
A Closer Look at the S-box: Deeper Analysis of
Round-Reduced ASCON-HASH

Xiaorui Yu1, Fukang Liu2, Gaoli Wang1(�), Siwei Sun3, Willi Meier4

1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University,
Shanghai 200062, China

51215902051@stu.ecnu.edu.cn,glwang@sei.ecnu.edu.cn
2 Tokyo Institute of Technology, Tokyo, Japan

liufukangs@gmail.com
3 School of Cryptology, University of Chinese Academy of Sciences, Beijing, China

siweisun.isaac@gmail.com
4 FHNW, Windisch, Switzerland

willimeier48@gmail.com

Abstract. ASCON, a lightweight permutation-based primitive, has been
selected as NIST’s lightweight cryptography standard. ASCON-HASH is
one of the hash functions provided by the cipher suite ASCON. At ToSC
2021, the collision attack on 2-round ASCON-HASH with time complexity
2103 was proposed. Due to its small rate, it is always required to utilize at
least 2 message blocks to mount a collision attack because each message
block is only of size 64 bits. This significantly increases the difficulty of
the analysis because one almost needs to analyze equivalently at least 2ℓ
rounds of ASCON in order to break ℓ rounds. In this paper, we make some
critical observations on the round function of ASCON, especially a 2-
round property. It is found that such properties can be exploited to reduce
the time complexity of the 2-round collision attack to 262.6. Although the
number of attacked rounds is not improved, we believe our techniques
shed more insight into the properties of the ASCON permutation and
we expect they can be useful for the future research. Following the same
analysis method and with SMT technique, we practically find some semi-
free-start collision attacks for 4-round ASCON-HASH and ASCON-Xof
with STP solver.

Keywords: ASCON · ASCON-HASH · Collision Attack · Algebraic
Technique

1 Introduction

In 2013, NIST started the lightweight cryptography project. Later in 2016, NIST
provided an overview of the project and decided to seek for some new algorithms
as a lightweight cryptography standard. In 2019, NIST received 57 submissions
and 56 of them became the first round candidates after the initial review. After
the project proceeded into Round 2 [4], NIST selected 32 submissions as Round
2 candidates, including ASCON. After that, ASCON was selected to be one of

the ten finalists of the lightweight cryptography standardization process. On
February 7, 2023, NIST announced the selection of the ASCON family for the
lightweight cryptography standardization.

ASCON [11] is a lightweight permutation-based primitive. It aims to provide
efficient encryption and authentication functions while maintaining sufficiently
high security.

Advantages. The main advantages of ASCON can be summarized as below:

– Lightweight: The design of ASCON is simple and suitable for hardware and
software implementation. It is particularly suitable for resource constrained
environments, such as IoT devices, embedded systems, and low-power devices.

– High security: ASCON provides high security and resists many different
types of known attacks.

– Adjustable: ASCON supports different security levels and performance
requirements. For example, ASCON-128 and ASCON-128a provide a 128-bit
security level, suitable for high security requirements; ASCON-80pq provides
an 80-bit security level, suitable for low-power and low-cost scenarios.

– Authentication encryption: ASCON can achieve both data encryption and
integrity protection. It supports associated data and allows for verification of
additional information during the encryption process, such as the identities
of message senders and receivers.

History. ASCON was first published as a candidate in Round 1 [7] of the CEASER
competition [1]. This original design (version v1) specified the permutation as well
as the mode for authenticated encryption with two recommended family members:
The primary recommendation Ascon-128 as well as a variant Ascon-96 with 96-bit
key. For the subsequent version V1.1 [8] and V1.2 [9], minor functional tweaks
were applied, including a reordering of the round constants and the modification
of the secondary recommendation to the current Ascon-128a. Then, V1.2 [9] and
the status update file [6] were submitted to the NIST Lightweight Cryptography
project. The submission to NIST includes not only the authenticated cipher
family, but also introduces modes of operation for hashing: ASCON-HASH and
ASCON-XOF, as well as a third parameterization for authenticated encryption:
Ascon-80pq. For ASCON-HASH and ASCON-XOF, they support 256-bit and
arbitrary-length hash values, respectively.

On the collision resistance of ASCON-HASH. Due to the used sponge structure,
the generic time complexity to find a collision of ASCON-HASH is 2128 and the
memory complexity is negligible with Floyd’s cycle finding algorithm [12]. Due
to its small rate, it is quite challenging to find collisions for a large number of
rounds. In [22], the first 2-round collision attack on ASCON-HASH was presented
with time complexity 2125. However, it is shown that such an attack is invalid
because the used 2-round differential characteristic is invalid according to [14].
Later, at ToSC 2021 [13], a new and valid 2-round differential characteristic
with an optimal differential probability was found. Based on the same attack

2

strategy as in [22], they gave a 2-round collision with time complexity of 2103

in [13]. Very recently, Qin et al. presented collision attacks on 3 and 4 rounds
of ASCON-HASH by turning preimages for ASCON-XOF into collisions for
ASCON-HASH [20]. However, it can be found that both the time complexity and
memory complexity of the 3/4-round collision attacks are very high, i.e. larger
than 2120. From a practical view, it seems that these attacks may be slower
than the generic attack. In any case, all the collision attacks are far from being
practical, even for 2 rounds.

Table 1: Summary of collision attacks on ASCON-HASH
Attack Type Rounds Time complexity Memory Complexity Reference

collision attack

2 2125* negligible [22]
2 2103 negligible [13]
2 262.6 negligible Sect. 4
3 2121.85 2121 [20]
4 2126.77 2126 [20]

* The characteristic used is invalid.

Our contributions. We aim to significantly improve the time complexity of the
2-round collision attack in [13] such that it can be much closer to a practical
attack. Our contributions are summarized below:

1. We found that the 2-round collision attack in [13] is quite straightforward,
i.e., the authors found a better characteristic but did not optimize the
attack strategy. Hence, we are motivated to take a closer look at the used
2-round differential characteristic and aim to improve the attack by using
some algebraic properties of the S-box as in the recent algebraic attack on
LowMC [15,18], i.e., we are interested in the relations between the difference
transitions and value transitions.

2. Based on our findings of the properties of the S-box, we propose to use a
better attack framework and advanced algebraic techniques to improve the
2-round collision attack. As a result, the time complexity is reduced from
2103 to 262.6, as shown in Table 1.

3. Although in [10], the authors gave a semi-free-start collision attack on 4-round
ASCON-HASH and ASCON-XOF, they didn’t publish the detailed process.
So we take use of the differential characteristic of 4-round ASCON-HASH
and ASCON-XOF given in [10] and successfully find more semi-free-start
collision attacks on 4-round ASCON-HASH and ASCON-XOF, different from
the one given in [10]. We mainly use the SMT technique to solve the problem.
We give our detailed procedure of finding the results using STP solver 5 in
this paper.

5 https://github.com/stp/stp

3

Organization of this paper. In section 2, we define some notations that will be
used throughout the paper and briefly describe ASCON-HASH. In section 3,
we describe the collision attack framework that will be used in the new attacks.
In section 4, we show how to optimize the existing 2-round collision attack
with advanced algebraic techniques. In section 5, by exploiting similar algebraic
properties of the S-box, we describe how to use an SMT/SAT-based method to
search for semi-free-start collisions for 4-round ASCON. Finally, the paper is
concluded in section 6.

2 Preliminaries

2.1 Notations

The notations used in this paper are summarized in Table 2.

Table 2: Notations
r the length of the rate part for ASCON-HASH, r = 64
c the length of the capacity part for ASCON-HASH, c = 256
Si

j the input state of round i when absorbing the message block Mj

Si[j] the j-th word (64-bit) of Si

Si[j][k] the k-th bit of Si[j], k = 0 means the least significant bit and k is within modulo 64
xi the i-th bit of a 5-bit value x, x0 represents the most significant bit
M message
Mi the i-th block of the padded message
≫ right rotation (circular right shift)
a%b a mod b
0n a string of n zeroes

2.2 Description of ASCON-HASH

The ASCON family offers 2 important hash functions: ASCON-HASH and
ASCON-XOF. ASCON-HASH is a sponge-based hash function [2]. In its core,
it is a 12-round permutation P a over a state of 320 bits. The hashing mode is
shown in Figure 1.

For ASCON-HASH, the state denoted by X is divided into five 64-bit words,
i.e., X = X0||X1||X2||X3||X4. The first 64-bit word X0 will be loaded in the rate
part while the remaining 4 words (X1, X2, X3, X4) are loaded in the capacity
part. The round function f = fL ◦ fS ◦ fC is composed of 3 operations: fC is
the constant addition, fS is the substitution layer, and fL is the linear diffusion
layer. For simplicity, the ℓ-round ASCON permutation is simply denoted by f ℓ.

