
Breaking the Chains of Rationality: Understanding the Limitations to and
Obtaining Order Policy Enforcement

Sarisht Wadhwa
sarisht.wadhwa@duke.edu

Duke University

Luca Zanolini
luca.zanolini@ethereum.org

Ethereum Foundation

Aditya Asgaonkar
aditya.asgaonkar@ethereum.org

Ethereum Foundation

Francesco D’Amato
francesco.damato@ethereum.org

Ethereum Foundation

Fan Zhang
f.zhang@yale.edu

Yale University

Kartik Nayak
kartik@cs.duke.edu

Duke University

Abstract
Order manipulation attacks such as frontrunning and sand-

wiching have become an increasing concern in blockchain ap-
plications such as DeFi. To protect from such attacks, several
recent works have designed order policy enforcement (OPE)
protocols to order transactions fairly in a data-independent
fashion. However, while the manipulation attacks are mo-
tivated by monetary profits, the defenses assume honesty
among a significantly large set of participants. In existing
protocols, if all participants are rational, they may be incen-
tivized to collude and circumvent the order policy without
incurring any penalty.

This work makes two key contributions. First, we explore
whether the need for the honesty assumption is fundamental.
Indeed, we show that it is impossible to design OPE proto-
cols under some requirements when all parties are rational.
Second, we explore the tradeoffs needed to circumvent the im-
possibility result. In the process, we propose a novel concept
of rationally binding transactions that allows us to construct
AnimaguSwap1, the first content-oblivious Automated Market
Makers (AMM) that is secure under rationality.

1 Introduction

Blockchains can provide a trustworthy platform for trans-
acting and smart contract execution. Blockchain-powered
finance applications, also known as DeFi, have grown to
a market of more than $46 billion2 in value. However, de-
spite the strong integrity and availability properties offered
by blockchains, they do not protect the ordering of user trans-
actions. As a result, order manipulation attacks — e.g., fron-
trunning attacks, sandwich attacks — are rampant, where an
attacker listens for user transactions sent in public and strate-
gically places her exploiting transactions around the victim

1A key design in AnimaguSwap is that user orders may transform to a
different direction—like the fictional creatures Animagi in Harry Potter—in
order to achieve the desired game theoretic properties.

2https://defillama.com

to gain a profit. The profits earned through inserting and re-
ordering transactions are referred to as Maximal Extractable
Values (MEV) [20]. An estimated $687m of MEV have been
extracted as of the time of writing.3

To protect users from order manipulation attacks, an ex-
tensively explored direction [9, 11, 15, 16, 29–31, 35] is to
bake in a mechanism that orders user transactions in a data-
independent fashion, as part of the blockchain protocol or
decentralized applications. Intuitively, data-independent or-
dering guarantees that given a set of user transactions as input,
the final ordering of them on the blockchain should be inde-
pendent of the transaction content. For example, some fair
ordering protocols [15,29,30] order user transactions based on
the time they are received by a committee of parties. Content-
oblivious ordering (e.g., [9, 11,31, 35]) guarantees that user
transactions are hidden from the committee who orders them,
e.g., through encryption, until after an ordering has been de-
cided. In this case, transaction ordering may be based on any
metadata, such as the ciphertext, the sender address, etc.

Both approaches can prevent an attacker from placing
exploiting transactions before user transactions after hav-
ing observed user transactions. However, all known data-
independent ordering protocols share the same limitation:
they only work under the strong assumption that enough par-
ties running the protocol are honest. E.g., [29] assumes more
than three-fourth of the participants are honest (for γ = 1, a
parameter in their work).

Indeed, in a permissionless blockchain system where play-
ers are pseudonymous and can join and leave freely, the as-
sumption that players are always honest is hard to justify.
A much more palatable assumption is to assume rationality
instead of honesty, i.e., instead of assuming parties are intrinsi-
cally honest, a rational party may take any action to maximize
utility. In fact, the existence of MEV is tied to the rationality
of the participants. Thus, the goal is to design a protocol so
that following the protocol is incentive-compatible, which is
significantly more challenging because all of the parties run-

3https://explore.flashbots.net/

1

ning the protocol may deviate from the protocols arbitrarily
if doing so leads to a higher utility.

In this paper, we systematically explore the design of data-
independent ordering protocols in the presence of rational
parties, asking two fundamental questions:

1. All known data-independent ordering protocols require
some honesty assumption. Is that a limitation of existing
solutions or something fundamental? We answer this ques-
tion negatively by showing an impossibility result that not
only are existing protocols insecure in the presence of ra-
tional parties, but a wide range of protocols compliant to
the same specification also cannot be secure.

2. Given the impossibility, what tradeoffs must one make
in order to realize a data-independent ordering protocol
under the rationality assumption? We explore two differ-
ent tradeoffs. In the first one, we explore the use of a
trusted execution environment (TEEs) to restrict the ac-
tions of the rational parties. In the second one, we propose
a novel concept called rationally binding commitments
and present the first decentralized exchange construction,
called AnimaguSwap, with a built-in data-independent or-
dering protocol under rationality.

1.1 Overview of results
1.1.1 Existing protocols are not secure

Intuitively, it is not hard to see how rational parties might
lead to an insecure execution: in existing data-independent
ordering protocols [9, 11, 15, 16, 29–31, 35], there is no way
to retroactively verify whether the ordering output was in-
deed data-independent. Thus, if violating data independence
increases parties’ utility, all parties running the protocol to
collude is a dominant strategy.

For fair ordering protocols, if enough parties collude, they
can order transactions arbitrarily by lying about when transac-
tions are received — an action that cannot be held accountable
unless assuming a global trustworthy timestamping service
(which is a strong assumption for applications we care about).

For content-oblivious ordering, the situation is a bit trickier,
as collusion might be accountable. For example, in schemes
where user transactions are encrypted using threshold encryp-
tion (e.g., [16]), enough can reconstruct the decryption key
if they collude. However, this way of colluding may be ac-
countable since the decryption key itself could serve as an
irrefutable proof of the fact that collusion has taken place.

This leads to a natural question for a protocol designer: can
we leverage proof of collusion to design data-independent
ordering protocols under rationality? Answering this question
negatively and identifying the conditions under which this is
true is the crux of our contribution. We observe that colluding
parties do not necessarily need to decrypt the transaction or
leave any proof of collusion whatsoever, by running the col-
lusion algorithm in a way that the only outcome of collusion

is a set of transactions that resemble benign user transactions
while giving colluding parties a higher utility (e.g., with their
frontrunning transactions inserted before the victim).

An order policy enforcement (OPE) framework and
impossibilities. To prove this claim, we first present a
generic framework in Section 4 that captures all known data-
independent ordering protocols. Then, we show that in any
concrete protocol Π following this framework, if violating the
ordering policy increases parties’ utility, there always exists a
collusion protocol π with which parties can collude and vio-
late the ordering policy with deniability: even after executing
π, no participants of it can generate a cryptographic proof
to incriminate any participants (including herself). Section 5
presents the full proof.

1.1.2 New directions informed by the impossibility

Our impossibility proof not only shows the fundamental limi-
tations of existing approaches in terms of achieving security
under rationality, but it also carves out avenues to improve.
The impossibility critically relies on some assumptions about
Π. First, users may go offline after sending one message (typ-
ically a transaction or a cryptographic commitment thereof).
This is a desirable usability feature because users do not need
to stay online. Consequently, once the user submits her trans-
action, the parties have the capability to retrieve it. Second, if
the user sends a cryptographic commitment of her transaction,
it is binding in that the commitment can only be opened to
one transaction plaintext, which is a natural requirement so
that transaction execution is unambiguous.

Designing protocols that violate these assumptions can cir-
cumvent the impossibility, but dispensing with them naïvely
will lead to undesirable outcomes. For instance, if we require
users to stay online, there exists a (somewhat trivial) solution
where a user first sends a commitment to the parties running
the ordering protocol, and then opens the commitment after
the ordering is determined. This construction, while secure
against collusion of parties, not only introduces a usability
challenge for users but also potential problems when users
refuse to open the commitment.

Using TEEs. A different approach is to curb the ability of
the stakers to reconstruct the transaction before it has been
committed on the chain. In this approach, we rely on a TEE
such as Intel SGX to require stakers to hold (potentially shares
of) transactions such that the share cannot be revealed to
anyone before a commitment corresponding to the transaction
has been committed on the chain. Thus, in effect, such a
trusted hardware plays to restrict the actions available to the
rational stakers.

Using rationally binding commitments. Our next result is
a novel way to relax the second assumption, by introducing
rationally binding commitments. A key observation from the

2

impossibility proof is that if a user only sends one message
and that message binds to her transaction, then if enough par-
ties collude they can uniquely recover her transaction (and
thus can frontrun it, for example), no matter what crypto-
graphic protections are employed. (Since the user only sends
one message, that message should enable recovery of some
transactions; due to the binding property, the committee can
recover the exact transaction the user committed to).

Can we dispense with the binding property as a way to cir-
cumvent the impossibility? This seems paradoxical. After all,
a user’s transaction needs to be encoded somehow in the com-
mitment, otherwise, the commitment may be opened against
her will. Our answer is to replace binding with rationally
binding, as follows.

We first require parties running the protocol to put down
collateral (i.e., to stake) that can be confiscated (or slashed) for
detected misbehavior. We call these parties stakers hereafter.
Suppose one of the stakers is designated as the “flipper” (the
meaning of the name will become clear momentarily). In or-
der to create a rationally binding commitment to a transaction
tx, the user samples a random bit b ∈ {0,1} and depending
on this bit, creates a transaction that is either the one that the
user intended (tx) or a related but different transaction (tx),
e.g., the other transaction must satisfy certain requirements
that we will specify later for specific applications. The user
sends b to the flipper in a deniable message [27, 36], and gets
back an acknowledgment of the bit signed by the flipper. (If
the flipper does not respond, the user can designate another
flipper.) The user then shares the created transaction (which
can be different from the one it intended) with the rest of
the stakers. To open the commitment, the stakers reveal the
shared transaction and the flipper reveals b, and the transac-
tion tx will be executed. Crucially, if the flipper reveals the
wrong bit b̄, the user can use the acknowledgment it received
as evidence to slash the flipper.

From the user’s point of view, assuming the penalty is
properly setup, a rational flipper will always reveal b, so tx
will always be executed, similarly to the binding property. On
the other hand, from the stakers’ point of view, even if all
parties collude, they cannot identify which transaction will
be executed, since the flipper might lie about b and there is
no way for the flipper to prove the correctness of b due to the
use of deniable messaging. In fact, the protocol can be made
such that lying about b is a dominant strategy for the flipper
by carefully crafing tx, which ensures that no stable collusion
can be formed amongst the stakers.

In Section 6.2, we present AnimaguSwap, an Automated
Market Makers (AMM) decentralized exchange that uses ra-
tionally binding commitments to defeat sandwich attacks. In
our protocol, if user transaction tx sells a certain asset, then tx
is the reverse order, i.e., buying the same asset. If the stakers
collude, they must still guess which will be executed (with no
more than 1/2 probability to be right). Thus, in expectation, it
is not worthwhile to attempt sandwiching.

Impossibility for OPE in the presence of binding side con-
tracts. The intuition behind the above construction is to create
distrust between the flipper and the rest of the committee be-
cause the flipper has the incentive to lie, and the committee
members have no ability to verify the flipper’s claims, so
a stable coalition cannot be formed. This can be changed,
though, if parties can set up binding side contracts, as follows:
suppose the flipper puts down a large collateral and sets up a
binding contract such that she loses the collateral if she lies
about the bit. Then, although the flipper cannot prove a bit b
is received from the user, it is still not rational for her to lie
about it since the consequence of lying has been made dire by
the flipper herself. In Section 7, we generalize this result and
show that this intuition holds for a larger class of protocols
when the collateral put down by parties is high enough.

Contributions

In summary, this paper makes the following contribution:
• We present a framework that captures existing protocols for

data-independent order policy enforcement (OPE) such as
fair ordering and content-oblivious ordering protocols.

• We present the first impossibility proof showing that a wide
range of OPE protocols cannot be secure in the presence of
rational parties.

• We present two ways to get around our impossibility result.
First, we present an approach that uses TEEs to curb the
actions available to the rational parties. Then, we propose
the notion of rationally binding commitments as a practical
way to circumvent the impossibility. We present the first
AMM construction AnimaguSwap that can achieve data-
independent ordering of user transactions in the presence of
rational parties. We analyze the efficacy of AnimaguSwap
using real-world blockchain data.

• Finally, we extend our first impossibility result to show a
larger class of protocols cannot enforce OPE when binding
side contracts are available.

