
Decoding LTFs in the Generic Group Model

Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

Department of Computer Science
ETH Zurich

Zurich, Switzerland
{hofheinz, julia.kastner, akin.uenal, bogdan.ursu}@inf.ethz.ch

Abstract. Lossy trapdoor functions (LTFs) constitute a useful and ver-
satile cryptographic building block. LTFs have found applications in var-
ious types of encryption schemes, are closely connected to statistically
secure oblivious transfer protocols, and have led to the first constructions
of group-based trapdoor functions. However, with one recent exception,
all known group-based LTFs are comparatively inefficient, and in partic-
ular suffer from large images.
In this work, we attempt to explain this inefficiency, and derive lower
bounds for the image size of group-based LTFs. In essence, we find that
purely algebraic group-based LTFs (i.e., LTFs that use the underlying
group in a generic way, without considering group representations) must
suffer from a large image size (of an at least super-constant number of
group elements). Our results also help to explain the mentioned excep-
tional group-based LTF with compact images.

Keywords: lossy trapdoor functions · generic group model

1 Introduction

Lossy trapdoor functions. A lossy trapdoor function is a keyed function fek in
which the key ek was generated in one of two modes. In injective mode, an
inversion trapdoor ik is sampled alongside ek, such that ik allows to efficiently
invert fek. (In particular, in this mode, fek must be injective.) But when ek is
generated using a lossy mode key generation, the corresponding fek is highly non-
injective (and thus, no inversion trapdoor can exist). To allow for meaningful
applications, injective and lossy ek should be computationally indistinguishable.

LTFs have been proposed and investigated by Peikert and Waters [22], who
provided a number of LTF applications, and two instantiations from groups
and lattices. Later on, a number of additional applications (including determin-
istic [7], lossy [21, 4], or hedged encryption [3]), and LTF constructions were
found [16, 18, 5, 17, 1, 8, 19, 6, 2, 12].

The inefficiency of group-based LTFs. But while there exist a variety of group-
based LTF constructions, the LTF from [12] is the only known LTF construction
that features compact images (i.e., such that the size of fek(x) is not significantly

2 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

larger than the size of x). The intuitive reason for this is that most group-based
constructions (e.g., from [22, 16]) process their preimage in a bitwise fashion. For
instance, a prototypical LTF of this type over a group G is of the form

ek = gM ∈ Gn×n

fek(x⃗) = gM ·x⃗ ∈ Gn×n

where M ∈ Zn×n
p is chosen as a uniformly random full-rank matrix for injective

keys, x⃗ ∈ {0, 1}n, and evaluation is performed using eponentiation with the
components of x⃗. Inversion can be performed with the secret (exponent) matrix

M−1 by computing gM−1·M ·x⃗ = gx through exponentiation, and then reading
off the components of x.

In lossy mode, M can be chosen as a low-rank matrix (which results in
computationally indistinguishable ek = gM under the DDH or even weaker
assumptions [14]). In this case, images gM ·x⃗ reveal only limited information
about x⃗. Observe that the image of this LTF consists of n group elements, while
the input consists only of n bits. In that sense, this construction proceeds in a
bitwise fashion and has large outputs.1 It is possible to work with preimages x⃗
over a slightly larger domain (e.g., with x⃗ ∈ Zℓ) at the expense of inversion times
linear in ℓ. However, this still results in images of n/ log2(ℓ) group elements.

The mentioned LTF of [12] has a much smaller image (close in size in fact to
the preimage), and achieves this with a much more complex construction. We
give details on their construction in Section 6, but one key ingredient of their
construction is that they apply a pseudorandom function to intermediate results
of the computation (which are group elements). Jumping ahead, we will see that
this is the crucial step that enables compact images.

Our contributions. Indeed, in this work, we are interested in the reason why
most group-based LTF constructions do not achieve compact outputs, and what
it is that enables compact outputs. In a nutshell, we show that when relying only
on hard problems in a group, and when not using the representation of group
elements, then LTFs with compact images do not exist. More specifically, we
work in Maurer’s generic group model [20, 26] (which does not allow access to
the representation of group elements), and we assume a LTF with a nontrivial
lossiness of ω(log λ) bits, i.e., such that its image size with lossy ek is superpoly-
nomially smaller than its preimage size. (Since LTF lossiness cannot easily be
amplified [23], such a minimal lossiness requirement seems reasonable.)

We offer the following technical results:

1. (Corollary 9.) If preimages are n-bitstrings and images are comprised of k
group elements and a m-bitstring of auxiliary information, then we must
have

k ≥ n−m

O(log λ)
,

1 The constructions in [22, 16] are variations of this prototypical LTF that use different
distributions of M . The core idea and the resulting inefficiency, however, is the same
as in our example.

Decoding LTFs in the Generic Group Model 3

where λ denotes the security parameter.
2. (Theorem 26 and Corollary 27.) In the same situation, if k is a constant

(that does not depend on λ or n), then we can construct a distinguisher A
between injective and lossy keys. Our A will be computationally inefficient,
but make only a polynomial number of group oracle queries.

3. (Theorem 29.) Similarly, if preimages are comprised only of group elements,
we construct a distinguisher A between injective and lossy keys. In this case,
however, A is even computationally efficient.

Interestingly, the techniques we use for these three results are very different (see
below for details), and so are their consequences. Our first result is applicable
to the prototypical LTF sketched above and the LTFs from [22, 16], and shows
them essentially optimal. Our second result applies to the setting of [12], and
shows that their use of the representation of group elements is necessary. (We
give a more detailed analysis in Section 6.) Our third result, on the other hand,
applies to no known LTF, but closes a potential avenue of group-based LTFs.

We note that we prove our results only for prime-order groups without pair-
ings. However, in view of results like [15] (when ignoring the pairing operation),
it is not clear how composite-order groups will be helpful.

A note on related work. We note that [13, 10] offer similar lower bounds for
group-based and “sufficiently algebraic” signatures and verifiable random func-
tions. Technically, their results exploit the inherent linearity (or, in the presence
of pairings, quadratic nature) of algebraic algorithms in different ways than we
do. For instance, [13] use that valid signatures in group-based algebraic signa-
ture schemes must satisfy publicly checkable linear equalities in group elements
from signature and verification key. They then use these linear relations to con-
struct a generic adversary that linearly combines several existing signatures into
a forgery.

Using such a strategy directly will not work in our case, since LTF images
may well contain group elements that do not match a known linear equation. In
fact, such group elements can be potentially helpful to derive information about
the corresponding preimage (e.g., by encoding which of a number of possible
linear equations they satisfy). What we show (in our first result above) is that
the amount of efficiently extractable information of such group elements in LTF
images is limited.

1.1 Technical Overview

We now provide an overview over our main ideas and techniques.

First result: preimages are bitstrings, images are (vectors of) group elements.
In our modeling of LTFs, preimages and images and can be bitstrings, group
elements, or a mix of both. For this exposition, however, let us first consider the
case that preimages x⃗ are (only) bitstrings (of length, say, n), whereas images
fek(x⃗) = gy⃗ are (only) group elements. This is in line with our prototypical LTF

4 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

above and the LTFs from [22, 16], while the LTF from [12] uses a combination
of group elements and bits in the image.

As stated above, we work in Maurer’s generic group model [20, 26]. This
means that the only way that inversion can obtain information about x⃗ from a
given image gy⃗ is through explicit comparisons. In other words, we can think of
the inversion algorithm as making a (polynomial) number of affine tests (t⃗i, si)
(adaptively) and learning whether or not ⟨y⃗, t⃗i⟩ = si holds.

We model the task to invert a given image through such comparisons with
a decision tree. At each node N , there is a set XN of at this point still possible
preimages x⃗. Hence, at the root node root of the tree (which corresponds to
the start of the computation), Xroot contains all 2

n possible preimages. Ideally,
each comparison would halve the size of XN . However, we show that, due to the
affine nature of comparisons, each comparison splits the set XN up in a very
imbalanced way. Specifically, most (nontrivial) affine equations checked by such
comparisons hold only for few input values. Hence, there must be a very long path
along that decision tree (which corresponds to a large worst-case computation
time of inversion).

Our first result (in Section 3) formalizes this intuition, and generalizes it to
the case when the output also contains a small number of additional bits of
auxiliary “helper” information. Essentially, if the auxiliary information is short
enough, it cannot reveal too much information about the preimage x⃗.

Second result: images with large auxiliary information. If the auxiliary (non-
group-)information in images is large, the above decision tree-based argument
fails. In particular, the LTF from [12] falls into this category. In this case, we
will still be able to provide a meaningful lower bound on the number of group
elements in the LTF image.

Concretely, we construct a distinguisher A between injective and lossy ek.
Our A will be inefficient, but use only a polynomial number of (generic) group
operations. Intuitively, A proceeds in two phases, where group oracle queries are
only made in the first phase:

1. A uses group comparison queries to gather enough information about the
discrete logarithms of group elements in ek, so that most images can be
successfully evaluated even without explicit group oracle queries.

2. Once A has prepared such an “approximate but oracle-less evaluation key”,
it evaluates all preimages and approximates the image size of fek. If this
image size is small enough, the corresponding ek must be lossy.

We now explain those two steps in a little more detail. We will assume that the
evaluation key ek is of the form ek = gz⃗ for a vector z⃗ of exponents.

First phase: prepare an “approximate but oracle-less” evaluation key. In the
first phase, A starts out with an a-priori distribution on z⃗ as induced by fresh
sampled injective ek. Now A can consider all affine tests (⃗t, s) and the respective
probabilities pt⃗,s for ⟨z⃗, t⃗i⟩ = si (over z⃗). There are two cases: there is (at least)

Decoding LTFs in the Generic Group Model 5

one such linear test (⃗t, s) with 1− 1
2q < pt⃗,s < 1− 1

2q (for a suitable polynomial

q), or all pt⃗,s are 1
2q -close to either 0 or 1.

Intuitively, in the latter case, A has already enough information to approx-
imate the outcome of all affine tests (and thus comparison queries) that could
arise during any evaluation fek(x⃗). In this case, we are already done. But in
the former case, A will make an explicit oracle query for one such (⃗t, s) with
1
2q < pt⃗,s < 1− 1

2q and condition the distribution of z⃗ on the result. Intuitively,
this way the entropy of z⃗ will decrease by a nontrivial amount. After a polyno-
mial number of such queries, we will end up in the first case (with all pt⃗,s close
to 0 or 1). (At the latest, this happens once z⃗ is fully determined.)

Second phase: approximating fek’s image size. Next, A uses its knowledge to
evaluate all fek on all inputs (x⃗) and count the number of different images. Any
arising comparison queries made by fek’s evaluation algorithm in the process cor-
respond to affine tests (⃗t, s) and can be answered with the oracle-less evaluation
key from the first phase (answering with “match” if and only pt⃗,s > 1− 1

2q). Of

course, this results with a few false answers, but we will choose q (polynomially)
large enough such that most evaluations can be simulated faithfully.

