
Extending Updatable Encryption: Public Key,
Tighter Security and Signed Ciphertexts

Chen Qian 1, Yao Jiang Galteland 2, and Gareth T. Davies 3

1 Shandong University
chen.qian@sdu.edu.cn

2 Qredo
yao.jiang@qredo.com

3 Bergische Universität Wuppertal
davies@uni-wuppertal.de

Abstract. Updatable encryption is a useful primitive that enables key
rotation for storing data on an untrusted storage provider without the
leaking anything about the plaintext or the key. In this work, we make two
contributions. Firstly, we extend updatable encryption to the public-key
setting, providing its security model and three different efficient construc-
tions. Using a public-key updatable encryption scheme, a user can receive
messages directly in the cloud from multiple senders without revealing
their secret key. Secondly, we add signatures on ciphertexts to guarantee
plaintext integrity and authenticity. We call our new primitive Public-
Key Signable Updatable Encryption (PSigUE). Our approach ensures that
only legitimate ciphertexts are accepted by the server, and the adversary
cannot compromise the message integrity in the database. We bypass the
conflict between public integrity verification and the malleability that
comes from the update functionality.
We provide three pairing-based constructions of public-key signable up-
datable encryption. The first scheme, PSigUE1, is built using a dual-mode
zero-knowledge proof of knowledge system under an assumption closely
related to the k-linear assumption. The second scheme, PSigUE2, pro-
vides unlinkability in addition to public authenticity. In the third scheme,
PSigUET, we achieve the tight security with respect of number of epochs.
The construction of PSigUET is inspired by tag-based tightly-secure PKE
schemes.
Keywords. Updatable Encryption; Outsourced Storage; Pairing-based
Cryptography.

1 Introduction

Recent years have seen two consistent trends for individuals and businesses: the
storage of more and more data with third-party providers and growing awareness
of the importance of mitigations in the event of key exposures. Forward security
and protection from corruption of past key material are the default expectation
for key exchange protocols and the protocols underpinning instant messaging
services.

https://orcid.org/0000-0003-4429-7267
https://orcid.org/0000-0002-3083-5055
https://orcid.org/0000-0002-5935-5725
mailto:mail here
mailto:mail here
mailto:mail here

2 C. Qian, YJ. Galteland, G.T. Davies

Reflecting these concerns, academic work has recently given considerable focus
to the topic of symmetric-key updatable encryption (SKUE): a primitive that
allows a data owner to encrypt their plaintext material, send it to an untrusted
storage provider (e.g. a cloud-based storage business), and perform key rotation
by sending one or more tokens to the storage provider. The update operation
performed by the storage provider rotates the encryption key(s). It thus advances
to the next ‘epoch’ in a way that leaks no information about the plaintext other
than what can be trivially observed by looking at the ciphertext. This primitive is
particularly attractive for two reasons. First up is the obvious bandwidth saving
compared to downloading, decrypting, re-encrypting, and re-uploading. Secondly,
the computational burden is passed on from the user—who may be operating
from a relatively limited device such as a smartphone—to the server-grade storage
provider.

UE is by now a mature primitive, and since the early treatments [6,22] there
have been advances in security properties and efficiency [20,7,18,8,5,28,25,24,14]
in both the ciphertext-independent setting (where the data owner encrypts all
ciphertexts with the same key and sends a single token to update) and the
ciphertext-dependent setting (individual keys per ciphertext). While schemes in
the ciphertext-dependent setting are generally more efficient, the necessary key
management often limits their practicality to specific use cases. In this work, we
focus on the simpler, ciphertext-independent version.

In this work, we extend UE in two directions. Firstly, we treat public-key
updatable encryption (PKUE), where multiple parties may encrypt plaintexts
to a single user. This natural extension enables us to capture many application
scenarios that were not possible before. With this framework in place, we investi-
gate the benefits of adding signatures to UE ciphertexts, focusing on the PKUE
setting. Our new primitive is called Public-Key Signable Updatable Encryption
(PSigUE).

We note that PKUE is fundamentally different from SKUE. In PKUE, any
user possessing Alice’s public key can create ciphertexts that Alice could decrypt.
However, PKUE is inherently vulnerable to a denial-of-service attack where
encrypting parties fill up Alice’s storage area, so we will always need some way
only to allow certain encryptors to insert ciphertexts into the database. Hence,
we cannot directly follow the definition and security notions of SKUE to define
PKUE. Another issue is whether or not the database is public because this
affects what it actually means for an adversary to make corruption queries to the
system. This work will discuss the challenges in providing formal PKUE models.
In Section 1.4, we provide scenarios where our primitive may be helpful.

Security properties for UE schemes focus on confidentiality, integrity and
unlinkability. Confidentiality makes sure that freshly encrypted messages are
indistinguishable, so the indistinguishability focuses on evaluating the encryp-
tion algorithm. Integrity guarantees no (new) ciphertexts can be forged by any
adversary, which prevents modification. Unlinkability captures the fact that it
may be desirable for an adversary that is given a ciphertext in the current epoch,
to know which ciphertext it was updated from in the previous epoch. However,

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 3

unlinkability may not be necessary in some use cases. In PSigUE, we focus on
protecting the private content and are happy to reveal the public content because
this gives more usability to the data owner and does not require unlinkability is
achieved for the verifier. Moreover, if PSigUE is re-randomizable via updating
to the current epoch with a trivial token, then the statistical unlinkability is
unachievable without additional mechanisms. More precisely, the adversary can
firstly re-randomize the challenge ciphertext, then update it to another epoch
e′, and corrupt the secret key ske′ . The challenger cannot refuse such corruption
queries due to statistical unlinkability.

Closely Related Literature. In Section 1.3 we wil discuss related primitives in
more detail, but for now we mention two ideas that are closely related to ours
yet represent subtly different approaches.

Updatable signatures on messages have been investigated in the work of Cini
et al. [9], but their focus was on updating the keypair for signing/verification for
a fixed message, while our aim is to provide a signature that remains valid on a
UE ciphertext as its encryption key is rotated.

In very recent work, Knapp and Quaglia [21] presented a short paper investi-
gating the public-key updatable encryption setting. Their extended abstract in
the proceedings version contains very few details regarding their security model
and constructions, except that they use a UE flavor of replayable CCA security
where the adversary is not allowed to query its update oracle(s) on ciphertexts
that decrypt to the challenge messages (this restriction is necessary for schemes
where perfect re-randomization of ciphertexts is possible). As discussed earlier,
statistical unlinkability is incompatible with UE in the public key setting. There-
fore, we choose to forego unlinkability in some of our schemes to provide what
we believe to be more realistic adversarial powers.

1.1 Technical overview

There are two main challenges in our construction. First, we notice that achieving
security in the public-key setting is non-trivial. Moreover, there is a contradiction
between the signature on ciphertexts and updatability of PSigUE.

Security Challenges and Two Solutions. We follow a strong adaptive corruption
model for security where the adversary can update arbitrary ciphertexts in the
database (the game must rule out any trivial wins). To prove the confidentiality of
an updatable encryption scheme, it is necessary to simulate the update queries for
both challenge and non-challenge ciphertexts in the security game to any adversary.
However, such a simulation will be challenging without knowledge of the update
token and message-related information. The typical proof strategies for symmetric
setting in the work of [22,20] use fresh encryptions of the underlying message to
simulate updated ciphertexts, or as in [7] where some secret information about the
message and randomness is used to simulate updated non-challenge ciphertexts.
Therefore, it seems complicated to update any non-challenge ciphertexts; the

4 C. Qian, YJ. Galteland, G.T. Davies

challenger should be able to get some secret information about the non-challenge
ciphertext (message or randomness) in the public-key setting.

In [21], they bypassed this problem by not allowing the adversary to encrypt
any challenge message in the security model. With the help of this additional
restriction, they can use the decryption oracle of RCCA security to get the
plaintext of any non-challenge ciphertext. However, we argue that this restriction
is artificial and does not adequately reflect the PKUE problem setting: the storage
provider will almost certainly have to retain some metadata for each ciphertext
to enable ciphertext retrieval, meaning that unlinkability is only achievable from
an entity that does not have persistent view access to the database. This may
be desirable in specific scenarios, but it is generally difficult to imagine why this
would be necessary.

Instead of limiting the adversary, we solve this problem by modifying the
mechanism of the updatable encryption scheme, that is, adding a registration
phase for each ciphertext. The registration phase is used to verify the validity
of a ciphertext before inserting it into the database. This method is important
for both practice and our security proofs, as it prevents malicious data injection
by attackers. To insert a ciphertext into the database, we introduce two new
approaches to verify the ciphertext. Looking forward, the signer will check these
proofs, and if they pass, the signer will add a signature and insert the ciphertext
on behalf of the encrypting party.

The first verification method is using a zero-knowledge proof of knowledge
(ZKPoK) of some secret information about the ciphertext (message or random-
ness), only ciphertexts with valid ZKPoK can be added into the database. More-
over, to simplify the protocol every ZKPoK is never stored and updated in the
database (this invoking an assumption of deletion of the proof and associated
values by the signer). The additional ZKPoK helps us to prove the security in
the following two ways:

– The challenger can use the knowledge extractor to get secret information
about the non-challenge ciphertexts. Moreover, since no proof is ever stored
in the database, the adversary cannot use database corruption to access these
proofs and learn any additional information.

– When we reduce the security to the underlying PKE scheme, the returned
challenge ciphertext is without any ZKPoK. However, since every ZKPoK in
our model is discarded right after the registration phase, the challenger does
not need to simulate the ZKPoK of the challenge ciphertext.

Our second solution to this problem leads to our tightly-secure construction
(Section 5). Compared to our first solution, it is more elegant but less generic. We
observe that the problem of exponential security losses in proofs already exists
in multi-user public key encryption schemes. Therefore, we borrowed some ideas
from tightly-secure public-key encryption. In our construction in Section 5, every
ciphertext is associated with a tag, and this tag remains the same when we update
the ciphertext. Using this tag-based technique, we can construct our scheme in
a way that only the ciphertexts with a special tag t⋆ information theoretically
hide all information about the message. Moreover, this tag t⋆ is hidden for the

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 5

adversary even with secret key corruption queries. The proof strategy forces only
the challenge ciphertext to have this special tag t⋆.

Signatures on Updatable Ciphertexts. Public verifiability of PSigUE is inherently
a difficult task. Since the signature are mostly used to guarantee the message
integrity, it contradicts the updatability of PSigUE. Therefore, we propose two
different approaches. Our first solution is used for the schemes that we call PSigUE1
and PSigUET. The intuition is that the ciphertext is of the form c = (cFix, cAux).
All information of the message m is included in cFix. Moreover, cFix is not changing
while updating, and cAux uniquely defined by cFix and pke. The advantage of this
approach is that we can simply sign cFix to guarantee the integrity using any
signature scheme. However, since cFix is not changing while updating. We cannot
achieve any meaningful unlinkability for this approach.

Our second solution for integrity is used in PSigUE2. We follow a similar
strategy as in [3], first used in blind signature schemes. This approach can achieve
unlinkability since all ciphertexts and signatures are re-randomizable. However,
we cannot combine this blind signature technique with our tightly secure one.
We leave the construction of efficient, unlinkable, and tightly secure PSigUE as
one of the major open problems for future work.

1.2 Contributions

We identify two main contributions in this work. The first contribution is the
public-key security model with signability of updatable ciphertexts. We believe
that public verifiability can protect databases’ integrity while allowing key rota-
tion.

Our second contribution is three different constructions that achieve different
properties, and the results are summarized in Table 1. PSigUE1 is our most
efficient construction, only 4 group elements is sufficient to encrypt 1 group
message. However, it does not have unlinkability, we can only prove that it
is wIND-ENC secure (a weaker version of confidentiality where the adversary
is limited in where it can make corruption queries), and we need to add an
additional ZKPoK while trusting the database to not store this proof. Our second
construction PSigUE2 improves PSigUE1 by adding unlinkability. However, the
main drawback is the efficiency, it can only encrypt short messages, and the
ciphertext is very large compared to PSigUE1. Our final construction PSigUET
improves PSigUE1 and PSigUE2 in multiple dimensions. PSigUET is tightly secure
in the number of epochs and does not need to add ZKPoK. We also believe that
our construction PSigUET is optimal because it is impossible to have perfect
unlinkability, rerandomizability, and tight security while not needing additional
ZKPoK.

1.3 Related Primitives

We now describe a number of primitives which are similar to the problem that
we tackle in one or more aspects.

6 C. Qian, YJ. Galteland, G.T. Davies

Schemes IND-ENC Integrity Unlinkability without Tight Efficiency
ZKPoK

PSigUE1 ✓w ✓ ✗ ✗ ✗ 2G1 + 1G2 + 1GT
PSigUE2 ✓w ✓ ✓ ✗ ✗ (6ℓ + 6)G1 + (6ℓ + 2)G2

PSigUET ✓ ✓ ✗ ✓ ✓ 9G1 + 2G2

Table 1. Contributions of our work. ✓w indicates the schemes achieves the weaker
security model wIND-ENC.

