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Abstract. Most protocols for secure multi-party computation (MPC)
work over fields or rings, which means that encoding techniques are
needed to map rational-valued data into the algebraic structure being
used. Leveraging an encoding technique introduced in recent work of
Harmon et al. that is compatible with any MPC protocol over a prime-
order field, we present Mercury—a family of protocols for addition, mul-
tiplication, subtraction, and division of rational numbers. Notably, the
output of our division protocol is exact (i.e., it does not use iterative
methods). Our protocols offer improvements in both round complexity
and communication complexity when compared with prior art, and are
secure for a dishonest minority of semi-honest parties.

Keywords: secure multi-party computation · secret sharing · rational
numbers · rational division.

1 Introduction

Remark 1 (28/Feb/2024). The authors noticed and corrected errors in the num-
bers provided in Table 8.

Secure computation is a tool which allows functions of private data to be
evaluated without revealing those data. A well-studied form of secure compu-
tation, and the focus of this work, is Multi-party Computation (MPC). In the
classic setting, n mutually distrusting parties Pi possess private data di and wish
to jointly compute a function F (d1, . . . , dn) without revealing any information
about honest parties’ inputs to any coalition of corrupted parties. This problem
was first studied in detail by Yao [25]. Since then, much work has been done
extending Yao’s results, developing new tools for MPC, and implementing these
tools in the real world (e.g., [7, 15, 16, 18, 20, 21]). Many of these protocols rely
on secret sharing. In secret sharing, each Pi is provided masked pieces (called
shares) of private data (henceforth, secrets). These shares are chosen such that
only authorized sets of parties can determine a secret if they pool their shares.
The parties use their shares to perform computations on the secrets by commu-
nicating (e.g., sending/receiving shares, creating and sending new shares, etc.)
with one another as needed. A common primitive for secret sharing is Shamir’s
scheme [22] based on polynomial interpolation over a finite field. An advantage
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of that scheme is that it is additively homomorphic so that shares of two secrets
can be added locally to give a sharing of the sum of those secrets. Additively
homomorphic secret sharing is also used by the well-known MP-SPDZ frame-
work [20].

Most MPC protocols are defined over finite rings or fields such as Z/mZ or
GF (2ℓ), and as such require real data (often in the form of fixed-point or floating-
point numbers) to be encoded as elements of the ring (field). Further, since the
goal is to evaluate certain functions (e.g., polynomials) over secret shared values,
the encoding method must be homomorphic with respect to the operations that
compose the function (e.g., addition and multiplication). Several works [10,12,24]
encode a fixed-point or floating-point number a with f digits after the radix point
as the integer a · 2f . Other approaches [2, 11] work with floating-point numbers
by separately encoding the sign, exponent, and significand, along with an extra
bit that is set to 0 iff the number is 0.

Our approach differs significantly from all of these. Instead of choosing a set of
fixed-point numbers and designing our protocols around that set, we start with a
set of rationals (with bounded numerators and denominators) that contains some
set of fixed-point numbers. This set of rationals, paired with an encoding of those
rationals as elements of a ring/field that is homomorphic with respect to both
addition and multiplication, forms the basis of our protocols. The range of the
encoding can be any ring/field of the form Z/mZ, however we focus on the case
of m prime. This means that, for the most part, our protocols are obtained by
simply composing the encoder with existing protocols. An exception is the way
we handle division, which relies heavily on the structure of the aforementioned
set of rationals.

All our protocols for the basic arithmetic operations require only a constant
number of rounds and have communication complexity at most O(tn) field el-
ements, where n is the number of parties and t is a bound on the number of
corrupted parties.1 Our protocols are also generic, by which we mean that they
do not depend on the underlying primitives being used, whether the majority of
parties are honest, or even whether adversaries are malicious. For example, even
though we use Shamir’s scheme as the foundation, our protocols for rational
arithmetic could easily be translated to use additive secret sharing (e.g., as used
in MP-SPDZ to tolerate all-but-one corrupted party).

The paper is organized as follows:

∗ Section 2 discusses notation and provides an overview of Shamir’s scheme,
and some “building block” protocols.
∗ Section 3 introduces the rational-to-ring-element encoder, and Mercury: our
protocols for rational addition, multiplication, subtraction, and division. We
close by discussing the security and correctness of our protocols.
∗ Section 4 contains a brief discussion of our (partial) compatibility with fixed-
point numbers, and then investigates how to choose a subset of the domain
of the encoder that allows for evaluation of (arithmetic) circuits up to a

1 After optimizations, the online communication complexity of our protocols is at
most O(t+ n) field elements.
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certain multiplicative depth. We end with an example of securely computing
the kurtosis of a dataset held distributively by n parties.

∗ Section 5 discusses how the round complexity and communication complexity
of Mercury can be reduced by using well-known optimizations.

