
SoK: Vector OLE-Based Zero-Knowledge Protocols

Carsten Baum *1, Samuel Dittmer �2, Peter Scholl3, and Xiao Wang4

1DTU Compute, Denmark cabau@dtu.dk
2Stealth Software Technologies Inc., USA samdittmer@stealthsoftwareinc.com

3Aarhus University, Denmark peter.scholl@cs.au.dk
4Northwestern University, USA wangxiao@northwestern.edu

June 7, 2023

1 Introduction

A zero-knowledge proof is a cryptographic protocol where a prover can convince a veri�er that a
statement is true, without revealing any further information except for the truth of the statement.
More precisely, if x is a statement from an NP language veri�ed by an e�cient machine M , then a
zero-knowledge proof aims to prove to the veri�er that there exists a witness w such that M(x,w) =
1, without revealing any further information about w. We say that the proof is a proof of knowledge,
if the prover additionally convinces the veri�er that it knows the witness w, rather than just of its
existence. For example, a prover can use a ZK protocol to convince others that it knows an input
that can cause stack over�ow for some public program (e.g., when submitting a bug report to the
Common Vulnerabilities and Exposures system) without revealing the input.

This article is a survey of recent developments in building practical zero-knowledge proof systems
using vector oblivious linear evaluation (VOLE), a tool from secure two-party computation. This
approach o�ers several advantages:

Fast prover. VOLE-based proof systems are scalable, meaning that the computational resources
required by the prover and veri�er are not much larger than what's needed to verify the statement
when given the witness in the clear1. Concretely, for statements given in a boolean circuit C,
a multi-threaded prover incurs essentially no overhead in wall-clock evaluation time over a single-
threaded evaluation of C in the clear. As a more concrete example, the authors of [BMRS21] recently
demonstrated that evaluating AES as an optimized C-program (without using AES-speci�c CPU
instructions) is 50x faster than evaluating AES in the ZK-proof system of [BMRS21].

*This work was done while visiting the Basic Algorithms Research Center Copenhagen at Copenhagen University.
�Corresponding author.
1We suggest to classify proof systems with an explicit focus on fast prover runtime as FLARKs: Fast Linear

Arguments of Knowledge.

1

Small memory. An attractive feature of many VOLE-based protocols is their low memory over-
head: just as with plain computation, memory requirements are often only proportional to the cost
of verifying the statement (given the witness). This is especially useful for complex statements,
where for instance, the witness may be so large that it does not �t into memory, even though the
proof can be veri�ed e�ciently in a streaming manner.

Post-quantum. With the possibility of large-scale quantum computing on the horizon, protocols
based on traditional factoring or discrete log assumptions could become insecure to a quantum
attacker. VOLE-based protocols, however, are instead based on variants of the learning parity with
noise (LPN) assumption, which is related to the hardness of decoding random linear codes and
currently believed to be resistant to quantum attacks.

Conceptual simplicity. VOLE-based protocols can be divided into two phases: a preprocess-
ing phase, which usually consists of running the VOLE protocol on random inputs and which is
essentially independent of the statement, and an online phase, where the proof takes place. By ab-
stracting away the properties of the preprocessing, the online phase is very simple to describe, and
can even be information-theoretically secure. As one of the simplest, practical ways of constructing
zero-knowledge proofs for general statements, it may also be a valuable pedagogical resource.

These bene�ts also come with a few drawbacks, that can be seen as tradeo�s. Firstly, most
VOLE-based ZK proofs have a large communication cost, that is, the amount of data sent between
the prover and veri�er often scales linearly with the size of the circuit that veri�es the statement
being proven. This inherently means that the runtime of the veri�er must also scale linearly.
Another possible drawback is that current constructions of VOLE-based ZK require a designated
veri�er. That is, the veri�er must store a private state needed to verify a proof, which cannot be
made public. It's therefore more di�cult to prove the same statement to many di�erent veri�ers,
or in public, with these techniques.

1.1 Overview of this survey

In this work, we attempt to systematize the recent works on VOLE-based Zero-Knowledge proofs
and make the state of the art accessible in one document.

In Section 2 we will outline the notation and tools that are the foundation for all VOLE-based
ZK. This includes how proven statements can be formalized, the de�nition of Zero-Knowledge that
we achieve as well as an overview of VOLE.

We will then, in Section 3, introduce a general abstraction that uni�es the ideas behind the
main VOLE-based ZK proofs into an Arithmetic Black Box, and how most of the ZK constructions
follow given access to VOLE.

Section 4 is devoted to the main di�erences in which existing works implement the Multiplication
in the Arithmetic Black Box, which is one of the main sources of interaction in the proof. Here,
we give an introduction into how the Wolverine, Mac'n'Cheese, Line-Point ZK and QuickSilver
protocols work.

Section 5 will discuss how follow-up works have added di�erent operations to the Arithmetic
Black Box, thus allowing the prove certain statements more e�ciently. This includes ideas such as
more e�cient proofs of polynomial evaluation, SIMD circuits, disjunctions, conversions or proofs
over rings instead of �elds. We will moreover consider proofs of RAM programs based on VOLE
protocols.

2

Finally, we will mention some interesting open questions in Section 6.

1.2 Related Techniques in ZK

Zero-knowledge proofs were �rst introduced by Goldwasser, Micali and Racko� in 1985 [GMR85].
Since then, there has been a vast body of research in both theoretical and applied settings. Below,
we mention a few of the techniques that are most relevant for those in this survey. For a more
in-depth coverage, the ZKProof Community Reference2 aims to give a comprehensive overview of
the state-of-the-art.

Garbled Circuits. Zero-knowledge proofs based on garbled circuits were �rst proposed by
Jawurek et al. [JKO13], with the key insight that garbled circuits already provide one-sided mali-
cious security and ZK only needs one-sided privacy. It has many advantages of VOLE-based ZK but
requires κ bits of communication per AND gate even after optimizations [FNO15, ZRE15]. More
recent works have also expanded this approach to support more e�cient disjunctive proofs [HK20].

MPC-in-the-Head. MPC-in-the-head by Ishai et al. [IKOS07] is an elegant way of constructing
ZK proofs based on secure multi-party computation. Its concrete e�ciency was �rst studied by
Giacomelli et al. [GMO16], which has led to a long line of practical ZK proofs in recent years,
particularly for designing digital signatures. It could be made non-interactive but often needs
communication linear in the circuit size.

SNARKs. In recent years, there has been a large focus on Succint non-interactive arguments of
knowledge (SNARKS) [GGPR13], which are protocols where the communication complexity, that is,
the size of the proof, is very small, potentially even constant size or logarithmic in the witness length.
A drawback of most SNARKs is that succinctness comes at the cost of a more expensive prover,
which often has super-linear computational complexity (with a few exceptions [ZLW+21, GLS+21])
and large memory requirements (linear to the statement size).

1.3 Applications

VOLE-based ZK proofs enjoy high e�ciency and scalability: they could prove tens of millions of
gates even under a small bandwidth connection and low-con�gured hardware. As a result, it has
the potential to enable many exciting applications.

1. Proofs of program properties. When expressing properties about a program Π formally,
automated theorem provers can allow formally attesting the presence of certain properties
using a proof π. By encoding the veri�cation of a given proof for a public Π as the input to
a ZK proof system, a prover can e.g. show that a program shows certain information leakage,
without revealing the proof π that explains this behavior [PHP+].

2. Proofs of machine-learning tasks. Machine-learning tasks often involve sensitive data
(e.g. biometric information) or valuable data (e.g., large models) where ZK proofs could help
to enhance privacy. Until recent, ZK for ML is limited because statements on ML are usually

2https://docs.zkproof.org/reference

3

https://docs.zkproof.org/reference

large. Recent works have shown the feasibility of proving inference of deep neural networks
in ZK [WYX+21, LXZ21].

3. Proofs of signature validity on private messages. [PRO] considers a case where appli-
cants would like to prove their medical quali�cation without revealing how they qualify and
which healthcare provider signed the evidence. This requires proving that a private digital
document is signed by someone from an public authorized list and that the same document
implies medical validity.

4. Proofs of unsatis�ability. The correctness veri�cation of computer programs is commonly
done by showing the unsatis�ability of a certain SAT formula, which is decided by the program
and the property to be proven. Proving formula unsatis�ability in ZK [LAH+22] could enable
applications like 1) showing the correctness of a public program without revealing why; and
2) showing the correctness of a private program.

2 Preliminaries

We use lower case, bold symbols for vectors x and upper case, bold symbols for matrices A. We use
κ as the computational and σ as the statistical security parameter. Generally, the prover is denoted
as P while the veri�er is V. In our UC functionalities and proofs, Z denotes the environment, and S
is the simulator, while A will refer to the adversary. When we say that an algorithm is Probabilistic
Polynomial Time (PPT), then we mean that it can be expressed as a probabilistic interactive turing
machine whose worst-case runtime can be expressed as a polynomial in κ. For any �nite set S, we
denote by |S| the cardinality of S. If instead s is a string, then |s| denotes its length. If s1, s2 are
strings then s1||s2 denotes the concatenation of strings.

2.1 The Computational Model: Arithmetic Circuits

The zero-knowledge proofs in this survey are used by a PPT prover P to convince a PPT veri�er V
that a certain statement is true, and furthermore, that P knows a witness for the statement. This
means they are proofs of knowledge. Abstractly, both P and V consider a language L together
with a relation RL. For a string x input to both P and V, P will convince V that it knows a w
such that (x,w) ∈ RL, i.e. x ∈ L. Here, RL is an NP relation, which means that there exists
a Turing Machine (TM) M which, on input x,w, accepts in time poly(|x|) i� x ∈ L. Instead of
expressing computation as happening on a Turing machine M , we will require that each x can,
in time poly(|x|), be converted into a circuit C over a ring (R,+,×) whose gates correspond to
e�ciently computable3 functions de�ned over R. We require that C(w) = 0 i� (x,w) ∈ RL, except
with negligible probability in κ. This requirement is without loss of generality, as such a circuit can
always be constructed using the Cook-Levin Theorem.

More concretely, our statements are circuits C over a ring R. We de�ne their semantics as
follows: Consider the tuple C = (nin, nout, ng, I, G) where

� nin ≥ 2 is the number of input wires, nout ≥ 1 the number of output wires and ng ≥ 1 the
number of gates in the circuit. We let nw = nin + ng be the number of wires.

3Here, e�ciently computable means that evaluating the gate should take time polynomial in the input- and output

length of the gate as well as log(|R|).

4

� We de�ne the sets Inputs ← {1, . . . , nin}, Wires ← {1, . . . , nw} as well as Outputs ←
{nw − nout + 1, . . . , nw} and Gates← {nin + 1, ..., nw} to identify the respective elements in
the circuit.

� The poly-time computable function I : Gates 7→ 2Wires\Outputs identi�es the incoming wires
for each gate, with the restrictions that:

� ∀g ∈ Gates : I(g) ̸= ∅.
� ∀g ∈ Gates : maxs∈I(g){s} < g.

� The poly-time computable mapping G : Gates 7→ (R+ 7→ R) determines the function that is
computed by a gate. We require that

1. ∀g ∈ Gates : The input length of G(g) is identical to |I(g)|.
2. ∀g ∈ Gates : The function G(g) can be computed in time poly(|I(g)|, log(|R|)).

To obtain the outputs of the above circuit when evaluating it on an input
w = w1|| · · · ||wnin ∈ Rnin one evaluates C as follows:

eval(C,w):

1. For i ∈ {1, . . . , nin} set xi = wi.

2. For g ∈ {nin + 1, . . . , nw}:
(a) (s1, . . . , s|I(g)|)← I(g) where si < si+1

(b) f ← G(g)

(c) xg ← f(xs1 , . . . , xs|I(g)|)

3. Output xnw−nout+1|| · · · ||xnw

We denote by C(w) the aforementioned evaluation of C on input w.

2.2 Zero Knowledge Proofs for Circuits

We de�ne Zero-Knowledge Proofs (of Knowledge) in the Ideal-Real paradigm. Let Π be an interac-
tive protocol between two PPT interactive Turing Machines (iTMs) P,V. This means that parties
might send messages to each other, as well as to idealized functionalities. De�ne the functionality
FZK as in Figure 1.

Let A be a PPT iTM algorithm, called the adversary. A is allowed to corrupt either of the
parties, or none at all. If a party is corrupted, then A will have full control over that party and be
allowed to read all its secrets and send any messages on its behalf. It has to specify in the beginning
which party, if at all, A will corrupt.