Proxy re-encryption. Proxy re-encryption (PRE) allows the holder of pki to
derive a re-encryption key rki,j that allows an untrusted proxy to convert a
ciphertext encrypted under pki to one that is decryptable under some pkj . PRE
schemes have no ordering of encryption keys, so public-key updatable encryption
can be seen as a special case of (mutli-hop) PRE, where the restriction that the
owner of a public key can only generate a re-encryption key between the current
epoch and the next: this is the what we call the token.

Comparison of our work with existing security models for PRE is challenging
because the vast majority of the PRE literature considers selective security, where
the adversary indicates which parties it wishes to corrupt at the beginning of the
security experiment. Most papers in the (symmetric-key) UE literature focus on
adaptive security to provide fine-grained results regarding forward security and
post-compromise security, and we follow this approach in our work. Fuchsbauer et
al. [13] gave the first treatment of adaptive security in this context and produced
a surprising result: it is possible to avoid an exponential security loss due to
guessing corrupted parties by using pebbling techniques, however this leads
to security losses that depend on the adversary’s queries and the graphs that
their re-encryption queries invoke. We will discuss tightness of our reductions
in more detail in Section 5. Davidson et al. [11] provided the first analysis of
post-compromise security for PRE, which is analogous to the indistinguishability
of updates that is normally expected for symmetric-key UE.

Updatable Signatures (and MACs) Cini et al. [9] gave constructions of signatures
and MACs where the signing/MAC key owner wishes to periodically rotate their
secret key values to provide forward security. The focus was on plaintext data
that remained static, whereas we wish to sign a ciphertext that is having its key
rotated in regular updatable encryption. The signing keys in our approach do not
rotate, however it may be interesting future work to combine the two approaches
to get updatable signatures on updatable ciphertexts.

Updatable Public Key Encryption. In Updatable PKE [19,1,12], the regular syntax
of epoch-based (i.e. forward-secure) public key encryption is extended to allow
any sender to produce a so-called update ciphertext which is associated with the
public key of the next epoch, allowing the receiver to compute the corresponding
secret key. This approach enables forward security even before a receiver has
chosen to update their key pair, and is particularly suited to group messaging. In

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 7

UPKE there is no mechanism for old ciphertexts to be ‘updated’ to encryptions
under the new key, so forward security is not obtained for the messages sent
under the ‘previous’ key of a party.

Signcryption. Signcryption is a combination of public-key encryption and digital
signatures in a single primitive, at a cost lower than performing the two operations
separately. A single epoch version of PSigUE reduces to signcryption if the
encryptor and signer are the same entity, however in the applications that we
target in this paper we do not expect that this is the case. Furthermore, adapting
signcryption schemes to the updatable setting appears to be a very challenging
problem: among other issues, many schemes involve a hash of message and key
material, which destroys the structure that is essentially required to perform UE
operations.

1.4 Applications of Our Schemes

File Transfer from Whistleblowers. Consider a scenario where a whistleblower
works at (or has privileged access to) an organisation or company and wants to
inform a journalist about some grave misdeed. The whistleblower is in possession
of an image, video or document that contains inciminating evidence and wishes
to expose this file to the press, but is concerned for their own safety. The current
solution to this problem is to use a tool such as SecureDrop4 which is used5

by The Guardian, The New York Times and other major news outlets: after
navigating a Tor circuit, the file is encrypted using PKE. Further details are
not so important, but the decryption key of this PKE scheme is stored in an
air-gapped machine which makes key rotation (and authentication of public keys
related to this decryption key) a challenging task. Given the sensitivity of the
documents that are transmitted using such a service, key rotation appears to be
of paramount importance so an public-key updatable encryption is already an
attractive proposition. But the newspaper doesn’t want just anyone to be able to
insert files, so their journalists hold a signing key that verifies the usefulness of the
whistleblower’s file. In this application, the signer (journalist) is only6 verifying
that what is contained in the whistleblower’s file is useful to the newspaper and
if the whistleblower is in fact associated with the organization that the files refer
to (source authentication). Our solution enables key rotation to protect past data
and in addition the newspaper (database owner) can be sure of the legitimacy of
data before inserting it into the database, without knowing the underlying secret
message beforehand.

4 https://securedrop.org/overview/encrypted-and-air-gapped/
5 https://www.theguardian.com/securedrop and https://www.nytimes.com/tips#

securedrop
6 Depending on the application and requirements for the signature, the signer may

be responsible for the content, in that case, the signer should check the underlying
message before signing ciphertexts.

https://securedrop.org/overview/encrypted-and-air-gapped/
https://www.theguardian.com/securedrop
https://www.nytimes.com/tips#securedrop
https://www.nytimes.com/tips#securedrop

8 C. Qian, YJ. Galteland, G.T. Davies

Updatability from anyone. We modify the classic token generation setting by
taking the old public key as input and outputting a new public key and an
update token. This design approach enables automated updates that do not
require interaction with the secret key holder. The epoch advancements could be
triggered by time periods (e.g. end of the calendar month), or activated in the
event of a security incident elsewhere in the data owner’s ICT ecosystem.

Storage only for authenticated data. A cloud server can be sure if a file was
uploaded by some party that has access to the storage area, and not a network
adversary. The aforementioned ‘attack’ that our work prevents is arguably unlikely:
an adversary fills up a party’s cloud storage area with garbage ciphertexts to
make the client pay more money or lose access to their legitimate files. The major
benefit however is that our approach prevents the cloud from storing garbage
data. This application makes sure all data on the cloud are authenticated, it is
beneficial to both the cloud and the client.

Public Verifiability for Proof-of-Retrievability. A data storage center must prove
to a verifier that it is actually storing all of a client’s data. With signatures
on ciphertexts, anyone can verify if the cloud server stored the client’s data.
This enables a service that any third party can verify the proof-of-retrievability
without any storage or computational effort by the clients.

Public Verifiability for Counterfeit Media. A seller (for example, a media-services
provider) is an intermediate party who can buy products from producers and sell
to customers. Updatable encryption allows the seller to alter the data access key
to a fresh key in a situation where a customer’s product viewing period expires.
Counterfeiting is a serious issue and sellers wish to protect their intellectual
property. The common way to prove if a product is not a counterfeit is that
the customer uses the access key to get the data and then checks the data with
its credential. However, such verification is done after the customer bought the
product and got the access key, that is, the verification is on plaintext. Our
solution enables verification on ciphertext, therefore, any potential customer can
check the legitimacy of product before paying for the product.

2 Preliminary

2.1 Notation

Let pairing groups (G1,G2,GT) are cyclic groups of order p, g1 and g2 are
generators of G1 and G2 respectively. e : G1 ×G2 → GT is a bilinear map, for
simplicity we also denote the pairing operator by • and gT = g1 •g2 is a generator
in group GT.

For s ∈ {1, 2, T} and a ∈ Zp, define
[
a
]

s = a · gs ∈ Gs. For a matrix

A = (ai,j) ∈ Zn×m
p , we define

[
A
]

s =

a1,1 · gs . . . a1,m · gs
...

...
an,1 · gs . . . an,m · gs

.

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 9

Scalar exponentiation. Given
[
a
]

s and a scalar x ∈ Zp, we can compute[
ax
]

s by computing
[
a
]

s · x. In particular, for matrix of Zp elements A, B, we
can compute [AB]s by the knowledge of [A]s, B, we denote [AB]s = [A]s ·B.
Pairing computation. Given

[
a
]

1 ,
[
b
]

2, we can compute
[
ab
]

T by computing[
a
]

1•
[
b
]

2). In particular, for matrix A, B, we can compute
[
AB

]
T by

[
A
]

1•
[
B
]

2,
we denote

[
A
]

1 •
[
B
]

2 =
[
AB

]
T.

Algorithms. We use code-based games [2] to present our definitions and proofs.
We implicitly assume all Boolean flags to be initialized to 0 (false), numerical
variables to 0, sets to ∅ and strings to ⊥. We make the

convention that a procedure terminates once it has returned an output.
Additionally, we introduce the operator Check < condition > which means: if
< condition > is true then go to the next step, else return ⊥.
Symbols. We use . to present "such that" in the first order logic. For example,
for all x such that x ∈ X is denoted as ∀x.x ∈ X .

2.2 Public-Key Signable Updatable Encryption

We define a new type of updatable encryption in the public-key setting and
with signed ciphertexts. We denote this new primitive as PSigUE, a public-key
encryption scheme with updated functionality to provide forward and post-
compromise security. Additionally, PSigUE supports signature on ciphertexts to
guarantee the integrity of the encryption.

Recall that we have two different approaches as described in the technical
overview (Section 1.1) to solve the exponential security loss in the public-key
setting. Therefore, we define the PSigUE in two different settings (with and
without proof of knowledge (ZKPoK)) as follows.

Definition 1 (Public-Key Signable Updatable Encryption). A public-key
signable updatable encryption scheme consists of four PPT algorithms PSigUE =
(Setup, KGen, Enc, Dec) together with update functionalities (TokGen, Usk, Upd)
with the following syntax:

– Setup(parG) takes group parameters parG as input, and outputs public param-
eters pp.

– KGen(pp) takes public parameters pp as input, and outputs a public encryption
key pair (pk0, sk0) of the epoch 0.

– Enc(pke, m) takes a public key pke of the epoch e and a message m as input,
and outputs a ciphertext ce of the epoch e.

– Dec(ske, ce) takes a secret key ske and a ciphertext ce as input, and outputs
a message m.

– TokGen(pke) takes a public key pke of the epoch e as input, and outputs an
update token ∆e+1 and an updated public key pke+1 of the epoch e + 1.

– Usk(∆e+1, ske) takes an update token ∆e+1 and a secret key ske as input, and
outputs an updated secret key ske+1 of the epoch e + 1.

10 C. Qian, YJ. Galteland, G.T. Davies

– Upd(∆e+1, ce, σe) takes an update token ∆e+1, a ciphertext ce and a signature
σe as input, and outputs an updated ciphertext ce+1 and an updated signature
σe+1.

Signed Ciphertexts:7 Additionally, we provide public authentication with the
following three PPT algorithms (SKGen, Sig, Ver):

– SKGen(pp) takes public parameters pp as input, and outputs a singing key
ssk and a verification key svk.

– Sig(ssk, pke, ce) takes as input a signing key ssk, a public key pke and a
ciphertext ce as input, and outputs a signature σe.

– Ver(svk, pke, ce, σe) takes a verification key, a public key pke, a ciphertext ce
and a signature σe as input, and outputs 0 or 1.

PSigUE without proof of knowledge (ZKPoK): In the no ZKPoK setting,
we require an additional public verification algorithm for the ciphertexts. Infor-
mally, we need to check that every ciphertext is well-formed before adding it to
the database.

– PVer(pke, c) takes a public key pke of epoch e, a ciphertext c as input, and
outputs 0 or 1.

PSigUE with proof of knowledge (ZKPoK): For PSigUE with ZKPoK, we
require a zero-knowledge proof of knowledge component. Depending on the property
of the PSigUE, this zero-knowledge proof could be a proof of knowledge of the
secret information x ∈ {m, r} (message or randomness). We recall that the zero-
knowledge proof is used only in the registration phase and never stored in the
database.

– Provex(pke, c, x) takes a public key pke of epoch e, a ciphertext c, and a secret
information x as input, and outputs a zero-knowledge proof of knowledge π.

– Verx(pke, c, π) takes the public key pke of the epoch e, a ciphertext c, and a
proof π, and outputs 0 or 1. In particular, x ∈ {m, r}.

In the remaining definition section, we denote the additional part for PSigUE
without ZKPoK in dashed boxes , and the additional part for PSigUE with
ZKPoK in gray boxes .

Firstly, we define the correctness for PSigUE in the expected way.
7 Note that our syntax does not require that the signatures change as the ciphertexts

are updated when the Upd operation is performed (i.e. we allow σe+1 = σe), and we
will use such static signatures in PSigUE1 and PSigUET. Note also that the signer
will be signing ciphertexts rather than plaintexts. This means that a signature is
valid on an encryption of some plaintext for multiple epochs, and consequently a
signature is valid on a set of ciphertexts (in a similar manner to linearly homomorphic
signatures).

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 11

Definition 2 (Correctness). PSigUE is correct if for any security parameter
λ, any message m, and any polynomially large integers e1 ≤ e2, we have:

Pr

Dec(ske2 , ce2) = m
∧Ver(svk, ce2 , σe2) = 1
∧PVer(pke1 , c) = 1

∧Verx(pke1 , c, π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

parG $← GGen(1λ); pp $← Setup(parG)
(pk0, sk0) $← KGen(pp)
(svk, ssk) $← SKGen(pp)
for j = 0 to e1 − 1

(pkj+1, ∆j+1) $← TokGen(pkj)
skj+1

$← Usk(∆j+1, skj)
ce1

$← Enc(pke1 , m); σe1
$← Sig(ssk, ce1)

π $← Provex(pke1 , c, x)
for j = e1 to e2 − 1

(pkj+1, ∆j+1) $← TokGen(pkj)
skj+1

$← Usk(∆j+1, skj)
(cj+1, σj+1) $← Upd(∆j+1, cj , σj)

= 1.