∗ Section 6 compares Mercury with prior work [10,12,23,24].
∗ Section 7 summarizes our results and discusses additional protocols which
we hope to include in Mercury in the future.

2 Preliminaries

2.1 Notation

For a positive integer m, Z/mZ denotes the ring of integers modulo m. In case
m is prime, we write Fm. The elements of Z/mZ will be represented by integers
0, 1, . . . ,m− 1. For a ring R, R[x1, x2, . . .] will denote the ring of polynomials in
the variables x1, x2, . . . with coefficients in R. For p ∈ Q[x1, x2, . . .], ∥p∥1 denotes
the ℓ1 norm of p, i.e., the sum of the absolute values of the coefficients of p. We
use y ← A(x) to denote that a randomized algorithm A on input x outputs y.
If A is deterministic, we simply write y = A(x). All circuits we consider are
arithmetic over a field Fp, and have gates with fan-in 2.

2.2 Shamir’s Scheme

We pause here to provide a brief overview of Shamir secret sharing (SSS), and
the notation used therein. Suppose we have n parties and wish for any set of
t+1 ≤ n parties to be able to reconstruct a secret by pooling their shares. This
is called a (t + 1)-out-of-n threshold scheme. One creates Shamir shares of a
secret s ∈ Fp, where |Fp| ≥ n, by generating a random polynomial f(x) ∈ Fp[x]
of degree at most t whose constant term is s (i.e., f(0) = s) and whose remaining
coefficients are chosen uniformly from Fp. Shares of s are the field elements f(i),
i ∈ Fp\{0}. We assume the ith party receives the share f(i). We use [x]i to denote
the ith party’s share of x ∈ Fp, and [x] to denote a sharing of x among all parties.
Then, for example, [x] + [y] will mean “each party adds their share of x to their
share of y,” and c[x] will mean “each party multiplies their share of x by c.” Any
collection of t+1 parties can pool their shares [s] and reconstruct the polynomial
f using Lagrange interpolation, thereby obtaining the secret s = f(0).

2.3 Framework

We use (t+1)-out-of-n SSS over Fp for all protocols, and assume that all parties
are connected by pair-wise secure channels which they use to send and receive
shares when necessary. The communication complexity of a protocol is measured
by the number of field elements sent by all parties in the protocol. When com-
paring our work with existing protocols that measure communication complexity
in bits, we simply multiply our communication complexities by log2(p). All ad-
versaries are assumed to be semi-honest (honest-but-curious), and we tolerate at
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most t of them. As previously mentioned, given sharings [x] and [y], the parties
can compute a sharing [x + y] of their sum without interaction by computing
[x] + [y]. For multiplication of shared values we use the protocol of Gennaro
et al. [17], which is itself an optimization of the multiplication subroutine in
the BGW protocol [6]. To ensure the multiplication protocol works, we require
t < n/2. We present the details of the relevant building block protocols in the
next section.

2.4 Building Blocks

SSS primitives will be the algorithms/protocols Share, Add, ScalarMult, andMult.
Respectively, these create shares of a secret value s ∈ Fp, compute the shares of
the sum of two secrets without revealing either, compute shares of the product
of a secret value and a known value without revealing the secret value, and
compute shares of the product of two secrets without revealing either. Add and
ScalarMult are non-interactive. Borrowing from [2], we use s ← Output([s]) to
mean that each of a set of t parties send their share of s to another party, which
subsequently reconstructs s from the shares [s] and sends s to the other n − 1
parties. We pause briefly to describe the multplication protocol from [17].

Fig. 1: Multiplying shared secrets without revealing.

[xy]← Mult([x], [y])

1. For i = 1, . . . , n, the ith party Pi computes zi = [x]i · [y]i;
2. For i = 1, . . . , 2t + 1, Pi computes [zi] ← Share(zi), and sends the jth share

to Pj ;
3. once each party P1, . . . , Pn has received 2t + 1 shares, each party Pi locally

computes [xy]i using Lagrange interpolation on the received shares;
4. output [xy].

Two additional protocols, RandInt and Inv ([3], Lemma 6), are required for our
rational division protocol. These protocols allow all parties to obtain shares of a
random field element (Figure 2) and compute shares of the multiplicative inverse
of a field element (Figure 3), respectively.
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Fig. 2: Generating shares of a random element of Fp.

[r]← RandInt()

1. Each of a set of t+ 1 parties select a uniform ri ∈ Fp, i = 1, . . . , t+ 1;
2. each of the t + 1 parties computes [ri] ← Share(ri), and sends the jth share

to Pj ;
3. [r] = [r1] + · · ·+ [rt+1];
4. return [r].

Fig. 3: Calculating shares of a multiplicative inverse in Fp.

[x−1]← Inv([x])

1. [r]← RandInt();
2. [rx]← Mult([r], [x]);
3. rx = Output([rx]);
4. abort and restart if rx = 0, otherwise continue;
5. each party locally computes (rx)−1 = x−1r−1 mod p;
6. each party does [x−1] = ScalarMult(x−1r−1, [r]);
7. return [x−1].