If this approximated image size is close to the number of all x⃗, A will guess
that ek is injective, otherwise that ek is lossy. Indeed, by our argument above,
in case of an actually injective ek, we will end up with a large overall image size.
But even when starting with a lossy ek, its corresponding initial distribution
must be stastically close to that of an injective ek, at least when looking at the
results of all possible affine tests (⃗t, s). (If not, we have found an easy way to
distinguish injective and lossy keys using just such a test.) Hence, the resulting
approximative evaluation key derived at the end of the first phase will be suf-
ficiently accurate, and in the second phase A will end up with a small image
size.

The full details (which include a lot of fine-tuning of parameters) can be
found in Section 4. We do mention, however, that we unfortunately can only
show a super-constant lower bound for the number of group elements in the
image.

Third result: group elements as input. Finally, we also consider the case in which
the preimage is comprised of group elements. This case is somewhat less technical
and more straightforward, since in that case, evaluation must essentially be a
linear transformation (mapping group elements in evaluation key ek and input x⃗
to the group elements in fek(x⃗)). This transformation can be efficiently inverted
using linear algebra.

2 Preliminaries

2.1 Notation

We denote our security parameter by λ. For a distribution D over a finite set X

we denote by x
$← D that x is sampled from X according to D, and we denote

6 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

by x
$← X that x is sampled uniformly at random from X. We denote group

elements x in boldface, vectors v⃗ with overhead arrows, and we write the group
operation as multiplication.

2.2 Groups

Definition 1 (Type Safe Generic Group Model [26, 20]). A generic algo-
rithm in the type safe generic group model has two types of inputs, group element
inputs and bit inputs. It can use the following operations on these inputs:

Bit operations from any universal set.
Exponentiations take as input log p many bit variables and interpret them as

an integer x and output a group element variable that corresponds to gx for
some fixed generator g.

Group Multiplications take as input two group element variables encoding
g1,g2 and output a group element variable encoding g1 · g2. Outputs ⊥ if
either of the inputs was ⊥.

Equality checks Take as input two group element variables and output a bit 1
if they are equal, and 0 if they are not or if at least one of them is ⊥.

2.3 Lossy Trapdoor Functions

Definition 2 (Lossy Trapdoor Function(LTF) [22]). Let n be a polyno-
mial, k ≤ n. A lossy trapdoor function (LTF) with domain {0, 1}n consists of
three algorithms LTF = (LGen, LEv, LInv) with the following properties:

Easy to sample injective keys with trapdoors: In injective mode, LGen(1λ, 1n, 1)
outputs a pair (ek, ik) of an injective evaluation key and an inversion key.
We assume in this work that injective keys are fully correct, i.e., for each
x ∈ {0, 1}n in the domain we have

LInv(ik, LEv(ek, x)) = x.

Easy to sample lossy keys: In lossy mode, LGen(1λ, 1n, 0) outputs (ek,⊥)
such that LEv(ek,) is l-lossy, i.e.

|{LEv(ek, x) | x ∈ {0, 1}n}| ≤ 2n−l(λ).

Deterministic evaluation: For each evaluation key ek outputted by LGen, the
evaluation function LEv(ek,) is computed by a deterministic algorithm.

Hard to distinguish lossy and injective: Each PPT algorithm has negligi-
ble advantage at distinguishing injective and lossy evaluation keys. Formally,
this means that the following two distributions are computationally indistin-
guishable

{ek | (ek, ik) $← LGen(1λ, 1n, 1)}
c
≈ {ek | (ek,⊥) $← LGen(1λ, 1n, 0)}

Decoding LTFs in the Generic Group Model 7

2.4 Encoding-Decoding Schemes

Definition 3 (Encoding-Decoding Schemes). Let S, Y ⊂ {0, 1}∗ and k ∈
N. An encoding-decoding scheme is a pair (Enc,Dec) of deterministic algorithms
s.t. Enc maps S to Gk×Y and Dec maps Gk×Y to S s.t. we have for all s ∈ S:

Dec(Enc(s)) = s. (1)

We will usually denote an encoding-decoding scheme as

S
Enc→ Y ×Gk Dec→ S.

We will call (Enc,Dec) generic if Enc and Dec only use generic group operations
as described in Definition 3.

2.5 Mathematical Preliminaries

Lemma 4 (Schwartz-Zippel Lemma [27, 24, 11]). Let P ∈ F[X1, . . . , Xn]
be a non-zero polynomial of total degree d ≥ 0 over a field F and S a finite subset
of F. Then

Pr
r1,...,rn

$←S

[P (r1, . . . , rn) = 0] ≤ d

|S|
.

We will often use F = Zp and S = Zp.

Lemma 5 (Markov’s Inequality). Let X be a random variable over R≥0.
Denote by E[X] its expectation. We have for each α > 1

Pr [X > α · E[X]] ≤ 1

α
.

3 Lower Bounds for Generic Encoding-Decoding Schemes

In this section, we give our first result: We prove that an LTF LEv : {0, 1}n →
{0, 1}m×Gk that outputs fewer output bits than input bits (let’s say m ≤ n/2)
must have approximately as many output group elements as input bits, formally
k ∈ Ω(n/ log λ), otherwise the inversion algorithm LInv is not efficient.

Our proof idea essentially boils down to studying how many bits of infor-
mation LEv can store in a group element it outputs in Maurer’s GGM when
ensuring that stored bits can be extracted efficiently. To simplify our proof, we
construct an encoding-decoding scheme (cf. Definition 3) from the LTF along
with its evaluation and inversion key. This basically means fixing an injective
key pair ek and ik and letting Enc(·) := LEv(ek, ·) and Dec(·) := LInv(ik, ·). (We
clarify the connection to lossy trapdoor functions in Theorem 6.) The advantage
of this is that we can now argue about a fixed algorithm Dec whose possible
inputs are the outputs of Enc. We do not care about lossiness as a property here,
but instead are interested solely in the efficiency of the inversion algorithm.

8 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

Theorem 6. 1. Each generic LTF LTF = (LGen, LEv, LInv) with

LEv : {0, 1}n −→ {0, 1}m ×Gk

gives rise to a generic encoding-decoding scheme

{0, 1}n Enc−→ {0, 1}m ×Gk Dec−→ {0, 1}n

where the space, time and group operation complexities of Enc are upper
bounded by the corresponding complexities of LEv and the space, time and
group operation complexities of Dec are upper bounded by the corresponding
complexities of LInv.

2. Each efficient generic encoding-decoding scheme

{0, 1}n Enc−→ {0, 1}m ×Gk Dec−→ {0, 1}n

can be turned (in a non-black box way) into an efficient generic LTF LTF =
(LGen, LEv, LInv) with

LEv : {0, 1}n −→ {0, 1}m ×Gk.

Proof. 1. Let LTF = (LGen, LEv, LInv) be a generic LTF LEv : {0, 1}n →
{0, 1}m × Gk. Let (ek, ik) ← LGen(1λ, 1n, 1) be any pair injective evalua-
tion key and corresponding inversion key. Define Enc,Dec by

Enc(x) := LEv(ek, x),

Dec(y,g1, . . . ,gk) := LInv(ik, y,g1, . . . ,gk)

for x ∈ {0, 1}n, y ∈ {0, 1}m,g1, . . . ,gk ∈ G. The correctness of (Enc,Dec)
follows from the correctness of the injective key ek. The number of operations
Enc and Dec need to perform are bounded by the number of operations LEv
and LInv need to perform in the worst case.

2. Let {0, 1}n Enc→ {0, 1}m × Gk Dec→ {0, 1}n be a generic encoding-decoding
scheme. We define LTF = (LGen, LEv, LInv) as follows:
LGen: On input 1λ, 1n and b ∈ {0, 1}, LGen draws a uniformly random ma-

trix M1 ∈ Zk×k
p if b = 1, and a uniformly random rank-one matrix

M0 ∈ Zk×k
p if b = 0. It computes the matrix of group elements of entries

of Mb and sets ek := gMb . If b = 1 it sets ik := M−1b , otherwise ik := ⊥.
Finally, it outputs (ek, ik).

LEv: On input ek = gM and x ∈ {0, 1}n, LEv computes (y,g1, . . . ,gk) :=
Enc(x). Since Enc is purely generic and got no group elements as input,
LEv can efficiently extract the exponents a1 := dlog g1, . . . , ak := dlog gk

out of the circuit description of Enc. LEv sets a⃗ := (a1, . . . , ak) and
computes gM ·⃗a. Finally, LEv outputs (y,gM ·⃗a).

LInv: On input (y,gz⃗) ∈ {0, 1}m × Gk and ik = N ∈ Zk×k
p , LInv computes

and outputs Dec(y,gN ·z⃗).

Decoding LTFs in the Generic Group Model 9

The correctness of LTF follows from the correctness of (Enc,Dec), while the
indistinguishability of lossy and injective keys can – by a standard argument
that we omit here – be based on the hardness of DDH.
It is clear that the time complexity of LGen is polynomial in λ, n, k and
m. The time complexity of LInv equals the time complexity of Dec plus an
overhead that is polynomial in k and λ. Now, the time complexity of LEv is
dominated by extracting the discrete logarithms of group elements output
by Enc(x). Since Enc is purely generic and efficient, we can assume that
analysing its circuit and deducing the exponents of its outputs can be done
in an efficient manner. It follows that the runtime of LEv is polynomial in
n, k and m.

⊓⊔

Note that the compactness of group-based encoding-decoding schemes is a static
property: it does not depend on distribution of evaluation keys or lossiness. This
makes it easier to study and prove lower bounds for it.

Theorem 6 implies that, in order to prove our claim for an LTF, it suffices
to look at the encoding-decoding scheme that is derived from it. In fact, we will
prove in this section:

Theorem 7. Let S
Enc→ Y ×Gk Dec→ S be a generic encoding-decoding scheme for

sets S, Y ⊂ {0, 1}∗. Then, Dec needs to make at least

(|S|/|Y |)1/k − 1

equality checks of group elements and√
2 · (|S|/|Y |)1/k − 7

4
− k +

1

2

group operations in the worst case.

From this theorem, we can directly deduce the following corollary for generic
LTFs:

Corollary 8. For an LTF LTF = (LGen, LEv, LInv) with

LEv(ek,) : {0, 1}n −→ {0, 1}m ×Gk,

it holds that LInv needs to make at least

2
n−m

k − 1 (2)

equality checks of group elements and√
2

n−m
k +1 − 7

4
− k +

1

2

group operations.

10 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

Proof. According to Theorem 6, LTF implies an encoding-decoding scheme {0, 1}n Enc→
{0, 1}m × Gk Dec→ {0, 1}n where the number of equality checks Dec makes lower
bounds the number equality checks LInv needs to make in the worst case. Denote
by tDec and tLInv the corresponding number of equality checks. From Theorem 7
it follows

tLInv ≥ tDec ≥
(
|{0, 1}n|
|{0, 1}m|

)1/k

− 1 =
(
2n−m

)1/k − 1 = 2
n−m

k − 1.

Analogously, we can lower bound the number of group operations LInv needs to
make in the worst case. ⊓⊔

Now we can deduce that the number of output group elements that LEv(ek,) :

{0, 1}n → {0, 1}m×Gk outputs is larger than Ω
(

n−m
log λ

)
. It follows that if LEv has

noticeably fewer output bits than input bits, then the number of group elements
it outputs must be almost linear.

Corollary 9. For a generic LTF LTF = (LGen, LEv, LInv) where LInv runs in
polynomial time, and LEv maps n bits to k group elements and m bits, we have

n−m

k
∈ O(log λ).

