 1}
for xi and some output value α ∈ {0, 1}, there are y,y′,y′′ ∈ {0, 1}n−1 (inputs for all other n− 1
variables) such that

f(b,y) = α, f(b,y′) = α, f(b,y′′) = 1− α,

and
f(1− b,y) = α, f(1− b,y′) = 1− α, f(1− b,y′′) = 1− α,

Then, there is no VMP for f .

Proof. The proof follows similar ideas to the proof of the previous lemma. Let u0 ̸= u1 ∈ Cs be the
two target vectors that correspond to outputs 0 and 1, and let j be a coordinate where uj0 ̸= uj1.

Assume there is a VMP for f . Let i, b, α,y,y′,y′′, as guaranteed by the claim’s assumption. It
follows that vi,b⊙vy = vi,b⊙vy′ (where vy stands for the product of the n−1 vectors corresponding

to the bits of y) and, in particular, vji,b · v
j
y = vji,b · v

j
y′ . Moreover, f(1 − b,y) ̸= f(1 − b,y′) and

since uj0 ̸= uj1 we have vjy ̸= vjy′ (as both are multiplied by the same vji,1−bi
). It follows that

vji,b = 0. However, by a similar argument applied to 1 − b,y′,y′′ we will also get that vji,1−b = 0

which (together with vji,b = 0) contradicts the assumption that f(b,y′) ̸= f(1− b,y′).

20

Next, we turn to the case of the capped-sum function, which does admit a statistically secure
ARE and rule out perfectly secure ARE for it. This follows directly from the following claim. In
fact, we rule it out even in the case n = 2 and where the inputs come from a small domain.

Claim 4.19. There is no VMP for the two-argument capped-sum function f(x, y) over the domain
{0, 1, 2} and with cap=2. 7

Proof. Assume that such VMP exists, and denote the VMP vectors corresponding to x by v0, v1, v2,
the VMP vectors corresponding to y by w0, w1, w2 and by u0, u1, u2 the distinct target vectors
corresponding to the outputs 0, 1, 2 (respectively). Let j be such that uj1 ̸= uj2.

Following ideas from the above proofs, since f(1, 1) = f(1, 2) but f(0, 1) ̸= f(0, 2) it follows
that vj1 · w

j
1 = vj1 · w

j
2 and wj

1 ̸= wj
2 and so vj1 = 0. However, since f(1, 0) ̸= f(1, 1), we have

v1 ⊙ w0 ̸= v1 ⊙ w1, and by the choice of j this means vj1 · w
j
0 ̸= vj1 ⊙ wj

1. This contradict the

conclusion that vj1 = 0.

4.2.5 A Negative Result for Statistically Secure ARE?

A natural next step is to extend the negative results above also to the statistical case. Proving
such a negative result would also have implications in other domains (see Section 7 below). For
example, it is possible to construct “best-possible information-theoretic” secure-MPC protocol for
a function f (BIT-MPC, for short [HIKR18]) from an ARE scheme for f , so proving lower bounds
on BIT-MPC protocols requires in particular lower bounds on statistically-secure ARE schemes.
Unfortunately, so far we were not able to prove such negative results. In Appendix A we sketch
one approach that we tried, using a relaxation of the connection to VMP schemes presented above,
to try to rule out “well clustered” distributions that are close when f(x) = f(x′) but are far away
when f(x) ̸= f(x′). We were able to rule out such VMPs when “close” and “far away” are measured
by the l2 norm, but not when they are measured by statistical distance (l1 norm) which is what we
need.

5 Computational ARE from Bilinear Maps

Next we show that under standard hardness assumptions, any multi-party function admits a com-
putationally secure ARE scheme (without robustness). To that end we show:

1. A pairing-based ARE scheme for the two-party equality function (Section 5.1);

2. A reduction of any two-party boolean function over a polynomial-size domain to equality,
with application to computing the two-party string-oblivious-transfer function (Section 5.2);

3. An ARE scheme for every efficiently-computable multi-party function, using the two-party
string-oblivious-transfer function together with garbled circuits (Section 5.3).

Alternatively, in Section 5.1.3 we modify slightly the equality-function scheme, to get directly a
two-party string-oblivious-transfer ARE scheme with improved efficiency. The generic reduction
from equality is still interesting, however, as there may be other implementations of equality from
weaker/different hardness assumptions.

7In fact, the proof rules out even the case with D1 = {0, 1}, D2 = {0, 1, 2}.

21

5.1 A Pairing-Based Two-Party Equality Scheme

5.1.1 Background: Pairing Groups and Squaring XDH

To comply with our “additive RE” frame of mind, we use additive notations for our pairing-friendly
groups. Otherwise, the notations below are similar to [BF03, Sec 3.1].

Parameters. A “Pairing parameter-generator” is an efficient (possibly randomized) procedure
G, taking as input the security parameter λ. It outputs a description of additive groups G1, G2, GT

of the same order q, distinguished generators g1 ∈ G1 and g2 ∈ G2, efficient addition/subtraction
procedures for these groups, and an efficiently computable and nontrivial bilinear map e : G1×G2 →
GT . A distinguished generator in GT can be computed as gT := e(g1, g2).

We require that q > 2λ, and assume below for simplicity that the order q of these groups is
known and a prime (but our protocols can easily be adjusted to the unknown-order, non-prime
case). Sampling random elements in these groups can be done by drawing ρ← Zq and computing
x := ρ · g∗. We denote (q,G1, G2, GT , g1, g2, gT , e)← G(1λ).

Also, our protocols work in either the symmetric case (G1 = G2) or the asymmetric case
(G1 ̸= G2). In the symmetric case we will still need to have g1 ̸= g2, and we assume that it is hard
to compute DLOGg1(g2).

Squaring XDH. Recall that the XDH assumption (for the asymmetric case G1 ̸= G2) simply
asserts that the standard decision Diffie-Hellman hardness assumption holds in G1. Similarly,
squaring-XDH asserts that decision-squaring-DH holds in G1.

Definition 5.1 (Squaring XDH). The decision Squaring-XDH holds for a parameter-generator
G, if the following distribution ensembles are computationally indistinguishable: SQλ := (ppλ, ρ ·
g1, ρ2 · g1), and Uλ := (ppλ, ρ · g1, ρ′ · g1), where ppλ = (q,G1, G2, GT , g1, g2, gT , e)← G(1λ) and
ρ, ρ′ ← Zq.

We now describe our ARE scheme for two-party equality. Security of this scheme can be reduced
to a hardness assumption in paring groups that we call ASDH, which is weaker than Squaring XDH.
(ASDH is implied by Squaring SDH, but it could plausibly hold also in the symmetric setting
G1 = G2, where Squaring XDH is easy.) The two-party equality function over domain D is

feq : D ×D → {0, 1}, feq(x1, x2) =

{
1 if x1 = x2,

0 otherwise.

For our pairing-based protocol we let D = {0, 1}ℓ, and use G(1max(λ,ℓ+1)) to ensure that the order q
of the pairing groups is more than 2ℓ+1. We then use an injective embedding function emb :

{0, 1}ℓ →
[
1, q−1

2

]
to embed the parties’ inputs as integers between 1 and q−1

2 . For example,

emb(s) = bin(s) + 1, with bin(s) is the integer whose ℓ-bit binary expansion is s. Since it is

injective then x1 = x2 if and only if emb(x1) = emb(x2), and since the range is
[
1, q−1

2

]
then

emb(x1) + emb(x2) ̸= 0 (mod q) for any x1, x2 ∈ {0, 1}ℓ. The protocol is described in Figure 1.

Correctness. Denote δ = χ1−χ2, so we have e(y1, y2) = (σ1+σ2)(χ1σ1−χ2σ2) · gT =
(
χ1σ

2
1−

χ2σ
2
2 + (χ1 − χ2)σ1σ2

)
· gT = y3 + δσ1σ2 · gT . If δ ̸= 0 then equality only holds when σ1 = 0 or

σ2 = 0, which happens with probability at most 2/q.

22

Parameters: Parameter-generating procedure G, security parameter λ, input length ℓ.

Setup(1λ, 1ℓ):

1. Let λ′ = max(λ, ℓ+ 1), set pp← G(1λ′
) (recall that q > 2ℓ+1);

2. Let emb : {0, 1}ℓ → [1, q−1
2] be injective (e.g., emb(s) = bin(s) + 1).

Encoding, Enc(pp, i, xi):

3. Embed χi := emb(xi) ∈ [1, q−1
2];

4. Choose at random σi ← Zq;

5. Send x̂i =
(
σi · g1, (−1)iχiσi · g2, (−1)iχiσ

2
i · gT

)
.

