
Lattice-Based Polynomial Commitments:
Towards Asymptotic and Concrete Efficiency

Giacomo Fenzi
giacomo.fenzi@epfl.ch

EPFL

Hossein Moghaddas
hossein.moghaddas@epfl.ch

EPFL

Ngoc Khanh Nguyen
khanh.nguyen@epfl.ch

EPFL

Abstract

Polynomial commitments schemes are a powerful tool that enables one party to commit to a
polynomial p of degree d, and prove that the committed function evaluates to a certain value
z at a specified point u, i.e. p(u) = z, without revealing any additional information about the
polynomial. Recently, polynomial commitments have been extensively used as a cryptographic
building block to transform polynomial interactive oracle proofs (PIOPs) into efficient succinct
arguments.

In this paper, we propose a lattice-based polynomial commitment that achieves succinct proof
size and verification time in the degree d of the polynomial. Extractability of our scheme holds
in the random oracle model under a natural ring version of the BASIS assumption introduced by
Wee and Wu (EUROCRYPT 2023). Unlike recent constructions of polynomial commitments
by Albrecht et al. (CRYPTO 2022), and by Wee and Wu, we do not require any expensive
preprocessing steps, which makes our scheme particularly attractive as an ingredient of a PIOP
compiler for succinct arguments. We further instantiate our polynomial commitment, together
with the Marlin PIOP (Eurocrypt 2020), to obtain a publicly-verifiable trusted-setup succinct
argument for Rank-1 Constraint System (R1CS). Performance-wise, we achieve 17MB proof size
for 220 constraints, which is 15X smaller than currently the only publicly-verifiable lattice-based
SNARK proposed by Albrecht et al.

Keywords: lattices, polynomial commitments, succinct arguments,zero-knowledge

1

Contents
1 Introduction 4

1.1 Our Contributions . 5
1.2 Technical Overview . 6
1.3 BASIS Commitment Scheme . 6
1.4 Framework for Proving Polynomial Evaluations . 9
1.5 Polynomial Commitments over Finite Fields . 15
1.6 Related Works . 16
1.7 Concurrent and Subsequent Works . 17

2 Preliminaries 19
2.1 Lattices . 19
2.2 Power-of-Two Cyclotomic Rings . 20
2.3 Discrete Gaussian Distributions . 21
2.4 NTRU Lattices . 23
2.5 Gadget Trapdoors . 23
2.6 Commitment Scheme . 25
2.7 Polynomial Commitment Scheme . 26
2.8 Interactive Proofs . 27
2.9 Coordinate-Wise Special Soundness . 28

3 Power-BASIS Assumption 30
3.1 Hardness of BASIS for Low Dimensions . 31
3.2 Higher Dimensions . 34

4 Power-BASIS Commitment Scheme 36
4.1 Security Analysis . 38

5 Efficient Proofs of Polynomial Evaluation 40
5.1 Framework for Proving Evaluations . 40
5.2 Monomial Protocol . 46
5.3 Large Sampling Set . 48
5.4 Batching Evaluations . 54

5.4.1 Multiple Evaluations at a Single Point . 54
5.4.2 Multiple Evaluations at Distinct Points . 56

5.5 Honest-Verifier Zero-Knowledge . 59
5.6 Polynomial Commitments over Finite Fields . 65

6 Concrete Instantiation and Applications to Marlin 67

7 Coordinate-Wise Special Soundness Implies Knowledge Soundness 69
7.1 Σ-Protocols . 70
7.2 Multi-Round Protocols . 71
7.3 Comparison with the Generic Extractor . 72

2

8 Knowledge Soundness of a Fiat-Shamir-transformed Coordinate-Wise Special-
Sound Multi-Round Protocol 74
8.1 Analysis of the Abstract Sampling Game . 74
8.2 The Knowledge Extractor . 82

References 82

3

1 Introduction
Due to the significant progress in building quantum computers by various industry leaders, e.g. IBM
and Google, there has been a tremendous amount of interest in post-quantum cryptography. This is
highly evidenced by the NIST PQC Competition for standardising quantum-safe key encapsulation
mechanisms and signatures, where the vast majority of the selected algorithms are based on
algebraic lattices. Indeed, not only do the lattice-based constructions offer relatively small key
and signature sizes [Bos+18; Duc+18; Fou+20], but they are also renowned for their very fast
implementation [LS19; Sei18]. Consequently, lattices seem to be a natural candidate to build more
complex quantum-safe primitives, such as non-interactive zero-knowledge proofs (NIZKs).

The last several years have seen enormous progress in constructing practically efficient NIZKs
for lattice relations [ALS20; ENS20; LNP22] which can produce proofs of size a few dozen kilobytes.
This has led to rather compact and practical constructions of privacy-preserving primitives, such as
ring signatures [LN22], blind signatures [AKSY22] and anonymous credentials [JRLS22; BLNS23].
Unfortunately, the aforementioned protocols suffer the following limitations – both the proof size
and verification time are linear in the length of the witness. Hence, for proving more complex
statements, efficient NIZKs with succinct proof size and verification complexity are desired, i.e.
zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs).

Polynomial commitment schemes [KZG10] have been getting more and more spotlight in the
SNARKs community. The main reason is that, in combination with Polynomial Interactive Oracle
Proofs (PIOPs) [BFS20; CHMMVW20], this cryptographic primitive can be used to obtain succinct
arguments with concrete efficiency (see e.g. [Set20; BCHO22; GLSTW21]). In a polynomial
commitment scheme, one can commit to any polynomial f := ∑d

i=0 fiXi of bounded degree d over a
ring R, and then later prove that f evaluated at some public point u ∈ R is equal to a public image
z ∈ R, i.e.

f(u) = z . (1)

In the context of PIOPs, we require both the proof π and the verification time to be succinct (i.e.
polylogarithmic in the degree d), even if the evaluation point is chosen adaptively by a verifier.
Further, to obtain a SNARK, we need π to be a proof of knowledge; thus we call such a polynomial
commitment extractable.

Recently, various lattice-based polynomial commitments [ACLMT22; WW23b; CP22; PPS21;
BCFL22] were introduced1, mainly as a direct application of functional commitments [LRY16] over
standard cyclotomic rings R := Zq[X]/(XN + 1) where N is a power-of-two. Indeed, (1) can be seen
as a degree-one multivariate polynomial

[
1 u u2 · · · ud

]

f0
f1
...

fd

 = z . (2)

Unfortunately, the aforementioned constructions suffer several limitations when applied in the
context of PIOPs. Firstly, succinct verification requires a preprocessing step, meaning that the
evaluation point u must be known when public parameters are generated and cannot be chosen

1We excluded generic constructions which simply commit to a polynomial and use a general-purpose SNARK to
prove correctness of the evaluation.

4

scheme commit
time

prover
time

verifier
time crs size commitment

size
asymptotic
proof size

commitment
size

concrete
proof size

Construction 1
(Section 5.2) O(d2) O(d) O(log d) O(d2) O(1) O(log d) 480 KB 105MB

Construction 2
(Section 5.3) O(d2) O(d) dO(1/ log log d) O(d2) O(1) dO(1/ log log d) 209 KB 3MB

Table 1: Efficiency overview of our polynomial commitment scheme. In this setting, we
commit to polynomials of degree at most d over the ring R := Zq[X]/(XN + 1). We count
the runtime (resp. sizes) in the number of ring operations (resp. elements), which take time
(resp. size) polylog(d) each. For clarity, we ignore the terms related to the security parameter
λ. When computing concrete proof sizes, we set λ = 128 and d = 220. We also include the
Fiat-Shamir loss of Q = 264 random oracle queries.

adaptively. Further, only [ACLMT22; BCFL22] offer extractable polynomial commitments which
unfortunately suffer from the following limitations: (i) they rely on a knowledge assumption, which
now seems to be at least “morally” broken [WW23a], (ii) message space can only consist of short
vectors, and (iii) they only support linear functions with short coefficients. This makes proving
relations as in (2) cumbersome for large degrees d. Even though one of the issues was circumvented
by a promising recent work from Wee and Wu [WW23b], which allows committing to vectors of
arbitrarily large coefficients, their knowledge soundness analysis is left for future work. Therefore,
constructing extractable polynomial commitments with succinct verification from lattices still
remains an open problem.

1.1 Our Contributions

In this work we propose a lattice-based PIOP-friendly polynomial commitment scheme. Concretely,
our construction supports committing to arbitrary polynomials f ∈ R[X] of bounded degree d over
R, and proving evaluations for any point u ∈ R with no preprocessing necessary. Extractability
holds in the random oracle model via the Fiat-Shamir transformation [FS86] under a variant of the
BASIS assumption defined recently by Wee and Wu [WW23b], which we call PowerBASIS.

At the core of our construction lie two split-and-fold interactive protocols for proving polynomial
evaluations. The first one, which brings resemblance to lattice Bulletproofs [BLNS20; ACK21;
AL21], enjoys proof size and verification complexity polylogarithmic in the degree d. Unfortunately,
due to certain restrictions on the challenge space, which are inherited from the aforementioned
works, the protocol achieves only 1/poly(λ) knowledge soundness error. Even though soundness can
be amplified via parallel repetition [AF22] for the interactive protocol, this is not necessarily the
case in the non-interactive setting when applying the Fiat-Shamir transformation, as discussed in
[AFK22]. To this end, we propose the second protocol, which achieves negligible soundness error
in one-shot at the cost of quasi-polylogarithmic dO(1/ log log d) proof size and verification runtime.
Furthermore, the non-interactive version of the scheme can be proven secure in the random oracle
using the framework by Attema et al. [AFK22]. Last but not least, we show how to upgrade the
evaluation proof to achieve zero-knowledge using the standard Fiat-Shamir-with-aborts paradigm
[Lyu09; Lyu12; BTT22]. We summarise the efficiency of both schemes in Table 1.

As a direct application, we combine our polynomial commitment scheme, which includes batch
evaluation proofs, with the Marlin Polynomial IOP [CHMMVW20] to obtain a trusted-setup (zero-
knowledge) succinct non-interactive arguments of knowledge for Rank-1 Constraint System (R1CS).

5

scheme assumptions TP NI time
prover verifier

size
crs proof

concrete
proof size

[BBCPGL18] (M-)SIS, RO ✓ ✓ O(ℓ) O(ℓ) O(1) O(
√

ℓ) -
[BLNS20] (M-)SIS, RO ✓ ✓ O(ℓ) O(ℓ) O(1) O(ℓε) -

Lattice Bulletproofs
[BLNS20; AL21; ACK21] M-SIS ✓ ✗ O(ℓ) O(ℓ) O(1) O(log ℓ) -

[BF22] (M)-SIS, RO ✓ ✓ O(ℓ) O(ℓ) O(1) O(log ℓ) -
[NS22] M-SIS, RO ✓ ✓ O(ℓ) O(ℓ) O(1) O(

√
ℓ) 6MB

Labrador [BS23] M-SIS, RO ✓ ✓ O(ℓ) O(ℓ) O(1) O(log ℓ) 49KB

[ACLMT22] Knowledge
k-M-SIS ✗ ✓ O(ℓ4 log ℓ) O(log ℓ) O(ℓ2) O(log ℓ) 261MB

This Work PowerBASIS, RO ✗ ✓ O(ℓ2) ℓO(1/ log log ℓ) O(ℓ2) ℓO(1/ log log ℓ) 17MB

Table 2: Comparison of lattice-based publicly verifiable proof systems for NP relations of size
ℓ with sublinear communication complexity. We count the runtime (resp. sizes) in the number
of ring operations (resp. elements), which take time (resp. size) polylog(d) each, and we ignore
the terms related polynomially in the security parameter λ. We exclude the preprocessing
step from the verifier runtime. Here 0 < ε < 1 is a constant. The “TP” column specifies
whether the scheme has transparent setup, and “NI” means whether the protocol can be made
non-interactive with negligible soundness error. The concrete proof sizes correspond to proving
R1CS with ℓ = 220 as reported in the respective works.

Practically, for ≈ 220 constraints our construction achieves proofs of size 17MB, which is around 15X
smaller than the only concretely instantiated lattice-based proof system with succinct verification
by Albrecht et al. [ACLMT22]. Moreover, we obtain a square-root improvement over [ACLMT22] in
terms of the prover runtime. In comparison with other lattice-based arguments which admit linear
verification time, our scheme produces comparable proofs to the recent “square-root” protocol by
Nguyen and Seiler [NS22] for bigger R1CS instances, such as 230 constraints, but still more than
two orders of magnitude larger than the current state-of-the-art by Beullens and Seiler [BS23]. We
refer to Table 2 for full comparison and Section 6 for more details on sizes.

1.2 Technical Overview

We provide a brief overview of our techniques. Let λ be a security parameter, q be an odd prime, and
N be a power-of-two. Define the polynomial rings R := Z[X]/(XN + 1) and Rq := Zq[X]/(XN + 1).
Let R×q be the set of invertible elements in Rq. For a base δ ≥ 2 and n ≥ 1, we define the gadget
matrix as Gn :=

[
1 δ · · · δq̃

]
⊗ In ∈ Rn×nq̃

q where q̃ := ⌊logδ q⌋ + 1. For simplicity, we omit
the subscript n and write G := Gn when it is clear from the context. Further, for a fixed matrix
T ∈ Rn×k

q and matrix A ∈ Rn×m
q , we denote by S← A−1

σ (T) sampling S ∈ Rm×k
q from the discrete

Gaussian distribution with Gaussian parameter σ > 0 conditioned on AS = T over Rq.

1.3 BASIS Commitment Scheme

Until lately, lattice-based commitment schemes were split into two disjoint classes: Hashed-Message
Commitments [Ajt96] and Unbounded-Message Commitments [BDLOP18]. The former one has the
property that the sizes of commitments are almost independent of the sizes of the committed values,
and thus the commitments are compressing. This comes at the cost of the restricted message space

6

being only vectors of small norm. On the other hand, the main characteristic of the latter class is
the unbounded message space, but the commitment size is linear in the size of the message.

Recently, Wee and Wu [WW23b] proposed the first lattice-based commitment scheme which is
compressing, and simultaneously supports arbitrarily large messages over Rq. The downside of the
construction is a requirement on having a trusted setup, which was not necessary in prior works, as
well as the quadratic committing time in the message length. In the following, we describe the main
intuition behind the construction by Wee and Wu. To this end, we recall the BASIS assumption2,
which lies at the core of the binding property of the commitment.

BASIS assumption. As in the (Module-)SIS problem [LS15], the adversary’s final goal is to
find a non-zero vector s of small norm such that As = 0 for a uniformly random matrix A ←
Rn×m

q . However, in the BASIS setting the adversary is given more information. Namely, let
(B, aux) ← Samp(A) be an efficient algorithm, which given matrix A as input, outputs another
matrix B ∈ Rn′×m′

q along with some auxiliary information aux. Then, in addition to the challenge
matrix A, the adversary is given a tuple (B, aux, T), where T is a trapdoor3 for B. In particular,
T can be used to efficiently emulate sampling from B−1

σ (t) for any image t ∈ Rn′
q under certain

conditions on the parameter σ > 0.
Note that hardness of the BASIS assumption heavily depends on the Samp algorithm. For

instance, if Samp(A) is an identity function and simply outputs B := A, then using the trapdoor T
we can find a short non-zero solution to A by sampling s← B−1

σ (0). In this paper, we consider the
following three instantiations of the Samp algorithm:

■ StructBASIS: The sampling algorithm Samp(A) first generates a row a⊺ ← Rℓ
q and sets

A⋆ :=
[
a⊺

A

]
∈ R(n+1)×ℓ

q . (3)

Next, it samples square matrices W1, . . . , Wℓ ∈ R
(n+1)×(n+1)
q and outputs

Bℓ :=

W1A⋆ −Gn+1
.

WℓA⋆ −Gn+1

 and aux := (W1, . . . , Wℓ) .

■ PowerBASIS: Samp(A) generates a row a⊺ ← Rℓ
q and sets A⋆ as in (3). Then, it samples a single

square matrix W← R(n+1)×(n+1)
q and outputs

Bℓ :=

W0A⋆ −Gn+1
.

Wℓ−1A⋆ −Gn+1

 and aux := W . (4)

2BASIS stands for Basis-Augmented Shortest Integer Solution.
3In [WW23b], the trapdoor T is generated by sampling T← B−1

σ (G). Since the matrix T ∈ Rm′×n′q̃
q is short and

BT = G, it can be used in Micciancio-Peikert trapdoor sampling [MP12] to efficiently generate preimages under B.

7

■ PRISIS4: Samp(A) samples a row a⊺ ← Rℓ
q and sets A⋆ as in (3). Then, it samples a uniformly

random polynomial w ← Rq and outputs

Bℓ :=

w0A⋆ −Gn+1
.

wℓ−1A⋆ −Gn+1

 and aux := w .

Observe that the only difference between these variants is how the square matrices W1, . . . , Wℓ

are generated. For StructBASIS they are picked independently and uniformly at random, while
for PowerBASIS (resp. PRISIS) each matrix Wi is defined as Wi := Wi−1 for i ∈ [ℓ], where
W← R(n+1)×(n+1)

q (resp. W := w · In+1 for w ← Rq). Not to mention the fact that the functional
commitment from [WW23b] can be built on top of all three BASIS instantiations 5.

In this work, we analyse hardness of the three newly introduced assumptions for ℓ = 2. Concretely,
we prove that under a certain parameter selection

StructBASIS Lemma 3.5←−−−−−→ PowerBASIS and PRISIS lemma 3.6−−−−−−→ MSIS .

Unfortunately, the techniques do not translate well for larger values of ℓ, as we argue in Section 3.2.
Therefore, hardness of the BASIS assumption for ℓ > 2 is left as an open problem.

Commitment construction. We describe a commitment scheme based on the PowerBASIS
assumption. Trivial modifications can be made in order to make the scheme secure under the
StructBASIS or PRISIS assumptions.

Consider a message space of arbitrary vectors in Rd+1
q of length d + 1. The setup algorithm

generates a (pseudo-)random matrix A ∈ Rn×m
q , along with a uniformly random invertible matrix

W ∈ Rn×n
q . Further, it computes a trapdoor T for the matrix

B :=

W0A −G
.

WdA −G

 . (5)

Then, the common reference string is crs := (A, W, T).
In order to commit to a vector f = (f0, f1, . . . , fd) ∈ Rd+1

q , one uses the trapdoor T to sample
short s0, . . . , sd ∈ Rm

q and t̂ ∈ Rnq̃
q as follows:

s0
...

sd

t̂

← B−1
σ

−f0W0e1
−f1W1e1

...
−fdWde1

4The name stands for Power-Ring-BASIS.
5A reader familiar with the work of [WW23b] can notice a difference between StructBASIS and the original

BASISstruct from [WW23b, Assumption 3.3]. Namely, the latter one directly sets the matrix A⋆ := A without
appending an additional row a⊺ at the top (as in BASISrand [WW23b, Assumption 3.3]). Note that it is possible to
build a commitment scheme based on such a variant, as described in [WW23b, Section 4], but this would increase the
commitment, as well the opening sizes, by a factor of nq̃. Hence, for efficiency we consider the modified version of
BASISstruct as presented here.

8

where e1 := (1, 0, . . . , 0)⊺ ∈ Rn
q . The commitment becomes t := Gt̂, and the opening consists of

(si)i∈[0,d]. The opening algorithm, given the common reference string crs, commitment t ∈ Rn
q and

openings (si)i∈[0,d] as input, checks whether for all i = 0, 1, . . . , d:

Asi + fie1 = W−it and ∥si∥ ≤ β

for some norm parameter β > 0.

Security properties. In this paper, we consider the notion of relaxed binding [ALS20]. Namely,
we say that a relaxed opening for a commitment t consists of (i) a vector of openings s = (s0, . . . , sd),
(ii) a message f = (f0, . . . , fd) ∈ Rd+1

q , and (iii) a vector of relaxation factors c := (c0, . . . , cd) ∈ Rd+1
q ,

which together satisfy:

Asi + fie1 = W−it, ∥ci · si∥ ≤ β, ∥ci∥1 ≤ κ and ci ∈ R×q

for i = 0, 1, . . . , d and some κ ≥ 1. In particular, vectors si do not need to be short.
Now, we show that the commitment scheme is binding w.r.t. relaxed openings under the

PowerBASIS assumption. Indeed, let B be the following adversary for the PowerBASIS security game,
which is given as input a tuple (A, B, W, T) from the challenger, where B is defined as in (4) for
ℓ = d + 1, and A⋆ is constructed as in (3). First, B aborts if W is not invertible6. Otherwise, B
passes crs := (A⋆, W, T) to the adversary A against the relaxed binding game. Suppose A comes
up with two relaxed openings (s, f , c) and (s′, f ′, c′) for the same commitment t and f ̸= f ′. Thus,
for some index i we have fi ̸= f ′i . Then, by definition of relaxed openings we have

A⋆(si − s′i) + (fi − f ′i)e1 = 0 .

Since fi− f ′i ̸= 0, we must have s̄i := si− s′i ̸= 0. Hence by definition of A⋆, s̄i is a non-zero solution
for the matrix A, but not necessarily a short one. To conclude the proof, note that cic

′
is̄i is still a

non-zero vector, due to the invertibility property of ci, c′i, and at the same time:

∥cic
′
is̄i∥ ≤ ∥c′i(cisi)∥+ ∥ci(c′is′i)∥ ≤ 2κβ . (6)

Thus, cic
′
is̄i is a valid solution for the PowerBASIS problem.

Finally, the statistical hiding property is directly inherited from the original construction of the
BASIS commitment by Wee and Wu [WW23b].

1.4 Framework for Proving Polynomial Evaluations

We use the construction above to build our polynomial commitment scheme. Namely, given a
polynomial f ∈ Rq[X] of degree at most d over Rq, we commit to f by committing to its coefficient
vector f = (f0, f1, . . . , fd) ∈ Rd+1

q , as described in Section 1.3, to obtain a commitment t ∈ Rn
q

along with a short opening (s0, s1, . . . , sd), where each si ∈ Rm
q .

6Unlike in PowerBASIS, the commitment construction requires that matrix W is invertible. However, by carefully
choosing parameters q and N , one can argue that the probability of W← Rn×n

q not being invertible is negligible (c.f.
[BTT22, Appendix C.3] and [EZSLL19, Appendix C]).

9

Σ-Protocol for Rd,β

Prover P(crs, (t, u, z), (f, (si)0≤i≤d)) Verifier V(crs, (t, u, z))

f(X) =
k∑

t=1
ft(Xk)Xt−1

zt = ft(uk) for t = 1, . . . k z1, . . . , zk-

α1, . . . , αk� (α1, . . . , αk)← C ⊆ Rk
q

g(X) =
k∑

t=1
αtft(X)

zi =
k∑

t=1
αtski+t−1 for i = 0, . . . , d′

g, (zi)i∈[0,d′]-

Check:
k∑

t=1
ztu

t−1 = z

k∑
t=1

αtzt = g(uk)

For i = 0, 1, . . . , d′ :

Azi + gie1 = (Wk)−i

(
k∑

i=1
αiW−(i−1)

)
t

∥zi∥ ≤ w β

Figure 1: Compressed Σ-protocol for the relation Rd,β from (7). Here, crs = (A, W, T) is the
common reference string for our polynomial commitment scheme and d + 1 = kh. We denote
d′ := (d + 1)/k − 1 to be degree of the polynomial g, and w := maxα∈C ∥α∥1.

An essential property of polynomial commitments is being able to prove that the committed
polynomial was evaluated correctly, i.e. f(u) = z for public u and z in Rq. In the setting of our
commitment scheme, we are interested in the following ternary relation7:

Rd,β :=
{

((A, W, T), (t, u, z), (f, (si)0≤i≤d))
∣∣∣∣ ∀0 ≤ i ≤ d, Asi + fie1 = W−it ∧ ∥si∥ ≤ β

∧ f(u) = z

}
. (7)

The key ingredient for proving such relations efficiently will be the compressed Σ-protocol in Figure 1,
which we will use recursively.

We take inspiration from a common split-and-fold technique used by prior works, e.g. FRI
[BBHR19] and DARK [BFS20]. Concretely, take k ∈ N and suppose d + 1 = kh for some h ∈ N.
Let us write the polynomial f(X) = ∑d

i=0 fiXi as

f(X) =
k∑

t=1
ft(Xk)Xt−1, where ft(X) :=

d+1
k
−1∑

i=0
fki+t−1Xi for t = 1, 2, . . . , k .

7We use the standard notation that the first entry corresponds to the common reference string, the second one is
the statement, and the last one is the witness. Also, T is not going to be used by the prover, nor by the verifier.