We de�ne security with respect to a PPT iTM Z called environment. The environment provides
inputs to and receives outputs from the parties. Furthermore, the adversary A will corrupt a party
in the name of Z. To de�ne security, let Π ◦ A be the distribution of the output of an arbitrary Z
when interacting with A in a real protocol instance Π. Furthermore, let S denote an ideal world
adversary and FZK ◦ S be the distribution of the output of Z when interacting with parties which
run with FZK instead of Π and where S takes care of adversarial behavior.

5

Zero-Knowledge functionality FZK

The functionality interacts with two parties P,V as well as an adversary S who may corrupt
either of these.

Prove: Upon input (Prove, w, C) by P where C is a circuit with gates in R, input length ℓ
and output length 1, and w ∈ Rℓ as well as (Prove, C) by V

1. Compute y = C(w) and send (Prove, C, y) to S. If S sends (Abort) then send
(Abort) to both parties and terminate, otherwise continue.

2. If y = 0 then send (Correct, C) to V, otherwise send (Incorrect, C).

Figure 1: Functionality for ZK proofs over the ring R.

De�nition 2.1 (Zero-Knowledge Proof of Knowledge). We say that Π is a Zero-Knowledge Proof
of Knowledge if for every PPT iTM A that maliciously corrupts at most 1 party there exists a PPT
iTM S (with black-box access to A) such that no PPT environment Z can distinguish Π ◦ A from
FZK ◦ S with non-negligible probability in κ.

2.3 Vector Oblivious Linear Evaluation (VOLE)

A VOLE correlation is a pair of random variables (u,x) and (v,∆), where x,u,v are vectors and
∆ is a scalar, which are all random subject to the constraint that

ui = vi + xi ·∆

One party, in our case the prover P, is given u,x, while the veri�er V learns (v,∆).
We model the generation of VOLE correlations as an ideal functionality FVOLE, given in Figure

2. The functionality works over a ring R; in most cases, we require that R is a �nite �eld, but in
Section 5.5 we also discuss how to support non-�eld rings such as R = Z2k , the integers modulo
2k. On initialization, the functionality samples a MAC key ∆ ∈ Rt

key, where Rkey ⊂ R for some
parameter t ≥ 1 such that |Rt

key| is exponentially large in the security parameter. When R is a �eld,
we typically choose Rkey = R. After initialization, the Extend command may be called repeatedly.
On each call, it samples one more �element� of the VOLE correlation, which we view as a MAC
M [x] on a random element x given to the prover, where the veri�er learns only the corresponding
key K[x] (as well as the global key ∆).

In the rest of this paper, we assume that such a functionality can be e�ciently realized using a
secure VOLE protocol. To justify this, we outline which approaches currently exist to implement
FVOLE e�ciently with active security.

Instantiate FVOLE directly. The two most popular approaches use linearly homomorphic en-
cryption or OT extension protocols. For homomorphic encryption, the approach is usually that
V samples a public key/private key pair, then sends an encryption of ∆ to P. P picks x,M [x]
and, using the homomorphism, computes an encryption of K[x] that it sends to V. Finally, V can
decrypt this result. While it is easy to achieve passive security by rerandomizing the ciphertext con-
taining K[x] appropriately, achieving active security usually requires additional consistency checks

6

Vector Oblivious Linear Evaluation functionality FVOLE

Init: This method needs to be the �rst one called by the parties. On input (Init) from both
parties:

1. If V is honest, the functionality samples ∆ ∈R Rt
key and sends ∆ to V.

2. If V is corrupt, the functionality receives ∆ ∈ Rt
key from S.

3. ∆ is then stored by the functionality.

All further Init queries are ignored.

Extend On input (Extend) from both parties the functionality proceeds as follows:

1. If both parties are honest, sample x ∈R R,K[x] ∈R Rt and compute M [x] ←
∆ · x+K[x].

2. If V is corrupted, receive K[x] ∈ Rt from S instead.

3. If P is corrupted, receive x ∈ R,M [x] ∈ Rt from S instead, and compute K[x]←
M [x]−∆ · x.

4. (x,M [x]) is sent to P and K[x] is sent to V.

Figure 2: Functionality for VOLE over Rt with a message from the ring R, and scalar ∆ from
Rt

key, where Rkey ⊂ R.

such as specialized zero-knowledge proofs. See e.g. [BEPU+20, dCJV21, dCHI+22] for variants on
this approach. An alternative solution is to use Oblivious Transfers to perform the multiplications,
leading to highly e�cient protocols such as [KOS16, Roy22], or [Sch18] when R is a ring such as
Z2k . The disadvantage of all these protocols is that the communication between P and V scales at
least linearly in the number of VOLE correlations n, which can easily become a bottleneck when a
large number of correlations are needed.

Extend VOLEs e�ciently. Current state-of-the-art VOLE extension protocols all stem from
the approach of Boyle et al. [BCGI18], which builds a pseudorandom correlation generator based on
(variants of) the learning parity with noise (LPN) assumption. This approach exploits the fact that
sparse LPN errors can be used to compress secret-sharings of pseudorandom vectors, allowing the
two parties to generate a long, pseudorandom instance of a VOLE correlation in a succinct manner
from a short vector of VOLE correlations.

These protocols usually proceed along the following lines:

1. Construct a protocol for single-point VOLE, where the sender's input vector has only a single
non-zero entry.

2. The single-point VOLE protocol is repeated t times, to obtain a t-point VOLE where the
sender's input is viewed as a long, sparse, LPN error vector.

7

3. Combine t-point VOLE and the LPN assumption, allowing the parties to locally obtain pseu-
dorandom VOLE by applying a linear mapping.

Using this blueprint leads to (random) VOLE protocols with communication much smaller than
the output length, which is su�cient to build Zero-Knowledge protocols as we shall see. It can be
seen as a form of VOLE extension, where in the �rst step, a small �seed� VOLE of length m ≪ n
is used to create the single-point VOLEs, and then extended into a longer VOLE of length n. In
the Ferret protocol [YWL+20], it was additionally observed that when repeating this process, it can
greatly help communication if m of the n extended outputs are reserved and used to bootstrap the
next iteration of the protocol, saving generation of fresh seed VOLEs whose computation is usually
more involved as outlined above.

To use VOLE as part of a ZK protocol, we will need that it is actively secure. If R is a �eld,
then VOLE extension can e�ciently be done by picking a protocol such as [BCG+19a, WYKW21].
These also allow the secret x to be from a sub�eld of R, which yields more e�cient constructions
when the proof circuit is de�ned over a small �eld such as F2. For R = Z2k , the recent work of
[BBMHS22] described how to adapt [BCGI18, WYKW21] with a consistency check that is secure
if the underlying LPN instance tolerates a small amount of leakage on the noise vector.

2.4 Schwartz-Zippel Lemma

A crucial building block in all presented protocols is the Schwartz-Zippel Lemma over �nite �elds,
which allows for e�cient polynomial identity tests. The version which we use, proven by Ore [Ore22],
works as follows:

Lemma 2.1 (Schwartz-Zippel Lemma). Let F be a �nite �eld, S ⊆ F and P ∈ F[X] be a non-zero

polynomial of degree d ≥ 0. Then

Pr
s

$←−S

[P (s) = 0] ≤ d

|S|
.

3 A General Framework for VOLE-based ZK

3.1 Homomorphic MACs from VOLE

VOLE can be used to build a simple, information-theoretic MAC scheme with useful homomorphic
properties. Prior works have shown numerous MAC schemes with di�erent properties that follow a
similar paradigm [BDOZ11, DPSZ12, DZ13, CF13]. The MAC scheme is oblivious, in the sense that
the prover will hold MACs on certain values, while only the veri�er knows the corresponding MAC
key. For example, consider running VOLE over a �nite �eld F, i.e. FVOLE with R = F, Rkey = R
and t = 1. A single output from a random VOLE can be seen as a MAC on the value x ∈ F obtained
by the prover. The prover also learns the MAC M [x], while the veri�er holds the MAC key, which
consists of a random K[x] ∈ F and the �xed key ∆ ∈ F, satisfying

K[x] = M [x]−∆ · x

If the prover wants to send x to the veri�er, this can be authenticated by additionally sending M [x]:
the veri�er simply checks the above equation holds.

The MAC cannot be forged with probability larger than 1/|F|. To see this, consider a cheating
prover who sends x′ ̸= x together with a MACM [x′]. If veri�cation succeeds, we haveM [x]−∆·x =

8

M [x′] − ∆ · x′, and so (M [x] −M [x′]) · (x − x′)−1 = ∆. This implies that the prover must have
guessed ∆, by coming up with x′,M [x′] that pass the check. Crucially, this check relies on x − x′

being invertible, which in the given case4 is of course always true.

Linear Homomorphism. Since the MAC equation is linear, and ∆ is �xed for every VOLE
output, it's easy to see that any public, linear function can be applied to MACs. The parties can
also create a MAC on a public constant c ∈ F, by de�ning M [c] = 0 and K[c] = −c ·∆; this allows
homomorphically computing a�ne functions.

Multiplicative Homomorphism. The MACs are also multiplicatively homomorphic, with the
caveat that the storage complexity increases. To see this, let (x,M [x]) held by the prover de�ne
a linear polynomial p(s) = M [x] + x · s in s. The veri�er then holds the random key ∆, and the
evaluation p(∆). Now consider a second such MAC on y, and polynomial q(s) = M [y] + y · s. The
product p(s)q(s) is now a degree-two polynomial, whose coe�cients are held by the prover.

The drawback of homomorphically multiplying MACs is that the size of the resulting MAC
scales with the number of multiplications (i.e. the degree of the function). However, this can still
be exploited, as we see in Sections 4.3 and 4.3.3.

MACs Over Small Fields. The approach outlined above does not achieve su�cient security
if |F| is small. For example, when F = F2, the MAC only delivers 1 bit of security! Luckily, the
approach generalizes to arbitrary t > 1. Namely, let Rkey = Rt where R = F for an arbitrary �nite
�eld. The same security argument as before does apply: if a cheating prover who sends x′ ̸= x
together with a MAC M [x′] succeeds in veri�cation, then we have M [x] −∆ · x = M [x′] −∆ · x′,
and therefore (M [x]−M [x′]) · (x− x′)−1 = ∆ which can be computed over Rt by coordinate-wise
division by x− x′. Therefore, a forgery can now only happen with probability 1/|F|t.
FVOLE for this setting can e�ciently be instantiated by considering R as a sub�eld of Rt using

the machinery from [BCG+19b]. It also lends itself to updates on the MACed value x with low
communication, since only a value over R but not Rt must be communicated to do so. The linear
homomorphism of the MAC scheme again follows directly from its setup. By considering Rt as the
degree-t extension �eld of R instead of just a vector space, the multiplicative homomorphism (and
how it is exploited in this work) can also be recovered.

In Section 5.5, we show how this type of homomorphic MAC can also be made to work over
rings, with some di�erences to the soundness guarantees and repercussions on ring size.

3.2 Arithmetic Black Box for ZK

The functionality FZK introduced in Figure 1 is only able to process a circuit C over a ring in a
block. However, VOLE-based ZK can often provide a more �exible functionality where parties can
prove the circuit progressively in a gate-by-gate manner. This is crucial e.g. for memory-friendliness,
since wires which are no longer needed can be dropped from memory. To abstract this capability
in VOLE-based ZK, we now re�ne FZK into FABB in Figure 3 which performs exactly this job. To
use FABB to realize FZK, two parties can use the Input to obtain handles to the committed witness;
then they can traverse the circuit following topological order: each linear gate can be computed

4We will later in Section 5.5 see an example where this is not the case and why this leads to problems.

9

using A�ne combination and each non-linear gate can be computed using multiplication check. In
the end, two parties hold a handle for the output wire which can be asserted using CheckZero.

Arithmetic black box FABB

The functionality communicates with two parties P,V as well as an adversary S that may
corrupt either party. S may at any point send a message (abort), upon which FABB sends
(abort) to all parties and terminates. FABB contains a state st that is initially ∅.

Random On input (Random, id) from P,V and where (id, ·) /∈ st:

1. If P is corrupted, obtain xid ∈ R from S. Otherwise sample xid ∈R R uniformly
at random.

2. Set st← st ∪ {(id, xid)} and send xid to P.

Input On inputs (Input, id, x) from P and (Input, id) from V and where (id, ·) /∈ st:

1. Set st← st ∪ {(id, x)}.

A�ne Combination On input (Affine, ido, id1, . . . , idn, α0, . . . , αn) from P,V where
(idi, xidi) ∈ st for i ∈ {1, . . . , n} and (ido, ·) /∈ st:

1. Set xido ← α0 +
∑n

i=1 αi · xidi and st← st ∪ {(ido, xido)}.