Table 1: Total communication complexity (measured in field elements) of SSS
building block protocols.

Protocol Rounds Comm. Complexity

Share 1 n− 1

Output 2 t+ (n− 1)

Add 0 0

Mult 1 (2t+ 1)(n− 1)

ScalarMult 0 0

RandInt 1 (t+ 1)(n− 1)

Inv 4 (t+ 1)(3n− 2)− 1
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3 Protocols for Rational Numbers

We propose a family of efficient MPC protocols for performing computations with
rational numbers. These protocols are obtained by pairing an encoder mapping
certain rational numbers to field elements with compositions of the building block
protocols described in Section 2.4. The protocols for computing the sum and
product of shared fractions remain unchanged from the analogous SSS primitives,
except that rational operands are encoded to field elements before those protocols
are executed. Subtraction and Division are an amalgam of the building blocks.
Division, in particular, relies on the fact that our mapping for encoding rational
numbers to integers is induced by a ring homomorphism, and therefore preserves
inverses; likewise for the decode mapping. We elaborate below.

3.1 Encoding Rationals

We use the encoding map introduced in [19] which maps a subset of rationals,
whose denominators are co-prime with a prime p, into Fp. This map is defined
by encode(x/y) = xy−1 mod p, with domain the Farey rationals

FN :=
{
x
/
y : |x| ≤ N, 0 < y ≤ N, gcd(x, y) = 1, gcd(p, y) = 1

}
,

where N = N(p) := ⌊
√
(p− 1)/2⌋. Notice that FN is not closed under addition

and multiplication.
The map encode is induced by a ring isomorphism, so both it and its inverse
decode are additively and multiplicatively homomorphic as long as the compo-
sition of operands in FN remains in FN .2 The inverse operations decode can
be computed efficiently using a slight modification of the Extended Euclidean
Algorithm. We summarize important properties of encode, decode, and FN in
the following lemma.

Lemma 1. Let p be a prime, N = N(p), and encode, decode be the encode and
decode maps, respectively.

(i) If x
/
y ∈ FN , then −x

/
y ∈ FN .

(ii) If x
/
y ∈ FN is nonzero, then y

/
x ∈ FN .

(iii) [−N,N ] ∩ Z ⊆ FN . Moreover, if z ∈ [0, N ] ∩ Z, then encode(z) = z.
(iv) encode and decode are homomorphic w.r.t. addition and multiplication

as long as the composition of operands in FN remains in FN .

Proof. (i)-(iii) are obvious. (iv) is proved in [19, Proposition 2].

3.2 Rational Addition, Multiplication, Subtraction, and Division

To represent shares of the encoding of x/y ∈ FN , we write
[
encode(x/y)

]
. We

first present the four protocols, and then list their complexities in Table 2. For all

2 E.g., encode

(
x0

y0
+

x1

y1

)
= encode

(
x0

y0

)
+ encode

(
x1

y1

)
if

x0

y0
,
x1

y1
,
x0

y0
+

x1

y1
∈ FN .

6



Fig. 4: Overview of Mercury protocols.

Rational inputs Encode Share

Execute Protocols

ReconstructDecodeRational outputs

protocols, we use the field Fp, and assume x0/y0, x1/y1 ∈ FN . Our addition and
multiplication protocols HgAdd and HgMult are obtained by simply pairing the
encoder with Add and Mult, respectively. As such, we omit the descriptions of
both protocols. The remaining two protocols, HgSubtr and HgDiv are introduced
below.

Remark 2. We use the prefix “Hg” for our protocols because it is the chemical
symbol for the element Mercury.

Let enc0 = encode(x0/y0) and enc1 = encode(x1/y1).

Fig. 5: Mercury subtraction protocol.

[encode(x0/y0 − x1/y1)] = HgSubtr
(
[encode(x0/y0)], [encode(x1/y1)]

)
1. All parties compute encode(−1) = −1field ∈ Fp;
2. all parties compute [−enc1] = ScalarMult(−1field, [enc1]);
3. [enc0 − enc1] = HgAdd([enc0], [−enc1]);
4. return [enc0 − enc1] = [encode(x0/y0 − x1/y1)].

Fig. 6: Mercury division protocol.

[encode(x0y1/y0x1)] = HgDiv
(
[encode(x0/y0)], [encode(x1/y1)]

)
1. [enc−1

1 ]← Inv([enc1]);
2. [enc0 · enc−1

1 ]← HgMult([enc0], [enc
−1
1 ]);

3. return [enc0 · enc−1
1 ] = [encode(x0y1/y0x1)].
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Fig. 7: Overview of HgDiv.