10

Then, we want to prove that f(u) = ∑k
t=1 ft(uk)ut−1 = z. To this end, we let the prover send these

partial evaluations zt := ft(uk) for t ∈ [k], and the verifier manually checks whether
k∑

t=1
ztu

t−1 = z . (8)

Further, the verifier returns a challenge α := (α1, . . . , αk) from a challenge space C ⊆ Rk
q . We

denote w := maxα∈C ∥α∥1. Later we will discuss concrete instantiations for C.
Now, consider the folded polynomial g(X) = ∑k

t=1 αtft(X) which is of degree at most d′ :=
(d + 1)/k− 1 = kh−1− 1. The crucial observation here is that using the structure of the PowerBASIS
commitment8 from Section 1.3 we get for every i = 0, 1, . . . , d′:

(Wk)−i

(
k∑

t=1
αtW−(t−1)

)
t =

k∑
t=1

αtW−(ki+t−1)t

= A
(

k∑
t=1

αiski+t−1

)
+
(

k∑
t=1

αifki+t−1

)
e1

= Azi + gie1

where zi := ∑k
t=1 αtski+t−1 satisfies ∥zi∥ ≤ β′ := w β. In other words, t′ := (∑k

t=1 αtW−(t−1)) · t,
which can be computed by the verifier in time O(k), is a commitment to the polynomial g with
the opening (zj)j∈[0,d′] w.r.t. the new common reference string crs′ := (A, Wk, T). Further, by
definition of g:

g(uk) =
k∑

t=1
αtft(uk) =

k∑
t=1

αtzt .

Thus, we can conclude that:(
(A, Wk, T),

(
k∑

t=1
αtW−(t−1)t, uk,

k∑
t=1

αtzt

)
,
(
g, (zi)i∈[0,d′]

))
∈ Rd′,w β . (9)

In our Σ-protocol, the prover directly outputs
(
g, (zi)j∈[0,d′]

)
to the verifier, who checks Equations (8)

and (9). To achieve succinct proofs and verification, we let the prover recursively run the Σ-protocol
on the new instance tuple (9) until the degree of the folded polynomial is zero9. Overall, the
protocol has 2h + 1 rounds and the last prover message is a pair of the form (g, z) ∈ Rq × Rm

q ,
where ∥z∥ ≤ β′ := wh β. Performance-wise (excluding the poly(λ) factors), the prover sends O(hk)
elements in Rq, while the verifier makes in total O(hk) operations in Rq.

We now focus on knowledge soundness. As common in the lattice setting, we aim to extract a
witness with respect to the relaxed relation:

R̃d,β,κ :=

((A, W, T), (t, u, z), (f, (si)0≤i≤d, (ci)0≤i≤d))
∣∣∣∣∣
∀0 ≤ i ≤ d, Asi + fie1 = W−it
∧∥ci · si∥ ≤ β ∧ ∥ci∥1 ≤ κ
∧ci ∈ R×q ∧ f(u) = z

 .

8We note that a similar result could be obtained using PRISIS.
9For concrete efficiency, it might be more beneficial to apply the protocol recursively until the degree of the folded

polynomial is sufficiently small, instead of going down to zero.

11

In other words, the witness is now a relaxed opening for the commitment t. Note that the relation
is still meaningful as long as the commitment scheme is binding w.r.t. relaxed openings.

The knowledge extraction strategy for R̃β,κ will strongly depend on the instantiation of the
challenge space C. In this work, we consider two variants described below.

Construction 1: Monomial protocol. As the name suggests, we will make use of certain
invertibility properties of the set of signed monomials in Rq, following the approach from lattice
Bulletproofs [BLNS20; ACK21; AL21]. Namely, we set (k, h) = (2, log(d + 1)) and define the
challenge space

C :=
{

(1, Xi) : i ∈ Z
}
⊆ Rk

q .

By construction, w = 2 and |C| = 2N . Now, we show that for the challenge space C above, the
Σ-protocol in Figure 1 is special sound w.r.t. the relaxed relation R̃. The methodology can then be
extended to show that our recursive protocol is (2, . . . , 2)-special sound. Thus, the general parallel
repetition results [AF22], as well as security of the Fiat-Shamir transformation in the random oracle
model [AFK22] would directly apply here.

To this end, suppose we are given two transcripts

trj := ((z1, z2), (1, αj), (gj , (zj,i)i∈[0,d′])) for j = 0, 1

with the same first message (z1, z2) and two distinct challenges (1, α0) ̸= (1, α1) in C such that
(
(A, W2, T),

(
(In + αjW−1)t, u2, z1 + αjz2

)
,
(
gj , (zj,i)i∈[0,d′]

))
∈ Rd′,β′

z1 + uz2 = z

where β′ := w β = 2β. Observing that α0 − α1 ∈ R×q , we define for i = 0, 1, . . . , d′ := (d− 1)/2

f̄2i+1 := g0,i − g1,i

α0 − α1
, f̄2i := α1g0,i − α0g1,i

α1 − α0
(10)

and similarly
s̄2i+1 := z0,i − z1,i

α0 − α1
, s̄2i := α1z0,i − α0z1,i

α1 − α0
.

Denote 2 := (2, . . . , 2) ∈ Rd+1
q . We claim that(

(A, W, T), (t, u, z) ,
(
f̄ , (s̄i)i∈[0,d], 2

))
∈ R̃d,2Nβ′,2 .

Let us start with proving correctness of the relaxed opening. By careful inspection:

As̄2i+1 + f̄2i+1e1 = 1
α0 − α1

((Az0,i + g0,ie1)− (Az1,i + g1,ie1))

= W−2i

α0 − α1

(
(In + α0W−1)t− (In + α1W−1)t

)
= W−(2i+1)t

and similarly As̄2i + f̄2ie1 = W−2it. As for shortness, we use the result from [BCKLN14] which
says that ∥ 2

α0−α1
∥∞ = 1 for any distinct α0, α1 ∈ {Xi : i ∈ Z}. Thus, for any i ∈ [0, d′] we have

∥2 · s̄2i+1∥ ≤
∥∥∥∥ 2

α0 − α1
· (z0,i − z1,i)

∥∥∥∥ ≤ ∥∥∥∥ 2
α0 − α1

∥∥∥∥
1
· ∥z0,i − z1,i∥ ≤ 2Nβ′

12

and similarly

∥2 · s̄2i∥ ≤
∥∥∥∥ 2

α1 − α0
· (α1z0,i − α0z1,i)

∥∥∥∥ ≤ ∥∥∥∥ 2
α1 − α0

∥∥∥∥
1
· ∥α1z0,i − α0z1,i∥ ≤ 2Nβ′.

Finally, we need to prove that the extracted polynomial f̄ satisfies f̄(u) = z. From the verification
equations we know that g0(u2) = z1 + α0z2 and g1(u2) = z1 + α1z2. Hence,

f̄(u) =
d′∑

i=0
f̄2iu

2i +
d′∑

i=0
f̄2i+1u2i+1

=
d′∑

i=0

α1g0,i − α0g1,i

α1 − α0
· u2i +

d′∑
i=0

g0,i − g1,i

α0 − α1
· u2i+1

= α1g0(u2)− α0g1(u2)
α1 − α0

+ g0(u2)− g1(u2)
α0 − α1

· u

= z1 + uz2

= z

which concludes the proof of the claim.
An almost identical strategy can be applied to our recursive protocol when given a general

(2, . . . , 2)-tree of transcripts [ACK21]. In this case, we can extract a relaxed opening (f̄ , (s̄i)i∈[0,d], 2h)
to the commitment t which satisfies(

(A, W, T), (t, u, z) ,
(
f̄ , (s̄i)i∈[0,d], 2h

))
∈ R̃d,(2N)hβ′,2h

where β′ := 2hβ and 2h := (2h, . . . , 2h). In terms of performance, the communication complexity
and the verifier runtime (in terms of operations in Rq) are O(log d).

Using the knowledge soundness result from [ACK21], we deduce that the soundness error for our
protocol is h/|C| = h/(2N). Since N = poly(λ), we only manage to obtain an inverse-polynomial
soundness error. Even though this can be further reduced via parallel repetition in the interactive
case [AF22], such amplification does not combine with the Fiat-Shamir transformation [AFK22].
Our second construction circumvents this issue by achieving negligible soundness error in one-shot.

Construction 2: Large sampling set protocol. In this scenario, we define the challenge space
as

C := {(α1, . . . , αk) : ∀i ∈ [k], ∥αi∥∞ ≤ βC}

for some suitable parameter βC ≥ 1. Hence, by construction w ≤ kβCN .
One could naively adapt the strategy from Construction 1 to prove knowledge soundness of the

Σ-protocol as follows. To begin with, we aim to extract k accepting transcripts with k pairwise
distinct challenges αj ∈ C for j = 1, . . . , k. Further, we compute the extracted polynomial f by
inverting the k × k matrix C, where the j-th row corresponds to the challenge αj in the j-th
transcript. Unfortunately, this approach contains a few critical issues. Firstly, it is unclear whether
the matrix C is invertible. But even if it is, the resulting polynomial f may contain large coefficients,
or in the context of relaxed openings, there might be no sufficiently short element v ∈ Rq such that
v · fi is short for all coefficients fi.

13

α0 = (α0, α1, α2, α3)

α1 = (α⋆
0, α1, α2, α3) α2 = (α0, α⋆

1, α2, α3) α3 = (α0, α1, α⋆
2, α3) α4 = (α0, α1, α2, α⋆

3)

Figure 2: Visualisation of the notion of coordinate-wise special soundness (CWSS) for k = 4
coordinates. Here, α⋆

i ̸= αi for all i ∈ [4].

We propose an alternative approach which relies on a notion, called coordinate-wise special
soundness10 (CWSS). As in special soundness, it says that given k + 1 valid transcripts trj =
(aj , αj , zj) for j = 0, 1, . . . , d, such that α0, . . . , αk ∈ C satisfy a certain relation, then one can
extract the witness. The relation is defined as follows: for every j ∈ [k], vectors α0 = (α0,1, . . . , α0,k)
and αj = (αj,1, . . . , αj,k) differ exactly in the j-th coordinate, i.e. ∀i ∈ [k]\{j}, αj,i = α0,i and
αj,j ̸= α0,j (see Figure 2 for visualisation). We prove that for multi-round protocols CWSS implies
knowledge soundness both in the interactive and non-interactive setting where the Fiat-Shamir
transformation is applied.

In the following, we show that our Σ-protocol satisfies CWSS. Suppose we are given k + 1 valid
transcripts

trj :=
(
(z1, . . . , zk), αj = (αj,1, . . . , αj,k), (gj , (zj,i)i∈[0,d′])

)
for j = 0, 1, . . . , k .

Let us fix j ∈ [k] and consider the transcripts tr0 and trj . From the verification equations we have
for i = 0, . . . , d′:

Az0,i + g0,ie1 = W−ki

(
k∑

t=1
α0,tW−(t−1)

)
t

Azj,i + gj,ie1 = W−ki

(
k∑

t=1
αj,tW−(t−1)

)
t.

Since α0 and αj are the same in all coordinates apart from the j-th one, by subtracting the two
equations we obtain

A(z0,i − zj,i) + (g0,i − gj,i)e1 = (α0,j − αj,j)W−(ki+j−1)t .

Now, by choosing parameters q, N, βC appropriately, and using the result by Lyubashevsky and
Seiler that short elements in Rq are invertible [LS18], we deduce that α0,j −αj,j ∈ R×q and thus can
define the extracted openings

s̄ki+j−1 := z0,i − zj,i

α0,j − αj,j
and f̄ki+j−1 := g0,i − gj,i

α0,j − αj,j

and the partial vector of relaxation factors cj := (α0,j − αj,j , . . . , α0,j − αj,j) ∈ Rd′+1
q . Then, by

construction we have As̄ki+j−1 + f̄ki+j−1e1 = W−(ki+j−1)t, and further

∥(α0,j − αj,j) · s̄ki+j−1∥ ≤ 2 w β and ∥α0,j − αj,j∥ ≤ 2βCN .

10As far as we are aware, this strategy was first introduced by Baum et al. [BBCPGL18] in the context of amortised
lattice-based zero-knowledge proofs.

14

From the other verification checks we similarly conclude that ∑d′
i=0 f̄ki+j−1uki = zj .

Eventually, by running the argument above for j = 1, 2, . . . , k, we reconstruct a polynomial
f ∈ R≤d

q [X], along with (si)i∈[0,d], and the vector c := (c1, . . . , ck) of relaxation factors so that(
(A, W, T), (t, u, z) ,

(
f̄ , (s̄i)i∈[0,d], c

))
∈ R̃d,2 w β,2βCN .

In terms of security, we show that the knowledge soundness error of our Σ-protocol is bounded by
k/(2βC + 1)N , where (2βC + 1)N is the number of all possible choices for a single coordinate in C.
Consequently, by picking k, βC ≥ 1 and N = poly(λ) appropriately, we achieve negligible soundness
error in one-shot.

This strategy can be further applied in our recursive protocol. That is, analogously as for special
soundness, we first generalise the notion of coordinate-wise special soundness in the multi-round
setting, and then prove that our protocol satisfies CWSS as above. By following the methodology
from [ACK21; AFK22], we obtain the knowledge soundness error equal to hk/(2βC + 1)N , while
the knowledge extractor runs the prover expected (k + 1)h times, and outputs a relaxed opening
(f̄ , (s̄i)i∈[0,d], c) such that (

(A, W, T), (t, u, z) ,
(
f̄ , (s̄i)i∈[0,d], c

))
∈ R̃d,γ,ξ

where γ := (2h(2βCN)2h−h−1 wh) ·β and ξ := 2βC(2βCN)2h−2N . We highlight that the norm blow-up
is much larger here than in the monomial case due to certain technical differences11. As a result,
we cannot pick k = 2 and h = O(log d) since then one would require log q = O(d) for relaxed
binding to hold (c.f. Equation (6)); thus making the proof size and verifier time polynomial in
d. Instead, we instantiate the protocol by choosing k = O(d

1
log log d) and h = O(log log d). In this

case, log q = polylog(d), and the proof size and verifier complexity, in terms of operations over Rq,
become O(d

1
log log d log log d) = dO(1/ log log d).

1.5 Polynomial Commitments over Finite Fields

Until now, we were focusing on polynomial commitments over the ring Rq := Zq[X]/(XN + 1).
Here, we sketch how to obtain a polynomial commitment over a finite field, which is required by
Polynomial IOPs [BFS20; CHMMVW20] to compile into succinct arguments. The key ingredient,
which allows us to do that is the ability to commit to arbitrarily large elements in Rq.

Let l ≥ 1 be a divisor of N . It is a well-known fact [LS18] that if q ≡ 2N/l + 1 (mod 4N/l + 1),
then there exists a ring isomorphism φ from FN/l to Rq, where F is a finite field of size ql. Thus, we
define a map φF : F→ Rq as x 7→ φ(x, 0, . . . , 0), and denote the image of φF as Sq. We will make
use of the fact that Sq is an ideal of Rq.

Suppose we want to commit to a polynomial F ∈ F≤d[X] and prove that F (x) = y for x, y ∈ F.
Using the homomorphic property of φF, it is easy to see that this is equivalent to proving f(u) = z
over Rq, where f [X] := ∑d

i=0 φF(Fi)Xi ∈ Sq[X], u = φF(x) ∈ Sq and z = φF(y) ∈ Sq. Therefore, we
commit to the polynomial f ∈ Rq[X] and prove evaluation of u at the point z as before.

What we need to take care of is proving that all coefficients of f indeed lie in Sq. This allows
us to extract the polynomial F̄ ∈ F[X] by taking the inverse of φF coefficient-wise. Looking at our

11Roughly speaking, in Construction 1 we managed to keep the norm growth smaller due to the fact that the
relaxation factors 2h are independent of the extracted transcripts, which is not the case for the relaxation factors c in
Construction 2. We refer to Section 5.3 for more details.

15

underlying Σ protocol in Figure 1, the additional proof comes without any change on the prover’s
side, while the verifier also checks whether g ∈ Sq[X], which is the case since Sq is an ideal. To see
why this modification is sufficient, consider the extraction strategy in Equation (10). Since now
g0,i, g1,i ∈ Sq, we again use the fact that Sq is an ideal and conclude that f̄2i+1 = (g0,i−g1,i)/(α0−α1)
also lies in Sq. Identical reasoning follows for both Construction 1 and 2.

1.6 Related Works

The first lattice-based interactive proof with sublinear communication complexity for arithmetic
ℓ-gate circuit satisfiability was formally proposed by Baum et al. [BBCPGL18], where the authors
achieve O(

√
ℓ) size proofs. The construction was later generalised by Bootle et al. [BLNS20]

who define so-called “levelled commitments” and give O(ℓ1/k) size proofs for proving knowledge
of a commitment opening with k = O(1) levels. The main drawback of the scheme is that the
modulus for the proof system increases exponentially in k and thus considering more than 2-3
levels seems impractical. Recently, Nguyen and Seiler [NS22] combined the square-root approach
from [BBCPGL18] with the CRT-packing technique from [ENS20] to obtain a practically efficient
square-root NIZK, with 6MB proofs for circuits of size ℓ = 220.

Bootle et al. [BLNS20] also proposed the first lattice adaptation of the Bulletproofs protocol
[BCCGP16; BBBPWM18] over polynomial rings Rq = Zq[X]/(XN +1) which offers polylog(ℓ) proof
sizes. This approach was later improved independently by Attema et al. [ACK21] and Albrecht and
Lai [AL21] in terms of tighter soundness analysis, and also generalised to a more abstract setting
by Bootle et al. [BCS21]. While the split-and-fold strategy from Bulletproofs is very attractive
in the discrete logarithm setting and keeps asymptotic efficiency in the lattice scenario, it does
not mix well with the shortness condition required in lattice-based cryptography. Consequently,
this leads to a concrete blow-up of the parameters as well as the proof size. Roughly speaking,
for the knowledge soundness argument it must be possible to invert the folding in the extraction
such that the extracted solution vector is still short. To this end, one needs a challenge space of
the underlying compressed Σ-protocol to have a property that (a scaled) inverse of a difference
of any two distinct challenges is still short - such sets are called subtractive. Hence, Bootle et al.
[BLNS20] picked the challenge space to consist of monomial challenges C := {Xi : i ∈ Z} ⊆ Rq,
which is indeed subtractive as shown in [BCKLN14]. Since the Σ-protocol is 3-special sound, norm
of the extracted solution vector grows by a factor of O(N3) for every level of folding. Then, the
parameters must be chosen such that Module-SIS is hard with respect to the norm of the extracted
solution vector, resulting in the need for a huge modulus q. Note that a similar issue occurs in our
Construction 1 (c.f. Section 5.2). However, since our underlying compressed Σ-protocol is only
2-special sound, norm of the extracted vector grows by only a factor of O(N) for each folding level
(but at the price of having a trusted setup).

In addition to the norm growth of the extracted witness, the restriction on the challenges has a
negative impact on the soundness error. Indeed, since the challenge space C in [BLNS20] has size
2N , the soundness error becomes only 1/poly(λ). Furthermore, it was proven by Albrecht and Lai
[AL21] that all subtractive set over Rq have size O(N). This becomes problematic especially in the
non-interactive setting due to the result by Attema et al. [AFK22], who showed that the Fiat-Shamir
transformation of a parallel repetition of special sound protocols does not necessarily decrease the
soundness error. A promising solution to circumvent this limitation was recently proposed by Bünz
and Fisch [BF22], who suggested a new knowledge extraction strategy, i.e. the notion of almost
special soundness, which does not require subtractive sets. Instead, the challenges are picked from

16

the exponential-sized set of integers [0, 2λ−1). Unfortunately, the former issue with the norm growth
for each folding level is still present in [BF22].

Recently, Beullens and Seiler [BS23] showed that by combining a split-and-fold approach with
algebraic techniques introduced in linear-sized lattice-based NIZKs [LNP22], it is possible to achieve
negligible soundness error whilst controlling the norm growth. This is evidenced with impressive
50KB proofs for circuits of size ℓ = 220.

Major downside of all the aforementioned works is a linear verification time, which can be
the main efficiency bottleneck when proving satisfiability of large circuits. Until now, the only
lattice-based publicly verifiable succinct argument of knowledge with efficient verification (excluding
the preprocessing step) was proposed by Albrecht et al. [ACLMT22]. The construction is obtained
as a direct application of functional commitments [LRY16] and soundness holds under a knowledge
assumption. However, similar to our scheme, a trusted setup is required, and more importantly, the
prover algorithm runs in time O(ℓ4 log ℓ) which makes it unappealing to implement in practice.

Prior to [ACLMT22], all lattice-based zk-SNARKs were in the designated-verifier setting
[GMNO18; ISW21; SSEK22]. The constructions use the Linear-PCP compiler [BCIOP13] to
transform into succinct arguments. Notably, the most recent work by Steinfeld et al. [SSEK22]
achieves proofs of size 6KB for ℓ = 220 constraints at the cost of very large crs (in the order of tens
of gigabytes).

Naturally, there is a line of research focusing on the security of lattice-based zero-knowledge
proofs against quantum adversaries [DFM20; Kat21; LMS22]. Particularly, Lai et al. [LMS22] show
that any multi-round protocol, which satisfies special soundness and collapsing, is knowledge sound
in the post-quantum setting. As a special case, they demonstrate that the lattice Bulletproofs
protocol [BLNS20] is knowledge sound against quantum provers. Since our constructions not only
satisfy (coordinate-wise) special soundness but also follow the split-and-fold strategy from [BLNS20],
we believe that the general result from [LMS22] can be adapted to our setting.

Interestingly, lattice assumptions are not only used to build lattice-based commitments, but also
to construct non-interactive arguments in the standard model, i.e. without the random oracle. For
instance, there is a line of works [Can+19; HLR21; HJKS22] which focuses on instantiating the
Fiat-Shamir transformation with a correlation intractable hash function [CGH04], that itself can be
built from the Learning with Errors (LWE) problem [HLR21]. Following this template, Choudhuri,
Jain and Jin [CJJ21] built a SNARG for languages in P only based on the LWE problem with
polynomial modulus. Moreover, the LWE assumption can be used to construct non-interactive
succinct (and batched) arguments without the Fiat-Shamir transformation, but via somewhat
extractable hash functions [DGKV22; KLVW23]. We believe that naturally, due to relying on more
assumptions, constructions based on the random oracle model should perform much better in terms
of concrete efficiency.

1.7 Concurrent and Subsequent Works

Recently, Bootle et al. [BCS23] and Cini et al. [CLM23] independently proposed variants of the
lattice Bulletproofs protocol that achieve polylogarithmic verification time. The former work proposes
a new delegation algorithm inspired from [Lee21], which requires an additional pre-processing step.
The latter one introduces more (power-like) structure on the Ajtai commitment [Ajt96] which allows
for fast verification, at the cost of relying on a new assumption called Vanishing-SIS (vSIS). We note
that there is a close similarity between vSIS and the PRISIS, and we leave the concrete relationship
between the two for the future work. Nevertheless, the aforementioned work inherit the issue from

17

the original construction [BLNS20] that the soundness error is non-negligible and parallel repetitions
are required.

Fisch et al. [FLV23] recently presented a polynomial commitment scheme, as an application of
their linear functional commitment. Following the work of [ACLMT22], the construction relies on
the knowledge k-M -ISIS assumption, which appears to be morally invalidated in [WW23a].

As a subsequent work, Albrecht et al. [AFLN23] proposed a new polynomial commitment scheme
with polylogarithmic communication and verification complexity under standard assumptions. To this
end, the authors construct a new commitment scheme that combines our PowerBASIS construction
together with the Merkle tree paradigm. Consequently, the committing runtime becomes quasilinear
in the length of the message, while the size crs shrinks to only polylogarithmic. The binding property
of the commitment relies on a “multi-instance” version of the PRISIS assumption. Finally, using the
exact strategy from Lemma 3.6, security of the aforementioned assumption is further reduced to
Module-SIS.

Acknowledgements. We thank Martin Albrecht and Sasha Lapiha for discussion on the PowerBASIS
assumption. Ngoc Khanh Nguyen is supported by the Protocol Labs RFP-013: Cryptonet network
grant.

18

2 Preliminaries
Notation. We denote the security parameter by λ, which is implicitly given to all algorithms unless
specified otherwise. Further, we write negl(λ) (resp. poly(λ)) to denote an unspecified negligible
function (resp. polynomial) in λ. In this work, we implicitly assume that the vast majority of the
key parameters, e.g. the ring dimension, and the dimensions of matrices and vectors, are poly(λ).
However, the modulus used in this work may be super-polynomial in λ.

For a, b ∈ N with a < b, write [a, b] := {a, a + 1, . . . , b}, [a] := [1, a]. For q ∈ N write Zq for
the integers modulo q. We denote vectors with lowercase boldface (i.e. u, v) and matrices with
uppercase boldface (i.e. A, B). For a vector x we write xi or x[i] for its i-th entry.