Check Zero On input (CheckZero, id1, . . . , idn) from P,V and where (idi, xidi) ∈ st for i ∈
{1, . . . , n}:

1. If xid1 = · · · = xidn = 0, then send (success) to V, otherwise send (abort) to all
parties and terminate.

Multiplication Check Upon P & V inputting (CheckMult, (idx,i, idy,i, idz,i)
n
i=1) where

(idx,i, xi), (idy,i, yi), (idz,i, zi) ∈ st for i ∈ {1, . . . , n}:

1. Send (success) to V if xi ·yi = zi holds for all i ∈ {1, . . . , n}, otherwise send (abort)
to all parties and terminate.

Figure 3: Functionality modeling an arithmetic black box over the ring R.

This functionality FABB is what protocols such as [WYKW21], [BMRS21] and follow-ups actually
implement. Their observation is that Vector-OLEs output by FVOLE can be used to securely store
inputs by P such that linear functions of secrets can be computed without interaction. In the
following, whenever a value x is stored inside FABB, then we denote it as [x]. This is equivalent to
the value x being MACed (as outlined in Section 3.1), which is why the same notation is used. If
R = Zs for some s ∈ N, then we write [x]s to clarify the modulus used in FABB. We leave out the
subscript if the ring is clear from the context.

To realize FABB for the case where R = F, both parties initially call Init of FVOLE to make
commitments available. Then they proceed as follows.

Random

10

1. The parties call Extend on FVOLE and assign the returned (r,M [r],K[r]) the id id.

Input

1. The parties call Extend on FVOLE, which returns (r,M [r]) to P and K[r] to V.
2. P computes δ = x− r over R and sends δ to V.
3. P setsM [x]←M [r] while V setsK[x]← K[r]−∆δ and both parties assign (x,M [x],K[x])

the id id.

Check Zero If only one id needs to be checked, then this can be done as follows:

1. P looks up M [0] for the id id, while V looks up K[0]. If it is unde�ned, then abort.

2. P sends M [0] to V, who checks that K[0] = M [0].

If more than one id needs to be checked, then P,V can also apply a Collision-Resistant Hash
Function to compress their values and save communication bandwidth.

A�ne Combination

1. P looks up x1, . . . , xn,M [x1], . . . ,M [xn] for the ids id1, . . . , idn, while V looks upK[x1], . . . ,K[xn].
If either of these is unde�ned, or id0 is already de�ned, then abort.

2. P locally sets x0 ← α0+
∑

i αixi and M [x0]←
∑

i αiM [xi], while V locally sets K[x0] =∑
i αiK[xi]− α0∆.

In the case where R = F then one can easily write a simulator, following De�nition 2.1, to
show that the aforementioned subprotocols implement the desired parts of the functionality FABB

securely. The main idea is that V does not learn any information, since the outputs of FVOLE leak
no information about the outputs given to P, while every input during Input is blinded using a
uniformly-random value from FVOLE. A�ne Combination is entirely non-interactive, while the
value that V obtains during Check Zero is predetermined. A cheating P can only change the
outputs during Check Zero such that V accepts a non-zero value, but as shown in Section 3.1, this
reduces to P being able to guess ∆. This value is never revealed to P by FVOLE, which �nishes the
claim. The exact details are shown in the referenced works5.

What is left to implement is the Multiplication Check of FABB. This is actually the core of
much of the early work on VOLE-based Zero Knowledge. We will summarize the state-of-the-art
in the following section.

4 Multiplication checks

4.1 Wolverine Multiplication Check

The Wolverine multiplication check protocol [WYKW21] can be viewed as a direct application of the
bucketing technique introduced in the context of malicious secure computation [DPSZ12, NNOB12,
NO09]. The only di�erence is that only the prover has a privacy requirement (i.e. zero-knowledge)
and thus the bucketing only needs to be done for one layer. In more detail, the protocol proceeds
in the following steps:

5The case where R is of di�erent form will be treated in Section 5.5.

11

Wolverine Multiplication Check

Inputs and parameters: Two parties hold authenticated values {([xi], [yi], [zi])}i∈[n]. Fix
parameters B and let ℓ = n ·B + c.

Protocol:

1. Two parties use FVOLE to obtain authenticated values {([ai], [bi], [ri])}i∈[ℓ].

2. For i ∈ [ℓ], P sends di := ai · bi − ri to V, and then both parties compute [ci] := [ri] + di.

3. V samples a random permutation π on {1, . . . , ℓ} and sends it to P. The two parties use
π to permute {([ai], [bi], [ci])}i∈[ℓ].

4. For each i ∈ [n], two parties perform the following for j = 1, . . . , B:

(a) Let ([a], [b], [c]) be the
(
(i−1)B+ j

)
th authenticated triple (after applying π above).

(b) The prover sends δa = xi − a and δb = yi − b to the veri�er. The two parties then
compute [µ] := [c]− [zi] + δb · [a] + δa · [b] + δa · δb, and �nally run CheckZero([xi]−
[a]− [δa], [yi]− [b]− [δb], [µ]).

5. For each of the remaining B authenticated triples, say ([a], [b], [c]), the prover sends a∗ =
a, b∗ = b to the veri�er. Two parties compute [d] := [c]−a∗·b∗ and then run CheckZero([a]−
[a∗], [b]− [b∗], [d]).

Figure 4: The Wolverine multiplication check protocol.

1. Given a list of authenticated tuples to be checked, two parties generate nB + c number of
extra random authenticated multiplication tuples that are correct if the prover is honest.

2. The veri�er randomly picks c tuples out of the nB+c newly generated ones and checks if they
have the correct relationship. If so, the remaining nB random authenticated multiplication
triples must have a high proportion of good triples. Since all tuples are committed, the check
can be done at the end of the protocol as well.

3. For the remaining nB triples, the veri�er speci�es a random permutation to group them
randomly into n buckets each with B triples per bucket.

4. For the i-th input triple, all triples in the i-th bucket are �sacri�ced� to check the correctness
one at a time. The sacri�ce procedure does detect cheating unless both the �input� triple and
the �sacri�ced� triple are incorrect simultaneously.

Details of the protocol can be found in Figure 4. A careful analysis shows that by setting c,B
appropriately, we can ensure that the proportion of incorrect triples that survive after step 2 of the
outlined protocol is low. Then, with overwhelming probability during Step 4 not all B �sacri�cing�
tuples in a bucket can be faulty, as the permutation is chosen at random. Therefore, if any �input�
multiplication tuple was faulty, it would be detected during Step 4 and the check would fail. In
summary:

12

Theorem 4.1. For any �eld R = F and integer t and if c ≥ B, the protocol in Figure 4 securely

instantiates CheckMult in Figure 3 with statistical error of 1/
(
ℓ
B

)
+O(ℓ/|F|t).

4.2 Mac'n'Cheese Multiplication Check

The protocol from Section 4.1 requires 3B sent ring elements per veri�ed multiplication. We now
discuss two di�erent approaches. The �rst only sends 2 ring elements per multiplication check for
large �elds and builds on Beaver's circuit randomization technique[Bea92]. The second builds on a
protocol from Boneh et al. [BBC+19], where the idea is to reduce proving n multiplicative relations
to checking a dot product of length n. This comes at the cost of communicating n + O(log(n))
R-elements. In particular, for R = Fp for p = 261 − 1 their protocol requires around 64.3 bits of
communication per multiplication.

4.2.1 Warm-up: Multiplication Checks using Circuit Randomization

Consider P has created [x], [y], [z] and wants to show that z = x · y. To do so, �rst both P,V use
FVOLE to create a random [a]. Additionally, P creates [c] where c = a · y.

Upon obtaining a challenge e from V, both parties now compute [ε] = e · [x]− [a] and P sends
ε to V. Then, P shows that both [ε]− ε and e · [z]− [c]− ε[y] are commitments to 0.

Assuming that [ε] was indeed opened correctly, consider the case where [z] = [x · y + δ] for a
non-zero δ, while [c] = [ay+ γ] for a possibly non-zero γ. Assume that e · [z]− [c]− ε[y] is indeed a
commitment to 0. Then once can easily show that this implies that eδ = γ, implying that e = γ/δ
for γ, δ that P has to choose before it knows e. This in turn only succeeds with probability 1/pk,
as e is chosen uniformly at random. Therefore, for small �elds this test has to be repeated multiple
times to achieve low enough soundness error.

4.2.2 Multiplication Checks via Inner Product Checks

Boneh et al. [BBC+19] introduce a logarithmic-sized proof for �parallel-sum� circuits. In a �parallel-
sum� circuit, identical subcircuits C ′ are evaluated in parallel on possibly di�erent inputs, with the
sum of the outputs of each C ′ being the output of the overall circuit. The high-level idea of the
proof protocol is to embed checks for di�erent instances of C ′ within a single polynomial, allowing
V to verify n instances of C ′ in parallel. When letting C ′ be a single multiplication of its two inputs,
can then be used to simultaneously verify the sum of n multiplications, which is equivalent to a dot
product. Denote the protocol that checks the dot product AssertDotProduct.

The AssertDotProduct protocol works as follows. Suppose P wants to prove that [z] =
∑

i∈[n][xi][yi].
P begins by de�ning n polynomials f1, . . . , fn/2, g1, . . . , gn/2 such that fi(j) = x(j−1)n/2+i and
gi(j) = y(j−1)n/2+i for j ∈ {1, 2}, and then computing h =

∑
i∈[n/2] figi. P then commits to h

by committing to its coe�cients (denoted as [h]). V de�nes its own polynomials f ′
i , g

′
i over the

values [x(j−1)n/2+i] and [y(j−1)n/2+i] that are stored in FABB to check that
∑

i∈[n/2] f
′
ig

′
i = h. By

Schwartz-Zippel, this can be done by checking that∑
i∈[n/2]

f ′
i(r)g

′
i(r) = h(r)

for a random r chosen by V. Here, observe that the evaluation of f ′
i , g

′
i, h in a public constant r

boils down to multiplying the committed coe�cients of each polynomial with appropriate powers of
r and summing up the result, both of which are linear operations in FABB that do not require any

13

interaction. Then, verifying the above equation after �xing r is again a dot product check, although
over vectors of length n/2, and we can recursively apply AssertDotProduct until n is of constant size.
Note that only 4 R-elements are communicated during one iteration of AssertDotProduct: 3 when
committing to h and one when sending r. See Figure 5 for a formal presentation of the protocol.
There, for the base-case of AssertDotProduct, one can e.g. use the multiplication checking procedure
from Section 4.2.1.

Given AssertDotProduct, we can batch-verify n multiplications as follows:

1. Assume that n tuples [xi], [yi], [zi] have been committed by P.

2. V chooses a randomization factor r that it sends to P.

3. P shows that ⟨ri[xi], [yi]⟩ =
∑

i∈[n] r
i[zi]. Since r is public, computing ri[xi] and

∑
i∈[n] r

i[zi]
is local.

This protocol, called AssertMultVec, is presented in Figure 5.
It is clear that both AssertDotProduct and AssertMultVec are complete and zero-knowledge. The

following theorem, proven in [BMRS21], shows they are also sound.

Theorem 4.2. If R = Fpk and the protocol AssertMultVec passes, then the input commitments have

the required relation except with probability n+4 logn+1
pk−2

The number of rounds of interaction in AssertDotProduct is logarithmic in the number of mul-
tiplications n. [BMRS21] also show that, using the Fiat-Shamir transform [FS87], the number of
rounds can be made constant by assuming a random oracle.

An alternative version of AssertMultVec with a soundness error that is only logarithmic in n can
be achieved as follows:

AssertMultVec′({([xi], [yi], [zi])}i∈[n]):

1. V samples r1, . . . , rn ∈R R and sends them to P.
2. AssertDotProduct(r1[x1], . . . , rn[xn], [y1], . . . , [yn],

∑
i∈[n] ri[zi]).

One can easily show that AssertMultVec′ has the desired soundness, although at the expense of
communicating more random elements from V to P. In practice, one can optimize this by having
V choose a random PRG seed that it sends to P, with r1, . . . , rn derived deterministically from the
seed.

4.3 LPZK Multiplication Check

The Line Point Zero Knowledge (LPZK) work of [DIO21] introduces the concept of an LPZK proof
system, where the prover constructs a line and the veri�er queries a single point on that line, and
determines from this point whether to accept or reject the proof (see Figure 6). This geometric
presentation emphasizes the simplicity and algebraic character of the VOLE commitment scheme,
which will be used in a non-black box construction.

In the LPZK multiplication check, the witness and all intermediate wire values are stored in
the vector a (see Figure 6). The underlying intuition is that the veri�er will perform a series of
calculations on the vector v := aα + b and the prover will mirror the veri�er by performing the

14

Mac'n'Cheese Multiplication Check

The Mac'n'Cheese multiplication check AssertMultVec, for n a power of two, reduces to the
check of a randomized dot product via AssertDotProduct as follows:

AssertMultVec({([xi], [yi], [zi])}i∈[n]):

1. V samples r ∈R R\{0} and sends it to P.
2. Run AssertDotProduct(r1[x1], . . . , r

n[xn], [y1], . . . , [yn],
∑

i∈[n] r
i[zi]).