2 Related Work

Data-independent ordering protocols. As reviewed in Sec-
tion 1, several works purpose to order transactions indepen-
dent of their content as a way to reduce MEV [20]. Below is a
non-exhaustive list of protocols that are covered by the frame-
work (Section 4) and the impossibility theorem (Theorem 1).

The first category of protocols is fair ordering. Kelkar et
al. [30] investigate a notion of fair transaction ordering for
(permissioned) consensus protocols, which prevents adversar-
ial manipulation of the ordering of transactions. The authors
then formulate a new class of consensus protocols, called
Aequitas, that achieve fair transaction ordering while also
providing the usual consistency and liveness. Their findings

3

have been later extended in permissionless settings [28]. Sub-
sequently, Kelkar et al. [29] devised Themis, a (permissioned)
consensus protocol that, along the same lines as [30], achieves
fair transaction ordering while preventing a liveness issue in
Aequitas. Cachin et al. [15] introduce a differential order
fairness property and present a quick order-fair atomic broad-
cast protocol that guarantees payload message delivery in a
differentially fair order. The protocol of Cachin et al. results
in a more efficient protocol than the previous solutions, but it
relies on a weaker form of validity property.

The second category of solutions is content-oblivious or-
dering. A popular idea (used by, e.g., [9, 11, 16, 35]) is to
encrypt user transactions using a threshold public key encryp-
tion scheme so that the ordering of transactions is done based
on the ciphertext. Fino [31] efficiently integrates threshold
encryption and secret sharing to a DAG-based BFT proto-
col. Shutter, Osmosis, and Sikka [9, 16, 35] are examples of
operational systems in this category.

The protocols in these works make the assumption of hon-
est majority participation, e.g., a majority (or two-thirds) of
the participants do not deviate from the specified protocol,
even if such deviations are undetectable. Our work investi-
gates ways to relax such assumptions.

MEV mitigation leveraging rationality. Platforms have
emerged to auction off the opportunities to extract MEV so
that MEV extraction is democratized [6, 22]. MEV auctions
rely on the rationality of bidders (also known as builders) to
maximize MEV extraction. Our solution (in Section 6) aims
to achieve a different goal of reducing MEV.

Heimbach et al. [25] analyzed the sandwich game between
an AMM trader and predatory bots and identified the optimal
slippage tolerance a trader could set to disincentive bots from
attacking while limiting the probability of execution failures.
Their algorithm, however, crucially relies on estimating the
execution failure probability using historical data, and thus
cannot guarantee accuracy. Our solution is fundamentally
different and does not have this limitation.

PROF [10] is a protocol that leverages the profit-
maximizing nature of proposers to promote the inclusion
of fairly ordered transactions (PROF defines fairness broadly
as any order that follows a given policy). PROF is agnostic
to specific transaction ordering protocols and thus is comple-
mentary to our solution. Note that PROF does not address
the security of ordering protocols under rationality, though it
suggested a TEE-based content-oblivious ordering protocol.

Lower bounds on MEV mitigation. Ferreira et al. [38]
presents an impossibility result showing that for a class of liq-
uidity pool exchanges (e.g., Uniswap), for any data-dependent
ordering policy (called sequencing rule in [38]), there are al-
ways valid sequences in which the miners get risk-free profits.
Their result leaves it open whether data-independent ordering
policies can be enforced, which is our focus. (We show it is
impossible in Theorem 1.)

Data dependent ordering policies. All of the discussion in
this work is only pertinent to ordering policies that are data
independent, i.e., policies that only rely on the metadata re-
lated to the transactions and not the transaction content them-
selves. [38] proposes a data-dependent sequencing rule that
alternates between BUY and SELL orders, to guarantee that
user transactions are executed at a price as good as being exe-
cuted at the beginning of the block (unless the miner does not
gain anything from manipulating the ordering). Besides being
geared towards different goals, our TEE-based protocol (Sec-
tion 6.1) is application-agnostic, while [38] is AMM-specific,
as is AnimaguSwap (Section 6.2); moreover, [38] relies on the
assumption that each block is created by a different miner, a
questionable assumption in today’s Ethereum ecosystem with
Proposer-Builder Separation (PBS) [14], which our solutions
(Sections 6.1 and 6.2) avoid.

3 Model

We consider a set of n users U = {u1, . . . ,un} that can
send transactions to a ordering protocol Π. We also define
some users as eternal, which are always online, and some as
ephemeral, which may not stay online for long. Among the
eternal users, we furthermore consider a fixed N ≤ n stakers
S = {s1, . . . ,sN} that communicate with each other and partic-
ipate in Π. We assume each staker si to be rational, i.e., si has
a utility function to maximize. To keep things simple, we as-
sume that this utility function is the amount of monetary profit
(in the number of tokens) that the user can make. If a staker
si fails to serve the role assigned to it or tries to deliberately
deviate from the protocol, i.e., si is Byzantine, and a proof of
this misbehavior is given, it loses a part of its stake (si gets
slashed) and it might be removed from the system. A protocol
specifies rules that provide rewards to stakers who complete
certain tasks. We sometimes refer to users (and stakers) as
players or parties.

We refer to state as a database where unconfirmed transac-
tions (or commitments to the transactions) are buffered when
received through a broadcast channel. Each user will have a
different view of the state.

Notation. We denote the evaluation of a protocol using
(pubo;(y1, . . . ,yk)← prot(pubi;(x1, . . . ,xk)). Here, there is
a public input pubi and private inputs (x1, . . . ,xk), resulting in
a public output pubo and private outputs (y1, . . . ,yk). Public
inputs/outputs might be omitted if not applicable.

4 A Framework for Order Policy Enforcement

To study the common features of order policy enforce-
ment (OPE) protocols [9, 11, 15, 16, 29–31, 35], we
first present an abstract framework to capture the
essence of aforementioned protocols with four sub-
protocols (submit,process,order, reveal) and two predicates

4

Framework for Order Policy Enforcement

Initialization:
1: Each staker si runs init (possibly interactively with other

stakers) to get parami := (sprii,sppi)

2: Each staker si publishes sppi

3: Each staker si sets statei := /0

Transaction submission:
4: Whenever initiated by a user u, stakers in S and u run (possi-

bly interactively)

(txid;(⊥,out1, . . . ,outN))← submit(tx, inp1, . . . , inpN)

where tx is user’s input (her transaction) and inpi is staker si’s
input derived from parami and statei.

5: Each staker si processes the metadata information and the
transaction information and updates its state.

(mdi,datai)← process(txid,outi,statei)

statei← statei.add((txid,mdi,datai))

Transaction inclusion:
6: Whenever ShouldRelease(si) , stakers in S evaluate

(tSeq = (t̄x1, . . . , t̄xℓ);(state1, . . . ,stateN))←
order(state1, . . . ,stateN)

where the order of (t̄x1, . . . , t̄xℓ) is dependent only on
md1, . . . ,mdℓ.

7: Staker si adds tSeq to the blockchain.
Transaction revealing:

8: For each k ∈ [ℓ], when ShouldReveal(t̄xk), stakers evaluate

(txk;(state1, . . . ,stateN))← reveal(t̄xk;

(state1,spri1), . . . ,(stateN ,spriN))

Figure 1: A general framework that captures proposed order-
ing policy enforcement protocols [11,15,16,29–31] using four
protocols (submit,process,order, reveal) and two predicates
ShouldRelease,ShouldReveal.

ShouldRelease and ShouldReveal. To aid understanding, we
show how existing schemes can be mapped to our framework
in Appendix A.

Parties, transactions, and ordering policies. Our framework
is run by users, who submit transactions, and stakers who ex-
ecute the ordering protocol to order submitted transactions.
Stakers’ protocol can either be a component of a larger con-
sensus protocol or a standalone protocol in parallel with the
consensus (e.g., layer-2).

A transaction txi can be considered to consist of two parts –
metadata mdi and data datai. Metadata is part of a transaction
not given to the application (i.e., a smart contract) for execu-
tion. Our framework captures a data-independent policy P ,
i.e., a policy that takes as input a set of metadata (one for each
transaction) and outputs one or more permutations of them,
i.e., P (md1, . . . ,mdℓ)⊆ σ(ℓ), where σ(ℓ) is the set of all per-

mutations of (¯tx1, . . . , ¯txℓ). Metadata mdi = (md1
i , . . . ,mdN

i)
represents the metadata for transaction txi across all N stakers.

Subprotocols. Sub-protocols are reactive, in that they are
activated when specific conditions are met, and may execute
in parallel to each other. We now describe the four subproto-
cols following the life cycle of a given transaction, although
note that these subprotocols are reactive and may execute in
parallel for different transactions.
• Stakers engage in an initialization protocol to generate a

parameter param= (spri,spp) that consists of secret param-
eters spri and public ones spp. Initialization will also set a
local variable, statei — the set of pending transactions with
metadata, to /0.

• First, to send a transaction tx to a blockchain, the user runs
the submit protocol with stakers. Specifically,

(txid;(⊥,out1, . . . ,outN))← submit(tx,(inpi, . . . , inpN))

where inpi and outi are the input (output) from (to) staker
si, and txid is an id identifying the transaction. We do not
restrict how submit may be realized, e.g., it can be realized
as a non-interactive protocol where the user simply encrypts
the transaction under stakers’ public keys (in which case
inpi = pki); submit may also be implemented with an in-
teractive Multi-Party Computation (MPC) protocol where
the user engages in MPC protocol with stakers (in this case
inpi might be secret). At the end of submit, each staker si
receives some information about tx in outi, which will be
used in later protocols. Note that not all stakers may be re-
quired to participate in submit, however, a minimum of ts is
required (1≤ ts ≤N). For the stakers that do not participate,
the input and output is ⊥.

Users are ephemeral, i.e., they may go offline after
running submit, a usability feature enjoyed by most
real-world systems [11, 15, 16, 29–31]. Consequently,
(txid;(⊥,out1, . . . ,outN)) together must contain enough in-
formation to recover tx, an observation that will play a crit-
ical role in our subsequent analysis. We discuss alternative
protocols if this assumption does not hold in Section 6.

We also assume w.l.o.g. that non-staker users submit their
transactions before a staker adds its own, considering all
the information revealed to it by the non-staking users.

• Having finished the submit protocol for a given tx, a
staker runs a local process function to capture any lo-
cal state to be used in later sub-protocols, e.g., the time
at which tx was received. Specifically, (mdi,datai) ←
process(txid,outi,statei).

• The goal of an OPE protocol is to produce blocks with
transactions ordered in a desirable way. In our framework,
whenever predicate ShouldRelease(si) is true, stakers will
run the order protocol, with si being the leader if applicable,

5

to order transactions and to output a sequence of transac-
tions. Specifically, let tSeq = (t̄x1, . . . , t̄xℓ)

(tSeq;(state1, . . . ,stateN))← order(state1, . . . ,stateN)

where each staker inputs its local set of pending transactions
(with any metadata captured in process). The output is a
sequence of transactions to be added to the blockchain and
an updated local variable (e.g., with transactions added to
the block removed).

Note that like in submit, not all stakers may be required to
participate in order, however, a minimum of to is required
(1 ≤ to ≤ N). For the stakers that do not participate, the
input and output is ⊥. These stakers would appropriately
need to change state according to the on-chain published
ordering of transactions.

This sub-protocol captures any multiparty computation
mandated by an ordering protocol, e.g., fair ordering
schemes generate the contents of the next block based on
timestamps (or relative receiving orders) across all stakers.

• In some protocols, order only includes some cryptographic
representation of transactions in the blockchain, and another
step reveal is required to reveal the transaction plaintext
so it can be executed. Whenever ShouldReveal(B) is true,
stakers will run reveal to reveal transactions in B.

Again, not all stakers may be required to participate in
reveal, however, a minimum of tr is required (1≤ tr ≤ N).

We use tSeq |= (tx1, . . . , txℓ) to represent that if tSeq is
posted on-chain after order then the reveal execution would
correspond to (tx1, . . . , txℓ).

Requirements. To rule out trivial or impractical constructions,
our framework makes the following assumptions.

First, we require submit(tx, ·) to be binding to the
given transaction tx in that if (_;(_,out1, . . . ,outN)) =
submit(tx, ·), then (tx; .) ← reveal(t̄x; .). All practical
blockchain systems do achieve this.

Second, we require that a submitted transaction is eventu-
ally included in the blockchain, and revealed, if applicable.
This is the standard liveness property.

Third, we note that as expressed in the framework, the
function reveal() takes as input the output of the function
order() and the static private parameter in spri. Thus, we
assume the protocols and the predicates in the interim do not
affect the inputs to the function reveal, and thus the function
reveal can be run any time after order (even before staker si
adds the output block to the blockchain). This implies our
framework does not apply to protocols that use cryptographic
primitives that changes state of a transaction between order
and reveal such as by using time-locked encryption [33] or
witness encryption [23]. These primitives are not widely used
due to their practical limitations (e.g., it is hard to calibrate
the timeout in timelock encryption, and decrypting a timelock

encrypted ciphertext requires constant computation; there is
yet no practical witness encryption schemes [23]).