Norms. We define the ℓp norm on Cn as ∥x∥p = (∑i |xi|p)1/p for p <∞ and ∥x∥∞ := maxi |xi|.
Unless otherwise specified, we use ∥·∥ for the ℓ2 norm. We let the norm of a matrix be defined as
the norm taken over the concatenation of columns of the matrix.

Linear algebra. We let ei be the vector with 1 in its i-th entry, 0 everywhere else. For B ∈ Rn×m

we let s1(B) = sup{∥Bv∥ : v ∈ Rm ∧ ∥v∥ = 1} be the spectral norm of B. We also denote by B̃
the Gram-Schmidt orthonormalization of B. The Gram-Schmidt norm of B is defined as

∥B̃∥ := max
i∈[m]

∥b̃i∥

where b̃i is the i-th column of B̃.
For a ring R, we define GL(n, R) to be the group of n× n invertible matrices over R.

2.1 Lattices

A subset Λ ⊆ Rm is a lattice if the following conditions hold:
• 0 ∈ Λ, and for x, y ∈ Λ, x + y ∈ Λ.
• For every x ∈ Λ, there exists ϵ > 0 such that {y ∈ Rm : ∥x− y∥ < ϵ} ∩ Λ = {x}.
We say B ∈ Rm×k is a basis for Λ if its columns are linearly independent and Λ = L(B) := {Bz :
z ∈ Zk}. If k = m then we say that Λ is full-rank. The span (as a vector space) of the basis of a
lattice is the span of a lattice denoted as Span(Λ). We also let Λ∗ be the dual lattice defined as
Λ∗ = {w ∈ Span(Λ) : ⟨Λ, w⟩ ⊆ Z}. If Λ ⊆ Zm, we call it an integral lattice. For I an ideal of Rm,
we let I · Λ = {i · x : i ∈ I, x ∈ Λ}, which is also a lattice. For a lattice Λ we denote

λ1(Λ) := min
0̸=x∈Λ

∥x∥ and λ∞1 (Λ) := min
0̸=x∈Λ

∥x∥∞ .

For t ∈ Span(Λ), we also define the shifted lattice t + Λ := {t + x : x ∈ Λ}. We also consider q-ary
lattices, namely those with qZ ⊆ Λ. For an arbitrary A ∈ Zn×m

q we define the full rank q-ary lattice

Λ⊥(A) = {z ∈ Zm : Az = 0 (mod q)}
Λ(A) = {z ∈ Zm : ∃s ∈ Zn

q , Az = s (mod q)}

For any u ∈ Zn
q such that there exists x with Ax = u, we define Λ⊥u (A) := {z ∈ Zm : Az = u

(mod q)} = Λ⊥(A) + x.

19

2.2 Power-of-Two Cyclotomic Rings

Let N be a power-of-two and K = Q[X]/(XN + 1) be the 2N -th cyclotomic field. Denote R =
Z[X]/(XN + 1) to be the ring of integers of K. For an odd prime q, we write Rq := R/(q). We
denote R×q to be the set of invertible elements in Rq.

We recall the following inequality, which allows to bound norms on products in the ring R.

Lemma 2.1. Let u, v ∈ R. Then ∥uv∥ ≤ ∥u∥1 · ∥v∥.

Proof. Let u := u0 + u1X + . . . + uN−1XN−1 ∈ R. Then, by the triangle inequality we get

∥uv∥ ≤
N−1∑
i=0
∥uiv ·Xi∥ =

N−1∑
i=0
∥uiv∥ =

N−1∑
i=0
|ui| · ∥v∥ = ∥u∥1 · ∥v∥ .

Coefficient embedding. For x ∈ K, we can consider the additive group isomorphism

vec : K → QN

a0 + a1X + · · ·+ aN−1XN−1 7→ (a0, . . . , aN−1)⊤

and we refer this as the coefficient embedding of K. Note that, for f, g ∈ K, ⟨f, g⟩ = ⟨vec(f), vec(g)⟩
and thus ∥vec(f)∥ = ∥f∥. Furthermore, vec restricts to an isomorphism between Rq

∼= ZN
q and

R ∼= ZN . We also extend this to a mapping Km → QmN by applying it component-wise. For f ∈ K,
we let

rot(f) := (vec(f), vec(X · f), . . . , vec(XN−1 · f)) ∈ QN×N ,

noting that rot(f)vec(g) := vec(fg) and rot(f)rot(g) = rot(fg). We extend this to matrices
B ∈ Km×n by writing

rot(B) :=

 rot(b1,1) . . . rot(b1,n)
...

rot(bm,1) . . . rot(bm,n)

 ∈ QmN×nN .

Module lattices. For A ∈ Rn×m
q , x ∈ Rm

q , u = Ax, define

Λ⊥(A) := {z ∈ Rm : Az = 0 mod q}
Λ⊥u (A) := {z ∈ Rm : Az = u mod q} = Λ⊥(A) + x .

Then, Λ⊥(A) = vec−1(Λ⊥(rot(A))) and Λ⊥u (A) = vec−1(Λ⊥vec(u)(rot(A))).

Spectral norm. Let s1(R) := sup{∥Rv∥ : v ∈ Kw ∧∥v∥ = 1} be the spectral norm of R ∈ Rm×w.
Clearly, s1(rot(R)) = s1(R), where the spectral norm of the left-hand side is over R. Here, we recall
a simple bound.

Lemma 2.2. Let R ∈ Rm×t
q . Then s1(R) ≤

√
N · ∥R∥.

20

Proof. Let r1, . . . , rm be the rows of R. Note that by the Cauchy-Schwarz inequality, for any u
with ∥u∥ = 1 we have that

∥⟨ri, u⟩∥2 ≤

∑
j∈[t]
∥ri,jsj∥

2

≤ N

∑
j∈[t]
∥ri,j∥ · ∥sj∥

2

≤ N∥ri∥2 · ∥u∥2 ≤ N∥ri∥2 .

Thus, ∥Ru∥2 ≤ N∥R∥2 which concludes the proof.

In this work we will work with q ≡ 5 (mod 8). In this setting, the probability that a uniformly
random matrix is full-rank is overwhelming.

Lemma 2.3 (Appendix C.3 of [BTT22]). Let q ≡ 5 (mod 8) be prime, N = O(λ) and m ≥ n ≥ 1.
Then, for a uniformly random matrix A← Rn×m

q , the probability that A is not full-rank is negl(λ).

2.3 Discrete Gaussian Distributions

Let σ > 0 be a parameter and Λ be a m-dimensional lattice. We then define the discrete Gaussian
distribution Dσ,c,Λ over a lattice coset c + Λ as follows.

ρσ,c(z) := exp
(
−π∥z− c∥2

σ2

)
and Dσ,c,Λ(z) := ρσ,c(z)∑

x∈Λ ρσ,c(x) .

When c = 0 or Λ = Zm, we will omit it from the notation. We naturally extend this notion for
lattices over the ring of integers R, and for matrices by sampling column-wise.

Smoothing parameter. The smoothing parameter ηϵ(Λ) of a lattice is the smallest s > 0 such
that ρ1/s(Λ∗) ≤ 1 + ϵ. Below we recall the standard upper-bounds on the smoothing parameter
[MR07; GPV08].

Lemma 2.4. Let Λ ⊆ Rm be a lattice, and let ϵ > 0. Then,

ηϵ(Λ) ≤ 1
λ∞1 (Λ∗) ·

√
ln(2m(1 + 1/ϵ))

π

and in fact, for every basis B of Λ,

ηϵ(Λ) ≤ ˜∥B∥ ·

√
ln(2m(1 + 1/ϵ))

π
.

We also recall the bound from [GPV08, Lemma 5.3] and [WW23b, Lemma 2.5] for the block-diagonal
matrices. Here, we consider the ring setting which can be easily adapted from the aforementioned
results.

Lemma 2.5. Let ℓ, δ > 1 and suppose q is prime and m ≥ 2n logδ q. Then, there exists a negligible
function ε such that for all A2, . . . , Aℓ ∈ Rn×m

q :

Pr
[
ηε(Λ⊥(diag(A1, A2, . . . , Aℓ)) ≤ δ · log(ℓmN) : A1 ← Rn×m

q

]
≥ 1− qnN .

21

Further, we recall the regularity lemma from [LPR13].

Lemma 2.6 (Regularity Lemma). Let q ≡ 5 (mod 8) be a prime, N = poly(λ) and k, n be positive
integers such that poly(λ) ≥ m ≥ n. Take s > 2N · qn/m+2/(Nm). Then, the following distributions
are statistically close: {

(A, Ax)
∣∣∣∣∣A← Rn×m

q

x← DmN
s

}
and

{
(A, u)

∣∣∣∣∣A← Rn×m
q

u← Rn
q

}
.

This is slightly modified from the original result in [LPR13, Corollary 7.5] and [BTT22, Lemma 4.2]
in a sense that A might not be full-rank. However, Lemma 2.3 makes sure the event happens with
negligible probability.

Tail bounds. When sampling over a sufficiently wide discrete Gaussian distribution, a small
portion of the probability mass will be in the tail of the distribution, and thus with overwhelming
probability the sampled lattice elements will have short norm. The following lemma from [MR07]
formalises this intuition.

Lemma 2.7. For any 0 < ϵ < 1, lattice Λ ⊆ Rm, center c ∈ Span(Λ) and σ > ηϵ(Λ),

Pr
[
∥z∥ ≥ σ ·

√
m : z← Dσ,Λ,c

]
≤ 1 + ϵ

1− ϵ
2−m .

We also recall the tail bounds for the regular discrete Gaussian distribution over integers [Lyu12].

Lemma 2.8. Let z← Dm
s . Then Pr

[
∥z∥ > t · s

√
m
2π

]
<

(
te

1−t2
2

)m

.

By setting t =
√

2π, the right-hand side can be upper-bounded by 2−2m.

Preimage sampling for module lattices. Let A ∈ Rn×m
q be a matrix over Rq and take any

u ∈ Rn
q . We write s← A−1

σ (u) to denote sampling s← DmN
σ conditioned on As = u. Assuming

there is some x ∈ Rm
q which satisfies Ax = u, this is the same as sampling s← Dσ,x,Λ⊥(A).

We will need the following lemma from [WW23b, Lemma 2.7] for proving hiding property of the
commitment scheme.

Lemma 2.9. Let n, m, q > 0. Take any matrices A ∈ Rn×m
q , B ∈ Rn×ℓ

q where ℓ = poly(n, log q).
Suppose the columns of A generate Rq and let C := [A | B]. Then, for every target vector t ∈ Rn

q

and any σ ≥ ηϵ(Λ⊥(A)) for some ϵ = negl(λ), the following distributions are statistically close:

{
v
∣∣∣v← C−1

σ (t)
}

and
{[

v1
v2

]∣∣∣∣∣v2 ← DℓN
σ , v1 ← A−1

σ (t−Bv2)
}

.

Module-SIS. We recall the standard lattice-based Module-SIS assumption [LS15]

Definition 2.10 (Module-SIS). Let q = q(λ), n = n(λ), m = m(λ), β = β(λ) and N = N(λ). We
say that the MSISn,m,N,q,β assumption holds if for any PPT adversary A, the following holds:

Pr
[

As = 0 ∧ 0 < ∥x∥ ≤ β

∣∣∣∣∣ A← Rn×m
q

s← A(A)

]
≤ negl(λ) .

22

2.4 NTRU Lattices

As defined before, let N be a power of two, q a positive integer and h ∈ Rq. The NTRU lattice
associated to h is defined as

Λh := {(u, v) ∈ R2 : u + vh = 0 mod q} .

Recall that there is an efficient algorithm NTRU.TrapGen [HHGPSW03; SS13; DLP14; Fou+20],
which given modulus q, the ring dimension N and the parameter s, outputs h ∈ Rq and a short
basis of Λh. Below, we assume that XN + 1 splits into two factors modulo q and we apply the main
result of Stehlé and Steinfeld [SS13].

Lemma 2.11 (NTRU Trapdoor Generation). Let q = ω(N) be a prime such that q ≡ 5 (mod 8).
Take ϵ ∈ (0, 1/3) and s ≥ max(

√
N ln(8Nq) · q1/2+ϵ, ω(N3/2 ln3/2 N)). Then, there is a PPT

algorithm NTRU.TrapGen(q, N, s) which with an overwhelming probability outputs h ∈ Rq and a
basis TNTRU of Λh such that ∥T̃NTRU∥ ≤ Ns. Further, the statistical distance between the distribution
of h and uniform over R×q is at most 210N q−⌊ϵN⌋.

2.5 Gadget Trapdoors

In this section, we recall the notion of gadget trapdoors as in [MP12], reformulate them for the
module setting and state the key results on efficient sampling preimages using trapdoors.

We say that a matrix G ∈ Rn×t
q is primitive if its columns generate Rn

q , i.e. if G · Rt = Rn
q .

Note that if G is primitive, then rot(G) also is w.r.t. ZnN
q (i.e. rot(G)ZtN = ZnN

q). We also recall
the notion of a gadget trapdoor.

Definition 2.12. Let A ∈ Rn×m
q , H ∈ Rn×n

q , G ∈ Rn×t
q with t ≥ n and H invertible over Rq. A

G-trapdoor for A with tag H is a matrix R ∈ Rm×t
q with AR = HG. The quality of a trapdoor is

s1(R).

When not specified, we set the tag H := I. In fact, all the theorems in this section can be generalised
with a tag.

In this work, we consider one particular primitive matrix that naturally represents δ-base
decomposition which we call the gadget matrix.

Definition 2.13 (Gadget Matrix). Let δ ≥ 2. We set q̃ := ⌊logδ q⌋+ 1, and g⊤ = [1, δ, . . . , δq̃−1] ∈
R1×q̃

q and Gn := In ⊗ g⊤ ∈ Rn×nq̃
q . When the dimension are clear from context we simply write

G. Write G−1
n : Rn×t

q → Rnq̃×t
q for the inverse function that takes a matrix of entries in Rq, and

decomposes each entry w.r.t. the base δ. We also write g−1 for G−1
1 .

[MP12, Lemma 5.3] says that having a G-trapdoor for some matrix A enables to translate any nice
basis of G’s induced lattice into one for A’s, whose shortness is proportional to the quality of the
trapdoor.

Lemma 2.14. Let A ∈ Rn×m
q , G ∈ Rn×t

q be the gadget matrix with decomposition base δ, and
suppose there exists a G-trapdoor R for A. Then, there is a basis SA of Λ⊥(A) which satisfies∥∥∥S̃A

∥∥∥ ≤ (s1(R) + 1)
√

δ2 + 1. In particular, if ∥R∥ ≤ β then for ϵ = negl(λ):

ηϵ(Λ⊥(A)) ≤ βδ · ω(
√

N log mN) .

23

We now give crucial properties about the trapdoor generation from [MP12].

Lemma 2.15 (Trapdoor Generation). Let q ≡ 5 (mod 8) be a prime, N, n > 0, t = nq̃ and
Gn ∈ Rn×t

q be the gadget matrix. Take m > t + n. Then, there is a PPT algorithm TrapGen(n, m)
that with an overwhelming probability returns two matrices (A, R) ∈ Rn×m

q × Rm×t
q such that

AR = Gn and ∥R∥ ≤ s
√

2t(m− t)N where s > 2N · q
n

m−t
+ 2

N(m−t) . Moreover, A is statistically
close to a uniformly random matrix in Rn×m

q .

Proof. Let m′ = m− t. Consider the following algorithm [MP12, Alg 1]:
1. Sample Ā← Rn×m′

q .
2. Sample a matrix R̄ ← Dm′N×tN

s from a discrete Gaussian distribution.

3. Return A := [Ā|Gn − ĀR̄] and R :=
[
R̄
It

]
First, AR = G as desired and ∥R∥ ≤

√
t(s2m′N + 1) ≤ s

√
2t(m− t)N with an overwhelming

probability by Lemma 2.8 for t =
√

2π. To argue pseudorandomness, we apply Lemma 2.6 and the
hybrid argument to get that ĀR̄ is statistically close to uniform over Rn×t

q , and thus so is A.

The next lemma states that given a short G-trapdoor matrix R for A, one can efficiently sample
preimages of A according to the discrete Gaussian distribution.

Lemma 2.16 (Preimage Sampling). Let N, n, m > 0 and t = nq̃. Then, there exists a PPT
algorithm SamplePre(A, R, v, σ) that takes as input a matrix A ∈ Rn×m

q , a Gn-trapdoor R ∈ Rm×t
q

for A with a tag H, a target vector v ∈ Rn
q in the column-span of A, and a Gaussian parameter

σ, and outputs a vector s ∈ Rm
q such that As = v. Further, if σ ≥ δs1(R) · ω(

√
log nN), then the

statistical distance between the following distributions is negligible:

{s← SamplePre(A, R, v, σ)} and
{

s← A−1
σ (v)

}
.

We extend this algorithm for matrices, i.e. for a matrix V ∈ Rn×ℓ
q with columns v1, . . . , vℓ, we define

SamplePre(A, R, V, σ) to be the algorithm which returns a matrix S ∈ Rm×ℓ
q , where the i-th column

is the output of SamplePre(A, R, vi, σ).

Subtractive sets for monomials. We recall the following widely-used result from [BCKLN14],
which says that the (scaled) inverse of two distinct monomials in R has coefficients in {−1, 0, 1}.

Lemma 2.17. Let C := {Xi : i ∈ Z} ⊆ R. Then, for any two distinct x, y ∈ C, we have ∥ 2
x−y∥∞ = 1.

Short elements are invertible. For κ > 0, we define Sκ := {x ∈ Rq : ∥x∥∞ ≤ κ} to be the set
of ring elements in Rq with infinity norm at most κ. We recall the following invertibility result by
Lyubashevsky and Seiler [LS18].

Lemma 2.18. Let 1 ≤ l < N be a power-of-two and suppose q ≡ 2N/l + 1 (mod 4N/l). Then,
every non-zero element in Sκ is invertible over Rq as long as κ <

√
l/N · ql/N .

We will use this lemma for q ≡ 5 (mod 8).

24

RejSamp:
1: (u, v)← h
2: z← DmN

σ,v+u,Λ

3: return (u, v, z) with prob. min
(
Dm

σ (z)
M ·Dm

σ,v(z) , 1
)

SimRS:
1: (u, v)← h
2: z← DmN

σ,u,Λ
3: return (u, v, z) with prob. 1

M

Figure 3: Rejection sampling [BTT22].

Rejection sampling. A crucial component in proving the zero-knowledge property of lattice-based
(non-interactive) arguments is a rejection sampling procedure [Lyu12]. We recall the generalised
version introduced recently by Boschini et al. [BTT22] for discrete Gaussian over arbitrary lattices
(here we omit the case for ellipsoidal Gaussians).

Lemma 2.19 (Rejection Sampling [BTT22]). Take any α, T > 0 and ε ≤ 1/2. Let Λ ⊆ Rm

be a lattice over R and σ ≥ max(αT, ηε(Λ)) be a parameter. Let h : Rm × Rm → [0, 1] be a
probability distribution which returns (u, v) where the vector v satisfies ∥v∥ ≤ T . Further, define
M := exp(π

α2 + 1) and ϵ := 21+ε
1−ε exp(−α2 · π−1

π2). Then, the statistical distance between distributions
RejSamp and SimRS defined in Figure 3 is at most ϵ

2M + 2ε
M . Moreover, the probability that RejSamp

outputs something is at least 1−ϵ
M

(
1− 4ε

(1+ε)2

)
.

2.6 Commitment Scheme

We recall the notion of a commitment scheme, which is a crucial component of various proof systems.
As folklore in lattice-based cryptography, we introduce the slack space, which has a role in the
binding property.

Definition 2.20. Let CM = (Setup, Commit, Open) be a triple of PPT algorithms. We say that CM
is a commitment scheme over M with slack space S if it has the following syntax:
• Setup(1λ)→ crs takes a security parameter λ (specified in unary) and outputs a common reference

string crs.
• Commit(crs, m)→ (C, st) takes a common reference string crs a message m ∈M and outputs a

commitment C and decommitment state st.
• Open(crs, C, m, st, c) takes a common reference string crs, a commitment C, a message m ∈M,

a decommitment state st and a relaxation factor 12 c ∈ S and outputs a bit indicating whether C
is a valid commitment to m under crs.

We define the key properties of the commitment scheme: correctness, (relaxed) binding and hiding.
In the following, we denote the message space as M and the slack space as S.

Definition 2.21 (Completeness). We say that a commitment scheme CM = (Setup, Commit, Open)
satisfies completeness if there exists a global relaxation factor c∗ ∈ S such that for every m ∈M:

Pr
[
Open(crs, C, m, st, c∗) = 1

∣∣∣∣∣ crs← Setup(1λ)
C, st← Commit(crs, m)

]
≥ 1− negl(λ) .

12We implicitly assume that if c ̸∈ S then Open automatically returns 0.

25

Definition 2.22 (Relaxed Binding). A commitment scheme CM = (Setup, Commit, Open) satisfies
relaxed binding if for every PPT adversary A:

Pr

 m ̸= m′ ∧m, m′ ∈M∧
Open(crs, C, m, st, c) = 1 ∧
Open(crs, C, m′, st′, c′) = 1

∣∣∣∣∣∣∣
crs← Setup(1λ)(

C,
(m, st, c),
(m′, st′, c′)

)
← A(crs)

 = negl(λ) .

Definition 2.23 (Hiding). A commitment scheme CM = (Setup, Commit, Open) satisfies hiding if
for every (stateful) PPT adversary A:

Pr

b′ = b

∣∣∣∣∣∣∣∣∣
crs← Setup(1λ), (m0, m1)← A(crs)

b← {0, 1}
C, st← Commit(crs, mb)

b′ ← A(C)

 ≤ 1
2 + negl(λ) .

2.7 Polynomial Commitment Scheme

We also recall the notion of polynomial commitment schemes [KZG10]. Polynomial commitment
schemes extend commitments with the ability to prove evaluations of the committed polynomial.

Definition 2.24. Let PC = (Setup, Commit, Open, Eval, Verify) be a tuple of algorithms. PC is a
polynomial commitment scheme over a ring R with degree bound d and slack space S if:
• (Setup, Commit, Open) is a commitment scheme over

M :=
{

(f0, f1, . . . , fd) ∈ Rd+1 :
d∑

i=0
fiXi ∈ R[X]

}

with slack space S.
• Eval(crs, C, u, st)→ π takes a common reference string crs, a commitment C, an evaluation point

u ∈ R, auxiliary state st and outputs an evaluation proof π.
• Verify(crs, C, u, z, π)→ 0/1 takes a common reference string crs, a commitment C, an evaluation

point u ∈ R, a claimed image z ∈ R, an evaluation proof π, and outputs a bit indicating whether
π is a valid evaluation proof that the polynomial committed to in C evaluates to z at the point u.

We also consider a setting in which Eval and Verify are replaced with an interactive two-party protocol
between a prover and a verifier, and refer to that setting as an interactive polynomial commitment
scheme.

Additionally, we require that the evaluations procedure satisfy some additional properties that we
detail next. For simplicity, we give these definitions for non-interactive polynomial commitments,
the interactive variant follows similarly.

Definition 2.25 (Evaluation Completeness). We say that a polynomial commitment scheme
PC = (Setup, Commit, Open, Eval, Verify) satisfies completeness if for every polynomial f ∈ R≤d[X]
and any evaluation point u ∈ R:

Pr

 Verify(crs, C, u, f(u), π) = 0

∣∣∣∣∣∣∣
crs← Setup(1λ)

C, st← Commit(crs, f)
π ← Eval(crs, C, u, st)

 = negl(λ) .

26

Definition 2.26 (Knowledge Soundness). We say that a polynomial commitment scheme PC =
(Setup, Commit, Open, Eval, Verify) is knowledge sound with knowledge error κ if for all stateful PPT
adversaries P∗, there exists an expected PPT extractor E such that

Pr

b = 1 ∧
(

Open(crs, C, f, st, c) ̸= 1∨
f(u) ̸= z

)∣∣∣∣∣∣∣∣∣
crs← Setup(1λ)

(C, u, z, π)← P∗(crs)
b = Verify(crs, C, u, z, π)

(f, st, c)← EP∗(crs, C, u, z, π)

 ≤ κ(λ) .

Here, the extractor E has a black-box oracle access to the (malicious) prover P∗ and can rewind it
to any point in the interaction.

2.8 Interactive Proofs

Let R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a ternary relation. If (i,x,w) ∈ R, we say that i is an index,
x is a statement and w is a witness for x. We denote R(i,x) = {w : R(i,x,w) = 1}. In this work,
we only consider NP relations R for which a witness w can be verified in time poly(|i|, |x|) for all
(i,x,w) ∈ R.