Inputs: [α] =
[
encode

(
x0
y0

)]
,

[β] =
[
encode

(
x1
y1

)] Use inverse protocol
Inv to get: [β−1]

Use multiplication protocol
Mult to get: [αβ−1]

Output:
[
encode

(
x0
y0
· y1
x1

)]

Observe that the output of HgDiv is exact – the output is x0y1/y0x1 on inputs
dividend = x0/y0 and divisor = x1/y1.

Table 2: Communication complexity (in field elements) of Mercury protocols.

Mercury

Protocol Rounds Comm. Complexity

HgAdd 0 0

HgMult 1 (2t+ 1)(n− 1)

HgSubtr 0 0

HgDiv 5 (t+ 1)(5n− 4)− n

Remark 3. ScalarMult can be turned into HgScalarMult by simply encoding a
public element α ∈ FN , and then computing

[
encode(α)s

]
= ScalarMult

(
encode(α), [s]

)
.

Note that HgScalarMult also serves as a division by public divisor protocol - sim-
ply replace α ̸= 0 by 1/α.

3.3 Security and Correctness

It is well-known (see, e.g., [5]) that SSS is perfectly secure in the sense that
possession of fewer than the threshold number of shares does not reveal any
information about the secret. It is also easy to see that the building block pro-
tocols Share, Output, Add, ScalarMult, and Mult do not reveal any information,
as the only information received by the parties are shares and no party ever
receives enough shares to reconstruct. By invoking Canetti’s composition the-
orem [9], which roughly states that a composition of secure protocols yields a
secure protocol, we see that both RandInt and Inv are also secure.

The authors of [19] remark that for p an odd prime and N = N(p), FN is
not in bijective correspondence with Fp. In fact, |FN | ≈ 0.6p. A consequence of
this is that an attacker can reduce the set of possible secret encodings in Fp to
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encode(FN ) ⊊ Fp. This is not problematic, however, as each value in encode(FN )
is equally likely to be the secret.
The following theorem provides necessary conditions for correctness of theMercury
protocols.

Theorem 1 (Correctness of Mercury protocols). Let p be an odd prime
and N = N(p). Suppose xi/yi ∈ FN with αi = encode(xi/yi), for i = 0, 1.

(i) decode
(
HgAdd(α0, α1)

)
= x0/y0 + x1/y1 as long as x0/y0 + x1/y1 ∈ FN .

(ii) decode
(
HgMult(α0, α1)

)
= x0/y0 · x1/y1 as long as x0/y0 · x1/y1 ∈ FN .

(iii) decode
(
HgSubtr(α0, α1)

)
= x0/y0 − x1/y1 as long as x0/y0 − x1/y1 ∈ FN .

(iv) decode
(
HgDiv(α0, α1)

)
= x0/y0 ÷ x1/y1 as long as x0/y0 ÷ x1/y1 ∈ FN .

Proof. HgAdd is trivially correct if we ignore the encoded fractions and only
consider field elements. That is, HgAdd(α0, α1) = α0 + α1. So correctness is
guaranteed as long as decode(α0 + α1) = x0/y0 + x1/y1.
Now, suppose x0/y0 + x1/y1 ∈ FN . Since decode is additively homomorphic
when the sum remains in FN , decode(α0 + α1) = decode(α0) + decode(α1) =
x0/y0 + x1/y1, as desired. The correctness of the remaining Mercury protocols
follows mutatis mutandis.

4 Which Rational Numbers Can We Use?

All our protocols use the aforementioned Farey rationals. As mentioned in Lemma 1,
FN is closed under additive inverses and multiplicative inverses, but is not closed
under addition and multiplication. This means that for applications to MPC a
suitable subset of FN must be chosen as the set of rational inputs. In particular,
we must include fractions with “small” numerators and denominators so that
adding/multiplying those fractions yields fractions that remain in FN . Following
closely the analysis of [19], this set will be chosen as

GX,Y :=
{
x/y ∈ FN | X,Y ∈ [0, N ], |x| ≤ X, 0 < y ≤ Y

}
,

for some X,Y to be specified.

4.1 Fixed-Point Numbers

Many previous works designed their protocols with fixed-point arithmetic in
mind. So, to facilitate comparison with prior art, we briefly discuss conditions
under which FN contains a given set of fixed-point numbers.

Fixed-point numbers are rational numbers represented as a list of digits split
by a radix point, and are defined by an integer (represented in a particular base
b) in a given range along with a fixed scaling factor f (called the precision).
For example, we can represent decimal numbers with integral part in the range
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(−10ℓ+1, 10ℓ+1) and up to f decimal places after the radix point as a · 10−f =
a
/
10f , a ∈ (−10ℓ+f+1, 10ℓ+f+1). We will represent a set of fixed point numbers

with a tuple of the form (b, ℓ, f), where b is the base, (−bℓ+1, bℓ+1) is the range
of the integer part, and up to f base-b digits are allowed after the radix point.
The set of Farey rationals FN contains the fixed-point numbers given by (b, ℓ, f)
as long as

N ≥ max{bℓ+f+1 − 1, bf − 1} = bℓ+f+1 − 1. (1)

Of course, N should be sufficiently large to ensure that adding/multiplying the
fixed-point numbers does not cause overflow. While FN can be made to contain
a set of fixed-point numbers with precision f , addition and multiplication of
Farey rationals does not coincide with addition and multiplication of fixed-point
numbers. This is because the fixed-point representation requires the precision
to remain f after each operation (this necessitates truncation), while FN allows
the precision to increase until overflow occurs and the output of a computation
is no longer correct. We will use the fact that FN contains certain fixed-point
numbers in Section 6 when we compare our protocols with prior work.