Evaluation, Dec
(
pp, y1 = (σ1 + σ2)g1, y2 = (χ1σ1 − χ2σ2)g2, y3 = (χ1σ

2
1 − χ2σ

2
2)gT

)
:

6. If e(y1, y2) = y3 output 1, otherwise output 0.

Figure 1: Pairing-based computational ARE for equality

Security. Note that regardless of the inputs χ1, χ2, the elements y1, y2 that the evaluator sees
are uniform and independent in G1, G2, respectively. The reason is that χ1 ̸= −χ2, and therefore
σ1 + σ2 and χ1σ1 − χ2σ2 are two linearly independent equations in σ1, σ2.

It follows that for the case χ1 = χ2 we get information-theoretical security: In this case the
evaluator’s view is just (ρ1g1, ρ2g2, ρ1ρ2gT) (for independent uniform ρ1, ρ2 ∈ Zq), regardless of the
actual values χ1, χ2.

For the case χ1 ̸= χ2 we only get computational indistinguishability, under a hardness assump-
tion that we call additive-squaring-DH (ASDH).

Definition 5.2 (Additive Squaring DH). The decision ASDH holds for a parameter-generator G,
if for every efficiently computable η = η(q) ∈ Z∗

q, the following two distribution ensembles are
computationally indistinguishable:

D[η]λ :=
(
ppλ, ρ1g1, ρ2g2, (ρ21 + ηρ22)gT

)
and Rλ :=

(
ppλ, ρ1g1, ρ2g2, ρ3gT

)
, (1)

where ppλ = (q,G1, G2, GT , g1, g2, gT , e)← G(1λ) and ρ1, ρ2, ρ3 ← Zq.

ASDH Implies Security. Recall that for inputs χ1, χ2, the evaluator view includes the public
parameters ppλ and the tuple

(
y1 = (σ1 + σ2)g1, y2 = (χ1σ1 − χ2σ2)g2, y3 = (χ1σ

2
1 − χ2σ

2
2)gT

)
.

Changing variables to τ1 = σ1 + σ2 and τ2 = χ1σ1 − χ2σ2, we have σ1 =
χ1τ1+τ2
χ1+χ2

and σ2 =
χ1τ1−τ2
χ1+χ2

,

23

and

χ1σ
2
1 − χ2σ

2
2 = χ1(σ

2
1 − σ2

2) + (χ1 − χ2)σ
2
2

= (χ1 + σ2)(χ1σ1 − χ1σ2) + (χ1 − χ2)σ
2
2

= (σ1 + σ2)(χ1σ1 − χ2σ2) + (σ1 + σ2)(χ2 − χ1)σ2 + (χ1 − χ2)σ
2
2

= τ1τ2 + τ1(χ2 − χ1)σ2 + (χ1 − χ2)σ
2
2 = τ1τ2 + (χ1 − χ2)σ2(σ2 − τ1)

= τ1τ2 + (χ1 − χ2)
χ1τ1 − τ2
χ1 + χ2

(
χ1τ1 − τ2
χ1 + χ2

− τ1(χ1 + χ2)

χ1 + χ2

)
= τ1τ2 +

χ1 − χ2

(χ1 + χ2)2
(
χ1τ1 − τ2

)(
− τ2 − τ1χ2

)
=

(
1− (χ1 − χ2)

2

(χ1 + χ2)2

)
· τ1τ2 +

χ1 − χ2

(χ1 + χ2)2
· (−χ1χ2) · τ21 +

χ1 − χ2

(χ1 + χ2)2
· τ22

=
4χ1χ2

(χ1 + χ2)2︸ ︷︷ ︸
=α(χ1,χ2)

·τ1τ2 +
χ1χ2(χ2 − χ1)

(χ1 + χ2)2︸ ︷︷ ︸
=β(χ1,χ2)

·τ21 +
χ1 − χ2

(χ1 + χ2)2︸ ︷︷ ︸
=γ(χ1,χ2)

·τ22

Below we denote

α = α(χ1, χ2) :=
4χ1χ2

(χ1 + χ2)2
, β = β(χ1, χ2) :=

χ1χ2(χ2 − χ1)

(χ1 + χ2)2
, γ = γ(χ1, χ2) :=

χ1 − χ2

(χ1 + χ2)2
,

with all the operations in Zq. We note that α, β, γ are well-defined since χ1 + χ2 ̸= 0 (and q is a
prime). Also, in the case where χ1 ̸= χ2 then α, β, γ are non-zero (since χ1, χ2, and χ1−χ2 are all
non-zero). We conclude that the evaluator’s view in the case χ1 ̸= χ2 is

E[χ1, χ2]λ :=
(
ppλ, τ1g1, τ2g2,

(
ατ1τ2 + βτ21 + γτ22

)
gT

)
,

where α, β, γ are non-zero scalars that depend on χ1, χ2, and τ1, τ2 are uniform in Zq and indepen-
dent. Also consider the following “uniform” distribution ensemble

Uλ := (ppλ, τ1g1, τ2g2, τ3 · e(g1, g2)) ,

where τ1, τ2, τ3 are uniform in Zq and independent.

Lemma 5.3. Assuming ASDH, for any pair of distinct χ1, χ2 ∈ [1, q−1
2] the ensembles Uλ, E[χ1, χ2]λ

are computationally indistinguishable.

Proof. Assume towards contradiction that there exists χ1, χ2 ∈ [1, q−1
2], χ1, ̸= χ2, and a distin-

guisher D that can tell E[χ1, χ2]λ from Uλ with a non-negligible advantage ϵ = ϵ(λ). We show how
to use D to construct D′ that breaks ASDH with the same advantage ϵ.

Let α = α(χ1, χ2), β = β(χ1, χ2), and γ = γ(χ1, χ2) be the non-zero scalars as above, and set
η := γ · β−1 mod q (which is well defined and non-zero since β, γ are non-zero).

The would-be distinguisher D′ is given as input (ppλ, x1 = τ1g1, x2 = τ2g2, x3 = τ3gT), and it
needs to decide if τ3 = τ21 + ητ22 or if τ3 is random and independent of the other variables. Setting
y := α · e(x1, x2) + β · x3, D′ then executes D(ppλ, x1, x2, y) and outputs whatever D does.

Analyzing the advantage of D′, we express y in terms of the other variables as

y = α · e(x1, x2) + β · x3 = (ατ1τ2 + βτ3)︸ ︷︷ ︸
=τ ′3

·gT .

24

Let τ ′3 := ατ1τ2 + βτ3. If τ3 is random and independent of the other variables then so is τ ′3, and
therefore in this case D’s input is drawn from Uλ. On the other hand, if τ3 = τ21 + ητ22 = τ21 + γ

β τ
2
2

then
τ ′3 = ατ1τ2 + βτ3 = ατ1τ2 + β(τ21 +

γ

β
τ22) = ατ1τ2 + βτ21 + γτ22 .

Hence, in this case the input of D′ is drawn from E[χ1, χ2]λ. It follows that the advantage of D′ in
distinguishing ASDH is equal to the advantage of D is distinguishing Uλ from E[χ1, χ2]λ.

Since the evaluator’s view for every χ1 ̸= χ2 is indistinguishable from Uλ, then they are also
indistinguishable from each other. Hence, we have:

Lemma 5.4. Under ASDH, the scheme from Figure 1 is a secure ARE scheme for the equality
function.

5.1.2 ASDH Reduces to Squaring XDH

Next we argue that ASDH is indeed likely a hard problem for hard-DLOG pairing groups. We do
this by showing that at least in the asymmetric case G1 ̸= G2, ASDH reduces to Squaring XDH.

Lemma 5.5. Any distinguisher for ASDH can be converted to a distinguisher for Squaring XDH
with the same advantage.

Proof. Let D be an ASDH distinguisher for some η = η(q) ∈ Z∗
q with advantage ϵ = ϵ(λ). Namely,

it has advantage ϵ in distinguishing D[η]λ from Rλ from Eqn. (1). We use it to construct a
distinguisher D′ for Squaring XDH.

D′ gets as input (ppλ, x1 = ρ1g1, x2 := ρ2g1), and it needs to decide if ρ2 = ρ21 or if it is a
random and independent variable. To use D, D′ samples uniform ρ̃← Zq. It then computes

x̃ := ρ̃g2, and y := e(x2, g2) + ηρ̃2 · e(g1, g2) = (r2 + ηr̃2) · e(g1, g2).