4

P
a

IV ||0c

⊕
P

a P
a P

a

M1

⊕

Ms H1
H⌈l/r⌉

Initialization Absorb Message Squeeze Phase

c c c c

Fig. 1: The mode of ASCON-HASH

On the internal states. When absorbing the message block Mj , denote the 320-bit
input state at round i (0 ≤ i ≤ 11) by Si

j and the state transitions are described
below.

Si
j

fC−→ Si,a
j

fS−→ Si,s
j

fL−→ Si+1
j .

Note that if we only consider one message block, we simply omit j as below:

Si fC−→ Si,a fS−→ Si,s fL−→ Si+1.

The corresponding graphic explanations can be referred to Fig. 2 and Fig. 3,
respectively.

fC fSfC fL

Si
j [0]⊕Mj

Si
j [1]

Si
j [2]

Si
j [3]

Si
j [4]

S
i,a
j [0]

S
i,a
j [1]

S
i,a
j [2]

S
i,a
j [3]

S
i,a
j [4]

S
i,s
j [0]

S
i,s
j [1]

S
i,s
j [2]

S
i,s
j [3]

S
i,s
j [4]

Si+1

j [0]

Si+1

j [1]

Si+1

j [2]

Si+1

j [3]

Si+1

j [4]

Fig. 2: The 1-round state transition when absorbing Mj

Si[0]

Si[1]

Si[2]

Si[3]

Si[4]

fC

Si,a[0]

Si,a[1]

Si,a[2]

Si,a[3]

Si,a[4]

Si,s[0]

Si,s[1]

Si,s[2]

Si,s[3]

Si,s[4]

fSfC fL

Si+1[0]

Si+1[1]

Si+1[2]

Si+1[3]

Si+1[4]

Fig. 3: The 1-round state transition

5

X1

X0

X2

X3

X4

Fig. 4: The substitution layer

X1

X0

X2

X3

X4

Fig. 5: The linear diffusion layer

Constant addition fC . For this operation, an 8-bit round constant ci is added to
the word X2, i.e., X2 ← X2 ⊕ ci. The round constants (ci)0≤i≤11 for 12-round
ASCON-HASH are shown in Table 3.

Table 3: The round constants ci

i 0 1 2 3 4 5 6 7 8 9 10 11
ci 0xf0 0xe1 0xd2 0xc3 0xb5 0xa5 0x96 0x87 0x78 0x69 0x5a 0x4b

Substitution layer fS. At this operation, the state will be updated by 64 parallel
applications of a 5-bit S-box. The S-box (y0, . . . , y4) = SB(x0, . . . , x4) is defined
as follows:

y0 = x4x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1x0 ⊕ x1 ⊕ x0,
y1 = x4 ⊕ x3x2 ⊕ x3x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1 ⊕ x0,
y2 = x4x3 ⊕ x4 ⊕ x2 ⊕ x1 ⊕ 1,
y3 = x4x0 ⊕ x4 ⊕ x3x0 ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0,
y4 = x4x1 ⊕ x4 ⊕ x3 ⊕ x1x0 ⊕ x1.

(1)

As shown in Fig. 4, the input (x0, . . . , x4) and output (y0, . . . , y4) correspond
to one column of the state.

Linear diffusion layer fL. This operation is used to diffuse each 64-bit word
Xi, as shown in Fig. 5. Specifically, Xi is updated by the function

∑
i where

0 ≤ i ≤ 4, as specified below:
X0 ← Σ0(X0) = X0 ⊕ (X0 ≫ 19)⊕ (X0 ≫ 28),
X1 ← Σ1(X1) = X1 ⊕ (X1 ≫ 61)⊕ (X1 ≫ 39),
X2 ← Σ2(X2) = X2 ⊕ (X2 ≫ 1)⊕ (X2 ≫ 6),
X3 ← Σ3(X3) = X3 ⊕ (X3 ≫ 10)⊕ (X3 ≫ 17),
X4 ← Σ4(X4) = X4 ⊕ (X4 ≫ 7)⊕ (X4 ≫ 41).

6

On the initial value and state. The hash function initializes the 320-bit state using
a constant IV = 0x00400c0000000000. Then, the 12-round ASCON permutation
is applied and we obtain an initial state S0

1 = f12(IV ||0256), as specified below:

0xee9398aadb67f03d

0x8bb21831c60f1002

S0
1 ← 0xb48a92db98d5da62

0x43189921b8f8e3e8

0x348fa5c9d525e140

The padding rule of ASCON-HASH is as follows: it appends a single 1 and
the smallest number of zeroes to M such that the size of padded message in bits
is a multiple of r = 64. The complete description of the hashing function is given
in Algorithm 1 in Appendix B.

3 The Attack Frameworks

For differential-based collision attacks on a sponge-based hash function, one
essential step is to find a collision-generating differential characteristic. The second
step is to find conforming message pairs satisfying this differential characteristic.

With the development of automatic tools, there are many possible methods
to search for a desired differential characteristic. However, when it comes to the
second step, i.e., satisfying the conditions of the differential characteristic, it
always involves dedicated efforts and sometimes requires nontrivial techniques.
For example, the linearization techniques for the KECCAK round function have
been widely used to speed up the differential-based collision attack on KECCAK,
e.g., the 1/2/3-round connectors [5, 19, 21]. As can be seen from the current
record of the Keccak crunchy crypto collision contest6, it is quite challenging
to analyze sponge-based hash functions with a small rate, which is exactly the
case of ASCON. It is thus not surprising to see that the best differential-based
collision attack on ASCON could only reach up to 2 rounds.

For a sponge-based hash function with a small rate, one main obstacle exists in
the available degrees of freedom in each message block. For ASCON, each message
block only provides at most 64 free bits. However, for a differential characteristic
used for collision attacks, there may exist more than 128 bit conditions, which
directly makes it mandatory to utilize at least 3 message blocks.

Let us consider a general case and suppose that we have an ℓ-round collision-
generating differential characteristic. Furthermore, suppose we will use k message
blocks (M1, . . . , Mk) to fulfill the conditions, i.e., we aim to find (M1, . . . , Mk)
and (M1, . . . , Mk−1, M ′

k) such that

S0
j+1 = f ℓ

(
S0

j ⊕ (Mj ||0256)
)

where 1 ≤ j ≤ k − 1,

6 https://keccak.team/crunchy_contest.html

7

https://keccak.team/crunchy_contest.html

⋆||0256 = f ℓ

(
S0

k ⊕ (Mk||0256)
)
⊕ f ℓ

(
S0

k ⊕ SB(M ′
k||0256)

)
,

where Mk ̸= M ′
k and ⋆ is an arbitrary r-bit value.

From the differential characteristic, suppose that there are nc bit conditions
on the capacity part of S0

k and the remaining conditions hold with probability
2−nk . Then, a straightforward method to find conforming message pairs is as
follows:

Step 1: Find a solution of (M1, . . . , Mk−1) such that the nc bit conditions on
the capacity part of S0

k can hold.
Step 2: Exhaust Mk and check whether remaining nk bit conditions can hold. If

there is a solution, a collision is found. Otherwise, return to Step 1.

For convenience, we call the above procedure the general 2-step attack framework.
Note that this has been widely used and it is really not a new idea.

For a sponge with rate r, we need to perform Step 2 for about 2nk−r times and
hence we need to perform Step 1 for 2nk−r times. Suppose the time complexity
to find a solution of (M1, . . . , Mk−1) and Mk is Tpre and Tk, respectively. In this
way, the total time complexity Ttotal is estimated as

Ttotal = (k − 1) · 2nk−r · Tpre + 2nk−r · Tk. (2)

If Tk and Tpre are simply treated as 2r and 2nc , respectively, i.e., only the naive
exhaustive search is performed, then

Ttotal = (k − 1) · 2nk+nc−r + 2nk .

In other words, the total time complexity is directly related to the probability of
the differential characteristic, i.e., 2−nc−nk .

In many cases, the attackers can optimize Tk by using some advanced tech-
niques to satisfy partial conditions implied in the differential characteristic, i.e.,
Tk can be smaller than 2r. For example, the target difference algorithm proposed
in [5] is one of such techniques. However, to optimize Tpre, one has to solve a
problem similar to the ℓ−round preimage finding problem. In most cases, this
is not optimized due to the increasing difficulty and it is simply treated as
Tpre = 2nc .