If m ≤ αn for some constant α < 1, it follows

k ≥ n−m

O(log λ)
∈ Ω

(
n

log λ

)
.

Proof. Set the running time of LInv to be r ∈ poly(λ). Eq. (2) implies that we

have 2
n−m

k − 1 ≤ r. Now, the claim follows. ⊓⊔

On a technical note, we need to deduce the following lemma to prove Theo-
rems 20 and 26.

Lemma 10. Let LTF = (LGen, LEv, LInv) be an LTF where LInv runs in time r.
For an evaluation key ek, let LEv(ek,) : {0, 1}n → {0, 1}m ×Gk, and denote by
LEv1(ek,) : {0, 1}n → {0, 1}m the function that only computes the binary output
of LEv(ek,). Set

Yek := {LEv1(ek, x) | x ∈ {0, 1}n}.

If ek is injective, we have

|Yek| ≥
2n

(r + 1)k
.

If r ∈ poly(λ) and k ∈ O(1), it follows for injective ek

log |Yek| ≥ n−O(log λ).

Decoding LTFs in the Generic Group Model 11

We will spend the rest of this section on proving Theorem 7. However, instead
of proving Theorem 7 directly, we will instead prove the following simpler lemma:

Lemma 11. Let S
Enc→ Y ×Gk Dec→ S be a generic encoding-decoding scheme for

sets S, Y ⊂ {0, 1}∗ s.t. Y is a singleton i.e. |Y | = 1. Then, Dec needs to make
at least

|S|1/k − 1

equality checks of group elements and√
2 · |S|1/k − 7

4
− k +

1

2

group operations in the worst case.

In fact, we can simply deduce Theorem 7 from Lemma 11:

Proof (Theorem 7). Let S
Enc→ Y × Gk Dec→ S be a generic encoding-decoding

scheme s.t. Y has more than one element. Then, by a pigeon-hole argument,
there must exist one y ∈ Y s.t. the set

S̃ :=
{
s ∈ S ⊂ {0, 1}n | Enc(s) ∈ {y} ×Gk

}
has at least |S| / |Y | elements. We can now restrict Enc to S̃ and Dec to {y}×Gk.
This yields a new encoding-decoding scheme

S̃
Enc′−→ {y} ×Gk Dec′−→ S̃

where Enc′ and Dec′ are the corresponding restrictions of Enc and Dec. From
Lemma 11 it now follows that Dec′ needs to make at least∣∣∣S̃∣∣∣1/k − 1 ≥ (|S|/|Y |)1/k − 1

equality checks of group elements and√
2 · S̃1/k − 7

4
− k +

1

2
≥
√

2 · (|S|/|Y |)1/k − 7

4
− k +

1

2

group operations in the worst case. Since Dec′ is the restriction of Dec to some
inputs, it follows that the same lower bounds also hold for Dec in the worst case.

⊓⊔

Hence, it suffices to prove Lemma 11. Since Y has only one element in
Lemma 11, we will tacitly omit it and consider the encoding decoding scheme
given by

S
Enc−→ Gk Dec−→ S.

We need to lower bound the number of group element equality checks that
Dec may make when executed on some input g1, . . . ,gk. To properly count the

12 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

minimum number of necessary equality checks we will model the algorithm Dec
as a Turing machine that has oracle access to the group oracle. However, since
Dec does not output group elements, it suffices to model the group equality
checks made by Dec as (affine) linear equations and and ignore other group
operations that do not lead to a group equality check. A linear equality check
consists of a vector c⃗ ∈ Zk+1

p . When the group oracle is queried with such a
vector c⃗ = (c1, . . . , ck+1) it will respond positively if gc1

1 · · ·g
ck
k · gck+1 = 1G

where g denotes a fixed generator of G, and 1G denotes G’s neutral element.

The Turing machine Dec is total and deterministic. It has an input tape on
which it receives the number k of the group elements g1, . . . ,gk ∈ G. Addi-
tionally, it has a working tape, an output tape and an oracle tape where it can
write input data for group oracle queries. Besides starting and halting states,
the Turing machine has three special states: a state q? it enters whenever it asks
the group oracle to check perform a linear equality check on g1, . . . ,gk and two
corresponding response states qYes and qNo. Whenever Dec wants to perform a
linear equality check, it writes a vector γ⃗ ∈ Zk+1

p on the oracle tape and then
enter q?. The specification of Dec does not contain a transition rule for q?. In-
stead, whenever Dec enters q?, the group oracle decides the next state of Dec:
if the content of the oracle tape specifies a valid vector γ⃗ ∈ Zk+1

p , and if the
equality gγ1

1 · · ·g
γk

k · gγk+1 = 1G holds the group oracle moves Dec into the state
qYes. Otherwise, the oracle moves Dec into qNo.

Denote by Gconf the configuration graph of Dec, that is the graph of all
configurations of the Turing machine Dec, which are connected by transitions of
Dec. This graph contains all computation paths of Dec that may overlap. Denote
by

Xstart :=
{
x⃗ ∈ Zk

p | ∃s ∈ S : Enc(s) = gx⃗
}

the set of exponents of inputs of Dec. We recursively construct a binary decision
tree Tk out of Gconf s.t. each inner vertex corresponds to a linear equality check
performed by Dec. The root of Tk is the pair (cstart, Xstart) where cstart is the
starting configuration cstart of Dec on input g1, . . . ,gk. Note that configurations
in Gconf contain no information about the exponents of g1, . . . ,gk. Hence, for
each input gx⃗, x ∈ Zk

p,

Dec has the same starting configuration cstart. Since Dec is total and deter-
ministic, there must be exactly one configuration c ∈ Gconf that can be reached
from cstart and that has no outgoing edges for any input of k group elements.
We can distinguish two cases: if the state of c is not q?, then c is a halting
configuration and and we have already constructed the entire decision tree Tk.

Otherwise, Dec performs an oracle query at c and there are two configurations
cYes and cNo which Dec may enter depending on the response of the group oracle
and the exponents of g1, . . . ,gk. Let γ⃗ ∈ Zk+1

p be the coefficient vector of the
linear check that Dec performs at c. We set

X1 =

{
x⃗ ∈ Xstart | γk+1 +

k∑
i=1

γi · xi = 0 mod p

}

Decoding LTFs in the Generic Group Model 13

and

X0 =

{
x⃗ ∈ Xstart | γk+1 +

k∑
i=1

γi · xi ̸= 0 mod p

}
.

Now, X1 contains all exponents of inputs gx1 , . . . ,gxk s.t. the group oracle will
respond positively at c and move Dec into cYes, while X0 contains all expo-
nents of inputs s.t. the group oracle will respond negatively and change Dec’s
configuration into cNo. If X1 ̸= ∅, we add the node (cYes, X1) to the graph Tk
together with an edge (cstart, Xstart)→ (cYes, X1). Analogously, we add the node
(cNo, X0) together with the edge (cstart, Xstart)→ (cNo, X0) to Tk if X0 ̸= ∅. For
each new node (c,Xin) added this way to Tk we repeat the previous procedure
recursively: Let c′ be the configuration that is reached from c and has no outgo-
ing edges in Gconf . If the state of c′ is not q?, then c′ is a halting configuration
and (c,Xin) stay a leaf in Tk. Otherwise, there are two configurations cYes, cNo

that may be successors of c′ depending on the answer of the group oracle. We
depict an example of a decision tree in Fig. 1a and a corresponding configuration
graph in Fig. 1b.

Let γ⃗ be the linear check performed at c′ and set again

X1 =

{
x⃗ ∈ Xin | γk+1 +

k∑
i=1

γi · xi = 0 mod p

}
and

X0 =

{
x⃗ ∈ Xin | γk+1 +

k∑
i=1

γi · xi ̸= 0 mod p

}
.

If X1 ̸= ∅, then we add the node (cYes, X1) and the edge (c,Xin)→ (cYes, X1) to
Tk. If X0 ̸= ∅, we add (cNo, X0) and the edge (c,Xin)→ (cNo, X0) to Tk.

The graph Tk that we get by this procedure has the following properties:

1. Since Dec is deterministic and total, Tk must be finite and acyclic.
2. If there is a node (c,Xin) in Tk, then the configuration c must appear in the

run of Dec on input gx⃗ for each x ∈ Xin.
3. Tk is a tree. This is because at each inner vertex the set Xin splits into two

disjoint sets or one set. Every non-root node has indegree 1.
4. If (c,Xin) is a leaf of Tk, then Dec must reach a halting configuration from c

without making any linear equality checks.
5. Because of correctness, for each leaf (c,Xin) the set Xin must be a singleton.

Otherwise, there are two different inputs for which Dec will reach the same
halting configuration and output the same bitstring.

6. Each path from the root of Tk to one its leaf corresponds to a run of Dec on
one input gx⃗, x ∈ Xstart.

To lower bound the number of equality checks that Dec makes in the worst case
it suffices now to bound the longest path in Tk.

We prove the statement now by an induction on k ∈ N. We first show the case
for k = 1. As described above, we denote by Xstart ⊂ Zk

p the set of exponents of
Enc(S) (and by abuse of notation also the inputs to Dec).

14 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

cstart, Xstart

cYes,2,X
(1)
1 cNo,2, X

(1)
0

cYes,4, X
(2)
1

.

cNo,4, X
(2)
0

(a) A decision tree Tk.-

cstart

c1

cYes,2

c3

cNo,2

c′3

cYes,4

. . .

.

cNo,4

c′′1

c′′2

(b) A configuration graph. This graph also
contains configurations that do not oc-
cur during the run of the algorithm, here
marked in gray.

Fig. 1: The decision tree we build along with the configuration graph.

Decoding LTFs in the Generic Group Model 15

Proposition 12. For an encoding-decoding scheme as above with k = 1, there
exists one x ∈ X such that Dec run on input x makes at least |S| − 1 group
equality checks. 2

Proof. It suffices to prove that the depth of T1 is at least |S|. Because of correct-
ness, we have |S| = |Xstart|. At each inner vertex (c,Xin) of T1, Dec performs a
linear equality check γ⃗ ∈ Z2

p on the input gx, x ∈ Xstart. An input gx passes the
check if γ1 ·x+ γ2 = 0 mod p, otherwise it fails the check. Hence, if (c,Xin) has
two different children (cYes, X1) and (cNo, X0), then X1 must be the singleton
{−γ2/γ1} and we have |X0| = |Xin|− 1. It follows that each inner vertex (c,Xin)
in the decision tree Tk has a child (cNo, X0) with X0 ≥ |Xin| − 1. Since each
leaf (c,Xin) must have a singleton set Xin, we can find a path in T1 of length
|Xstart| = |S|. ⊓⊔

We now turn to the case of k > 1. As an induction hypothesis, we assume that

the claim of Theorem 7 holds for all encoding-decoding schemes S̃
Enc′→ Gk Dec′→ S̃.

I.e., there exists a gx⃗ ∈ Enc′(S̃) such that the run of Dec′ on gx⃗ performs at

least
∣∣∣S̃∣∣∣ 1k − 1 group equality checks.

We show the statement for the encoding-decoding scheme S
Enc→ Gk+1 Dec→ S.