Finally, D′ executes D(ppλ, x1, x̃, y), and outputs whatever D does.
Clearly, if ρ2 is random and independent of the other variables then so is ρ2+ηρ̃2, and therefore

in that case the input of D is distributed according to Rλ. On the other hand, if ρ2 = ρ21 then
we have y = (ρ21 + ηρ̃2) · e(g1, g2), so in that case the input of D is distributed according to D[η]λ.
Hence, the advantage of D′ in distinguishing Squaring XDH is equal to the advantage of D is
distinguishing Rλ from D[η]λ.

5.1.3 Aside: A Direct ARE Scheme for OT

The structure of the scheme from Figure 1 makes it easy to adjust to get directly ARE for two-party
oblivious-transfer, allowing us to bypass the general transformation in Section 5.2 below. We start
with an ARE scheme for Rabin-OT, and then convert it to a one-of-two string-OT using standard
techniques. For our purposes, it is convenient to consider Rabin-OT as the following randomized
function:

frot : {0, 1} × ({0, 1} × {0, 1}ℓ)→ {0, 1}ℓ, frot((b, s), c) =

{
s if b = c

r otherwise,

25

where r ∈ {0, 1}ℓ is (close to) uniform and independent of s. (Note that in our context it is the
evaluator that gets the result, not the party with the choice bit c.)

Recall that in the protocol from Figure 1, each party i sends three elements (xi1 ∈ G1, x
i
2 ∈

G2, x
i
3 ∈ G3), and the evaluator receives (y1 = x11 + x21, y2 = x12 + x22, y3 = x13 + x23), such that

y3 − e(y1, y2) = 0 if the parties’ inputs are the same, and otherwise y3 − e(y1, y2) is nearly uniform
in G3.

Assume for now that the input of party 2 includes s ∈ G3 (rather than s being a bit-string).
In that case, the parties can run the equality protocol from above on input bits c, b, respectively,
except that Party 2 sends x′23 = x23 + s instead of sending x23. The evaluator will receive the same
y1, y2 as above, but rather than y3 it will get y′3 = x13 + x′23 = s + y3. The evaluator outputs
y′3 − e(y1, y2), which is exactly what we need since:

� If b = c then y′3 − e(y1, y2) = y3 + s− e(y1, y2) = s;

� If b ̸= c then y′3 − e(y1, y2) = s± σ1σ2gT , which is nearly uniform in GT .

To send a bit-string s rather than an element in G3, we use an “encoding” E : G3 → {0, 1}ℓ
with the property that E(u) for a uniform u ∈ G3 yields an almost-uniform bit-string in {0, 1}ℓ.
Party 2 (the sender) will use the protocol above with a uniformly chosen element u ∈ G3 in the
role of the input element, and in addition will send to the evaluator the bit string t := s ⊕ E(u).
If b = c then the evaluator will get u and can therefore compute s = E(u) ⊕ t. If b ̸= c then the
value that the evaluator obtains will be a nearly uniform u′ ∈ G3, hence E(u′) ⊕ y will be nearly
uniform in {0, 1}ℓ. Moreover, by the security proof from above, that value is indistinguishable from
uniform in G3, even conditioned on the rest of the evaluator’s view.

Finally, we show the standard transformation from this string-OT scheme Srot to 1-of-2 string
OT, i.e. to compute the function

fsot{0, 1} × {0, 1}2ℓ → {0, 1}ℓ, fsot (c, (s0, s1)) = sc.

The parties run two instances of the Rabin-OT scheme in parallel, where:

� Party 1 uses the same choice bit c in both instances.

� Party 2 with inputs s0, s1 ∈ {0, 1}ℓ chooses a random bit b← {0, 1} and uses input (b, (sb|0λ))
in the first instance and input (1− b, (s1−b|0λ)) in the second.

The evaluator decodes both instances to get s′0, s
′
1, and if any of them is of the form (s|0λ) then it

outputs s. To see that this is the correct output (whp), note that:

� When c = b = 0 then the evaluator gets s′0 = (s0|0k) and s′1 = r (for a nearly uniform
r ∈ {0, 1}ℓ+λ), so it will output s0 whp;

� When c = 1, b = 0 then the evaluator gets s′0 = r and s′1 = (s1|0k), so it will output s1 whp;

� When c = 0, b = 1 then the evaluator gets s′0 = r and s′1 = (s0|0k), so it will output s0 whp;

� When c = b = 1 then the evaluator gets s′0 = (s1|0k) and s′1 = r, so it will output s1 whp.

Security of this scheme follows from the security of the underlying Rabin-OT scheme, and from b
being a random bit.

26

Remark 5.6 (A plain-model construction). As described above, the ASDH-based construction re-
quires a trusted setup to choose the groups and their generators. We can get a setup-free construc-
tion by settling on a less standard (but equally believable) hardness assumption, where each value
of λ is deterministically mapped into some groups and generators. (For example by derandomizing
the usual setup, drawing the randomness from a hash function that can be modeled as a random
oracle.)

5.2 From Equality to Any Small Function

We observe that for any boolean function f over a small domain, an ARE scheme for f can be
obtained from an ARE for equality.

Lemma 5.7. Let f : D1 ×D2 → {0, 1} be a boolean function over finite domains D1, D2. Assume
w.l.o.g. that |D1| ≤ |D2|, and let z be an arbitrary symbol, z /∈ D1. Then a secure ARE scheme
Seq for equality over the domain D′

1 = D1 ∪ {z} can be converted into a secure ARE scheme Sf
for f , where the communication complexity of Sf is at most |D1| times larger than that of Seq.

Proof. Consider the |D1| × |D2| truth table for f , and let k ≤ |D1| be (an upper bound on) the
largest number of 1’s in any column of this table.

The scheme Sf . On inputs x, y, the parties run in parallel k copies of the equality scheme Seq:

� Party 1 uses their input x in all these copies.

� For Party 2, consider the column corresponding to y in the truth table, and let x1, x2, . . . , xk′

be all the possible party-1 inputs for which f(xi, y) = 1. (Recall that k′ ≤ k). Party 2
concatenates k − k′ copies of the value z /∈ D1, yielding a sequence of length exactly k,
(x1, . . . , xk′ , z, . . . , z) ∈ D′

1
k.

Party 2 also chooses a shift amount at random δ ← [1, k]. Then in the i’th copy of the equality
scheme, Party 2 uses the input xi−δ if i − δ ≤ k′, and the input z if i − δ > k′ (with index
arithmetic modulo k).

The evaluator gets k sums y1, . . . , yk from the k copies of Seq, and decodes them to get the k results
bi = Dec(pp, yi) ∈ {0, 1}. It outputs 1 if there is any match bi = 1, and outputs 0 if they are all 0
(i.e., no match).

Correctness. Since Party 1 uses x ∈ D1 in all the copies of Seq and Party 2 uses k′ ≤ k distinct
inputs from D1 and the value z /∈ D1, then at most one of them will be a match. Moreover, it can
only be one of the xi’s for i ≤ k′ (since party 1 never inputs the value z). Thus, there is a match
if and only if x = xi for some i ≤ k′, which means that f(x, y) = f(xi, y) = 1.

Security. Since the underlying Seq is a secure ARE scheme, then the transcripts of all the non-
matching instances are indistinguishable from some distribution D, whereas the matching instance
(if it exists) has transcript indistinguishable from another distribution D′. Moreover, due to the
random shift amount δ, the location of the matching instance (if it exists) is random in [1, k].

Therefore, for any x, y such that f(x, y) = 0 the evaluator’s view is indistinguishable from Dk,
and for any x, y such that f(x, y) = 1 the evaluator’s view is indistinguishable from (Dδ−1,D′,Dk−δ)
for a uniform index δ ∈ [1, k].

27

5.3 Computational ARE for General Functions

Using Lemma 5.7, we can use ARE for equality to implement ARE for Oblivious-Transfer, and
then extend it to general functions making a standard use of garbled circuits (see, e.g., [AIK06]).

Lemma 5.8. Let f : ({0, 1}∗)∗ → {0, 1}∗ be an n-party function as in Definition 3.1, and let
{Cλ,n,ℓ} be a boolean circuit family that computes f . Given a secure ARE scheme Seq for equality
over domains of size three, and a secure PRG, one can construct a computationally secure ARE
scheme Sf for f , with complexity at most 2λℓ(n− 1) · complexity(Seq) +O(λ · |Cλ,n,ℓ|).

Proof. We build an ARE scheme for f from a garbling of Cλ,n,ℓ [Yao86] (which can be implemented
from any secure PRG), along with the two-party ARE scheme for string-OT that we can get from
Lemma 5.7.