Examples. In Appendix A, we show that our framework
can capture OPE protocols based on DKG [11, 16], secret-
sharing [31], as well as fair ordering protocols [15, 29, 30].

5 Delineating Impossibility Conditions for Or-
der Policy Enforcement

Existing data independent order policy enforcement (OPE)
protocols order transactions under the assumption that a frac-
tion (less than one-third or one-half) of stakers are Byzantine
and the remaining stakers are honest. However, in practice, the
motivation to introduce additional transactions, delete existing
transactions, or to order transactions differently is to obtain
higher monetary gains for the stakers. Thus, a model where all
stakers are rational and maximizing their utility (in terms of
monetary gains) captures the adversarial setting better. In this
section, we analyze OPE protocols under such an adversary.
In particular, we show that under some circumstances, there
exists an attacking strategy where we can ensure that rational
stakers do not follow the OPE protocol. The key challenge
is in identifying the conditions under which this statement
holds, and showing the resulting attacking strategy. Recalling
the notations defined in Section 3, our result can be stated as
follows:

Theorem 1. Let Π be a protocol that follows the or-
dering policy enforcement framework (Fig. 1) to en-
force a data-independent policy P , and let S be the
set of rational stakers executing Π. Suppose there ex-
ists a sequence of transactions tSeq = { ¯tx1, . . . , ¯txℓ} ∈
P (md1, . . . ,mdℓ) with maximum utility for some input stream
((md1,data1), . . . ,(mdℓ,dataℓ)). Moreover, let us assume that
there exists a function extract() known to all stakers in S such
that tSeq′ |= extract(tx1, . . . , txℓ) ∈ P (md′1, . . . ,md′ℓ′) where
txi corresponds to the reveal of ¯txi, for another set of valid
md′1, . . . ,md′ℓ′; such that the utility from publishing tSeq′ is
more than the utility from publishing tSeq. Then, Π cannot
enforce P .

In other words, assuming MEV extraction is possible (i.e.,
extract exists), data-independent ordering policies cannot be
enforced by protocols following the ordering policy enforce-
ment framework defined in Fig. 1. The necessary extract
function, in practice, can be an algorithm that uses a com-
bination of techniques publicly known to stakers today and
outputs the sequence that produces the highest utility.

To prove the above impossibility result we present an at-
tacking protocol (Algorithm 1), and show that the stakers can
present a different reality tSeq′ where no proof of malice can
be obtained.

Suppose an adversarial set of stakers A (|A |≥max(ts, to, tr),
such that A is able to run submit, order, reveal) want to

6

Algorithm 1 Protocol for a set A of stakers extracting an ordering with a higher utility (protocol for si ∈ A)

1: statea
j ← if s j ∈ A then state j else ⊥ ▷ statea is a list of states state j for every state j ∈ A

2: inpa
j ← if s j ∈ A then inp j else ⊥ ▷ inpa is a list of inputs inp j for every state j ∈ A

3: spriaj ← if s j ∈ A then spri j else ⊥ ▷ spria is a list of private inputs spri j for every s j in A
4: procedure ATTACKK(statea,spria, inpa) ▷ Executed when ShouldRelease(si) is true
5: (tSeq = (t̄x1, . . . , t̄xℓ),state

a)← order(statea) ▷ Validators in A order ℓ transactions
6: for j ∈ {1, . . . , ℓ} do ▷ Reveal the block earlier than protocol intended
7: (tx j;statea)← reveal(t̄x j,state

a,spria)

8: B = (tx1, . . . , txℓ)
9: VerifySigs(B)

10: att_B← extract(B) ▷ Get MEV-extracting transactions
11: state′←⊥
12: for att_txn ∈ att_B do
13: (txid;(⊥,out1, . . . ,outN))← submit(att_txn, inpa) ▷ Replay extracted in the desired order
14: mdi,datai← process(txid,outi,state

′
i) ▷ Add to state the MEV-extracting transactions

15: state′i← state′i.add((txid,mdi,datai))

16: (tSeq′ = (¯tx′1, . . . , ¯tx′ℓ′);state′)← order(state′)
17: return tSeq′,state′i ▷ Publish the block containing the MEV-extracting transaction

attack, they will run Algorithm 1 using a protocol in a
Trusted Execution Environment (such as Intel SGX) when
ShouldRelease(si) is true (and skip the honest protocol). Such
an algorithm in TEE is described in Appendix B. Note that
we use an algorithm that provides deniability to the stakers.
Stakers in A (si ∈ A) will provide inputs to the TEE running
Algorithm 1, which will release any output bit-by-bit to ensure
all parties receive the output [12, Sec 5.4].

Note that all computations except the final outputs are hid-
den during the execution and not available to any party in
the clear. Given ℓ received outputs (each one submitted by
an user ui for a transaction txi), and given a list spria of in-
puts sprii of stakers si ∈ A , an orderered list of transactions
tSeq = (t̄x1, . . . , t̄xℓ) is generated (Line 5). Then, the reveal
function is computed by the stakers in A by passing as in-
puts the previously generated list of ordered transactions, the
list statea of states statei of stakers si ∈ A , and spria. Once
the transactions txi are available, transaction signatures are
verified in order to confirm that each member provided the
correct input to the protocol. Next, the extract function is
run (Line 10) in order to introduce new transactions att_txn
(Line 12), which are then submitted (Line 13) and added
in the local state (Line 15). The resulting block containing
MEV-extracting transactions is then published (Line 17).

At a high level, the above construction of an attacking
protocol works because i) tSeq′ is more profitable for the
stakers than tSeq, and thus they are incentivized to join the
coalition and ii) no party can prove that the coalition of stakers
was formed to violate the ordering policy, and thus cannot be
penalized. The following lemmas state this formally.

Lemma 1. Let A denote the set of stakers participating in
Algorithm 1. There exists no Π with |S |≥ 2, if any of the
following events leads to penalizing a staker:

(i) Any user can claim, without proof, that A deviated from
an honest execution of the protocol.

(ii) Each member a ∈ A ′′ ⊆ A is incentivized to self-
incriminate with proof, implicating themselves as part
of the attack set, and thus it self-incriminates.

Proof. For i) we can see that any user can grief the set of
attackers by reporting attacks without any proof. A staker will
not be incentivized to participate in such a scheme.

For ii) For this, we consider the following two scenarios:

World 1. In World 1, a sequence of user identities {u1, . . . ,uℓ}
that submit transactions such that tSeq = { ¯tx1, . . . , ¯txℓ} is a
valid output as per the policy P . A subset A ′′ of the stakers run
Algorithm 1 which outputs tSeq′ |= extract({tx1, . . . , txℓ}) =
{ ¯tx′1, . . . ,

¯tx′ℓ′}. Each transaction tx′i ∈ tSeq′ is submitted by
user u′i where tx′i is either a transaction from tSeq or a trans-
action involving new public keys belonging to a subset of the
parties in A ′′. At the end of the algorithm, each party si /∈ A ′′
has state statei, each party si ∈ A ′′ has state′i as output by
Algorithm 1. The protocol outputs tSeq′. In this world, the
protocol Π failed to enforce the policy P .

World 2. In World 2, a set of stakers A ′′ \ si generate trans-
actions tx1, . . . , txℓ. Now, the function extract is run on these
transactions, and tx′1, . . . , tx

′
ℓ′ are generated. Now, while sub-

mitting these transactions, A ′′\si include only si, thus forming
a set of A ′′, which receive the transaction, order and reveal
them in accordance to the protocol. In this world, Π success-
fully enforced the policy P .

We see that the stateof all parties in both worlds are iden-
tical, and the outputs are identical. Thus, ignoring the com-
munication between the adversarial parties in World 1 to run
Algorithm 1, the worlds are indistinguishable. Thus, the in-

7

centive awarded in both worlds must also be the same. By
the Lemma statement, in World 1, incriminating the attack set
is a rational action; consequently, this holds in World 2 too.
Since the self incrimination in World 1 leads to a loss of stake
for some staker (in this case si), it would also lead to loss of
stake in World 2. This is not a valid protocol design since
any loss of stake (or slashing) can only occur with a proof of
deviation from Π, whereas World 2 represents a successful
enforcement of the policy P .

With this lemma, the attacking stakers would not be in-
centivized to claim that they were involved in an attack and
whistle-blow others involved in the process.

Lemma 2. Assume that no user can distinguish whether
any two public keys belong to the same entity except it-
self. Suppose there exists a sequence of transactions tSeq =
{ ¯tx1, . . . , ¯txℓ} ∈ P (md1, . . . ,mdℓ) for some input stream
((md1,data1), . . . ,(mdℓ,dataℓ)). Moreover, let us assume that
there exists a function extract() known to all stakers such that
tSeq′ |= extract(tx1, . . . , txℓ) and tSeq′ ∈ P (md′1, . . . ,md′ℓ′)
for some input stream ((md′1,data′1), . . . ,(md′ℓ′ ,data′ℓ′)). Then,
no user u can prove whether the input stream was
((md′1,data′1), . . . ,(md′ℓ′ ,data′ℓ′)) or some set of stakers A ′′ ⊆
A ′ (with u /∈ A ′′) deviated from the protocol when the input
stream was ((md1,data1), . . . ,(mdℓ,dataℓ)).

Proof. We cast the two scenarios in the following two worlds.

World 1. Let us consider the same World 1 as in Lemma 1.

World 2. In World 2, user identities {u′1, . . . ,u′ℓ′} submit trans-
actions such that tSeq′ |= {tx′1, . . . , tx′ℓ′} is a valid output as
per P . For each transaction tx′i ∈ tSeq′ the following holds:
if tx′i ∈ tSeq, then the corresponding user u′i submits it to the
set of all stakers. Otherwise, some random user u′i has a key
indistinguishable from any stakers in A ′′ and it submits the
transactions only to A ′′ (The set A ′′ is enough to run submit
as defined in specifications of the choice of attacker set). The
protocol Π outputs tSeq′ as per the policy. Moreover, each
party si /∈ A ′′ has some state state′′i and si ∈ A ′′ has state
state′i.

Now let us compare the two worlds:
• Each staker si ∈A ′′ has the same state state′i in both worlds.

Stakers si /∈ A ′′ may hold different states statei and state′′i
respectively. In particular, transactions that are in tSeq but
not in tSeq′, are not a part of state′′i .

• Each transaction tx′i /∈ tSeq are submitted to parties in A ′′
in World 2 but not in World 1.

• Messages are sent to and received from a TEE as a part of
executing Algorithm 1.
Other than the above differences, the two worlds are iden-

tical. To justify the first case, we observe that the same in-
formation mismatch would occur if when the user is submit-
ting the transaction only a few of them receive the transac-
tion (since the set of attackers |A ′′|≥max(ts, to, tr), and thus

a transaction could be submitted to only them). Moreover,
observe that the other two differences involve communica-
tion between adversarial parties which cannot be tracked by
any user u /∈ A ′′. Thus, a user does not hold any additional
information that can act as an irrefutable proof that some
A ′′ ⊆ A ′ indeed uses Algorithm 1 when the input stream is
((md1,data1), . . . ,(mdℓ,dataℓ)), where A ′ were responsible
for receiving, inclusion and revealing the transaction (only a
subset of them may be required to attack).

With the above lemma, we know that any non-attacking
staker entity does not have enough data to generate any proof
of deviation from the protocol.

With both Lemmas 1 and 2, we know that in a valid protocol
design, no party is incentivized to prove that a set of stakers
deviated from the protocol (or does not have enough data to
generate any proof).

Lemma 3. If there exists an extract function known to stak-
ers such that tSeq′ |= extract(tx1, . . . txℓ), and the utility of
tSeq′ is greater than the utility of tSeq, then publishing tSeq
is strictly dominated by publishing tSeq′ obtained from Algo-
rithm 1.

Proof. A staker si, in order to release a transaction sequence,
would choose the one that maximizes its utility. Since from
lemmas 1 and 2 we have that no proof would be generated by
any party, no negative incentive design can be incorporated
that punishes the set of stakers A for following Algorithm 1.
Since no staker would want to “double propose” a block, this
tSeq′ which has a higher utility than tSeq would be published.
Thus, releasing the sequence of transactions tSeq is strictly
dominated by releasing tSeq′.

Proof of Theorem 1. From Lemma 3, we know that the staker
would not publish tSeq over tSeq′, and thus the staker would
not enforce policy P while following protocol Π.