2.3 Integrity for PSigUE Scheme

In this section, we define the integrity game for PSigUE schemes. This notion
captures an adversary that attempts to provide a ciphertext-signature pair that
correspond to a plaintext for which it has not asked to its signing oracle and for
which the ciphertext decrypts correctly (even when given the secret decryption
key in all epochs). Intuitively this means that a scheme will not be deemed to
provide integrity protection if signatures are re-randomizable, nor if it is easy to
find collisions in ciphertexts in the underlying encryption scheme. As we have
mentioned already, signatures are static and are not rotated with the ciphertexts.

Definition 3 (Integrity). For any PPT adversary A and any security param-
eter λ, we define the integrity experiment ExpInt

PSigUE,A(1λ) and oracles OInt =
(OSig,OTokGen) as in Figure 1.

We say that PSigUE satisfies the integrity if there exists a negligible function
negl(·) such that,

Pr
[
ExpInt

PSigUE,A(1λ) = 1
]
≤ negl(·).

2.4 IND-ENC and wIND-ENC Security for PSigUE Scheme

In this section, we define the new confidentiality games for the PSigUE scheme.
The adversary can ask for moving to the new epoch via ONext, signing ciphertext
via OSig, inserting data via OInsert, corrupting secret key and update token via
OCorrK and OCorrT, and updating data via OUpd. At some moment, the adversary
requests for a challenge query OChallb with a challenge message, the challenger
responses either an encryption of the challenge message or an encryption of a
random value. The adversary can continue asking for the above oracles again.
In the end, it outputs a guess bit. The adversary wins the game if it guesses

12 C. Qian, YJ. Galteland, G.T. Davies

ExpInt
PSigUE,A(1λ) :

01 parG $← GGen(1λ)
02 pp $← Setup(parG)
03 (pk0, sk0) $← KGen(pp)
04 (svk, ssk) $← SKGen(pp)
05 (c∗, σ∗) $← AOInt (pp, pk0, sk0, svk)
06 m′ ← Dec(ske∗ , c∗)
07 if m′ ̸= ⊥ and Ver(svk, c∗, σ∗) = 1

and (m′, ·, ·) ̸∈ Lσ

08 return 1
09 else
10 return 0

Oracle OSig(ce) :
11 σe

$← Sig(ssk, ce)
12 m := Dec(ske, ce)
13 Lσ := Lσ ∪ {(m, ce, σ)}
14 return σe

Oracle OTokGen() :
15 e⋆ := e
16 (pke⋆+1, ∆e⋆+1) $← TokGen(pke⋆)
17 ske⋆+1 := Usk(ske⋆ , ∆e⋆+1)
18 e := e + 1
19 return (pke⋆+1, ∆e⋆+1, ske⋆+1)

Fig. 1. We give the security experiment ExpInt
PSigUE,A, with the definition of the oracles

OInt = (OSig,OTokGen). The list Lσ keeps track on all signatures generated by the signing
oracle.

correctly. In particular, the oracle OInsert is introduced in this work, it is used to
check ciphertexts before storage. We emphasize that for both PSigUE with and
without ZKPoK the adversary can only insert ciphertexts with valid proofs into
the database. Moreover, for PSigUE with ZKPoK once a ciphertext is inserted
into the database, the corresponding proof will be completely deleted from the
database. Therefore, we do not need to update this proof, and the adversary can
not get access to this proof via corruption queries.

Definition 4 (IND-ENC). Let PSigUE be a public-key signable updatable encryp-
tion. For all PPT adversary, we define the security experiment ExpIND-ENCb

PSigUE,A as
in Figure 2.

We say that PSigUE satisfies the IND-ENC security if, there exists a negligible
function negl(·) such that,

∣∣∣∣Pr
[
ExpIND-ENC

PSigUE,A(1λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ).

It is non-trivial to construct a public-key updatable encryption with IND-ENC.
One common approach to prove confidentiality for updatable encryption is
reducing the UE security to the security of the underlying encryption scheme.
However, such approach would lead to an exponential security loss in constructing
updatable encryption in the public-key setting. This is because adversary can
obtain all the public keys before any corruption or challenge queries. As a
challenger in the security proof, we need to already decide which public key should
include a trapdoor at this point. If we did not guess the challenge epochs correctly,
the adversary can simply require the key corruption oracles to distinguish the
simulated security game from the real one. We emphasize that this problem is
specifically only for public key setting. Since in the symmetric setting, no public
keys are required.

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 13

We propose two different solutions for the above problem. The first one
is to construct our PSigUE in a weaker security model (Section 3, Section 4).
The second solution borrows idea from tightly-secure public-key constructions
(Section 5).

Our first solution to this problem is by weakening the security model. We
propose a new security model wIND-ENC which is a weaker version of IND-ENC.
More precisely, in the wIND-ENC security model, the adversary is only allowed to
learn challenge ciphertexts in one consecutive sequence of epochs. In this model,
as a challenger we only need to guess the starting and the ending epochs of such
epoch periods. Therefore, the security loss is only n2 for n epochs.

We argue that the weaker security notion wIND-ENC is already meaningful in
the real life applications. For a publicly accessible database, the adversary could
copy the entire database and have access to all ciphertexts at any moment. In
this setting, if the database stops maintaining part of the database, for example,
data deletion. Then the database will not be able to provide future version of
such part of database. Therefore, there is only one consecutive sequence of epochs
that the adversary knows all (updated) version of ciphertexts, including challenge
ciphertexts.

We give the formal definition of wIND-ENC as follows.

Definition 5 (wIND-ENC). Let PSigUE be a public-key signable updatable en-
cryption. For all PPT adversary, we define the security experiment ExpwIND-ENCb

PSigUE,A
as in Figure 2.

We say that PSigUE satisfies the wIND-ENC security if, there exists a negligible
function negl(·) such that,

∣∣∣∣Pr
[
ExpwIND-ENC

PSigUE,A (1λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ).

2.5 Unlinkability

We also define unlinkability as follows. The unlinkability measures if the adversary
can distinguish an updated real ciphertext from an updated random ciphertext.

Definition 6 (Unlink). Let PSigUE be a public-key signable updatable encryption.
For all PPT adversaries A, we define the security experiment ExpUnlinkb

PSigUE,A as
in Figure 4.

We say that PSigUE satisfies the Unlink security if, there exists a negligible
function negl(·) such that,

∣∣∣∣Pr
[
ExpUnlink

PSigUE,A(1λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ).

14 C. Qian, YJ. Galteland, G.T. Davies

ExpIND-ENC
PSigUE,A(1λ) :

01 parG $← GGen(1λ)
02 pp $← Setup(parG)
03 (pk0, sk0) $← KGen(pp)
04 (ssk, svk) $← SKGen(pp)
05 LCorrK,LSafe,LCorrT := ∅
06 b $← {0, 1}
07 b′ $← AOb

IND-ENC (pp, pk0, svk)
08 (L∗

CorrK,L∗
Safe)

:= Expand(LCorrK,LSafe,LCorrT)
09 if L∗

CorrK ∩ L∗
Safe ̸= ∅

10 or L∗
Safe ̸= {eL, eL + 1, . . . , eR}

for some eL, eR // wIND-ENC
11 b′ $← {0, 1}
12 return Jb′ = bK

Oracle OChallb (e, (m0))
13 m1

$←M
14 LSafe := LSafe ∪ {e}
15 c̃e

$← Enc(pke, mb)
16 σ̃e

$← Sig(ssk, pke, c̃e)
17 phase := 1
18 return (c̃e, σ̃e)

Oracle OInsert(c, σ, π)

19 Check PVer(pke, c)

20 Check Verx(pke, c, π)
21 Check Σ.Ver(svk, (pke, c), σ)
22 Lc := Lc ∪ {(c, σ, e)}

Oracle OSig(c, e)
23 σ $← Sig(ssk, (pke, c))
24 return σ

Oracle ONext()
25 e++
26 (pke, ∆e) $← TokGen(pke−1)
27 ske := Usk(∆e, ske−1)
28 if phase := 1
29 (c̃e, σ̃e) $← Upd(∆e, c̃e−1, σ̃e−1)
30 return pke

Oracle OCorrK(i)
31 Check 0 ≤ i ≤ e
32 LCorrK := LCorrK ∪ {i}
33 return ski

Oracle OCorrT(i)
34 Check 0 < i ≤ e
35 LCorrT := LCorrT ∪ {i}
36 return ∆i

Oracle OUpd((ce0 , σe0), e0, e1)
37 Check 0 ≤ e0 < e1 ≤ e
38 if (ce0 , σe0 , e0) ∈ Lc

39 for i = e0 + 1 to e1
40 (ci, σi) $← Upd(∆i, ci−1, σi−1)
41 Lc := Lc ∪ {(ce1 , σe1 , e1)}
42 elseif (ce0 , σe0) = (c̃e0 , σ̃e0)
43 (ce1 , σe1) := (c̃e1 , σ̃e1)
44 LSafe := LSafe ∪ {e1}
45 return (ce1 , σe1)

Fig. 2. Security experiment of IND-ENC and wIND-ENC security game of the PSigUE
scheme. The codes ending with // wIND-ENC are only for wIND-ENC security game.
Expand algorithm (Line 08) will be used to check trivial win condition and it is described
in Fig. 3. For both IND-ENC and wIND-ENC security, the adversary A has access to
the oracles Ob

IND-ENC = (OChallb ,OSig,OInsert,ONext,OCorrK,OCorrT,OUpd). The challenge
ciphertext and its updated ciphertexts are denoted as (c̃i, σ̃i).

2.6 Dual-Mode Non-Interactive Zero-Knowledge Proof of Knowledge

We recall the Dual-Mode Non-Interactive Zero-Knowledge Proof of Knowledge
(DM-ZKPoK) [15] in this section, this will be a essential tool in our construction.
The DM-ZKPoK is a special type of zero-knowledge proof system in which
the common reference string (crs) generation is dual-mode. More precisely, the
dual-mode property means that the setup algorithm Setup can generate crs in
soundness or zero-knowledge modes. In the soundness mode, we have perfect
soundness, and we have perfect zero-knowledge in the zero-knowledge mode.

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 15

Alg Expand(LCorrK,LSafe,LCorrT) :
01 L∗

CorrK := {e ∈ {0, . . . l} | CorrK(e) = 1}
02 CorrK(e) = 1 ⇐⇒ (e ∈ LCorrK) or (CorrK(e− 1) and e ∈ LCorrT) or
03 or (CorrK(e + 1) and e + 1 ∈ LCorrT)
04 L∗

CorrT := {e ∈ {0, . . . l} | (e ∈ LCorrT) or (e− 1 ∈ L∗
CorrK and e ∈ L∗

CorrK)}
05 L∗

Safe := {e ∈ {0, . . . l} | Safe(e) = 1}
06 Safe(e) = 1 ⇐⇒ (e ∈ LSafe) or (Safe(e− 1) and e ∈ L∗

CorrT) or
07 or (Safe(e + 1) and e + 1 ∈ L∗

CorrT)
08 return (L∗

CorrK,L∗
Safe)

Fig. 3. Expand algorithm. We follow the formulas in [22,7,18] to compute the leakage
sets. This algorithm computes which keys and challenge ciphertexts are known to the
adversary.

ExpUnlink
PSigUE,A(1λ) :

01 parG $← GGen(1λ)
02 pp $← Setup(parG)
03 (pk0, sk0) $← KGen(pp)
04 (ssk, svk) $← SKGen(pp)
05 LCorrK,LSafe,LCorrT := ∅
06 b $← {0, 1}
07 b′ $← AOb

Unlink (pp, pk0, svk)
08 return Jb′ = bK

Oracle OUnlink
Challb (e, (c0))

09 c1
$← C

10 LSafe := LSafe ∪ {e}
11 σ̃e−1

$← Sig(ssk, pke−1, cb)
12 (c̃e, σ̃e) $← Upd(∆e, cb, σ̃e−1)
13 phase := 1
14 return (c̃e, σ̃e)

Fig. 4. Security experiment of Unlink security game of the PSigUE scheme. The adversary
A has access to the oracles Ob

Unlink = (OUnlink
Challb ,OSig,OInsert,ONext,OCorrK,OCorrT,OUpd).

Definition 7. A binary relation R is polynomially bounded if it is decidable in
polynomial time and there exists a polynomial p such that for all (x, w) ∈ R,
we have |w| ≤ p(|x|). We also define the language related to the relation LR :=
{x|∃w.(x, w) ∈ R}.