AssertDotProduct({([xi], [yi])}i∈[n], [z]):
If n ≤ 2:

1. Check {([xi], [yi], [zi])}i∈[n] using the protocol from Figure 4.

2. Run CheckZero(
∑

i∈[n][zi]− [z]).

Otherwise:

1. P de�nes polynomials of least degree f1, . . . , fn/2, g1, . . . , gn/2 ∈ R[X] such that
for j ∈ {1, 2}: fi(j) = x(j−1)n/2+i, gi(j) = y(j−1)n/2+i.

2. P de�nes the polynomial h =
∑

i∈[n/2] figi ∈ R[X]. Note that h has degree ≤ 2.
Let c0, c1, c2 denote the coe�cients of h.

3. For i ∈ {0, 1, 2}: P runs Input(ci) of FABB and both parties obtain [ci].

4. For i ∈ [n/2]: P and V de�ne committed polynomials of least degree [f ′
i] and [g′i]

satisfying for j ∈ [2]: f ′
i(j) = [x(j−1)n/2+i], g

′
i(j) = [y(j−1)n/2+i]. The committed

polynomial can be evaluated in points using Lagrange interpolation.

5. Let [h′] be the (committed) polynomial de�ned by the [ci] values.

6. V samples r ∈R R\{0, 1} and sends it to P.
7. CheckZero(

∑
i∈[2][h

′](i)− [z]).

8. AssertDotProduct([f ′
1](r), . . . , [f

′
n/2](r), [g

′
1](r), . . . , [g

′
n/2](r), [h

′](r)).

Figure 5: Protocols for e�cient multiplications. See text for necessary notation.

same calculations on the vector of formal polynomial expressions given by at+ b, treating t as an
indeterminate.

The results of these calculations are a collection of values held by the veri�er that are the
evaluations at α of corresponding polynomials held by the prover. Conditions on the coe�cients
of these polynomials correspond to conditions on the vectors a,b, and so can be used to prove
that the extended witness satis�es the desired relation. Concretely, the LPZK multiplication check
builds a series of quadratic polynomials (one per multiplication gate) whose leading coe�cients
are zero if and only if the corresponding gates are evaluated correctly. The resulting �polynomial
checks� we need to verify these coe�cients are zero can be e�ciently batched together, saving on
communication.

15

Figure 6: Geometry of Line Point Zero Knowledge

4.3.1 Single Gate Example

To demonstrate how the above language of LPZK translates into proving multiplication relations,
we give a commit-and-prove protocol for the relation R(x, y, z) := xy − z as an LPZK over F with
binding and soundness error ≤ 2/|F|.

The (honest) prover chooses some triple (x, y, z) and constructs a line at+ b by setting

a = (a1, a2, a3, a4) := (x, y, z, xb2 + yb1 − b3)

with b1, b2, b3 chosen uniformly at random and b4 := b1b2. We write

v(t) := at+ b,

for the line held by the prover, and v = aα + b for the point received by the veri�er, for a
random α ∈ F. We likewise write the prover's view of the entries as

v(t) = (v1(t), v2(t), v3(t), v4(t)),

and write vi for vi(α). The veri�er now checks whether

v1v2 − αv3 − v4 = 0.

If the prover is honest, we have

v1v2 − αv3 − v4 = (xy − z)α2 + (xb2 + yb1 − b3 − (xb2 + yb1 − b3))α

+ b1b2 − b4

= 0

identically, as long as xy−z = 0. In other words, v1v2−αv3−v4 is a quadratic in α that is identically
zero if and only if the prover is honest. For a cheating prover, v1v2−αv3− v4 will be equal to some
nonzero polynomial in α, and so breaking the binding property would be equivalent to P guessing
α, while breaking soundness would be equivalent to P constructing a polynomial of degree 2 which
has α as a root, which gives binding and soundness error ≤ 2/|F|, by the Schwartz-Zippel Lemma,

16

as desired.Note that this is a special case of the LPZK construction sketched above, since being
identically zero is a stronger condition than having a zero leading coe�cient.

When constructing LPZK from a random VOLE, this protocol requires communication for each
entry of a and b which cannot be set randomly by the prover. Here, we require communication of �ve
�eld elements: four elements for the values a1, . . . , a4 and an additional element of communication
for the value b4.

4.3.2 Polynomial Checks

To emphasize the similarity of the one gate example to the IT-MAC that we de�ned in Section
3.1, we can instead write the triple (a,b,v) as (x,M [x],K[x]). Then setting values of a or x is
accomplished by the Input step of FABB, and setting values of b or M [x] is accomplished similarly
by sending the di�erence between a random value M [r] and the desired value M [xi].

When extending this construction to a larger circuit, we generate an authenticated wire [w]
for each input wire and each output wire of a multiplication gate, and get authentications of the
remaining wires from a�ne transformations. There are then two variant LPZK protocols, one with
information theoretic security without a random oracle, and one in the random oracle model, which
we call IT-LPZK and ROM-LPZK.

In both protocols, the prover constructs some quadratic polynomial in ∆ for each multiplication
gate, and the veri�er learns the evaluation of those polynomials. The∆2 coe�cient of the polynomial
is the value xy − z, so if the prover is honest, the polynomial will be degenerate. For IT-LPZK,
the polynomial will also have zero ∆ coe�cient, that is, the polynomial constructed by an honest
prover is equal to a constant. For ROM-LPZK, the polynomial is linear.

For the ROM-protocol, the degenerate polynomial held by the prover is

K[x]K[y]−K[z]∆ = (xy − z)∆2 + (y ·M [x] + x ·M [y]−M [z])∆ +M [x] ·M [y],

which will be linear if xy = z, with the prover holding the coe�cients of the linear polynomial and the
veri�er holding the evaluation at ∆. For the IT-LPZK protocol, we set u := xM [y] + yM [x]−M [z]
and subtract M [u] := u∆ + K[u] from this polynomial, so that the prover and veri�er hold the
putative constant

K[x]K[y]−K[z]∆−K[u] = M [x]M [y]−M [u].

We therefore need two gadgets for ROM-LPZK and IT-LPZK that certify that a batch of quadratic
polynomials are degenerate and actually of degree 1 or degree 0, respectively.

In the IT-LPZK protocol, we treat multiplication gates in batches of size n, (not necessarily
equal to the total number of multiplication gates in the circuit) resulting in a soundness error of
2n/|F|. For each batch of n gates xiyi = zi, the prover authenticates an additional ui := xiM [yi] +
yiM [xi] −M [zi], so that the prover holds (ui,M [ui]) and the veri�er holds K[ui] = ui∆ +M [ui].
The veri�er then computes the product of n successive instances of the polynomial above

m :=

n∏
i=1

ι(K[xi]K[yi]−K[zi]∆−K[ui]),

where ι is the identity function on nonzero values, with ι(0) = 1 to ensure the product is nonzero.
The prover sends the term m̂ :=

∏n
i=1 ι(M [xi]M [yi]−M [ui]), and the veri�er aborts if m ̸= m̂.

The value the veri�er has computed is now the evaluation of a polynomial of degree 2n, which is
a constant polynomial if and only if the prover acted honestly on each of the n gates in the batch.

17

Otherwise, a cheating prover must construct a non-constant polynomial that has ∆ as a root, and
we can apply the Schwartz-Zippel lemma as above to bound the binding and soundness error. The
correctness and security are proven in [DIO21].

Theorem 4.3. The protocol in Figure 7, using Step 3 securely instantiates CheckMult in Figure 3

with soundness error 2n/|F|.

LPZK and QuickSilver Multiplication Check

Inputs and parameters: Two parties holds authenticated values {([xi], [yi], [zi])}i∈[n].
Protocol:

1. For i ∈ [n], two parties execute the following:

(a) Two parties parse the i-th authenticated multiplication tuple: P has (M [x], x),
(M [y], y), (M [z], z) and V has K[x],K[y],K[z], such that K[j] = M [j] + j · ∆ for
j ∈ {x, y, z} and that z = x · y.

(b) P computes A0,i := M [x] ·M [y] ∈ Ft and A1,i := x ·M [y] + y ·M [x]−M [z] ∈ Ft. V
computes Bi := K[x] ·K[y]−K[z] ·∆ ∈ Ft.

2. Quicksilver. P and V perform the following check to verify that Bi = A0,i +A1,i ·∆ for
all i ∈ [n] using a fresh VOLE relation B∗ = A∗

0 +A∗
1.

(a) V samples χ← Ft and sends it to P.
(b) P computes U :=

∑
i∈[n]A0,i ·χi+A∗

0 and V :=
∑

i∈[n]A1,i ·χi+A∗
1, and sends (U, V)

to V.
(c) Then V computes W :=

∑
i∈[n]Bi · χi + B∗ and checks that W = U + V ·∆. If the

check fails, V outputs false and aborts.

3. IT-LPZK, requires t = 1. P and V perform the following check to verify that Bi =
A0,i +A1,i ·∆ for all i ∈ [n].

(a) P authenticates the value [u] = [A1,i].

(b) Let ι(x) = x if x ̸= 0 and ι(0) = 1 otherwise. Then P computes m :=∏n
i=1 ι(M [x]M [y]−M [u]) and sends m to V.

(c) V checks that m =
∏n

i=1 ι(K[x]K[y] −K[z]∆ −K[u]). If the check fails, V outputs
false and aborts.

Figure 7: The LPZK and QuickSilver multiplication check protocols.

4.3.3 QuickSilver Extension

The circuit-based QuickSilver [YSWW21] multiplication check can be viewed as an extension of
the ROM version of the Line-Point ZK protocol [DIO21] to support any �eld. We provide an
overview of the protocol. The key idea to support any �eld size is by extending the checking on

18

an extension �eld of the original �eld. We will abuse the notation and use Ft to also refer to the
extension �eld; this means that multiplications between two Ft elements are performed according to
�eld-extension multiplication. For each multiplication gate, the prover P has (x,M [x]), (y,M [y]),
(z,M [z]) ∈ F×Ft; the veri�er V holdsK[x],K[y],K[z],∆ ∈ Ft such that the following four equations
hold:

z = x · y and M [i] = K[i]− i ·∆ for i ∈ {x, y, z}.

If P is malicious, the �rst equation could potentially be incorrect and the main task is to check
that this relationship holds for all multiplication gates. Although the last three equations are
linear equations from the perspective of the veri�er, the �rst equation is not linear. The crucial
observation from line-point ZK is that it is possible to convert the non-linear checking to a linear
checking. Speci�cally, for the i-th multiplication gate with wire values (x, y, z), if it is computed
correctly (i.e., z = x · y), then we have:

known to V︷ ︸︸ ︷
Bi = K[x] ·K[y]−K[z] ·∆
= (M [x] + x ·∆) · (M [y] + y ·∆)− (M [z] + z ·∆) ·∆
= M [x] ·M [y] + (y ·M [x] + x ·M [y]−M [z]) ·∆+ (x · y − z) ·∆2

= M [x] ·M [y]︸ ︷︷ ︸
known to P

denoted as A0,i

+(y ·M [x] + x ·M [y]−M [z])︸ ︷︷ ︸
known to P

denoted as A1,i

· ∆︸︷︷︸
known to V
global key

We can see that the above relationship is now linear and very similar to the IT-MAC relationship.
What's more, if the underlying wire values (i.e., x, y, z) are not computed correctly, then the above
relationship can hold only with probability 2/|F|t due to Schwartz-Zippel lemma: now it becomes
a quadratic equation of ∆, where there are at most two values of ∆ that satisfy the equation.

Now when we look at a circuit with t multiplication gates, we can obtain one such relationship
for each multiplication gate. Namely, for each i ∈ [n], P has A0,i, A1,i ∈ Ft and V has Bi ∈ Ft

such that Bi = A0,i +A1,i ·∆. We can check all t linear relations in a batch using a random linear
combination. In particular, the veri�er samples a uniform element χ ∈ Ft after the above values
have been de�ned, and then checks that the following relationship holds:∑

i∈[n]

Bi · χi

︸ ︷︷ ︸
known to V
denoted as B

=
∑
i∈[n]

A0,i · χi

︸ ︷︷ ︸
known to P
denoted as A0

+
(∑

i∈[n]

A1,i · χi
)

︸ ︷︷ ︸
known to P
denoted as A1

· ∆︸︷︷︸
known to V
global key

By the veri�er sending just one �eld element (i.e., χ), we are able to reduce checking t equations
in the circuit to checking the above single equation, that is B = A0 + A1 ·∆, where V has B and
∆, while P has A0 and A1. This could be easily checked by using a random linear relationship
B∗ = A∗

0 + A∗
1 · ∆ with B∗, A∗

0, A
∗
1 ∈ Ft to mask �eld elements A0 and A1, and then opening the

masked elements. In particular, P sends U = A0 + A∗
0 and V = A1 + A∗

1 to V, who checks that
B + B∗ = U + V · ∆. Finally, this random linear relationship over Ft can be easily obtained by
generating sub�eld VOLE correlations on Fp and packing them to Ft.