A proof system Π = (Setup,P,V) for relation R consists of three PPT algorithms: the Setup
algorithm, prover P, and the verifier V. The latter two are interactive and stateful. We write
(tr, b)← ⟨P(i,x,w),V(i,x)⟩ for running P and V on inputs i,x,w and i,x respectively and getting
communication transcript tr and the verifier’s decision bit b. We use the convention that b = 0
means reject and b = 1 means accept the prover’s claim of knowing w such that (x,w) ∈ R. If tr
contains a ⊥ then we say that P aborts. Unless stated otherwise, we will assume that the first and
the last message are sent from a prover. Hence, the protocol between P and V has an odd number
of rounds. A Σ-protocol is a three-round protocol. Further, we say a protocol is public coin if the
verifier’s challenges are chosen uniformly at random independently of the prover’s messages.

We recall a few basic properties of interactive proof systems: completeness and knowledge
soundness.

Definition 2.27 (Completeness). A proof system Π = (Setup,P,V) for the relation R has statistical
completeness with correctness error ϵ if for all adversaries A,

Pr

b = 0 ∧ (i,x,w) ∈ R

∣∣∣∣∣∣∣
i← Setup(1λ)
(x,w)← A(i)

(tr, b)← ⟨P(i,x,w),V(i,x)⟩

 ≤ ϵ(λ) .

Definition 2.28 (Knowledge Soundness). A proof system Π = (Setup,P,V) for the relation R is
knowledge sound with knowledge error κ if there exists an expected PPT extractor E such that for
any stateful PPT adversary P∗:

Pr

b = 1 ∧ (i,x,w) ̸∈ R

∣∣∣∣∣∣∣∣∣
i← Setup(1λ)
(x, st)← P∗(i)

(tr, b)← ⟨P∗(i,x, st),V(i,x)⟩
w← EP∗(i,x)

 ≤ κ(λ) .

Here, the extractor E has a black-box oracle access to the (malicious) prover P∗ and can rewind it
to any point in the interaction.

27

2.9 Coordinate-Wise Special Soundness

We generalise the notion of special soundness in the following way. Let S be a set and ℓ ∈ N.
Namely, take two vectors x := (x1, . . . , xℓ), y := (y1, . . . , yℓ) ∈ Sℓ. Then, we define the following
relation “≡i” for fixed i ∈ [ℓ] as:

x ≡i y ⇐⇒ xi ̸= yi ∧ ∀j ∈ [ℓ]\{i}, xj = yj .

That is, vectors x and y have the same values in all coordinates apart from the i-th one. For ℓ = 1,
the relations boil down to checking whether two elements are distinct. Further, we can define the set

SS(S, ℓ, k) :=

{x1, . . . , xK} ⊆ (Sℓ)K :
∃e ∈ [K],∀i ∈ [ℓ],
∃J = {j1, . . . , jk−1} ⊆ [K] \ {e},
∀j ∈ J, xe ≡i xj

 ,

where K := ℓ(k − 1) + 1. To develop an intuition of the meaning of SS(S, ℓ, k), consider a set
X = {x1, . . . , xK} ∈ SS(S, ℓ, k). There is a “central” vector xe ∈ X such that for each coordinate of
xe, there are k − 1 other vectors in X that differ from xe only in that coordinate. In other words,
for each coordinate, there are k vectors in X that differ from each other only in that coordinate,
and xe is always one of them. As a simple example,

{(2, 0, 0), (0, 1, 0), (0, 0, 0), (0, 0, 5), (0, 0, 4), (0, 2, 0), (3, 0, 0)} ∈ SS(Z7, 3, 3)

– the “central” vector (0, 0, 0) differs in, and only in, each coordinate from two other vectors in the
set. Note that for ℓ = 1, this set simply contains k-sets of distinct elements in S.

We are ready to define the notion of coordinate-wise special soundness. We start with the case
for Σ-protocols.

Definition 2.29 (CWSS for Σ-protocols). Let Π = (Setup,P,V) be public-coin three-round in-
teractive proof system for relation R, and suppose the challenge space of V is C = Sℓ. We say
that Π is ℓ-coordinate-wise k-special sound if there exists a polynomial time algorithm that on
input an index i, statement x and ℓ(k − 1) + 1 accepting transcripts (a, ci, zi)i∈[ℓ(k−1)+1], with
{c1, . . . , cℓ(k−1)+1} ∈ SS(S, ℓ, k) and common first message a, outputs a witness w ∈ R(i,x).

Clearly, we obtain the standard k-special soundness property if ℓ = 1. Next, we extend this notion
to multi-round protocols via a tree of transcripts. For simplicity, we assume that in each round the
verifier picks challenge uniformly at random from the same challenge space Sℓ, which will be the
case for most of our protocols.

Definition 2.30 (CWSS for Multi-Round Protocols). Let Π = (Setup,P,V) be public-coin (2µ + 1)-
round interactive proof system for relation R, where in each round the verifier picks a uniformly
random challenge from Sℓ. A tree of transcripts is a set of K = (ℓ(k − 1) + 1)µ arranged in the
following tree structure. The nodes in the tree correspond to the prover’s messages and the edges
correspond to the verifier’s challenges. Each node at depth i has exactly ℓ(k − 1) + 1 children
corresponding to ℓ(k − 1) + 1 distinct challenges which, as a set of vectors, lie in SS(S, ℓ, k). Every
transcript corresponds to exactly one path from the root to a leaf node.

We say that Π is ℓ-coordinate-wise k-special sound if there is a polynomial time algorithm that
given an index i, statement x and the tree of transcripts, outputs a witness w ∈ R(i,x).

28

In this paper, we only focus on ℓ-coordinate-wise 2-special sound protocols, which we will call
ℓ-coordinate-wise special sound.

We prove in Section 7 that coordinate-wise special soundness implies knowledge soundness in
the interactive setting.

Lemma 2.31. Let Π = (Setup,P,V) be public-coin (2µ + 1)-round interactive proof system for
relation R and suppose the challenge space of V in each round is Sℓ. If Π is ℓ-coordinate-wise k-special
sound and (ℓ(k − 1))µ = poly(λ), then it is knowledge sound with knowledge error µℓ(k − 1)/|S|.

The resulting knowledge extractor runs the malicious prover (ℓ(k − 1) + 1)µ times in expectation.
Hence, in order to keep the knowledge extractor expected PPT, we need (ℓ(k − 1))µ = poly(λ).

The result can be easily extended to the case, where in each i-th round the challenges from the
verifier are picked from Sℓi for ℓi > 0. Then, the knowledge error becomes (ℓ1 + . . . + ℓµ)(k− 1)/|S|
and the extractor runs the malicious prover at most ∏µ

i=1(ℓi(k − 1) + 1) times.
Finally, using the exact methodology as in [AFK22], in Section 8 we show that coordinate-wise

special soundness implies (adaptive) knowledge soundness of the Fiat-Shamir transformed protocol
in the random oracle model.

Lemma 2.32 (Informal). Let Π = (Setup,P,V) be public-coin (2µ+1)-round interactive proof system
for relation R and suppose the challenge space of V in each round is Sℓ. If Π is ℓ-coordinate-wise
k-special sound and (ℓ(k − 1))µ = poly(λ), then the Fiat-Shamir transformation of Π is knowledge
sound in the random oracle model with knowledge error (Q + 1)µℓ(k− 1)/|S|, where Q is the number
of random oracle queries made by an adversary.

29

3 Power-BASIS Assumption
Our construction of the polynomial commitment will rely on a new lattice-based assumption
PowerBASIS which is a special case of the BASIS assumption13 introduced by Wee and Wu [WW23b].
We begin by adapting the latter assumption to the ring setting. Recall that Gn is a gadget matrix
with base δ as in Definition 2.13. We fix the prime modulus q ≡ 5 (mod 8) and set q̃ := ⌊logδ q⌋+ 1.
Definition 3.1 (BASIS). Let q, n, m, n′, m′, ℓ, N, σ, β be lattice parameters. Let Samp be a PPT
algorithm, which given a matrix A ∈ Rn×m

q , outputs a matrix B ∈ Rn′×m′
q along with auxiliary

information aux. We say the BASISn,m,n′,m′,N,q,ℓ,σ,β assumption holds w.r.t. Samp if for any PPT
adversary A:

Pr

 As = 0
0 < ∥s∥ ≤ β

∣∣∣∣∣∣∣
A← Rn×m

q , (B, aux)← Samp(A)
T← B−1

σ (Gn′)
s← A(A, B, T, aux)

 ≤ negl(λ) .

Intuitively, the BASIS assumption says that it is hard to find a short solution for A, even when given
a trapdoor for a matrix B related to A. The trapdoor allows the adversary to sample preimages of
B, and thus it is easy to break the assumption if B contains too much information about A, e.g.
when B = A.

Furthermore, we provide three concrete instantiations of the sampling algorithm Samp.
Definition 3.2 (BASIS Instantiations). We consider three concrete instantiations of the BASIS
assumption:

• StructBASISn,m,N,q,ℓ,σ,β: The sampling algorithm Samp(A) first generates a row a⊺ ← Rm
q and

sets
A⋆ :=

[
a⊺

A

]
∈ R(n+1)×m

q . (11)

Further, it samples Wi ← GL(n + 1,Rq) for all i ∈ [ℓ], and outputs

Bℓ :=

W1A⋆ −Gn+1
.

WℓA⋆ −Gn+1

 and aux := (W1, . . . , Wℓ) .

• PowerBASISn,m,N,q,ℓ,σ,β: Here, Samp(A) generates a row a⊺ ← Rℓ
q and sets A⋆ as in (11). Then,

it samples W← GL(n + 1,Rq), and outputs

Bℓ :=

W0A⋆ −Gn+1
.

Wℓ−1A⋆ −Gn+1

 and aux := W .

• PRISISn,m,N,q,ℓ,σ,β: Samp(A) samples a row a⊺ ← Rℓ
q and sets A⋆ as in (11). Then, it samples

w ← GL(1,Rq), and outputs

Bℓ :=

w0A⋆ −Gn+1
.

wℓ−1A⋆ −Gn+1

 and aux := w .

13BASIS stands for Basis-Augmented Shortest Integer Solution.

30

Informally, the StructBASIS variant corresponds to the structured version of the BASIS assumption
used to build functional commitments [WW23b]. PowerBASIS is the special case, where instead of
picking ℓ uniformly random invertible matrices Wi, one takes a single invertible matrix, and sets
Wi := Wi−1 for i ∈ [ℓ]. Finally, PRISIS is the instance where each Wi := wi−1In+1 for i ∈ [ℓ] and
w ∈ Rq is an invertible element.

Intuitively, StructBASIS seems to be the hardest variant to break out of the three since it carries
the least structure. Then, PowerBASIS should be an easier problem due to the very specific relation
between matrices Wi. Finally, PRISIS carries a lot of structure, since it introduces commutativity
between the matrices Wi and A⋆, i.e. wi−1A⋆ = A⋆(wi−1 · Im), which can somehow be useful for
the adversary to break the assumption.

Remark 3.3. To simplify reductions in the paper, we explicitly require the matrices Wi to be
invertible (unlike in [WW23b]). Note that this condition can be dropped by arguing that, depending
on the parameters q and N , with overwhelming probability a uniformly random matrix W is
invertible over Rq (cf. Lemma 2.3).

3.1 Hardness of BASIS for Low Dimensions

We analyse the relationship between the three newly introduced instantiations for the dimension
ℓ = 2. To this end, we analyse the following technical lemma which will be used in all our results of
this section. Intuitively, it says that if one can find a short solution to a specific linear equation,
then one can also build a BASIS trapdoor.

Lemma 3.4. Let n, m, N > 0 and α ≥ 1. Denote t = nq̃. Then, there exists an efficient
deterministic algorithm, that given as input a matrix A⋆ ∈ Rn×m

q , invertible W1, W2, H ∈ GL(n,Rq)
and two matrices T1, T2 ∈ Rm×t

q , which satisfy ∥(T1, T2)∥ ≤ α for i = 1, 2 and

W1A⋆T1 −W2A⋆T2 = HGn ,

outputs a tag H∗ ∈ GL(2n,Rq) and a G2n-trapdoor S for the matrix B defined as:

B :=
[
W1A⋆ 0 −G

0 W2A⋆ −G

]

with a tag H∗, where ∥S∥ ≤
√

2(α2 + t2N).

Proof. Define the following matrices:

S1,3 := G−1(W1A⋆T1 −HGn) = G−1(W2A⋆T2)
S2,3 := G−1(−W1A⋆T2 −HGn) = G−1(−W1A⋆T1).

Then, by construction we get:

[
W1A⋆ 0 −G

0 W2A⋆ −G

]T1 −T1
T2 −T2
S1,3 S2,3

 =
[
HG 0

0 HG

]
=
[
H 0
0 H

]
·
[
G 0
0 G

]
.

31

By setting

S :=

T1 −T1
T2 −T2
S1,3 S2,3

 and H∗ :=
[
H 0
0 H

]
,

we observe that S is a G2n-trapdoor for B with a tag H∗ and ∥S∥2 ≤ 2α2 + 2t2N , which concludes
the proof.

Our first result says that StructBASIS and PowerBASIS are equivalent for the dimension ℓ = 2.

Lemma 3.5 (StructBASIS ⇐⇒ PowerBASIS). Let n, N, β ≥ 1 and t := (n+1)q̃. Suppose m > t+n

and s > 2N · q
n+1
m−t

+ 2
N(m−t) . If σ0, σ1 satisfy the following inequalities:

σ0 ≥ δsN · ω(
√

t(m− t) log mN), σ1 ≥ δ
√

2tN(σ2
1m′ + t)N · ω(

√
log nN),

where m′ = 2m + t, then the following statements are true:

1. StructBASISn,m,N,q,2,σ0,β assumption holds under the PowerBASISn,m,N,q,2,σ1,β assumption.

2. PowerBASISn,m,N,q,2,σ0,β assumption holds under the StructBASISn,m,N,q,2,σ1,β assumption.

Proof. We only show the first statement since the other direction follows identically. Let A be a
PPT adversary for the StructBASISn,m,N,q,2,σ,β problem and suppose it wins with probability ϵ. We
provide a PPT algorithm B for solving PowerBASISn,m,N,q,2,σ,β which does the following. First, B is
given a tuple (A, B, T, W) where

B :=
[
A⋆ 0 −G
0 WA⋆ −G

]
and T :=

T1,1 T1,2
T2,1 T2,2
T3,1 T3,2

 .

First, we claim that the following probability is negligible:

ϵsmooth := Pr
[
σ0 < ηϵ(Λ⊥(B))

∣∣∣∣A⋆ ← R(n+1)×m
q

]
.

Indeed, note that by Lemma 2.15 we obtain:

Pr
[
σ0 < ηϵ(Λ⊥(B))

∣∣∣∣(A⋆, R)← TrapGen(n + 1, m)
]
≥ ϵsmooth − negl(λ) .

If (A⋆, R)← TrapGen(n + 1, m) then the following matrix R∗ is a G2n-trapdoor for B with a tag
H∗, where:

R∗ :=

R 0
0 R
0 0

 and H∗ :=
[
In+1 0

0 W

]
.

Moreover, ∥R∗∥ ≤ 2s
√

t(m− t)N with an overwhelming probability. If this is the case then by
assumption σ0 ≥ δ · ∥R∗∥ ·ω(

√
t(m− t) log mN). Then, by combining Lemma 2.14 with Lemma 2.2,

we obtain

negl(λ) = Pr
[
σ0 < ηϵ(Λ⊥(B))

∣∣∣∣(A⋆, R)← TrapGen(n + 1, m)
]
≥ ϵsmooth − negl(λ)

32

and thus σ0 ≥ ηϵ(Λ⊥(B)) with an overwhelming probability, where B is the matrix received by B.
Thus, we can apply Lemma 2.7 to deduce that with an overwhelming probability14∥∥∥∥∥

[
T1,1
T1,2

]∥∥∥∥∥ ≤ α := σ0
√

m′tN .

Further, by simple calculation we can deduce that

A⋆T1,1 −WA⋆T1,2 = G .

The reduction B now samples a uniformly random W1 ← GL(n + 1,Rq) and defines W2 := W1W.
Thus

W1A⋆T1,1 −W2A⋆T1,2 = W1G .

By applying Lemma 3.4, B can obtain a G2(n+1)-trapdoor S for

B′ :=
[
W1A⋆ 0 −G

0 W2A⋆ −G

]

with the tag H∗ := I2 ⊗W1 where ∥S∥ ≤
√

2(α2 + t2N) ≤
√

2tN(σ2
1m′ + t). Then, the algorithm

B runs T′ ← SamplePre(B′, S, G2(n+1), σ1). Finally, B sends (A, B′, T′, aux′ := (W1, W2)) to A
and returns what A outputs.

To argue correctness of the reduction, first note that aux′ and B′ are correctly generated. Further,
by assumption we have σ1 ≥ δ∥S∥ · ω(

√
N log nN) and thus by Lemma 2.16, the distribution of

SamplePre(B′, S, G2(n+1), σ1) is statistically close to B′−1
σ1 (G2(n+1)). Consequently, A outputs a

valid answer to B with probability ϵ− negl(λ). Finally, a valid solution for StructBASIS implies a
valid solution for PowerBASIS, which concludes the proof.

The next result focuses on the PRISIS variant. It turns out that the commutative property of the
assumption allows to reduce to standard assumptions.

Lemma 3.6 (PRISIS =⇒ MSIS). Let n > 0, m ≥ n and denote t = (n + 1)q̃. Let q = ω(N). Take
ϵ ∈ (0, 1/3) and s ≥ max(

√
N ln(8Nq) · q1/2+ϵ, ω(N3/2 ln3/2 N)) such that 210N q−⌊ϵN⌋ is negligible.

Let
σ ≥ δ

√
tN · (N2s2m + 2t) · ω(

√
N log nN).

Then, PRISISn,m,N,q,2,σ,β is hard under the MSISn,m,N,q,β assumption.

Proof. Suppose there is a PPT algorithm A which wins PRISISn,m,N,q,2,σ,β with probability ϵ. We
revisit the PRISIS security game and introduce a single game hop. The purpose of the hybrid
argument will be to plug in the NTRU trapdoor inside the auxiliary information w. We define εi to
be the probability that A wins Game i.

Game 1: This is the standard PRISIS security game. To recall, the challenger samples a ← Rm
q ,

A← Rn×m
q and sets A⋆ as in (11). Then, it generates an invertible element w ← R×q and computes

the matrix:
B :=

[
A⋆ 0 −G
0 WA⋆ −G

]
.

14We note that the bound is not tight.

33

where W := w ·In+1. Then, it samples T← B−1
σ1 (G2(n+1)) and outputs (A, B, T, w) to the adversary

A. By definition, ε1 = ϵ.

Game 2: In this game, we obtain w by running (w, TNTRU) ← NTRU.TrapGen(q, N, s) algorithm.
By Lemma 2.11, ε2 ≥ ε1 − 210N q−⌊εN⌋.

Suppose there is an adversary which wins Game2. We now show how to build a PRISIS trap-
door T given the Module-SIS matrix A and the NTRU trapdoor TNTRU. To this end, we will show
how to find short matrices S1, S2 such that:

A⋆S1 − wA⋆S2 = G .

Let gi be the i-th column of G. Assuming that A⋆ is full-rank (cf. Lemma 2.3) and using linear
algebra, we can find a (possibly large) vector t such that A⋆t = gi. Now, using the NTRU trapdoor
TNTRU (such that ∥T̃NTRU∥ ≤ Ns by Lemma 2.11) and the nearest plane algorithm [LLL82], we
can find vectors (s1,i, s2,i) ∈ Rm

q ×Rm
q such that:

s1,i − ws2,i = t and ∥(s1,i, s2,i)∥ ≤ Ns
√

mN/2.

Therefore
A⋆s1,i − wA⋆s2,i = A⋆(s1,i − ws2,i) = A⋆t = gi .

Thus, we obtain the matrices S1, S2 by concatenation where∥∥∥∥∥
[
S1
S2

]∥∥∥∥∥ ≤ α := Ns
√

mtN/2 .

Consequently, by Lemma 3.4, we can build a G2(n+1)-trapdoor S for B such that

∥S∥ ≤
√

2(α2 + t2N) =
√

tN · (N2s2m + 2t) .

Hence, the reduction B can construct the trapdoor S as above and then randomise the trapdoor for
B by running T← SamplePre(B, S, G2(n+1), σ). Finally it sends the tuple to A and returns what
it outputs. By Lemma 2.16, B wins the Module-SIS game with probability at least ε2 − negl(λ),
which concludes the proof.

3.2 Higher Dimensions

One could hope that the techniques to analyse hardness of the BASIS assumption can be translated
to higher dimensions. This could be promising especially for the PRISIS assumption, which we
managed to reduce to standard lattice assumptions for the ℓ = 2 case. Unfortunately, the reduction
falls flat when considering higher dimensions.

We showcase this for ℓ = 3. Following the approach for the smaller dimension, the goal is to
find short matrices S1, S2, S3 such that

A⋆S1 − wA⋆S2 = Z1

A⋆S2 − wA⋆S3 = Z2
(12)

34

for any Z1, Z2 given the NTRU trapdoor for w. If this is possible, we could set Z1 = G and Z2 = 0
which would give us:

A⋆S1 − wA⋆S2 = G
wA⋆S2 − w2A⋆S3 = 0.

Set S4 := G−1(A⋆S1 −G). Then, we have:

A⋆ 0 0 −G
0 wA⋆ 0 −G
0 0 w2A⋆ −G

S1
S2
S3
S4

 =

G
0
0

 .

We proceed similarly for

(Z1, Z2) = (−G, w−1G) and (Z1, Z2) = (0,−w−1G) .

Thus, we managed to build a G3(n+1)-trapdoor for B. What is left to do is to produce short
S1, S2, S3 which satisfy (12). To this end, consider the q-ary lattice

Λ =

(s1, s2, s3) :
[
1 −w 0
0 w −w2

]s1
s2
s3

 = 0 mod q

 .

Suppose we can build a short basis for Λ given the NTRU trapdoor for w. Let z1,i, z2,i be the i-th
column of Z1 and Z2. Now, assuming that A⋆ is full-rank, we can find (possibly large) t1 and t2
such that A⋆tj = zj,i for j = 1, 2. Now, using the short basis for Λ, we can sample short vectors
s1,i, s2,i, s3,i such that:

s1,i − ws2,i = t1

s2,i − ws3,i = t2.

Hence,

A⋆s1,i − wA⋆s2,i = A⋆(s1,i − ws2,i) = A⋆t1 = z1,i

A⋆s2,i − wA⋆s3,i = A⋆(s2,i − ws3,i) = A⋆t2 = z2,i.

Therefore, we obtain the matrices S1, S2, S3 by concatenation.
Unfortunately, we are only aware of the following two bases of Λ:w2 w 1

q 0 0
0 q 0

 and

u2 uv v2

ū2 ūv̄ v̄2

ūu ūv v̄v

 ,

where TNTRU := ((u, v), (ū, v̄)) is the short NTRU basis. Since ∥u∥, ∥v∥ ≈ √q, the latter basis
cannot have short coefficients. We leave further analysis of this approach for future work.

35

4 Power-BASIS Commitment Scheme
In this section we define a compressing commitment scheme which stems from the vector commitment
construction of Wee and Wu [WW23b]. We inherit a crucial property from the aforementioned work
that we support committing to arbitrarily large ring elements. Let ℓ := d + 1 be the length of the
committed vectors over Rq. Thus, the message space isM := Rd+1

q . We let γ, βs be the parameters
controlling the norm of various vectors. Further, we define the slack space as the vector of short
polynomials:

S := {(c0, . . . , cd) : ∀i ∈ [0, d], ci ∈ R×q ∧ ∥ci∥1 ≤ βs} .

Informally, we say that a slack is a single element c ∈ Rq if (c, . . . , c) ∈ S. Finally, we define t = nq̃
and G := Gn ∈ Rn×t

q .
We now give intuition on the construction, and provide a formal description in Figure 4. The

setup algorithm uses the TrapGen and SamplePre algorithms defined in Section 2.5. Namely, it
first generates the two matrices (A, R)← TrapGen(n, m) along with a uniformly random invertible
W ← GL(n,Rq). Then, AR = G, where ∥R∥ ≤ s

√
2t(m− t)N and s > 2N · q

n
m−t

+ 2
N(m−t) (c.f.

Lemma 2.6). Further, it computes Ri := RG−1(W−iG) for i = 0, 1, . . . , d. Note that

WiARi = WiARG−1(W−iG) = WiGG−1(W−iG) = G

and thus Ri is a G-trapdoor for WiA and by Lemma 2.2:

∥Ri∥ ≤ ∥R∥ ·N
√

nt ≤ sNt
√

2n(m− t)N.