3.1 The Literature and Our New Strategy

It is found that neither Tk nor Tpre has been optimized for the existing 2-round
collision attacks on ASCON-HASH [13, 22] and they exactly follow the above
attack framework. In the collision attack on 6-round GIMLI-HASH [14], the
attackers optimized both Tk and Tpre where k = 2.

As can be noted in our new attacks on ASCON-HASH, optimizing Tk is indeed
quite straightforward after a little deeper analysis of the round function and its
5-bit S-box. However, optimizing Tpre looks infeasible at the first glance. Indeed

8

even if Tk is optimized to 1, the improved factor is still quite small. Therefore, to
achieve significant improvements, it is necessary to optimize Tpre.

Our idea to achieve this purpose is to further convert the nc conditions on
the capacity part of S0

k into some n1
c conditions on the capacity part of S0

k−1, as
Fig. 6 shows. In this way, our attack is stated as follows:
Step 1: Find a solution of (M1, . . . , Mk−2) such that the n1

c bit conditions on
the capacity part of S0

k−1 can hold.
Step 2: Enumerate all the solutions of Mk−1 such that the conditions on the

capacity part of S0
k can hold.

Step 3: Exhaust Mk and check whether remaining nk bit conditions can hold. If
there is a solution, a collision is found. Otherwise, return to Step 1.

To distinguish this from the general 2-step attack framework, we call the above
procedure the general 3-step attack framework.

P
a

IV ||0c

⊕
P

a P
a P

a
P

a

M1

⊕

Initialization Absorb Message

⊕ ⊕

∆Mi = 0

Mk−1Mk−2

S0

k−1 S0

k

Mk

∆Mk−1 = 0 ∆Mk �= 0

c c c c

Fig. 6: The general 3-step attack framework

Analysis of the time complexity. For convenience, the time complexity of Step 1,
2 and 3 is denoted by Tpre1, Tk-1 and Tk, respectively. In this way, the total time
complexity becomes

Ttotal = (k − 2) · 2nk+nc−2r · Tpre1 + 2nk+nc−2r · Tk-1 + 2nk−r · Tk. (3)

Specifically, we need on average 2nk−r different valid solutions of (M1, . . . , Mk−1).
In this sense, we need about 2nk+nc−2r different valid solutions of (M1, . . . , Mk−2)
because for each valid (M1, . . . , Mk−2), we expect to have 2r−nc valid solutions
of Mk−1.

Based on Equation 3, if nc < r holds, we have

2nk+nc−2r < 2nk−r.

Compared with Equation 2, this case has indicated the possibility to optimize
the attack if Tk-1 can be significantly optimized and Tpre1 is relatively small, i.e.,
we know Tpre1 ≤ 2n′

c .

9

On the purpose to convert conditions. As stated above, we have to optimize Tpre1.
This is related to the original purpose to introduce conditions on the capacity
part of S0

k−1. Specifically, we expect that after adding these conditions, we can
efficiently enumerate the solutions of Mk−1 to satisfy the nc conditions on the
capacity part of S0

k. In other words, without these conditions, we still can only
perform the naive exhaustive search over Mk−1 and no improvement can be
obtained, i.e., the time complexity is

(k − 2) · 2nk+nc−2r + 2nk+nc−2r · 2r + 2nk−r · Tk

= (k − 2) · 2nk+nc−2r + 2nk+nc−r + 2nk−r · Tk.

The big picture of our new attacks. In our attacks, we do not make more efforts
to convert the n′

c conditions on S0
k−1 into conditions on the previous input states

due to the increasing difficulty. Hence, in our setting, we will make

Tpre1 = 2n′
c .

In this way, the total time complexity is estimated as

Ttotal = (k − 2) · 2nk+nc+n′
c−2r + 2nk+nc−2r · Tk-1 + 2nk−r · Tk. (4)

In the following, we will describe how to significantly optimize Tk-1 and Tk based
on an existing 2-round differential characteristic of ASCON.

4 Collision Attacks on 2-Round ASCON-HASH

The collision attack in this paper is based on the 2-round differential characteristic
proposed in [13], as shown in Table 4. Note that the first collision attack on
2-round ASCON-HASH was proposed in [22] but the differential characteristic is
shown to be invalid in [14]. We have verified with the technique in [14] that the
2-round differential characteristic in [13] is correct.

Table 4: The 2-round differential characteristic in [13]
∆S0 (2−54) ∆S1 (2−102) ∆S2

0xbb450325d90b1581 0x2201080000011080 0xbaf571d85e1153d7
0x0 0x2adf0c201225338a 0x0
0x0 0x0 0x0
0x0 0x0000000100408000 0x0
0x0 0x2adf0c211265b38a 0x0

According to [13], there are 27 and 28 active S-boxes in the first and second
round, respectively. Specifically, there are 54 bit conditions on the capacity part
of the input S0 and 102 bit conditions on the input state S1 of the second round.
With our notations, there are

nc = 54, nk = 102.

10

With this differential characteristic, they used the technique in [22] to mount the
collision attack with k = 3 message blocks and its time complexity is 2102. It
follows the general 2-step attack framework described above without optimization
on Tpre and Tk, i.e.,

Tpre = 254, Tk = 264.

In this way, the total time complexity can be computed based on Equation 2, i.e.,

Ttotal = 2× 2102−64 × 254 + 2102−64 × 264 = 293 + 2102 ≈ 2102. (5)

It should be noted that in [13], the authors simply checked whether M3 and
M3 ⊕∆S0

3 can follow the 2-round differential characteristic by exhausting M3
and hence the time complexity in [13] is estimated as 2× 2102 = 2103. In other
words, they do not take the specific conditions into account, while in the above,
we only check whether the conditions on the S1 hold for each M3.

4.1 Optimizing Tk Using Simple Linear Algebra

Indeed, it is quite straightforward to optimize Tk. However, even if it is reduced
to 1, the time complexity is still high, i.e., 292 according to Equation 5. Let us
elaborate on how to significantly optimize Tk in this section. First, we need to
study some properties of the S-box.

Studying the active S-boxes in the first round. First, we describe why there are
54 bit conditions on the capacity part of S0.

Property 1 [22] For an input difference (∆0, . . . , ∆4) satisfying ∆x1 = ∆x2 =
∆x3 = ∆x4 = 0 and ∆x0 = 1, the following constraints hold:

– For the output difference: ∆y0 ⊕∆y4 = 1,
∆y1 = ∆x0,
∆y2 = 0.

(6)

– For the input value: {
x1 = ∆y0 ⊕ 1,
x3 ⊕ x4 = ∆y3 ⊕ 1.

(7)

Based on Property 1 and the 2-round differential characteristic in Table 4,
we can derive 27 + 27 = 54 bit conditions on the capacity part of S0, i.e., 27 bit
conditions on S0[1] and 27 bit conditions on S0[3] ⊕ S0[4]. This also explains
why nc = 54.

11

Studying the active S-boxes in the second round. As the next step, we further
study the 28 active S-boxes in the second round. We observe that from ∆S1 to
∆S1,s, there are only 3 different possible difference transitions (∆x0, . . . , ∆x4)→
(∆y0, . . . , ∆y4) through the S-box, as shown below:

(1, 1, 0, 0, 1)→ (1, 0, 0, 0, 0),
(0, 0, 0, 1, 1)→ (1, 0, 0, 0, 0),
(0, 1, 0, 0, 1)→ (1, 0, 0, 0, 0).

Similar to the algebraic attacks on LowMC [15, 18], we study and exploit the
properties of the (x0, . . . , x4) such that

SB(x0, . . . , x4)⊕ SB(x0 ⊕∆x0, . . . , x4 ⊕∆x4) = (∆y0, . . . , ∆y4) = (1, 0, 0, 0, 0)

where

(∆x0, . . . , ∆x4) ∈ {(1, 1, 0, 0, 1), (0, 0, 0, 1, 1), (0, 1, 0, 0, 1)}.

It is found that

– for (∆x0, . . . , ∆x4) = (1, 1, 0, 0, 1), all possible (x0, . . . , x4) form an affine
subspace of dimension 2, as shown below:

x0 ⊕ x4 = 0, x1 = 1, x3 = 0; (8)

– for (∆x0, . . . , ∆x4) = (0, 0, 0, 1, 1), all possible (x0, . . . , x4) form an affine
subspace of dimension 2, as shown below:

x1 = 0, x2 = 0, x3 ⊕ x4 = 0; (9)

– for (∆x0, . . . , ∆x4) = (0, 1, 0, 0, 1), all possible (x0, . . . , x4) form an affine
subspace of dimension 1, as shown below:

x0 = 0, x1 ⊕ x4 = 1, x2 = 0, x3 = 0. (10)

As a result, the difference transitions in the second round, i.e., the 28 active
S-boxes, directly impose 102 linear conditions on S1. Note that it is unclear
whether the probability 2−102 is directly computed according to the differential
distribution table (DDT) of the 5-bit S-box in [13]. At least, we do not see any
such related claims in [13] that the probability 2−102 is caused by 102 linear
conditions on S1, i.e., the conditions may be nonlinear if we do not carefully
study the relations between the difference transitions and values transitions.
Indeed, we can simply generalize the above observations for any degree-2 S-box,
as shown in Appendix C, i.e. all the conditions on the input bits must be linear
for each valid diffeerence transition of a degree-2 S-box.