Let Tk+1 be the corresponding decision tree constructed from the configurations
of Dec. As before, for each equality check, we consider the sets Xin, X0, X1. We
note that in this case, an equality check corresponds to checking a linear equation
γ⃗ ∈ Zk+2

p over the vector of exponents of the input elements g1, . . . ,gk+1.

Let (c,Xin) be an inner vertex of Tk+1 and let γ⃗ ∈ Zk+2
p be the linear equality

check queried by Dec at this point. We call the equality check gx1
1 · · ·g

xk+1

k+1 ·
gxk+2

?
= 1G at this point meaningful if (c,Xin) has two children, otherwise we call

it redundant. If the check is meaningful, we have for the two children (cYes, X1)
and (cNo, X0) that X1 and X0 are disjoint with Xin = X1 ∪ X0. If the linear
equality check is redundant, there is only one child (cYes, X1) or (cNo, X0) with
X1 = Xin or X0 = Xin.

Proposition 13. For any meaningful equality check at an inner vertex in Tk+1,
all elements of X1 lie on an affine hyperplane of dimension at most k in Zk+1

p .

Proof. Recall that an equality check takes as input an affine linear equation
γ⃗ ∈ Zk+2

p over the input group element exponents. We have

X1 =

{
x⃗ ∈ Xin

∣∣∣∣∣
k+1∑
i=1

γi · xi = −γk+2 mod p

}

⊆

{
x⃗ ∈ Zk+1

p

∣∣∣∣∣
k+1∑
i=1

γi · xi = −γk+2 mod p

}
=: H.

2 We consider only the behaviour of Dec on inputs x ∈ Enc(S).

16 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

Now, the dimension of the affine space H is k, if (x1, . . . , xk+1) ̸= 0, and k,
otherwise.

As the equality check is meaningful, the set X0 must be non-empty. This can
only be the case if the affine space H has dimension at most k, as an affince
space of dimension k+1 would cover the entire space Zk+1

p (i.e. X1 would cover
the entire space, leaving X0 = ∅).

It follows that H has dimension k and must be an affine hyperplane. ⊓⊔

Proposition 14. If for all meaningful equality checks, |X1| < k+1
√
|S|

k
, then

there is a path in Tk+1 that needs to make at least ≥ k+1
√
|S| − 1 meaningful

linear equality checks.

Proof. Whenever an inner vertex (c,Xin) ∈ Tk+1 has two children (cYes, X1) and
(cNo, X0), we must have

|X0| = |Xin| − |X1| > |Xin| − k+1
√
|S|

k
.

So, at each meaningful check the set Xin can lose at most k+1
√
|S|

k
elements.

Consider now the path of Tk where each meaningful check gets answered nega-
tively and let t be the number of meaningful equality checks along this graph.
Note, that the path has to end in a leaf (c,Xin) with |Xin| = 1. We have:

|Xstart| − t · k+1
√
|S|

k
≤ 1

⇐⇒ t · |S|k/(k+1) ≥ |Xstart| − 1 = |S| − 1

⇐⇒ t ≥ |S| − 1

|S|k/(k+1)
=

|S|
|S|k/(k+1)

− 1

|S|k/(k+1)

=⇒ t ≥ k+1
√
|S| − 1.

⊓⊔
Proposition 15. If there is a meaningful equality check in Tk+1 such that |X1| ≥
k+1
√
|S|

k
, then there exists a path in the tree that contains k+1

√
|S| − 1 equality

checks.

Proof. Let (c,Xin) be the inner vertex of Tk+1 with children (cYes, X1) and

(cNo, X0) s.t. |X1| ≥ k+1
√
|S|

k
.

We want to apply our induction hypothesis here. Recall that by Proposi-
tion 13, there exists an affine hyperplane H of dimension k such that X1 ⊆ H
As H is a hyperplane there exists an affine linear bijection ϕ : H 7→ Zk

p. Now,
one can apply the ϕ and its inverse ϕ−1 on the exponents of group elements by
just making O(k2) group operations and exponentiations. We will denote those

maps by φ(gx⃗) := gϕ(x⃗) and φ−1(gy⃗) := gϕ−1(y⃗) for y⃗ ∈ Zk
p, x⃗ ∈ Zk+1

p .

Set S̃ := Enc−1(X1). We define a new encoding-decoding scheme S̃
Enc→ Gk Dec→

S̃ as follows:

Enc′(s) := φ(Enc(s)) ∈ Gk

Dec′(gy⃗) := Dec(φ−1(gy⃗)) ∈ S.

Decoding LTFs in the Generic Group Model 17

The correctness of (Enc′,Dec′) follows from the correctness of (Enc,Dec). Further,
the number of meaningful equality checks Dec′ needs to make in the worst cases
is lower than the number of meaningful equality checks Dec needs to make in
the worst case. For the size of S̃ we have∣∣∣S̃∣∣∣ = |X1| ≥ k+1

√
|S|

k
.

Now, let Tk be the decision tree that we can derive from the configuration graph
of Dec′. According to our induction hypothesis, Tk has a path with at least

k

√∣∣∣S̃∣∣∣ − 1 meaningful equality checks. Hence, there must exist an input gx⃗ ∈

Enc(S) s.t. Dec(gx⃗) needs to make at least

k

√∣∣∣S̃∣∣∣− 1 ≥
k

√
k+1
√
|S|

k
− 1 = k+1

√
|S| − 1

meaningful equality checks.
⊓⊔

Proposition 14 and Proposition 15 together now imply that Dec needs to make
k+1
√
|S| − 1 meaningful equality checks in the worst case. This finishes our in-

duction.
For the number of group operations we have:

Lemma 16. Any deterministic algorithm with input (g1, . . . ,gk) that makes t

non-redundant equality needs to make α ≥
√
2t+ 1

4 − k + 1
2 group operations

when run on input (g1, . . . ,gk).

Proof. Recall that in the type safe generic group model, equality checks are
free. However, as we are counting non-redundant equality checks, every equality
check needs to have a new pair of input group element vectors (g1,g2) that
have never been compared to each other before. In an algorithm with runtime
at most α (measured in the number of cost-inducing group operations), at most
α + k distinct group elements can be computed, which means at most

(
α+k
2

)
=

(α+k)·(α+k−1)
2 pairs of group elements can be used as inputs to equality gates.

This yields the following:

(α+ k)(α+ k − 1)

2
≥t

which we can solve for α ≥ max
(
0,
√
2t+ 1

4 − k + 1
2

)
. ⊓⊔

4 Lower Bounds for LTFs with Many Bits and Few
Group Elements in the Output

In this section, we show upper bounds for the lossiness of LTFs where the output
has only few group elements but many bits. From Theorem 7 we cannot derive

18 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

useful bounds for these LTFs directly, as the corresponding encoding-decoding
scheme could put a lot of information about the input in the bit part of the
output. Thus, we have to show that a LTF cannot put too much information in
the bit output, at least not if the hardness of distinguishing lossy from injective
keys is based on a group assumption. To formalize this intuition, we want to
construct an adversary that can distinguish lossy from injective keys if there
is too much information about the input in the bit part of the output. As we
assume the hardness comes from the group, we allow the adversary to have
arbitrary runtime and only restrict its access to the group oracle. The goal of
this adversary compute the bit part of the output for all possible input and then
check how many different options for this bit part there are (i.e. the adversary
wants to compute the size of the set Yek from Lemma 10).

However, this bit part of the output may be dependent on group elements
from the evaluation key, i.e. the bits in the output may be derived from the
outcome of group equality checks. Therefore, the adversary needs to find some
way to approximate the outcome of such group equality checks. To this end, we
first define a class of LTFs in Section 4.1 for which it is easy to find such an
approximation because for each possible group equality check, the probability
of passing is either very close to 1 or very close to 0. We provide an adversary
for this class that makes no group operations to estimate the size of Yek. This in
turn means that if the sizes of Yek cannot differ too much for lossy and injective
keys, and thus the lossiness is bounded as it has to be “contained” in the group
element part of the output.

As a second step, we show how for an LTF that does not already fulfill
this property, we can narrow down the distribution from which the challenge
evaluation key comes such that it fulfills the same property as before. We do this
using a statistical binary search which we describe generically in Section 4.2, and
then we apply this strategy in Section 4.3 to obtain an adversary that makes
only polynomially many group operations to distinguish lossy from injective keys
if the size of Yek differs too much between the key types.

This in turn yields a logarithmic upper bound for the lossiness of group-based
LTFs with a constant number of group elements in the output.

4.1 LTFs with Linearly Independent Evaluation Keys

Definition 17 (LTFs with Linearly Independent Evaluation Keys). We
say that a LTF LTF = (LGen, LEv, LInv) has q(λ)-linearly independent evaluation
keys if

– {ek | (ek, ·) $← LGen(1λ, 1n, ·)} ⊂ {0, 1}ℓb × Gℓg . Where ℓb(λ) and ℓg(λ) are
polynomials.

– For any λ ∈ N, any b⃗′ ∈ {0, 1}ℓb , any vector v⃗ ∈ Zℓg+1
p \ {⃗0} and each

a ∈ {0, 1}, it holds that

Pr
(ek,ik)

$←LGen(1λ,1n,a)

(⃗b,⃗e):=ek

gvℓg+1

ℓg∏
i=1

evii = 1G

∣∣∣∣∣∣b⃗ = b⃗′

 /∈
[

1

2q(λ)
, 1− 1

2q(λ)

]

Decoding LTFs in the Generic Group Model 19

for some function q(λ) > 0.

– For any λ ∈ N, any b⃗′ ∈ {0, 1}ℓb , any vector v⃗ ∈ Zℓg+1
p \ {⃗0}, it holds that if

Pr
(ek,ik)

$←LGen(1λ,1n,1)

(⃗b,⃗e):=ek

gvℓg+1

ℓg∏
i=1

evii = 1G

∣∣∣∣∣∣b⃗ = b⃗′

 <
1

2q(λ)

then

Pr
(ek,⊥) $←LGen(1λ,1n,0)

(⃗b,⃗e):=ek

gvℓg+1

ℓg∏
i=1

evii = 1G

∣∣∣∣∣∣b⃗ = b⃗′

 <
1

2q(λ)

and vice versa.

We give a very natural and common class of LTFs below that fulfill Defini-
tion 17.

Definition 18 (LTFs with Uber-like Evaluation Keys). We say that an
LTF LTF = (LGen, LEv, LInv) has uber-like evaluation keys if the following holds.

– The support of LGen is a subset of Gℓg where ℓg(λ) is a polynomial.

– There exists a family of polynomials P
(λ,n)
1 , . . . , P

(λ,n)
ℓg

over Zp in f(λ, n)

variables (where f is a polynomial) such that LGen(1λ, 1n, 1) samples values

x1, . . . , xf(λ,n)
$← Zp and sets ei := gP

(λ,n)
i (x⃗) for i = 1, . . . , ℓg.

– There exists a family of polynomials Q
(λ,n)
1 , . . . , Q

(λ,n)
ℓg

over Zp in f(λ, n)

variables (where f is a polynomial) such that LGen(1λ, 1n, 0) samples values

x1, . . . , xf(λ,n)
$← Zp and sets ei := gQ

(λ,n)
i (x⃗) for i = 1, . . . , ℓg.