Definition 8 (DM-ZKPoK). A dual-mode non-interactive zero-knowledge proof
of knowledge scheme (DM-ZKPoK) for the relation R consists of six PPT algo-
rithms DM-ZKPoK = (SetupSnd, SetupZK, Prove, Ver, Sim, Ext) with the following
syntax:

– SetupSnd(1λ) takes the security parameter 1λ as input, and output a common
reference string in the soundness mode crsSnd and an extraction key ExtK.

– SetupZK(1λ) takes the security parameter 1λ as input, and outputs a common
reference string in the zero-knowledge mode crsZK and a simulation key SimK.

– Prove(crs, x, w) takes a common reference string crs, a statement x, and a
witness w as input, and outputs a proof π.

– Ver(crs, x, π) takes a common reference string crs, a statement x, and a proof
π as input, and outputs a boolean 0 (false) or 1 (true).

16 C. Qian, YJ. Galteland, G.T. Davies

– Ext(crsSnd, ExtK, x, π) takes a common reference string in the soundness mode,
an extraction key ExtK, a statament x, and a proof π as input, and outputs a
witness w.

– Sim(crsZK, SimK, x) takes a common reference string in the zero-knowledge
mode, a simulation key SimK, and a statament x as input, and outputs a
proof π.

We require the following properties for DM-ZKPoK schemes:
Correctness: For all (x, w) ∈ R, we have

Pr
[
Ver(crsSnd, x, π) = 1

∣∣∣∣ (crsSnd, ExtK) $← SetupSnd(1λ)
π $← Prove(crsSnd, x, w)

]
= 1.

Perfect Soundness: For all x ∈ X and for all proof π, we have

Pr
[
Ver(crsSnd, x, π) = 1 =⇒ (x, w) ∈ R

∣∣∣∣ (crsSnd, ExtK) $← SetupSnd(1λ)
w $← Ext(crsSnd, ExtK, x, π)

]
= 1.

Perfect Zero-Knowledge: For all x ∈ X, we have

Pr
[
Ver(crsZK, x, π) = 1

∣∣∣∣ (crsZK, SimK) $← SetupZK(1λ)
π $← Sim(crsZK, SimK, x)

]
= 1.

Mode-indistinguishability: The common reference string crs generated by
SetupSnd and SetupZK are computationally indistinguishable. Formally, for all
PPT adversary A, there exists a negligible function negl(·) such that

|Pr
[
A(crsSnd) = 1

∣∣ (crsSnd, ExtK) $← SetupSnd(1λ)
]

− Pr
[
A(crsZK) = 1

∣∣ (crsZK, SimK) $← SetupZK(1λ)
]
| ≤ negl(λ).

3 Our efficient Construction of PSigUE without
Unlinkability

Our first scheme PSigUE1 is a simple and efficient construction consisting of only
2G1 +1G2 +1GT element. It is based on a generalization of k-linear assumption in
the asymmetric pairing setting. We call this new assumption the Bilateral k-linear
assumption. Note that this construction is unlinkable and provides wIND-ENC
security.

3.1 Bilateral k-Linear assumption

To build an efficient PSigUE scheme, we consider the following bilateral k-Lin
assumption. We firstly define a uniform diagonal matrix distribution Lk =

{

(
a1

. . .
ak

)
| a1, . . . , ak

$← Zp}.

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 17

Definition 9 (k-BLin). Let parG = (G1,G2,GT, e, p) be an asymmetric pairing
groups with order p. We say that the k-BLin assumption holds on pairing groups
parG if, the following two distributions are computationally indistinguishable:

(
[
A
]

1 ,
[
Ar
]

1 ,
[
A
]

2 ,
[
Ar
]

2) ≈c (
[
A
]

1 ,
[
u
]

1 ,
[
A
]

2 ,
[
u
]

2),

where Ā $← Lk, A :=
(

Ā
1⊺

)
, r $← Zk

p , and u $← Zk+1
p .

We can notice that by multiplying a uniformly random matrix C̄ $← Lk on
the left side of

[
Ā
]

2 and
[
Ār
]

2, we can directly have the following lemma:

Lemma 1. Let parG = (G1,G2,GT, e, p) be an asymmetric pairing groups with
order p. The following two distributions are computationally indistinguishable
under the k-BLin assumption:

(
[
A
]

1 ,
[
Ar
]

1 ,
[
B̄
]

2 ,
[
B̄r
]

2) ≈c (
[
A
]

1 ,
[
u
]

1 ,
[
B̄
]

2 ,
[
v̄
]

2),

where Ā, B̄ $← Lk, A :=
(

Ā
1⊺

)
, r, v̄ $← Zk

p , and u $← Zk+1
p .

We note that the k-BLin assumption in the symmetric setting is the k-linear
assumption [4,16,27].

By pairing the element
[
1⊺ · r

]
1 in the Lemma 1 with

[
1
]

2, we can get
[
1⊺ · r

]
T

and the following lemma which we will use in our construction.

Lemma 2. Let parG = (G1,G2,GT, e, p) be an asymmetric pairing groups with
order p. The following two distributions are computationally indistinguishable
under the k-BLin assumption:

(
[
Ā
]

1 ,
[
Ār
]

1 ,
[
B̄
]

2 ,
[
B̄r
]

2 ,
[
1⊺ · r

]
T) ≈c (

[
Ā
]

1 ,
[
ū
]

1 ,
[
B̄
]

2 ,
[
v̄
]

2 ,
[
w
]

T),

where Ā, B̄ $← Lk, r, ū, v̄ $← Zk
p , and w $← Zp.

3.2 Our Instantiation of PSigUE from k-BLin assumption

In this section, we give our first efficient construction of our public-key signable
updatable encryption scheme PSigUE1. Our first observation is that the signature
on ciphertext and the updatability are incompatible. However, what we really
need to authenticate is the underlying message. Our first intuition is that, to
support signature scheme, we could separate the message and the public key in
the ciphertext. The advantage of this approach is that since we only update the
key part in the ciphertext and the signature is on the message part, we don’t need
to update the signature. Therefore, our starting point is an encryption scheme
from k linear assumption. More precisely, an encryption of the message m consists
of 2 group elements c = ([Ar], [1⊺ · r + m]) in G, where A $← Lk. We can notice
that in this ciphertext the first element only contains information about the
public key and the second element only contains the message information. Thus,

18 C. Qian, YJ. Galteland, G.T. Davies

we can provide a signature only on [1⊺ · r + m] to authenticate the underlying
message.

However, this first attempt fails quickly by considering the following trivial
attack on the integrity property. The adversary can simply modify the first
element in the ciphertext [A · r] to [2 · A · r]. Since the first element is not
signed, this move is legitimate. But when we decrypt the ciphertext we will get
[1⊺ · r + m − 2 · 1⊺r] ̸= m. This attack works because the randomness r is not
fixed inside of the ciphertext. Our solution is to add another component [B · r] in
the ciphertext with [B] in the public key together with a proof π of the fact that
[A · r], [B · r] share the same discret log [r]. Then the signature is on [B · r] and
[1⊺ · r + m]. This new element [B · r] help us to fix the underlying randomness
r. The only problem for our second attempt is that the proof π may not be
updatable when we modify the public key [A].

Fortunately, by using the bilateral k-linear assumption, we can get this proof
π for free. More precisely, by putting [A], [A · r] into G1, and [B], [B · r] into G2,
we can verify that they share the same discret log publicly without any proof by
the following computation:

(
[
Ar
]⊺

1 •
[
B
]

2)⊺ =
[
A
]

1 •
[
Br
]

2

We note that the above equality is only true because A and B are generated
from the distribution Lk. Consequently, we have B⊺ · A = A · B. Since the
zero-knowledge proof is no longer needed in this approach, we do not need to
consider the updatability of the proof system anymore.

Summarying the above intuitions, we give our first construction of PSigUE1
in Figure 5 by using a signature scheme Σ = (SKGen, Sig, Ver) and a DM-ZKPoK
proof system ΠDM = (SetupSnd, SetupZK, Prove, Ver, Sim, Ext).

3.3 Security of the construction PSigUE1

In this section, we will formally analyse the security of PSigUE1 as constructed
in Figure 5.

Theorem 1 (wIND-ENC security). Let PSigUE1 be the public-key signable up-
datable encryption described in Figure 5. Suppose n is the total number of epochs.
For any wIND-ENC adversary A against PSigUE1, there exists two PPT adver-
saries B1,B2 such that

AdvwIND-ENC
PSigUE1,A(1λ) ≤ n2 · (AdvInd-Mode

ΠDM,B1
(1λ) + Advk-BLin

parG,B2
(1λ)).

Proof. We recall that, for the wIND-ENC security, the adversary cannot corrupt
any secret key between two challenge epochs. Therefore, we firstly guess the
starting and the ending challenge epoch. The success probability is 1/n2 for n
epochs in total. Assuming the first challenge epoch is eL and the last eR.

We will introduce a simple hybrid game that change the crs generation.

Game G0: This is the initial wIND-ENC security game with crs generation in

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 19

Alg Setup(parG):
01 (crs, SimK) $← ΠDM.SetupZK(1λ)
02 pp := (parG, crs)
03 return pp

Alg KGen(pp):
04 A, B $← Lk

05 pk0 := (
[
A
]

1
,
[
B
]

1
); sk0 := A

06 return (pk0, sk0)

Alg Enc(pke, m):
07 parse

[
A
]

1
=: pke

08 r1, . . . , rk
$← Zp

09 r :=
(
r1 . . . rk

)⊺
10 return

(
[
Ar
]

1
,
[
Br
]

2
,
[
r⊺ · 1

]
T

+ m)

Alg Dec(ske, ce)
11 parse (ce,1, ce,2, ce,3) =: c
12 parse A =: ske
13 m := ce,3 − (A−1 · ce,1)⊺ •

[
1
]

2
14 return m

Alg SKGen(pp):
15 (ssk, svk) $← Σ.SKGen(pp)
16 return (ssk, svk)

Alg Sig(ssk, pke, ce)
17 parse (ce,1, ce,2, ce,3) =: c
18 σ $← Σ.Sig(ssk, (ce,2, ce,3))
19 return σ

Alg Ver(svk, pke, ce, σe)
20 parse

[
A
]

1
=: pke

21 parse (ce,1, ce,2, ce,3) =: c
22 b := Σ.Ver(svk, σ, (ce,2, ce,3))
23 Check (c⊺

e,1 •
[
B
]

2
)⊺ =

[
A
]

1
• ce,2

24 return b

Alg TokGen(pke):
25 parse

[
A
]

1
=: pke

26 A′ $← Lk

27 ∆e+1 := A′; pke+1 :=
[
A′A

]
1

28 return (∆e+1, pke+1)

Alg Usk(∆e+1, ske):
29 parse A′ =: ∆e+1
30 parse A =: ske
31 return ske+1 := A′A

Alg Upd(∆e+1, ce, σe):
32 parse A′ =: ∆e+1
33 parse (ce,1, ce,2, ce,3) =: ce
34 ce+1,1 := A′ · ce,1
35 ce+1 := (ce+1,1, ce,2, ce,3)
36 return ce+1

Alg Prover(pke, c, r):
37 π $← ΠDM.Prove(crs, (

[
A
]

1
, c1), r)

38 return π

Alg Verr(pke, c, π):
39 x := (

[
A
]

1
, c1)

40 return ZKPoK.Ver(crs, x, π)

Fig. 5. Our construction of efficient PSigUE1 without unlinkability. In the Prover
algorithm, we use the ΠDM to prove the knowledge of r such that c1 =

[
A
]

1
· r.

the perfect zero-knowledge mode while the guess of challenge epochs are correct.
Therefore, we have

pr0 = 1
n2 · AdvwIND-ENC

PSigUE1,A(1λ).

Game G1: In G1, we change the crs generation in the perfect sound setting.
Together with crs, we also get an extraction key ExtK. The only difference between
G0 and G1 is the mode switching. Therefore we have

|pr1 − pr0| ≤ AdvInd−Mode
ΠDM,B1

(1λ).

20 C. Qian, YJ. Galteland, G.T. Davies

Let A be an adversary against wIND-ENC security of PSigUE1 with challenge
epoch from e0 to e1, we will construct an adversary B2 against the k-BLin assump-
tion. The explicit construction of B2 is given in Figure 6. We denote the challenge
distribution CH = (

[
A⋆
]

1 ,
[
u⋆
]

1 ,
[
B⋆
]

2 ,
[
v⋆
]

2 ,
[
w⋆
]

T), where A⋆, B⋆ $← Lk.