4.2 Compatible Circuits

Again borrowing from [19], for positive integers d, τ we define the class of (arith-
metic) (d, τ)-circuits over Q to be those that compute a polynomial
p ∈ Q[x1, x2, . . .] such that p satisfying: (i) ℓ1 norm is at most τ , (ii) total degree
is at most d, and (iii) all nonzero coefficients have absolute value greater than
or equal to 1. Note that nonzero polynomials p ∈ Z[x1, x2, . . .] with ∥p∥1 ≤ τ
and deg(p) ≤ d satisfy (iii). Let Cd,τ be the set of (d, τ)-circuits, and Pd,τ be
the set of polynomials those circuits compute. We obtain the following by slight
modification of the proof of [19, Proposition 7], which allow us to determine d, τ
so that evaluating any (d, τ)-circuit on inputs from GX,Y will have output in FN .

Proposition 1. Let d, τ ≥ 1. If x
/
y is the output of C ∈ Cd,τ evaluated on

inputs from GX,Y ⊆ FN , then |x| ≤ τXdY d(τ−1) and |y| ≤ Y dτ .

Proof. See Appendix A.

Intuitively, the bound on x is larger than the bound on y because the numerator
grows faster than the denominator when fractions are summed (since a

/
b+c

/
d =

(ad+ bc)
/
bd), whereas they grow at the same rate when multiplied.

Table 3 shows some possible choices for d and τ if we use G232,214 ⊊ F21024 . Note
that in this case, p ≈ 22048.
These numbers are not particularly useful, as many applications require thou-
sands or even millions of additions to be performed on shared values. However, for
many applications one is likely to work with decimal numbers with a small num-
ber of significant digits. In such cases, we can significantly improve the bounds
on d and τ . In general, if the fractional data all have the same denominator,
then Proposition 1 yields the following corollary.

10



Table 3: Possible values of d (total degree of polynomial computed by circuit) and
τ (ℓ1 norm of polynomial computed by (d, τ)-circuit) for fractions with numera-
tors bounded in absolute value by 232 and denominators bounded by 214.

|num| ≤ 232, denom ≤ 214

d 1 2 3 4 5 10

τ 71 35 22 16 13 6

Corollary 1. Let C ∈ Cd,τ with inputs from FN whose denominators are all
some fixed power e of an integer base b, 0 < be ≤ N , and whose numerators
are bounded in absolute value by X ≤ N . If x

/
y is the output of C, then |x| ≤

τ(Xbe)d and y ≤ bed.

Proof. Note that p ∈ Pd,τ can be written as p =
∑

i cipi, where
∑

i |ci| ≤ τ ,
each |ci| ≥ 1, and each pi is a monomial of degree at most d.

Let p =
∑I

i=1 cipi, and suppose we have k inputs xi/b
e.

Since deg(pi) ≤ d,

pi
(
x1

/
be, . . . , xk

/
be
)
=
xi1xi2 · · ·xiℓ

beℓ
, for some ℓ ≤ d and {i1, . . . , iℓ} ⊆ {1, . . . , k}.

As each |xi| ≤ X, we have |xi1xi2 · · ·xiℓ | ≤ Xℓ ≤ Xd.

Now, if x
/
y =

∑I
i=1 ci · pi

(
x1

/
be, . . . , xk

/
be
)
, then

x = (c1a1)b
e(I−1) + (c2a2)b

e(I−1) + · · ·+ (cIaI)b
e(I−1) and y = beI .

It follows that |x| ≤
∑I

i=1 |ci|(Xbe)I ≤ τ · (Xbe)I and |y| ≤ beI . The proof is
completed by observing that |cα| ≥ 1, for all α, implies I ≤ τ .

Rehashing the above example (X = 232 and N ≈ 21024) with be = 214 we get
τ(232214)d ≤ 21024 =⇒ log2(τ) ≤ 1024 − 46d and (214)d ≤ 21024 =⇒ d ≤ 73.
The bound on d is in fact even smaller: since the ℓ1 norm of a polynomial in
Pd,τ is at least 1, log2(τ) ≥ 0 =⇒ 1024− 46d ≥ 0 =⇒ 22 ≥ d.
Table 4 shows that if we restrict inputs to have the same denominators, we
can perform an enourmous number of additions and a reasonable number of
multiplications before the output lands outside of FN . We can do even better
though.