The details of the protocol can be found in Figure 7 and we have the following theorem.

19

Theorem 4.4. For any �eld F and integer t, the protocol in Figure 7 using Step 2 securely instan-

tiates CheckMult in Figure 3 with statistical error of (n+ 3)/|F|t.

Note that the online phase of the ZK protocol where the circuit and witness are known, can be
made non-interactive by computing χ using a random oracle to hash the transcript up to that point
when |F|t ≥ 2κ.

4.4 Comparing the Multiplication check protocols

To compare the di�erent Multiplication check protocols presented in this section, we focus on
the number of communication rounds as well as elements in R that have to be sent per veri�ed
multiplication. Moreover, since Wolverine and Mac'n'Cheese become more e�cient as n increases,
we assume n = 1, 000, 000.

In the arithmetic case, i.e. when R = Zp for a large p, Wolverine has to send 4 R-elements per
multiplication, to achieve statistical security 2−40 withB = 3. The warm-up version of Mac'n'Cheese
(Section 4.2) reduces this to 3 elements. The interactive versions of LPZK & QuickSilver only need
to communicate 1 R-element per multiplication in 3 rounds of interaction, while the non-interactive
and information-theoretic version of LPZK communicates 2 R-elements. In comparison, using the
batch multiplication check in Mac'n'Cheese gives an amortized communication cost of 1 R-element
per multiplication and requires 17 rounds with n = 1000 000. Note that all of these protocols can
be collapsed to be non-interactive (excluding the VOLE preprocessing) in the random oracle model
using the Fiat-Shamir transform. The main advantage of Mac'n'Cheese over QuickSilver (which
has better concrete and asymptotic performance) is that it supports so-called stacking proofs (see
Section 5.3) which are not known to carry over to QuickSilver as easily. If R = Z2, i.e. for binary
circuits, then Wolverine for n = 1, 000, 000 has to communicate 7 bits per proven multiplicative
relation. In comparison, QuickSilver and Mac'n'Cheese both take approximately 1 bit. LPZK, on
the other hand, only supports computations over large �elds.

In terms of practical performance, [BMRS21] argue that QuickSilver shows approximately twice
the throughput in proven multiplicative relations per time unit in comparison to Mac'n'Cheese.
They caution, though, that the systems have not been compared on identical hardware. The
benchmarking of [DILO22] shows that the information-theoretic version of LPZK is twice as fast as
the interactive version of LPZK in terms of online computational costs, perhaps due to eliminating
the cost of invoking a hash function, and only around 2.5× slower than evaluating the circuit in the
clear.

5 Extensions

In Section 3 and Section 4, we provided an overview how to e�ciently prove any computation
provided that it can be written as a circuit over a �eld with linear and degree-2 multiplication gates
only. However, in many settings, representing the statement as a such a circuit may not be ideal:
1) this speci�c circuit representation may be huge and thus lead to high overhead in the proof as
it has to �t into this speci�c representation; 2) it prevents us from designing customized gadgets
and gates that exploit the semantics of the problem and could be potentially more e�cient than
degree-2 circuit-based protocols.

In this section, we discuss e�cient gadgets that are out of the regular degree-2 circuit-modal
computation. The modular design of our approach means that these gadgets can be integrated with

20

the main protocol easily, and can e.g. be expressed as higher-degree gates which the model from
Section 2.1 permits.

5.1 Low-Degree Polynomials Proofs

We introduce proofs for low-degree polynomials from [YSWW21]. As a starter, let us �rst gener-
alize the multiplication check in Section 4.3.3 to prove an inner product between two vectors with
communication of 1 �eld element.

5.1.1 Proving degree-2 polynomials

Let f be a degree-2 polynomial such that f(x1, . . . , xn) = c0 +
∑

i∈[n/2] ci · xi · xn/2+i. Both
parties hold authenticated values [w1], . . . , [wn], and the prover wants to prove f(w1, . . . , wn) = 0.
Using a circuit-based approach, this would need n/2 multiplication gates and thus at least n/2
communication. Here, we show a protocol that can use less communication: Observe that

f(K[w1], . . . ,K[wn]) = c0 +
∑

i∈[n/2]

ci ·K[wi] ·K[wn/2+i]

= c0 +
∑

i∈[n/2]

ci · (M [wi] + wi ·∆) · (M [wn/2+i] + wn/2+i ·∆)

= c0 +
∑

i∈[n/2]

(
ci ·M [wi] ·M [wn/2+i] + ci · (M [wi] · wn/2+i +M [wn/2+i] · wi) ·∆+ ci · wi · wn/2+i ·∆2

)
=

(
c0 +

∑
i∈[n/2]

ci ·M [wi] ·M [wn/2+i]
)
+

(∑
i∈[n/2]

ci ·M [wi] · wn/2+i + ci ·M [wn/2+i] · wi

)
·∆+

(∑
i∈[n/2]

ci · wi · wn/2+i

)
·∆2

=
(
c0 +

∑
i∈[n/2]

ci ·M [wi] ·M [wn/2+i]
)
+
(∑

i∈[n/2]

ci ·M [wi] · wn/2+i + ci ·M [wn/2+i] · wi

)
·∆− c0 ·∆2.

The last equation is due to the fact that f(w1, . . . , wn) = c0 +
∑

i∈[n/2] ci · wi · wn/2+i = 0.
Reorganizing the above equation a bit, we can obtain the following:

f(K[w1], . . . ,K[wn]) + c0 ·∆2︸ ︷︷ ︸
known to V, denoted as B

=
(
c0 +

∑
i∈[n/2]

ci ·M [wi] ·M [wn/2+i]
)

︸ ︷︷ ︸
known to P, denoted as A0

+
(∑

i∈[n/2]

ci ·M [wi] · wn/2+i + ci ·M [wn/2+i] · wi

)
︸ ︷︷ ︸

known to P, denoted as A1

·∆.

This is still a linear relationship B = A0+A1 ·∆, which could be proven just as in the Quicksilver
protocol. Essentially, we can prove a degree-2 polynomial with n/2 multiplications with a commu-
nication cost of just O(1), in addition to the cost of committing the witness. This is independent
of the number of multiplications in the polynomial, which could be as many as n/2 = O(n). One
immediate observation is that if we have t such polynomials to be proven, the total communication
cost is still O(1) rather than O(t), by using the same random-linear-combination idea to reduce all
linear checks to a single check.

21

5.1.2 Generalizing to any low-degree polynomial

Now we generalize the above to support checking of low-degree polynomials. We assume that the
witness is (w1, . . . , wn) ∈ Fn; there are t polynomials to be proven and each multivariate polynomial
fi(X1, . . . , Xn) over F has a degree at most d. The prover wants to prove that fi(w1, . . . , wn) = 0 for
all i ∈ [t]. Below, we show how to prove such polynomial set in communication of d �eld elements
over Ft,in addition to the n �eld elements over F to commit the witness. For every n-variable d-
degree polynomial f ∈ {f1, . . . , ft}, we will represent it as f(X1, . . . , Xn) =

∑
h∈[0,d] gh(X1, . . . , Xn),

where gh is a degree-h polynomial such that all terms in gh have exactly degree h. Here we assume
that each polynomial f has been written in a �degree-separated� format, and thus do consider the
computation of this decomposition to be beyond scope.

We write each polynomial in a �degree-separated� format and shift each sub-polynomial. The
veri�er now computes∑

h∈[0,d]

gh(K[w1], . . . ,K[wn]) ·∆d−h =
∑

h∈[0,d]

gh(M [w1] + w1 ·∆, . . . ,M [wn] + wn ·∆) ·∆d−h

=
∑

h∈[0,d]

(
gh(w1, . . . , wn) ·∆d +

∑
j∈[0,h−1]

Aj
h ·∆

j+d−h
)

=
∑

h∈[0,d]

gh(w1, . . . , wn) ·∆d +
∑

h∈[0,d−1]

Ah ·∆h

= f(w1, . . . , wn) ·∆d +
∑

h∈[0,d−1]

Ah ·∆h

=
∑

h∈[0,d−1]

Ah ·∆h.

Here Aj
h is de�ned as above, and Ah is the aggregated coe�cient for all terms with ∆h. Note

that the prover with witnesses wi and MACs M [wi] can compute all the coe�cients locally. The
coe�cients Ah are polynomial coe�cients when we treat it as a single-variable polynomial on ∆.
Therefore, the prover can compute all Ah e�ciently by evaluating the polynomial on d + 1 points
and then computing the polynomial coe�cients using Lagrange interpolation. In many practical
applications, the polynomial is usually simple and thus the coe�cients can be derived without using
the above generic approach. This relationship can be viewed as an oblivious polynomial evaluation
(OPE), where the veri�er has ∆ and the prover has a polynomial P (x) =

∑
h∈[0,d−1]Ah · xh over

Ft. The veri�er wants to check that the resulting evaluation in the above equation is the same as
P (∆). It is not hard to check the above polynomial relation, as sVOLE can be used to generate
(V)OPE in an e�cient way. Similarly, we can perform the checks for all t polynomials in a batch
using a random linear combination. This results in a total communication of (n+ dr) log |F| bits in
the FVOLE-hybrid model. When using the interpolation approach to compute the coe�cients Ah, we
have that the computational cost of the prover and veri�er is O(td2z+dn) and O(tdz) respectively,
where z is the maximum number of terms in all t polynomials.

5.2 LPZKv2

The follow-up work to LPZK, [DILO22], presents another extension of of VOLE-based ZK that uses
an extension of the VOLE correlation and is specialized for particular circuit formats. LPZKv2 im-

22

proves the online communication cost of LPZKv1 by a factor of roughly two for both the information-
theoretic and random oracle variants (IT-LPZKv2 and ROM-LPZKv2, respectively).

There are two technical ideas that enable the improvements of LPZKv2 over LPZKv1. The �rst
technical idea is to store the message in the constant term of the VOLE, instead of the linear term,
i.e. to write K∗[x] := ∆M∗[x] + x instead of K[x] := ∆x+M [x]. Storing the value in the constant
term instead of the linear term reduces the veri�er's computation, since on the step Input of FABB

described in 3.2, when the P sends δ = x − r to V, V now computes K∗[x] ← K∗[r] − δ instead
of K[x] ← K[r] −∆δ. Because each multiplication gate requires an additional call to Input, this
change reduces the veri�er's computation by one multiplication per gate in both the information
theoretic and random oracle variants.

The second technical idea is the use of an extension of VOLE, quadratically certi�ed VOLE,
or qVOLE, which allows for the imposition of additional quadratic relations on the entries of an
instance of random VOLE. These quadratic relations essentially allow certain terms needed in LPZK
to be precomputed, reducing the communication and computation required in the online step. For
example, using qVOLE, we could generate three authenticated random values ([p], [q], [r]) with the
guarantee that the quadratic relation M∗[p] ·M∗[q] −M∗[r] = 0 is satis�ed, which in turn would
imply that K∗[p] ·K∗[q]−K∗[r] is a polynomial with zero ∆2 coe�cient. This property still holds
after calling the modi�ed Input protocol described above to shift (p, q, r)→ (x, y, r), a fact which
we use extensively in the construction below.

The qVOLE functionality can be realized either by bootstrapping o� of an existing instance
of VOLE, which requires a linear amount of communication in the preprocessing phase (e�ectively
pushing 50% of the communication of LPZKv1 to an o�ine phase). Alternatively, we can use ring-
LPN to give a sublinear-communication qVOLE generation protocol that is concretely e�cient in
the SIMD setting or for circuits with repeated subcircuits (such as hash trees).

5.2.1 General circuits

The information-theoretic protocol IT-LPZKv2 can be used e�ciently with general circuits by realiz-
ing the qVOLE functionality by bootstrapping o� of an existing instance of VOLE. Then IT-LPZKv2
requires 1 + 1

n elements of communication in the online phase, nearly matching the communication
cost of ROM-LPZKv1, Quicksilver or Mac'n'Cheese over large �elds. Here n is a constant repre-
senting batch size, as in IT-LPZKv1. For a multiplication gate xy = z, we have

K∗[x] ·K∗[y] = M∗[x]M∗[y]∆2 + (xM∗[y] + yM∗[x])∆ + xy,

where the leading coe�cient can be pre-computed from the qVOLE functionality, and the constant
coe�cient xy = z is the constant coe�cient of the authenticated output value K∗[z]. If K∗[r] =
M∗[x]M∗[y]∆ +M∗[r] is the precomputed qVOLE entry, then K∗[x]K∗[y] −K∗[r]∆ −K∗[z] will
be a linear polynomial in ∆ with zero constant term, which can be checked using the same batched
proof given in Step 3 of Figure 7. Therefore the total online communication cost is 1 element for
K∗[z] and an amortized cost of 1/n per gate for the batched proofs. Additionally, 1 element of
communication per gate is required in a preprocessing step for the generation of the values K∗[r].