Lemma 19. Any LTF LTF = (LGen, LEv, LInv) with uber-like evaluation keys

where the polynomials P
(λ,n)
1 , . . . , P

(λ,n)
ℓg

and Q
(λ,n)
1 , . . . , Q

(λ,n)
ℓg

have degree at

most d(λ) has q(λ)-linearly independent evaluation keys (in the sense of Defini-
tion 17) for any q(λ) < p

2d(λ) .

Proof. We show this for the injective case, the lossy case follows analogously.

Fix n, λ. Let v⃗ ∈ Zℓg(λ)+1
p . Then, P = vℓg+1 +

∑ℓg(λ)
i=1 vi · P (λ,n)

i is a polynomial
of degree ≤ d(λ). We consider two cases.

1. P = 0 ∈ Zℓg(λ)
p . Then

Pr
(ek,ik)

$←LGen(1λ,1)
ek=:⃗e

gvℓg+1

ℓg∏
i=1

evii = 1G

 = 1 /∈
[

1

2q(λ)
, 1− 1

2q(λ)

]
.

2. P ̸= 0. Then, it holds by the Schwartz-Zippel-Lemma (see Lemma 4) that

Prx⃗[P (x⃗) = 0] ≤ d
p . As the LGen algorithm samples e⃗ by sampling x⃗

$←

20 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

Zf(λ,n)
p , it holds that

Pr
(ek,ik)

$←LGen(1λ,1)
ek=:⃗e

gvℓg+1

ℓg∏
i=1

evii = 1G

 ≤ d

p
.

Using q(λ) < p
2d(λ) , we obtain d(λ)

p < 1
2q(λ) .

We now prove the last item of Definition 17. In the case that the last item
of Definition 17 does not hold, there exists a distinguisher between lossy and
non-lossy keys that makes a polynomial number of group equality checks (but
is otherwise computationally unbounded). The distinguisher computes a vector
v⃗ such that∣∣∣∣∣∣∣ Pr
(ek,ik)

$←LGen(1λ,1n,1)
e⃗:=ek

gvℓg+1

ℓg∏
i=1

evii = 1G

− Pr
(ek,⊥) $←LGen(1λ,1n,0)

e⃗:=ek

gvℓg+1

ℓg∏
i=1

evii = 1G

∣∣∣∣∣∣∣ ≥ 1− 1

q(λ)
.

Such a vector must exist as we already showed that the probability for each
vector is either smaller than 1

2q(λ) or larger than 1− 1
2q(λ) for lossy and injective

keys separately. Thus, if there is a vector for which the last item does not hold, it
must be such that the probability is larger than 1− 1

2q(λ) for one type of key, and

smaller than 1
2q(λ) for the other type. It thus follows that the difference between

the probabilities must be larger than 1− 1
q(λ) . The algorithm can determine the

vector v⃗ by running the LGen algorithm in its head computing the exponents of
all group elements in the evaluation keys without ever querying the group oracle.
It then checks if for the evaluation key ek = (e1, . . . , eℓg) it received, it holds

that gvℓg+1
∏ℓg

i=1 e
vi
i = 1G. Without loss of generality, we may assume that the

probability in the lossy case is the larger one. In this case, the adversary would
output that the key is lossy if the equality check returned true, and injective
otherwise. We obtain that this adversary has advantage 1− 1

q(λ) at distinguishing

lossy from injective keys, and thus, LTF would not be secure.
⊓⊔

In the following, we show that for schemes with linearly independent evalu-
ation keys, there exists an adversary that issues no group oracle queries (but is
computationally unbounded) and breaks the scheme if there is too much lossiness
“contained” in the non-group output of LEv.

Theorem 20. Let LTF = (LGen, LEv, LInv) be a candidate l-lossy trapdoor func-

tion with q(λ)-linearly independent evaluation keys, where for any (ek, ·) $←
LGen(1λ, 1n, ·), Image(LEv(ek, ·)) ⊂ {0, 1}ℓb × Gℓg . Denote by Yek ⊂ {0, 1}ℓb the
set

Yek :=
{
y ∈ {0, 1}ℓb

∣∣∣∃h⃗ ∈ Gℓg : (y, h⃗) ∈ Image(LEv(ek, ·))
}
.

Let r(λ) be an upper bound on the number of group equality checks that the al-
gorithm LEv makes. If it holds that for all (ek, ik) ∈ Image(LGen(1λ, 1n, 1)) that

Decoding LTFs in the Generic Group Model 21

|Yek| > 2n−l + 2n · 3 · 2r(λ)q(λ) , then there exists an adversary that does not make

any group queries (but is computationally unbounded) that breaks the indistin-
guishability of lossy and injective keys with advantage

advLINDA (λ) = 1− 1

3
.

Proof Overview. In the proof, we construct an adversary against the indistin-
guishability of lossy and injective keys that is unbounded, but makes no queries
to the group evaluation and the group equality check oracle. As access to the
group is limited, the adversary cannot break any assumption that is hard in
Maurer’s generic group model. The adversary’s strategy is the following: It pre-
computes the values from Yek in the theorem statement for all input values. If
|Yek| ≥ 2n−l, it outputs that the key was injective (if Yek is larger than 2n−l,
then so is Image(LEv(ek, {0, 1}n))).

However, some of the bits in the output of LEv may actually depend on
group elements, so the adversary cannot straightforwardly compute them with-
out querying the group oracle. To avoid having to query the group oracle, recall
that the probability for any linear equation to hold is either close to 0 or close
to 1. Our adversary therefore simulates these group equality checks (without
actually querying the group oracle) by responding with the most likely output
of the group equality check.

Proof. We first provide an adversary that is unbounded in the amount of non-
group operations it can make, but bounded in its group operations.

The adversary proceeds as follows: It receives an evaluation key ek =: (⃗b, e⃗) ∈
{0, 1}ℓb ×Gℓg . For each vector v⃗ ∈ Zℓg+1

p , compute

pr(v⃗) = Pr
(ek,ik)

$←LGen(1λ,1n,1)

ek=:(⃗b′,e⃗′)

gvℓg+1

ℓg∏
i=1

e′vii = 1G

∣∣∣∣∣∣b⃗ = b⃗′

 .

In the following, the adversary will simulate the group oracle to the eval-
uation algorithm LEv(ek, ·). The simulation works as follows. For each group
element ei from the evaluation key, it internally keeps a formal variable Ei. It
furthermore keeps a list L of all “group elements” the algorithm has computed
so far. Initially, this list is filled with the formal variables from the evaluation
key. For any group operation that LEv(ek, ·) makes, the adversary adds together
the two corresponding list entries from L. It adds the linear combination of the
entries to its list. Whenever the algorithm makes a query to check two group

elements for equality, it computes the vector v⃗ ∈ Zℓg+1
p corresponding to the

equality check, i.e. the equality check checks whether vℓg+1 +
∑ℓg

i=1 Ei · vi = 0.

If v⃗ = 0⃗, it returns true. Otherwise, it checks whether pr(v⃗) ≤ 1
2q(λ) and returns

false if yes, and true otherwise.
The adversary then proceeds as follows to approximate the size of Yek for the

evaluation key ek at hand as follows:

22 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

It iterates over all the possible input values of LEv(ek, ·), i.e. over all x⃗ ∈
{0, 1}n and calculates the bit part of LEv(ek, x⃗). To do this without making
any additional group operations, it simulates all group operations as described
above. This yields an approximate set Ỹek for the evaluation key ek at hand. The

adversary then compares whether
∣∣∣Ỹek

∣∣∣ ≥ 2n−l + 2n · 3 · r(λ)q(λ) in which case it

outputs that the key is injective, otherwise that it is lossy.
We now compute the advantage of the adversary A.
Recall that r(λ) is an upper bound on the number of equality checks made

by LEv. Note that by Lemma 16, this is bounded by the square of the runtime
of LEv and thus polynomial in λ.

Let Fx⃗ be the event that at least one of the equality checks in the computation
of LEv(ek, x⃗) is simulated wrong by the adversary.

We have

E [Fx⃗] ≤ r(λ) · 1

q(λ)

Let W1 (W0) be the random variable that indicates how many bit strings
in the evaluation were computed wrong for all x⃗ ∈ {0, 1}n in the case that the
evaluation key was injective (lossy).

We have that

E [W1] =
∑

x⃗∈{0,1}n
E [Fx⃗] ≤ 2n · r(λ) · 1

q(λ)
.

and

E [W0] =
∑

x⃗∈{0,1}n
E [Fx⃗] ≤ 2n · r(λ) · 1

q(λ)
.

Using a Markov bound, we obtain for µ ∈ {1, 0}

Pr [Wµ ≥ 3E [Wµ]] ≤
1

3
.

Thus, with probability 1− 1
3 , in case of an injective key∣∣∣Ỹek

∣∣∣ ≥ |Yek| − 3 · E[W1]

>2n−l + 2n · 3 · 2r(λ)
q(λ)

− 3 · 2n · r(λ) · 1

q(λ)

=2n−l + 2n · 3 · r(λ)
q(λ)

.

Recall that as the function is l-lossy, for any (ek,⊥) $← LGen(1λ, 1n, 0), it holds
that |Yek| ≤ 2n−l. Therefore, in case of a lossy key, we get with probability 1− 1

3∣∣∣Ỹek

∣∣∣ ≤ |Yek|+ 3 · E[W0]

≤2n−l + 3 · 2n · r(λ)
q(λ)

.

Decoding LTFs in the Generic Group Model 23

That is, in both cases, the probability that the adversary outputs the correct bit
is 1− 1

q(λ) .

In the end, we obtain that

advLINDA

=2 ·

1

2
Pr

(ek,ik)
$←LGen(1λ,1n,1)

ek=:(⃗b,⃗e)

[A outputs 1] +
1

2
Pr

(ek,⊥) $←LGen(1λ,1n,0)

ek=:(⃗b,⃗e)

[A outputs 0]− 1

2

≥2 ·

(
1

2
·
(
1− 1

3

)
+

1

2
·
(
1− 1

3

)
− 1

2

)
= 1− 2

3
.

⊓⊔

Corollary 21. For an LTF as in Theorem 20, it holds that for all evaluation

keys ek with (ek, ik)
$← LGen(1λ, 1n, 1) that |Yek| ≤ 2n−l + 2n · 3 · 2r(λ)q(λ) .

Corollary 22. A candidate lossy trapdoor function LTF = (LGen, LEv, LInv)
where LEv makes at most r(λ) many group equality queries with q(λ)-linearly
independent evaluation keys where q(λ) ≥ 3λ · r(λ) and with k constant can be
at most l-lossy for l ∈ O(log(λ)).

Proof. From Lemma 10, we know that |Yek| is lower bounded by 2n−O(log λ).
Furthermore, from Corollary 21, we know that |Yek| ≤ 2n−l + 2n · 3 · r(λ) · 2

q(λ) .

Using that q(λ)
r(λ)·3 ∈ Ω(λ), we obtain that

2n−O(log λ) ≤ |Yek| ≤ 2n−l + 2n−Ω(log λ)

Solving for l yields
l ∈ O(log λ).