Then, the algorithm computes the PowerBASIS matrix along with its trapdoor:

B :=

A −G
.

WdA −G

 , R̃ :=

R0

. . .
Rd

0

 . (13)

Indeed, one can check that BR̃ = Gn(d+1) and ∥R̃∥ ≤ sNt
√

2(d + 1)n(m− t)N . Finally, the setup
algorithm re-randomises the trapdoor R̃ by running

T← SamplePre(B, R̃, Gn(d+1), σ0) ,

and thus BT = Gn(d+1). Finally, the public parameters crs := (A, W, T) are returned.
Suppose we want to commit to a vector (f0, f1, . . . , fd) of length d + 1. To this end, we use crs

to compute
s0
...

sd

t̂

← SamplePre

A −G

.
WdA −G

 ,

−f0W0e1
...

−fdWde1

 , T, σ1

 .

By definition, this means that s0, s1, . . . , sd ∈ Rm
q and t := Gt̂ satisfy:

Asi + fie1 = W−it for i = 0, 1, . . . , d . (14)

36

PowerBASIS Commitment Scheme

Setup(1λ)

1. Sample (A, R)← TrapGen(n, m).
2. Sample W← GL(n,Rq)
3. Let Ri := RG−1(W−iG) for i ∈ [0, d].
4. Set

B :=

A −G
.

WdA −G

 , R̃ :=

R0

. . .
Rd

0

 .

5. Sample T← SamplePre(B, R̃, Gn(d+1), σ0).
6. Return crs := (A, W, T).

Commit(crs, f ∈ Rd+1
q)

1. Parse f := (f0, f1, . . . , fd)

2. Set u :=

−f0W0e1
...

−fdWde1

3. Sample

s0
...

sd

t̂

← SamplePre(B, u, T, σ1).

4. Set t := Gt̂.
5. Return (C := t, st := (si)i∈[0,d]).

Open(crs, C, f ∈ Rd+1
q , st, c ∈ Rd+1

q)

1. Parse f := (f0, f1, . . . , fd) and c := (c0, . . . , cd).
2. Parse C := t ∈ Rn

q and st := (si)d∈[0,d].
3. Return 1 if and only if for all i ∈ [0, d],

• Asi + fie1 = W−it.
• ∥cisi∥ ≤ γ.

Figure 4: PowerBASIS commitment scheme for arbitrary messages in the message space
M = Rd+1

q with the slack space S := {(c0, . . . , cd) : ∀i ∈ [0, d], ci ∈ R×q ∧ ∥ci∥∞ ≤ βs}. Here,
G ∈ Rn×nq̃

q is the gadget matrix of height n.

37

The commitment and the decommitment state are C := t and st := (si)i∈[0,d].
Finally, the opening function takes the public parameters crs, the commitment t, a message

vector f := (f0, . . . , fd), the decommitment state (si)i∈[0,d] and a relaxation factor (c0, . . . , cd) ∈ S,
and accepts if and only if (14) holds and ∥cisi∥ ≤ γ for all i = 0, 1, . . . , d.

4.1 Security Analysis

In the following, we show that the PowerBASIS commitment scheme satisfies completeness, relaxed
binding and hiding. As before, we assume q ≡ 5 (mod 8) is a prime.

Lemma 4.1 (Completeness). Suppose n, N, βs ≥ 1 and denote t := nq̃. Let m > t + n, m′ :=
m(d + 1) + nq̃, n′ := nq̃(d + 1) and t′ := max(n′, m′). Take s > 2N · q

n
m−t

+ 2
N(m−t) ,

σ0 ≥ δsNtω(
√

2(d + 1)n(m− t)N log t′N) and σ1 ≥ δσ0N · ω(
√

m′n′ log t′N) .

If γ ≥ σ1
√

m′N then the PowerBASIS commitment scheme satisfies completeness.

Proof. In the discussion above, we already showed that Equation (14) is true. We will show that
∥si∥ ≤ γ for all i, and thus we can pick the global relaxation to be (1, . . . , 1) ∈ S.

First, note that the matrix R̃ ∈ Rm′×n′
q satisfies ∥R̃∥ ≤ sNt

√
2(d + 1)n(m− t)N with high

probability by Lemma 2.8. Hence σ0 ≥ δ∥R̃∥ · ω(
√

N log t′N) for t′ = max(n′, m′) and thus we
can apply both Lemma 2.16 and Lemma 2.7 to deduce that with an overwhelming probability
∥T∥ ≤ σ0

√
m′n′N . Similarly, we have σ1 ≥ δ∥T∥ · ω(

√
N log t′N) and thus ∥si∥ ≤ σ1

√
m′N ≤ γ

with an overwhelming probability for all i = 0, 1, . . . , d, which concludes the proof.

Based on the parameters above, we would require σ0 = Õ(
√

d) and σ1 = Õ(d3/2), ignoring the
polynomial factors related to the security parameter.

Lemma 4.2 (Relaxed Binding). Let t = nq̃, m > t+n and n′ = nq̃(d+1). Take s > 2N ·q
n

m−t
+ 2

N(m−t) .
If σ0 ≥ δsNtω(

√
2(d + 1)n(m− t)N log n′N) then under the PowerBASISn−1,m,N,q,d+1,σ0,2βsγ as-

sumption, PowerBASIS commitment scheme satisfies relaxed binding.

Proof. Let A be an adversary for the relaxed binding game which succeeds with probability ϵ. We
prove the statement using an hybrid argument. We define εi to be the probability that A wins Game i.

Game 0: This is the standard relaxed binding game. By definition ε0 = ϵ.

Game 1: Here, we swap the SamplePre algorithm with sampling truly from a discrete Gaussian
distribution. Since σ0 ≥ δsNtω(

√
2(d + 1)n(m− t)N log n′N), we can argue as in Lemma 4.1 that

ε1 ≥ ε0 − negl(λ).

Game 2: In this game we do not run TrapGen anymore, but instead the matrix A ← Rn×m
q

is selected uniformly at random. By Lemma 2.6, we deduce that ε2 ≥ ε1 − negl(λ).

We claim that ε2 = negl(λ) under the PowerBASIS assumption. First, by definition of the PowerBASIS
assumption, our goal is to extract a short non-zero solution for the matrix A∗, where

A :=
[

a⊤
A∗

]
.

38

Denote the tuple A outputs as:

t, (f , (v0 . . . , vd), (c0, . . . , cd)), (f ′, (v′0 . . . , v′d), (c′0, . . . , c′d)).

By definition, whenever A wins, it must be that openings are valid and f ̸= f ′, which implies there
is at least an index j with fj ̸= f ′j . Thus, by subtracting the verification equations, we have that

A(vj − v′j) =

f ′j − fj

0
...
0

 .

Since f ′j − fj ̸= 0, this implies that v̄ := (vj − v′j) ̸= 0. Consequently, A∗v̄ = 0. Now, v̄ might not
be short. Hence, we consider cjc′jv̄ instead. Clearly, this is still a non-zero solution for A∗ since
cj , c′j are invertible. Further,

∥cjc′jv̄∥ ≤ ∥c′j(cjv)∥+ ∥cj(c′jv′)∥ ≤ 2βsγ .

Therefore, cjc′jv̄ is a valid solution to PowerBASIS.

Lemma 4.3 (Hiding). Suppose n, N ≥ 1 and denote t := nq̃. Let m > t + n, m′ := m(d + 1) + nq̃,
n′ := nq̃(d + 1) and t′ := max(n′, m′). Take

σ0 ≥ δsNtω(
√

2(d + 1)n(m− t)N log t′N),

σ1 ≥ δ ·max
(
log((d + 1)mN), σ0N · ω(

√
m′n′ log t′N)

)
.

Then, the PowerBASIS commitment scheme satisfies hiding.

Proof. Take an unbounded adversary A which wins the hiding game with probability ϵ. We prove
the statement via a sequence of games, where in each game we change the algorithm of Commit.
Let ϵi be the advantage of the adversary against Game i.

Game 1: This is the original hiding game where Commit is defined in Figure 4. For the pur-
pose of the proof, we assume Commit does not output st. Then, by definition ϵ1 = ϵ.

Game 2: In this game, Commit (inefficiently) samples
s0
...

sd

t̂

← B−1
σ1

−f0W0e1

...
−fdWde1

and outputs t := Gt̂. By our assumption on σ0, σ1 we can argue similarly as in Lemma 4.1 to
deduce that |ϵ2 − ϵ1| = negl(λ).

Game 3: Here we make use of the fact that B := [E | F] where

E :=

A
. . .

WdA

 and F :=

−G
...
−G

 .

39

Concretely, the Commit algorithm first samples t̂← DtN
σ1 , setst

...
t

 := Ft̂

and then generates s1
...

sd

← E−1
σ1

−f0W0e1

...
−fdWde1

−
t

...
t

 .

Finally, the algorithm outputs t.
By Lemma 2.5, there is a negligible function ε such that σ1 ≥ ηε(Λ⊥(E)). Further, by Lemma 2.3

the matrix A is full-rank (and so is E) with an overwhelming probability. Hence, we can apply
Lemma 2.9 to conclude |ϵ3 − ϵ2| = negl(λ).

Game 4: The Commit algorithm simply samples t̂← DtN
σ1 and outputs t := Gt̂. Clearly, there is no

difference between the outputs of Game 3 and 4, thus ϵ4 = ϵ3.

Finally, the output of Commit in Game 4 does not depend on the challenge messages m0, m1
from A. Hence, we get that ϵ4 = 1/2. By the hybrid argument we obtain ϵ = 1/2 + negl(λ), which
concludes the proof.

Efficiency. The main bottleneck of the Commit algorithm is the trapdoor sampling procedure,
which asymptotically takes O(d2) operations over Rq. On the other hand, the opening algorithm
makes O(d) operations in Rq.

Remark 4.4. Wee and Wu [WW23b] proposed an alternative approach, which allows for linear-time
commitment generation. This comes at the cost of (i) losing the hiding property, and (ii) the
message space inherently must only contain short vectors. Since both properties are important in
our polynomial commitment scheme, we do not describe the more efficient method in this work and
refer to [WW23b, Remark 4.12] for more details.

5 Efficient Proofs of Polynomial Evaluation
In this section we illustrate how to prove evaluations of a polynomial that is committed using the
PowerBASIS commitment scheme from Figure 4. We start by presenting a general framework for
proving polynomial evaluations in Section 5.1, and then we describe two distinct instantiations in
Sections 5.2 and 5.3. For clarity, we give an overview of frequently used parameters in Table 3. We
implicitly assume that lattice dimension parameters, such as n, m, N , are poly(λ).

5.1 Framework for Proving Evaluations

The main intuition can be described as follows. We design a relation that captures statements of
the form: “the commitment t has an opening f ∈ Rd+1

q (with respect to a given crs) such that
f(u) = v, where f ∈ R≤d

q [X] is now interpreted as polynomial”. The core observation is that there

40

Parameter Explanation
q proof system modulus
N degree of the cyclotomic ring R := Z[X]/(XN + 1)
l power-of-two such that q ≡ 2N/l + 1 (mod 4N/l)
d degree of the committed polynomial f ∈ Rq[X]
n height of the matrix A
m width of the matrix A
δ decomposition base of the gadget matrix G
q̃ ⌊logδ q⌋+ 1
n′ nq̃(d + 1)
m′ mq̃(d + 1) + nq̃
t′ max(n′, m′)
k folding factor of the folding protocol
h 2h + 1 is the number of rounds
β initial norm of the witness openings
w L1 norm of elements in the challenge space C
βC L∞ of elements in C (used in Section 5.3)
βh norm of the opening vectors sent in the last round
βs infinity norm of the extracted relaxation factors
γ extracted norm

Table 3: Overview of parameters and notation.

exists a Σ-protocol that interactively reduces an instance of that relation to a related one, in which
the size of the committed polynomial is decreased. This new relation is with respect to a different
common reference string, that can be efficiently computed from the previous one. We then exploit
this recursion to shrink to a commitment with a constant-size opening.

We formalise this discussion by introducing the opening relation below

Rd,β :=

((A, W), (t, u, z), (f, (si)i))
∣∣∣∣ f(u) = z
∀i ∈ [0, d], Asi + fie1 = W−it

∧∥si∥ ≤ β

 . (15)

We describe the Σ-protocol, upon which our main evaluation protocol is built, in Figure 5. Roughly
speaking, the prover divides the initial polynomial f of degree at most d into k polynomials g1, . . . , gk

of degree at most d′ := (d + 1)/k − 1 by writing

f(X) :=
∑
t∈[k]

Xt−1gt(Xk) . (16)

Then, it “commits” to the partial polynomials by providing their evaluations at the point u, say

41

zi := gi(uk). Thus, by construction

z = f(u) =
∑
t∈[k]

ut−1gt(uk) =
k∑

t=1
ztu

t−1 . (17)

Next, the verifier outputs a challenge (α1, . . . , αk)← C ⊆ Rk
q . Note that by considering the folded

polynomial g = ∑k
t=1 αtgt of degree at most d′, we obtain a new polynomial evaluation statement

about g:

g(uk) =
k∑

t=1
αtzt . (18)

The main strength of the PowerBASIS commitment from Figure 4 is that the commitment (resp.
openings) to g can be efficiently computed from the commitment t (resp. openings si) of f given
α1, . . . , αk in time O(k). This is the key idea for achieving succinct verification. Hence, the prover
outputs the polynomial g in the clear, along with its opening vectors. The verifier eventually checks
correctness of the openings with respect to the message g, as well as (17) and (18).

We first prove that this protocol transforms an instance of Rd,β into a smaller one of Rd′,β′ .

Lemma 5.1 (Completeness). Let Π := Σ[d, k, C, β] as in Figure 5. Then, Π is an interactive
protocol with perfect completeness for Rd,β.

Proof. Let (i,x,w) = ((A, W), (t, u, z), (f, (si)i∈[0,d])) ∈ Rd,β. Since f(u) = z, the first verification
check always succeeds by Equation (17). We are left to show that the new instance is valid. First,
g(uk) = ∑

t∈[k] αtgt(uk) = ∑
t∈[k] αtzt. Further, recall that for i ∈ [0, d′] and t ∈ [k] we have

st,i = ski+t−1 and gt,i = fki+t−1 ,

where gt,i is the i-th coefficient of the polynomial gt. Hence, the i-th coefficient of g satisfies
gi = ∑

t∈[k] αtgt,i = ∑
t∈[k] αtfki+t−1. Therefore,

Azi + gie1 = A

∑
t∈[k]

αtst,i

+

∑
t∈[k]

αifki+t−1

 · e1

=
∑
t∈[k]

αt (Aski+t−1 + fki+t−1e1)

=
∑
t∈[k]

αt

(
W−(ki+t−1)t

)

=

∑
t∈[k]

αtW−(ki+t−1)

 · t
= (Wk)−i

∑
t∈[k]

αtW−(t−1)

 · t.

Finally, by Lemma 2.1 for α ∈ C, ∥zi∥ ≤
∑

t∈[k]∥αtst,i∥ ≤
∑

t∈[k]∥αt∥1 · β ≤ w β where w :=
maxα∈C∥α∥1. This shows that the new instance is in Rd′,β′ , and thus the verifier accepts.

42

Σ-Protocol for Rd,β

Prover Verifier∑
t∈[k]

Xt−1gt(Xk) =: f(X)

zt := gt(uk) for t ∈ [k]

(zt)t∈[k]

α← C ⊆ Rk
q

α

g :=
∑
t∈[k]

αtgt

zi :=
∑
t∈[k]

αtst,i for i ∈ [0, d′]

g, (zi)i∈[0,d′]

β′ := w β

t′ :=

∑
t∈[k]

αtW−(t−1)

 · t
i
′ := (A, Wk)

x
′ :=

t′, uk,
∑
t∈[k]

αtzt

w

′ := (g, (zi)i∈[0,d′])
Check:

z =
∑
t∈[k]

ut−1zt

(i′,x′,w′) ∈ Rd′,β′

Figure 5: The Σ-protocol Σ[d, k, C, β] for relation Rd,β in Equation (15). Here, d′ :=
(d + 1)/k − 1, w := maxα∈C∥α∥1 and st,i := ski+t−1 for i ∈ [0, d′] and t ∈ [k].

43

We now apply the Σ-protocol recursively h times, reducing the final opening size to (d + 1)/kh,
while increasing the final norm for verification by a factor wh.

Construction 5.2. Let k, h be integers, and let C ⊆ Rk
q . We let Eval[d, k, h, C, β] := (P,V) be the

protocol that we describe in Figure 6.

Completeness of the protocol is easily shown by applying Lemma 5.1 h times.

Lemma 5.3 (Completeness). Let Π := Eval[d, k, h, C, β]. Then, Π is an interactive protocol with
perfect completeness for Rd,β.

Proof. Denote by (ir,xr,wr) := ((A, Wr), (tr, ur, zr), (fr, (sr,i)i∈[dr])) for r ∈ [h]. By Lemma 5.1,
(ir,xr,wr) ∈ Rdr,βr implies (ir+1,xr+1,wr+1) ∈ Rdr+1,βr+1 with probability 1. Since (i0,x0,w0) ∈
Rd,β0 , then (ih,xh,wh) ∈ Rdh,βh

, and thus the verifier final checks accept.

Remark 5.4. The protocol that we have described has folding factor k constant across every round
of interaction. In fact, we can gain more flexibility by allowing each round to use a different folding
factor. This can be beneficial, for example, to obtain a constant polynomial in the last round of the
protocol when the original degree is not a h-power.

We analyse the communication complexity of Eval[d, k, h, C, β] in the next lemma.

Lemma 5.5 (Efficiency). The total communication complexity of Eval[d, k, h, C, β] (in bits) can be
bounded by

h · (kN⌈log q⌉+ ⌈log |C|⌉) + d + 1
kh

(
N⌈log q⌉+ mN⌈log(2 wh β)⌉

)
.

Further, the prover makes O(md) operations in Rq while the verifier makes O
(
(n + m)2(hk + d/kh)

)
operations in Rq.

Proof. In each round the prover sends k elements of Rq to the verifier, and the verifier sends 1
element of C. In the final round, the prover sends a polynomial with dh = (d + 1)/kh coefficients,
and dh + 1 opening vectors, each of which has norm at most βh.

We turn to the prover complexity and first consider Step 2. Every r-th round out of [h], the
prover makes O(mkdr) = O(mdr−1) operations in Rq. Since d0 = O(d) and in general dr = O(d/kr),
the total runtime of the prover can be bounded by

O

(
h−1∑
r=0

mdr

)
= O

(
m

h−1∑
r=0

d/kr

)
= O

(
md · 1− 1/kh

1− 1/k

)
= O(md) .

We move to the verifier analysis. In Step 2, for every round r ∈ [h], the verifier makes at most
O(kn2) operations. Hence, the total cost of Step 2 is O(hkn2). The rest of the algorithm takes
O(dh(nm + n2)) steps. Thus, the total runtime can be bounded by O

(
(n + m)2(hk + d/kh)

)
ring

operations.

Next, we provide two instantiations of the protocol in Figure 6 which will differ in the selection of
the challenge space C. This has direct impact on the knowledge extraction strategy.

44

Interactive Protocol for Rd,β

P((A, W), (t, u0, z0), (f0, (s0,i)i∈[0,d]))
1. Set d0 := d.
2. For r ∈ [h]:

(a) Set dr := (dr−1 + 1)/k − 1.
(b) Write fr−1(X) := ∑

t∈[k] Xt−1fr−1,t(Xk) for fr−1,1, . . . fr−1,k ∈ R≤dr
q [X].

(c) Set zr−1,t := fr−1,t(uk
r−1) for t ∈ [k].

(d) Send (zr−1,t)t∈[k] to the verifier.
(e) Receive αr from the verifier.
(f) Compute fr := ∑

t∈[k] αr,tfr−1,t.
(g) Compute sr,i := ∑

t∈[k] αr,tsr−1,ki+t−1 for i ∈ [0, dr].
(h) Compute ur := uk

r−1.
3. Send (fh, (sh,i)i∈[0,dh]) to the verifier.

V((A, W0), (t0, u0, z0))
1. β0 := β.
2. For r ∈ [h]:

(a) Receive (zr−1,t)t∈[k] from the prover.
(b) Check zr−1 = ∑

t∈[k] ut−1
r−1zr−1,t.

(c) Sample αr ← C and send it to the prover.
(d) Set Wr := Wk

r−1.
(e) Set tr :=

(∑
t∈[k] αr,tW−(t−1)

r−1

)
· tr−1.

(f) Set βr := w ·βr−1.
(g) Set ur := uk

r−1.
(h) Set zr := ∑

t∈[k] αr,tzr−1,t.
3. Receive (fh, (sh,i)i∈[0,dh]) from the prover.
4. Check:

(a) fh(uh) = zh.
(b) Ash,i + fh,ie1 = W−i

h th for i ∈ [0, dh].
(c) ∥sh,i∥ ≤ βh for i ∈ [0, dh].

Figure 6: The protocol Eval[d, k, h, C, β] for Rd,β. As before, we denote w := maxα∈C∥α∥1.

45

5.2 Monomial Protocol

In the following, we describe a so-called monomial variant of the protocol, where the name comes
from the description of the challenge space C. Fix k := 2, and C := {1}× {Xi : i ∈ Z}. Note that by
definition w = 2, and α, α′ ∈ C with α ̸= α′ implies that α2 − α′2 ∈ R×q . In this section, we also
assume that 2 ∈ R×q (which can be enforced if gcd(2, q) = 1).

We aim to show that Π := Eval[d, 2, h, C, β] is 2-special sound. In fact, we will not be able to
show this exactly, as the extraction will introduce some slack. Rather we show that Π is special
sound for the relaxed opening relation that we describe next:

R̃d,c,γ :=

(
(A, W), (t, u, z), (f, (si)i∈[0,d])

) ∣∣∣∣ ∀i ∈ [0, d], Asi + fie1 = W−it ∧
∧ c ∈ R×q ∧ ∥c · si∥ ≤ γ

∧ f(u) = z

 . (19)

We will directly show that Eval is special sound, which also implies special soundness of the Σ-
protocol by noting that the two protocols are equivalent when h = 1. To argue soundness we will
first prove that there exists an extractor that is able to extract witnesses of the higher layer of the
transcript tree from the children.

Lemma 5.6 (Special Soundness for Σ). Let c ∈ R×q , and let i = (A, W), x = (t, u, z). There exists
an algorithm that, given two transcripts trj of the following form

trj :=
(
(z1, z2), αj := (1, αj) ∈ C,w′j := (gj , (zj,i)i)

)
for j = 0, 1

where α0 ̸= α1, outputs w := (f̄ , (s̄i)i). Furthermore, let d′, i′, x′0,x′1 be obtained as in Figure 5. If,
for i ∈ {0, 1}, (i′,x′i,w′i),∈ R̃d′,c,β, and z = z1 + uz2, then (i,x,w) ∈ R̃d,2c,γ where γ := 2Nβ.

Proof. Consider the following algorithm:

E(tr0, tr1):
1. Set s̄2i := α1z0,i−αz1,i

α1−α0
, s̄2i+1 := z0,i−z1,i

α0−α1
for i ∈ [0, (d− 1)/2].

2. Set f̄1 := α1g0−α0g1
α1−α0

, f̄2 := g0−g1
α0−α1

.
3. Set f̄ := f1(X2) + Xf̄2(X2).
4. Return f̄ , (s̄i)i∈[0,d].

Let now (f̄ , (s̄i)i)← E(tr). Note that

As̄2i + f̄2ie1 = W−2it
As̄2i+1 + f̄2i+1e1 = W−(2i+1)t .

Now, we have that:

f̄(u) = f̄1(u2) + uf̄2(u2)

= α1g0(u2)− α0g1(u2)
α1 − α0

+ u
g0(u2)− g1(u2)

α0 − α1
= z1 + uz2

= z .

46

Finally, we set c∗ := 2c. First, note that c∗ ∈ R×q since 2 ∈ R×q . Now, for i ∈ [0, d′], we have:

∥c∗ · s̄2i∥ =
∥∥∥∥ 2

α1 − α0
· c · (α1z0,i − α0z1,i)

∥∥∥∥
≤
∥∥∥∥ 2

α1 − α0

∥∥∥∥
∞
∥c(α1z0,i − α0z1,i)∥1

= ∥c(α1z0,i − α0z1,i)∥1
≤
√

N(∥α1cz0,i∥+ ∥α0cz1,i∥)
≤ N(∥α1∥ · ∥cz0,i∥+ ∥α0∥ · ∥cz1,i∥)
≤ 2Nβ = γ

where the second equality follows by Lemma 2.17 and the last inequality by ∥α∥ = 1 for (1, α) ∈ C.
Similarly, ∥c∗ · s̄2i+1∥ ≤ γ.