Given the public parameters pp ← Setup(1λ, 1n, 1ℓ) and a description of the circuit Cλ,n,ℓ,
Party 1 will construct and send to the evaluator a garbling of Cλ,n,ℓ, and will run with each other
party ℓ instances of Ssot for strings of length λ, one for each of their input bits. In each instance,
Party 1 will play the role of the sender (Party 2 from Ssot) using as input the two labels for that
input wire, and the other party will play the receiver (Party 1 from Ssot) using the corresponding
input bit as the OT choice bit. (Party 1 will also send to the evaluator the labels corresponding to
its own input bits.) The evaluator will therefore receive the garbled circuit, along with one label
for each input wire. It will then evaluate the garbled circuit and compute the output. Correctness
and security follow from those of Ssot and the garbling scheme. For complexity, we have ℓ(n − 1)
instances of Ssot, each of complexity 2λ·complexity(Ssot), and in addition sending the garbled circuit
itself.

Theorem 5.9 (Computational ARE from ASDH). Under the ASDH assumption, there exists a
computationally secure ARE scheme for every polynomial-time computable multiparty function f .

Proof. Follows directly from Lemmas 5.4 and 5.8, and the fact that ASDH implies a secure PRG.

Finally, we note that by using information-theoretic garbling (cf. [IK02]), one can obtain an
unconditional variant of Lemma 5.8, as stated in the following completeness theorem.

Theorem 5.10 (Equality is complete). If there is a statistical ARE for equality over domains of size
three, then every function f admits a statistical ARE, with communication complexity polynomial
in the branching-program size of f .

6 Robust ARE via Obfuscation

In this section, we show that robust ARE can be implemented using the “heavy cryptographic
tools” of ideal obfuscation and resettable MPC.

6.1 Resettable MPC

A resettable MPC protocol is one that remains secure even in the highly adversarial setting where
the adversary can reset the honest parties to their initial state, then run them again (while sending
them different messages) in the hope of extracting more information from them. This setting was
initially studied in the context of zero-knowledge ([CGGM00] and follow-up), and later also in more

28

general settings [GS09, GM11]. We assume that all messages in the protocol are transmitted over
a broadcast channel.

We note that a resetting adversary in particular has access to the full residual function defined
by the honest parties. Namely, it can repeatedly run the protocol with different inputs for any
subset of the parties (honest or not) while keeping the inputs of the other parties fixed. The
security definition therefore gives the same power also to the simulator, giving it access to this full
residual function. To ensure that this is the only information available to an adversary who is given
the obfuscated next-message functions of the resettable MPC protocol, we follow the approach
of [BIK+22] and use a signature-based mechanism to effect the adversary follow a valid execution
path between honest parties.

Concretely, the resettable MPC protocol is augmented by adding a preamble round where each
party Pi broadcasts a signature verification key vki, and thereafter it must sign all its outgoing
messages relative to that key. Parties ignore messages that are not properly signed relative to the
keys vki of the first round.

We sketch the definition of resettable MPC below. See [GS09, BIK+22] for a more detailed
version.

Definition 6.1 (Resettable-MPC). A multi-party protocol Π is a resettably-simulatable implemen-
tation of a multi-party function f , if for any (real-world) attacker A against Π that can reset the
honest parties to their initial state (with fixed input and randomness), there is an (ideal-world)
simulator S controlling the same parties and with access to the full residual function, such that the
output of S is indistinguishable from the view of A, even when taken jointly with the outputs of the
honest parties.

It was shown in [GM11] that not all functions have resettable MPC protocols in the plain
model. On the other hand, it is a folklore result that they can be realized in the CRS model under
standard cryptographic assumptions (as was mentioned in [HIJ+17]). Also, in [BIK+22] it was
shown how to realize general resettable MPC in the plain model with super-polynomial simulation
(e.g., with simulator running in time 2λ

0.1
or even in quasi-polynomial time), again under standard

cryptographic assumptions.

6.2 Obfuscation

Our construction below is stated in the ideal-obfuscation model [JLLW22], in which access to
the obfuscated circuit is replaced by an oracle access to the (stateless8) function that this circuit
implements.

A protocol in the ideal obfuscation model can be made into a concrete protocol by replacing
the ideal obfuscation with some iO candidate, making an ad-hoc computational assumption about
the obfuscation being good enough to meet whatever notion of security we are considering. In our
context, when we heuristically instantiate the ideal obfuscation, the best we can hope for is the
indistinguishability variant of robust ARE. See more discussion in Remark 3.5.

8The oracle can use hard-wired values for state, but it cannot maintain an evolving state from one query to the
next.

29

6.3 Constructing Robust ARE

Next we show how to construct robust ARE from resettable MPC and (ideal) obfuscation. Consider
a multiparty function f : ({0, 1}ℓ)n → {0, 1}ℓ′ that we want to realize with ARE, and define the
following extended multiparty function

gf :
(
{0, 1}ℓ × {0, 1}λ × {0, 1}λ

)n
→

(
{0, 1}ℓ′ ∪ {⊥}

)
, (2)

gf
(
(x1, ρ1, σ1), . . . , (xn, ρn, σn)

)
=

{
f(x1, . . . , xn) if σ1 = σ2 · · · = σn =

⊕
i∈[n] ρi,

⊥ otherwise.

The intention is to use the ρ’s and σ’s to “lock” the values of honest parties, so that the adversary
can only use them to compute the residual function with all the xi’s fixed, and nothing more. Let
Π be a resettable MPC protocol for this gf , and denote the next-message function of Party i by

nextMsg := Mi

(
ri, (xi, ρi, σi), prevMsgs

)
.

In the ARE scheme for f , denoted Sf , each party Pi with input xi chooses randomness ri for the
protocol Π and a random string ρi for gf , and hard-wires ri, xi, ρi in Mi to get the function

M ′
i,ri,xi,ρi

(
σ, prevMsgs

)
:= Mi

(
ri, (xi, ρi, σ), prevMsgs

)
.

Party Pi obfuscates the resulting function, M̂i ← OBF (M ′
i,ri,xi,ρi

). The encoding that it sends is(
ρi; M̂i

)
.

Recall from Remark 3.2 that the syntax (ρ; M̂) means that the evaluator gets the sum σ :=
⊕iρi’s, and all the individual M̂i’s. It uses the obfuscated next-message functions to run the
protocol Π, feeding it with the same σ everywhere, and as a result obtaining the value

gf
(
(x1, ρ1, σ), . . . , (xn, ρn, σ)

)
= f(x1, . . . , xn).

6.3.1 Security Analysis

The key point is that the adversary cannot predict the sum of the ρi’s of a strict subset of the
honest parties. If the adversary uses any of the obfuscated circuits M̂i of the honest parties, then
it is bound to the ρi in that circuit. The only way for the adversary to get a matching σ is to use
the one that the evaluator received. But this σ ties it also to the ρi’s of all the other honest parties.
Hence, if the adversary uses any of the obfuscated M̂i’s of the honest parties then it must use them
all. Security then follows from security of the resettable MPC protocol and (ideal) obfuscation,
which imply that query-bounded access to the obfuscated next-message functions can be simulated
given access to the full residual function of gf .

Theorem 6.2. For any multiparty function f , if the function gf from Eqn. (2) has a resettably
simulatable protocol, then f has a simulation-robust ARE scheme in the ideal-obfuscation model.

Proof. (sketch) Recall that in the ideal obfuscation model, the bitstrings M̂i are replaced by having
oracle access to all the functions M ′

i,xi,ri,ρi
(·, ·). Let A be a “real-world adversary” against the

scheme Sf in this model, controlling a subset B ⊂ [n] of the parties (B for Bad), and denote the
set of honest parties by H = [n] \ B. The adversary comes up with ρj ’s on behalf of the parties

30

in B, then it gets the sum σ = ⊕i∈[n]ρi and an oracle access to the functions M ′
i,...(·, ·) of the honest

parties.
We need to show a simulator S, with access to the residual function fH,x(· · ·), that can simulate

A’s view. The simulator will use A as a subroutine, alongside the resettable-MPC simulator S′

for Π (that exists by Definition 6.1). Recall that S′ expects to get access to the full residual function
for gf , that allows it to substitute the inputs to any subset of parties. On the other hand, S only
has access to the (standard) residual function for f , with the xi’s fixed for all i ∈ H. To make up
the difference, S chooses itself the ρi’s for the honest parties, and we rely on the inability of A to
guess the sum of any proper subset of them. After getting from A the ρj ’s for j ∈ B, S computes
σ =

⊕
i∈[n] ρi and returns it to A.