Degree-constant circuits Each gate of an arithmetic circuit computes a polyno-
mial over (some of) the inputs. We define a degree-constant (arithmetic) circuit
to be one in which every gate computes a polynomial whose monomial sum-
mands all have the same degree; e.g., a dot product. The goal of introducing
these circuits is to ensure that whenever two fractions are summed, they already
have a common denominator.
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Table 4: Possible values of d (total degree of polynomial computed by a (d, τ)-
circuit) and τ (ℓ1 norm of polynomial computed by (d, τ)-circuit) for fractions
with numerators bounded in absolute value by 232 and denominators all equal
to 214

|num| ≤ 232, denom = 214

d 1 2 10 15 20 22

τ 2978 2932 2564 2334 2104 212

Corollary 2. Let C ∈ Cd,τ be degree-constant with inputs from FN whose de-
nominators are all be and whose numerators are bounded in absolute value by
X > 0. If x

/
y is the output of C, then |x| ≤ τXd and y ≤ bed.

Proof. This follows easily from the fact that whenever two terms are added
during the evaluation of a degree-constant circuit, they already have a common
denominator which is a power of be.

Again, using a 1024-bit N , X = 232, and be = 214, we get the inequalities
log2(τ) ≤ 1024− 32d and d ≤ 32, yielding the following table.

Table 5: Possible values of d (total degree of polynomial computed by a (d, τ)-
circuit) and τ (ℓ1 norm of polynomial computed by (d, τ)-circuit) for degree-
constant C ∈ Cd,τ taking inputs from FN with numerators bounded in absolute
value by 232 and denominators all equal to 214

|num| ≤ 232, denom = 214

d 1 2 10 15 25 31

τ 2992 2960 2704 2544 2384 232

Incorporating division Once divisions are allowed, the bounds given in corollary 1
and corollary 2 no longer apply, since the numerator of the divisor becomes a
factor of denominator of the quotient. This means any necessary divisions should
be performed as late as possible relative to other operations.

4.3 An Application: Computing Excess Kurtosis

The excess kurtosis of a distribution is a measure of its “tailedness” relative
to a normal distribution: low excess kurtosis (< 0) means the distribution has
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thin tails while high excess kurtosis (> 0) means the distribution has thick tails.
This measure is frequently-used in descriptive analytics and rather involved to
calculate, which makes it a good candidate computation for Mercury. We derive
below the parameters necessary to guarantee that the excess kurtosis of a sample
of size k remains in FN . The excess kurtosis EKs is defined as

EKs =
k(k + 1)

∑k
i=1

(
xi − x̄

)4
(k − 1)(k − 2)(k − 3)s4

− 3(k − 1)2

(k − 2)(k − 3)
for k ≥ 4

where k is the size of the sample, s2 the variance, and x̄ is the mean of the
sample. For simplicity, and to avoid calculating s2 and x̄ separately, the formula
can be rewritten as

EKs =
k(k + 1)(k − 1)

∑k
i−1

(
kxi −

∑k
i=1 xi

)4

− 3
(
k − 1

)2(∑k
i=1

(
kxi −

∑k
i=1 xi

)2)2

(
k − 2

)(
k − 3

)(∑k
i=1

(
kxi −

∑k
i=1 xi

)2)2

Assuming that we need to compute the excess kurtosis of a sample of about one
billion (≈ 230), and using data with denominators 214 and numerators less than
232, as in table 5. We determine that the numerator of EKs is bounded by k82134

and the denominator is bounded by k62132. Therefore, to guarantee EKs ∈ FN ,

it suffices to take N ≥ k82134. Using N ≥
(
230

)8
2134, we get N ≥ 2374, or a p

on the order of 2749.

5 Optimizations

The complexity of HgMult and HgDiv can be reduced by executing parts of
the protocols asynchronously in an offline phase. This allows certain parts of
the protocols to be executed before the desired computation, thereby reducing
the online complexity. The complexity of the offline phase depends on chosen
primitives, existence of a trusted dealer, etc. Henceforth, we emphasize the online
round complexity and the online communication complexity.

We utilize two ubiquitous tools for optimization: Beaver triples (introduced in
[4]) for more efficient multiplication, and Pseudo-Random Secret Sharing (PRSS,
[14]) to generate random field elements without interaction.