Using this extractor, we show that Π is (2, . . . , 2)-special sound. The new extractor will start
from the leaves of the tree of transcripts, applying the extractor described in Lemma 5.6 to obtain
witnesses 15 for the upper layer.

Lemma 5.7 (Special Soundness for Eval). Let C := {1}×{Xi : i ∈ Z} and let Π := Eval[d, 2, h, C, β]
be as in Construction 5.2. Set γ := (2N)h · βh. Then Π is a special sound proof system for R̃d,2h,γ.

Proof. Let tr be a tree of transcripts, which we index as follows.

• α(r,j) for (r, j) ∈ [h]× [2r] is the j-th challenge in the r-th layer of the transcript.

• (z(r,j),1, z(r,j),2) for (r, j) ∈ [0, h− 1]× [2r] is the j-th response in the r-th layer of the transcript.

• (f̄(h,j), (s̄(h,j),i)i) for j ∈ [2h] is the final message sent by the prover.

We introduce the following notation as in the verifier algorithm:

• d0 := d, dr := dr−1/2 for r ∈ [h]

• W0 := W, Wr := W2
r−1 for r ∈ [h].

• t(0,1) := t, t(r,2j−1) := (1 + α(r,2j−1)W−1
r−1)t(r−1,j), t(r,2j) := (1 + α(r,2j)W−1

r−1)t(r−1,j) for (r, j) ∈
[h]× [2r].

• β0 := β, βr := 2N · βr−1 for r ∈ [h].

• u0 := u, ur := u2
r−1 for r ∈ [h].

• z(r,2j−1) := z(r−1,j),1+α(r,2j−1)z(r−1,j),2, z(r,2j) := z(r−1,j),1+α(r,2j)z(r−1,j),2 for (r, j) ∈ [h]×[2r−1].

Denote with E(1) the extractor of Lemma 5.6.

E(tr):
1. Set d0 := d, dr := dr−1/2 for r ∈ [h].
2. For r := h, . . . , 1:

15We also implicitly collect the corresponding relaxation factors, which are the same across the same layer.

47

(a) Set, for j ∈ [2r−1],

tr(r−1,j) :=
(

(z(r−1,j),1, z(r−1,j),2), α(r,2j−1), (f̄(r,2j−1), (s̄(r,2j−1),i)i)
α(r,2j), (f̄(r,2j), (s̄(r,2j),i)i)

)
.

(b) Compute f̄(r−1,j), (s̄(r−1,j),i)i∈[0,dr−1] ← E(1)(tr(r−1,j)) for j ∈ [2r−1]
3. Return f̄(0,1), (s̄(0,1),i)i∈[d].

We prove that this extractor yields a valid witness by induction on r. First note that, by the verifier
checks, for (r, j) ∈ [h]× [2r]

z(r−1,j) = z(r−1,j),1 + ur−1z(r−1,j),2 .

Write i(r,j) := (A, Wr), x(r,j) := (t(r,j), u(r,j), z(r,j)), w(r,j) := (f̄(r,j), (s̄(r,j),i)i) for (r, j) ∈ [h]× [2r].
For r = h, since the transcripts are accepting, (i(h,j),x(h,j),w(h,j)) ∈ Rdh,βh

= R̃dh,1,βh
for j ∈ [2h].

Thus, by Lemma 5.6, (i(h−1,j),x(h−1,j),w(h−1,j)) ∈ R̃dh−1,2,2Nβh
.

We can continue with the induction, and this yields that for the extracted witness w(0,1) :=
(f̄(0,1), (s̄(0,1),i)i∈[d]) we have that:

(i(0,1),x(0,1),w(0,1)) ∈ R̃d,2h,(2N)hβh
.

Setting γ := (2N)hβh, and noting that 2h ∈ R×q , this concludes our proof.

We can use Eval to construct a polynomial commitment scheme. We detail the construction in
Theorem 5.8 and summarise the parameters and efficiency features in Table 4.

Theorem 5.8. Let PC = (Setup, Commit, Open,Pt,Vt) where Setup, Commit, Open are as in Figure 4
and Pt,Vt are the t-parallel repetitions of the prover and verifier of Eval. Then PC is an interactive
polynomial commitment scheme with the efficiency properties and parameters shown in Table 4. In
particular, when h = O(log d) and t > λ

log N+1−log h we obtain an interactive polynomial commitment
scheme with negligible knowledge soundness error, polylogarithmic communication complexity, and
polylogarithmic verifier time.

Proof. Completeness and relaxed binding follow from Lemmata 4.1 and 4.2. Perfect evaluation
completeness follows from Lemma 5.1. For evaluation knowledge soundness, we apply [AF22,
Theorem 4] to Lemma 5.7. Communication complexity follows from Lemma 5.5. Additionally,
claims about the prover and verifier runtime hold by Lemma 5.5 and the fact that both log q and N
are polynomial in λ.

5.3 Large Sampling Set

We present a second instantiation which allows us to obtain negligible knowledge soundness error
without parallel repetition, using coordinate-wise special soundness (c.f. Section 2.9) and a large
challenge space. We let t, k ∈ N. Fix also βC > 0. Recall that Sκ := {α ∈ Rq : ∥α∥∞ ≤ κ}. We
define the challenge space and the slack space as

C := Sk
βC and St :=

∏
i∈[t]

αi − α′i : αi, α′i ∈ SβC , αi ̸= α′i

 .

48

Parameters Instantiation
m ≥ n(1 + q̃)
l N/2
δ q1/O(1)

s > 2Nq
n

m−nq̃
+ 2

N(m−nq̃)

σ0 ≥ δsNnq̃ · ω(
√

2(d + 1)n(m− nq̃)N log t′N)
σ1 ≥ δσ0N · ω(

√
m′n′ log t′N)

β ≥ σ1
√

m′N

k 2
C {1} × {Xi : i ∈ Z}
w 2
βh wh ·β
γ (2N)h · βh

βs 2h

Soundness
(

h
2N

)ℓ

Commitment size nN log q

Communication complexity ℓ ·
(

h(2N log q + log N + 1)+
d+1
2h (N log q + mN log βh)

)
Prover time O(ℓ ·md)
Verifier time O(ℓ · (n + m)2 · (2h + d/2h))

Table 4: Parameters for the interactive polynomial commitment scheme obtained from Figure 4
and running the ℓ-parallel repetition of Eval[d, 2, h, C, β] for proofs of evaluation. We compute
the prover and verifier runtime in terms of operations in Rq.

Note that |C| = (2βC+ 1)kN and w ≤ βCkN . We also let βs,t := maxc∈St ∥c∥∞. Note that, for c ∈ St,

∥c∥∞ ≤
∥∥∥∥∥∏

i

(αi − α′i)
∥∥∥∥∥
∞

≤
∥∥α1 − α′1

∥∥
∞ ·

∏
i ̸=1

∥∥αi − α′i
∥∥

1 ≤ 2βC · (2βCN)t−1 ,

and thus ∥c∥1 ≤ (2βCN)t.
We show a simple invertibility result that will be useful in the proof of soundness.

Lemma 5.9. Let 1 ≤ l < N be a power of two, and suppose that q ≡ 2N/l + 1 (mod 4N/l). If
2βC <

√
l/Nql/N , then for any t ≥ 1, St ⊆ R×q .

Proof. Let α ̸= α′ ∈ SβC . Then, α − α′ ≠ 0, and ∥α− α′∥∞ ≤ 2βC. Thus, by Lemma 2.18,
α − α′ ∈ R×q . Elements of St are products of elements of that form, and since the product of
invertible elements is itself invertible, the result follows.

We will assume thereafter that we are in the regime in which Lemma 2.18 holds (as in Table 3).
We again aim to show that Eval[d, k, h, C, β] is knowledge sound. As before, we define an opening

relation, which will differ from Equation (19) in that the relaxation factors will not be the same
across openings, but rather will be included as part of the witness. This will reflect the fact that
the extracted opening will have different slack derived from the challenges.

49

R̃d,β,t :=

((A, W), (t, u, z), (f, (si)i, (ci)i))

∣∣∣∣∣∣∣
∀i ∈ [0, d], Asi + fie1 = W−it ∧

∧ci ∈ St ∧ ∥ci · si∥ ≤ β
∧ f(u) = z

 . (20)

As before, to argue that the protocol is knowledge sound, we will first show an extractor to be used to
move between layers of the transcript tree. In this case however, we will argue using coordinate-wise
special soundness instead of special soundness.

Lemma 5.10 (Coordinate-Wise Special Soundness for Σ). Let c ∈ R×q , and let i = (A, W),
x = (t, u, z). There exists an algorithm that, given k + 1 transcripts (trj)j∈[0,k] of the following form:

trj :=

 (z1, . . . , zk)
αj

(gj , (sj,i)i∈[0,d′])

 with (αj)j ∈ SS(SβC
, k) ,

and slack (cj,i)j,i outputs w := (f̄ , (s̄i)i, (c̄i)i). Furthermore, let i′, (x′j)j∈[k] be obtained as in
Figure 5 (where x′j is obtained from the j-th leaf of the transcript) and w

′
j := (gj , (sj,i)i, (cj,i)i). If,

for i ∈ [0, k], (i′,x′i,w′i),∈ R̃d′,β,t, and z = ∑
t∈[k] ut−1zt, then (i,x,w) ∈ R̃d,γ,2t+1 where γ := 2β if

t = 0 and γ := 2Nβs,tβ otherwise.

Proof. Assume, without loss of generality, that the transcripts are arranged so that, for j ∈ [k],
α0 ≡j αj . We thus can write α0 = (α1, . . . , αk) and αj := (α1, . . . , α′j , . . . αk) with αj ̸= α′j .
Consider the extractor

E(tr = (tr0, . . . , trk), (c̃j,i)j,i):
1. For j ∈ [k]:

(a) Set f̄j := g0−gj

αj−α′
j
.

(b) For i ∈ [0, d′]:
i. Set s̄ki+j−1 := z0,i−zj,i

αj−α′
j

.
ii. Set c̄ki+j−1 := (αj − α′j)c0,icj,i.

2. Set f̄ := ∑
j∈[k] Xj−1f̄j(Xk).

3. Return (f̄ , (s̄i)i∈[0,d]), (c̄i)i∈[0,d].

Since the transcript is accepting, for j ∈ [0, k], i ∈ [0, d′] we have that

Azj,i + gj,ie1 = (Wk)−i

∑
t∈[k]

αj,tWt−1

 t .

Subtracting the equation for j = 0 from the equation for j ∈ [k] yields that, for i ∈ [0, d′]:

A
(

z0,i − zj,i

αj − α′j

)
+
(

g0,i − gj,i

αj − α′j

)
e1 = W−(ki+j−1)t .

To show that the extracted f̄ evaluates to z at u, note that:

f̄(u) =
∑

j∈[k]
uj−1f̄j(uk)

50

=
∑

j∈[k]
uj−1 g0(uk)− gj(uk)

αj − α′j

=
∑

j∈[k]
uj−1

∑
t∈[k](α0,t − αj,t)zt

αj − α′j

=
∑

j∈[k]
uj−1zj = z .

Where in the third equality we have used that the verifier check accepts, and for the fourth∑
t∈[k](α0,t − αj,t)zt = (αj − α′j)zj . We argue that the extracted s̄i are (relaxed) short.

∥c̄ki+j−1 · s̄ki+j−1∥ =
∥∥∥∥∥(αj − α′j)c0,icj,i

z0,i − zj,i

αj − α′j

∥∥∥∥∥
= ∥c0,icj,i(z0,i − zj,i)∥
≤ ∥cj,ic0,iz0,i∥+ ∥c0,icj,izj,i)∥
≤
√

Nβs,t(∥c0,iz0,i∥1 + ∥cj,izj,i∥1)
≤ 2Nβs,tβ = γ .

If t = 0, then the slacks must have been 1, and thus ∥c̄ki+j−1s̄ki+j−1∥ ≤ ∥z0,i − zj,i∥ ≤ 2β as desired.
Finally, what is left to show is that the new slack is in the prescribed slack space. This is easy to
show as the previous two slacks are a product of t differences of challenges, that we then multiply
with a new difference, leading to a product of 2t + 1 differences of challenges. Lemma 5.9 guarantees
that this new slack is invertible as long as βC is small enough.

We then use this extractor recursively to show that Eval is coordinate-wise special sound.

Lemma 5.11 (Coordinate-Wise Special Soundness for Eval). Let k, h ∈ N, βC > 0. Let Π :=
Eval[d, k, h, C, β] be as in Construction 5.2. Then, Π is a k-coordinate-wise special sound proof
system for the relation R̃d,γ,t where

γ := 2h · (2βCN)2h−h−1 · βh

t := 2h − 1 .

Proof. We index the transcript as in Lemma 5.7. Denote by E(1) the extractor of Lemma 5.10.
Consider the new extractor
E(tr):

1. Set c̄(h,j) = 1 for j ∈ [(k + 1)h].
2. For r := h, . . . , 1:

(a) Set for j ∈ [(k + 1)r−1]:

tr(r−1,j) :=

(z(r−1,j),t)t∈[k]

(α(r,(j−1)(k+1)+1), (f̄(r,(j−1)(k+1)+1), (s̄(r,(j−1)(k+1)+1),i)i))
...

(α(r,j(k+1)), (f̄(r,j(k+1)), (s̄(r,j(k+1)),i)i))

 .

(b) Compute (f̄(r−1,j), (s̄(r−1,j),i)i, (c̄(r−1,j),i)i)← E(1)(tr(r−1,j), (c̄(r,(j−1)(k+1)+t),i)t,i).

51

3. Return f̄(0,1), (s̄(0,1),t), (c̄(0,1),t)t.
We argue that the extractor yields a valid witness inductively. We again note that for (r, j) ∈
[h]× [(k + 1)r], since the transcripts are accepting,

z(r−1,j) =
∑
t∈[k]

uk−1
r−1z(r−1,j),t .

Write i(r,j) := (A, Wr), x(r,j) := (t(r,j), ur, (z(r,j),i)i) and w(r,j) := (f̄(r,j), (s̄(r,j),i)i, (c̄(r,j),i)i). Since
the leaves are accepting (and the relaxed relation is equivalent to the exact one when the relaxation
factors are one), (i(h,j),x(h,j),w(h,j)) ∈ R̃dh,βh,0. Thus, Lemma 5.10 (in the case t = 0) implies that
(i(h−1,j),x(h−1,j),w(h−1,j)) ∈ R̃dh−1,2βh,1. Now, we define the recurrence relations:

tr :=
{

1 if r = 1
2tr−1 + 1 otherwise

and γr :=
{

2β if r = 1
2Nβs,tr−1γr−1 otherwise

.

Lemma 5.10 implies exactly that, if (i(r,j),x(r,j),w(r,j)) ∈ R̃dr−i,γr,tr , then the extracted witness
(i(r+1,j),x(r+1,j),w(r+1,j)) ∈ R̃dk−r−1,γr+1,tr+1 . Unfolding the recurrence relations, we note that
tr = 2r − 1 and

γr = 2rN r−1
(

r−1∏
i=1

βs,ti

)
βh

≤ 2rN r−1
(

r−1∏
i=1

2βC(2βCN)2i−2
)

βh

= 2rN r−1(2βC)r−1(2βCN)
∑r−1

i=1 2i−2 · βh

= 2jN r−1(2βC)r−1(2βCN)2r−2r · βh

= 2r(2βCN)2r−r−1 · βh

Taking this to its natural conclusion:

(i(0,1),x(0,1),w(0,1)) ∈ R̃d,γh,th
,

and setting γ := γh, t := th implies the result.

Again, we can use Eval to construct a polynomial commitment scheme.

Theorem 5.12. Let PC = (Setup, Commit, Open, Eval, Verify) where Setup, Commit, Open are as in
Figure 4 and Eval, Verify are obtained by applying the Fiat-Shamir transform to Eval[d, k, h, C, β]
when kh = poly(d). Then, PC is an polynomial commitment scheme with the efficiency properties
and parameters shown in Table 4.

Proof. Completeness and relaxed binding follow from Lemmata 4.1 and 4.2. Perfect evaluation
completeness follows from Lemma 5.1. Communication complexity and runtimes follow from
Lemma 5.5. Knowledge soundness follows from Lemma 2.31 and Lemma 5.11, noting that when
kh = poly(d) and thus the extractor runs in expected polynomial time.

52

Parameters Instantiation
m ≥ n(1 + q̃) + ω(log λ)
l N/2
δ q1/O(1)

s > 2Nq
n

m−nq̃
+ 2

N(m−nq̃)

σ0 ≥ δsNnq̃ · ω(
√

2(d + 1)n(m− nq̃)N log t′N)
σ1 ≥ δσ0N · ω(

√
m′n′ log t′N)

β ≥ σ1
√

m′N

C Sk
βC

βC < 1
2
√

l/Nql/N

w kNβC
βh wh ·β
γ 2h · (2βCN)2h−h−1 · βh

βs (2βCN)2h−1

Soundness (Q+1)·hk
(2βC+1)N

Commitment size nN log q

Proof size h(kN log q) + d+1
kh (N log q + mN log βh)

Prover time O(md)
Verifier time O((n + m)2 · (hk + d/kh))

Table 5: Parameters for the polynomial commitment scheme obtained from Figure 4 and
the Fiat-Shamir transform of Eval[d, k, h, C, β] for proofs of evaluation. We let Q be an upper
bound on the number of queries an adversary can make to the random oracle.

At this point, one might be tempted to instantiate the scheme in Theorem 5.12 with h = O(log d)
and k = O(1) to obtain a protocol with logarithmic communication complexity as in Theorem 5.8
and small soundness error. This unfortunately does not succeed, as the extracted norm in this case
grows exp(d) and thus log q ≥ poly(d). The resulting protocol will communicate logarithmically
many elements of Rq, but the overall communication complexity will thus be polynomial in d. Thus,
h must be at most O(log log d). In fact, let 0 < ϵ < 1 be a constant and set h = 1/ϵ = O(1), k = dϵ.
It is easy to see from Table 5 that then the communication complexity will be O(d1/ϵ) elements
of Rq and we can set log q = polylog(d) to obtain overall sublinear communication complexity.
Accordingly, the verifier time will also be sublinear. In fact, we can further improve on this. Set
now h ≈ log log d, and k ≈ d1/ log log d. It can be easily verified that in this case we obtain

log q = O

(
log2 d

log log d

)
,

and in terms of communication complexity: O((log log d) · d1/ log log d) elements of Rq or polylog(d) ·
d1/ log log d bits (similarly for the verifier complexity). As such, we can conclude that Theorem 5.12
gives rise to a quasi-polylogarithmic non-interactive polynomial commitment scheme from lattice
assumptions.

53

5.4 Batching Evaluations

5.4.1 Multiple Evaluations at a Single Point

We show a simple approach to amortise the cost of proving evaluations of multiple evaluations at
a single point. More concretely, we have a list of (committed) polynomials f1, . . . , fr and want to
show that fi(u) = zi. First we define the corresponding relation, namely:

Rr
d,β :=

{
(A, W), ((tj)j , u, (zj)j), ((fj)j , (sj,i)j,i)

∣∣∣∣∣ ∀j ∈ [r],
((A, W), (tj , u, zj), (fj , (sj,i)i)) ∈ Rd,β

}
.

The intuition of the protocol that we design is to take a random linear combinations of the
polynomials f1, . . . , fr, and prove that its evaluation at u is equal to the linear combination of the
claimed evaluations. The protocol that we describe in Figure 7 takes this idea and combines it with
one round of Figure 5, which is useful for better concrete efficiency.
Lemma 5.13 (Completeness). Let Π := multiEval[d, r, k, C, β] be the protocol in Figure 7. Then, Π
is a Σ-protocol with perfect completeness for Rr

d,β.

Proof. It is easy to see that g(uk) = ∑
ι,t αι,tgι,t(uk) = ∑

αι,tzι,t. Also, for i ∈ [0, d′],

Azi + gie1 =
∑

ι,t∈[r]×[k]
αι,t (Asι,t,i + gι,t,ie1)

=
∑

ι,t∈[r]×[k]
αι,t (Asι,ki+t−1 + gι,ki+t−1e1)

=
∑

ι,t∈[r]×[k]
αι,tW−(ki+t−1)tι.

Finally, ∥zi∥ =
∥∥∥∑ι,t αι,tsι,t,i

∥∥∥ ≤ w β = β′ as desired.

As before, we define a relaxed opening relation (we use the definition of R̃ from Equation (20)):

R̃r
d,β,t :=

 (A, W),

((tι)ι, u, (zι)ι),
((fι)ι, (sι,i)ι,i, (cι,i)ι,i)

∣∣∣∣∣∣∣

∀ι ∈ [r],
((A, W), (tι, u, zj), (fι, (sι,i)i), (cι,i)i)) ∈ R̃d,β,t

 .

We now prove coordinate-wise special soundness for the set C := Srk
βC
⊆ Rrk

q , where each element
has rk coordinates. Then, it is easy to show (e.g. using the composition results as in [BS23, Section
3]) that composing multiEval with Eval yields a knowledge sound protocol for this relaxed relation.
Lemma 5.14 (Coordinate-Wise Special Soundness). Let Π := multiEval[d, r, k, C, β] be the protocol
in Figure 7. Let i := (A, W), x := ((tι)ι, u, (zι)ι). There exists an algorithm that, given rk + 1
transcripts (trj)j∈[0,rk] of the following form:

trj :=

 (zι,t)ι,t

αj

(gj , (zj,i)i∈[0,d])

 with (αj)j ∈ SS(SβC , rk) ,

and relaxation factors (cj,i)j,i, outputs w := ((f̄ι)ι, (s̄ι,i)ι,i, (c̄ι,i)ι,i). Now, set i′ := (A, Wk), xj :=
(∑ι,t αj,ι,ttι, uk,

∑
ι,t αj,ι,tzι,t), wj := (gj , (zj,i)i, (cj,i)i). If for j ∈ [0, r], (i′,xj ,wj) ∈ R̃d,β,t, and

zι = ∑
t∈[k] ut−1zι,t for ι ∈ [r], then (i,x,w) ∈ R̃r

d,γ,t′ where γ := 2Nβs,tβ, t′ := 2t + 1.

54

Proving Multiple Evaluations at a Single Point

Prover Verifier∑
t∈[k]

Xt−1gι,t(Xk) =: fι(X) for ι ∈ [r]

zι,t := gι,t(uk) for (ι, t) ∈ [r]× [k]

(zι,t)(ι,t)∈[r]×[k]

α = (α1, . . . , αr)← C := Srk
βC

α

g :=
∑

(ι,t)∈[r]×[k]

αι,tgι,t

zi :=
∑

(ι,t)∈[r]×[k]

αι,tsι,t,i for i ∈ [0, d′]

g, (zi)i∈[0,d′]

β′ := w β

t′ :=

 ∑
(ι,t)∈[r]×[k]

αι,tW−(t−1) · tι

i
′ := (A, Wk)

x
′ :=

t′, uk,
∑

(ι,t)∈[r]×[k]

αι,tzι,t

w

′ := (g, (zi)i∈[0,d′])
Check:

zι =
∑
t∈[k]

ut−1zι,t for ι ∈ [r]

(i′,x′,w′) ∈ Rd′,β′

Figure 7: The protocol multiEval[d, r, k, C, β] for proving evaluations of r polynomials at a
single point. In the above w := maxα∈C∥α∥1. As before, we define d′ := (d + 1)/k − 1 and
sι,t,i := sι,ki+t−1 for ι ∈ [r].

55

Proof. Again, assume without loss of generality that α0 ≡j αj for j ∈ [rk]. Now, reindex α1 . . . , αrk

into a r × k matrix α1,1, . . . , αr,k. We write α0 = (α∗1,1, . . . , α∗r,k) and thus assume that αv,w =
(α∗1,1, . . . , α′v,w, . . . , α∗r,k) with α′v,w ̸= α∗v,w. We also reindex (gj)j , (zj,i) accordingly so that gv,w

corresponds the αv,w challenge (note that we skip the 0-th challenge α0).
With these conventions, we let the extractor be the following.
E(tr):
1. For ι ∈ [r], t ∈ [k]:

(a) Let f̄ι,t := g0−gι,t

α∗
ι,t−α′

ι,t
.

(b) Let s̄ι,ki+t−1 := z0,i−zι,t,i

α∗
ι,t−α′

ι,t
for i ∈ [0, d′].

(c) Let c̄l,ki+t−1 := (α∗ι,t − α′ι,t)c0,icι,t,i for i ∈ [0, d′].
2. Set f̄ι := ∑

t∈[k] Xt−1fι,t for ι ∈ [r].
3. Return (f̄ι)ι, ((s̄ι,i)i)ι, ((c̄ι,i)i)ι.