5.2.2 Layered circuits and other specialized circuits

As mentioned above, both IT-LPZKv2 and ROM-LPZKv2 give e�ciency gains in the SIMD setting
or for circuits with repeated subcircuits, since then qVOLE functionality can be e�ciently realized

23

using Ring-LPN. Additionally, the polynomial techniques described above allow us to extend the
LPZKv2 constructions from arithmetic circuits containing only fan-in 2 addition and multiplication
gates to circuits with arbitrary degree 2 polynomial gates.

The ROM-LPZKv2 protocol o�ers some additional speed-up in online communication time for
a broad class of circuits with a certain colorability property described below. The key observation
behind the ROM-LPZKv2 protocol change is that the expression K∗[x]K∗[y] −K∗[p]∆ is a linear
polynomial with constant term xy, and so already represents an authentication of xy without any
communication required at all. However, for the authenticated valueK∗[z] := K∗[x]K∗[y]−K∗[p]∆,
the linear term is equal to M∗[z] := xM∗[y]+yM∗[x]−M∗[p], which depends on the prover's input.
Therefore if we wish to use z as the input wire to another multiplication gate with inputs z, t
the prover can no longer compute the quadratic coe�cient M∗[z]M∗[t] using only precomputed
randomness. This is the motivation behind the colorability property.

For the coloring, we use the color red to denote wires for which the value M∗[t] is determined
purely by the correlated randomness, and use blue to denote wires for which the valueM∗[t] depends
on the prover's input. Color the input wires red, then color the remaining wires of the circuit such
that, for any degree 2 polynomial gate with all blue inputs, or a mix of blue and red inputs, the
output wire is red, while for a gate with all red inputs, the output wire may be red or blue. Then
the communication cost of ROM-LPZKv2 under this coloring is equal to the number of red wires.

For layered circuits, where each gate is assigned to some layer k, and all the inputs to gates at
layer k are outputs to gates at layer k−1, either all odd layers or all even layers can be colored red, so
the amortized communication per degree 2 polynomial gate is at most 1

2 elements of communication
per gate in a layered circuit. For a broad class of non-layered circuits, substantial savings are
also possible. For example, as described in [DILO22], for a random circuit made up entirely of
multiplication gates and colored with a greedy algorithm, approximately 38% of the wires will be
blue, so that one can achieve an approximately 38% reduction in communication.

5.3 Disjunctions and r-out-of-n proofs

[BMRS21] consider the setting where both P and V agree on m circuits C1, . . . , Cm that de�ne
protocols based on a committed vector [w]. Let these protocols each be public coin HVZK proofs
over the same �eld Fpk . For this, they construct a communication-e�cient protocol showing that
from [w] one can extract a satisfying input wi∗ to at least one of the circuits.

The classic OR-proof technique by Cramer et al. [CDS94] can be used to construct such a proof
with message complexity ≈

∑
i∈[m] αi where αi is the communication necessary for the proof Πi of

Ci. This would be done by running all m proofs for all circuits in parallel (which means sending
messages for evaluating all of them) and having their outputs being committed as [y1], . . . , [ym]. The
prover would then show that at least one �nished successfully with the expected output using the
OR-proof of [CDS94] on [y1], . . . , [ym]. [BMRS21] show how to reduce the message complexity of
such a proof to 2mk+max{αi}, where the soundness error grows by an additional additive ≈ p−k.
What is required for the technique of [BMRS21] to work is that all messages from the prover in
each protocol Πi appear uniformly random. Moreover, they require that protocol messages in each
round are of identical length, for any Πi,Πj . Towards this, observe that it is always possible to
defer zero-tests in a protocol Πi that relies on FABB to the end, as a veri�er doesn't have a secret
that could be leaked through late application of the zero check. Achieving messages of identical
length (and same number of rounds in each Πi) can be achieved using padding.

At the same time, not all implementations of FABB are compatible with the requirement that

24

messages from the prover are uniform, even with padding: The multiplication checks from Section 4.1
and 4.2 reduce to the prover making auxiliary commitments, the veri�er sending random challenges
and the prover then doing a zero-test. This can be made compatible with the desired protocol
structure. Unfortunately, this is not true for the approach from Section 4.3.3 as it works directly
on a MAC level.

Assume that we start m proofs Πi, over Fpk , proving the individual circuits Ci. Note that p can
be any prime power, with no restrictions on size. We make the simplifying assumption that each Ci

has the same number of linear gates and that each Πi has the same number of rounds of interaction
and that prover messages in each round are of the same length. [BMRS21] show the more general
case where these restrictions are not necessary.

Constructing the protocol We construct a protocol ΠOR, de�ned over Fpk , for the aforemen-
tioned task as follows:

1. P, having only wi∗ for one of the circuits Ci∗ , will commit to [w] such that Πi∗ can access
wi∗ . It then in its head runs each of the Πi on inputs derived from [w]. For this, it extends
wi∗ with a random padding if necessary.

2. P and V will simultaneously run all Π1, . . . ,Πm, with the following modi�cation: P's message
ch to V in round h will be chosen as the message created from running Πi∗ , while V uses
the same message from the prover in all instances. Since the messages of all protocols by
assumption appear uniformly random and are therefore indistinguishable, V can now execute
all instances in parallel but cannot tell which of these is the true one.

3. Conversely, since all Πi are public coin, V sends a randomness string that is long enough for
any of the m instances in round h. P uses this identical randomness string in all simulated
proofs Π1, . . . ,Πm.

The challenge now, is that V cannot simply perform the veri�cation for all Πi using the CheckZero
queries for each instance, since this would reveal the index i∗ of the true statement. Towards resolv-
ing this, we �rst observe that any �pure� zero-test can be turned into a Σ-protocol-like argument as
follows:

1. For each i ∈ {1, . . . ,m}, let [µi] be the output of the circuit Ci run on [w]. Assume that
there exists a uniformly random commitment [ri], which can be generated without additional
interaction from FVOLE.

2. P sends ri to V, but crucially does not open the commitment [ri] yet.

3. V sends a challenge fi to P.

4. P uses CheckZero to show that [ri] + fi[µi]− ri opens to 0.

This check, crucially, has a soundness error of 1/pk, as any prover knowing fi in advance can generate
ri appropriately in order to cheat during the sigma-protocol.

[BMRS21] now perform a [CDS94]-style OR-proof to show that at least one of the outputs [µi]
is zero, using the Σ-protocol version of CheckZero. The basic idea behind [CDS94] is that given m
Σ-protocols for proving relations, an OR proof can be done by having the prover choose the random
challenge fi for m − 1 of the instances, so it can simulate the correct messages ri to be sent in

25

every false instance using the simulator for the sigma protocol. This makes the veri�er accept for
the �false� instances automatically. For the correct instance i∗, P will choose ri as in the correct
Σ-protocol, which it can complete because the statement is actually true for one instance. Hence,
after receiving them initial messages of each Σ-protocol (honest in one case, simulated in all others),
the veri�er picks a challenge f , which de�nes the challenge fi∗ = f −

∑
i ̸=i∗ fi corresponding to the

true instance i∗. The prover sends all these fi to the veri�er.
Finally, V checks that the fi add up to f and that each CheckZero test for each Ci is indeed

valid.

Threshold proofs In [CDS94] the authors describe how to additionally construct proofs of partial
knowledge for any threshold, i.e., how to show that r out of the m statements are true. Their
technique, together with a modi�cation of ΠOR, can be used to construct a proof in the VOLE
setting where we implicitly only communicate the transcript of r statements, and not all m of them.

Towards this, ΠOR can then be seen as a special case where r = 1. To generalize to arbitrary r
one now simulates the m− r possibly false proofs using false challenges. The prover then, based on
the challenge f , computes the unique degree-m− t polynomial s that evaluates to f at point 0 and
to the simulated challenge fi for each i where the sigma-protocol was simulated. It then derives
the honest challenges by evaluating this polynomial at their indices, and sends s to the veri�er.
Towards compressing the messages, [BMRS21] then consider the r messages for the true branches
as evaluations of a polynomial t of degree r − 1. Namely, for each true evaluated branch i, they
let t(i) be the message sent by Πi. The prover then computes this unique polynomial in canonical
coe�cient form and sends it to V, who derives the inputs to each simulated Πi from t. Since both
s, t are of canonical form, they do not leak which of the branches are actually true.

log-overhead disjunctions The drafted protocol ΠOR has the drawback that to verify one out of
m statements, we still need O(m) communication complexity in the OR-proof. One can construct
an alternative protocol that obtains an overhead only logarithmic in m, as follows:

1. Any Πi accepts i� CheckZero is true, i.e. the output commitment [µi] is 0.

2. If the prover can then compute the product µ1 · · ·µm, and prove that this is 0, then at least
one µj was 0 to begin with, i.e. one output was true.

A naive instantiation of the above approach is to perform m− 1 multiplications between the m
implicit variables µi, and open the result. However, this would still give O(m) overhead. Instead, one
can carefully apply recursion to make this overhead logarithmic, using the fact that after augmenting
the parallel evaluation of two protocols Π1,Π2 with a multiplication, we obtain a protocol which
can recursively be fed into the same process.

5.4 Conversions between F2 and Fp

In [BBMH+21] the authors show how, given two simultaneously running instances of FABB for
moduli 2, p, one can e�ciently prove that [c0]2, . . . , [cm]2 is the correct binary decomposition of [c]p.
These correct decompositions, called Edabits, were introduced to secure computation protocols in
[EGK+20] and are useful for computing/proving truncations and comparisons.

On a high level, in [EGK+20] �rst a set of random Edabits is created during a preprocessing
phase. Later, one of these Edabits is used to perform the actual conversion in the online phase.

26

[BBMH+21] adapt and optimize the approach of [EGK+20] in multiple ways, mainly by observing
that, since the prover already knows the conversions ahead of time, these can directly be checked
using the preprocessing protocol and there is no need for the intermediary random Edabits. We want
to stress that, concurrently to [BBMH+21], Weng et al. [WYX+21] also introduced an adaptation
of Edabits to the ZK setting with a similar construction. In the following, we use the notation of
[BBMH+21].

The protocol To de�ne the check let us �rst, in addition to Edabits, de�ne Dabits as pairs
of commitments [x]2, [x]p that are consistent. On a high level, the Edabits checking protocol of
[BBMH+21] consists of four phases, using a bucketing approach similar to the one already introduced
in Section 4.1:

1. Initially, P commits to auxiliary random Edabits and Dabits necessary for the check. The
Dabits are veri�ed separately for consistency, and then V chooses a random permutation.

2. After permuting the auxiliary Edabits, both parties run an implicit cut-and-choose phase.
Here, P opens C of the auxiliary Edabits, which are checked by V for consistency.

3. Place each input Edabit (that we want to test for correctness) into one of N buckets, each
of which also contains a set of B auxiliary Edabits {([r0]2, . . . , [rm−1]2, [r]p)}B−1

i=0 that we use
to perform veri�cation. None of these auxiliary Edabits have been proven consistent, but C
Edabits coming from the same pool have been opened in the previous step.

4. Now, over B iterations the prover and veri�er for each j ∈ [B] compute [c + rj]p = [c]p +
[rj]p and use an addition circuit to check that ([e0]2, . . . , [em]2) = ([c0]2, . . . , [cm−1]2) +
([r0]2, . . . , [rm−1]2). The addition circuit is evaluated using the FABB operations.

For the checks within each bucket, [BBMH+21] use an additional protocol which converts an
authentication of a bit [b]2 into an arithmetic authentication [b]p which is necessary to do so [c+rj]p
does not reveal any information. Additionally, the authors also observe that their protocol is still
secure if the Dabits are �approximately correct�, meaning that each pair [x]2, [x]p has the same
parity and x is bounded but [x]p necessarily commits to a bit. For this, they present a cheaper
protocol to check this property.

5.4.1 Truncation and Comparison

[BBMH+21] provide protocols for verifying integer truncation and comparison. Here, truncation
means that given integers l,m and two authenticated values x, x′ of l and l−m bits, verify that x′

corresponds to the upper l−m bits of x, i.e. x′ = ⌊ x
2m ⌋ over the integers. Integer comparison is then

the problem of taking two authenticated integers and outputting 0 or 1 (authenticated) depending
on which input is the largest. Integers are considered as signed in the interval [−2l−1, 2l−1).