⊓⊔

More generally, if q(λ) is superpolynomial, we can even bound the lossiness
of LTF for a non-constant number of group elements in the image of LEv:

Corollary 23. A candidate lossy trapdoor function LTF = (LGen, LEv, LInv)
with q(λ)-linearly independent evaluation keys where LEv makes at most r(λ)
many group equality queries and LInv makes at most s(λ) many group equality
queries. If q(λ) ≥ 7 · r(λ) · (s(λ) + 1)k, then we have for the lossiness l of LTF

l ∈ O(k log(λ)).

Proof. Let ek be an injective evaluation key. Again, we deduce from Lemma 10

|Yek| ≥
2n

(s(λ) + 1)k
.

24 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

From Corollary 21, we have

|Yek| ≤ 2n−l + 2n · 3 · r(λ) · 2

q(λ)
.

So, we get in total

2n−l + 2n · r(λ) · 6

q(λ)
≥ 2n

(s(λ) + 1)k
.

Solving for l gives us

−l ≥ log
(
(s(λ) + 1)−k − 6 · r(λ)/q(λ)

)
,

which is equivalent to

l ≤ log

(
q(λ) · (s(λ) + 1)k

q(λ)− 6 · r(λ) · (s(λ) + 1)k

)
.

We can plug in the inequality q(λ) ≥ 7 · r(λ) · (s(λ) + 1)k and get

l ≤ log

(
q(λ) · (s(λ) + 1)k

q(λ)− 6 · r(λ) · (s(λ) + 1)k

)
≤ log

(
7 · r(λ) · (s(λ) + 1)2k

r(λ) · (s(λ) + 1)k

)
= log

(
7 · (s(λ) + 1)k

)
∈ O(k · log s(λ)).

⊓⊔

If we consider for example LTFs with keys generated as in Definition 18 by
polynomials of constant degree, then q(λ) lies in Ω(p). If the number of group
elements output by LEv lies in o(log(p)/ log(λ)), then it follows that the lossiness
of LTF can only be by a logarithmic factor larger than the number of group
elements outputted by LEv.

4.2 Statistical Binary Search

In order to generalize our result from the previous subsection to LTFs that do
not have already linearly independent keys, we describe a search algorithm that
allows to reduce the distribution of a secret element through running a minimal
amount of tests. Looking forward, the secret element will be the exponent vector
of the group elements in the evaluation key, and the tests will be group equality
checks that check some linear equation over the exponent vector.

Concretely, our algorithm—that we denote by S—is in the following situa-
tion: An oracle O, with which S interacts, samples a secret element x together
with some information aux ∈ {0, 1}∗ according to a distribution D. S receives
aux and knows the distribution D and, additionally, is aware of a finite (but
potentially large) set T of tests resp. checks. S can—multiple times—pick a test

Decoding LTFs in the Generic Group Model 25

t ∈ T and query the oracle O on it. O will evaluate the test t on x and send the
result t(x) ∈ {0, 1} to S. While S is computationally unbounded in principle,
we are interested in keeping the number of tests run by S low. We can imagine
that each test performed on x is assigned some fixed cost for S.

We categorize tests into ones that are meaningful and not meaningful with
respect to a given distribution D. Intuitively speaking, a meaningful test is one
where the algorithm can learn a lot about x because the probability that the test
will pass on an element sampled from D is rather close to 1

2 . A not meaningful
test on the other hand is one where the probability of passing for an element
sampled from D is either very close to 0 or close to 1. More formally, we introduce
a parameter ε ∈ (0, 0.5] that specifies how close the probability needs to be to 0
or 1 in order for the test to be considered not meaningful, i.e. a test is meaningful
w.r.t. the distribution D if

Pr
x′ $←D

[t(x′) = 1] ∈ [ε, 1− ε]

and not meaningful otherwise.
We give a formal description of S in Algorithm 1. The algorithm S will not

always be able to retrieve x, however, we show that if it is not able to retrieve x,
it will at least be able to reduce the distribution of x—by a polynomial number
of tests—down to a conditional distribution, on which all tests in T are not
meaningful any more.

In the following, for a distribution D over a set X and an element x ∈ X, we
will denote by D(x) the probability that x gets sampled by D, i.e.

D(x) = Pr
x′←D

[x = x′].

Further, for a non-empty subset A ⊂ X, we will denote by D|A the conditional
distribution of D on A, i.e. for x ∈ X we set

D|A(x) :=

D(x)∑

x′∈AD(x′)
, if x ∈ A,

0, if x /∈ A.

(3)

The idea of S is to look for a test t that is meaningful, i.e. the probability
of x passing t is larger than ε, but smaller than 1 − ε. As the adversary is
unbounded outside of the test queries, it can compute the probabilities of tests
passing without querying the oracle by iteratively sampling from D using all
possible random coins and counting how often each test passes. If there is a
meaningful test t, S queries O on t and receives the bit t(x). Consequently, it
updates its knowledge about x: S computes the conditional distribution D′ :=
D|{x′∈X | t(x′)=t(x)}.

This new distribution either has no more meaningful tests, in which case the
algorithm terminates, or the algorithm can repeat this step with another test t′

that is meaningful w.r.t. D′.

26 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

By repeating this procedure multiple times, S will finally be able to restrict
the distribution of x to a distribution on which each test t ∈ T will pass with
very high probability > 1− ε or very low probability < ε, i.e. there are no more
meaningful tests left. We show that under some natural requirement on D, S
will always terminate after a polynomial number of iterations and thus also using
only a polynomial number of test oracle queries (if ε = 1/poly(λ)).

Algorithm 1: Statistical Binary Search Algorithm S
Input: A distribution D over a set X ×{0, 1}∗, a set T of tests t : X →
{0, 1}, a control parameter ε ∈ (0, 0.5], an oracle O that samples secretly
(x, aux)← D and answers queries t ∈ T with t(x).
Output: A subset A ⊆ X.

1 Receive auxiliary information aux from O
2 Set i := 0
3 Set D0 := D|X×{aux}
4 Compute A0 := {x′ ∈ X | D0(x

′) > 0}
5 while ∃t ∈ T : Prx′←Di

[t(x′) = 1] ∈ [ε, 1− ε] do
6 Choose ti+1 ∈ T s.t. Prx′←Di

[ti+1(x
′) = 1] ∈ [ε, 1− ε]

7 Query O on ti+1 and receive bi+1 := ti+1(x)
8 Compute Ai+1 := {x′ ∈ Ai | ti+1(x

′) = bi+1}
9 Set Di+1 := Di|Ai+1

10 Increment i := i+ 1

11 end
12 Output Ai.

We state and prove the formal guarantees of S:
Theorem 24. Let D be a distribution over X × {0, 1}∗. Let T be a set of tests
t : X → {0, 1} and let ε ∈ (0, 0.5].

Let S be the algorithm from Algorithm 1.

1. If x ∈ X is the secret sampled by O together with the auxiliary data aux and
if A is the output of S(D, T, ε,O), then x lies in A. Further, we have for
each test t ∈ T

Pr
x′←D|A×{aux}

[t(x′) = 1] /∈ [ε, 1− ε]. (4)

2. If there is an η ∈ N s.t. we have for each x ∈ X and aux ∈ {0, 1}∗

D(x, aux) > 0 =⇒ D(x, aux) ≥ 2−η, (5)

then algorithm S on input D, T, ε,O terminates after a finite number of steps
and makes at most ⌊

−η
log(1− ε)

⌋
(6)

calls of the oracle O. If ε = 1/q for q ≥ 2, we have −η/log(1− ε) ≤ q · η.

Decoding LTFs in the Generic Group Model 27

Proof. It is easy to verify the first point. At the beginning of the algorithm S, x
lies in A0. If in an iteration step x lies in Ai and S receives the outcome bi+1 =
ti+1(x) of a test ti+1 ∈ T , then x must lie in Ai+1 = {x′ ∈ Ai | ti+1(x

′) = bi+1}.
Further, it is clear that S can only terminate if there does not exist a test t ∈ T
s.t. the probability of x passing test t is interesting enough i.e. between ε and
1− ε.

For the second point, we define the i-th mass for i ≥ 0 by

mi := Pr
x′←D0

[x′ ∈ Ai] =
∑

x′∈Ai

D(x′). (7)

Note that we have 1 = m0 > m1 > . . . > 0. The number mi measures how much
of the original search space we started with remained after the i-th iteration.
The reason why we consider the mass of Ai instead of its count is that it may
happen that A0 contains exponentially many elements and each Ai+1 is only by
one element smaller than Ai. We will give an example for such a distribution in
Remark 25.

We claim that the mass needs to decrease exponentially. Let bi+1 = ti+1(x)
be the response of O in the (i+ 1)-th iteration step. Note, that we have

Pr
x′←Di

[ti+1(x
′) = bi+1] = Pr

x′←D0

[ti+1(x
′) = bi+1 | x′ ∈ Ai] (8)

=
Prx′←D0

[ti+1(x
′) = bi+1, x

′ ∈ Ai]

Prx′←D0
[x′ ∈ Ai]

(9)

=
Prx′←D0

[x′ ∈ Ai+1]

Prx′←D0
[x′ ∈ Ai]

=
mi+1

mi
. (10)

We know that Prx′←Di
[ti+1(x

′) = bi+1] must be bounded between ε and 1− ε.
It follows, mi+1/mi ≤ 1− ε and, hence

mi ≤ (1− ε)i. (11)

However, since the probability of the smallest possible outcome of D0 is at least
2−η, mi can never become smaller than 2−η. It follows that the maximum number
i of iterations S can perform must be smaller than η/(− log(1− ε)). ⊓⊔

Remark 25. In Theorem 24, we really need that the smallest positive probability
of D is larger than 2−η for bounding the number of iterations of S. Consider, for
example, the distribution D over the natural numbers {1, 2, . . .} that outputs 1
with probability 1

2 , 2 with probability 1
4 , 3 with probability 1

8 et cetera.
If T consists of tests t of the form t(x) = 1 ⇐⇒ x ≤ α for some α, then

the runtime of S may be arbitrarily high. In particular, for x ∈ {1, 2, . . .}, the
number of iterations of S with ε = 1/2 will be exactly x.

Note, that this counter example also shows that we cannot prove Theorem 24
by only considering entropical inequalities. The entropy of the distribution D of
the counter example here is low, however it is equal to the entropy of D|{2,3,4,...}.
In general, it may happen that—after S applies an iteration step—the entropy
of Di+1 is higher than the entropy of Di. So, we really need to argue over the
mass instead of the entropy.

28 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

4.3 Bounding the Lossiness of LTFs with Linearly Dependent Keys

We now use the strategy described in Section 4.2 to extend the results from
Section 4.1 to general LTFs where the number of group elements in the output
is small.

Theorem 26. Let LTF = (LGen, LEv, LInv) be a candidate l-lossy trapdoor func-

tion , where for any (ek, ·) $← LGen(1λ, 1n, ·), Image(LEv(ek, ·)) ⊂ {0, 1}ℓb ×Gℓg .
Denote by Yek ⊂ {0, 1}ℓb

Yek :=
{
y ∈ {0, 1}ℓb

∣∣∣∃h⃗ ∈ Gℓg : (y, h⃗) ∈ Image(LEv(ek, ·))
}
.