Later, S uses S′ to simulate the access that A requires to the M ′
i,···’s, and uses its f -residual-

function oracle to implement the gf -full-residual-function oracle that S′ needs. In the gf -full-
residual function that S′ sees, some of the (xi, ρi, σi)’s of the honest parties are fixed, and others
are specified in the query. For the fixed parties, the σi’s are equal to σ that S sent to A. Below
we stress the “right values of the honest parties” by denoting them with a star. Namely, the x∗i ’s
are the real inputs of the honest parties (that S only has access to via the residual function fH,x∗),
and the ρ∗i ’s are the values chosen by S for the honest parties.

Consider now a query {(xj , ρj , σj)}j∈B′ that S′ makes to its gf -full-residual-function, where B′

includes all the bad parties B as well as some honest parties from H.

� If B′ = [n] then this is just a query to gf itself, which S can directly compute.

� If B′ = B then S checks that the σj = σ for all j ∈ B, and
⊕

j∈B ρj = σ ⊕
⊕

i∈H ρ∗i . If any
of these checks fails then S returns ⊥, otherwise it uses its residual function access to return
fH,x∗({xj}j∈B).

� Otherwise (B ⊂ B′ ⊂ [n]), S returns ⊥.

In the first two cases, it is clear that S returns the right answer. For the last case, note that
the answer is indeed ⊥, unless S′ (driven by A) was able to specify ρj ’s for the honest parties in
H ′ = H ∩ B′ such that

∑
j∈H′ ρj =

∑
j∈H′ ρ∗j . Since A and S′ have no information on the ρ∗j ’s

beyond the sum of all of them, then this equality only holds with probability 2−λ.

7 From ARE to Multiparty Randomized Encoding

The notion of a multiparty randomized encoding (MPRE) [ABT21] is a natural extension of the
notion of randomized encoding of functions from [IK00, AIK06] to the multiparty setting. We say
that an n-party function f has a t-secure MPRE in a function class G if there is an n-party function
g ∈ G such that f can be realized with security against at most t semi-honest parties by performing
a local (randomized) computation on the inputs followed by a single call to g. Here we consider
an external-output variant of MPRE, where the output of g is public. Namely, the output of g is
delivered not only to the n parties but also to an external party, who should only learn the output
of f . This stronger notion of MPRE will be more convenient for our purposes. We will refer to the
usual notion of MPRE as internal-output MPRE. Finally, unless stated otherwise, we will assume
a full security threshold of t = n− 1.

The power of randomized encoding comes from the implementation class G being “simpler”
than the original function f . Two related notions of simplicity that were studied in the literature

31

are algebraic degree (say, over F2), and locality. We say that an MPRE has locality d if each output
bit of g depends on the inputs of at most d parties.

Note that any d-local external-output MPRE can be realized via parallel calls to a (d+1)-party
“internal-output” functionality, by just using an additional party to receive the output.

The main open question about MPRE is whether every n-party function has a degree-2 (or
2-local) information-theoretic MPRE with full security (i.e., with t = n − 1). Even in a compu-
tational setting, such a construction is only known based on (a non-black-box use of) oblivious
transfer [ABT21]. The best known construction of information-theoretic degree-2 MPRE [AIKP22]
is t-secure only for t < 2n/3.9 Requiring the MPRE to be efficient, this holds either with perfect
security for “simple” f (e.g., f ∈ NC1) or with computational security for general f , assuming
one-way functions.

Insisting on full security, the following results are known.

Lemma 7.1 (Fully secure 3-local, degree-3 MPRE). [ABG+20, Theorem 6.4]. Every n-party
function f admits a 3-local degree-3 fully secure external-output MPRE g that consists of multiple
copies of the function

3MULTPlus((x1, z1), (x2, z2), (x3, z3)) = x1x2x3 + z1 + z2 + z3

(defined over F2) over different sets of inputs. Requiring the MPRE to be efficient, this holds
either with information-theoretic security for f in NC1 or with computational security for general
polynomial-time f , assuming one-way functions.

By Lemma 7.1, to obtain a fully-secure 2-local, degree-2 MPRE for general functions, it suffices
to obtain such an MPRE for the function 3MULTPlus. We will construct such an MPRE assuming
the existence of robust ARE for a related (but still constant-size) 3-party function. Our proof relies
on the following lemma, which is a simple generalization10 of [ABG+20, Lemma 6.1].

Lemma 7.2 (2-local MPRE for sum of 2-local functions). Let g be an n-party function of the form
g(x1, . . . , xn) =

∑
1≤i<j≤n gij(xi, xj), where addition is over some finite Abelian group. Then, g

has a perfect 2-local MPRE.

Remark 7.3 (Public parameters vs. plain model). For simplicity, in the computational setting we
will assume that the ARE works in the “plain model” without any public parameters pp. If the
ARE does have public parameters, then so will the resulting MPRE. Note, however, that the indis-
tinguishability variant will suffice for our purposes. Hence, we can instantiate our resettable-MPC-
based construction from Theorem 6.2 with a protocol in the plain model, which (when instantiating
ideal obfuscation by iO) yields a candidate for general indistinguishability-robust ARE in the plain
model.

We now prove our main technical theorem, which implies a 2-local encoding for 3MULTPlus.

Theorem 7.4 (2-local MPRE from robust ARE: The constant-size case). Suppose every 3-party
function f with constant-size input domains admits an indistinguishability-robust computational
ARE (resp., robust statistical ARE) in the plain model. Then, every such f admits a computation-
ally (resp., statistically) secure 2-local (external-output) MPRE.

9For standard internal-output MPRE, this can be improved to t ≤ 2n/3.
10The lemma from [ABG+20] applies to degree-2 polynomials. Here we replace each monomial by a 2-local function.

32

Proof. (sketch) While the 3-party case suffices for our purposes, we will in fact prove the theorem
for any n-party f with constant input size per party. Also, to simplify notation we will only consider
here the statistical case. The computational case is similar.

By Lemma 7.2 and MPRE composition, it suffices to show that every function f as in the
theorem statement admits an MPRE where g is a sum of 2-local functions. Since we assume that
f has a robust ARE, then a first attempt is to use g that directly computes the sum of the ARE
messages. (This is a degenerate special case, since each 1-local function is also 2-local.) However,
even a robust ARE still allows the corrupted parties to learn the residual function induced by the
inputs of the honest parties, which violates MPRE security.

To avoid leaking the residual function, we define a new N -party function f ′, for N =
(
n
2

)
“virtual

parties,” which applies a simple constant-size pairwise multiparty authentication for the inputs of
f . Concretely, for each pair of parties 1 ≤ i < j ≤ n, there is a virtual party Pij whose input to

f ′ is a pair xij = (xiji , x
ij
j). The function f ′ checks that all input pairs are consistent with some

global input vector (x1, . . . , xn), outputting f(x1, . . . , xn) if it is and ⊥ otherwise. Namely,

f ′(x1,2, . . . , xn−1,n) =

{
f(x1, . . . , xn) if ∃x1, . . . , xn s.t. ∀i, j, xi,j = (xi, xj)

⊥ otherwise
.

Note that if f has constant-size input domains then so does f ′.
We now use a robust ARE for f ′ to define an MPRE for f in which the function g is a sum of

2-local functions. By Lemma 7.2, this suffices to get a 2-local MPRE for f . The function g takes
from each party Pi the following inputs: its original input xi, and additional inputs ρij (for all
j ̸= i) that will be used to generate the ARE messages of virtual parties Pij .

Letting Π = (Encij ,Dec) be a robust ARE for f ′, the function g is:

g
((
x1, (ρ1j)j ̸=1

)
, . . . ,

(
xn, (ρnj)j ̸=n

))
=

∑
1≤i<j≤n

Encij((xi, xj); ρij ⊕ ρji)

where summation is over the ARE group, and Encij((xi, xj); ρ) denotes an ARE encoding for f ′ of
input (xi, xj) (for virtual party Pij) using randomness ρ. By construction, the function g is indeed
a sum of 2-local functions, as required. The output of f can be recovered from the output of g by
applying the ARE decoder Dec of Π. It remains to argue that a set of corrupted parties can learn
nothing (given their inputs, randomness, and the output of g) beyond the output of f .

We refer to the ARE message of virtual party Pij as being fully-corrupted if both i, j are
corrupted and partially-honest otherwise. We now argue that, conditioned on the adversary’s inputs
and randomness, the extra information revealed by the output of g can be simulated given the sum
of the partially-honest ARE messages. This follows because: (1) conditioned on the adversary’s
randomness, a partially-honest message is distributed as it should (since either ρij or ρji is unknown
to the adversary), and (2) g outputs the sum of all ARE messages of virtual parties, where the
fully-corrupted ones can be determined by the adversary.