Truncation To perform a truncation check with one call to the conversion check introduced above,
the prover in addition to each input [a]p also provides:

� the truncated value [atr]p of [a]p and its bit decomposition ([a0tr]2, . . . , [a
l−m−1
tr]2)

� the lowerm bits of [a]p; [a′]p = [a mod 2m]p as well as its bit decomposition ([a′0]2, . . . , [a
′
m−1]2).

27

Having access to [atr]p and [a′]p which are shown to have consistend decompositions then allows the
veri�er then to check that a = 2m · atr + a′, which proves the claim.

Comparison The authors also present a protocol to compare two signed, l-bit integers α and
β. The way their protocol works is by having the prover (and veri�er) compute [α]p − [β]p and
have the prover compute the truncation of this which is only the most signi�cant bit. Now one
can run the aforementioned truncation veri�cation protocol and use the truncation as the output
of the comparison. Similarly to previous works in the MPC setting [Cd10, EGK+20], this gives the
correct result as long as α, β ∈ [−2l−2, 2l−2), so that α−β ∈ [−2l−1, 2l−1), so this introduces a mild
restriction on the range of values that can be supported.

5.5 Zero-Knowledge modulo 2k

The ABB implementation outlined in Section 3 and its multiplication protocols in Section 4 are all
tailored to �elds. This requires that the computational problem that is encoded in the circuit C can
be e�ciently expressed over a �eld, which might not always be the case. For example, computer
algorithms are generally expressed as operating on data items from Z232 or Z264 . It is therefore
interesting to develop an implementation of FABB for this case. Here, we summarize how this was
approached in [BBMH+21, BBMHS22].

Implementing Zero Checks modulo 2k Assume that P wants to commit to secrets x ∈ Z2k

using FVOLE, such that also ∆,K[x],M [x] come from Z2k . Assuming one would follow the approach
from Section 3, then P sends x,M [x] to open [x], such that V checks thatK[x]+∆x = M [x] mod 2k.

Unfortunately, since Z2k is not a ring, such a check is not constraining P to only one valid
opening x,M [x]. For example, if ∆ = 2∆′ which happens with probability 1/2, then by setting
x′ = x+ 2k−1 we have that

x′ ·∆ = (x+ 2k−1)(2∆′) = x∆+ 2k = x∆ mod 2k,

meaning that x′,M [x] is also a valid opening.
Instead, [BBMH+21, BBMHS22] choose the information-theoretic MAC scheme from [CDE+18]

as their starting point. For this, let s be an additional parameter, and ℓ = k + s. To authenticate
a value x ∈ Z2k known to P towards V (denoted as [x]), we choose the MAC keys ∆ ∈ Z2s and
K[x] ∈ Z2ℓ , and compute the MAC tag as

M [x] := ∆ · x̃+K[x] ∈ Z2ℓ (1)

where x = x̃ mod 2k, i.e. x̃ is a representative of the corresponding congruence class of integers
modulo 2k. Then P gets x̃ and M [x], whereas V receives ∆ and K[x]. As before, linear operations
can be applied in the same way. One can show that this again leads to P not being able to cheat,
unless it can guess ∆ which only succeeds with probability 2−s. Setting s = σ then achieves the
required statistical security.

Observe that initially x̃may be chosen as x̃ = x ∈ {0, . . . , 2k−1}. Applying arithmetic operations
can result in larger values though, which do not get reduced modulo 2k because all computation
happens modulo 2ℓ. Therefore, to safely open [x] or show that x = 0, �rst the upper s bits of x̃
need to be randomized, by computing [z] ← [x] + 2k · [r] with random r̃ ∈R Z2ℓ and then opening
[z].

28

Extending Line-Point Multiplication checks to Z2k It is clear that Equation 4.3.3 from the
e�cient multiplication check from Section 4.3.3 still holds. Therefore, one might hope that the same
security argument still applies. Unfortunately, when just considering general quadratic equations

f(x) = ax2 + bx+ c

modulo 2ℓ, then these may have many more than just 2 solutions.
In [BBMHS22] the authors observe that f(x) actually is constrained in the given setting, since a

cannot be chosen from the entire ring by P, as a ̸= 0 mod 2k for P to successfully cheat. Moreover,
P may have to guess a root ∆ of f(x) that comes from {0, . . . , 2s − 1}. They therefore show the
following:

Lemma 5.1. Let f(x) ∈ Z[x] be a quadratic equation such that 2r is the largest power of 2 dividing

all coe�cients. Then for any ℓ, s, s′ ∈ N such that ℓ − r > s′ there are at most 2max{(2s−s′)/2,1}

solutions to f(x) = 0 mod 2ℓ in {0, . . . , 2s − 1}.

This implies that by choosing ℓ = k+ 2s, one can achieve the required bound on the number of
solutions.

Amortizing Multiplication checks in Z2k Also with respect to checking many multiplica-
tions simultaneously, the solution of QuickSilver from Equation 4.3.3 does not directly carry over.
[BBMHS22] solve this by generalizing the techniques from [CDE+18] to their MAC scheme.

Here, [BBMHS22] show that by letting V choose the χi independently from the set {0, . . . , 2s−1}
and requiring s = σ + log(σ) + 3 and σ ≥ 7, then this modi�ed check from Equation 4.3.3 when
done modulo 2ℓ is sound except with probability 2−σ.

5.6 RAM-based Zero-knowledge Proofs

RAM-based zero-knowledge proofs have been studied in the context of zkSNARKs (starting from [BCG+13]).
As we show below, the main components needed are zero-knowledge proofs of permutation, pack-
ing, and integer comparison. When representing the integers as a list of authenticated values in F2,
proving integer comparison is a fair easy task since comparison becomes a straightforward circuit.
For e�cient permutation and packing, the problems are somewhat related. The folklore method to
prove a permutation is by letting the prover commit to the permuted values and prove equality of
the sets, which in turn can be converted to a polynomial identity check [Nef01]. When the �eld
is large, it can be checked in linear time by checking the evaluation on a random point, where the
soundness if ensured by the Schwartz-Zippel Lemma. However, converting between F2 and a large
�eld can be costly even after optimizations such as in Section 5.4.

The key observation in [FKL+21] is that the Schwartz-Zippel Lemma works for any �eld as
long as it is su�ciently large and thus one can choose a �eld that is friendly to conversions. In
particular, we can embed a bit string either as Fκ

2 or as F2κ . Their authentications are di�erent:
authenticating elements in Fκ

2 requires IT-MACs on each F2 value; authenticating F2κ only requires
one IT-MAC for the whole element. Just like cleartext operation, conversions between authenticated

elements in Fκ
2 and F2κ can also be done e�ciently with no communication: if we �x a degree-κ

irreducible polynomial f(X) and identify F2κ with F2[X]/(f(X)), then it can be derived that
x =

∑
i∈[κ] xi · Xi, where X ∈ F2κ denotes the element corresponding to X ∈ F2[X]/(f(X)). The

29

parties can compute [x] by having the prover compute M [x] =
∑

i∈[κ]M [xi] · Xi and the veri�er

compute K[x] =
∑

i∈[κ]K[xi] · Xi; we then have

M [x] =
∑
i∈[κ]

M [xi] · Xi

=
∑
i∈[κ]

(K[xi]⊕ xi∆) · Xi

=
∑
i∈[κ]

K[xi] · Xi ⊕
(∑

i∈[κ]

xi · Xi
)
·∆

= K[x]⊕ x ·∆.

This means that given a vector of bits, we can prove a Boolean predicate by treating them as
authenticated bits and, without communication, we can prove arithmetic predicates on vectos of
bits by treating vectors as extension �eld elements. Below we use ZK proof of read-only RAM as
an example.

Read-only ZKRAM. Consider the case where the prover wants to prove in zero knowledge to
the veri�er that there exists an index i for which Memi = t (where t is a public value). The protocol
in this case roughly proceeds as follows:

1. The prover commits to the list of values L =
(
(0,Mem0), (1,Mem1), . . . , (N − 1,MemN−1)

)
.

(This can be done once-and-for-all, and before t is known.)

2. The prover commits to (i, t), where t is known to the veri�er but i is not, and appends (i, t)
to L.

3. The prover then sorts the tuples in L by their �rst entry, giving an updated list L′, and
commits to the tuples in that list.

4. The prover proves that L′ is consistent, namely, that if two tuples in L′ agree in their �rst
entry, then they also agree in their second entry. This can be done in a natural way by
comparing all adjacent entries in L′. All operations should be proven as a Boolean circuit
over F2.

5. The prover proves that L′ is a permuted version of L using the polynomial equality check
ensured by Schwartz-Zippel. Speci�cally, let L =

(
x0, . . .

)
denote the tuples in L (where now

we represent each tuple as elements in F2κ), and let L′ =
(
x′0, . . .

)
denote the tuples in L′.

If one de�nes the polynomials L(R) =
∏

i(xi − R) and L′(R) =
∏

i(x
′
i − R), then note that

L and L′ are permutations of each other i� L(R) = L′(R). The veri�er can e�ciently test
the equality of these polynomials by choosing a uniform �eld element r and verifying that
L(r) = L(r′).

To extend the above idea to support write, one just needs to take the timestamp into consid-
eration since a value can be updated in the middle of the execution. The sorting needs to respect
both index and time stamp, and the consistency checks need to incorporate the update after the
initialization.

30

6 Open Questions

We will now mention some research directions which we believe are interesting to develop VOLE-
based ZK protocols further.

6.1 Theoretical questions

There are many intriguing theoretical aspects of VOLE-based Zero Knowledge protocols that are
yet unexplored. In the following, we provide a list of interesting theoretical research directions.

1. Using other correlations. The e�ciency of VOLE-based Zero Knowledge protocols relies
on the recent breakthroughs in e�cient VOLE extension. But also other pseudorandom cor-
relations (see e.g. [BCG+20]) can be e�ciently generated. The question is if these, or other,
correlations can bene�t ZK proofs in a similar way. One step into this direction was already
done in [DILO22] (see Section 5.2) by using qVOLE.

2. Sublinear communication and veri�cation. The idea of ZK proofs with sublinear commu-
nication and veri�cation has �ourished in the past 10 years, starting from [BCI+13, GGPR13,
PHGR13] and leading to recent Blockchain-optimized proof systems. In VOLE-based ZK,
similar properties may be interesting although non-interactivity is less important. Having a
veri�er with sublinear (in |C|) computation while keeping a concretely e�cient, linear prover
has to the best of our knowledge not yet been achieved. For the special case of disjunctions one
could achieve an asymptotic solution by extending the techniques of [HHK+22], but concrete
e�ciency is unclear.

3. Sublinear communication, also in the input length.A recent work [WYY+22], which
extends VOLE-based ZK, enables communication sublinear to |C|. Their protocol relies on
vector oblivious polynomial evaluation (VOPE), an extension of VOLE. At the same time, it
requires the proof to be of size at least |w| (i.e. the circuit input) for knowledge extraction. It
would be interesting to explore if VOLE-based protocols can be both sublinear in |C| and |w|
by introducing a knowledge assumption or using a random oracle, while keeping the concrete
e�ciency of [WYY+22].

6.2 Practical questions

VOLE-based ZK enjoys many advantages that are intriguing to practical deployment. Here we
summarize a list of interesting practical future directions.

1. More e�cient VOLE. The concrete e�ciency of the whole proof system relies on e�cient
VOLE protocols. Thus it is crucial to design more e�cient VOLE protocols with improved
computation and communication overhead.

2. More applications. State-of-the-art VOLE-based ZK can prove tens of millions of gates
with ease. This opens the possibility of proving very large statements, something not feasible
before this line of work. It would be interesting to explore the space of applications that need
ZK but were limited so far by the scalability problems of existing schemes. The fact that this
type of proof is designated-veri�er could a�ect the design and thus poses new questions in
designing ZK-based applications.

31

3. Lowering the gap between Z2k and Fp. In their work, [BBMHS22] provide a software
implementation of their instantiation of FABB that operates over Z2k . Their implementation
achieves ⪆ 1mio multiplications over Z264 , which is up to an order of magnitude slower than
what the implementations of the protocols from Section 4 can perform in similar settings over
�elds of similar size. Lowering this gap may be helpful if Z2k proof systems should be used
for proofs of programs on current hardware architectures.

Acknowledgement

This work was funded by the Defense Advanced Research Projects Agency (DARPA) under Contract
No. HR001120C0085 and HR001120C0087. Any opinions, �ndings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily re�ect the views of
the Defense Advanced Research Projects Agency (DARPA). Distribution Statement �A� (Approved
for Public Release, Distribution Unlimited).