12

More nonlinear conditions on the capacity part of S0. As can be noted from
Equation 9 and Equation 10, there will be conditions on S1[2], i.e., the conditions
on x2 in Equation 9 and Equation 10. However, according to the definition of
the S-box, we know that

y2 = x4x3 ⊕ x4 ⊕ x2 ⊕ x1 ⊕ 1.

Hence, after the capacity part of S0
3 is fixed, S1[2] is irrelevant to S0[0]. As a

result, apart from the 54 linear conditions on the capacity part of S0, there are
also 21 nonlinear (quadratic) conditions on the capacity part of S0. In other
words, at the first glance, although there are 102 linear conditions on S1, there
are indeed only 102− 21 = 81 linear conditions on S1 depending on S0[0] after
the capacity part of S0 is known. Hence, we can equivalently say that

nc = 54 + 21 = 75, nk = 81.

With the general 2-step attack framework, the total time complexity is not
affected as nc + nk remains the same, i.e., it is still 2102.

Optimizing Tk. After knowing that there are 81 linear conditions on S1 de-
pending on S0[0] after the capacity part of S0 is known, optimizing Tk is quite
straightforward. Recall the general 2-step attack framework described previously.
Specifically, by using 3 message blocks (M1, M2, M3), we first generate valid
(M1, M2) such that the 75 bit conditions on the capacity part of S0

3 can hold.
Then, since M3 is only added to S0

3 [0], S1
3 directly becomes linear in M3 and

we know there are 81 linear conditions on S1
3 . Therefore, we can construct 81

linear equations in M3, i.e., 64 variables. Similar to the idea in [16], solving this
linear equation system is equivalent to exhausting all possible values of M3 and
hence Tk is reduced to the time complexity to solve 81 linear equations in 64
variables that requires 81× 81× 64 ≈ 219 bit operations. As explained before,
only optimizing Tk is insufficient to significantly improve the attack and we need
to further optimize Tpre.

S0

3 S1

3

conditions

S
0
3
[0] ← S

0
3
[0] ⊕ M3

linear euqations

f

Fig. 7: Exhaust M3 by solving linear equations

13

4.2 Finding Valid (M1, M2) with Advanced Techniques

To find valid (M1, M2), we are now only simply looping over (M1, M2) and
checking whether the 75 bit conditions on the capacity part can hold. To improve
the attack, we have to avoid such a naive loop. In what follows, we describe
how to use the general 3-step attack framework stated above to overcome this
obstacle.

The core idea is to utilize a 2-round property of ASCON. Let us explain it
step by step.

Property 2 For (y0, . . . , y4) = SB(x0, . . . , x4), if x3 ⊕ x4 = 1, y3 will be inde-
pendent to x0.

Proof. We can rewrite y3 as follows:

y3 = (x4 ⊕ x3 ⊕ 1)x0 ⊕ (x4 ⊕ x3 ⊕ x2 ⊕ x1).

Hence, if x3 ⊕ x4 = 1, y3 is irrelevant to x0.

Property 3 Let

(S1[0], . . . , S1[4]) = f(S0[0], . . . , S0[4]), (S2[0], . . . , S2[4]) = f(S1[0], . . . , S1[4]),

where (S0[1], S0[2], S0[3], S0[4]) are constants and S0[0] is the only variable. Then,
it is always possible to make u bits of S2[1] linear in S0[0] by adding at most 9u
bit conditions on S0[3]⊕ S0[4].

S0 S0,a S0,s S1 S1,a S1,s S2

linear

quadratic

constant

conditional bit

constant after adding conditions on S0[3]⊕ S0[4]

linear in S0[0]

fC fS fL fC fS fL

Fig. 8: Adding conditions on the capacity part to linearize S2[1]

Proof. First, since S0[0] is the only variable, according to the definition of f ,
we know that (S1[0], S1[1], S1[3], S1[4]) are linear in S0[0] while S1[2] is still
constant.

Each bit S2[1][i] can be expressed as

S2[1][i] = S1,s[1][i]⊕ S1,s[1][i + 61]⊕ S1,s[1][i + 39].

14

To make S2[1][i] linear in S0[0], we need to ensure

S1,s[1][i]⊕ S1,s[1][i + 61]⊕ S1,s[1][i + 39]

is linear in S0[0]. According to the definition of the S-box specified in Equation 1,
the expression of y1 is

y1 = x4 ⊕ x1x3 ⊕ x3 ⊕ x2(x3 ⊕ x1 ⊕ 1)⊕ x1 ⊕ x0.

Hence, if x2 is constant, there is only one quadratic term x1x3 in the expression
of y1.

According to the above analysis, S1[2] is always constant. Hence, we have

S1,s[1][i]⊕ S1,s[1][i + 61]⊕ S1,s[1][i + 39]
= S1[1][i]S1[3][i]⊕ S1[1][i + 61]S1[3][i + 61]⊕ S1[1][i + 39]S1[3][i + 39]
⊕ Li(S1[0], . . . , S1[4]) (11)

where Li is a linear function.
Furthermore, according to Property 2, we can make S0,s[3][i] (0 ≤ i ≤ 63)

irrelevant to S0[0] by adding 1 bit condition on S0[3] ⊕ S0[4]. In this way, we
can add at most 9 bit conditions on S0[3] ⊕ S0[4] to make (S1[3][i], S1[3][i +
61], S1[3][i + 39]) irrelevant to S0[0] since each bit of S1[3] is linear in 3 bits of
S0,s[3]. Once (S1[3][i], S1[3][i + 61], S1[3][i + 39]) is irrelevant to S0[0], S1,s[1][i]⊕
S1,s[1][i + 61]⊕ S1,s[1][i + 39] becomes linear in S0[0] according to Equation 11.
Hence, to make u bits of S2[1] linear in S0[0], we need to add at most 9u bit
conditions on S0[3]⊕ S0[4].

A graphical explanation for Property 3 can be seen from Fig. 8.

Property 4 Let

(S1[0], . . . , S1[4]) = f(S0[0], . . . , S0[4]), (S2[0], . . . , S2[4]) = f(S1[0], . . . , S1[4]),

where (S0[1], S0[2], S0[3], S0[4]) are constants and S0[0] is the only variable. Then,
it is always possible to make u bits of S2[1] linear in S0[0] by guessing 3u linear
equations in S0[0].

Proof. Similar to the proof of Property 3, we have

S1,s[1][i]⊕ S1,s[1][i + 61]⊕ S1,s[1][i + 39]
= S1[1][i]S1[3][i]⊕ S1[1][i + 61]S1[3][i + 61]⊕ S1[1][i + 39]S1[3][i + 39]
⊕ Li(S1[0], . . . , S1[4])

where Li is a linear function and (S1[0], S1[1], S1[2], S1[3], S1[4]) are linear in
S0[0]. Hence, if we guess (S1[3][i], S1[3][i+61], S1[3][i+39]), S2[1][i] will be linear
in S0[0]. In other words, by guessing 3 linear equations in S0[0], S2[1][i] can be
linear in S0[0].

A graphical explanation for Property 4 can be seen from ??.

15

Improving the attack. Based on the above discussions, it is now possible to
further improve the 2-round collision attack. We utilize the general 3-step attack
framework where k = 3, i.e., we use message blocks (M1, M2, M3). From previous
analysis, there are 54 linear conditions on the capacity part of S0

3 and among them,
27 bit conditions are on S0

3 [1] (or S2
2 [1]). Based on Property 3 and Property 4, it

is possible to satisfy these 54 linear conditions more efficiently with advanced
algebraic techniques, i.e., we can improve Tk-1. We emphasize that there are
additional 21 quadratic conditions on the capacity part of S0

3 , but we will not
consider them to speed up the exhaustive search over M2 due to the increasing
difficulty, i.e., it is required to solve degree-4 Boolean equations.