First note that by assumption, g0(uk) = ∑
ι,t α∗ι,tzι,t and gv,w(uk) = α′v,wzv,w +∑

(ι,t)̸=(v,w) α∗ι,tzι,t.
Thus, f̄v,w(uk) = g0−gv,w

α∗
v,w−α′

v,w
(uk) = zv,w. Thus, for ι ∈ [r]:

f̄ι(u) =
∑
t∈[k]

ut−1f̄ι,t(uk) =
∑
t∈[k]

ut−1 g0 − gι,t

αι,t − α′ι,t
(uk) =

∑
t∈[k]

ut−1zι,t = zι .

Now, also by assumption:

Az0,i + g0,ie1 = W−i

∑
(ι,t)

α∗ι,ttι

Azv,w,i + gv,w,ie1 = W−i

α′v,wtv +
∑

(ι,t)̸=(v,w)
α∗ι,ttι

⇓

A
(

z0,i − zv,w,i

α∗v,w − α′v,w

)
+
(

g0,i − gv,w,i

α∗v,w − α′v,w

)
· e1 = W−(ki+w−1)tv

⇓
As̄v,ki+w−1 + f̄v,ki+w−1e1 = W−(ki+w−1)tv .

Finally, note that ∥c̄ι,is̄ι,i∥ ≤ 2Nβs,tβ by exactly the same reasoning as in Lemma 5.10.

5.4.2 Multiple Evaluations at Distinct Points

Next, we consider the dual problem, namely amortising proving many statements of the form
fι(uι) = zι for ι ∈ [r] where u1, . . . , ur can be potentially distinct. Looking at Lemma 5.5, a large
part of the communication complexity is represented by the last round, where the prover has to send
openings s0, . . . , sdh

. We amortise this by taking a random linear combination of these openings.
As before, for concrete efficiency reasons, we integrate this within a round of compression.

The relation that we consider is the following:

Rr
d,β :=

 (A, W),

(tι, uι, zι)ι

(fι, sι,i)ι,i

∣∣∣∣∣∣∣

∀ι ∈ [r]
((A, W), (tι, uι, zι), (fι, sι,i)ι,i) ∈ Rd,β

 .

56

Proving Multiple Evaluations at Distinct Points

Prover Verifier∑
t∈[k]

Xt−1hι,t(Xk) := fι(X) for l ∈ [r]

zι,t := hι,t(uk
ι)

(zι,t)ι,t

α← C := Srk
βC

α

gι :=
∑
t∈[k]

αι,thι,t for ι ∈ [r]

zi :=
∑

ι,t∈[r]×[k]

αι,tsι,t,i for i ∈ [d′]

(gι)ι, (zi)i

Check:

zι =
∑
t∈[k]

ut−1
ι zι,t for ι ∈ [r]

gι(uk
ι) =

∑
t∈[k]

αι,tzι,t for ι ∈ [r]

Azi +

∑
ι∈[r]

gι,i

 e1 = W−ki

(∑
ι,t

αι,ttι

)
∥zi∥ ≤ w β for i ∈ [0, d′]

Figure 8: The protocol evalMulti[d, r, k, C, β] for proving evaluations of multiple polynomials
at multiple points. In the above w := maxα∈C∥α∥1 and d′ := (d + 1)/k − 1.

The protocol is then described in Figure 8. Now, we show evalMulti has perfect completeness..
Lemma 5.15 (Completeness). Let Π := evalMulti[d, r, k, C, β]. Then Π is a Σ-protocol with perfect
completeness for Rr

d,β.
Proof. For the first verifier check,

zι = fι(uι) =
∑
t∈[k]

ut−1
ι hι,t(uk

ι) =
∑
t∈[k]

ut−1
ι zι,t .

Next, we check that gι evaluates to the correct value.

gι(uk
ι) =

∑
t∈[k]

αι,thι,t(uk
ι) =

∑
t∈[k]

αι,tzι,t .

Checking validity of the openings is similarly straightforward:

Azi +
(∑

ι

gι,i

)
e1 = A

∑
ι,t

αι,tsι,t,i

+

∑
ι,t

αι,thι,t,i

 e1

57

=
∑
ι,t

αι,t (Asι,t,i + hι,t,ie1)

=
∑
ι,t

αι,t (Asι,ki+t−1 + fι,ki+t−1e1)

=
∑
ι,t

αι,t

(
W−(ki+t−1)tι

)

= (Wk)−i ·

∑
ι,t

αι,tW−(t−1)tι

 .

Finally, ∥zi∥ =
∥∥∥∑ι,t αι,tsι,t,i

∥∥∥ ≤ w β.

For knowledge soundness, we again define a relaxed opening relation, namely:

R̃r
d,β :=

 (A, W),

(tι, uι, zι)ι

(fι, sι,i, cι,i)ι,i

∣∣∣∣∣∣∣

∀ι ∈ [r]
((A, W), (tι, uι, zι), (fι, sι,i, cι,i)ι,i) ∈ R̃d,β,1

 .

Lemma 5.16 (Coordinate-Wise Special Soundness). Let Π := multiEval[d, r, k, C, β] be the protocol
in Figure 7. Then, Π is a rk-coordinate-wise knowledge sound proof system for R̃r

d,2β.

Proof. For j ∈ [0, rk], consider transcripts of the following form:

trj :=

 (zι,t)ι,t

αj

((gj,ι)ι, (zj,i)i)

 with (αj)j ∈ SS(SβC , rk) ,

and again assume, without loss of generality, that the transcripts are arranged so that, for j ∈ [r],
α0 ≡j αj . Reindex and arrange the challenges as in the proof of Lemma 5.14.

Consider the following extractor:

E(tr0, . . . , trrk):
1. For ι ∈ [r], t ∈ [k]:

(a) Set f̄ι,t := g0−gι,t

α∗
ι,t−α′

ι,t
.

(b) Set s̄ι,ki+t−1 := z0,i−zι,t,i

α∗
ι,t−α′

ι,t
for i ∈ [0, d′].

(c) Set c̄ι,ki+t−1 := α∗ι,t − α′ι,t for i ∈ [0, d′].
2. Set f̄ι := ∑

t∈[k] Xt−1f̄ι,t for ι ∈ [r].
3. Return (f̄ι)ι, (s̄ι,i)ι,i, (c̄ι,i)ι,i.

Since the transcripts are accepting, we have that zι = ∑
t∈[k] ut−1

ι zι,t for ι ∈ [r]. Also, g0,ι(uk
ι) =∑

t∈[k] α∗ι,tzι,t and gv,w,ι(uk
ι) = α′v,wzv,w +∑

t̸=w α∗ι,tzι,t. Thus, g0,ι−gv,w

α∗
v,w−α′

v,w
(uk

ι) = zv,w. Now,

f̄ι(uι) =
∑
t∈[k]

ut−1
ι f̄ι,t(uk

ι) =
∑
t∈[k]

ut−1
ι

g0 − gι,t

α∗ι,t − α′ι,t
(uk

ι) =
∑
t∈[k]

ut−1
ι zι,t = zι .

We also have that

Az0,i +
(∑

ι

g0,ι,i

)
e1 = W−ki

∑
ι,t

α∗ι,tW−(t−1)tι

58

Parameters Instantiation
m ≥ n(1 + q̃) + ω(log λ)
δ q1/O(1)

s > 2Nq
n

m−nq̃
+ 2

N(m−nq̃)

σ0 ≥ δsNnq̃ · ω(
√

2(d + 1)n(m− nq̃)N log t′N)
σ1 ≥ δσ0N · ω(

√
m′n′ log t′N)

β ≥ σ1
√

m′N

βC < 1
2
√

l/Nql/N

ws sNβC
βh (maxι wrιk) wh

k wrk ·β
γ 2h+2 · (2βCN)2h+2−h−3 · βh

βs (2βCN)2h+2−1

Soundness (Q + 1) ·
(

(maxι rι+h+r)k
(2βC+1)N

)
Commitment size nN log q ·

∑
ι rι

Proof size (∑ι rιkN log q) + r(h + 1) · (kN log q) + d+1
kh+2 (rN log q + mN log βh)

Table 6: Parameters and complexity of the multi-evaluation protocol.

Azv,w,i +
(∑

ι

gv,w,ι,i

)
e1 = W−ki

α′v,wW−(w−1)tv +
∑

ι,t ̸=(v,w)
α∗ι,tW−(t−1)tι

⇓

A
(

z0,i − zv,w,i

α∗v,w − α′v,w

)
+ f̄v,w,ie1 = W−ki

(
W−(w−1)tv

)
⇓

As̄v,ki+w−1 + f̄v,ki+w−1e1 = W−(ki+w−1)tv .

Finally, ∥c̄ι,ki+t−1s̄ι,ki+t−1∥ ≤ ∥z0,i∥+ ∥zι,t,i∥ ≤ 2β as desired.

We can combine these two newly presented protocols with Eval to obtain a protocol for multiple
evaluations. Let u1, . . . , ur ∈ Rq, and suppose we want to show that fι,m(uι) = zι,m for ι ∈ [r], m ∈
[rι] for committed polynomials (fι,m)ι,m. Write ws := maxα←Ss

βC
∥α∥1. The combined protocol

runs (in parallel) multiEval[d, rι, k, Srι·k
βC

, β] with input (fι,m)m∈[ri] for ι ∈ [r]. This outputs r claims,
which we handle by running Eval[d/k, k, Sk

βC
, wrιk ·β] r-times into parallel. Finally, we run a single

instance of multiEval[d/kh+1, r, k, Srk
βC

, (maxι wrιk) · wh
k β]. The final complexity of this protocol is

summarised in Table 6.

5.5 Honest-Verifier Zero-Knowledge

We provide a linear-sized Σ-protocol for the relation Rd,β (c.f. Equation (15)) which satisfies
honest-verifier zero-knowledge. Combined with the recursive methodology described above, we can
achieve zero-knowledge succinct proofs of polynomial evaluation. The strategy can identically be
applied when proving knowledge of multiple polynomials at the same query point, which brings
resemblance to [BBCPGL18].

59

Recall that we want to prove knowledge of the polynomial f ∈ Rq[X] of degree at most d, and
the openings (si)i∈[0,d] such that f(u) = z and Asi + fie1 = W−it and ∥si∥ ≤ β for i = 0, 1, . . . , d.
In addition to the public matrices (A ∈ Rn×m

q , W ∈ Rn×n
q), this time the index i contains a short

basis T such that BT = Gn(d+1) where 16

B :=

A −G
.

WdA −G

 and ∥T∥ ≤ βT . (21)

This is the case when generating the PowerBASIS commitment in Section 4 since the public
parameters are indeed of the form crs := (A, W, T).

We present the protocol in Figure 10. The strategy follows the Fiat-Shamir with Aborts
paradigm [Lyu09] using the generalised rejection sampling from [BTT22]. That is, the prover starts
by sampling uniformly random g := (g0, . . . , gd) ← Rd+1

q , which corresponds to coefficients of a
uniformly random polynomial g ∈ Rq[X] of degree at most d. Then, the prover runs the PowerBASIS
commitment algorithm for g (c.f. Figure 4). Namely, it samples

y0
...

yd

t̂y

← SamplePre(B, u, T, σ), where u :=

−g0W0e1
...

−gdWde1

 ,

and sets ty := Gt̂y. The first message sent by the prover is (ty, v) where v := ∑d
i=0 giu

i is the
evaluation of g at the point u. Then, the verifier picks a challenge α from the challenge space
C := SβC of short polynomials of infinity norm at most βC .

Next, given a challenge α← C from the verifier, the prover computes

zi := yi + αsi and hi := gi + αfi for i = 0, 1, . . . , d ,

and outputs (zi, hi) after performing the rejection sampling procedure. Note that the distribution
of zi can be written alternatively as:

z0
...

zd

t̂z

 =

y0
...

yd

t̂y

+ α

s0
...

sd

t̂

 (22)

where
y0
...

yd

t̂y

← SamplePre

A −G

.
WdA −G

 ,

−g0W0e1
...

−gdWde1

 , T, σ

 (23)

16See Lemma 4.1 on how to obtain the bound on ∥T∥. For presentation, we assume the bound βT is known.

60

and t̂ = G−1(t). Hence, this vector comes from a shifted discrete Gaussian distribution (over a
coset of Λ⊥(B)), where the norm of the shifted vector can be bounded by:∥∥∥∥∥∥∥∥∥∥

α

s0
...

sd

t̂

∥∥∥∥∥∥∥∥∥∥
≤ βCN ·

√
(d + 1)β2 + nq̃N . (24)

This interpretation will be useful when analysing the rejection sampling algorithm.
Finally, the verifier checks whether

Azi + hie1 = W−i(ty + αt) for i = 0, 1, . . . , d

∥zi∥ ≤ βz for i = 0, 1, . . . , d

d∑
i=0

hiu
i = v + αz.

In the following, we give a brief reasoning about completeness, special soundness and honest-verifier
zero-knowledge.

Completeness. By careful inspection, we can deduce from the third verification check:

d∑
i=0

hiu
i =

d∑
i=0

giu
i + α

d∑
i=0

fiu
i = v + αz ,

and from the second verification check:

Azi + hie1 = Ayi + gie1 + α(Asi + fie1) = W−ity + αW−it = W−i(ty + αt).

What we have left to show is shortness of zi. Take the standard deviation

σ ≥ max
(

O(
√

λ) · βCN ·
√

(d + 1)β2 + nq̃N, βT · ω(
√

N log tN)
)

(25)

where t = max(n, m). By Lemma 2.16, we can swap the SamplePre algorithm with truly sampling
from a discrete Gaussian. Further, since σ is larger than the shifted vector in (24) by a factor of
O(
√

λ), using rejection sampling (c.f. Lemma 2.19) we enforce the distribution of (z0, . . . , zd, t̂z)
from (22) to be from a discrete Gaussian on Λ⊥u (B) where

u :=

−(g0 + αf0)W0e1
...

−(gd + αfd)Wde1

 .

Thus, by Lemma 2.8, we can set βz := σ
√

(d + 1)mN + nq̃N . The correctness error becomes
≈ 1/M .

61

HVZK Σ-Protocol for Rd,β

Prover Verifier
s := (s0, . . . , sd, t̂) where t̂ := G−1(t)
g := (g0, . . . , gd)← Rd+1

q

v := g0 + g1u + . . . + gdud

Sample

y0
...

yd

t̂y

 as in (23)

ty := Gt̂y
ty, v

α← C := SβC

α

t̂z := t̂y + αt̂
for i = 0, 1, . . . , d :

zi := yi + αsi

hi := gi + αfi

z := (z1, . . . , zd, t̂z)
ρ← [0, 1)

if ρ > min
(
Dm′N

σ (z)
M · Dm′N

σ,αs (z) , 1
)

:

z := ⊥

(zi, hi)i∈[0,d]

Check:∑
i∈[0,d]

hiu
i−1 = v + αz

∀i, Azi + hie1 = W−i(ty + αt)
∀i, ∥zi∥ ≤ βz

Figure 9: The honest-verifier zero-knowledge Σ-protocol for Rd,β . Here, m′ := (d + 1)m + nq̃
is the width of the matrix B in (21).

62

special soundness. Given two valid transcripts (ty, v, α, (zi, hi)), (ty, v, α′, (z′i, h′i)) with distinct
challenges α, α′ ∈ C, we can define

s̄i := zi − z′i
α− α′

and f̄i := hi − h′i
α− α′

for i = 0, 1, . . . , d .

Note that ∥α − α′∥∞ ≤ 2βC. If βC is chosen according to Lemma 2.18 then we deduce that the
difference is invertible over Rq. Further, by construction

f̄(u) =
d∑

i=0
f̄iu

i = 1
α− α′

d∑
i=0

(hi − h′i)ui = αz − α′z

α− α′
= z .

Furthermore, for i = 0, 1, . . . , d we have ∥(α− α′)si∥ ≤ 2βz and

As̄i + f̄ie1 = 1
α− α′

(
Azi + hie1 − (Az′i + h′ie1)

)
= 1

α− α′

(
αW−it− α′W−it

)
= W−it .

Thus, (s̄0, . . . , s̄d) along with the message (f̄0, . . . , f̄d) is a relaxed opening for the PowerBASIS
commitment t with the relaxation factor α− α′. Hence, we can extract the witness for the relaxed
relation R̃d,2βz ,1 in (20).

Honest-verifier zero-knowledge. We show how to simulate the transcripts when the verifier
behaves honestly. To this end, we prove the following lemma which is almost analogous to [BTT22,
Lemma B.8].

Lemma 5.17 (Honest-Verifier Zero-Knowledge). Let σ be chosen as in (25) where t = max(n, m).
Then, the output distributions of T and S in Figure 10 are statistically indistinguishable.

Proof. We prove the statement via a standard hybrid argument.

• Hyb0 is identical to T as in Figure 10.

• Hyb1 is identical to Hyb0, but now we define t̂z := t̂y + αt̂, where t̂ := G−1(t), and compute
ty := Gt̂z − αt. By construction, the output distribution of Hyb1 is identical to Hyb0 and

z0
...

zd

t̂z

 =

y0
...

yd

t̂y

+ α

s0
...

sd

t̂

 where

y0
...

yd

t̂y

← SamplePre

A −G

.
WdA −G

 ,

−g0W0e1
...

−gdWde1

 , T, σ

 .

• Hyb2 is identical to Hyb1, but now we compute
z0
...

zd

t̂z

 =

y0
...

yd

t̂y

+ α

s0
...

sd

t̂

 where

y0
...

yd

t̂y

←
A −G

.
WdA −G

−1

σ

−g0W0e1

...
−gdWde1

 .

By Lemma 2.16, Hyb1 and Hyb2 are statistically close.

63

T ((A, W, T), (s0, . . . , sd), (f0, . . . , fd), t, u, z)
1: s := (s0, . . . , sd, t̂ := G−1(t))
2: g := (g0, . . . , gd)← Rd+1

q

3: v := g(u)

4:

y0
...

yd

t̂y

← SamplePre

A −G

.
WdA −G

 ,

−g0W0e1
...

−gdWde1

 , T, σ

5: ty := Gt̂y

6: α← C
7: for i = 0, 1, . . . , d :
8: zi := yi + αsi

9: hi := gi + αfi

10: z := (z0, . . . , zd, t̂y + αt̂)
11: ρ← [0, 1)
12: if ρ > min

(
Dm′N

σ (z)
M ·Dm′N

σ,αs (z) , 1
)

:
13: z := ⊥
14: return (ty, v, α, (hi, zi)i∈[0,d])

S((A, W, T), t, u, z)
1: h := (h0, . . . , hd)← Rd+1

q

2:

z0
...

zd

t̂z

← SamplePre

A −G

.
WdA −G

 ,

−h0W0e1
...

−hdWde1

 , T, σ

3: α← C
4: ty := Gt̂z − αt
5: v := h(u)− αz
6: ρ← [0, 1)
7: if ρ > 1/M :
8: z := ⊥
9: return (ty, v, α, (hi, zi)i∈[0,d])

Figure 10: Simulating the transcripts from the Σ-protocol described in Figure 10.

• Hyb3 is identical to Hyb2, but here we directly sample
z0
...

zd

t̂z

←
A −G

.
WdA −G

−1

σ

−(g0 + αf0)W0e1

...
−(gd + αfd)Wde1

and with probability 1 − 1/M we output z := ⊥. By the generalised rejection sampling (c.f.
Lemma 2.19), Hyb3 and Hyb2 are statistically close.

64

• Hyb4 is identical to Hyb3, except now we efficiently sample:
z0
...

zd

t̂z

← SamplePre

A −G

.
WdA −G

 ,

−(g0 + αf0)W0e1
...

−(gd + αfd)Wde1

 , T, σ

 .

As before, by Lemma 2.16 we deduce that Hyb4 and Hyb3 are statistically close.

• Hyb5 is identical to Hyb4, except now we define hi := gi − αfi for i = 0, 1, . . . , d. Thus,
z0
...

zd

t̂z

← SamplePre

A −G

.
WdA −G

 ,

−h0W0e1
...

−hdWde1

 , T, σ

 .

Furthermore, we set v := h(v) − αz. Clearly, the output distributions of Hyb5 and Hyb4 are
identical.

• Hyb6 is identical to Hyb5, but now we sample each hi ← Rq uniformly at random. Since in Hyb5
each gi was sampled uniformly at random from Rq, we conclude that the output distributions of
Hyb6 and Hyb5 are identical.

Finally, the output distribution of Hyb6 is identical to the one by S which ends the proof.

Remark 5.18. Similarly as in Section 5.4, we can combine the HVZK protocol with one round of
folding to minimise the total round complexity, and thus the extracted norm growth. This yields an
almost identical protocol as in [BBCPGL18].

5.6 Polynomial Commitments over Finite Fields

So far we showed how to commit and prove evaluations of polynomials over the cyclotomic ring Rq.
We now present how to build polynomial commitments over finite fields of specific form. This will
be useful when combining with Polynomial IOPs to obtain succinct arguments of knowledge.

Suppose q is a prime which satisfies q ≡ 2N/l + 1 (mod 4N/l) for some positive divisor l of N .
Then by [LS18, Corollary 1.2], the polynomial XN + 1 factors as:

XN + 1 ≡
N/l∏
i=1

(X l − ri) (mod q)

for distinct ri ∈ Z∗q where all X l − ri are irreducible in the ring Zq[X]. Further, by the Chinese
Remainder Theorem, there exists a ring isomorphism φ : FN/l → Rq where F is a finite field of size
ql. Consider the restricted function:

φF : F→ Rq

x 7→ ϕ(x, 0, . . . , 0).

65

By construction, the image of φF can be described as

Sq := Im(φF) = {ϕ(x, 0, . . . , 0) : x ∈ F} .

The following simple lemma states that Sq is an ideal of Rq.
Lemma 5.19. The set Sq ⊆ Rq defined above is an ideal.

Proof. The fact that Sq is an additive subgroup of Rq follows directly from the additively homomor-
phic properties of φ. Now let a ∈ Sq, i.e. φ(x, 0, . . . , 0) = a for some x ∈ F. Further, take arbitrary
γ ∈ Rq and let (γ1, . . . , γN/l) := φ−1(γ). Then, by the multiplicative homomorphism of φ we get

γ · a = φ(γ1, . . . , γN/l) · φ(x, 0, . . . , 0) = φ(γ1x, 0, . . . , 0) = φF(γ1x) ∈ Sq ,

which concludes the proof.

Suppose we want to commit to a polynomial F := ∑d
i=0 FiXi ∈ F[X] of degree at most d, and prove

evaluation F (x) = y for x, y ∈ F. By the homomorphic property of φF, this is equivalent to proving
f(u) = z over Rq where

f [X] = ∑d
i=0 φF(Fi)Xi ∈ Sq[X]

u = φF(x) ∈ Sq

z = φF(y) ∈ Sq

.

Hence, we can commit to the polynomial f ∈ Rq[X] and prove evaluation of u at the point z as
before. What is new is that we additionally need to prove that coefficients of f indeed lie in Sq.
Therefore, we are interested in a stronger relation:((A, W), (t, u, z), (f, (si)i))

∣∣∣∣ f(u) = z ∧ f ∈ Sq[X]
∀i ∈ [0, d], Asi + fie1 = W−it

∧∥si∥ ≤ β

 . (26)

We show how to modify the protocol in Figure 6 to accommodate for this change. Actually, the
interaction between the prover and the verifier stays the same but the verifier additionally performs
a check whether the final polynomial fh ∈ Rq[X] sent by the prover has coefficients in Sq.

Completeness follows by induction. We start with the initial polynomial f0 := f ∈ Sq[X]. Then
for each r ∈ [h], the prover computes the polynomial fr ∈ Rq[X] as a linear combination of “partial
terms” of fr−1:

fr :=
∑
t∈[k]

αr,tfr−1,t .

If fr−1 ∈ Sq[X], then by Lemma 5.19 we deduce that fr ∈ Sq[X].
To argue (coordinate-wise) special soundness, consider the extractor in the proof of Lemma 5.6.

The coefficients of the extracted polynomial f are computed as

f2i := α1g0,i − α0g1,i

α1 − α0
, f2i+1 := g0,i − g1,i

α0 − α1
for i ∈ [0, d/2] .

If polynomials g0 and g1 have coefficients in Sq, then again by Lemma 5.19 we can deduce that
f ∈ Sq[X]. Identical argument holds when analysing Lemma 5.10.

Finally, to support honest-verifier zero-knowledge in Figure 9, we let the prover pick uniformly
random elements gi from Sq instead of Rq in order to fully mask the coefficients fi. Thus, by
construction and Lemma 5.19, hi = gi + αfi ∈ Sq for all i = 0, . . . , d. Hence, the verifier additionally
performs the check whether coefficients hi lie in Sq.