In PRSS, the parties agree on a pseudo-random function (PRF) ψ·(·) and a
common input a. They then use pre-distributed keys rA (one for each set A of
n− (t+ 1) parties) to locally compute shares of a random field element s using
Replicated Secret Sharing (see [14] for details). The use of PRSS reduces the
online round and communication complexity of RandInt from 1 and (t+1)(n−1)
to 0 and 0, respectively. Further, we assume that the PRF, common input, and
keys are agreed upon and distributed during a set-up phase, whence using PRSS
makes the offline round and communication complexity of RandInt both 0.
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Beaver triples are 3-tuples of shares ([a], [b], [c]) satisfying ab = c, and can
be generated asynchronously in the offline phase using PRSS and Mult. These
triples can be used to multiply secrets with only two online rounds of interac-
tion. In particular, shares [xy] can be obtained from [x] and [y] using only Add,
ScalarMult, Output, and one Beaver triple ([a], [b], [c]):

[xy] = (x+ a)[y]− (y + b)[a] + [c].

Used triples must be discarded, else information is leaked. This means that a
sufficiently-large reservoir of Beaver triples should be maintained to allow the
desired functions to be computed.

These optimizations reduce the online complexities of HgMult and HgDiv,
and leave the complexities of HgSubtr and HgAdd the same. Table 6 below sum-
marizes the improvements.

Table 6: Optimized round and communication complexities for our protocols.

Optimizations Protocol Online Rounds Offline Rounds Online Comm. Offline Comm.

PRSS
HgAdd 0 0 0 0

and
HgSubtr 0 0 0 0

Beaver triples
HgMult 2 1 t+ (n− 1) (2t+ 1)(n− 1)

HgDiv 6 2 3t+ 3(n− 1) 2(2t+ 1)(n− 1)

PRSS
HgMult 1 0 (2t+ 1)(n− 1) 0

HgDiv 4 0 (4t+ 3)(n− 1) 0

The reader may notice that optimizing Mult actually increases the round
complexity in the online phase from 1 to 2. This results from invocations of
Output (executed in parallel) which requires 2 rounds per invocation, and is
the cost of reducing the online communication from O(tn) to O(t + n). A user
preferring instead to minimize the round complexity can do so by not using
Beaver triples. Table 6 lists the optimized complexities of the Mercury protocols,
along with the complexities of HgMult and HgDiv obtained by using PRSS but
not Beaver triples.

We use the complexities listed in table 6 for the comparisons in section 6.
Henceforth, “rounds” will mean “online rounds + offline rounds”, and “total
communication” will mean “online communication + offline communication”.

6 Comparison with Prior Work

In [12], Catrina and Saxena introduced semi-honest secure protocols for fixed-
point multiplication and division - their division is based on (the iterative) Gold-
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schmidt’s method. A variant of their protocol is used by MP-SPDZ for fixed-
point division. Catrina subsequently improved the round and communication
complexities in [10]. To measure the complexities of their protocols, they use the
set of fixed-point numbers given by (2, 2f, f); i.e., the set of rationals a · 2−f

with a ∈ [−2−2f , 22f ) ∩ Z. Their fixed-point encoding technique requires a field
Fq with q > 22f+κ, κ a statistical security parameter. For our protocols, we use
the same field Fq, whence our set of rationals is FN with N = N(q); specifically
log2(N) ≥ f + κ/2. Table 7 shows that for reasonable values of n and t (e.g.
n = 3, t = 1), our protocols far outperform those of [10].

Table 7: Complexity comparison between our work (optimized with PRSS and
Beaver triples) and that of [10]. Both the online and offline communication
complexity are measured in elements of Fq sent among all parties throughout
a protocol. n and t are the number of parties and the threshold, resp., θ is the
number of iterations of Goldschmidt’s method, and f is the fixed-point precision.

Protocol Rounds Online Comm. Offline Comm.

Mercury
Multiplication 3 t+ (n− 1) (2t+ 1)(n− 1)

Division 8 3t+ 3(n− 1) 2(2t+ 1)(n− 1)

[10]
Multiplication 1 n nf

Division 9 + θ n(10f + 2θ) n(16f + 4θf)

Let n = 3 and t = 1, so two parties can reconstruct. In an example, the
authors choose f ∈ [32, 56] and θ = 5, which results in a 14 round division with
online communication complexity 330n = 990 field elements. In contrast, our
division requires 8 rounds, and has online communication complexity 9 field ele-
ments. There is, however, a bit more subtlety to this comparison. As mentioned
in section 4.1, operations on fixed-point numbers require a truncation, and the
protocols of Catrina et al. use truncation. Consequently, there is no limit to how
many times they can multiply/divide two fixed-point numbers. However, there
is a number of multiplications, say, that will render their outputs of little use
because so many bits have been truncated. Our limitation, on the other hand, is
overflow – computations over FN are only meaningful if all intermediate outputs
and the final output are in FN . We can address this in two ways: (i) only take
inputs from the subset GX,Y ⊆ FN defined in the beginning of section 4, for
X,Y sufficiently smaller than N , or (ii) use a larger field than [10]. As long as
we don’t choose too large a field, (ii) will preserve our complexity advantage.