6 OPE by Withholding Information

In the impossibility result in the previous section, we assumed
that given a sequence of transactions tSeq, the parties have
access to an extract() function that provides a higher utility.
For existing systems such as Ethereum, such MEV extraction
strategies are known for sequences of transactions such as
sandwich attacks [39], frontrunning [21,32], arbitrage [21] etc.
To make them work in the attack in Algorithm 1 (where tSeq
is available but not in the clear), we can create an extract()
circuit that attempts all known attack strategies and applies
them to tSeq, and picks the best among them to produce a
new sequence tSeq′.

Importantly, for such an attack to work, indeed, the
extract() function needs to have access to all the information
about the transaction (e.g., having access to signed transac-
tions that cannot change). What happens if some informa-
tion could be withheld from the stakers? To understand this

8

question, let us consider the following example. An ideal
strategy to sandwich an AMM transaction tx:= “Buy y tokens
of A for x tokens of B with a slippage of s” is to produce a
sequence (txattack

BUY , tx, txattack
SELL) so that the first attacking trans-

action txattack
BUY reduces the supply of token A for tx making it

pay a higher price, and txattack
SELL extracts the sandwiching profit.

However, if the attackers do not know if tx was a buy or a sell
transaction, and indeed if it was reversed, i.e., it was selling
token A for B, then using the same attack can backfire and
can result in losses for the attackers.

This idea leads to two natural questions. First, can we de-
viate from the framework to design a scheme that withholds
some information from attacking stakers? Second, can we
disincentivize attacks when the information is withheld? To
answer the first question, observe that we can rely on users
or TEEs held by stakers to withhold some information (e.g.,
whether it is a BUY or a SELL transaction); this information
is only revealed during the reveal phase. We discuss how to
disincentivize attacks when this is possible in Section 6.1.
However, such a solution either requires the user to be online
or the need for additional assumptions such as TEEs in the
protocol. Instead, in Section 6.2, we devise a strategy with
rationally binding commitments by creating an information
asymmetry between a specific staker F (a flipper) and other
stakers. In particular, the transaction can be modified after
reveal has been invoked and F is responsible to complete the
transaction. The asymmetry of information allows a rational
F to improve its own utility at the expense of other stakers
if the stakers choose to sandwich it. Consequently, this disin-
centivizes the other stakers to attack in the first place. We call
this rationally binding since the correctness of the transaction
relies on F being rational, which is a reasonable assumption.
In this world, the client needs only to monitor the chain and
hold F accountable in case it observes F does not complete
the transaction correctly.

6.1 OPE when Users Withhold Information

In the scenario where users are allowed to withhold some
information, the protocol design can be pretty simple. The
user can simply send a commitment corresponding to the
transaction, and once the commitment has been committed on
the chain, the user can open the commitment. If the execution
order depends on the order in which the commitments are
committed, then no other party has access to the transaction
content until after it is ordered. In fact, this solution is similar
to existing solutions [11, 31], except that we rely on the user
to reveal the content instead of some “committee of stakers”.
Consequently, the impossibility for OPE from the previous
section does not apply.

However, this construction has a major drawback. This
requires users to participate in the protocol execution all the
time so that they can release information at appropriate times
to ensure blockchain execution can happen at all times. The

resulting system is not fault-tolerant since users may not be
reliable.

Escrowing information with TEEs. To address the above
drawback, we propose a simple OPE protocl where users can
escrow transaction content to a trusted party realized with
Trusted Execution Environments (TEEs). TEEs can protect
the control flow and confidentiality of user programs with
hardware mechanisms. Intel SGX [8], AMD SEV [1], and
Nvidia H100 [3] are some examples of TEEs that can be used
to realize our protocol.

Our protocol requires stakers to be equipped with TEEs.
The TEE program guarantees that the opening is revealed
only if the commitment has been included and ordered, en-
suring content-oblivious ordering. Specifically, the TEE pro-
gram has two functions: first, when initialized for the first
time, it generates a pair of keys, and returns the public key
with an attestation [8], while keeping the secret key hidden.
We use (ski,pki) to denote the keys generated by staker i’s
TEE; second, the TEE program decrypts secret shares of user
transactions upon seeing a proof that the commitment of the
transaction has been included in the blockchain.

Figure 10 specifies the protocol following the framework
defined in Figure 1. Now we describe the protocol. To sub-
mit a transaction tx, a user first use computes a (t,N) secret-
sharing of tx, denoted T S = (txss1, . . . , txssn), where tr is the
recover threshold and N is the number of stakers. To protect
the integrity of T S, she builds a Merkle tree over T S (i.e.,
with elements in T S as leaves), and computes the Merkle root
rT S. Then, for each staker si, she sends the encrypted opening
OP=(rT S,πmembership(rT S, txssi),Enc(pki, txssi)) to staker si.
πmembership(rT S, txssi) is a standard membership proof that txi
is i-th leaf in the Merkle tree over T S. Note that the secret
share is encrypted under TEE’s public key, thus kept secret
from stakers. Finally, she sends rT S to the stakers for inclusion
and ordering. Once rT S is included in the blockchain, staker
si sends OP and proof of publication [18] of rT S to her TEE
— e.g., for PoS protocols, a proof of publication can be a set
of signatures on a block containing rT S; as described above,
the TEE program verifies the proof of publication, and then
decrypts OP and returns txssi. Once at least tr stakers get
results from their TEEs, they reconstruct and reveal tx.

We omit aspects that are not different from other content-
oblivious ordering protocols, such as charging transaction fees
and dealing with malformed transactions. The security of the
above protocol follows from the integrity and confidentiality
properties of TEEs, and the binding and hiding properties of
Merkle trees as a cryptographic commitment scheme.

6.2 OPE when Stakers Withhold Information

In this subsection, we describe a protocol design where some
information is withheld from the attackers. However, contrary
to the previous subsection where users withhold it, in this

9

design, it is withheld by a designated rational staker called
flipper F . This approach, as is, only works towards mitigat-
ing, and sometimes eliminating, sandwich attacks in constant
automated market makers (AMMs) like in Uniswap V2 [7].
The key intuition is that if a set of stakers choose to sandwich
a transaction, the protocol design allows the flipper to use
its knowledge to gain a profit at the expense of those stakers.
Thus, the binding property of the transaction relies on the
flipper being rational (and not behave arbitrarily).

We first provide some background on an AMM and how
sandwich attacks can be performed on transactions. Then, we
present our protocol design and analyze it.

6.2.1 Background

An Automated Market Maker (AMM) such as Uniswap [7],
Balancer [2], and Curve [5], uses automated algorithms to
facilitate decentralized exchange of assets. AMMs set prices
based on a mathematical formula based on the available liq-
uidity of a given asset. In particular, in a Constant Product
Market Maker, the product of the asset amounts in the liquid-
ity pool is kept constant. Thus, if we have an AMM with two
assets X and Y with quantities rX and rY respectively, then
rX ∗ rY = k holds for some fixed value of k at all times.

When a user wants to trade one asset (X) for another
(Y), they must deposit an amount of the first asset ∆rX and
receive an appropriate amount of the second asset ∆rY in
return. Each transaction to the AMM is charged an additional
contract fee, which we represent by f. Given the products
of the liquidity stays fixed, the model ensures that the
constraint (rX + (1− f)∆rX) ∗ (rY − ∆rY) = k holds after
the transaction is executed. There exist two common swap
functions that can achieve this: SwapTokensForExactTokens
and SwapExactTokensForTokens. We repre-
sent SwapTokensForExactTokens with BUY and
SwapExactTokensForTokens with SELL.

In the BUY, ∆rY is constant, and a corresponding variable
∆rX is found by holding the constraint equation as ∆rX =

∆rY rX
(rY−∆rY)(1−f)

. In the SELL, ∆rX is fixed, and a corresponding

∆rY is the variable found as ∆rY = (1−f)rY ∆rX
rX+(1−f)∆rX

.

Given a current state of the system containing rX and rY
tokens, a user can estimate ∆rY received in exchange for de-
positing ∆rX or estimate ∆rX to deposit in exchange for re-
ceiving ∆rX . However, if the state of the system changes due
to some other transactions getting executed and affecting the
liquidity pool, receiving ∆rY for depositing ∆rX is not guaran-
teed. Thus, the system allows the user to specify a parameter
expressed as a fraction called slippage s so that the number
of tokens received by the user is not exact, e.g., ≥ (1− s)∆rY .
In other words, the user’s transaction is specified as “Deposit
(1− f)∆rX of X in exchange for ≥ (1− s)∆rY of Y ”.

2 4 6 8 10
change in liquidity of token X (100∆rX/rX)

−0.2

0.0

0.2

p
ro
fi
t
in

to
ke
n
X

(∗
10
0/
r X

)

s: 0.005

s: 0.01

s: 0.03

attacker

user

Figure 2: Gains of the attackers and users in a sandwich attack
on a vanilla AMM.

6.2.2 Sandwich Attack on Constant Product AMM

The goal of a sandwich attack is to exploit the slippage con-
straint introduced by a user by reducing the liquidity of token
Y that the user wants so that the user does not receive any
more than (1− s)∆rY when its transaction is executed. This
can be done by executing a transaction before the user’s trans-
action is executed (frontrunning). Once the user’s transaction
is executed, observe that the liquidity of Y has reduced further
while it is the other way around for X . Thus, the attack can
then run a reversed transaction, where the attacker sells the
Y earned from the frontrunning transaction, in exchange for
X . Such a transaction is called backrunning, and in an AMM,
the attacker obtains a higher amount of X compared to what
it had deposited in the frontrunning transaction.

We refer interested readers to Appendix E for mathematical
analysis of the frontrunning and backrunning transactions
involved. Based on the optimal sandwich attack input from
[25], we show the results graphically in Fig. 2.

6.2.3 OPE when Stakers Withhold Information

We now present a protocol that can either mitigate attacker
gains, or under some parameterizations, result in attacker
losses, when sandwiching is attempted. As we have seen,
in the frontrunning part of a sandwich attack, the attacker re-
duces the liquidity of the token (token Y in our example) that
the user is interested in. However, if the direction of the trade
can be withheld from the attacker, then the attacker essentially
has to guess one of the two directions. In situations where the
attacker guesses incorrectly, it instead increases the liquidity
of Y due to which the user can enjoy a much better trade and
obtain ∆r′Y > ∆rY tokens of ∆rY .

Our protocol is shown in Figure 3. It generally follows the
structure of the framework in Figure 1 except for a couple
of aspects that we will describe later. Our protocol uses a
designated staker F as a flipper.

10

User intends tx0 = BUY(Y,X ,∆rY ,∆rX ,s,md)
∼= tx1 = SELL(X ,Y,∆rX ,∆rY ,s,md)

On-Chain Contract :

var X ,Y,∆rX ,∆rY ,s

payable function AddMoneyT1(_∆rX ,_s):

require(msg.value == (1+_s)_∆rX

∆rX ,s = _∆rX ,_s

payable function AddMoneyT2(_∆rY):

require(msg.value == (1+ s)_∆rY

∆rY = _∆rY

function AnimaguSwap(X ,Y,md) :

txvis = BUY(X ,Y,∆rX ,∆rY ,s,md)

txF = NewPayment(u,F,b(∆rY − this.amtY+ s∆rY)

+(1−b)(this.amtY− (1+ s)∆rY)−∆rY))

btx = (txvis,txF)

return btx

Generate Transaction (All steps by User):

• b = RandomBit() // 0: Buy, 1: Sell

• (X ,Y,∆rX ,∆rY ,s) = parseParameters(txb)

• md.hash = v(= Random())||w(= Random())

• AddMoneyT1(∆rX ,s),AddMoneyT2(∆rY)

• AnimaguSwap(X ,Y,md)

Transaction submission:

• User to F: outF,⊥← EncpkF
(b,v,txid)

• F to user: On receive outF;outu← (b,v,txid)σ(pkF)

• User: On receive outu;Verify (b,v,txid)σ(pkF)

• User to (s1 . . . ,sN) : (txid;(⊥,ss1, . . . ,ssN)
. ← SS.share(btx,(pk1, . . . ,pkN))
▷ Where ssi represents the secret share for si

Transaction inclusion:

• On receiving ssi, statei = append(ssi,statei)

• On ShouldRelease(P = si),
si→ B = ProposeBlockFrom(statei)
▷ Any block proposal mechanism

Transaction revealing :

• On ShouldReveal(B),

B′← reveal
(

B,
{
{ssi}i∈[N],outF

})
• Add B′ to the blockchain.

Figure 3: AnimaguSwap specification.