Let r(λ) be an upper bound on the number of group equality checks that the
algorithm LEv makes. Let q(λ) > 6r(λ) be a polynomial. If it holds that for all

(ek, ik) ∈ Image(LGen(1λ, 1n, 1)) that |Yek| > 2n−l +2n · 3 · 2r(λ)q(λ) then there exists

an adversary that is bounded to polynomially many group evaluation queries, but
unbounded otherwise that breaks the indistinguishability of lossy and injective
keys with advantage

advLINDA (λ) = 1− 1

3

Proof overview. We construct an adversary as follows: The adversary first ap-
plies the statistical binary search from Section 4.2 with the tests being group
equality checks for linear equations that hold with a probability larger than 1

2q(λ)

and smaller than 1
2q(λ) . This yields a new distribution over the evaluation keys

conditioned on the results of the group equality checks. This distribution has at
least one of the following properties.

– It is a distribution over only polynomially many options of keys. In this
case, the adversary will iterate over the candidate keys and check which key
it is. It can then use knowledge of all the discrete logarithms of the key to
determine whether it is lossy or not.

– The distribution has a property equivalent to that of the linearly independent
keys property. Thus, the adversary applies the same strategy as the adversary
in Theorem 20 to estimate the size of the set Yek for the key in question. It
then uses this estimate to decide whether or not the key is lossy.

Proof. We describe the adversary’s strategy in more detail.

We define the distribution D0 samples vectors in Zℓg
p as follows:

00 Draw random coins c
$← {0, 1}

01 Run (ek, ·) := LGen(1λ, 1n, c)

02 Parse ek =: (b⃗′, e⃗′)

03 If b⃗ ̸= b⃗′, go back to start
04 Otherwise extract the discrete logarithms e⃗′ := dlog(e⃗′) from LGen(1λ, 1n, c)

05 Output e⃗′

Decoding LTFs in the Generic Group Model 29

We note that since we assume the algorithm LGen to be generic in the sense of
Definition 1, anyone running this algorithm can extract the discrete logarithms
of all group elements contained in the evaluation key, and in fact, the adversary
can simulate the LGen algorithm without ever making a group oracle query to
obtain the discrete logarithms of the keys.

In the first phase, the adversary runs group equality checks to narrow down
the distribution from which the evaluation key it go may have come from to
one that either fulfills the linear independence property from Definition 17, or
supports only polynomially many evaluation keys. Denote ek =: (⃗b, e⃗). The ad-
versary computes the probabilities

pr0(v⃗) = Pr
e⃗

$←D0

v0 + ℓg∑
i=1

ei · vi = 0

for each v⃗ ∈ Zℓg+1

p .
It then iteratively computes a new distribution Dj as follows: If |supp(Dj−1)|

is not polynomial in λ, and there exists v⃗ such that prj−1(v⃗) := Pr
e⃗

$←Dj−1

[∑ℓg
i=1 ei · vi = 0

]
∈[

1
q(λ) , 1−

1
q(λ)

]
, then it picks a vector v⃗ with prj−1(v⃗) ∈

[
1

q(λ) , 1−
1

q(λ)

]
. It then

queries the group equality oracle on
∏ℓg

i=1 e
vi
i

?
= 1G. It computes the sets

A=
j :=

e⃗ ∈ supp(Dj−1)

∣∣∣∣∣∣
ℓg∑
i=1

ei · v⃗ = 0

and

A ̸=j :=

e⃗ ∈ supp(Dj−1)

∣∣∣∣∣∣
ℓg∑
i=1

ei · v⃗ ̸= 0

 .

It then computes the distribution Dj := Dj−1|A=
j
if the equality check returned

true, and Dj := Dj−1|A ̸=
j
if it returned false.

Once this iterative process stops, there are two possible scenarios for the
adversary.

1. |supp(Dj)| < poly(λ) for a fixed polynomial poly. In this case, the adversary
tests for each e⃗ ∈ supp(Dj) whether (ge1 , . . . ,geℓg) = e⃗. This requires only
polynomially many group operations and group equality checks as there are
only polynomially many candidate keys at this point.

2. For each vector v⃗ ∈ Zℓg
p , prj(v⃗) /∈

[
1

q(λ) , 1−
1

q(λ)

]
. In this case, the adversary

proceeds the same way as the adversary in Theorem 20. In this case, it
succeeds with probability 1− 2

3 .

We analyse how many group operations this adversary makes. For any (ek, ·) ∈
Image(LGen(1λ, 1n, ·)), with ek =: (⃗b, e⃗), Pr

e⃗
$←D0

[(ge1 , . . . ,geℓg) = e⃗] ≥ 2−ρ(λ)

30 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

where ρ(λ) is an upper bound on the length of the random input the algo-
rithm LGen(1λ, 1n, ·) uses. In particular ρ(λ) is polynomial in λ. We apply The-
orem 24 with ε = 1

q(λ) , η = ρ(λ) and obtain that the adversary makes at most⌊
−ρ(λ)

log(1− 1
q(λ)

)

⌋
≤ q(λ) · ρ(λ) queries. For q(λ) polynomial, this is polynomial.

⊓⊔

Corollary 27. Let LTF = (LGen, LEv, LInv) be a lossy trapdoor function with a
constant number k of group elements in its output. Then, LTF can at most be
l-lossy for l ∈ O(log λ).

Proof. We set q(λ) = 6λ·r(λ). We get that |Yek| ≤ 2n−l+2n· 1λ = 2n−l+2n−log(λ).

Using Lemma 10, we furthermore obtain |Yek| ≥ 2n−O(log(λ)) and thus

2n−O(log(λ)) ≤ |Yek| ≤ 2n−l + 2n−log(λ)

Solving for l yields l ∈ O(log(λ)). ⊓⊔

5 Impossibility of LTFs with Group Elements as Input

In this section we consider LTFs that take group elements as inputs and out-
put group elements as well. For LTFs where LEv is restricted to generic group
operations as in Definition 1, we show that they can lose only less than one
group element worth of information, or none at all if LEv makes no use of group
equality checks.

Definition 28 (LTFs with Group Elements as Input). Let LTF = (LGen,
LEv, LInv) be a lossy trapdoor function that has the following input and output
spaces:

LGen: Takes as input a bitstring 1λ corresponding to the security parameter, a
bitstring 1n corresponding to the input length, and a single bit b indicating
whether to generate a lossy key or an injective key pair. It outputs an eval-
uation key ek consisting of bits z1, . . . , zℓb and group elements g1, . . . ,gℓg .
Without loss of generality, we consider inversion keys to be bitstrings (any
group element inside the inversion key can also be expressed through its ex-
ponent to a fixed generator g)

LEv: Takes as input an evaluation key ek as above, and an input bitstring which
is parsed as group elements h1, . . . ,hn. It outputs a group element string
y1, . . . ,yk.

LInv: Takes as input an inversion key ik as above and a group element string
y1, . . . ,yk and outputs a string of group elements h1, . . .hn.

Theorem 29. Let LTF be a lossy trapdoor function as in Definition 28 with
perfect correctness where the LEv algorithm makes at most r(λ) many group
equality queries. If LTF is l-lossy for some integer l > log p− log(p− r(λ)), then
lossy keys and injective keys can be distinguished by a probabilistic polynomial-
time algorithm.

Proof.

Decoding LTFs in the Generic Group Model 31

Evaluation algorithm with no equality queries. As a warm-up, we prove the result
on a restricted class of evaluation algorithms LEv, which are limited to making
no equality queries. In this case, as LEv is generic in the sense of Definition 1,
it can only apply the group operation polynomially many times to compute the
output group elements. Thus, for each position j ∈ k in the output, there is

a vector v⃗j ∈ Zℓg
p and a vector w⃗j ∈ Zn

p along with a scalar uj such that for
input h1, . . . ,hn and evaluation key group elements g1, . . . ,gℓg , the output yj

is computed as:

yj := guj

ℓg∏
i=1

g
vj,i
i ·

n∏
i=1

h
wj,i

i .

Note that the vectors v⃗j and w⃗j may be derived from the bits in the evaluation
key through bit operations, but as we assume the algorithm makes no equality
checks, they can be computed without making any group queries. We describe
how to distinguish injective from lossy keys in this case. The vectors w⃗j give
rise to a matrix W and the evaluation function can be seen as doing a matrix
multiplication of (h1, . . . ,hn) with W in the exponent and then multiplying

component-wise with the vector
(
gu1

∏ℓg
i=1 g

v1,i

i , . . . ,guk
∏ℓg

i=1 g
vk,i

i

)
. This op-

eration is injective if and only if W has full rank so it suffices to check for this
to distinguish lossy from non-lossy keys.

Evaluation algorithm with equality queries. We now turn to the general case
where the evaluation algorithm may make equality check queries as well. Our
goal is to compute the matrixW again. However, the entries of the matrixW may
depend on the output of group equality checks. We describe a “simulated” version
of the algorithm LEv that will yield an “approximate” matrix W̃ . This simulated
version of LEv replaces some of the group equality checks with estimations. We
distinguish two types of group equality checks that can occur during a run of
LEv. As in the previous sections, we note that group equality checks boil down
to checking a linear equation in the exponents.

1. The linear equation contains only group elements g,g1, . . . ,gℓg with non-zero
coefficients. In this case, the outcome of the equation is completely derived
from the evaluation key. Our simulated variant of LEv makes the according
equality check query to the real group oracle.

2. The linear equation contains also group elements h1, . . . ,hn with non-zero
coefficients. In this case, the simulated version of LEv assumes that the group
equality check oracle returns 0.

Using the above simulation combined with the technique for the case with no
equality checks, we obtain the approximate matrix W̃ along with values ũj and

vectors ˜⃗vj . We note that by construction, these values are independent of the
input. We want to argue however, that for a large fraction of the input, these
values model the evaluation correctly (namely the set of input vectors for which
every equality check from the run of LEv(ek, ·) returns 0 is large).

32 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

Denote by

H :=

h⃗ ∈ Gn

∣∣∣∣∣∣LEv(ek, h⃗) ̸= h⃗W̃ ◦

gu1

ℓg∏
i=1

g
v1,i

i , . . . ,guk

ℓg∏
i=1

g
vk,i

i

the set of possible inputs for which the simulated evaluation deviates from the
real evaluation where by ◦ we denote the component-wise product. We want to
argue that |H| ≤ r(λ) · pn−1 where r(λ) is an upper bound on the number of
group equality checks that LEv makes. We note that each linear equality check
as in the second item checks for membership of h⃗ in a subspace of dimension at
most n− 1. This subspace contains ≤ pn−1 many input vectors. Therefore, each
equality check can add at most ≤ pn−1 “deviating” input vectors to H. As the
algorithm is performed as if each equality check of the second type returned 0,
it makes at most r(λ) many equality checks (we do not perform equality checks
that would occur in other “branches” of the algorithm that can only be reached
if an equality check returned 1).

As each such equality check only covers a subspace of size at most pn−1, the
union of all these subspaces is of size at most r(λ) · pn−1.

Therefore, the set of “deviating” input vectors H has size at most H ≤
pn−1 ·r(λ). Thus, if the matrix W̃ is of full rank, the function evaluates injectively
on all but r(λ) · pn−1 possible input values.