Another interesting solution, albeit only for integer division, was proposed
by Veugen and Abspoel in [23]. They present three division variations: public
divisor, private divisor (only one party knows the divisor), and secret divisor
(hidden from all parties). Their protocols are implemented using MP-SPDZ with
three parties, and runtimes along with communication complexities (in MB) for
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dividing a k-bit integer by a k/2-bit integer are provided. Even though our
division protocol uses rationals in general, comparison makes sense because FN

contains the integers [−N,N ] ∩ Z (see lemma 1). For comparison, we use n = 3
and t = 1, and use the smallest prime field Fp allowed by [23]:

log2(p) ≈ 4max
{
log2(dividend), log2(divisor)

}
+ 40

E.g., this means that for a 64 bit dividend and 32 bit divisor, we have log2(p) =
296 and N = N(p) ≈ 148 bits.

Table 8: Total communication complexity in megabytes (MB) of our division
protocol (applied to integers) vs. the (secret divisor) integer division protocol
of [23]. The communication complexity for (fully optimized) HgDiv was estimated
using table 6.

dividend bits 8 16 32 64

divisor bits 4 8 16 32

Mercury 0.00018MB 0.00026MB 0.00042MB 0.00074MB

[23] (semi-honest security) 8.2MB 10.8MB 20.0MB 47.0MB

The last comparison we shall show is against Pika [24]. Pika uses Function
Secret Sharing [8] to construct a three-party protocol (one party is used only
to generate correlated randomness) for computing functions such as reciprocal,
sigmoid, and square root. Their protocol Pika takes as inputs (binary) fixed-point
numbers x with precision f , such that x · 2f ∈ (−2k−1, 2k−1], and creates shares
in the ring Z2ℓ , where ℓ ≥ 2k. For comparison, we choose N = N(p) = 2k−1

(meaning we share secrets over Fp with p ≈ 22k). This guarantees that FN

contains the fixed-point numbers used by Pika regardless of the chosen precision
f . As with the preceding comparisons, we take n = 3 and t = 1.
Using the same parameter values for (semi-honest secure) Pika as the author,
we found that that total communication complexity for securely computing the
reciprocal with k = 16 and ℓ = 32 was 8524 bits over three rounds (one offline).
In contrast, we can compute the reciprocal of an element of F215 in 6 rounds
(one offline) with communication complexity 21 log2(p) ≈ 21 · 2k = 672 bits.

7 Conclusions and Future Work

Conclusion This work uses Shamir Secret Sharing with a minority of semi-
honest adversaries, but Mercury is flexible in the sense that it can be easily
realized over other primitives with better security assumptions; e.g. additive
secret sharing à la MP-SPDZ along with a majority of malicious adversaries.
Mercury provides an efficient low round and communication complexity solution
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to exact computation over rational numbers using MPC. A cost of exactness,
though, is that our protocols are not intrinsically compatible with fixed-point
arithmetic. Instead of truncating after every operation to not exceed the chosen
fixed-point precision, we allow the precision to grow until overflow occurs. This
means that we may need to work over a larger field Fp than prior art ( [10,23,24]),
but our communication and round complexity are sufficiently low as to make
using a slightly larger field not problematic.

Future work A sequel which introduces a novel truncation protocol and a private
comparison protocol is currently in preparation. These new protocols will allow
Mercury to perform fixed-point arithmetic in any base and make Mercury a more
complete and versatile family of protocols for secure computation with rational
numbers.
Our next step is to implement Mercury to facilitate more comprehensive com-
parison with existing protocols. As mentioned in the introduction, even though
Mercury is built on SSS, its protocols could easily be adapted to use additive
secret sharing, meaning we can implement Mercury using MP-SPDZ.
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A Proofs

Proof (of Proposition 1). Note that p ∈ Pd,τ can be written as p =
∑
i

cipi,

where
∑
i

|ci| ≤ τ , each |ci| ≥ 1, and each pi is a monomial of degree at most d.

Let p =

I∑
i=1

cipi. Since deg(pi) ≤ d, the output pi
(
x1

/
y1, . . . , xk

/
yk
)
is a fraction

of the form

ai
bi

=
xi1xi2 · · ·xiℓ
yi1yi2 · · · yiℓ

, for some ℓ ≤ d and {i1, . . . , iℓ} ⊆ {1, . . . , k}.

As each xi
/
yi ∈ GM , we have |ai| ≤ Xℓ ≤ Xd and |bi| ≤ Y ℓ ≤ Y d.

Since x
/
y =

I∑
i=1

ci · ai
/
bi,

x = (c1a1)b2b3 · · · bI + b1(c2a2)b3 · · · bI + b1b2 · · · bI−1(cIaI) and

y = b1b2 · · · bI .

It follows from
∑
|ci| ≤ τ and the above bound on |ai|, |bi| that

|x| ≤
I∑

i=1

|ci|(Xd)(Y d)I−1 ≤ τ ·XdY d(I−1) and |y| ≤ Y d(I−1).

The proof is completed by observing that |cα| ≥ 1, for all α, implies I ≤ τ .
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