Transaction generation. Let txBUY represent the transac-
tion the user intends represented in the BUY predicate and
let txSELL represent the same transaction in SELL pred-
icate. The transactions are equivalent if no other trans-

action changes the state of the contract. Mathematically,
txSELL = SELL(X ,Y,∆rX ,∆rMIN

Y ,md). We change the ac-
cepted notation slightly and represent it in terms of slip-
page, i.e., txSELL = SELL(X ,Y,∆rX ,∆rY ,s,md), where ∆rMIN

Y
can be calculated from ∆rY and s. Similarly, txBUY =
BUY(X ,Y,∆rX ,∆rY ,s,md). Notice that the exact tokens in
both cases remain ∆rX , in the former case, these are being
exchanged for Y and in the latter case they are being bought
in exchange for Y . We use the fact that even though the pa-
rameters to both functions are the same, they perform a very
different role of buying or selling.

The user first generates a random bit b. If b = 0, the gen-
erated transaction tx = txBUY = BUY(Y,X ,∆rY ,∆rX ,s,md).
Otherwise, tx = txSELL = SELL(X ,Y,∆rX ,∆rY ,s,md). This
is the transaction that the user intends to be executed.

Now, what the user submits to a committee of stakers is
not necessarily the same as what he intends to be executed.
If b = 0, then txb = tx, else txb = BUY(Y,X ,∆rX ,∆rY ,s,md).
Since this transaction is being shared with the committee of
stakers, the bit b needs to be submitted to a different staker
called the flipper F.

To incentivize the flipper to not reveal the flip bit (b), the
user creates another transaction txF which pays the flipper F
some amount of tokens if the other stakers attempt to sand-
wich the transaction but guess the polarity incorrectly. In
particular, in the example described earlier, if the user earns
∆r′Y > ∆rY , then it can pay the flipper ∆r′Y −∆rY . If the exam-
ple instead was a buy, and the attackers got the wrong direc-
tion of sandwich, and user paid ∆r′Y < ∆rY , then it can pay the
flipper additional ∆rY −∆r′Y . To represent it mathematically,
the user pays the flipper b(∆r′Y −∆rY)+ (1−b)(∆rY −∆r′Y).
Observe that obtaining ∆rY is what the user was expecting
in the first place; paying the remaining amount incentivizes
F. In scenarios where the polarity is guessed correctly, the
flipper does not gain or lose money.

Transaction submission. During the transaction submission
process, the user sends the bit b to the flipper. Importantly,
the user does not sign this message, ensuring that the flipper
cannot prove the polarity of the transaction to the other stak-
ers. The bit b would later be revealed by the flipper to the
blockchain by sending a signed message. What if the flipper
cheats and presents an incorrect value? To ensure this does
not happen, the flipper sends a signed message only to the
user stating that it would reveal bit b corresponding to this
transaction; if the flipper does otherwise, or does not reveal
any value, then it can be slashed by the user based on this
message. However, one might argue that the flipper can send
a similar signed message to the stakers, and the stakers can
slash the flipper. In order to safeguard against that, the user
sends a random value v in the unsigned message to the flipper.
When returning the signed message to the user committing
to b it also includes v in the commitment. In the transaction
metadata for btx, a hash of v||w is included. This ensures that

11

only the user, or a party with w can slash the flipper, and thus
the flipper is free to sign any message it wants without risk of
getting slashed.

Once both these steps succeed, the user secret-shares the
(potentially flipped) transaction with the remaining stakers.

Transaction inclusion and reveal. The transaction inclu-
sion process is straightforward. An accumulator value corre-
sponding to the transaction is added to the chain whenever
ShouldRelease predicate is true. Finally, the transaction con-
tent is revealed from the secret-shares when ShouldReveal is
true.4 In this step, F reveals the bit b too so that the correct
transaction is revealed.

In case the flipper reveals bit 1− b instead of b, then the
user uses the signed message (b, txid)σ(pkF)

to slash the flipper
(not shown in the figure).

Here are a few observations related to this protocol. First,
all known blockchains typically rely on accepting transactions
that are signed only by the end users. This is the first protocol,
to our knowledge, that includes a transaction where a portion
of it (the bit b) is signed by a party (the flipper) other than the
users. Second, a consequence of our approach is that, in the
presence of a Byzantine flipper, the polarity of the executed
transaction can be reversed. In practice, however, parties are
sensitive to their utility and thus, due to the existence of the
slashing mechanism, a rational flipper would always reveal the
correct bit. Thus, our protocol is only rationally binding – this
is the key aspect where we deviate from the requirement in the
framework in Fig. 1. Third, since we expect the user to slash
the flipper in case it deviates, the user cannot be ephemeral in
the pessimistic case. However, in comparison to the protocol
in the previous subsection, the blockchain execution does
not need the user input for the execution to proceed. The
user only needs to penalize the flipper within a reasonable
timeframe (e.g., a few days). Finally, while the flipper can
be any designated staker, a reasonable choice would be to
have the staker that is expected to reveal the content of the
transaction as the flipper. This ensures that the staker can
reveal without waiting for inputs from other stakers.

6.3 Simulation Results

As an attacker trying to sandwich AnimaguSwap, there exists
two non-randomized strategies, the first in which the attacker
guesses b= 0, and sandwiches the transaction as it receives; or
it guesses b= 1 in which case it would simulate that the flipper
would release the b as 1, and flips the transaction himself to
try and sandwich the resulting transaction. In order to present
the results for both these pure strategies, we simulate the
complete swaps on Uniswap v2 contract [7], and present the
output for the expected gains for the attacker and the flipper

4These predicates are abstract since their choice does not affect the design.
In practice, one can replace these with predicates used by Shutter DKG [16],
Ferveo [11], or Fino [31].

2 4 6 8 10
change in liquidity of token X (100∆rX/rX)

−0.1

0.0

0.1

p
ro
fi
t
in

to
ke
n
X

(∗
10
0/
r X

)

s: 0.005

s: 0.01

s: 0.03

attacker

flipper

user

Figure 4: Gains of the attackers, flipper and the user in a
sandwich attack when using AnimaguSwap (Figure 3).

2 4 6 8 10
change in liquidity of token X (100∆rX/rX)

−0.1

0.0

0.1

p
ro
fi
t
in

to
ke
n
X

(∗
10
0/
r X

)

s: 0.005

s: 0.01

s: 0.03

attacker

flipper

user

Figure 5: Gains of the attackers, flipper and the user in a
sandwich attack when attacker guesses that user flipped using
AnimaguSwap (Figure 3).

when the attacker decides to sandwich the transaction visible
(guess b = 0) across multiple values of s set by the user in
Fig. 4. Similarly, the simulation result for the case where
attacker guesses b = 1 is shown in Fig. 5. For a particular
randomly generated transaction between SUSHI and WETH
on uniswap v2 contract (values of liquidity available pulled on
June 3), the results are shown in Table 1. We also refer readers
interested in the analysis for AnimaguSwap in Appendix F

7 Impossibility with Binding Side Contracts

Our protocol with rationally binding commitments works be-
cause of the distrust between different sets of stakers — in
our case, the flipper and other stakers. In effect, the flipper
can lie to the other stakers about the bit b and reveal a differ-
ent (correct) value later. In return, the flipper would receive
a utility at the expense of other stakers. What if we have a

12

Victim’s Attacker’s Victim’s Victim’s Attacker’s Attacker’s
intent guess expected o/p actual o/p input output

BUY BUY Get 3.65 W Got 3.61 W 842.41 S 926.31 S
SELL BUY Give 4.08 W Gave 4.03 W 842.41 S 752.68 S
SELL SELL Give 4.08 W Gave 4.11 W 000.25 W 000.27 W
BUY SELL Get 3.65 W Got 3.68 W 000.25 W 000.22 W

Table 1: An example swap where the Attacker sees: SELL 8592 SUSHI for WETH, when initial reserve of SUSHI is 164467.64,
WETH is 73.83, with a 1% slippage. Detailed working of the example is shown in Appendix G.

mechanism to hold parties accountable for their inputs to the
attacking Algorithm 1? That is, if they present different in-
puts to the attacking algorithm and the blockchain protocol,
they could be slashed by a large amount. Indeed, in such a
scenario, all parties are incentivized to present an input con-
sistent in both the attack and the eventual blockchain protocol.
In this section, we show that such an accountability mecha-
nism can be easily implemented by creating a binding side
contract relying on a TEE. In a nutshell, each party deposits
an amount of money (the slashing amount) when submitting
its transaction input in an augmented version of Algorithm 1
where a TEE containing a contract records a mapping of the
party with its input. When the transaction is committed and
revealed on the chain, the contract checks whether the parties’
submitted input is consistent with the blockchain. If yes, the
party obtains a refund; otherwise, it forfeits its deposit. Thus,
the contract incentivizes the parties to attack successfully by
ensuring that the amount of deposited money is larger than
the gain obtained from deviating from the attacking protocol.
We explain this intuition in detail, present the contract, and
prove an impossibility for obtaining OPE in Appendix D.

8 Discussion and Future Work

On using primitives such as witness encryption, time lock
encryption, or traceable secret sharing to circumvent The-
orem 1. Our setup of Framework 1 assumes that the output
of the order function is directly used as an input to the reveal
function. This implies that a transaction can be revealed at
any time after it is ordered so far as sufficiently many stak-
ers participate. On the other hand, the use of cryptographic
primitives such as Witness Encryption [23] and Time Lock En-
cryption [33] tie the reveal of transactions to satisfying some
condition (e.g., the passage of time); thus, these primitives
can be used to circumvent the impossibility result. The use of
TEEs in Section 6.1 can be considered as an implementation
of witness encryption assuming trusted hardware.

The notion of traceable secret sharing introduced by Goyal
et al. [24] allows users to produce secret shares such that once
the data is reconstructed, parties releasing their secret shares
can be identified. However, our attack strategy in Algorithm 1
circumvents this concern by producing only the generated

transactions as the output.

On sending deniable messages. In the AnimaguSwap intro-
duced in Section 6.2, users are required to share a bit b with
the flipper indicating whether the polarity of the transaction
has been reversed. It is crucial to ensure the deniability of this
message for users, i.e., the message sent to the flipper could
also have been generated by the flipper itself. Recent stud-
ies [37] demonstrate that deniability may be compromised
when Secure Guard Extensions (SGX) are present or if the
flipper’s keys are managed by a committee through a dis-
tributed key system. Consequently, it is necessary for users to
verify that they are interacting with a single, unrestricted user
as the flipper. This verification can be achieved by employing
a Complete Knowledge Proof [27], which substantiates that a
single user possesses unrestricted access to the information
provided, thereby reinstating deniability.

On lack of knowledge of real-world entities. Our impos-
sibility results crucially rely on the inability of the protocol
participants to distinguish whether two public keys belong
to the same (group of) real-world entities or not. This is rea-
sonable, especially in a permissionless setting. However, in
practice, if we are able to perform an analysis of the flow of
transactions across different keys and their uses, and derive
intelligence based on these transactions (e.g., [17]), we can
identify the existence of such attacks with the analysis acting
as a “proof”.

On repeated games. In the AnimaguSwap, we explore a
single-shot game where it is advantageous for one staker, the
flipper, to betray other stakers. However, if the identity of
the flipper is known and the game is repeated with the same
flipper multiple times, it may perhaps be dominant for all
parties to be colluding [26]. On the other hand, if the flipper’s
identity across different instances can be made unlinkable
or anonymized, then betraying may again be dominant. We
leave the analysis of these scenarios as future work.

Acknowledgements

This work is in part supported by an Ethereum Academic
Grant.

13

References

[1] AMD secure encrypted virtualization (SEV). https:
//www.amd.com/en/developer/sev.html.

[2] Balancer. https://docs.balancer.fi/reference/
math/stable-math.html.

[3] H100 tensor core GPU | NVIDIA. https://www.
nvidia.com/en-us/data-center/h100/.

[4] Proof-of-stake (POS). https://ethereum.org/en/
developers/docs/consensus-mechanisms/pos/.

[5] Understanding curve v1 curve finance.
https://resources.curve.fi/base-features/
understanding-curve.

[6] Mev-Boost GitHub, 2022. https://github.com/
flashbots/mev-boost.

[7] Hayden Adams, Noah Zinsmeister, and Dan Robinson.
Uniswap v2 core. 2020.

[8] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent
Scarlata. Innovative technology for CPU based attesta-
tion and sealing. In Proceedings of the 2nd international
workshop on hardware and architectural support for se-
curity and privacy, volume 13. ACM New York, NY,
USA, 2013. Issue: 7.

[9] atom_crypto. The MEV Game of the Crypto Economy:
Osmosis’ Threshold Encryption vs. SGX of Flash-
bot?, 2022. https://mirror.xyz/infinet.eth/
SFjR1H1-RMnKoIoPjqkxpauVPrLYGqLHQP1dY9FHvx4.

[10] Kushal Babel, Yan Ji, Ari Juels, and Mahimna
Kelkar. PROF: Fair transaction-ordering in a profit-
seeking world. https://initc3org.medium.com/
prof-fair-transaction-ordering-in-a-profit-seeking-world-b6dadd71f086.