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the
current study.

Competing Interests

The authors declare no competing �nancial interests.

References

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-
knowledge proofs on secret-shared data via fully linear PCPs. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 67�97, Santa Barbara, CA, USA, August 18�22, 2019. Springer, Heidelberg,
Germany.

[BBMH+21] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benoît Razet, and Peter
Scholl. Appenzeller to brie: E�cient zero-knowledge proofs for mixed-mode arithmetic
and Z2k. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 192�211,
Virtual Event, Republic of Korea, November 15�19, 2021. ACM Press.

[BBMHS22] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl.
MozZ2karella: E�cient vector-OLE and zero-knowledge proofs over Z2k . In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of
LNCS, pages 329�358, Santa Barbara, CA, USA, August 15�18, 2022. Springer, Hei-
delberg, Germany.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: Verifying program executions succinctly and in zero knowledge. In Ran

32

Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 90�108, Santa Barbara, CA, USA, August 18�22, 2013. Springer, Heidelberg,
Germany.

[BCG+19a] Elette Boyle, Geo�roy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. E�cient two-round OT extension and silent non-interactive secure
computation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 291�308, London, UK, November 11�15, 2019.
ACM Press.

[BCG+19b] Elette Boyle, Geo�roy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
E�cient pseudorandom correlation generators: Silent OT extension and more. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, vol-
ume 11694 of LNCS, pages 489�518, Santa Barbara, CA, USA, August 18�22, 2019.
Springer, Heidelberg, Germany.

[BCG+20] Elette Boyle, Geo�roy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
E�cient pseudorandom correlation generators from ring-LPN. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS,
pages 387�416, Santa Barbara, CA, USA, August 17�21, 2020. Springer, Heidelberg,
Germany.

[BCGI18] Elette Boyle, Geo�roy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
ACM CCS 2018, pages 896�912, Toronto, ON, Canada, October 15�19, 2018. ACM
Press.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In Amit Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 315�333, Tokyo, Japan, March 3�6, 2013.
Springer, Heidelberg, Germany.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Paterson, ed-
itor, EUROCRYPT 2011, volume 6632 of LNCS, pages 169�188, Tallinn, Estonia,
May 15�19, 2011. Springer, Heidelberg, Germany.

[Bea92] Donald Beaver. Foundations of secure interactive computing. In Joan Feigenbaum,
editor, CRYPTO'91, volume 576 of LNCS, pages 377�391, Santa Barbara, CA, USA,
August 11�15, 1992. Springer, Heidelberg, Germany.

[BEPU+20] Carsten Baum, Daniel Escudero, Alberto Pedrouzo-Ulloa, Peter Scholl, and
Juan Ramón Troncoso-Pastoriza. E�cient protocols for oblivious linear function eval-
uation from ring-LWE. In Clemente Galdi and Vladimir Kolesnikov, editors, SCN 20,
volume 12238 of LNCS, pages 130�149, Amal�, Italy, September 14�16, 2020. Springer,
Heidelberg, Germany.

[BMRS21] Carsten Baum, Alex J. Malozemo�, Marc B. Rosen, and Peter Scholl. Mac'n'cheese:
Zero-knowledge proofs for boolean and arithmetic circuits with nested disjunctions. In

33

Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS,
pages 92�122, Virtual Event, August 16�20, 2021. Springer, Heidelberg, Germany.

[Cd10] Octavian Catrina and Sebastiaan de Hoogh. Improved primitives for secure multiparty
integer computation. In Juan A. Garay and Roberto De Prisco, editors, SCN 10,
volume 6280 of LNCS, pages 182�199, Amal�, Italy, September 13�15, 2010. Springer,
Heidelberg, Germany.

[CDE+18] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping Xing.
SPD Z2k : E�cient MPC mod 2k for dishonest majority. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
769�798, Santa Barbara, CA, USA, August 19�23, 2018. Springer, Heidelberg, Ger-
many.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowl-
edge and simpli�ed design of witness hiding protocols. In Yvo Desmedt, editor,
CRYPTO'94, volume 839 of LNCS, pages 174�187, Santa Barbara, CA, USA, Au-
gust 21�25, 1994. Springer, Heidelberg, Germany.

[CF13] Dario Catalano and Dario Fiore. Practical homomorphic MACs for arithmetic circuits.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 336�352, Athens, Greece, May 26�30, 2013. Springer, Heidelberg,
Germany.

[dCHI+22] Leo de Castro, Carmit Hazay, Yuval Ishai, Vinod Vaikuntanathan, and Muthu Venki-
tasubramaniam. Asymptotically quasi-optimal cryptography. In Orr Dunkelman and
Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS,
pages 303�334, Trondheim, Norway, May 30 � June 3, 2022. Springer, Heidelberg,
Germany.

[dCJV21] Leo de Castro, Chiraag Juvekar, and Vinod Vaikuntanathan. Fast vector oblivious
linear evaluation from ring learning with errors. In WAHC '21: Proceedings of the
9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
Virtual Event, Korea, 15 November 2021, pages 29�41. WAHC@ACM, 2021.

[DILO22] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Improving line-point zero
knowledge: Two multiplications for the price of one. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 829�841, Los Angeles,
CA, USA, November 7�11, 2022. ACM Press.

[DIO21] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-Point Zero Knowledge and Its
Applications. In 2nd Conference on Information-Theoretic Cryptography (ITC 2021),
Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, 2021.
Schloss Dagstuhl � Leibniz-Zentrum für Informatik.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643�662, Santa Barbara,
CA, USA, August 19�23, 2012. Springer, Heidelberg, Germany.

34

[DZ13] Ivan Damgård and Sarah Zakarias. Constant-overhead secure computation of Boolean
circuits using preprocessing. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS,
pages 621�641, Tokyo, Japan, March 3�6, 2013. Springer, Heidelberg, Germany.

[EGK+20] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl. Im-
proved primitives for MPC over mixed arithmetic-binary circuits. In Daniele Miccian-
cio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS,
pages 823�852, Santa Barbara, CA, USA, August 17�21, 2020. Springer, Heidelberg,
Germany.

[FKL+21] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and
Chenkai Weng. Constant-overhead zero-knowledge for RAM programs. In Giovanni
Vigna and Elaine Shi, editors, ACM CCS 2021, pages 178�191, Virtual Event, Republic
of Korea, November 15�19, 2021. ACM Press.

[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. Privacy-free
garbled circuits with applications to e�cient zero-knowledge. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
191�219, So�a, Bulgaria, April 26�30, 2015. Springer, Heidelberg, Germany.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi�cation
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO'86, volume 263 of
LNCS, pages 186�194, Santa Barbara, CA, USA, August 1987. Springer, Heidelberg,
Germany.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626�645, Athens,
Greece, May 26�30, 2013. Springer, Heidelberg, Germany.

[GLS+21] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S. Wahby.
Brakedown: Linear-time and post-quantum SNARKs for R1CS. Cryptology ePrint
Archive, Report 2021/1043, 2021. https://eprint.iacr.org/2021/1043.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-knowledge
for Boolean circuits. In Thorsten Holz and Stefan Savage, editors, USENIX Security
2016, pages 1069�1083, Austin, TX, USA, August 10�12, 2016. USENIX Association.

[GMR85] Sha� Goldwasser, Silvio Micali, and Charles Racko�. The knowledge complexity of
interactive proof-systems (extended abstract). In 17th ACM STOC, pages 291�304,
Providence, RI, USA, May 6�8, 1985. ACM Press.

[HHK+22] Abida Haque, David Heath, Vladimir Kolesnikov, Steve Lu, Rafail Ostrovsky, and
Akash Shah. Garbled circuits with sublinear evaluator. Cryptology ePrint Archive,
Report 2022/797, 2022. https://eprint.iacr.org/2022/797.

[HK20] David Heath and Vladimir Kolesnikov. Stacked garbling for disjunctive zero-knowledge
proofs. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III,
volume 12107 of LNCS, pages 569�598, Zagreb, Croatia, May 10�14, 2020. Springer,
Heidelberg, Germany.

35

https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2022/797

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th
ACM STOC, pages 21�30, San Diego, CA, USA, June 11�13, 2007. ACM Press.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements e�ciently. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 955�966,
Berlin, Germany, November 4�8, 2013. ACM Press.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arith-
metic secure computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzen-
beisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
2016, pages 830�842, Vienna, Austria, October 24�28, 2016. ACM Press.

[LAH+22] Ning Luo, Timos Antonopoulos, William R. Harris, Ruzica Piskac, Eran Tromer, and
Xiao Wang. Proving UNSAT in zero knowledge. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 2203�2217, Los Angeles, CA,
USA, November 7�11, 2022. ACM Press.

[LXZ21] Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkCNN: Zero knowledge proofs for con-
volutional neural network predictions and accuracy. In Giovanni Vigna and Elaine
Shi, editors, ACM CCS 2021, pages 2968�2985, Virtual Event, Republic of Korea,
November 15�19, 2021. ACM Press.

[Nef01] C. Andrew Ne�. A veri�able secret shu�e and its application to e-voting. In Michael K.
Reiter and Pierangela Samarati, editors, ACM CCS 2001, pages 116�125, Philadelphia,
PA, USA, November 5�8, 2001. ACM Press.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 681�700, Santa Barbara, CA, USA, August 19�23, 2012. Springer, Heidelberg,
Germany.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation.
In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 368�386. Springer,
Heidelberg, Germany, March 15�17, 2009.

[Ore22] Øystein Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical veri�able computation. In 2013 IEEE Symposium on Security and Privacy,
pages 238�252, Berkeley, CA, USA, May 19�22, 2013. IEEE Computer Society Press.

[PHP+] James Parker, William Harris, Stuart Pernsteiner, Santiago Cuellar, and Eran Tromer.
Proving information leaks in zero knowledge. private communication, to appear soon.

[PRO] PROVENANCE. Making complex zero-knowledge proofs more practical. accessed on
Jun 30th 2022.

36

[Roy22] Lawrence Roy. SoftSpokenOT: Quieter OT extension from small-�eld silent VOLE
in the minicrypt model. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part I, volume 13507 of LNCS, pages 657�687, Santa Barbara, CA,
USA, August 15�18, 2022. Springer, Heidelberg, Germany.

[Sch18] Peter Scholl. Extending oblivious transfer with low communication via key-
homomorphic PRFs. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part I,
volume 10769 of LNCS, pages 554�583, Rio de Janeiro, Brazil, March 25�29, 2018.
Springer, Heidelberg, Germany.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable,
and communication-e�cient zero-knowledge proofs for boolean and arithmetic circuits.
In 2021 IEEE Symposium on Security and Privacy, pages 1074�1091, San Francisco,
CA, USA, May 24�27, 2021. IEEE Computer Society Press.

[WYX+21] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique:
E�cient conversions for zero-knowledge proofs with applications to machine learning.
In Michael Bailey and Rachel Greenstadt, editors, USENIX Security 2021, pages 501�
518. USENIX Association, August 11�13, 2021.

[WYY+22] Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao Wang. AntMan:
Interactive zero-knowledge proofs with sublinear communication. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 2901�2914, Los
Angeles, CA, USA, November 7�11, 2022. ACM Press.

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: E�cient
and a�ordable zero-knowledge proofs for circuits and polynomials over any �eld. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2986�3001, Virtual
Event, Republic of Korea, November 15�19, 2021. ACM Press.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast
extension for correlated OT with small communication. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1607�1626, Vir-
tual Event, USA, November 9�13, 2020. ACM Press.

[ZLW+21] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and
Yupeng Zhang. Doubly e�cient interactive proofs for general arithmetic circuits with
linear prover time. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages
159�177, Virtual Event, Republic of Korea, November 15�19, 2021. ACM Press.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220�250,
So�a, Bulgaria, April 26�30, 2015. Springer, Heidelberg, Germany.

37

	Introduction
	Overview of this survey
	Related Techniques in ZK
	Applications

	Preliminaries
	The Computational Model: Arithmetic Circuits
	Zero Knowledge Proofs for Circuits
	Vector Oblivious Linear Evaluation (VOLE)
	Schwartz-Zippel Lemma

	A General Framework for VOLE-based ZK
	Homomorphic MACs from VOLE
	Arithmetic Black Box for ZK

	Multiplication checks
	Wolverine Multiplication Check
	Mac'n'Cheese Multiplication Check
	LPZK Multiplication Check
	Comparing the Multiplication check protocols

	Extensions
	Low-Degree Polynomials Proofs
	LPZKv2
	Disjunctions and r-out-of-n proofs
	Conversions between F2 and Fp
	Zero-Knowledge modulo 2k
	RAM-based Zero-knowledge Proofs

	Open Questions
	Theoretical questions
	Practical questions