B2(CH, eL, eR,A) :
01 (crs, ExtK) $← SetupSnd(1λ)
02 pp := (parG, crs)
03 A0, AeR+1

$← Lk

04 pk0 := (
[
A0
]

1
,
[
B⋆
]

2
); sk0 := A0

05 pkeR+1
$← (
[
AeR+1

]
1

,
[
B⋆
]

2
)

06 skeR+1 := AeR+1
07 for i ∈ {1,. . . ,eL−1}∪{eR +2,. . . ,n}
08 Ai

$← Lk

09 pki := (
[
Ai

]
1

,
[
B⋆
]

1
)

10 ski := Ai; ∆i := Ai ·A−1
i−1

11 pkeL
:= (

[
A⋆
]

1
)

12 for i = eL + 1 to eR
13 ∆i

$← Lk; pki = ∆i · pki−1
14 (ssk, svk) $← Σ.SKGen(pp)
15 b′ $← AOwIND-ENC (pp, pk0, svk)
16 return b′

OwIND-ENC
Challb (e, (m0))

17 c̃e := (
[
u⋆
]

1
,
[
v⋆
]

2
,
[
w⋆
]

T
+ m0)

18 σ̃e
$← Sig(ssk, ce)

19 LChall := {(c̃e, σ̃e)}
20 phase := 1
21 return (c̃e, σ̃e)

Oracle OSig(c, e)
01 σ $← Sig(ssk, (pke, c))
02 return σ

Oracle OInsert(c, π)
18 if Verr(pke, c, π) = 1
19 σ $← Sig(ssk, c)
20 Lc := Lc ∪ {(c, σ, e, π)}

Oracle ONext()
21 e++
22 return pke

Oracle OCorrK(i)
23 Check 0 ≤ i ≤ e
24 return ski

Oracle OCorrT(i)
25 Check 0 < i ≤ e
26 return ∆i

Oracle OUpd((ce0 , σe0), e0, e1)
27 Check 0 ≤ e0 < e1 ≤ e
28 parse (ce0,1, ce0,2, ce0,3) =: ce0

29 if ∃π.(ce0 , σe0 , e0, π) ∈ Lc

30 r := ΠDM.Ext(crs, ExtK, π)
31 ce1 := (

[
Ae1 r

]
1

, ce0,2, ce0,3)
32 σe1 := σe0

33 Lc := Lc ∪ {(ce1 , σe0 , e1, π)}
34 elseif (ce0 , σe0) ∈ LChall
35 Check eL ≤ e0 < e1 ≤ eR
36 for i = e0 + 1 to e1
37 ci,1 := ∆i · ci−1,1
38 ce1 := (ce1,1, ce0,2, ce0,3)
39 σe1 := σe0

40 LChall := LChall ∪ {(ce1 , σe1)}
41 else abort
42 return (ce1 , σe1)

Fig. 6. The construction of B2 that use wIND-ENC adversary A to break the k-BLin
assumption. We recall that eL and eR are the starting and ending epoch for challenge
ciphertexts.

We can notice that if the challenge distribution CH is k-BLin tuple, then the
view of the the adversary A is identical to the security game ExpwIND-ENC0

PSigUE1,A (1λ)
in G1. Moreover, if (

[
u⋆
]

1 ,
[
v⋆
]

2 ,
[
w⋆
]

T) are chosen uniformly random, then
the view of the adversary A is identical to ExpwIND-ENC1

PSigUE1,A (1λ) in G1. Therefore,

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 21

the success probability of the adversary B2 in breaking the k-BLin assumption
is at least pr1. More precisely, we have pr1 ≤ Advk-BLin

parG,B2
(1λ). Applying an union

bound over the hybrids, we have done with the proof. ⊓⊔

Theorem 2 (Integrity). Let PSigUE1 be the public-key signable updatable en-
cryption described in Figure 5. For any Int adversary A against PSigUE1, there
exists an adversary B such that

AdvInt
PSigUE1,A(1λ) ≤ AdvUnforg

Σ,B (1λ).

Proof. We can notice that the PSigUE1 ciphertext given in Figure 5 is of the
form ce = (ce,1, ce,2, ce,3), and the signature is given for the message (ce,2, ce,3).
Thus, the only part of the ciphertext can be modified by the adversary is ce,1.
However, a valid ciphertext of pke should verify that (c⊺e,1 •

[
B
]

2)⊺ =
[
A
]

1 • ce,2.
Note that ce,1 is fully determined by pke and (ce,2, ce,3). Therefore, we have the
desired result. ⊓⊔

4 Unlinkable PSigUE scheme with ZKPoK

In this section, we give our second construction of public-key signable updatable
encryption scheme PSigUE2. It is a PSigUE with ZKPoK, this construction has
the advantage that it has unlinkability.

4.1 T -Updatable Non-Interactive Zero-Knowledge proof system

We first introduce the Updatable Non-Interactive Zero-Knowledge proof system
(T -UNIZK), which is a special family of Non-Interactive Zero-Knowledge proof
system (NIZK). We will use T -UNIZK to build our PSigUE2 in Section 4.3.

Definition 10 (T -UNIZK). An Updatable Non-Interactive Zero-Knowledge proof
system for the transformation T (T -UNIZK) consists of five PPT algorithms
Π = (Setup, Prove, Ver, Upd, Rand) with the following syntax:

– Setup(1λ) takes security parameters 1λ as input, and outputs a common
reference string crs.

– Prove(crs,L, x, w) takes the common reference string crs, an NP language L,
a statement x and a witness w as input, and outputs a proof π.

– Ver(crs,L, x, π) takes the common reference string crs, an NP language L, a
statement x and a proof π, and outputs 0 or 1.

– Upd(L, x, π, T) takes a proof π for the language L and a transformation
T = (Tx, TL), and outputs a new proof π′ for Tx(x) ∈ TL(L).

– Rand(π) takes a proof π and outputs a re-randomized proof π′.

We require the correctness, updatability, rerandomizability, soundness and zero-
knowledge properties for our T -UNIZK.

22 C. Qian, YJ. Galteland, G.T. Davies

Correctness: For an NP language L, and for all x ∈w L, we have

Pr
[
Ver(crsSnd,L, x, π) = 1

∣∣∣∣ (crsSnd, ExtK) $← SetupSnd(1λ)
π $← Prove(crsSnd,L, x, w)

]
= 1.

Updatability: For an NP language L, and for all x, π, we have that

Pr

Ver(crs,L′, x′, π′) = 1

∣∣∣∣∣∣
Ver(crs,L, x, π) = 1
π′ $← Upd(L, x, π, T)
x′ := Tx(x); L′ := Tx(L)

 = 1.

Rerandomizability: For an NP language L, and for all x ∈w L. The following
two distributions are identical

π ≡ Rand(Prove(crs,L, x, w)).

Soundness: There exists two PPT algorithms (SetupSnd, Ext), such that for all
PPT adversary A, there exists a negligible function negl(·) such that

|Pr
[
A(crs) = 1

∣∣ crs $← Setup(1λ)
]
−

Pr
[
A(crsSnd) = 1

∣∣ (crsSnd, ExtK) $← SetupSnd(1λ)
]
| ≤ negl(1λ).

Moreover, for every statement x ∈ X and for all proof π, we have

Pr
[
Ver(crsSnd,L, x, π) = 1 =⇒ (x, w) ∈ R

∣∣∣∣ (crsSnd, ExtK) $← SetupSnd(1λ)
w $← Ext(crsSnd,L, ExtK, x, π)

]
= 1.

Zero-Knowledge: There exists two PPT algorithm (SetupZK, Sim), such that
for all PPT adversary A, there exists a negligible function negl(·) such that

|Pr
[
A(crs) = 1

∣∣ crs $← Setup(1λ)
]
−

Pr
[
A(crsZK) = 1

∣∣ (crsZK, SimK) $← SetupZK(1λ)
]
| ≤ negl(1λ).

Moreover, for every statement x ∈ X, we have

Pr
[
Ver(crsZK, x, π) = 1

∣∣∣∣ (crsZK, SimK) $← SetupZK(1λ)
π $← Sim(crsZK, SimK, x)

]
= 1.

4.2 Instantiation of T -UNIZK from SXDH assumption

We notice that Groth-Sahai proof system already has some malleability properties.
For specific language and transformation family, we show in Figure 10 that, Groth-
Sahai proof system is a T -UNIZK.

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 23

Let RA,h be a binary relation such that (C, (r, m)) ∈ RA,h is defined as

C = A · r +
[

0
WH(m)

]
1

,

where C, A ∈ G2
1, r ∈ Zp, m ∈ {0, 1}ℓ, and WH(m) =

[
1 m1 · · · mℓ

]
· h with

h ∈ Gℓ+1
1 .

We also define the transform T = (Tx, TL) as follows.

Tx(C) =
(

∆e · (C0 + A0 · r′)
C1 +

[
r′]

1

)
TL(RA,h) = RA′,h,

where A′ =
(

∆e ·A0
A1

)
, and ∆e, r′ $← Zp.

We give the explicit construction of T -UNIZK for the relation RelGS, including
the update and re-randomization algorithms in Figure 10.

4.3 Instantiation of PSigUE from SXDH assumption

In this section, we give the instantiation of our PSigUE2 scheme by using the
T -UNIZK system Π constructed in Figure 10 as a building block.

The correctness and the unlinkability of PSigUE2 in Figure 7 is straightforward.
We will provide the proof of the wIND-ENC security and integrity.

Theorem 3 (wIND-ENC). Let PSigUE2 be the public-key signable updatable en-
cryption described in Figure 7. For any wIND-ENC adversary A against PSigUE1,
there exists two PPT adversaries B1,B2,B3 such that,

AdvwIND-ENC
PSigUE2,A(1λ) ≤ n2 · (AdvZK

Π,B1
(1λ) + AdvDual-Mode

ΠDM,B2
(1λ) + AdvSXDH

G1,B3
(1λ)).

We give the detailed proof of Theorem 3 in Supplementary Material Sec-
tion B.1.

4.4 Integrity

To argue the integrity of of PSigUE2, we need to firstly show an extended version
of Waters signature. Then, as in [3], we prove that the extended version of Waters
signature is extended unforgeable under chosen-message attack (Ext-UF-CMA).
Then we will reduce the integrity property of PSigUE2 to Ext-UF-CMA of the
underlying Waters signature.

Theorem 4 (Integrity). Let PSigUE2 be the public-key signable updatable en-
cryption described in Figure 7. For any Int adversary A (that makes max QSig
signing queries), there exists an adversary B with T(A) ≈ T(B), such that

AdvInt
PSigUE2,A(1λ) ≤ AdvSXDH1

B,G1
(1λ) ·O(1√

ℓ · QSig
).

We give the detailed proof in Supplementary Material Section B.2

24 C. Qian, YJ. Galteland, G.T. Davies

Alg Setup(1λ) :
01 parG $← GGen(1λ)
02 crs $← Π.Setup(1λ)
03 crsDM

$← ΠDM.SetupZK(1λ)
04 h $← Gℓ+1

1
05 return pp := (parG, crs, crsDM, h)

Alg KGen(pp) :
06 x $← Zp
07 return (pk, sk) = (

[
x
]

1
, x)

Alg Enc(pke, m ∈ {0, 1}ℓ) :
08 r $← Zp
09 A :=

[
x 1
]⊺

1

10 C :=
(

C0
C1

)
:= A · r +

[
0

WH(m)

]
1

11 π $← Π.Prove(crs, C, (r, m))
12 ce := (C, π)
13 return ce

Alg Dec(ske, ce) :
14 parse ce =: (C, π)
15 Find m : WH(m) =

(
− 1

x
1
)
·C

16 return m

Alg SKGen(1λ) :
17 u $← G1
18 y $← Zp; v̂ :=

[
y
]

2
∈ G2

19 w := y · u
20 svk := (u, v̂) ∈ G1 ×G2
21 ssk := w ∈ G1
22 return (svk, ssk)

Alg Sig(ssk, c) :
23 s $← Zp; Z := s ·A; ẑ :=

[
s
]

2

24 D :=
(

D0
D1

)
:= C · s +

(
0
w

)
25 return σe = (D, Z, ẑ)

Alg Ver(svk, c, σ) :
26 parse ce =: (C, π)
27 Check D0 •

[
1
]

2
= C0 • ẑ

28 Check D1 •
[
1
]

2
= C1 • ẑ + u • v̂

29 Check Π.Ver(crs, C, π)

Alg TokGen(pke) :
30 ∆e

$← Zp
31 pke+1 := ∆e · pke ∈ G1
32 return (pke+1, ∆e)

Alg Usk(∆e, ske) :
33 ske+1 := ∆e · ske ∈ Zp
34 return ske+1

Alg Upd(∆e, ce, σe) :
35 parse (C, π) =: ce
36 parse (D, Z, ẑ) =: σe
37 r′ $← Zp

38 C′ :=
(

∆e ·C0 + r′∆e · pke
C1 +

[
r′]

1

)
39 π′ $← Π.Upd(π, ∆e, r′)

40 D′ :=
(

∆e ·D0 + r′∆e · Z0
D1 + r′ · Z1

)
41 Z′ :=

(
∆e · Z0

Z1

)
; ẑ′ := ẑ

42 ce+1 := (C′, π′)
43 σe+1 := (D′, Z′, ẑ′)
44 return ce+1, σe+1

Alg Provem(pke, c, m):
45 πDM

$← ΠDM.Prove(crsDM, (pke, c), m)
46 return πDM

Alg Verm(pke, c, π):
47 return ΠDM.Ver(crsDM, (pke, c))

Alg WH(m ∈ {0, 1}ℓ) :
48 return

[
1 m1 · · · mℓ

]
· h

Fig. 7. Instantiation of PSigUE2, where parG := (G1,G2,GT, p, e, g1, g2, gT) generated
by using the group generation algorithm GGen(1λ). ΠDM is the dual-mode ZKPoK as
defined in Definition 8.