[11] Joseph Bebel and Dev Ojha. Ferveo: Threshold decryp-
tion for mempool privacy in BFT networks. Cryptology
ePrint Archive, 2022.

[12] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach,
Philip Daian, and Ari Juels. Tesseract: Real-time cryp-
tocurrency exchange using trusted hardware. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 1521–1538, 2019.

[13] Bitcoin Wiki. Payment channels, 2021. https://en.
bitcoin.it/wiki/Payment_channels.

[14] Vitalik Buterin. State of research: Increasing censor-
ship resistance of transactions under proposer/builder
separation (PBS). https://notes.ethereum.org/
@vbuterin/pbs_censorship_resistance.

[15] Christian Cachin, Jovana Mićić, Nathalie Steinhauer,
and Luca Zanolini. Quick order fairness. In Financial
Cryptography and Data Security: 26th International
Conference, FC 2022, Grenada, May 2–6, 2022, Revised
Selected Papers, pages 316–333. Springer, 2022.

[16] Cducrest. Shutterized beacon chain, Mar 2022. https:
//ethresear.ch/t/shutterized-beacon-chain/
12249.

[17] Chainalysis. Chainalysis. https://www.
chainalysis.com/.

[18] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He,
Nicholas Hynes, Noah Johnson, Ari Juels, Andrew
Miller, and Dawn Song. Ekiden: A Platform for
Confidentiality-Preserving, Trustworthy, and Perfor-
mant Smart Contracts. In 2019 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pages 185–
200, June 2019.

[19] Joel E. Cohen. Cooperation and self-interest: Pareto-
inefficiency of nash equilibria in finite random games.
Proceedings of the National Academy of Sciences,
95(17):9724–9731, 1998. https://www.pnas.org/
doi/abs/10.1073/pnas.95.17.9724.

[20] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li,
Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and
Ari Juels. Flash boys 2.0: Frontrunning in decentral-
ized exchanges, miner extractable value, and consensus
instability. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 910–927. IEEE, 2020.

[21] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li,
Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and
Ari Juels. Flash boys 2.0: Frontrunning in decentral-
ized exchanges, miner extractable value, and consensus
instability. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 910–927. IEEE, 2020.

[22] FlashBots. Flashbots resource document. https://
docs.flashbots.net/, 2020.

[23] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Wa-
ters. Witness encryption and its applications. In Pro-
ceedings of the forty-fifth annual ACM symposium on
Theory of computing, pages 467–476, 2013.

[24] Vipul Goyal, Yifan Song, and Akshayaram Srinivasan.
Traceable secret sharing and applications. In Advances
in Cryptology–CRYPTO 2021: 41st Annual Interna-
tional Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16–20, 2021, Proceedings, Part III 41,
pages 718–747. Springer, 2021.

14

https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html
https://docs.balancer.fi/reference/math/stable-math.html
https://docs.balancer.fi/reference/math/stable-math.html
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://resources.curve.fi/base-features/understanding-curve
https://resources.curve.fi/base-features/understanding-curve
https://github.com/flashbots/mev-boost
https://github.com/flashbots/mev-boost
https://mirror.xyz/infinet.eth/SFjR1H1-RMnKoIoPjqkxpauVPrLYGqLHQP1dY9FHvx4
https://mirror.xyz/infinet.eth/SFjR1H1-RMnKoIoPjqkxpauVPrLYGqLHQP1dY9FHvx4
https://initc3org.medium.com/prof-fair-transaction-ordering-in-a-profit-seeking-world-b6dadd71f086
https://initc3org.medium.com/prof-fair-transaction-ordering-in-a-profit-seeking-world-b6dadd71f086
https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Payment_channels
https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance
https://notes.ethereum.org/@vbuterin/pbs_censorship_resistance
https://ethresear.ch/t/shutterized-beacon-chain/12249
https://ethresear.ch/t/shutterized-beacon-chain/12249
https://ethresear.ch/t/shutterized-beacon-chain/12249
https://www.chainalysis.com/
https://www.chainalysis.com/
https://www.pnas.org/doi/abs/10.1073/pnas.95.17.9724
https://www.pnas.org/doi/abs/10.1073/pnas.95.17.9724
https://docs.flashbots.net/
https://docs.flashbots.net/

[25] Lioba Heimbach and Roger Wattenhofer. Eliminating
sandwich attacks with the help of game theory. In Pro-
ceedings of the 2022 ACM on Asia Conference on Com-
puter and Communications Security, pages 153–167,
2022.

[26] Lorens A Imhof, Drew Fudenberg, and Martin A
Nowak. Evolutionary cycles of cooperation and defec-
tion. Proceedings of the National Academy of Sciences,
102(31):10797–10800, 2005.

[27] Mahimna Kelkar, Kushal Babel, Philip Daian, James
Austgen, Vitalik Buterin, and Ari Juels. Complete
knowledge: Preventing encumbrance of cryptographic
secrets. Cryptology ePrint Archive, 2023.

[28] Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan.
Order-fair consensus in the permissionless setting. IACR
Cryptol. ePrint Arch., 2021:139, 2021.

[29] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels,
and Sreeram Kannan. Themis: Fast, strong order-
fairness in byzantine consensus. Cryptology ePrint
Archive, 2021.

[30] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari
Juels. Order-fairness for byzantine consensus. In Annual
International Cryptology Conference, pages 451–480.
Springer, 2020.

[31] Dahlia Malkhi and Pawel Szalachowski. Maximal ex-
tractable value (mev) protection on a dag. arXiv preprint
arXiv:2208.00940, 2022.

[32] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying
blockchain extractable value: How dark is the forest?
arXiv preprint arXiv:2101.05511, 2021.

[33] Ronald L Rivest, Adi Shamir, and David A Wagner.
Time-lock puzzles and timed-release crypto. 1996.

[34] Adi Shamir. How to share a secret. Communications of
the ACM, 22(11):612–613, 1979.

[35] Sikka inc. Sikka Projects, 2022. https://sikka.
tech/projects/.

[36] Nik Unger and Ian Goldberg. Deniable key exchanges
for secure messaging. In Proceedings of the 22nd acm
sigsac conference on computer and communications
security, pages 1211–1223, 2015.

[37] Ricardo Vieitez Parra et al. The impact of attestation on
deniable communications. 2018.

[38] Matheus Venturyne Xavier Ferreira and David C. Parkes.
Credible Decentralized Exchange Design via Verifiable
Sequencing Rules. In Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, STOC 2023,

pages 723–736, New York, NY, USA, June 2023. Asso-
ciation for Computing Machinery.

[39] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V
Le, and Arthur Gervais. High-frequency trading on
decentralized on-chain exchanges. In 2021 IEEE Sym-
posium on Security and Privacy (SP), pages 428–445.
IEEE, 2021.

A Capturing Existing Systems in the Frame-
work

In this subsection, we show that our framework can capture
ordering policy enforcement protocols based on DKG [11,16],
secret-sharing [31], as well as fair ordering protocols [15, 29,
30]. We use (SS.share,SS.rec) to denote the threshold secret
sharing and reconstruction algorithms [34], and (Enc,Dec) to
denote encryption and decryption.

We use (SS.share,SS.rec) to denote the threshold secret
sharing and reconstruction algorithms [34], and (Enc,Dec) to
denote encryption and decryption.

Protocols without an ordering policy. As a degenerate case,
our framework can capture protocols that do not enforce a
particular ordering policy, such as PoS Ethereum [4] (without
Proposer Builder Separation [14]). Figure 6 shows the speci-
fication. submit degenerates to an identity function. process
simply adds tx to state. Ethereum leaves order unspecified,
as long as the output of order is a subset of state. Finally,
ShouldReveal(_) is always false since transactions have been
revealed in the inclusion phase.

Initialization:

• Sample key pair parami = (ski,pki) and publish pki.

Transaction submission:

• submit(tx,_)→ (H(tx);(⊥,tx, · · · ,tx)) where _ de-
notes ignored parameters, i.e., stakers do not provide
input and receive tx.

• process(txid,tx,statei)→ statei∪{(txid,tx)}.
Transaction inclusion:

• Whenever ShouldRelease(si), staker si chooses B =
(tx1, . . . ,txℓ) from statei, and removes B from statei.
si adds B to the blockchain.

Transaction revealing:

• ShouldReveal→⊥.

Figure 6: The specification of the transaction ordering process
in PoS Ethereum using our framework.

Threshold encryption based content-oblivious ordering.
Content-oblivious ordering can be enforced by threshold en-
crypting user transactions, as in, e.g., Ferveo [11] and Shutter-

15

https://sikka.tech/projects/
https://sikka.tech/projects/

ized Beacon Chain [16]. Figure 7 presents their specification
in our framework.

At a high level, in such systems, stakers run a Distributed
Key Generation (DKG) protocol to generate a key pair (sk,pk)
with the secret key shared, i.e., each staker gets ski such that
sk can be recovered from sufficiently many ski. After initial-
ization, submit threshold-encrypts user transaction under pk
and each staker receives the encrypted transaction. process
adds the ciphertext to state. Encrypted transactions are first
included in the blockchain (ordered arbitrarily in order), then
the plaintext will be revealed after the block containing ci-
phertext is confirmed. Therefore, ShouldReveal(B) is true
after x confirmations where x is a protocol parameter. Here
we make a simplification assuming that all transactions in
a block are revealed simultaneously, whereas some systems
(e.g., Shutterized Beacon Chain) allow each transaction to
have a different reveal time. Then, reveal is just threshold
decryption by stakers.

Initialization:

• Stakers run DKG to generate parami =(ski,pk) where
{ski} are secret shares of the secret key corresponding
to pk. pk is published.

Transaction submission:

• submit(tx,_) → (H(t̄x);(⊥, t̄x, · · · , t̄x) where t̄x =
Enc(pk,tx), i.e., stakers do not provide input and re-
ceive encrypted tx.

• process(txid, t̄x,statei)→ statei∪{(txid, t̄x)}.
Transaction inclusion: Whenever ShouldRelease(si) is true,

order does the following

• staker si chooses B = {(txidi, t̄xi)}ℓi=1 from statei,

• si adds (t̄x1, . . . , t̄xℓ) to the blockchain,

• each staker si updates statei = statei \B.

Transaction revealing:

• reveal(t̄x;(_,sk1), · · · ,(_,skN)) is threshold decryp-
tion on t̄x using {ski}i.

Figure 7: The specification of threshold-encryption-based
content-oblivious ordering protocols using our framework.

Secret-sharing based content-oblivious ordering, e.g.,
Fino [31]. In these schemes, transactions are encrypted with a
user-chosen key, and the key is then secret-shared with a sub-
set of stakers (forming a so-called committee). Thus, submit
secret-shares the key and sends the encrypted transaction to
stakers. The rest of the steps are similar to the above threshold-
encryption-based protocols. Figure 8 specifies these protocols
in our framework.

Another approach is to secret-share the transaction with
the stakers and obtain an accumulator value corresponding to
the transaction during the submit protocol. The transaction is

only revealed in the reveal phase once the accumulator value
has been included on the chain and committed.

Initialization:

• Sample key pair parami = (ski,pki) and publish pki.

Transaction submission:

• submit((tx,k),(pk1, . . . ,pkN) evaluates
to (H(ct);((ct,ck1), . . . ,(ct,ckN)) where
ct= Enc(k,tx) and cki = Enc(pki,SS.share(i,k)).

• For each staker si, process(txid,(ct,cki),statei) →
statei ∪ {(ct,cki, false)}. Here false denotes ct has
not been committed yet.

Transaction inclusion:

• Whenever ShouldRelease(si), staker si chooses a set
of ℓ (a system parameter) uncommitted transactions
T = ((ct1,_, false), . . . ,(ctℓ,_, false)) ⊂ statei, and
adds B = (ct1, . . . ,ctℓ) to the blockchain.

• For each ct ∈ T , replace (ct,ck, false) ∈ statei with
(ct,ck,true).

Transaction revealing: The protocol for evaluating
reveal(ct;(state1,sk1), . . . ,(stateN ,skN)) is:

• Each staker si looks up (ct,cki,true) from statei. si
computes ki =Dec(ski,cki) and sends ki to other stak-
ers.

• All stakers compute k= SS.rec({ki}i), remove all en-
tries with ct from statei, and return Dec(k,ct).

Figure 8: The specification of secret-sharing-based content-
oblivious ordering protocols using our framework.