Specifically, based on Property 3, we can add 9u1 conditions on the capacity
part of S0

2 such that u1 bits of S0
3 [1] can be linear in M2 after the capacity part

of S0
2 is known. Moreover, based on Property 4, after the capacity part of S0

2 is
known, we can guess 3u2 linear equations in M2 such that u2 bits of S0

3 [1] can be
linear in M2. In total, we set up u1 +4u2 linear equations in 64 variables to satisfy
u1 + u2 out of 27 bit conditions. Then, we perform the Gaussian elimination on
these u1 + 4u2 linear equations and obtain

u3 = 64− u1 − 4u2

free variables.
Note that the first round is always freely linearized and the remaining 54−

u1 − u2 linear conditions on S0
3 can be expressed as quadratic equations in these

u3 free variables. In a word, to efficiently exhaust M2 such that the 54 conditions
on S0

3 can hold, we can perform the following procedure:

Step 1: Guess 3u2 = 42 bits of M2 and construct 4u2 + u1 linear equations.
Step 2: Apply the Gaussian elimination to the system and obtain u3 = 64−u1−

4u2 free variables.
Step 3: Construct 54 − u1 − u2 quadratic equations in these u3 variables and

solve the equations.
Step 4: Check whether the remaining 21 quadratic conditions on the capacity

part of S0
3 can hold for each obtained solution.

We use a similar method in [3,17] to estimate the time complexity to solve
a quadratic equation system. After some calculations, the optimal choice of
(u1, u2, u3) is as follows:

u1 = 3, u2 = 13 u3 = 9.

In other words, we need to perform the Gaussian elimination on 55 linear equations
in 64 variables for 23u2 = 239 times. Then, we need to solve 38 quadratic equations
in 9 variables for 239 times. The total time complexity is estimated as

239 × (552 × 64 + 382 × 45) ≈ 256.6

bit operations. The cost of Step 4 is negligible since it is expected to perform
such a check for about 264−54 = 210 times.

16

Time complexity evaluation. Based on the previous general 3-step attack frame-
work using 3 message blocks (M1, M2, M3), we have 9u1 = 27 conditions on S0

2
and we need 281+75−128 = 228 different valid M1. The cost of this step can be
estimated as 228+27 = 255 calls to the 2-round ASCON permutation. Then, for
each valid M1, i.e., each valid S0

2 , we can exhaust M1 with 256.6 bit operations. At
last, for each valid (M1, M2), we can exhaust M3 with about 219 bit operations.
Assume that one round of the ASCON permutation takes about 15× 64 ≈ 210

bit operations, the total time complexity can be estimated as

Ttotal = 228 × 227 + 228 × 256.6−11 + 217 × 219−11 ≈ 273.6

calls to the 2-round ASCON permutation.

4.3 Further Optimizing the Guessing Strategy

In the above improved 2-round collision attack, we mainly exploit Property 3
and Property 4 to make some conditional bits of S2

2 [1] linear in M2. Specifically,
the core problem is to make

(S1
2 [3][i], S1

2 [3][i + 61], S1
2 [3][i + 39])

constant by either guessing their values according to Property 4 or adding
conditions on S0

2 [3]⊕ S0
2 [4] according to Property 3. However, the two strategies

are independently used for different bits of S2
2 [1]. It can be noted that for one

specific conditional bit of S2
2 [1], i.e., S2

2 [1][i], we can guess g out of 3 bits of
(S1

2 [3][i], S1
2 [3][i+61], S1

2 [3][i+39]) and add 3× (3−g) conditions on S0
2 [3]⊕S0

2 [4]
to achieve the same goal. In other words, for the same conditional bit, we can
use a hybrid guessing strategy.

As the next step, we aim to optimize the guessing strategy such that we can
obtain a sufficient number of linear equations by guessing a smaller number of
linear equations or adding a smaller number of extra conditions on S0

2 [3]⊕ S0
2 [4].

For example, for the above naive guess strategy, we need to add 9u1 = 27 bit
conditions on S0

2 [3]⊕S0
2 [4] and we need to further guess 3u2 = 39 linear equations

in order to get u1 + 4u2 = 3 + 52 = 55 linear equations in M2. Can we guess
fewer bits to achieve better results?

Note that there are 27 conditional bits in S2
2 [1]. For completeness, we denote

the set of i such that S2
2 [1][i] is conditional by I and we have

I = {0, 7, 8, 10, 12, 16, 17, 19, 24, 27, 28, 30, 31, 32, 34, 37,

40, 41, 48, 50, 54, 56, 57, 59, 60, 61, 63}.

For each i ∈ I, let

Pi = {i, (i + 61)%64, (i + 39)%64}.

Further, let
Pi = Pi,g ∪ Pi,a, Pi,g ∩ Pi,a = ∅.

17

In other words, to linearize S2
2 [1][i], we guess S1

2 [3][j0] where j0 ∈ Pi,g and make
S1

2 [3][j1] constant where j1 ∈ Pi,a by adding 3 conditions on

S0
2 [3][j1]⊕S0

2 [4][j1], S0
2 [3][j1+10]⊕S0

2 [4][(j1+10)], S0
2 [3][j1+17]⊕S0

2 [4][(j1+17)],

We can build a simple MILP model to determine the optimal choice of a
subset I ′ ⊆ I and the corresponding Pi,g and Pi,a where i ∈ I ′ such that the
total time complexity of the attack is optimal. Specifically, assuming that after
adding u4 conditions on S0

2 [3]⊕ S0
2 [4] and guessing u5 bits of S1

2 [3], we can set
up u6 linear equations for u6 conditional bits of S2

2 [1]. In this way, we have in
total u5 + u6 linear equations and after the Gaussian elimination, we can set
up 54− u6 quadratic equations in u7 = 64− u5 − u6 free variables. After some
configurations, we propose to choose

u4 = 31, u5 = 28, u6 = 27

as the optimal parameters. In other words, we can make all the 27 conditional
bits of S2

2 [1] linear in M2 by guessing 28 linear equations in S1
2 [3] and adding 31

bit conditions on S0
2 [3] ⊕ S0

2 [4]. In this way, we need to perform the Gaussian
elimination to u5 + u6 = 55 linear equations in 64 variables that requires about
217.6 bit operations and then solve 27 quadratic equations in u7 = 64− 55 = 9
variables. Based on the method [3,17] to estimate the time complexity to solve such
an overdefined quadratic equation system, it takes about 272×45+23×122×6 ≈
215.3 bit operations. Hence, the new total time complexity is

Ttotal = 228 × 231 + 228 × 228 × (217.6 + 215.3)× 2−11 + 217 × 219−11 ≈ 262.6.

In conclusion, with the optimal guess strategy and advanced algebraic techniques,
we can improve the best collision attack on 2-round ASCON-HASH by a factor
of about 240.4. For completeness, the required 28 guessed bits of S1

2 [3] and the 31
condition bits of S0

2 [3]⊕ S0
2 [4] are shown in Table 5.

Table 5: The optimal guessing strategy⋃
i∈I Pi,g

{0, 3, 4, 7, 8, 10, 14, 15, 17, 21, 24, 25, 27, 28, 31, 32, 34, 35, 37, 38, 41, 45, 48, 51, 54, 55, 58, 61}⋃
i∈I Pi,a

{2, 5, 6, 9, 12, 13, 16, 19, 23, 29, 30, 36, 39, 40, 46, 47, 49, 50, 53, 56, 57, 59, 60, 63}

{j, (j + 10)%64, (j + 17)%64 | j ∈
⋃

i∈I Pi,a}

{0, 2, 3, 5, 6, 9, 10, 12, 13, 15, 16, 19, 22, 23, 26, 29, 30, 33, 36, 39, 40, 46, 47, 49, 50, 53, 56, 57, 59, 60, 63}

5 Semi-Free-Start Collision Attack on 4-round ASCON

As can be observed in the above improved 2-round collision attack, one critical step
is to study the relations between the difference transitions and value transitions

18

through the S-box, i.e., we can derive linear conditions on some internal state
bits to make the difference transitions hold. In the following, we will explore
similar such properties for the 4-round differential characteristic proposed by the
designers in [10], as shown in Table 6.

5.1 Deriving Implicit Linear Conditions
For each state difference from ∆Si to ∆Si+1 where i ≥ 0, we can know the corre-
sponding input difference (∆x0, . . . , ∆x4) and output difference (∆y0, . . . , ∆y4)
for each active S-box. Our goal is to find linear conditions on (x0, . . . , x4) such
that

SB(x0, . . . , x4)⊕ SB(x0 ⊕∆x0, . . . , x4 ⊕∆x4) = (∆y0, . . . , ∆y4)

always holds for each possible (∆x0, . . . , ∆x4)→ (∆y0, . . . , ∆y4) in round i. We
specify them round by round, as shown below:

– Round i = 0: there are only 3 active S-boxes in round 0 and we can derive 6
linear conditions:

S0,a[1][j] = 0, S0,a[3][j]⊕ S0,a[4][j] = 1, for j ∈ {18, 60, 62}.