This means that if lossy and injective keys are indistinguishable, the function
can have a lossiness of at most

l ≤ log p− log(p− r(λ))

in terms of bits where we consider that the LTF maps from a space of size
2log(p)·n to one of size 2log(p)·n−l The lossiness in terms of group elements can be
expressed as l′ ≤ 1− logp(p− r(λ)) where we consider that the LTF maps from

a space of size pn to one of size pn−l
′
.

⊓⊔

6 The LTF of Döttling, Garg, Ishai, Malavolta, Mour and
Ostrovsky

In this section, we recall the LTF by [12]. As this LTF is a modular construction,
it will be helpful to unroll it here for easier understanding. The construction steps
in the original work are the following.

– Construct a trapdoor hash function (TDH) that takes bitstrings as inputs
and outputs group elements. A TDH allows the key generator to generate
encoding keys (along with trapdoors). Using an encoding key, the evaluator
of the TDH then can create a “hint” that allows the key generator to retrieve
a single bit of the input using the trapdoor. Which bit is retrieved depends
on the trapdoor, and is not known to the evaluator. This TDH needs one
group element per bit as a “hint” to decode the bit.

Decoding LTFs in the Generic Group Model 33

– Compactify the “hinting” group elements ej into bits ej using a distance
function Dist. This distance function uses the representation of a group ele-
ment interpreted as a bit string and thus cannot be efficiently computed in
a generic group model as in Definition 1.

– Construct weak string OT from trapdoor hash functions by applying the
TDH to the concatenation of the two strings and creating hints, where the
encoding keys either allow to retrieve the first message or the second. Weak
string OT allows for some correctness error.

– As the distance function from above introduced an error, apply an error
correcting code to input before hashing and after retrieving the bits to obtain
string OT from weak string OT.

– Finally, construct an LTF as follows: Generate the first message of string OT,
where if the setup is injective, request to see the first secret, otherwise the
second. Fix a second secret. The evaluation key consists of the first message
of string OT along with the fixed second secret. When evaluating the LTF,
generate the second OT message where the first secret is the input, and the
second secret is the previously fixed secret from the eval key. To invert, use
the internal state of the OT receiver to retrieve the first secret, i.e. the input
to the LTF. If the LTF is in lossy mode, this would only allow to retrieve
the second (fixed) secret.

Concretely, the LTF uses the following ingredients:

– A group G where the DDH problem is hard.
– A PRF PRF with input space G and output space {0, 1}⌈log(2λ)⌉
– An error correcting code Code = (C.Enc,C.Dec) with rate 1− 1

λ . Denote by
m(n) the length of codewords of Code when plaintexts have length n.

We first recall the distance function Dist (borrowed from [9]) for an input group
element x, a step width y, and a PRF key K (see Fig. 2). (We plugged in the
parameter choices from the original work, namely input range M = 1 and error
probability δ = 1

λ). [12] use the following property of the distance function.

DistK,y(x)
06 i := 0
07 while i ≤ [2 loge(2λ)] · λ
08 if PRFK(x · yi) = 0⌈log(2λ)⌉

09 output LSB(i)
10 else
11 i := i+ 1.
12 output LSB(i).

Fig. 2: The distance function from [9] with the values M = 1 and δ = 1
λ plugged

in.

34 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

Proposition 30 (Proposition 3.2 in [9]). Let G be a multiplicative cyclic
group of prime order p with [2 loge(2λ)] · λ < p, let y ∈ G, and let PRF be a
pseudo-random function. Then for any x ∈ G it holds that

Pr
K

[DistK,y(x)⊕ DistK,y(xy) = 1] ≥ 1− 1

λ

We can now describe the LTF over input strings of length n.

LGen(1λ, 1n, b): Sample a matrix A =

(
g1,0 . . . g2m(n),0

g1,1 . . . g2m(n),1

)
.

For j = 1, . . . ,m(n), sample a pair sj , tj
$← Zp. SetBj =

(
gs
1,0 . . . gs

2m(n),0

gs
1,1 . . . gs

2m(n),1

)
.

If b = 1, replace the entry g
sj
j,1 in Bj by gj,1

sj · gtj . If b = 0, replace

the entry g
sj
m(n)+j,1 by g

sj
m(n)+j,1 · g

tj . Sample a value ρ
$← {0, 1}n and a

PRF key K. Set ek = (A,B1, . . . Bm(n),g
t1 , . . . ,gtm(n) , ρ,K) and (if b = 1)

ik = ((sj , tj)
m(n)
j=1 ,K).

LEv(ek, x): Parse the evaluation key ek as above. Then compute x′ := C.Enc(x)
and ρ′ := C.Enc(ρ). Compute

h :=

m(n)∏
i=1

ai,x′[i] ·
2m(n)∏
i=1

ai+m(n),ρ′[i]

and for j = 1, . . . ,m(n)

ej := DistK,gtj

m(n)∏
i=1

bj,i,x′[i] ·
m(n)∏
i=1

bj,i+m(n),ρ′[i]

 .

Output (h, e1, . . . , em(n)).
LInv(ik, (h, e1, . . . , em(n))): Parse ik as above. For j = 1, . . . ,m(n) compute

ej,0 := DistK,gtj (h
sj)

and
ej,1 := DistK,gtj

(
hsjgtj

)
.

If ej = ej,0 set x′′[j] := 0 and if ej = ej,1, set x
′′[j] := 1.

Output x := C.Dec(x′′).

Remark 31 (Coverage by our Model). The LTF of [12] cannot be formalized in
our model (i.e., within the constraints of Definition 1) as it applies a PRF to
group elements to shorten the output. In particular, our results contrast rather
than contradict the results from [12], and reveal an interesting difference between
Maurer’s and Shoup’s variants of generic groups. (Our GGM formalization is
essentially Maurer’s [20], while Shoup’s formalization [25] would seem to allow
to formalize the LTF of [12].)

Decoding LTFs in the Generic Group Model 35

Remark 32 (Probabilistic LTFs). As an aside, we note that in [12], the LTF
evaluation is in fact probabilistic, as it chooses a random exponent r and multi-
plies h by gr and applies the equivalent multiplication by gsj ·r when computing
the ej . This leads to a non-standard variant of LTFs, and is a result of the mod-
ular construction. (It seems possible to convert this type of LTF into an ordinary
LTF, although this also seems to imply a reduction in lossiness.)

References

1. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited
- new reduction, properties and applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (Aug
2013). https://doi.org/10.1007/978-3-642-40041-4˙4

2. Auerbach, B., Kiltz, E., Poettering, B., Schoenen, S.: Lossy trapdoor permutations
with improved lossiness. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405,
pp. 230–250. Springer, Heidelberg (Mar 2019). https://doi.org/10.1007/978-3-030-
12612-4˙12

3. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged public-key encryption: How to protect against bad randomness. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Hei-
delberg (Dec 2009). https://doi.org/10.1007/978-3-642-10366-7˙14

4. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for en-
cryption and commitment secure under selective opening. In: Joux, A. (ed.) EU-
ROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (Apr 2009).
https://doi.org/10.1007/978-3-642-01001-9˙1

5. Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor
functions and applications. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg (Apr 2012).
https://doi.org/10.1007/978-3-642-29011-4˙15

6. Benhamouda, F., Herranz, J., Joye, M., Libert, B.: Efficient cryptosystems from
2k-th power residue symbols. Journal of Cryptology 30(2), 519–549 (Apr 2017).
https://doi.org/10.1007/s00145-016-9229-5

7. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (Aug 2008).
https://doi.org/10.1007/978-3-540-85174-5˙19

8. Boyen, X., Li, Q.: All-but-many lossy trapdoor functions from lattices and applica-
tions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403,
pp. 298–331. Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-319-
63697-9˙11

9. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (Aug 2016).
https://doi.org/10.1007/978-3-662-53018-4˙19

10. Brandt, N., Hofheinz, D., Kastner, J., Ünal, A.: The price of verifiability: Lower
bounds for verifiable random functions. In: Kiltz, E., Vaikuntanathan, V. (eds.)
Theory of Cryptography - 20th International Conference, TCC 2022, Chicago,
IL, USA, November 7-10, 2022, Proceedings, Part II. Lecture Notes in Computer

36 Dennis Hofheinz, Julia Kastner, Akin Ünal, and Bogdan Ursu

Science, vol. 13748, pp. 747–776. Springer (2022). https://doi.org/10.1007/978-3-
031-22365-5“˙26, https://doi.org/10.1007/978-3-031-22365-5 26

11. Demillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic
program testing. Information Processing Letters 7(4), 193–195
(1978). https://doi.org/https://doi.org/10.1016/0020-0190(78)90067-4,
https://www.sciencedirect.com/science/article/pii/0020019078900674

12. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 3–32. Springer, Heidelberg (Aug
2019). https://doi.org/10.1007/978-3-030-26954-8˙1

13. Döttling, N., Hartmann, D., Hofheinz, D., Kiltz, E., Schäge, S., Ursu, B.: On
the impossibility of purely algebraic signatures. In: Nissim, K., Waters, B. (eds.)
TCC 2021, Part III. LNCS, vol. 13044, pp. 317–349. Springer, Heidelberg (Nov
2021). https://doi.org/10.1007/978-3-030-90456-2˙11

14. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for
Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (Aug 2013).
https://doi.org/10.1007/978-3-642-40084-1˙8

15. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (May / Jun 2010).
https://doi.org/10.1007/978-3-642-13190-5˙3

16. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (May
2010). https://doi.org/10.1007/978-3-642-13013-7˙17

17. Hemenway, B., Ostrovsky, R.: Extended-DDH and lossy trapdoor functions. In: Fis-
chlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 627–
643. Springer, Heidelberg (May 2012). https://doi.org/10.1007/978-3-642-30057-
8˙37

18. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-
plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313.
Springer, Heidelberg (Aug 2010). https://doi.org/10.1007/978-3-642-14623-7˙16

19. Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trapdoor func-
tions and selective opening chosen-ciphertext security from LWE. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 332–364.
Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-319-63697-9˙12

20. Maurer, U.M.: Abstract models of computation in cryptography (invited paper).
In: Smart, N.P. (ed.) 10th IMA International Conference on Cryptography and
Coding. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (Dec 2005)

21. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (Aug 2008). https://doi.org/10.1007/978-3-540-
85174-5˙31

22. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC. pp. 187–196. ACM Press (May 2008).
https://doi.org/10.1145/1374376.1374406

23. Pietrzak, K., Rosen, A., Segev, G.: Lossy functions do not amplify well. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 458–475. Springer, Heidelberg (Mar 2012).
https://doi.org/10.1007/978-3-642-28914-9˙26

Decoding LTFs in the Generic Group Model 37

24. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (oct 1980). https://doi.org/10.1145/322217.322225,
https://doi.org/10.1145/322217.322225

25. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(May 1997). https://doi.org/10.1007/3-540-69053-0˙18

26. Zhandry, M.: To label, or not to label (in generic groups). In: Dodis, Y., Shrimp-
ton, T. (eds.) CRYPTO 2022, Part III. LNCS, vol. 13509, pp. 66–96. Springer,
Heidelberg (Aug 2022). https://doi.org/10.1007/978-3-031-15982-4˙3

27. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.)
Symbolic and Algebraic Computation. pp. 216–226. Springer Berlin Heidelberg,
Berlin, Heidelberg (1979)