It remains to argue that learning the sum of the partially-honest ARE messages reveals no
more than the output of f . By the robust ARE security of Π, this sum only reveals the residual
function of f ′ restricted to partially-honest inputs (xi, xj). Assuming at least one party is honest,
every input xk is included in at least one such partially-honest pair. Hence, by the definition of
f ′, the residual function induced by the partially-honest inputs depends only on f(x1, . . . , xn), as
required.

33

Since a 2-local MPRE implies a degree-2 MPRE [ABG+20], Theorem 7.4 can be viewed as a
barrier for ruling out a degree-2 statistical MPRE for general functions. Indeed, this would require
proving the same for robust statistical ARE. Such ARE look incomparable to degree-2 statistical
randomized encodings [IK00], which are another barrier for ruling out degree-2 MPRE [ABG+20].
See Section 1.3 for further discussion.

Combining Theorem 7.4 with Lemma 7.1, using a natural composition property for MPRE, we
get the following.

Corollary 7.5 (MPRE from robust ARE: The general case). Suppose every constant-size 3-party
function f admits an indistinguishability-robust (resp., statistically robust) ARE in the plain model.
Then every n-party f admits a 2-local degree-2 (external-output) MPRE, or alternatively a non-
interactive protocol using parallel invocations of a 3-party functionality.

Requiring the MPRE to be efficient, this holds for computational security if one-way functions
exist, and for statistical security if both f and the ARE encoding are in NC1.

Proof. We obtain a 2-local degree-2 MPRE for f via MPRE composition, using the following steps.
First, encode f using f ′ consisting of parallel copies of 3MULTPlus, as guaranteed by Lemma 7.1.
Next, apply Theorem 7.4 to encode f ′ by a 2-local f ′′. This already gives a 2-local (external-output)
MPRE for f , which can be evaluated using parallel calls to 3-party functionalities by using the third
party to implement the external MPRE output.

Finally, we can convert any 2-local MPRE into a degree-2 MPRE without increasing the locality
by (again) applying Lemma 7.1, noting that for each term x1x2x3 appearing in an instance of
3MULTPlus there is a party who holds at least two of the variables of the term. By multiplying
these variables locally, the degree of 3MULTPlus is reduced from 3 to 2.

Acknowledgements. We thank Jonathan Ullman for helpful discussions on differential privacy
in the shuffle model and the anonymous reviewers for their comments. Y. Ishai and E. Kushilevitz
were supported by ISF grant 2774/20 and BSF grant 2018393. Y. Ishai was additionally supported
by ERC Project NTSC (742754).

References

[AAP19] Navneet Agarwal, Sanat Anand, and Manoj Prabhakaran. Uncovering algebraic struc-
tures in the MPC landscape. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23,
2019, Proceedings, Part II, volume 11477 of Lecture Notes in Computer Science, pages
381–406. Springer, 2019.

[ABG+20] Benny Applebaum, Zvika Brakerski, Sanjam Garg, Yuval Ishai, and Akshayaram Srini-
vasan. Separating two-round secure computation from oblivious transfer. In Thomas
Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS
2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages
71:1–71:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. Full version:
https://eprint.iacr.org/2020/116.pdf.

34

https://eprint.iacr.org/2020/116.pdf

[ABT21] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Perfect secure computation
in two rounds. SIAM J. Comput., 50(1):68–97, 2021.

[AHI+17] Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal Kushilevitz, and Vinod
Vaikuntanathan. Low-complexity cryptographic hash functions. In Christos H. Pa-
padimitriou, editor, 8th Innovations in Theoretical Computer Science Conference,
ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs, pages
7:1–7:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM
J. Comput., 36(4):845–888, 2006.

[AIK14] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic cir-
cuits. SIAM J. Comput., 43(2):905–929, 2014.

[AIKP22] Benny Applebaum, Yuval Ishai, Or Karni, and Arpita Patra. Quadratic multiparty
randomized encodings beyond honest majority and their applications. In Yevgeniy
Dodis and Thomas Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 -
42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara,
CA, USA, August 15-18, 2022, Proceedings, Part IV, volume 13510 of Lecture Notes
in Computer Science, pages 453–482. Springer, 2022.

[App17] Benny Applebaum. Garbled circuits as randomized encodings of functions: a primer.
In Yehuda Lindell, editor, Tutorials on the Foundations of Cryptography, pages 1–44.
Springer International Publishing, 2017.

[BBC+14] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth, and Amit
Sahai. Obfuscation for evasive functions. In Yehuda Lindell, editor, Theory of Cryp-
tography - 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA,
February 24-26, 2014. Proceedings, volume 8349 of Lecture Notes in Computer Science,
pages 26–51. Springer, 2014.

[BBGN20] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. Private summation in
the multi-message shuffle model. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, CCS ’20: 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, USA, November 9-13, 2020, pages 657–676.
ACM, 2020.

[BF03] Dan Boneh and Matthew Franklin. Identity-based encryption from the weil pairing.
SIAM Journal on Computing, 32(3):586–615, 2003.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6:1–6:48, 2012.

[BGI+14] Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, and
Anat Paskin-Cherniavsky. Non-interactive secure multiparty computation. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th

35

Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Pro-
ceedings, Part II, volume 8617 of Lecture Notes in Computer Science, pages 387–404.
Springer, 2014.

[BIK+17] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure
aggregation for privacy-preserving machine learning. In Bhavani Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 1175–1191. ACM, 2017.

[BIK+22] Saikrishna Badrinarayanan, Yuval Ishai, Dakshita Khurana, Amit Sahai, and Daniel
Wichs. Refuting the dream XOR lemma via ideal obfuscation and resettable MPC. In
ITC 2022, volume 230 of LIPIcs, pages 10:1–10:21, 2022.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, page 1–10, 1988.

[CB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computa-
tion of aggregate statistics. In Aditya Akella and Jon Howell, editors, 14th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2017, Boston,
MA, USA, March 27-29, 2017, pages 259–282. USENIX Association, 2017.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In ACM STOC, 1988.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In F. Frances Yao and Eugene M. Luks, editors,
Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing,
May 21-23, 2000, Portland, OR, USA, pages 235–244. ACM, 2000. Available from
https://ia.cr/1999/022.

[CSU+19] Albert Cheu, Adam D. Smith, Jonathan R. Ullman, David Zeber, and Maxim Zhilyaev.
Distributed differential privacy via shuffling. In Yuval Ishai and Vincent Rijmen,
editors, Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part I, volume 11476 of Lecture Notes in
Computer Science, pages 375–403. Springer, 2019.

[EFM+20] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Shuang Song,
Kunal Talwar, and Abhradeep Thakurta. Encode, shuffle, analyze privacy revisited:
Formalizations and empirical evaluation. CoRR, abs/2001.03618, 2020.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation
(extended abstract). In Frank Thomson Leighton and Michael T. Goodrich, editors,
Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing,
23-25 May 1994, Montréal, Québec, Canada, pages 554–563. ACM, 1994.

36

https://ia.cr/1999/022

[GM11] Vipul Goyal and Hemanta K. Maji. Stateless cryptographic protocols. In Rafail Os-
trovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, pages 678–687. IEEE Computer Society, 2011.

[GMPV20] Badih Ghazi, Pasin Manurangsi, Rasmus Pagh, and Ameya Velingker. Private aggre-
gation from fewer anonymous messages. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-
14, 2020, Proceedings, Part II, volume 12106 of Lecture Notes in Computer Science,
pages 798–827. Springer, 2020.

[GMW19] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game,
or a completeness theorem for protocols with honest majority. In Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pages 307–328. ACM, 2019.

[GS09] Vipul Goyal and Amit Sahai. Resettably secure computation. In Antoine Joux, ed-
itor, Advances in Cryptology - EUROCRYPT 2009, volume 5479 of Lecture Notes in
Computer Science, pages 54–71. Springer, 2009.

[HIJ+17] Shai Halevi, Yuval Ishai, Abhishek Jain, Ilan Komargodski, Amit Sahai, and Eylon
Yogev. Non-interactive multiparty computation without correlated randomness. In
Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part III,
volume 10626 of Lecture Notes in Computer Science, pages 181–211. Springer, 2017.

[HIKR18] Shai Halevi, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. Best possible information-
theoretic mpc. In Theory of Cryptography: 16th International Conference, TCC 2018,
Part II, page 255–281. Springer-Verlag, 2018.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach,
California, USA, pages 294–304. IEEE Computer Society, 2000.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In Peter Widmayer, Francisco Triguero Ruiz,
Rafael Morales Bueno, Matthew Hennessy, Stephan J. Eidenbenz, and Ricardo
Conejo, editors, Automata, Languages and Programming, 29th International Collo-
quium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings, volume 2380 of
Lecture Notes in Computer Science, pages 244–256. Springer, 2002.