– Round i = {1, 2, 3}: please refer to Table 8, Table 9, Table 10 in Appendix A
for explanations.

In summary, there are totally 6, 27, 125 and 137 linear conditions on S0, S1,
S2 and S3, respectively. Specifically, as fC is applied before fS , Si and Si,a are
linearly related. In the Table 8, Table 9, Table 10, we record the conditions on Si.
Note that because Si,a is the input to the substitution layer, we convert them
into linear conditions on Si where 1 ≤ i ≤ 3.

Performing the search with STP. With these information, we can use a SAT/SMT-
based method to efficiently find an input satisfying all these conditions. We tried
in total 2 different strategies. The first strategy is shown below:

Step 1: Start from S2 where we load the corresponding 125 constraints.
Step 2: Load the constraints on S3 and model the relation between S2 and S3.
Step 3: Solve the model with the STP solver7 and for each solution, check the

conditions on (S0, S1).

According to 100 experiments, the solver outputs a solution of (S2, S3) in about
1.5s and the valid solution of (S0, S1, S2, S3) can be found in about 106 seconds.

The second strategy is simple. We directly load all the constraints and expect
that the solver directly outputs a valid solution of (S0, S1, S2, S3). For this
strategy, we obtain a solution in about 1483 seconds. Some examples are given
in Table 7.

In a word, we demonstrate that it is indeed quite efficient to find a conforming
message pair for the 4-round differential characteristic. Since no details are
provided in [10], we expect that this work can fill this blank.
7 https://github.com/stp/stp

19

Table 6: Semi-free-start collision for 4-round ASCON-HASH and ASCON-XOF
in [10]

round state (S) difference (∆S)
0x177537760b6a7b4b 0x9000000000040000
0x6e7a0bba2ed9e436 0x0

0 0x9aff10e403752f21 0x0
0x7ac1d330cf9ee9c2 0x0
0x88fc524dd1092975 0x0
0x8e2919a34aa78b4f 0x1040120900040000
0xf8ec50f5193e17ff 0x1000080001040004

1 0xf8c88d0910726467 0x0
0x5c7453f66c0f3efd 0x0
0x03f613581bb25cb9 0x0
0x14e7b8acbbf085f1 0x904088490145a084
0x6a25ac7c557f0f4e 0x10428a4101248000

2 0x9984d786381625f7 0x08400c2001821006
0x1e230875a0079fa9 0x114602278c44c186
0xe0c29f3a0dff9d81 0x10e0902102082008
0x5e994e62eba7e010 0xc1824ac20aa400cb
0xc502f6422ec4b3d7 0x14831e8a81a4814e

3 0xc96362c46ea40408 0x14831e0281a48183
0xbf0c9307b5efe0b1 0xe30040611a1b4881
0x2afe991b302b65a3 0x320000ab913b484c
0xccaa3e2b2adb8f9b 0xb5463ce488575401
0x2648f9ab9dc8f4e0 0x0

4 0x8d17e35ce6ae9626 0x0
0xf92955837cd0e419 0x0
0xb78b0c1137cdc72d 0x0

20

Table 7: Semi-free-start collisions for 4-round ASCON-HASH and ASCON-XOF
round Result 1 (State S) Result 2 (State S) Result 3 (State S)

0x6f3efab5f501d116 0xebd726f16895041f 0xb6b5bca0cb598d0d
0x082990745e92414e 0x4f54446e9cfb3cdb 0x2153d303a8734b8c

0 0xa429e93463313492 0xc5437bb993cb906a 0x97dc27a6259e7fb7
0x070b11e3cc676a98 0x7ff22eaee45a8d76 0x31721017cb7d5c55
0xde8143841bbb645e 0xa0c65761b906d440 0xa181b777f901823d
0xb9bc6018fb5daf80 0xcead4b3dc3704f95 0x9d00e741960c551e
0x26d5dc41b71ea587 0xf3ca38a1bad24c39 0x68ff7105e74dc84e

1 0x18edd9f4d661dbe5 0x74cd6b98ba89ae6f 0xde2ebc978a1324b6
0xb85745c86657d06f 0xd2c202c858e57374 0x9c2b556b826ff4d4
0x41caa8a0e03b3374 0x666e0760c8fba563 0xc98c3841097379e2
0xe8effd0ccb54a995 0x64e655c5daa69bc5 0x50f774cd8a270180
0x7b7aceec845b634f 0x387e6629b44b252f 0x4d74a6a9ad4be13f

2 0x7269c616b98651d3 0xdfcdafb2d99f2f8b 0x1cddbf32e00753cd
0xc9386a755903debd 0xaf244ad6fc539dfd 0x3a3f4aca5d42588a
0x5a73faba7c4fa5e0 0x5e7b5a0b3f7d9da0 0x82da6b932ef49f88
0xb1005013ab32836a 0xdf9f610483aa4889 0xb4c48a81df87c2b9
0xdd277c400ae0b085 0xc541fcc4efa095c9 0xc142cbc4ee248595

3 0xd16a69d62ac0213a 0xc93ce9c2efc0109b 0xc567ffd28e44309b
0x72c9b376e56f80a1 0x305d8647e9f45432 0x7b256f7291759002
0x360f8c3a00ab14cb 0x20b69d0d8170e3ad 0x22e3b5a8909101b9
0xdc251abeec776446 0x55523c5c2000d0dd 0x2f6ea61dc4f7c9ea
0x51687328dfd6d033 0x0cf9c3239fd9b120 0x5424198b0d0c4131

4 0x2bb046c8b78dba46 0x857c09c6c7ae4a75 0x297817bcd6ec9360
0x7f3e74d6c8c1147c 0x6d31e7124ed0fc77 0xd766eac7fb8e586c
0x46ad0168cb618e09 0x7bc89fe833a7bf9d 0x4be7f4600b8b5f09

21

6 Conclusion

By carefully studying the relations between the difference transitions and values
transitions through the S-box, we show that the existing collision attacks on
2-round ASCON-HASH can be significantly improved with the aid of advanced
algebraic techniques. Furthermore, based on similar relations, we also complement
the designers’ semi-free-start collision attack by using a dedicated SAT/SMT-
based method to find semi-free-start colliding message pairs. It is found that
such a 4-round semi-free-start collision can be found in less than 2 minutes. We
expect our close look at the algebraic properties of the S-box can inspire more
efficient attacks on ASCON-HASH or ASCON-XOF.

Acknowledgements This work is supported by the National Key Research and
Development Program of China (No. 2022YFB2701900); the National Natural
Science Foundation of China (Nos. 62072181, 62132005); and Shanghai Trusted
Industry Internet Software Collaborative Innovation Center.

References

1. The CAESAR committee, CAESAR: competition for authenticated encryption:
security, applicability, and robustness (2014), https://competitions.cr.yp.to/
caesar-submissions.html

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT hash workshop. No. 9 (2007)

3. Bouillaguet, C., Delaplace, C., Trimoska, M.: A Simple Deterministic Algorithm for
Systems of Quadratic Polynomials over F2. In: Bringmann, K., Chan, T. (eds.) 5th
Symposium on Simplicity in Algorithms, SOSA@SODA 2022, Virtual Conference,
January 10-11, 2022. pp. 285–296. SIAM (2022). https://doi.org/10.1137/1.
9781611977066.22, https://doi.org/10.1137/1.9781611977066.22

4. Bovy, E., Daemen, J., Mennink, B.: Comparison of the second round candidates
of the NIST lightweight cryptography competition. Bachelor Thesis, Radboud
University (2020)

5. Dinur, I., Dunkelman, O., Shamir, A.: New Attacks on Keccak-224 and Keccak-
256. In: Canteaut, A. (ed.) Fast Software Encryption - 19th International Work-
shop, FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised Selected
Papers. Lecture Notes in Computer Science, vol. 7549, pp. 442–461. Springer
(2012). https://doi.org/10.1007/978-3-642-34047-5_25, https://doi.org/10.
1007/978-3-642-34047-5_25

6. Dobraunig, C., Eichlseder, M., Mendel, F., Schläer, M.: Status Update on ASCON
v1. 2 (2020)

7. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: ASCON v1. Submission
to Round 1 of the CAESAR competition (2014), https://competitions.cr.yp.
to/round1/Asconv1.pdf

8. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: ASCON v1.1. Submission
to Round 2 of the CAESAR competition (2015), https://competitions.cr.yp.
to/round2/Asconv11.pdf

22

https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
https://doi.org/10.1137/1.9781611977066.22
https://doi.org/10.1137/1.9781611977066.22
https://doi.org/10.1137/1.9781611977066.22
https://doi.org/10.1137/1.9781611977066.22
https://doi.org/10.1137/1.9781611977066.22
https://doi.org/10.1007/978-3-642-34047-5_25
https://doi.org/10.1007/978-3-642-34047-5_25
https://doi.org/10.1007/978-3-642-34047-5_25
https://doi.org/10.1007/978-3-642-34047-5_25
https://competitions.cr.yp.to/round1/Asconv1.pdf
https://competitions.cr.yp.to/round1/Asconv1.pdf
https://competitions.cr.yp.to/round2/Asconv11.pdf
https://competitions.cr.yp.to/round2/Asconv11.pdf

9. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Sub-
mission to Round 1 of the NIST Lightweight Cryptography project (2019),
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/Ascon-spec.pdf

10. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Preliminary Analysis of
ASCON-XOF and ASCON-HASHJ (2019)

11. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: ASCON v1.2:
Lightweight Authenticated Encryption and Hashing. J. Cryptol. 34(3), 33
(2021). https://doi.org/10.1007/s00145-021-09398-9, https://doi.org/10.
1007/s00145-021-09398-9

12. Floyd, R.W.: Nondeterministic algorithms. J. ACM 14(4), 636–644 (1967). https:
//doi.org/10.1145/321420.321422, https://doi.org/10.1145/321420.321422

13. Gérault, D., Peyrin, T., Tan, Q.Q.: Exploring Differential-Based Distinguishers
and Forgeries for ASCON. IACR Trans. Symmetric Cryptol. 2021(3), 102–136
(2021). https://doi.org/10.46586/tosc.v2021.i3.102-136, https://doi.org/
10.46586/tosc.v2021.i3.102-136

14. Liu, F., Isobe, T., Meier, W.: Automatic Verification of Differential Characteris-
tics: Application to Reduced GIMILI. In: Micciancio, D., Ristenpart, T. (eds.)
Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryp-
tology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21,
2020, Proceedings, Part III. Lecture Notes in Computer Science, vol. 12172,
pp. 219–248. Springer (2020). https://doi.org/10.1007/978-3-030-56877-1_8,
https://doi.org/10.1007/978-3-030-56877-1_8

15. Liu, F., Isobe, T., Meier, W.: Cryptanalysis of Full LowMC and LowMC-M with
Algebraic Techniques. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology -
CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 12827, pp. 368–401. Springer (2021). https://doi.org/10.1007/
978-3-030-84252-9_13, https://doi.org/10.1007/978-3-030-84252-9_13

16. Liu, F., Isobe, T., Meier, W., Yang, Z.: Algebraic Attacks on Round-Reduced
Keccak. In: Baek, J., Ruj, S. (eds.) Information Security and Privacy - 26th
Australasian Conference, ACISP 2021, Virtual Event, December 1-3, 2021, Pro-
ceedings. Lecture Notes in Computer Science, vol. 13083, pp. 91–110. Springer
(2021). https://doi.org/10.1007/978-3-030-90567-5_5, https://doi.org/10.
1007/978-3-030-90567-5_5

17. Liu, F., Meier, W., Sarkar, S., Isobe, T.: New Low-Memory Algebraic Attacks on
LowMC in the Picnic Setting. IACR Trans. Symmetric Cryptol. 2022(3), 102–122
(2022). https://doi.org/10.46586/tosc.v2022.i3.102-122, https://doi.org/
10.46586/tosc.v2022.i3.102-122

18. Liu, F., Sarkar, S., Wang, G., Meier, W., Isobe, T.: Algebraic Meet-in-the-Middle
Attack on LowMC. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology -
ASIACRYPT 2022 - 28th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Taipei, Taiwan, December 5-
9, 2022, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13791,
pp. 225–255. Springer (2022). https://doi.org/10.1007/978-3-031-22963-3_8,
https://doi.org/10.1007/978-3-031-22963-3_8

19. Qiao, K., Song, L., Liu, M., Guo, J.: New Collision Attacks on Round-Reduced
Keccak. In: Coron, J., Nielsen, J.B. (eds.) Advances in Cryptology - EURO-
CRYPT 2017 - 36th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,

23

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Ascon-spec.pdf
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1145/321420.321422
https://doi.org/10.1145/321420.321422
https://doi.org/10.1145/321420.321422
https://doi.org/10.1145/321420.321422
https://doi.org/10.1145/321420.321422
https://doi.org/10.46586/tosc.v2021.i3.102-136
https://doi.org/10.46586/tosc.v2021.i3.102-136
https://doi.org/10.46586/tosc.v2021.i3.102-136
https://doi.org/10.46586/tosc.v2021.i3.102-136
https://doi.org/10.1007/978-3-030-56877-1_8
https://doi.org/10.1007/978-3-030-56877-1_8
https://doi.org/10.1007/978-3-030-56877-1_8
https://doi.org/10.1007/978-3-030-84252-9_13
https://doi.org/10.1007/978-3-030-84252-9_13
https://doi.org/10.1007/978-3-030-84252-9_13
https://doi.org/10.1007/978-3-030-84252-9_13
https://doi.org/10.1007/978-3-030-84252-9_13
https://doi.org/10.1007/978-3-030-90567-5_5
https://doi.org/10.1007/978-3-030-90567-5_5
https://doi.org/10.1007/978-3-030-90567-5_5
https://doi.org/10.1007/978-3-030-90567-5_5
https://doi.org/10.46586/tosc.v2022.i3.102-122
https://doi.org/10.46586/tosc.v2022.i3.102-122
https://doi.org/10.46586/tosc.v2022.i3.102-122
https://doi.org/10.46586/tosc.v2022.i3.102-122
https://doi.org/10.1007/978-3-031-22963-3_8
https://doi.org/10.1007/978-3-031-22963-3_8
https://doi.org/10.1007/978-3-031-22963-3_8

Proceedings, Part III. Lecture Notes in Computer Science, vol. 10212, pp. 216–243
(2017). https://doi.org/10.1007/978-3-319-56617-7_8, https://doi.org/10.
1007/978-3-319-56617-7_8

20. Qin, L., Zhao, B., Hua, J., Dong, X., Wang, X.: Weak-diffusion structure: Meet-in-
the-middle attacks on sponge-based hashing revisited. Cryptology ePrint Archive,
Paper 2023/518 (2023), https://eprint.iacr.org/2023/518, https://eprint.
iacr.org/2023/518

21. Song, L., Liao, G., Guo, J.: Non-full Sbox Linearization: Applications to Collision At-
tacks on Round-Reduced Keccak. In: Katz, J., Shacham, H. (eds.) Advances in Cryp-
tology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 10402, pp. 428–451. Springer (2017). https://doi.org/10.1007/
978-3-319-63715-0_15, https://doi.org/10.1007/978-3-319-63715-0_15

22. Zong, R., Dong, X., Wang, X.: Collision Attacks on Round-Reduced GIMLI-
HASH/ASCON-XOF/ASCON-HASH. Cryptology ePrint Archive, Paper 2019/1115
(2019), https://eprint.iacr.org/2019/1115, https://eprint.iacr.org/2019/
1115

A Conditions on the Internal States

In this part, we present the conditions on the internal states for the 4-round
differential characteristic, as shown in Table 8, Table 9 and Table 10. All the
values in this section are binary.

Table 8: Conditions on S1,a

j ∆x ∆y conditions (xi = S1,a[i][j])
2 01000 11110 x0 ⊕ x4 = 1, x2 = 1, x3 = 1
18 11000 11110 x0 ⊕ x1 = 0, x2 = 0, x3 = 1, x4 = 0
24 01000 11110 x0 ⊕ x4 = 1, x2 = 0, x3 = 0
32 10000 01011 x1 = 1, x3 ⊕ x4 = 0
35 10000 11000 x1 = 0, x3 ⊕ x4 = 1
41 10000 11010 x1 = 0, x3 ⊕ x4 = 0
43 01000 10110 x0 ⊕ x4 = 1, x2 = 1, x3 = 0
44,54 10000 01011 x1 = 1, x3 ⊕ x4 = 0
60 11000 10111 x0 ⊕ x1 = 1, x2 = 1, x3 = 1, x4 = 0

B The Algorithmic Description of ASCON-HASH

The The Algorithmic Description of ASCON-HASH is shown in Algorithm 1.