5 Construction of tightly-secure PSigUE without ZKPoK

In this section we give our tightly-secure PSigUE without ZKPoK. In addition,
this PSigUE scheme achieves IND-ENC security, which is stronger than the weaker
security model wIND-ENC.

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 25

Our starting point are the tag-based tightly-secure encryption schemes. We
want to take advantage of lossy trapdoor functions [26], and construct our scheme
in a such way that only the challenge ciphertext and its updated version will
have a lossy tag, and all other ciphertexts provided by the adversary will have
an injective tag. However, there are several difficulties.

– If the tag of a ciphertext is changing while updating, then we need to make
sure that the tag of the challenge ciphertext is still a lossy tag after the update.
Moreover, for security we need to prove that the lossy tag and injective tag
during the challenge epoch is indistinguishable for the adversary with token
and secret key corruption. We encounter the same type of problem while
trying to tightly prove the security of PSigUE.

– Another choice is that the tag remains the same while updating the ciphertext.
Moreover, to our knowledge in all all-but-one lossy trapdoor functions [26],
the lossy tag is included in the invertion key. In this case, it leads to a
straight-forward attack. The adversary can simply corrupt any epoch other
than the challenge one to obtain the lossy tag, then it can see that the
challenge ciphertext is generated with a lossy tag instead of an injective one.

To solve the above issues, we borrow some ideas from the Cramer-Shoup like
CCA encryption schemes [10,23]. Therefore, for our second attempt the core part
of the ciphertext consists of 3 group elements:

C1 = A1 · r C2 = A2 · r C3 = X · r + m,

with pk = (A0, A1, X) ∈ G3
1, sk = (x1, x2) ∈ Zp, and X = A1 · x1 + A2 · x2 ∈ G1.

In addition to the core part, there is a tagged Groth-Sahai proof of logA1(C1) =
logA2(C2). The idea behind [23] is that every ciphertext is associated with a tag
t, the common reference string crs of the Groth-Sahai proof is parameterized
with t in a such way that only crst⋆ of the challenge ciphertext is in the perfect
zero-knowledge setting, other crst are all in the perfect sound setting. Therefore,
the challenger can use the Groth-Sahai simulation trapdoor to fake the proof
in the challenge ciphertext while keeping other proofs perfectly sound. We
can notice that the exact value of x1, x2 leaks only if we decrypt a ciphertext
with logA1(C1) ̸= logA2(C2). Therefore all information of which x2 is used is
completely hidden for the adversary without using any assumption. We will
exploit this to hide the underlying message.

However, it is difficult to make the above scheme updatable. To guarantee
the non-malleability of the above scheme, C3 needs to be signed. This means
X cannot be updated. On the other hand, to fully update x1, x2, A1, A2 while
keeping X = A1 · x1 + A2 · x2, we need know the logA1(A2) which breaks the
security. Our solution is to add a third element A0 into the public key such that
X = A0 + A1 · x1 + A2 · x2. Now, we can successfully update the core part of
the ciphertext, by updating A0 while keeping A1, A2, X unchanged. Fortunately,
we can also update the rest parts of the ciphertext as well.

We give our detailed construction in Figure 8.

26 C. Qian, YJ. Galteland, G.T. Davies

Alg Setup(parG):
01 pp := parG
02 return pp

Alg KGen(pp):
03 u =

[
u1 u2

]⊺
2

04 td $← Zp
05 v := u · td =

[
u1 · td u2 · td

]⊺
2

06 crs := (u, v)
07 a0, a1, a2, b, x1, x2

$← Zp

08 A :=

(A0
A1
A2

)
=

[
a0
a1
a2

]
1

09 B :=
[
b
]

1
10 X :=

(
1 x1 x2

)
·A

11 pk := (A, B, X); sk := (x1, x2)
12 return (pk, sk)

Alg Enc(pke, m):
13 (osk, ovk) $← OT.KGen(1λ)
14 t $← H(ovk) ∈ Zp
15 r $← Zp
16 C :=

(
C0 C1 C2

)⊺ = A · r
17 D := B · r
18 Y := X · r + m
19 vt := v +

[
0 t
]

2
20 crst := (u, vt)
21 s $← Zp
22 Comr := u · s + vt · r
23 πA :=

(
πa0 πa1 πa2

)⊺ := A · s
24 πB := B · s
25 π := (Comr, πA, πB)
26 σOT

$← OT.Sig(osk, (D, Y, Comr))
27 c := (ovk, C, D, Y, π, σOT)
28 return c

Alg Dec(ske, ce)
29 parse (ovk, C, D, Y, σOT, π) =: ce
30 parse (x1, x2) =: ske
31 Check OT.Ver(ovk, σOT, (D, Y, Comr))
32 Check A0 • Comr = C0 • vt + πa0 • u
33 Check A1 • Comr = C1 • vt + πa1 • u
34 Check A2 • Comr = C2 • vt + πa2 • u
35 Check B • Comr = D • vt + πB • u
36 m := Y−C0 −C1 · x1 −C2 · x2
37 return m

Alg SKGen(pp):
38 (svk, ssk) $← Σ.KGen(1λ)
39 return (svk, ssk)

Alg Sig(ssk, pke, ce)
40 σ $← Σ.Sig(ssk, (D, Y))
41 return σ

Alg Ver(svk, pke, ce, σe)
42 return Σ.Ver(svk, (D, Y), σe)

Alg TokGen(pke):
43 parse (A, B, X) =: pke
44 δ1, δ2

$← Zp

45 A′ :=

(A0 −A1 · δ1 −A2 · δ2
A1
A2

)
46 pke+1 := (A′, B, X)
47 ∆e+1 := (δ1, δ2)
48 return (pke+1, ∆e+1)

Alg Usk(∆e+1, ske):
49 ske+1 := (x1 + δ1, x2 + δ2)
50 return ske+1

Alg Upd(∆e+1, ce, σe):
51 parse (ovk, C, D, Y, σOT, π) =: ce

52 C′ :=

(C0 −C1 · δ1 −C2 · δ2
C1
C2

)

53 π′
A :=

(
πa0 − πa1 · δ1 − πa2 · δ2

πa1

πa2

)
54 π′ := (Comr, π′

A, πB)
55 ce+1 := (ovk, C′, D, Y, σOT, π′)
56 σe+1 := σe
57 return (ce+1, σe+1)

Fig. 8. Our construction of tightly-secure PSigUET without ZKPoK.

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 27

Theorem 5. Let PSigUET be the public-key signable updatable encryption de-
scribed in Figure 8. For any IND-ENC adversary A against PSigUET, there exists
two PPT adversaries B1,B2 such that,

AdvIND-ENC
PSigUET,A(1λ) ≤ AdvCR

H,B1
(1λ) + AdvUnforg

OT,B2
(1λ) + AdvDDH

G1
(λ) + AdvDDH

G2
(λ).

Proof. We will prove the above theorem by hybrid games. The advantage of the
adversary A against the IND-ENC security game is denoted by pri. For every i,
we define the security game Gi as follows.

The game changes are described in the Figure 9.

Game G0: This is the original IND-ENC security game with challenge bit b = 0.

Game G1: In G1, we change the challenge ciphertext. Y is now computed with
the secret key x1, x2:

Y = C0 + C1 · x1 + C2 · x2 + m0.

We can notice that since every crst is in the perfect sound setting, Y has exactly
the same value as in G0. Therefore we have |pr1 − pr0| = 0.

Game G2: In this game, insteed of generating t and (osk, ovk) when the challenge
oracle is happening. We generate t and (osk, ovk) at the beginning of the security
game. Since this change is oblivious to the adversary we have |pr2 − pr1| = 0.

Game G3: In G3, we change v in generating the crs. In G2, v is linear dependent
on u with coefficient td. However, when we prove the statement, we use u and
vt = v+

[
0 t
]

2 as the crs. This means, u and vt are linearly independent. Therefore,
the Groth-Sahai proofs are used in perfect sound mode. In G3, we change v into
u · td−

[
0 t
]

2. Thus, only the proof with t is in the perfect zero-knowledge mode,
and other proofs are all in the perfect sound mode. The only difference between
G2 and G3 is that u and v is a Diffie-Hellman tuple in G2. Therefore, we have
|pr3 − pr2| ≤ AdvDDH

G2
(λ).

Game G4: In G4. we change the generation of proofs in the challenge oracle.
Since u and vt are linearly independent with coefficient td, we can simulate the
proofs with the trapdoor td. These changes do not modify the Comr and π value.
Therefore, we have |pr4 − pr3| = 0.

Game G5: In the previous game, we can notice that we do not need r to generate
(Comr, π). Therefore, we can modify the value of C, such that C1, C2 is not
linearly dependent random tuple. More precisely, we generate random values
r, r′, and compute C :=

(
A0 · r A1 · r A2 · (r + r′)

)⊤. We will show in Lemma 3
that the probability in distinguishing G4 and G5 is bounded by the success
probability in breaking SXDH assumption in G1. Therefore, we have |pr5−pr4| =≤
AdvSXDH

G1
(λ).

Game G6: In this game, we introduce a bad event BadForg. BadForg happens if
the adversary can successfully add a new ciphertext c different from the challenge

28 C. Qian, YJ. Galteland, G.T. Davies

ExpIND-ENCb
PSigUET,A(1λ)

01 parG $← GGen(1λ)
02 pp $← Setup(parG)
03 u =

[
u1 u2

]⊺
2

04 td $← Zp
05 (osk, ovk) $← OT.KGen(1λ) // G2-7

06 t $← H(ovk) ∈ Zp // G2-7

07 v :=u·td=
[
u1 · td u2 · td

]⊺
2

// G0-2

08 v :=
[
u1 · td u2 · td− t

]⊺
2

// G2-7

09 crs := (u, v)
10 a0, a1, a2, b, x1, x2

$← Zp
11 A :=

[
a0 a1 a2

]⊺
1

; B :=
[
b
]

1
12 X :=

(
1 x1 x2

)
·A

13 pk0 := (A, B, X); sk0 := (x1, x2)
14 (ssk, svk) $← SKGen(pp)
15 LCorrK,LSafe,LCorrT := ∅
16 b′ $← AOIND-ENC (pp, pk0, svk)
17 (L∗

CorrK,L∗
Safe)

:= Expand(LCorrK,LSafe,LCorrT)
18 if L∗

CorrK ∩ L∗
Safe ̸= ∅

19 b′ $← {0, 1}
20 return b′

Alg OIND-ENC
Challb (e, m0)

21 m1
$←M

22 Check |m0| ̸= |m1|
23 LSafe := LSafe ∪ {i}
24 if phase ̸= 1
25 phase := 1
26 (osk, ovk) $←OT.KGen(1λ) // G0

27 t $← H(ovk) ∈ Zp // G0

28 r $← Zp
29 C := A · r // G0-4

30 r, r′ $← Zp // G5-7

31 C :=

(A0 · r
A1 · r

A2 · (r + r′)

)
// G5-7

32 D := B · r
33 Y := X · r + m0 // G0

34 Y :=C0+x1C1+x2C2+m0 // G1-6

35 Y := X · r + m1 // G7

36 vt := v +
[
0 t
]

2
37 crst := (u, vt)
38 s $← Zp
39 Comr := u · s + vt · r // G0-3

40 πA :=

(
πa0

πa1

πa2

)
:= A · s // G0-3

41 πB := B · s // G0-3

42 Comr := u · s // G4-7

43 πA := A · s−C · td // G4-7

44 πB := B · s−C · td // G4-7

45 π := (Comr, πA, πB)
46 σOT

$← OT.Sig(osk, (D, Y, Comr))
47 c̃e := (ovk, C, D, Y, π, σOT)
48 σ̃e

$← Sig(ssk, pke, c̃e)
49 return (c̃e, σ̃e)
50 else
51 return (c̃e, σ̃e)

Fig. 9. Hybrid security game for ExpIND-ENC
PSigUE,A security game, where OIND-ENC =

(OSig,OInsert,ONext,OCorrK,OCorrT,OUpd,OIND-ENC
Challb). Here we only change the security game

and the oracle OIND-ENC
Challb . Therefore, we omit other oracles here.

ciphertext but with the same tag t. To analyse the probability of the bad event,
we can distinguish the following three cases:

1. c has the same t as the challenge ciphertext, but ovk is different.
2. c has the same (t, ovk) as the challenge ciphertext, but (D, Y, Comr, σOT) is

different.