[IKOS06] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography from
anonymity. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), pages 239–248. IEEE Computer Society, 2006.

[Ish13] Yuval Ishai. Randomization techniques for secure computation. In Manoj Prabhakaran
and Amit Sahai, editors, Secure Multi-Party Computation, volume 10 of Cryptology and
Information Security Series, pages 222–248. IOS Press, 2013.

37

[JLLW22] Aayush Jain, Huijia Lin, Ji Luo, and Daniel Wichs. The pseudorandom oracle model
and ideal obfuscation. IACR Cryptol. ePrint Arch., page 1204, 2022.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovàsz. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515––534, 1982.

[O’D14] Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.
Available from https://arxiv.org/abs/2105.10386.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Sym-
posium on Foundations of Computer Science, pages 162–167, 1986.

A Attempted Negative Results for Statistical ARE

Here we describe an (ultimately unsuccessful) attempt at extending the negative results from Sec-
tion 4.2.4 from perfect to statistical privacy. We exemplify this attempt by trying to extend
Corollary 4.17 to show that the two-party, three-input equality function does not have a statistical
ARE scheme. That function is defined by the following truth table:

feq 1 2 3

1 1 0 0

2 0 1 0

3 0 0 1

A statistical-privacy scheme for feq consists of six input distributions over some Abelian group G
(three for each party), denoted di, ei i = 1, 2, 3, and two output distribution f0, f1 over the same
group that are far apart (SD(f0, f1) ≥ 1− ϵ), such that:

∀ i1 ̸= i2 ∈ {1, 2, 3}, SD
(
f1, di1 ⋆ ei1

)
< ϵ and SD

(
f0, di1 ⋆ ei2

)
< ϵ,

where ⋆ denotes convolution, SD(·, ·) is the statistical distance, and ϵ is sufficiently small (say
ϵ = 0.001 for the example below).

Below we rule out such probability distributions (over any group), when the distance between
distributions is measured using the l2 norm. However, to get an impossibility result for statistical
ARE schemes we need to show that such distributions are impossible also for the l1 norm, and that
we were not able to do.

We begin by recalling the correspondence between AREs and VMPs that was introduced in
Section 4.2.3:

distr. e1 e2 e3

d1 d1 ⋆ e1 d1 ⋆ e2 d1 ⋆ e3
d2 d2 ⋆ e1 d2 ⋆ e2 d2 ⋆ e3
d3 d3 ⋆ e1 d3 ⋆ e2 d3 ⋆ e3

⇐⇒

Fourier v1 v2 v3

u1 u1 ⊙ v1 u1 ⊙ v2 u1 ⊙ v3
u2 u2 ⊙ v1 u2 ⊙ v2 u2 ⊙ v3
u3 u3 ⊙ v1 u3 ⊙ v2 u3 ⊙ v3

.

The correspondence between the two tables is a scaled discrete Fourier transform over the complex
field (DFT), ⋆ denotes convolution, and ⊙ denotes entry-wise product of complex numbers. Recall

38

https://arxiv.org/abs/2105.10386

that the scaled complex DFT is a rigid transformation that maintains l2 distances, so for all
i1, j1, i2, j2 ∈ {1, 2, 3} it holds that

∥ui1 ⊙ vj1 − ui2 ⊙ vj2∥ = ∥di1 ⋆ ej1 − di2 ⋆ ej2∥,

where ∥ · ∥ is the l2 norm. The rest of this section is devoted to ruling out the existence of complex
vectors ui, vj as above (in any dimension), such that the off-diagonal vectors are close to each other
in l2 norm but far from the on-diagonal vectors.

Below we say that such vectors are f -clustered (for some factor f > 1) if the l2 distance between
any on-diagonal and off-diagonal vectors is at least f times larger than the distances inside each of
these clusters.

Definition A.1. Fix any n ∈ N, six complex vectors ui, vi ∈ Cn, i = 1, 2, 3, and a real number
f > 1.

We say that the vectors ui, vi are f -clustered if for all i1, i2, i3, i4, j1, j2, j3, j4 ∈ {1, 2, 3} where
all the i’s are different from the corresponding j’s, it holds that

∥ui1 ⊙ vi1︸ ︷︷ ︸
on-diag

−ui2 ⊙ vj2︸ ︷︷ ︸
off-diag

∥ > f ·max
(
∥ui3 ⊙ vi3︸ ︷︷ ︸

on-diag

−ui4 ⊙ vi4︸ ︷︷ ︸
on-diag

∥, ∥ui3 ⊙ vj3︸ ︷︷ ︸
off-diag

−ui4 ⊙ vj4︸ ︷︷ ︸
off-diag

∥
)
.

To rule out distributions di, ei as above relative to l2 norm, it suffices to prove the following
lemma:

Lemma A.2. No set of complex vectors at any dimension are f -clustered for f >
√
99.

Proof. Fix an arbitrary dimension n, and denote the i’th entry in a vector v ∈ Cn by v[i]. Fix
six vectors ui, vi ∈ Cn, i = 1, 2, 3, denote xij := ui ⊙ vj , let D be the set of the three on-diagonal
vectors xii, and F be the set of the six off-diagonal vectors xij , i ̸= j. Other notations that we use:

� ∆D = maxx,y∈D ∥x− y∥2, ∆F = maxx,y∈F ∥x− y∥2, and ∆ = max(∆D,∆F).

� For every index i ∈ [n], let δD,i = maxx,y∈D
∣∣x[i]− y[i]

∣∣2 and δF,i = maxx,y∈F
∣∣x[i]− y[i]

∣∣2.
We first note that the δi’s are small, they sum up to not much more than the ∆’s. To see that, for
any x, y ∈ F let A(x, y) be the set of indexes where |x[i] − y[i]|2 = δF,i, i.e. those indexes i where
the maximum was obtained between these vectors x and y. (If the maximum was obtained in more
than one pair, then choose one of them arbitrarily, we want the A(x, y)’s to be a partition of the
index set [n].) Then we have:∑
i∈[n]

δF,i =
∑

x,y∈F

∑
i∈A(x,y)

|x[i]− y[i]|2 ≤
∑

x,y∈F

∑
i∈[n]

|x[i]− y[i]|2 =
∑

x,y∈F
∥x− y∥2 ≤

(
6

2

)
∆F = 15∆F .

By a similar argument, we have
∑

i∈[n] δD,i ≤
(
3
2

)
∆D = 3∆D.

Next we show that for any two points x, y (on or off diagonal) and any index i, we have∣∣x[i] − y[i]
∣∣2 ≤ 3δD,i + 6δF,i. This holds by definition if both x, y are on-diagonal or if both are

off-diagonal, so it remains to show it when x is on-diagonal and y is off-diagonal.

39

Fix an index i, and assume (w.l.o.g) that |u1[i]| ≤ |u2[i]| (i.e. the norm of the complex number
in the i’th entry of u1 is no larger than in u2). For the vectors x13 = u1 ⊙ v3 and x11 = u1 ⊙ v1 we
then have ∣∣x13[i]− x11[i]

∣∣2 =
∣∣u1[i](v3[i]− v1[i])

∣∣2 =
∣∣u1[i]∣∣2 · ∣∣v3[i]− v1[i]

∣∣2
≤

∣∣u2[i]∣∣2 · ∣∣v3[i]− v1[i]
∣∣2 =

∣∣x23[i]− x21[i]
∣∣2 < δF,i,

(where the last inequality holds since x21, x23 ∈ F). Then for every x ∈ F, y ∈ D we get∣∣x[i]− y[i]
∣∣2 =

∣∣x[i]− x13[i]︸ ︷︷ ︸
z1

+x13[i]− x11[i]︸ ︷︷ ︸
z2

+x11[i]− y[i]︸ ︷︷ ︸
z3

∣∣2
(∗)
≤ 3(|z1|2 + |z2|2 + |z3|2) ≤ 3(δF,i + δF,i + δD,i) = 3δD,i + 6δF,i, (3)

as claimed. To see why inequality (∗) holds, note that for any two complex numbers z, z′ we have
|zz̄′+ z′z̄| ≤ |z|2+ |z′|2, and therefore the complex numbers z1, z2, z3 above satisfy |z1+ z2+ z3|2 =∣∣∣∑i,j ziz̄j

∣∣∣ ≤ 3
∑

i

∣∣zi∣∣2.
Using Eqn. (3), we conclude that for any x ∈ F, y ∈ D

∥x− y∥2 =
∑
i∈[n]

∣∣x[i]− y[i]
∣∣2 ≤ ∑

i∈[n]

(3δD,i + 6δF,i) ≤ 3 · 3∆D + 6 · 15∆F ≤ 99∆.