Receive order fairness schemes, e.g., Themis, Aequitas,
Quick Order Fairness [15, 29, 30]. Unlike the aforemen-
tioned schemes, fair ordering protocols do not attempt to hide
transaction content. Instead, the guarantees are based on the
time order in which a transaction is received by different
stakers in the system. Thus, in our framework, during the
submit() protocol, the user simply sends the transaction to
all stakers in secure channels. The stakers then apply the
process() function to annotate the transactions with the re-
ception timestamp. The order protocol runs the fair ordering
protocols, making use of the timestamps. (Note that some fair
ordering protocols (e.g., Themis [29] and Aequitas [30]) only
need relative ordering, which is simplified by timestamps.)
Finally, ShouldReveal(_) is always false since transactions
have been revealed in the inclusion step. Figure 9 summarizes
these protocols in our framework.

B Details Related to Algorithm 1

In this section, we describe a way that SGX could be used to
make Algorithm 1 deniable. The interaction with the SGX is
as follows:

16

Initialization:

• Sample key pair parami = (ski,pki) and publish pki.

Transaction submission:

• submit(tx,(pk1, . . . ,pkN)) → (H(tx);(t̄xi, . . . , t̄xN))
where t̄xi = Enc(pki,tx).

• process(t̄x,state,ski) → state ∪ {(Dec(ski, t̄x),τ}
where τ is the current time.

Transaction inclusion:

• Whenever ShouldRelease(si), staker si starts the order
fairness protocol order with other stakers. Each staker
si inputs statei. Let B = (tx1, . . . ,txℓ).

• si adds B to the blockchain and sets statei = statei \B.

Transaction revealing: ShouldReveal→⊥.

Figure 9: The mapping of fair ordering protocols to our frame-
work.

• Each staker initializes its SGX with the input to the MPC
fed in. SGX saves this input and generates a random private
key inside the SGX, and gets it remote attested, along with
the code to run in Algorithm 1.

• All the keys are exchanged with each other, without any
staker being able to link any staker key with an SGX key
except its own. In addition to exchanging the key, everyone
knows that each staker’s respective secret shares and private
inputs are committed.

• Next each SGX sends the other SGX the secret share en-
crypted and signed.

• Each SGX opens the received secret share from other stak-
ers.

• Algorithm 1 is run with all inputs from each staker.

• The final return statement is revealed bit by bit, with each
bit revealed is sent to other SGX, which confirm that the
particular bit has been released, and the process is repeated
until complete message is revealed.

The above protocol ensures deniability: We cannot link an
SGX key with the staker key unless the staker itself links its
own SGX key. The output from the SGX is released bit by
bit, but unsigned. This ensures that no staker can claim an
output was released from an SGX, thus giving no proof for
the execution of the MPC Algorithm 1, since each of the SGX
could be controlled by a single party simulating the MPC. The
security for the MPC is ensured since no party can change
inputs after the VerifySigs is executed, and can only abort at
any time. At the time of aborting the process, the staker who
chooses to abort has at most 1 extra bit of information than
other stakers, which means the expected time to guess the
value is negligibly different.

C Example Attack on DKG-based Threshold
Encryption

Algorithm 2

D Impossibility in the Presence of Binding Side
Contracts

The intuitive reason that a protocol similar to the one pre-
sented in Section 6.2 works is the lack of trust between dif-
ferent stakers. A protocol can be designed in such a way that
a staker can try to cheat another staker by lying about the
information it has. Since we remove the binding property of
the transaction commit, the information for reveal is no longer
cryptographically verifiable, no function in the attacker’s pro-
tocol can ascertain (earlier achieved by checking the signature
of transaction) whether or not the provided information is ac-
curate. If lying can be made the rational action through a
carefully constructed incentive design, then a protocol could
be constructed where ordering is enforced rationally.

This creates a game with Pareto efficient outcomes in an
inefficient Nash equilibrium [19]. However, as is well known
in game theory, such games only work in absence of binding
side contracts. By committing to the strategy of being honest,
the staker claims that he would lose a huge amount in case
a deviation from the strategy is observed. We show an exis-
tence of such a contract which relies on an Trusted Execution
Environment (TEE). Thus, due to the rationality of the staker
si, every other staker would get a guarantee that releasing
wrong information in Algorithm 1 would not be rational for
si. Note that each staker is confident of their own information
since non-transferable proofs were provided to them by the
user. Therefore, in this section we argue that even if we allow
the user to create such distrust between parties by allowing
multiple output blocks corresponding to the same transaction
sequence output from order, it is still impossible to construct
an OPE protocol in the presence of binding side contracts.
Note that the user still only wants one of the multiple allowed
output blocks and can penalize the staker that deviates from
the release of the block.

To approach this impossibility, we augment the previously
discussed attacker’s protocol by adding rational binding prop-
erty to each stakers information. In order to achieve this, we
propose a binding side contract built with the help of a smart
contract.

In the contract, staker si commits that private information
mpc_inpi = (statei,sprii) (which will be used in Algorithm 1)
is correct. This lets other stakers trust mpc_inpi, otherwise
the confiscation function could be called by some other staker
and make si lose stake (or utility). If si discloses the correct
information, then it receives a refund of any deposited amount.

However, if we naïvely compose the online contract de-
scribed above with Algorithm 1, then Lemma 2 would no

17

Algorithm 2 Example attack on DKG-based threshold encryption schemes - (protocol for si ∈ A)

1: (DKG,ENC,DEC) is a Distributed Key Encryption Scheme
2: ski,pk← DKG() ▷ ski = sprii secret share of si ∈ A
3: statea

j ← if s j ∈ A then state j else ⊥ ▷ statea is a list of states state j for every state j ∈ A
4: inpa

j ← if s j ∈ A then inp j else ⊥ ▷ inpa is a list of inputs inp j for every state j ∈ A
5: spriaj ← if s j ∈ A then spri j else ⊥ ▷ spria is a list of secret shares sk j for every s j in A
6: procedure ATTACKK(statea, spria) ▷ Executed when ShouldRelease(si) is true
7: ((t̄x1, . . . , t̄xℓ),state

a)← order(statea) ▷ order creates a block in descending order of fee in state
8: for j ∈ {1, . . . , ℓ} do ▷ Reveal the block earlier than protocol intended
9: (tx j;statea)← DEC(t̄x j;{statea,spria}) ▷ reveal := DEC - Decrypt given all the secret shares sk j of s j ∈ A

10: Generate a block consisting of ℓ revealed transactions
11: B = (tx1, . . . , txℓ)
12: VerifySigs(B)
13: att_B← extract(B) ▷ Get MEV-extracting transactions
14: state′←⊥
15: for att_txn ∈ att_B do
16: (txid;(⊥,out1, . . . ,outN))← ENC(att_txn, inpa) ▷ submit := ENC - Encrypt extracted in the desired order
17: mdi,datai← process(txid,outi,state

′
i) ▷ Add to state the MEV-extracting transactions

18: state′i← state′i.add((txid,mdi,datai))

19: (tSeq′ = (¯tx′1, . . . , ¯tx′ℓ′);state′)← order(state′)
20: return(tSeq′,state′) ▷ Publish the block containing the MEV-extracting transaction

Initialization: Each staker si load the program specified below to an TEE. Then, si invokes Init, gets pki and publishes pki along with the
attestation. Users verify pki against the attestation before using the protocol.

Transaction submission:
submit((tx,k),(pk1, . . . ,pkN)

∀i ∈ [1,N], compute txssi = SS.share(i,tx). Let T S = (txss1, . . . ,txssN).

Build a Merkle tree over T S and denote the root as rT S (which will also be the txid). Let πi be the membership proof of txssi.

Send OP = (rT S,πi,Enc(pki,txssi)) to each staker si.

process(txid,OP,statei)

Parse OP as (r,π,c). Add (r,π,c, false) to statei. Here false denotes the transaction has not been committed yet.

Transaction inclusion: Whenever ShouldRelease(si), staker si chooses T = ((r1,_,_, false), . . . ,(rℓ,_,_, false)) ⊂ statei, and adds B =
(r1, . . . ,rℓ) to the blockchain. Once B is included in the blockchain, for each r ∈ B, all stakers replace (r,π,c, false) in statei with
(r,π,c,true). Here true denotes the transaction with txid= r has been committed.

Transaction revealing: Once the Merkle root r has been committed to the blockchain, each staker si creates a proof of publication of
r, denoted as πpublication. Then, si retrieves the corresponding membership proof πmembership and the ciphertext c of the share, and
invokes Reveal. Upon receiving txssi from the TEE, si sends txssi to other stakers. Once tr shares are received, each staker computes
tx= SS.rec(txss1, . . . ,txsst) and outputs tx.

TEE Program run by staker i

func Init

(sk,pk)←$ KGen(1λ)

Seal sk to disk

return pki with hardware attestation.

func Reveal(πpublication,rT S,πmembership,c):

txssi =Dec(ski,c)
Verify πpublication for rT S, and πmembership of txi w.r.t. rT S

return txssi

Figure 10: The specification of a secret-sharing-based content-oblivious ordering protocol using TEEs.

18

longer be true, since now the presence of mpc_inpi in a con-
tract could in some cases be a proof that the staker released
privileged information, and can be slashed. For example, in
a distributed key generation based protocol, the committee
member (staker) cannot reveal its share of the secret key on-
line, or else it would be slashed. Therefore to hide the same,
we make use of an oracle-based hashed time lock contract,
where an TEE acts as an oracle to release a secret preimage
of an on-chain hash in order to facilitate the refund or the
confiscation of the amount in the contract.

Another important component to this collusion is that if the
secret share is made unverifiable, i.e., it cannot be determined
which among the stakers provided the incorrect input, then
all involved stakers would have to lose utility. If the set of
attackers is the complete set of stakers, then since everyone is
losing utility, no staker would call the confiscate function for
anyone. To design around this, we create a negative reward
strategy in which the staker will lose staked utility unless he
can prove to the TEE about the correctness of its own input,
and receive a secret to publish on-chain as a proof that he was
able to convince the TEE that the said input is correct.

Thus, we arrive at the contract presented in Algorithm 3.
It consists of two parts, a TEE attested code and an on-chain
contract. The staker creates a remote attestation to the code
described in Algorithm 3 and that the output to the function
keygen (Line 11, Algorithm 3) that generates and stores an
asymmetric key inside the TEE. A secret is randomly gen-
erated inside the TEE through the function generate_hash
(Line 14, Algorithm 3), which returns the hash of the secret
and a signature on the hash, input and a block hash (the suc-
cessor of which is being attacked) to ensure that the function
was run inside the TEE. Using this signed hash value, the
staker si now calls commit function in the contract (Line 44,
Algorithm 3) and commits that she would know the value of
the preimage to the hash in the future. Next, the Algorithm 1
is called, where inside the MPC, the signature of the TEE is
checked (parties input previous block hash and the committed
hash value on the online contract). After the MPC generates
a list of transactions tSeq, si passes it on to the TEE by call-
ing the update_MPC_block function (Line 19, Algorithm 3).
Now any new transactions that were generated by the MPC
would not have any corresponding inputs to the MPC, and
thus would need to be marked as transactions that the staker
did not commit information to. All the other transactions
have the input committed by the staker. Whenever another
transaction sequence is added to the chain, it is checked to
be the successor of the current hash stored (Line 25, Algo-
rithm 3), which is eventually used to check whether or not the
MPC transaction sequence has been confirmed on-chain or
not (checkConfirmed). Whenever ShouldReveal(tx) is true,
the transaction would be revealed in a block B by following
the procedure in the protocol. This B acts as proof that tx
was released and the committed input inp has a corresponding
commitment to this transaction. If the check passes then the

transaction is also marked, this time because its correspond-
ing output has been checked (Line 28, Algorithm 3). Finally,
when all transactions have been marked, si calls get_preimage
(Line 33, Algorithm 3) in which the TEE checks whether all
transactions have been marked and if the check passes, the
preimage to the hash is revealed. Using this secret, si can call
the refund (Line 48, Algorithm 3) function in the contract
to get back her committed amount. If on the other hand the
timeout expires, then any user can call confiscate function
(Line 51, Algorithm 3) to burn all the amount stored in the
contract, and take a small transaction fee (ε) from the burnt
amount.

Lemma 4. Given the staker si provides consistent input to
Augmented Algorithm 1 and at the time of reveal, and the same
Augmented Algorithm 1 publishes a transaction sequence
tSeq, si will receive back the amount set as collateral.

Proof. We are given that the Algorithm 1 succeeds and pub-
lishes the transaction sequence tSeq. Any transaction in this
transaction sequence could be present in statei or not in statei.
If the transaction is not in statei, then si did not commit to
any information about this transaction, and is thus marked
off. If the transaction (tx) was in the statei, and it made into
the transaction sequence, then this transaction would be re-
vealed when ShouldReveal(tx) is true. After its release, the
staker si can prove to SGX that its input is correct using the
feed_revealed function. If the information provided is correct,
then this information can be used to add to other stakers reveal
and not invalidate the revealed transaction. Thus, such transac-
tions will get marked as verified, and when all transactions are
either verified or not committed to by the staker for the trans-
action sequence generated by Algorithm 1, then the collateral
is returned to staker via refund (Line 48, Algorithm 3).