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 29

3. c has the same (t, ovk, D, Y, Comr, σOT) as the challenge ciphertext, but
(C, π) is different.

We can give the probability of the different cases

1. If this happens, we have found a hash function collision. Therefore, the
probability is bounded by AdvCR

H,B1
(1λ)

2. Since ovk in c is the same as the one-time verification key in the challenge
ciphertext. This leads to a forgery of the underlying one-time signature
scheme with probability AdvUnforg

OT,B2
(1λ).

3. In this case, t in c is different from the t of the challenge ciphertext. Therefore,
crst is perfectly sound, and given (Comr, crst, A), there is only one possible
choice of C, πA pass the verification test. The probability of this case is 0.

Summmering all the above cases, we have

Pr[BadForg] ≤ AdvCR
H,B1

(1λ) + AdvUnforg
OT,B2

(1λ).

By including the aborting probability of the bad event BadForg, we have

|pr6 − pr5| ≤ AdvCR
H,B1

(1λ) + AdvUnforg
OT,B2

(1λ).

Game G7: In this game we change how the challenge ciphertext Y is generated.
Insteed of encrypting m0, we encrypt a random message m1 in this game.

To see that the difference between G6 and G7 is oblivious for the adversary,
we recall that in this game all proofs are perfectly sound except the one in the
challenge ciphertext. Moreover, if we decrypt the challenge ciphertext, we have

Y = X · r + m0

= (A0 + A1 · x1 + A2 · x2) · r + m0

= C0 + C1 · x1 + C2 · x2 + m0 −A2 · x2 · r′

Moreover, we can notice that given X, there is exponentially many pairs (x1, x2)
such that X = A0 + A1 · x1 + A2 · x2. This means that given only X, A, there
is no information of x2 leaked for the adversary. Moreover, the proofs in every
non-challenge ciphertext are in the perfect sound setting. Thus, C1, C2 are
linear in all non-challenge ciphertext which does not leak any information of x2
by decrypting. In summary, x2 is completely oblivious to the adversary. Thus
A2 · r′ · x2 is uniformly random for the adversary, and m1 and m0 −A2 · r′ · x2
have the same distribution for the adversary. Therefore, we have

|pr7 − pr6| = 0.

We can notice that from the adversary’s view, G7 is identical to the security
game with b = 1. Therefore, by taking an union bound over all hybrid games we
have

AdvIND-ENC
PSigUET,A(1λ) ≤ AdvCR

H,B1
(1λ) + AdvUnforg

OT,B2
(1λ) + AdvDDH

G1
(λ) + AdvDDH

G2
(λ).

30 C. Qian, YJ. Galteland, G.T. Davies

⊓⊔
It remains to prove that G4 and G5 are computationally indistinguishable

under the SXDH assumption.

Lemma 3 (G4 ≈SXDH G5). Let A be a PPT adversary in distinguishing G4 and
G5, we can construct an adversary B that breaks SXDH assumption. Formally,
we have

|pr4 − pr5| ≤ AdvSXDH
G1,B (1λ).

Proof. Given an SXDH challenge tuple CH = (
[
f
]

1 ,
[
g
]

1 ,
[
h
]

1) ∈ G3
1. The PPT

algorithm B will use the distinguisher A between G4 and G5 decide whether CH
is an SXDH tuple.

The adversary B proceeds exactly as in G4 except that A2 :=
[
a2 · g

]
1, and

the challenge ciphertext is generated as

C0 =
[
a0 · f

]
1 , C1 =

[
a1 · f

]
1 , C2 =

[
a1 · h

]
1 .

We can notice that if h = f · g then we have logA1 C1 = f = logA2 C2, and the
simulated security game by B is exactly the same as G4 for the adversary. On
the other hand, if h $← Zp, then the simulated security game is the same as G4
for A. Thus, we have

|pr4 − pr5| ≤ AdvSXDH
G1,B (1λ).

⊓⊔
We give the following theorem of the integrity property

Theorem 6 (Integrity). Let Σ = (SKGen, Sig, Ver) be a signature scheme with
UF-CMA security. For all PPT adversary A against the integrity security game
of PSigUET described in Figure 8, there exists an PPT adversary B such that

AdvInt
PSigUET,A(1λ) ≤ AdvUF-CMA

Σ,B (1λ).

Proof. We will reduce the integrity of PSigUET scheme given in Figure 8 to
the underlying signature scheme Σ. We recall that the core part of PSigUET
ciphertext is of the form (C, D, Y) = (A · r, B · r, X · r + m). Since crs is in the
perfect soundness mode for every tag t, for every valid ciphertext with public key
(A, B, X) we have logA C = logB D. For any adversary that breaks the integrity
of PSigUET, it must also get a forgery of the underlying signature Σ scheme for
the new message (D′, Y′). Therefore we have the desired result. ⊓⊔

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 31

References

1. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improvements
for the IETF MLS standard for group messaging. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer, Heidelberg
(Aug 2020)

2. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (May / Jun 2006)

3. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on random-
izable ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (Mar 2011)

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (Aug 2004)

5. Boneh, D., Eskandarian, S., Kim, S., Shih, M.: Improving speed and security in
updatable encryption schemes. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020,
Part III. LNCS, vol. 12493, pp. 559–589. Springer, Heidelberg (Dec 2020)

6. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (Aug 2013)

7. Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Fast and secure updatable encryp-
tion. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol.
12170, pp. 464–493. Springer, Heidelberg (Aug 2020)

8. Chen, L., Li, Y., Tang, Q.: CCA updatable encryption against malicious re-
encryption attacks. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III.
LNCS, vol. 12493, pp. 590–620. Springer, Heidelberg (Dec 2020)

9. Cini, V., Ramacher, S., Slamanig, D., Striecks, C., Tairi, E.: Updatable signatures
and message authentication codes. In: Garay, J. (ed.) PKC 2021, Part I. LNCS,
vol. 12710, pp. 691–723. Springer, Heidelberg (May 2021)

10. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol.
1462, pp. 13–25. Springer, Heidelberg (Aug 1998)

11. Davidson, A., Deo, A., Lee, E., Martin, K.: Strong post-compromise secure proxy
re-encryption. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 19. LNCS, vol. 11547,
pp. 58–77. Springer, Heidelberg (Jul 2019)

12. Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the
standard model. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part III. LNCS, vol.
13044, pp. 254–285. Springer, Heidelberg (Nov 2021)

13. Fuchsbauer, G., Kamath, C., Klein, K., Pietrzak, K.: Adaptively secure proxy
re-encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443,
pp. 317–346. Springer, Heidelberg (Apr 2019)

14. Galteland, Y.J., Pan, J.: Backward-leak uni-directional updatable encryption from
(homomorphic) public key encryption. In: Public Key Cryptography - PKC 2023
(2023)

15. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (Apr 2008)

16. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (Aug 2012)

32 C. Qian, YJ. Galteland, G.T. Davies

17. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(Aug 2008)

18. Jiang, Y.: The direction of updatable encryption does not matter much. In: Moriai,
S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp. 529–558.
Springer, Heidelberg (Dec 2020)

19. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: Almost-optimal guarantees
for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I.
LNCS, vol. 11476, pp. 159–188. Springer, Heidelberg (May 2019)

20. Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with
integrity protection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I.
LNCS, vol. 11476, pp. 68–99. Springer, Heidelberg (May 2019)

21. Knapp, J., Quaglia, E.A.: Epoch confidentiality in updatable encryption. In: ProvSec.
Lecture Notes in Computer Science, vol. 13600, pp. 60–67. Springer (2022)

22. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 685–716. Springer, Heidelberg (Apr / May 2018)

23. Libert, B., Peters, T., Qian, C.: Structure-preserving chosen-ciphertext security
with shorter verifiable ciphertexts. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol.
10174, pp. 247–276. Springer, Heidelberg (Mar 2017)

24. Miao, P., Patranabis, S., Watson, G.: Unidirectional updatable encryption and
proxy re-encryption from ddh. In: Public Key Cryptography - PKC 2023 (2023)

25. Nishimaki, R.: The direction of updatable encryption does matter. In: Hanaoka, G.,
Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS, vol. 13178, pp. 194–224.
Springer, Heidelberg (Mar 2022)

26. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC. pp. 187–196. ACM Press (May 2008)

27. Shacham, H.: A cramer-shoup encryption scheme from the linear assumption and
from progressively weaker linear variants. IACR Cryptol. ePrint Arch. p. 74 (2007)

28. Slamanig, D., Striecks, C.: Puncture ’em all: Updatable encryption with no-
directional key updates and expiring ciphertexts. Cryptology ePrint Archive, Report
2021/268 (2021), https://eprint.iacr.org/2021/268

29. Waters, B.R.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (May 2005)

https://eprint.iacr.org/2021/268

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 33

Supplementary Material

A Instantiation of T -UNIZK from SXDH assumption

We give the explicit construction of T -UNIZK for the relation RA,h including the
update and re-randomization algorithms in Figure 10.

We can notice that the updatability and the rerandomizability are straight-
forward.

B Detailed Proofs for PSigUE2

B.1 wIND-ENC Security of PSigUE2

The first step of the security proof, is to guess the challenge epochs (eL, . . . , eR).
Since in wIND-ENC security game, the adversary A does not allow to query the
key corruption oracle between the epoch eL and eR. The success probability in
guessing the correct starting and ending challenge epochs eL and eR is 1/n2. Then,
We prove the wIND-ENC security PSigUE2 via a sequence of security games.

Then, We prove the wIND-ENC security PSigUE2 via a sequence of security
games.

Game G0: The G0 is the wIND-ENC security game with b = 0 while guessing
correctly the corruption epochs {eL, . . . , eR}. Therefore, we have

pr0 = 1
n2 · AdvwIND-ENC

PSigUE2,A(1λ).

Game G1: In G1, we change the crs generation of Π. The crs is generated as
(crs, SimK) $← Π.SimSetup(1λ). Since the only difference between G0 and G1 is
the fact that all proofs are generated with SimK, by the zero-knowledge property,
we have

|pr1 − pr0| ≤ AdvZK
B1,Π(1λ).

Game G2: We further modify the public parameter. In G2, the crsDM of dual-
mode zero-knowledge proof is generated in the perfect sound mode together with
an extraction key ExtK. Note that the only difference between G1 and G2 is the
mode switching for ΠDM. Thus, we have:

|pr2 − pr1| ≤ AdvDual-Mode
B2,ΠDM

(1λ).

To analyse the success probability of the adversary A in G2, we will constract
an adversary B3 that simulates G2 to A while using A to help us to solve

34 C. Qian, YJ. Galteland, G.T. Davies

Alg Setup(1λ) :
01 U $← G2×2

1
02 Û $← G2×2

2
03 return crs = (U, Û)

Alg Prove(crs, (r, m)) :

04 parse
(

A0
A1

)
=: A

05 R̂r
$← Z2

p

06 Ĉr :=
[

0
r

]
2

+ ÛR̂r

07 πr := A0 · R̂⊺
r ∈ G1×2

1
08 for i = 1 to ℓ
09 Rmi , R̂mi

$← Z2
p

10 Cmi :=
[

0
mi

]
1

+ URmi

11 Ĉmi :=
[

0
mi

]
2

+ ÛR̂mi

12 Ti, Si
$← Z2×2

p

13 πmi :=
[

0
mi

]⊺
1

R̂⊺
mi

+ UTi

14 θmi := Rmi

[
0 mi − 1

]
2

+Rmi R̂⊺
mi

Û⊺ −TiÛ⊺

15 χmi := −
[

0
1

]
1

R̂⊺
mi

+ US⊺
i

16 ϕmi := Rmi

[
0 1
]

2
− SiÛ⊺

17 πC := A1R̂⊺
r +

∑ℓ

i=1 uiR̂⊺
mi

18 return π := (Ĉr, {Cmi , Ĉmi}ℓ
i=1,

πr, {πmi , θmi , χmi , ϕmi}ℓ
i=1, πC)

Alg Upd(π, ∆e, r′) :
19 π′

r := ∆e · πr

20 Ĉ′
r := Ĉr +

[
0
r′

]
2

21 return π := (Ĉ′
r, {Cmi , Ĉmi}ℓ

i=1,
π′

r, {πmi , θmi , χmi , ϕmi}ℓ
i=1, πC)

Alg Ver(crs, π) :
22 parse (πC, Ĉr, {Cmi , Ĉmi}ℓ

i=1,
πr, {πmi , θmi , χmi , ϕmi}ℓ

i=1) =: π
23 Check A0 • Ĉ⊺r

=
[
0 C0

]
1
•
[
Id2
]