This, in turn, means that f2 = maxx∈F,y∈D ∥x− y∥2/∆ ≤ 99.

Lemma A.2 means that if all the on-diagonal vectors are close to each other upto some ϵ in l2
norm, and all the off-diagonal vectors are close to each other upto ϵ, then the on-diagonal cannot
be more than 10ϵ away from the off-diagonal. Since DFT preserves l2 norm, then the same holds
for the distributions di ⋆ ej . We remark that it is possible to prove the equivalence of Lemma A.2
also for l1 norm, but this will only prove it for the Fourier representation of the distribution, and
l1 norm is not preserved under DPT.

B Lattice-Based candidate for Computational ARE

Below we describe a candidate for computational ARE, whose security seems heuristically to be
related to a “ring-LWE-like” hardness assumption. This candidate uses a similar structure to the
pairing-based construction from Section 5, using the observation that the cross products in the
equation (x+ y)(ax− by) cancel out if and only if a = b. Differently from the pairing construction,
here we always have some cross terms due to the noise, and we attempt to make them small enough
to ensure correctness.

Let λ be the security parameter, below we assume an algebraic ring of the formRq = Zq[X]/F (X)
where q > 212λ and the degree of F is λ + 1. We also assume that multiplication in Rq preserves
smallness, specifically that ∥xy∥ ≤ λ2 · ∥x∥ · ∥y∥ for all x, y ∈ Rq, where ∥ · ∥ is some convenient
norm in some convenient representation (e.g., l2 norm in the standard power basis). It is not hard
to find rings where this condition holds. Finally, we assume input encoding such that the Euclidean
norm of the inputs x1, x2 is always fixed (e.g., all inputs are encoded as vectors x⃗i ∈ {±1}λ) and
that x1 − x2 is never a zero divisor in Rq when x1 ̸= x2. The scheme is described in Figure 2.

40

Parameters: Security parameter λ and input length ℓ.

Setup(1λ, 1ℓ):

1. Let q > 212λ be an integer modulus, and Rq = Zq[X]/F (X) be a ring of degree λ,
where ∥xy∥ ≤ λ2 · ∥x∥ · ∥y∥ for all x, y ∈ Rq;

2. Let Dq be a distribution over Rq s.t. s← Dq yields ∥σ∥ ≤ q2/5 whp;

3. Let emb : {0, 1}ℓ → Rq be injective embedding, such that ∥emb(x)∥ = ∥emb(x′)∥ ≤
q1/10 for all x, x′ ∈ {0, 1}ℓ, and emb(x)− emb(x′) is never a zero divisor in Rq when
x ̸= x′.

4. Let a, b← Rq be two random elements.

Encoding, Enc(pp, i, x′i):

5. Embed xi := emb(x′i) and choose si ← Dq;

6. Use LLL to find ei, fi ∈ Rq such that ∥ei∥, ∥fi∥, ∥afi − bei∥ < q2/5;

7. Set ui := sia+ ei, vi := sib+ fi;

8. Output
(
ui, (−1)i−1xivi, (−1)i−1xiuivi

)
.

Evaluation, Dec
(
pp, y = (u1 + u2), z = (x1v1 − x2v2), w = (x1u1v1 − x2u2v2)

)
:

9. Output 1 if ∥yz − w∥ < q11/12, 0 otherwise

Figure 2: A lattice-based computational ARE candidate

41

B.1 Implementing Step 2

Implementing Step 2 from Figure 2 requires solving a (structured) SIS instance. Indeed, if we
let A,B ∈ Zλ×λ

q be the matrices that represent multiplications by a, b, respectively, then finding
ei, fi ∈ Rq as needed corresponds to finding a small integer solution to the matrix equation A −B −I

× (
e⃗i | f⃗i | g⃗i

)t
= 0⃗ (mod q). (4)

Above e⃗i, f⃗i, g⃗i ∈ Zλ
q are the integer vectors representing ei, fi ∈ Rq and gi = afi − bei ∈ Rq,

respectively. Below we denote the matrix from Eqn. (4) by Ma,b :=
[

A | − B | − I
]
∈ Zλ×3λ

q .
Luckily, the solution that we need is not too small, so we can use LLL [LLL82] to find it.11

Specifically, consider the lattice

Λa,b := Λ⊥
q (Mab) = {z⃗ ∈ Z3λ : Ma,b z⃗

t = 0⃗ (mod q)}.

This is a dimension-3λ integer lattice, and if q is a prime then its determinant is exactly qλ. We
can therefore use LLL to find a solution z⃗ ∈ Λa,b such that ∥z⃗∥ ≤ 23λ/4 · (qλ)1/3λ = 23λ/4+log(q)/3.
When q > 212λ, then we have a solution with l2-norm bounded by 23λ/4+log(q)/3 < q1/16+1/3 < q2/5.
Parsing this solution as z⃗ = (e⃗i|f⃗i|g⃗i) we have the elements ei, fi ∈ Rq that we need.

B.2 Analysis

To see that correctness holds, recall that we have ∥xi∥ < q1/10 and ∥si∥, ∥ei∥, ∥fi∥, ∥gi∥ < q2/5

(where gi := afi − bei). The evaluator sees the values w, y, z where

yz = (u1 + u2)(x1v1 − x2v2) = x1u1v1 − x2u2v2︸ ︷︷ ︸
w

+x1u2v1 − x2u1v2︸ ︷︷ ︸
d

.

The evaluator sets d := yz − w and outputs 1 if d is small enough. Opening up the expression for
d, we have:

d = x1u2v1 − x2u1v2 = x1(u2v1 − u1v2) + (x1 − x2)u1v2

= x1
[
(s2a+ e2)(s1b+ f1)− (s1a+ e1)(s2b+ f2)

]
+ (x1 − x2)u1v2

= x1
[
s2 (af1 − be1)︸ ︷︷ ︸

g1

+s1 (af2 − be2)︸ ︷︷ ︸
g2

+e2f1 − e1f2
]
+ (x1 − x2)u1v2.

Due to the multiplication property of Rq and the sizes of all the elements xi, si, ei, fi, gi, we know
that in the case x1 = x2 we get

∥d∥ ≤ ∥x1s2g1∥+ ∥x1s1g2∥+ ∥x1e2f1∥+ ∥x2e1f2∥

< 4 · λ4 · q1/10+2/5+2/5
(a)
< 2λ/5q9/10

(b)
< q11/12,

where (a) holds for λ ≥ 156 and (b) follows since q > 212λ. When x1 ̸= x2 then we have the
additional term (x1 − x2)u1v2, and since u1, v2 are pseudorandom elements then we only have a
negligible probability of getting ∥d∥ < q11/12.

11We can also get a better constants using stronger lattice reduction tools.

42

For security, it seems reasonable to expect the ui’s and vi’s to be pseudorandom (and pseudo-
independent). These are obtained from “ring-LWE-like” expressions, except that the noise vectors
are produced by LLL rather than being chosen from a “nice” distribution. If they are indeed
pseudorandom in Rq, then for x1 ̸= x2 the view of the adversary is just pseudorandom and pseudo-
independent elements (recall that in that case x1 − x2 is invertible in Rq). For x1 = x2, since the
size of x1 is always the same then the size of what the adversary seems is not affected by the actual
inputs. Hence we can hope that the distribution over d is again (pseudo)independent of the actual
value of x1 = x2.

43

	Introduction
	Our Contribution
	Open Questions
	Related Work

	Overview of Techniques
	Information-Theoretic ARE
	Computational ARE
	Robust ARE
	Applications

	Additive Randomized Encoding: Definitions and Properties
	ARE Security
	Basic Properties of ARE
	ARE ``over the integers''

	Information-Theoretic ARE
	ARE for Capped Sum
	Negative Results for Perfectly Secure ARE
	Discrete Fourier Transform for Distributions
	Vector Multiplication Programs
	The Relation between VMPs and Perfectly Secure AREs
	Functions Admitting VMP
	A Negative Result for Statistically Secure ARE?

	Computational ARE from Bilinear Maps
	A Pairing-Based Two-Party Equality Scheme
	Background: Pairing Groups and Squaring XDH
	ASDH Reduces to Squaring XDH
	Aside: A Direct ARE Scheme for OT

	From Equality to Any Small Function
	Computational ARE for General Functions

	Robust ARE via Obfuscation
	Resettable MPC
	Obfuscation
	Constructing Robust ARE
	Security Analysis

	From ARE to Multiparty Randomized Encoding
	Attempted Negative Results for Statistical ARE
	Lattice-Based candidate for Computational ARE
	Implementing Step 2
	Analysis