24

https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-56617-7_8
https://eprint.iacr.org/2023/518
https://eprint.iacr.org/2023/518
https://eprint.iacr.org/2023/518
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://eprint.iacr.org/2019/1115
https://eprint.iacr.org/2019/1115
https://eprint.iacr.org/2019/1115

Table 9: Conditions on S2,a

j ∆x ∆y conditions (xi = S2,a[i][j])
1 00110 11101 x0 = 0, x1 = 1, x2 ⊕ x3 = 1, x4 = 0
2 10110 11100 x0 ⊕ x3 = 0, x1 = 1, x2 ⊕ x3 = 1, x4 = 0
3 00001 11010 x0 = 0, x1 = 1, x3 = 1
7 10010 00101 x0 ⊕ x3 = 0, x1 = 0, x2 = 1, x4 = 1
8 00010 11101 x0 = 1, x1 ⊕ x2 = 0, x4 = 1
12 00100 10110 x1 = 0, x3 = 1
13 10001 10111 x0 ⊕ x4 = 0, x3 = 0
14 00010 11011 x0 = 0, x1 ⊕ x2 = 0, x4 = 0
15 11010 01011 x0 ⊕ x1 = 1, x0 ⊕ x3 = 0, x2 = 0, x4 = 1
16 10000 01011 x1 = 1, x3 ⊕ x4 = 0
17 00100 01110 x1 = 1, x3 = 1
18 11010 10001 x0 ⊕ x1 = 1, x1 ⊕ x3 = 0, x2 = 1, x4 = 1
19 00001 11110 x0 = 0, x1 = 1, x3 = 0
21 01000 11111 x0 ⊕ x4 = 0, x2 = 0, x3 = 0
22 10010 11110 x0 ⊕ x3 = 1, x1 = 1, x2 = 0, x4 = 1
23 00100 11110 x1 = 0, x3 = 0
24 11100 11001 x1 ⊕ x2 = 1, x3 ⊕ x4 = 1, x4 = x1 ⊕ x0 ⊕ 1,
25 00001 01101 x0 = 1, x1 = 0, x3 = 0
26 00010 10111 x0 = 0, x1 ⊕ x2 = 1, x4 = 1
27 00010 10101 x0 = 1, x1 ⊕ x2 = 1, x4 = 1
31 00010 11001 x0 = 1, x1 ⊕ x2 = 0, x4 = 0
32 11011 10011 x0 ⊕ x1 = 0, x1 ⊕ x3 = 1, x3 ⊕ x4 = 1, x2 = 0
33 00010 10111 x0 = 0, x1 ⊕ x2 = 1, x4 = 1
34 00010 11001 x0 = 1, x1 ⊕ x2 = 0, x4 = 0
35 10000 01001 x1 = 1, x3 ⊕ x4 = 1
37 00111 01111 x1 = 1, x2 ⊕ x3 = 1, x3 ⊕ x4 = 0
38 11000 01111 x0 ⊕ x1 = 1, x2 = 0, x3 = 1, x4 = 0
41 01010 01001 x0 = 0, x1 ⊕ x3 = 0, x2 = 1, x4 = 1
42 00100 00110 x1 = 1, x3 = 0
43 11100 11011 x1 ⊕ x2 = 1, x3 ⊕ x4 = 0, x4 = x1 ⊕ x0 ⊕ 1,
44 00001 01101 x0 = 1, x1 = 0, x3 = 0
47 11001 10000 x0 ⊕ x4 = 0, x2 = 1, x3 = 0
49 01010 00010 x0 = 1, x1 ⊕ x3 = 1, x2 = 0, x4 = 1
50 00010 11001 x0 = 1, x1 ⊕ x2 = 0, x4 = 0
53 00001 11000 x0 = 1, x1 = 1, x3 = 1
54 11111 10101 x0 ⊕ x4 = 0, x1 ⊕ x2 = 0, x3 ⊕ x4 = 1
55 00001 01101 x0 = 1, x1 = 0, x3 = 0
56 00010 10011 x0 = 0, x1 ⊕ x2 = 1, x4 = 0
59 00100 01110 x1 = 1, x3 = 1
60 11011 10010 x0 ⊕ x4 = 1, x1 ⊕ x4 = 0, x2 = 1, x3 ⊕ x4 = 1
63 10000 11000 x1 = 0, x3 ⊕ x4 = 1

25

Table 10: Conditions on S3,a where ∆y = 10000
j ∆x conditions ((xi = S3,a[i][j]))
63,62,56,46,38,27,25 10010 x0 ⊕ x3 = 1, x1 = 1, x2 = 1, x4 = 0
60,31,24 01101 x0 = 1, x1 = x2, x3 = 1, x1 = x4

58,48,44,42,15,8 01100 x1 ⊕ x2 = 1, x0 ⊕ x4 = 1
61,57,37,32,28,20,19,17,16,14,11 00011 x1 = 0, x2 = 0, x3 = x4

55,49,43,41,23,18 11100 x1 = x2, x3 ⊕ x4 = 1, x4 = x0 ⊕ x1

1 11100 x1 ⊕ x2 = 1, x3 ⊕ x4 = 1, x4 = x0 ⊕ x1

39,3 11001 x0 = x4, x2 = 1, x3 = 0
6 11001 x0 = x4, x2 = 0, x3 = 0
35,2 01001 x0 = 0, x2 = 0, x3 = 0, x1 ⊕ x4 = 1
33,21 11101 x1 ⊕ x2 = 1, x0 = x4, x3 = 1
7,0 10110 x0 ⊕ x3 = 1, x2 = x3, x1 = 1, x4 = 1

Algorithm 1: ASCON-HASH
Input: M ∈ {0, 1}∗

Output: hash H ∈ {0, 1}256

Initialization:
S0

1 ← f12(IV ||0c);

Absorbing:
M1, . . . , Ms ←M ||1||0∗;
for i = 1, . . . , s do

S0
i+1 ← f12

(
S0

i ⊕ (Mi||0c)
)

;

end

Squeezing:
S0 ← S0

s+1;
for i = 1, . . . , t = ⌈256/r⌉ do

Hi ← S0[0];
S0 ← f12(S0);

end
return ⌊H1|| . . . ||Ht⌋256;

26

C On Degree-2 S-box

For an n-bit S-box whose algebraic degree is 2, we can show that for any valid
pair of input and output difference, the inputs satisfying this difference transition
must form an affine subspace.

Let (x0, . . . , xn−1) ∈ Fn
2 and (y0, . . . , yn−1) ∈ Fn

2 be the input and output of
the S-box. Further, let

yi = fi(x0, . . . , xn−1), 0 ≤ i ≤ n− 1,

where the algebraic degree of fi is at most 2.
Given any valid input difference (∆x0, . . . , ∆xn−1) and output difference

(∆y0, . . . , ∆yn−1), we aim to show that (x0, . . . , xn−1) satisfying the following n
equations must form an affine subspace:

f0(x0, . . . , xn−1)⊕ f0(x0 ⊕∆x0, . . . , xn−1 ⊕∆xn−1) = ∆y0,

· · ·
fn−1(x0, . . . , xn−1)⊕ fn−1(x0 ⊕∆x0, . . . , xn−1 ⊕∆xn−1) = ∆yn−1.

First, since (∆x0, . . . , ∆xn−1)→ (∆y0, . . . , ∆yn−1) is a valid difference tran-
sition, there must exist solutions to the above n equations. We only need to
show that all the n equations are indeed linear in (x0, . . . , xn−1) for each given
(∆x0, . . . , ∆xn−1, ∆y0, . . . , ∆yn−1) and then the proof is over. Note that the
algebraic degree of fi is at most 2. In this case,

fi(x0, . . . , xn−1)⊕ fi(x0 ⊕∆x0, . . . , xn−1 ⊕∆xn−1)

must be linear in (x0, . . . , xn−1), thus completing the proof.

27

	A Closer Look at the S-box: Deeper Analysis of Round-Reduced ASCON-HASH
	Introduction
	Preliminaries
	Notations
	Description of ASCON-HASH

	The Attack Frameworks
	The Literature and Our New Strategy

	Collision Attacks on 2-Round ASCON-HASH
	Optimizing Tk Using Simple Linear Algebra
	Finding Valid (M1,M2) with Advanced Techniques
	Further Optimizing the Guessing Strategy

	Semi-Free-Start Collision Attack on 4-round ASCON
	Deriving Implicit Linear Conditions

	Conclusion
	Conditions on the Internal States
	The Algorithmic Description of ASCON-HASH
	On Degree-2 S-box