2
+ πr • Û⊺

24 for i = 1 to ℓ

25 Check Cmi • (Ĉmi −
[

0
1

]
2
)⊺

= U • θmi + πmi • Û⊺

26 Check Cmi •
[

0
1

]⊺
2
−
[

0
1

]
1

• Ĉ⊺mi

= U • ϕmi + χmi • Û⊺

27 Check A1 • Ĉ⊺r +
∑ℓ

i=0 hi • Ĉ⊺mi

=
[
0 C1

]
1
•
[
Id2
]

2
+ πC • Û⊺

28 return 1

Alg Rand(π) :
29 R̂′

r, {R′
mi

, R̂′
mi

, T′
i, S′

i}ℓ
i=1

$← Z2
p

30 Ĉ′
r := Ĉr + ÛR̂′

r

31 π′
r := πr + A0 · R̂′⊺

r

32 for i = 1 to ℓ
33 C′

mi
:= Cmi + URmi

34 Ĉ′
mi

:= Ĉmi + ÛR̂′
mi

35 π′
mi

:= πmi + Cmi R̂′⊺
mi

+UR′
mi

R̂′⊺
mi

+ UT′
i

36 θ′
mi

:= θmi + R′
mi
Ĉ⊺mi

−R′
mi

[
0 1
]

2
−T′

iÛ⊺

37 χ′
mi

:= χmi −
[

0
1

]
1

R̂′⊺
mi

+ US′⊺
i

38 ϕ′
mi

:= ϕmi + R′
mi

[
0 1
]

2
− S′

iÛ⊺

39 π′
C := πC + A1R̂′⊺

r +
∑ℓ

i=1 uiR̂′⊺
mi

40 return π′ := (Ĉ′
r, {C′

mi
, Ĉ′

mi
}ℓ

i=1,
π′

r, {π′
mi

, θ′
mi

, χ′
mi

, ϕ′
mi
}ℓ

i=1, π′
C)

Fig. 10. The updatable Groth-Sahai proof Π = (Setup, Prove, Ver, Upd, Rand).

the underlying SXDH assumption. The detailed construction of B3 is given
in Figure 11.

We recall that by the SXDH assumption in G1 is:

({
[
x⋆
]

1 ,
[
r⋆
]

1 ,
[
x⋆ · r⋆

]
1}

k
i=1) ≈c ({

[
x⋆
]

1 ,
[
r⋆
]

1 ,
[
s⋆
]

1}
k
i=1),

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 35

where x⋆, r⋆, s⋆ $← Zp. We define the SXDH challenge set in G1 as CH =
(
[
x⋆
]

1 ,
[
r⋆
]

1 ,
[
s⋆
]

1).

B3(CH, eL, eR,A) :
01 parG $← GGen(1λ)
02 (crs, SimK) $← Π.SimSetup(1λ)
03 (crsDM, ExtK) $← ΠDM.SetupSnd(1λ)
04 h $← Gℓ+1

1
05 pp := (parG, crs, crsDM, h)
06 x0, xeR+1

$← Zp
07 pk0 :=

[
x0
]

1
; sk0 := x0

08 pkeR+1
$←
[
xeR+1

]
1

09 skeR+1 := xeR+1
10 for i ∈ {1, . . . , eL − 1}

∪{eR + 2, . . . , n}
11 xi

$← Zp
12 pki :=

[
xi

]
1

13 ski := xi; ∆i := xi · x−1
i−1

14 pkeL
:=
[
xeL

]
1

15 for i = eL + 1 to eR
16 ∆i

$← Zp; pki = ∆i · pki−1
17 (ssk, svk) $← Σ.SKGen(pp)
18 b′ $← AOwIND-ENC (pp, pk0, svk)
19 return b′

OwIND-ENC
Challb (e, (m0))

20 C :=
([

s⋆
]

1[
r⋆
]

1
+ WH(m0)

)
21 π $← Π.Sim(crs, SimK, C)
22 c̃e := (C, π)
23 σ̃e

$← Sig(ssk, ce)
24 LChall := {(c̃e, σ̃e)}
25 phase := 1
26 return (c̃e, σ̃e)

Oracle OSig(c, e)
01 σ $← Sig(ssk, c)
02 return σ

Oracle OInsert(c, πDM)
21 if ΠDM.Verr(pke, c, πDM) = 1
22 σ $← Sig(ssk, c)
23 Lc := Lc ∪ {(c, σ, e, π)}

Oracle ONext()
24 e++
25 return pke

Oracle OCorrK(i)
26 Check 0 ≤ i ≤ e
27 return ski

Oracle OCorrT(i)
28 Check 0 < i ≤ e
29 return ∆i

Oracle OUpd((ce0 , σe0), e0, e1)
30 Check 0 ≤ e0 < e1 ≤ e
31 if ∃π.(ce0 , σe0 , e0, π) ∈ Lc

32 m := ΠDM.Ext(crs, ExtK, π)
33 parse A =: pke1
34 r $← Zp
35 C := A · r +

(
0 m
)⊺

36 π $← Π.Sim(crs, SimK, C)
37 ce1 := (C, π)
38 σe1 := Sig(ssk, c)
39 Lc := Lc ∪ {(ce1 , σe0 , e1, π)}
40 elseif (ce0 , σe0) ∈ LChall
41 Check eL ≤ e0 < e1 ≤ eR
42 for i = e0 + 1 to e1
43 (ci, σi) := Upd(∆i, ci−1, σi−1)
44 LChall := LChall ∪ {(ce1 , σe1)}
45 else abort
46 return (ce1 , σe1)

Fig. 11. The construction of B3 that use wIND-ENC adversary A to break the SXDH
assumption. We recall that eL and eR are the starting and ending epoch for challenge
ciphertexts.

We can notice that if CH is a SXDH tuple in G1, the every challenge ciphertext
is an encryption of m0, otherwise the challenges ciphertexts encrypts a random

36 C. Qian, YJ. Galteland, G.T. Davies

message. Therefore, we have

pr3 ≤ AdvSXDH
G1,B3

(1λ).

By an union bound over all the hybrids, we have

AdvwIND-ENC
PSigUE2,A(1λ) ≤ n2 · (AdvZK

Π,B1
(1λ) + AdvDual-Mode

ΠDM,B2
(1λ) + AdvSXDH

G1,B3
(1λ)).

B.2 Proof of Integrity for PSigUE2

Extended Unforgeable under Chosen-Message Attack: We define the
extended version version of signature scheme together with an adapted security
notion Ext-UF-CMA.

Definition 11 (Extended Signautre). An extended signature scheme consists
of four PPT algorithms ExtSig = (Setup, SKGen, Sig, Ver) with the following
syntax:

– Setup(1λ) takes a security parameter λ as input, and outputs public parameters
pp.

– SKGen(pp) takes public parameters pp as input, and outputs signing key ssk
and verification key svk.

– Sig(ssk, m, maux) takes a signing key, a message m and an auxiliary message
maux as input, and outputs a signature σ.

– Ver(svk, m, maux, σ) takes a verification key svk, a message m, an auxiliary
message maux and a signature σ, and outputs 0 or 1.

We also require correctness and Ext-UF-CMA for ExtSig.
– Correctness : ExtSig is correct if for any security parameter λ, any message

m and any auxiliary message maux, we have:

Pr

Ver(svk, m, maux, σ) = 1

∣∣∣∣∣∣
pp $← Setup(1λ)
(svk, ssk) $← KGen(pp)
σ $← Sig(ssk, m, maux)

 = 1

– Ext-UF-CMA : For any PPT adversary A and any security parameter λ, we
define the extended unforgeablbility under chosen-attack security experiment
ExpExt-UF-CMA

A,ExtSig (1λ) as in Figure 12. We say that ExtSig is Ext-UF-CMA secure
if there exists a negligible function negl(·) such that,

Pr
[
ExpExt-UF-CMA

A,ExtSig (1λ) = 1
]
≤ negl(·)

Extended Waters Signature In our construction of PSigUE2, we use an
extended variant of Waters signature [29]. We give the explicit construction
ExtSig = (Setup, SKGen, Sig, Ver) under SXDH assumption in Figure 13.

By using the similar security proof as in [29], we can show that the extended
signature ExtSig constructed in Figure 13 is Ext-UF-CMA under the CDH assump-
tion in G1. We can notice that Ext-UF-CMA tightly implies UF-CMA security. By
security analysis for Waters signatures [29,17], we have the following lemma.

Extending UE: Public Key, Tighter Security and Signed Ciphertexts 37

ExpExt-UF-CMA
A,ExtSig (1λ) :

01 pp $← Setup(1λ)
02 (svk, ssk) $← SKGen(pp)
03 (m⋆, m⋆

aux, σ⋆) $← AOSig (pp, svk)
04 if Ver(svk, m⋆, m⋆

aux, σ⋆) = 1∧(m⋆) /∈ Lσ

05 return 1
06 return 0

Oracle OSig(m, maux)
07 σ $← Sig(ssk, m, maux)
08 Lσ := Lσ ∪ {m}
09 return σ

Fig. 12. This is the Ext-UF-CMA security notion of ExtSig.

Alg Setup(1λ) :
01 u $← G1
02 y $← Zp; v̂ :=

[
y
]

2
∈ G2

03 w := y · u
04 svk := (u, v̂) ∈ G1 ×G2
05 ssk := w ∈ G1
06 return (svk, ssk)

Alg Sig(ssk, m ∈ {0, 1}ℓ, maux)
07 parse (A, R) =: maux ∈ G2

1 ×G2
1

08 s $← Zp; ẑ :=
[
s
]

2
09 Z := s ·A; Y := s ·R
10 σ′ := w +

(
1 m1 · · · mℓ

)
· h · s

11 return σ := (σ′, Z, Y, ẑ)

Alg Ver(svk, m, maux, σ)
12 Check Z •

[
1
]

2
= A • ẑ

13 Check Y •
[
1
]

2
= R • ẑ

14 Check σ′ ·
[
1
]

2
= u • v̂

+
(
1 m1 · · · mℓ

)
· h •

[
s
]

2

Fig. 13. This is the extended variant of Waters signature scheme

Lemma 4 (Ext-UF-CMA). For all adversary A that, breaks the Ext-UF-CMA
security game of ExtSig constructed as in Figure 13 with QSig signing queries and
success probability εA in time T(A), there exits an adversary B such that

εA ≤ AdvCDH1
B,G1

(1λ) ·O(1√
ℓ · QSig

), T(A) ≈ T(B).

Theorem 7 (Integrity). Let PSigUE2 be the public-key signable updatable en-
cryption described in Figure 7. For any Int adversary A (that makes max QSig
signing queries), there exists an adversary B with T(A) ≈ T(B), such that

AdvInt
PSigUE2,A(1λ) ≤ AdvCDH1

B,G1
(1λ) ·O(1√

ℓ · QSig
).

Proof. Let A be an adversary against the integrity of PSigUE2 with wining
probability εA. To bound εA, we will construct an adversary B that breaks
Ext-UF-CMA security of ExtSig as in Figure 13 with probability εB and T(A) ≈
T(B).

We can notice that if A win the security game ExpInt
PSigUE2,A(1λ), then the

output (m, maux, σ) generated by B is a valid forgery of ExtSig. Combining
with Lemma 4, we can conclude our statement. ⊓⊔

38 C. Qian, YJ. Galteland, G.T. Davies

B(parG, h, svk) :
01 crs $← Π.Setup(parG)
02 pp := (parG, crs, h)
03 (pk0, sk0) := (

[
x
]

1
, x)

04 (e⋆, c∗, σ∗) $← AOInt (pp, pk0, sk0, svk)
05 m⋆ := Dec(ske⋆ , c⋆)
06 parse (C, π) =: c⋆

07 parse (D, Z, ẑ)

08 R := C−
([

0
]

1
WH(m⋆)

)
09 σ′ :=

(
− 1

x
1
)
·C

10 Y := D−
([

0
]

1
σ′

)
11 mσ := m⋆

12 maux := (A, R)
13 σ := (σ′, Z, Y, ẑ)
14 return (m, maux, σ)

Oracle OSig(e, ce) :
15 parse (C, π) =: ce
16 m := Dec(ske, ce)

17 R := C−
([

0
]

1
WH(m)

)
18 (σ′, Z, Y, ẑ) $← OExtSig

Sig (m, (A, R))

19 D := Y +
([

0
]

1
σ′

)
20 return σe := (D, Z, ẑ)

Oracle OTokGen() :
21 e⋆ := e
22 (pke⋆+1, ∆e⋆+1) $← TokGen(pke⋆)
23 ske⋆+1 := Usk(ske⋆ , ∆e⋆+1)
24 e := e + 1
25 return (pke⋆+1, ∆e⋆+1, ske⋆+1)

Fig. 14. This is the construction of the adversary B against Ext-UF-CMA security of
ExtSig. We denote by OExtSig

Sig the signing oracle of the experiment ExpExt-UF-CMA
A,ExtSig .

	 Extending Updatable Encryption: Public Key, Tighter Security and Signed Ciphertexts