Lemma 5. Given the staker si provides consistent input to
Augmented Algorithm 1 and at the time of reveal, but the
Algorithm 1 is aborted without returning tSeq, si will receive
back the amount set as collateral.

Proof. Even though no Algorithm 1 is complete, if the in-
puts to Algorithm 1 are the same as what the staker would
release in order and reveal, the transaction sequence that fol-
lows would contain some transactions that the staker commit
information towards, and some transactions that it did not
commit information towards. The proof for Lemma 4 still
holds.

Lemma 6. Given the staker si provides inconsistent input to
Augmented Algorithm 1 and at the time of reveal for some
transaction tx, and a transaction sequence tSeq is published
such that tx ∈ tSeq, si will not receive back the amount set as
collateral.

Proof. In order to receive back the collateral, the staker needs
to mark all transactions in the transaction sequence tSeq and

19

prove that tSeq was the confirmed transaction sequence on-
chain. If the staker inputs tSeq in the update_MPC_block,
then she would be required to mark the transaction. There
exists two ways of marking a transaction - to not have com-
mitted to the information, and to show that the transaction’s
reveal corresponds to the input. If tx is not committed to, then
the input to Algorithm 1 cannot contain tx (since otherwise
the signature check would fail), and thus information pro-
vided cannot be incorrect. Next if tx is committed to, then
the only way to get it marked is to show that the reveal of
the transaction corresponded to the committed information.
Since the checkInfo(Line 29, Algorithm 3) would fail for tx
due to inconsistent input into Augmented Algorithm 1 and at
the time of reveal. Thus, the staker would not be able to call
refund.

Lemma 7. Assume that no user can distinguish whether any
two public keys belong to the same entity except itself; and the
contract in Algorithm 3 is indistinguishable from a HTLC con-
tract. Suppose there exists a sequence of transactions tSeq =
{ ¯tx1, . . . , ¯txℓ} ∈ P (md1, . . . ,mdℓ) for some input stream
((md1,data1), . . . ,(mdℓ,dataℓ)). Moreover, let us assume that
there exists a function extract() known to all stakers such that
tSeq′ |= extract(tx1, . . . , txℓ) and tSeq′ ∈ P (md′1, . . . ,md′ℓ′)
for some input stream ((md′1,data′1), . . . ,(md′ℓ′ ,data′ℓ′)). Then,
no user u can prove whether the input stream was
((md′1,data′1), . . . ,(md′ℓ′ ,data′ℓ′)) or some set of stakers A ′′ ⊆
A ′ (with u /∈ A ′′) deviated from the protocol by run-
ning the above SGX code and the contract (Algorithm 3)
in addition to Algorithm 1, when the input stream was
((md1,data1), . . . ,(mdℓ,dataℓ)).

Proof. The only difference between the above stated lemma
and Lemma 2, is that there exists an online contract, publicly
visible to everyone. Since the contract has been designed as a
Hashed Time Lock Contract (HTLC) [13], it cannot be used in
any proof of malice. Note that incentive compatibility issues
known for HTLC do not play any part in this, since there does
not exist a second player and the address after timeout is just
a burn address (which can be made indistinguishable from
regular address as well). Note an HTLC design can be created
even on non-smart contract based chains like Bitcoin.

Lemma 8. If there exists an extract function known to stakers
such that tSeq′ |= extract(tx1, . . . txℓ), and utility of tSeq′ is
greater than utility of tSeq, then even relaxing cryptographic
binding property to a rational binding property of the reveal to
any transaction in tSeq, publishing tSeq is strictly dominated
by publishing the transaction sequence tSeq′ run from the
MPC Algorithm 1.

Proof. The staker si that releases the transaction sequence
would choose a transaction sequence such that it maximizes
its utility. Any choice the staker si chooses for the transaction
sequence tSeq′′ would have to yield a higher utility than tSeq,

since there exists atleast tSeq′ which can be achieved by run-
ning extract which from the lemma statement has a utility
greater than tSeq. Further, we also know that from Lemma 2,
that no negative reward strategy can be applied for follow-
ing MPC Algorithm 1. Thus, releasing transaction sequence
tSeq is strictly dominated by releasing transaction sequence
tSeq′.

E Sandwich Analysis

In a normal sandwich attack, during the frontrunning trans-
action, the attacker swaps ∆aX of token X for ∆aY of token
Y changing the liquidity in the pool as r′X = rX +(1− f)∆aX
and r′Y = rY −∆aY respectively. The value of ∆aX is adjusted
such that the following equality holds:

∆r′Y = (1− s)
(1− f)rY ∆rX

rX +(1− f)∆rX
=

(1− f)r′Y ∆rX

r′X +(1− f)∆rX

Then after the victim’s transaction executes, all the ∆aY is
converted to X with the backrunning transaction.

We borrow the following result for optimal sandwich attack
from [25, Theorem 2], which states that

Given that slippage is small (i.e., slippage determines opti-
mal sandwich), lets first define η, a placeholder variable:

η = (1− f)2(1− s)(∆r2
X (1− f)4(1− s)

+2∆rX (1− f)2(2− f(1− s))rX

+(4− f(4− f(1− s)))r2
X)

Then, the optimal attack input to the frontrunning transaction
is given by

∆aX =

√
η

1−s −∆rX (1− f)3− (2− f)(1− f)rX

2(1− f)2 (1)

For ease of analysis, we define another placeholder variable,

Γ =

√
η

(1− s)(1− f)
−∆rX (1− f)2 + frX

such that (1− f)∆aX =
Γ

2
− rX

F AnimaguSwap Analysis

In this subsection, we will analyze AnimaguSwap detailed in
Fig. 3. For simplicity, we analyze the case where the attackers
are able to sandwich the transaction and chose to guess the
flip bit as b = 0. In the simulation, we would also take a look
at when the attackers try to sandwich the other direction, i.e.,
guess b = 1.

20

Algorithm 3 A contract to add rational binding in the attacking protocol

1: (K ,ENC,DEC): defines an asymmetric encryption scheme
2: H : represent a cryptographic hash function
3: // TEE side
4: State
5: secret: A secret revealed when correct mpc_inpi is verified
6: sk: stores a Secret Key generated inside TEE
7: inp: stores the committed mpc_inpi value for si
8: curr_tSeq: stores the last on-chain transaction sequence (block)
9: mpc_tSeq: stores the transaction sequence published on-chain (for which MPC was supposed to happen)

10: block_hash: block hash for the predecessor of MPC block.
11: function KEYGEN
12: sk,pk←K ()
13: return pk
14: function GENERATE_HASH(mpc_inpi,_block_hash)
15: secret = Random()
16: inp = mpc_inpi
17: block_hash = _block_hash
18: return σ = signsk(H (secret), inp,block_num)

19: function UPDATE_MPC_BLOCK(tSeq)
20: Assert tSeq.predecessor = block_hash
21: mpc_tSeq = tSeq
22: for tx ∈mpc_tSeq do
23: if tx.txid /∈mpc_inpi.state.txid then
24: mark(tx, mpc_tSeq) ▷ Mark adds a mark on tx in the variable mpc_tSeq
25: function UPDATE_BLOCK(tSeq)
26: Verify tSeq is successor of curr_tSeq
27: curr_tSeq = blk
28: function FEED_REVEALED(tx, B)
29: Assert CheckInfo(inp, tx)
30: Assert CheckMembership(tx, B)
31: if tx.txid ∈mpc_tSeq then
32: mark(tx, mpc_tSeq)
33: function GET_PREIMAGE
34: Assert checkConfirmed(mpc_tSeq)
35: for tx ∈mpc_tSeq do
36: if existsMark(tx, mpc_tSeq) then
37: return null
38: return secret
39: // Contract side
40: State
41: amount_stored← 0: amount stored in the contract
42: hash← null: hash of a secret the staker who is committing receives after running generate_hash
43: committer← null: identity of the staker that commits to the information
44: function COMMIT(amount,hash)
45: amount_stored← amount_stored+ amount
46: hash = hash
47: committer = sender
48: function REFUND(secret)
49: if H (secret) = hash then
50: send(amount_stored,committer)
51: function CONFISCATE(timeout)
52: if current.time > timeout then
53: burn(amount_stored)

21

After the frontrunning transaction that swaps ∆aX of X for
∆aY of Y , the update reserve pool r′X and r′Y are given by

r′X = rX +(1− f)∆aX =
Γ

2

r′Y =
rX rY

r′X
; ∆aY = rY − r′Y

If a flip does not happen (i.e., the user sets the flip bit to be
0), then the profit is given by P+

S .
If a flip happens, i.e., the committee guesses the wrong

direction while generating attacking transaction sequence,
then the committee will release a transaction that instead of
increasing the price for the user, would decrease it.

The victim transaction executed in this case would be swap
−∆rX of X for ∆r′Y of Y .

∆r′Y =
r′Y (−(1− f)∆rX)

r′X − (1− f)∆rX
=− 4(1− f)rX rY ∆rX

Γ(Γ−2(1− f)∆rX)

If no attack had happened, the expected swap would have
been −∆rX of X for ∆rE

Y of Y

∆rE
Y =− rY (1− f)∆rX

rX − (1− f)∆rX

During backrunning (even though the transaction might fail
due to slippage over allowance, we consider it to go through
to see the loss incurred) the attacker would swap ∆aY of Y for

∆a′X of X . Thus, the output would be ∆a′X =
∆aY (r′X−∆rX)

(r′Y−∆r′Y+∆aY)
.

The loss for the attacker in this case would be given by ∆a′X −
∆aX .

The profit for the flipper (which would be the excess tokens
that user keeps) is given by ∆rE

Y −∆r′Y .
Now, there also exists an option in which the attacker

guesses that the user set the b to 1, for which a similar analysis
would follow.

G Example Swap Scenario - Details of Execu-
tion

Table 2

22

Case Transaction Type Transaction Input Transaction Output SUSHI Reserve WETH Reserve

Victim Expected ETFT 8592 SUSHI (+) 3.6551 173059.6482 70.1767
Normal Victim Frontrun ETFT 842.4095 SUSHI (+) 0.3751 165310.0578 73.4567

Normal Attacker Victim ETFT 8592 SUSHI(+) 3.6189 173902.0578 69.8378
Backrun ETFT 0.3751 WETH(+) 926.3164 172975.7413 70.2129

Victim Expected TFET 8592 SUSHI (-) 4.0819 155875.6482 77.9138
Flip Victim Frontrun ETFT 842.4095 SUSHI (+) 0.3751 165310.0578 73.4567

Normal Attacker Victim TFET 8592 SUSHI (-) 4.0393 156718.0578 77.4961
Backrun ETFT 0.3751 WETH (+) 752.6848 155965.373 77.8712

Victim Expected TFET 8592 SUSHI (-) 4.0819 155875.6482 77.9138
Flip Victim Frontrun ETFT 0.2503 WETH(+) 554.0884 163913.5598 74.0822

Flip Attacker Victim TFET 8592 SUSHI(-) 4.1103 155321.5598 78.1926
Backrun ETFT 554.0884 SUSHI(+) 0.2771 155875.6482 77.9155

Victim Expected ETFT 8592 SUSHI(+) 3.6551 173059.6482 70.1767
Normal Victim Frontrun ETFT 0.2503 WETH(+) 554.0884 163913.5598 74.0822
Flip Attacker Victim ETFT 8592 SUSHI(+) 3.6793 172505.5598 70.4029

Backrun ETFT 554.0884 SUSHI(+) 0.2247 173059.6482 70.1782

Table 2: An example swap where the Attacker sees: SwapExactTokenForToken 8592 SUSHI for WETH, when initial reserve of
SUSHI is 164467.6483, WETH is 73.8319, with acceptable slippage of 1% (ETFT stands for SwapExactTokenForToken, TFET
stands for SwapTokenForExactToken).

23

	Introduction
	Overview of results
	Existing protocols are not secure
	New directions informed by the impossibility

	Related Work
	Model
	A Framework for Order Policy Enforcement
	Delineating Impossibility Conditions for Order Policy Enforcement
	OPE by Withholding Information
	OPE when Users Withhold Information
	OPE when Stakers Withhold Information
	Background
	Sandwich Attack on Constant Product AMM
	OPE when Stakers Withhold Information

	Simulation Results

	Impossibility with Binding Side Contracts
	Discussion and Future Work
	Capturing Existing Systems in the Framework
	Details Related to alg:attack_imposs1_mpc
	Example Attack on DKG-based Threshold Encryption
	Impossibility in the Presence of Binding Side Contracts
	Sandwich Analysis
	AnimaguSwap Analysis
	Example Swap Scenario - Details of Execution