66

6 Concrete Instantiation and Applications to Marlin
Hardness of PowerBASIS. In parameter selection, we make a heuristic assumption that PowerBASIS
is exactly as hard as MSIS. Hence, one should treat our computed sizes only as intuition on how
practical the polynomial commitment is.

In the literature, hardness of the MSIS problems is often analysed identically as the plain SIS
since, so far, the best known attacks do not make use of the algebraic structure of the polynomial
ring [ADPS16]. We follow the methodology from Dilithium [Duc+18, Appendix C]. That is,
MSISn,m,N,q,β for matrix A is equivalent to finding a non-trivial vector of norm smaller than β
in the lattice Λ := Λ⊥(A). In order to find short non-trivial vectors in Λ, we apply the Block-
Korkine-Zolotarev algorithm (BKZ) [SE94; CN11]. As a subroutine, BKZ uses an algorithm for
the shortest vector problem (SVP) in lattices of dimension b, where b is called the block size. If
we apply the best known algorithm for solving SVP with no memory constraints by Becker et al.
[BDGL16], the time required by BKZ to run on the mN -dimensional lattice Λ with block size b is
given by 8mN · 20.292b+16.4 (one also considers a more conservative variant with runtime 20.292b).
The algorithm outputs a vector of norm δmN

rhf det(Λ) 1
mN where δrhf is the root Hermite factor and it

is given by

δrhf =
(

b(πb)1/b

2πe

) 1
2(b−1)

. (27)

For our usual parameter selection, the probability that a random matrix A ∈ Rn×m
q is of full rank

is overwhelming (see [EZSLL19, Appendix C]) and thus det(Λ) = qnN . Next, Micciancio and Regev
[MR09] show that

δmN
rhf det(Λ)

1
mN = δmN

rhf q
nN
mN ≥ 22

√
nN log q log δ

and the equality holds when mN =
√

nN log q/ log δ. Hence, given a bound β < q we compute
δrhf from the equation β = 22

√
nN log q log δ. Next, we calculate the minimum block size b from

Equation (27), and thus we get the total time for BKZ to solve MSISn,m,N,q,β. Hereafter, we will
refer to the “aggressive strategy” to set PowerBASIS as the one using the estimate from Becker et al.
[BDGL16], and to the the “conservative strategy” as the one using 20.292b.

Parameters. Using a combination of randomised and exhaustive search, we found parameters for
the schemes in Theorem 5.8 and Theorem 5.12. In Table 7 we detail the parameters obtained for
the scheme presented in Theorem 5.12 and in Table 8 for that in Theorem 5.8. We also make use
of the techniques in [AFLN23, Sec 5.5, Sec 6] to further optimise the parameters. Namely, we use
the transformation therein to convert our polynomial commitment scheme to one that supports
prime order fields, and we use deterministic preimage sampling (since in this section we are not
concerned with zero-knowledge). We stress that these parameters are presented to give the reader
an indication of the concrete efficiency of the scheme. The commitments have sizes on the order of
hundreds of kilobytes, while evaluation proofs are on the order of a few megabytes, and so are larger
than desirable in most applications. We also emphasise that the assumption that the hardness of
PowerBASIS is as hard as MSIS is an heuristic, and thus, until this heuristic is backed or disproved
by sufficient cryptanalysis, the sizes should be considered as an optimistic lower bound.

Applications to Polynomial IOPs. Marlin [CHMMVW20] is a widely deployed preprocessing
zkSNARK. As many modern constructions, Marlin is constructed by combining two ingredients:

67

k h d λ Q n m N δ log q 2γβs β s βC βh |t| |π|
128 2 214 80 64 87 1697 64 17 204 203 148 34 1 166 139 KB 2.6 MB
256 3 230 80 64 139 2919 64 24 322 322 196 49 1 225 350 KB 6.9 MB
128 2 220 128 64 117 2106 64 20 229 222 163 42 2 182 209 KB 3.4 MB
256 3 230 128 64 168 3528 64 25 339 338 202 53 2 234 445 KB 8.3 MB

Table 7: Parameters and concrete sizes for the polynomial commitment described in Theo-
rem 5.12. δ, norms and standard deviation given in log form.

h d λ n m N δ log q 2γβs β s βh t |t| |cc|
11 220 80 17 383 512 22 314 314 170 48 192 13 333 KB 64.1 MB
21 230 80 27 608 512 38 548 523 249 78 291 15 925 KB 183.7 MB
8 220 128 3 54 4096 27 320 320 191 65 207 13 480 KB 105.4 MB
20 230 128 17 408 1024 33 515 515 234 72 274 20 1.07 MB 324.4 MB

Table 8: Parameters and concrete sizes for the interactive polynomial commitment in Theo-
rem 5.8. δ, norms and standard deviation given in log form.

k h d λ Q n m N δ log q 2γβs β s βC βh |t| |π|
[32, 32, 48] 1 220 80 64 138 2691 64 27 324 321 181 50 1 224 6.1 MB 6.6 MB
[32, 128, 128, 192] 2 230 80 64 224 5376 64 34 517 517 231 66 1 292 15.9 MB 19.6 MB
[32, 32, 48] 1 220 128 64 186 3627 64 28 343 339 189 54 2 234 8.8 MB 8.6 MB
[32, 128, 128, 192] 2 230 128 64 271 6504 64 36 562 552 244 74 2 309 20.9 MB 23.6 MB

Table 9: Parameters and concrete sizes for Marlin when instantiated with the commitment
described in Theorem 5.12 with amortisation as in Table 6. δ, norms and standard deviation
given in log form. Folding factor varies across rounds as mentioned in Remark 5.4

68

• a polynomial interactive oracle proof (PIOP) (therein a algebraic holographic proof);
• and a polynomial commitment scheme.
An interactive oracle proof (IOP) is a generalisation of both probabilistically checkable proofs and
interactive proofs. Informally, they are interactive protocols between a prover and a verifier, in which
the prover sends oracle messages, which the verifier is allowed to not read in their entirety. A PIOP
is simply an IOP where the prover messages are guaranteed to be (low degree) polynomials. IOPs
and PIOPs are information theoretic object, and as such inherit a number of efficiency limitations
(for example, IOP proof length are required to be at least linear in the size of the instance), but can
be compiled using cryptography (see [BCS16]) to obtain arguments that are both asymptotically
and concretely efficient. Informally, to compile a PIOP into an interactive argument, the prover can
commit to each polynomial oracle using a polynomial commitment scheme, and then prove to the
verifier that the evaluations (at points chosen by the verifier) are as claimed. Then, to obtain a
NARK, we can apply the Fiat-Shamir transformation to this interactive protocol. We can thus aim
to use our polynomial commitment scheme in Theorem 5.12 as an ingredient of Marlin to obtain a
zkSNARK for R1CS. Let d denote the size of the R1CS instance that we aim to prove. As detailed
in [CHMMVW20, Section 9], Marlin after compilation has commitments to 19 total polynomials of
degree at most 6d. The prover has then to produce 19 evaluations proofs for these polynomials, at
three distinct points. We can thus apply the techniques in Section 5.4 to batch evaluations together
and amortise the cost of the last round. In Table 9 we compute parameters for Marlin instantiated
using our polynomial commitment scheme and the PIOP therein described. Again, these sizes
are meant to give a rough estimate of the concrete efficiency of the scheme, and the same caveats
apply as with the polynomial commitment scheme. We also note that Marlin operates over fields
with a large multiplicative (or additive) subgroup with smooth order, which imposes an additional
requirement on the size of q. Since our moduli are again quite large, this additional requirement is
immaterial.

Falsifiable version of PowerBASIS. Note that the challenger in the PowerBASIS game from
Section 3 is not efficient since it needs to sample a random trapdoor T according to a discrete
Gaussian distribution. In order to make the assumption falsifiable, one could let the challenger sample
efficiently using the SamplePre algorithm, e.g. as in the Setup algorithm of Figure 4. Further, for
efficiency we can ensure that the sampled matrix A from (A, R)← TrapGen(n, m) is computationally
indistinguishable from random17. However, we do not apply this heuristic in our parameter selection.

7 Coordinate-Wise Special Soundness Implies Knowledge Sound-
ness

In this section we show that coordinate-wise special soundness implies knowledge soundness for
multi-round protocols by extending the techniques presented in [ACK21; Att23] (cf. Lemma 2.31).
We also show that our knowledge extractor is exponentially more efficient than the generic extractor
introduced by Attema et al. [AFR23]. The intuition behind this efficiency is that the extractor
samples challenges in a certain way that is the most plausible for having a monotone structure. For
reference, we will use identical terminology as in [Att23, Section 6.4]. In the following, we define a

17Concretely, in the proof of Lemma 2.15 we would rely on the argument that ĀR̄ is pseudorandom based on
Module-LWE [LS15] rather than Lemma 2.6.

69

challenge space C := Sℓ.

7.1 Σ-Protocols

We start by considering three-round public coin interactive proofs, i.e. Σ-protocols. Namely, let
A : C → {0, 1}∗ be an arbitrary (probabilistic) algorithm, and V : C × {0, 1}∗ → {0, 1} be the
verification function. Then, A has naturally defined success probability:

ϵV (A) := Pr
c←C

[V (c,A(c)) = 1].

The standard interpretation is that A is a malicious prover, which tries to convince the verifier of
the underlying Σ-protocol.

The following lemma describes how to extract from CWSS Σ-protocols. The proof methodology
is identical to [Att23, Lemma 6.5].

Lemma 7.1. Let k, ℓ ∈ N, and S be a finite set of cardinality N . Define C := Sℓ and take
any verification function V : C × {0, 1}∗ → {0, 1}. Then there exists an oracle algorithm E
with the following properties: the algorithm EA, given oracle access to a (probabilistic) algorithm
A : C → {0, 1}∗, requires an expected number of at most ℓ(k−1)+1 queries to A and with probability
at least

ϵV (A)− ℓ(k − 1)
N

outputs ℓ(k− 1) + 1 pairs (c0, y0), . . . , (cℓ(k−1), yℓ(k−1)) such that V (ci, yi) = 1 for all i ∈ [0, ℓ(k− 1)]
and {c0, . . . , cℓ(k−1)} ∈ SS(S, ℓ, k).

Proof. The extractor EA is defined in Figure 11. We denote by C0 := (C0,1, . . . , C0,ℓ) the random
variable for the first challenge sampled by E . Also, we denote Γ = V (C0,A(C0)). In particular,
Pr[Γ = 1] = ϵV (A).

Let T be the number of A-queries made by E . For i ∈ [ℓ], define Ti to be the number of queries
made during the i-th iteration of the loop. By linearity of expectation, we have E[T] = 1+∑ℓ

i=1 E[Ti].
Also, if Γ = 0 then Ti = 0.

Further, define the random variable Xi := |{x ∈ S : V (C(x),A(C(x)) = 1}|, where C(x) :=
(C0,1, . . . , C0,i−1, x, C0,i+1, . . . , C0,ℓ). Then, for l ≥ 0 we have

E[Ti|Xi = l] = Pr[Γ = 1|Xi = l] · E[Tl|Γ = 1 ∧Xi = l].

First, note that Pr[Γ = 1|Xi = l] = l/N . Moreover, assume that the first query to A was successful,
i.e. Γ = 1. Then, assuming that Xi = l, each i-th iteration of the loop in Step 4 can be modelled as
a negative hypergeometric distribution, i.e. challenges are drawn (without replacement) from a set
of size N − 1 containing l− 1 correct responses. Therefore E[Tl|Γ = 1 ∧Xi = l] ≤ (k − 1)N/l. Thus

E[Ti] ≤ l/N · (k − 1)N/l = k − 1,

and consequently E[T] ≤ ℓ(k − 1) + 1.
We now move to the success probability of EA. Note that the extractor succeeds with probability

Pr[Γ = 1 ∧ (∧ℓ
i=1Xi ≥ k)]. Now, by the union bound we have

Pr[Γ = 1 ∧ (∧ℓ
i=1Xi ≥ 2)] = Pr[Γ = 1]− Pr[Γ = 1 ∧ (∨ℓ

i=1Xi ≤ k − 1)]

70

Knowledge Extractor for CWSS Σ-Protocols

EA
1. c0 := (c0,1, . . . , c0,ℓ)← C
2. y0 ← A(c0)
3. If V (c0, y0) = 0, then abort
4. For i = 1, . . . , ℓ, repeat:

(a) Sample c∗i ← S\{c0,i} without replacement
(b) ci := (c0,1, . . . , c0,i−1, c∗i , c0,i+1, . . . , c0,ℓ)
(c) yi ← A(ci)
(d) If V (ci, yi) = 0, go to Step 4(a)
until k − 1 pairs (ci,j , yi,j)j∈[k−1] s.t. V (ci,j , yi,j) = 1 are collected, or until all c∗i have
been tried (in the latter case abort)

5. Return the corresponding (c0, y0), (ci,j , yi,j)i∈[ℓ],j∈[k−1]

Figure 11: Knowledge extractor for the proof of Lemma 7.1.

≥ Pr[Γ = 1]−
ℓ∑

i=1
Pr[Γ = 1 ∧Xi ≤ k − 1]

≥ Pr[Γ = 1]−
ℓ∑

i=1

k−1∑
j=1

Pr[Γ = 1 ∧Xi = j]

≥ Pr[Γ = 1]−
ℓ∑

i=1

k−1∑
j=1

j

N

≥ Pr[Γ = 1]− ℓ(k − 1)
N

.

The statement follows by recalling that Pr[Γ = 1] = ϵV (A).

7.2 Multi-Round Protocols

Next, we move on to (2µ + 1)-round interactive proofs. To this end, we consider an arbitrary
probabilistic algorithm A : C×· · ·×C → {0, 1}∗, and a verification function V : C×· · ·×C×{0, 1}∗ →
{0, 1}. Similarly as before, we define

ϵV (A) := Pr [V (c̄,A(c̄))] ,

where c̄← Cµ.
Now, the goal of the extractor is, given oracle access to A, to efficiently extract a tree of

transcripts, as in Definition 2.30. We will follow the footsteps of [Att23, Lemma 6.6] and recursively
use Lemma 7.1 for the Σ-protocol case.

Lemma 7.2. Let k, ℓ, µ ∈ N, and S be a finite set of cardinality N . Define C := Sℓ and take any
verification function V : C × · · · × C × {0, 1}∗ → {0, 1}. Then there exists an oracle algorithm E

71

with the following properties: the algorithm EA, given oracle access to a (probabilistic) algorithm
A : C × · · · × C → {0, 1}∗, requires an expected number of at most K := (ℓ(k − 1) + 1)µ queries to A
and with probability at least

ϵV (A)− µ · ℓ(k − 1)
N

outputs K pairs (ci, yi)i∈[K] such that V (ci, yi) = 1 for all i ∈ [K] and (ci)i∈[K] form a tree of
challenges as described in Definition 2.30.

Proof. We prove the statement by induction on µ ≥ 1. For µ = 1, we can apply Lemma 7.1. Hence,
assume the lemma holds for µ = M ≥ 1 and focus on the case µ = M + 1.

For c ∈ C, we define Ac to be the algorithm, which takes input (c(2), . . . , c(µ)) ∈ Cµ−1, and
outputs A(c, c(2), . . . , c(µ)). We similarly define a verification function Vc as Vc(c(2), . . . , c(µ), y) :=
V (c, c(2), . . . , c(µ), y). By the induction hypothesis, there exists an extractor EAc

µ−1, that given oracle
access to Ac, outputs a set Y of K ′ := (ℓ(k − 1) + 1)µ−1 pairs (ci, yi) ∈ Cµ−1 × {0, 1}∗, such that
Vc(ci, yi) = 1 for all i ∈ [K ′] and (ci)i∈[K′] form a tree of challenge vectors of level µ − 1, with
probability at least

ϵVc(Ac)− (µ− 1) · ℓ(k − 1)
N

,

and makes at most K ′ queries to Ac. Now, we define W : C × {0, 1}∗ → {0, 1} as W (c,Y) = 1 if
and only if Y satisfies all the properties above. Further, define BA : C → {0, 1}∗ to be the algorithm,
which takes as input c ∈ C, and runs EAc

µ−1. By Lemma 7.1, there is an extractor EBA
1 that aims to

output ℓ(k−1)+1 pairs (c(1)
0 ,Y0), . . . , (c(1)

ℓ(k−1),Yℓ(k−1)) such that W (c(1)
i ,Yi) = 1 for i ∈ [0, ℓ(k−1)]

and (c(1)
i)i∈[0,ℓ(k−1)] ∈ SS(S, ℓ, k). Note that such a set of ℓ(k − 1) + 1 trees of challenges is also a

tree of challenges of level µ. Thus, we define the extractor EA to simply run EBA
1 .

We first discuss the expected number of queries to A made by E . By Lemma 7.1, EAc
µ−1 makes

at most ℓ(k − 1) + 1 queries to BA in expectation. Then, by induction hypothesis, BA makes
at most K ′ calls to A in expectation. Hence, the total expected number of A-queries is at most
(ℓ(k − 1) + 1)K ′ = (ℓ(k − 1) + 1)µ. As for the success probability, we know from Lemma 7.1 and
induction hypothesis that EBA

1 succeeds with probability at least ϵ′ where

ϵ′ ≥ ϵW (BA)− ℓ(k − 1)
N

≥ Ec
[
Pr[EAc

µ−1 ̸= ⊥]
]
− ℓ(k − 1)

N

≥ Ec

[
ϵVc(Ac)− (µ− 1)ℓ(k − 1)

N

]
− ℓ(k − 1)

N

≥ ϵV (A)− µ
ℓ(k − 1)

N
,

which concludes the proof.

Finally, Lemma 2.31 follows straightforwardly from Lemma 7.2.

7.3 Comparison with the Generic Extractor

The notion of coordinate-wise special soundness is a specific case of general notion of Γ -out-of-C
special soundness introduced by Attema et al. [AFR23]. We refer to their notation and definitions

72

in this section. In their work, a generic knowledge extractor for Γ -out-of-C special-sound protocols
is presented. As they note, as long as the expected runtime of the generic knowledge extractor
is polynomial, Γ -out-of-C special soundness implies knowledge soundness. Although the generic
extractor can be useful in many settings, we show that, for ℓ > 1, k > 0, when the generic extractor
runs to get a set of accepting challenges C ∈ Γ ⊆ 2C , where C := Sℓ and

Γ := {C : ∃X ∈ SS(S, ℓ, k), X ⊆ C} ,

it cannot output the witness in expected polynomial time. Notice that Γ denotes the monotone
structure here.

To that end, let us first recall two crucial definitions from [AFR23]: the set of useful elements
and t-value. Then, we prove a lower bound on t-value, which gives us a lower bound for the expected
runtime of the generic extractor.

Definition 7.3 (Useful Elements, [AFR23]). For a monotone structure (Γ, C), we define the following
function:

UΓ : 2C → 2C , S 7→ {c ∈ C \ S : ∃A ∈ Γ s.t. S ⊂ A ∧A \ {c} /∈ Γ} .

Definition 7.4 (t-value, [AFR23]). Let (Γ, C) be a monotone structure and S ⊆ C. Then

tΓ (S) := max
{

t ∈ N0 : ∃c1, . . . , ct ∈ C s.t.
∀i, ci ∈ UΓ (S ∪ {c1, . . . , ci−1})

}
.

Further,

tΓ := tΓ (∅) .

Lemma 5 from [AFR23] states that the expected runtime of the generic extractor is 2tΓ − 1.
Therefore, we need to find a bound for tΓ . For simplicity, let k = 2. We claim that tΓ ≥ |S|ℓ−1 + 1.

For d, d′ ∈ S, d ̸= d′, and v = (v2, . . . , vℓ) ∈ Sℓ−1, consider the sets

Ad := {c = (c1, . . . , cℓ) ∈ C : c1 = d} and
Bd′,v :=

{
c = (c1, . . . , cℓ) ∈ C : c1 = d′,∃c′ ∈ Ad′ , ∀2 ≤ i ≤ ℓ, c′i = vi

}
.

We note that although Bd′,v has only one member, it is convenient for our proof to use set notation.
Now, notice that tΓ is defined on the longest possible sequence of challenges such that each challenge
is in the set of useful elements of all the previous ones. We argue that, for d, d′ ∈ S, d ̸= d′, and
v = (v2, . . . , vℓ) ∈ Sℓ−1, the sequence

c1, . . . , ct, ∀i ∈ [t− 1], ci ∈ Ad, ct ∈ Bd′,v,

fulfills the mentioned conditions, where t := |Ad|+ 1. This implies that tΓ ≥ |Ad|+ 1 = |S|ℓ−1 + 1.
We are left to prove that the specified sequence meets the constraint in the definition of tΓ . First,
observe that for d, d′ ∈ S, d ̸= d′,

∀c = (d, v) ∈ Ad, Ad ∪ Bd′,v ∈ Γ ∧ Ad ∪ Bd′,v \ {c} /∈ Γ .

73

Hence, Ad ⊆ UΓ (∅). Similarly, for any T ⊆ Ad,

∀c = (d, v) ∈ Ad \ T, Ad ∪ Bd′,v ∈ Γ ∧ Ad ∪ Bd′,v \ {c} /∈ Γ .

So, Ad \ T ⊆ UΓ (T). Finally, given that |Bd′,v| = 1, for any v ∈ Sℓ−1,

Ad ∪ Bd′,v ∈ Γ ∧ Ad /∈ Γ .

Therefore, Bd′,v ⊆ UΓ (Ad).
In summary, we proved that the expected runtime of the generic extractor is exponential in

ℓ, while our extractor is linear in ℓ. Consequently, we cannot prove knowledge soundness of the
protocol by leveraging Γ -out-of-C special soundness and the generic extractor.

8 Knowledge Soundness of a Fiat-Shamir-transformed Coordinate-
Wise Special-Sound Multi-Round Protocol

In this section, we show there is an efficient knowledge extractor for the non-interactive protocol
obtained by applying Fiat-Shamir transformation on a ℓ-coordinate-wise k-special-sound multi-round
protocol.

In the following, we leverage the approach presented by Attema et al. [AFK22]. Namely, we
define and analyze an abstract sampling game where the extractor plays the role of a sampler who
tries to find “good” entries. In the meantime, we elaborate on how this game relates to knowledge
extraction. For reference, we use notation from [AFK22]. Furthermore, we prove a slightly different
version of Lemmata 2 and 5 from [AFK22] for our specific reprogramming of the random oracle. As
Lemmata 3 and 6 from [AFK22] are independent of how random oracle gets reprogrammed, we only
use them as they are.

8.1 Analysis of the Abstract Sampling Game

Figure 12 shows the mentioned sampling game. Similar to [AFK22], the sequence of j1, . . . , jU ∈
{1, . . . , N}ℓ specifies the function table of the random oracle. Notice that the cardinality of the
input space of the random oracle is U . Each entry of M determines what the first message chosen
by the deterministic prover would be and if it would be an accepting transcript. For a given
sequence of j1, . . . , jU , we can extract when the following happens. First, M(j1, . . . , jU) = (1, i)
for some i ∈ {1, . . . , U}, and second, by reprogramming ji to some j′i (which is different from ji

coordinate-wisely) for enough many times, M(j1, . . . , j′i, . . . , jU) = (1, i). In other words, the prover
chooses the same first message when given each of these different functional tables of the random
oracle, and by coordinate-wise special soundness, it is feasible to extract.
Similar to [AFK22], we define the functions ai, ai,l :

(
{1, . . . , N}ℓ

)U
→ N≥0 where

ai,l : j 7→
∣∣∣{j′ :

(
∀(i′, l′) ∈ [N]× [ℓ] \ {(i, l)}, j′i′,l′ = ji′,l′

)
∧M(j′) = (1, i)

}∣∣∣ and (28)

ai : j 7→
∣∣∣{j′ :

(
∀(i′, l′) ∈ [N]× [ℓ], i′ ̸= i, j′i′,l′ = ji′,l′

)
∧M(j′) = (1, i)

}∣∣∣ . (29)

The value of ai,l(j) shows how many “good” entries there are on a 1-dimensional subarray of M
where only ji,l is not fixed. Similarly, ai,l(j) determines how many “good” entries there are on a

74

Abstract Sampling Game

Parameters: ℓ, k, N, U ∈ N, and a Uℓ-dimensional array M with entries in M(j1, . . . , jU) ∈
{0, 1} × {1, . . . , U} for all tuples j1, . . . , jU ∈ {1, . . . , N}ℓ.

• Sample (j1, . . . , jU) ∈
(
{1, . . . , N}ℓ

)U
uniformly at random and set (v, i) = M(j1, . . . , jU).

• If v = 0, abort.

• Else, for 1 ≤ l ≤ ℓ, repeat

– sample j′l ∈ {1, . . . , N} \ {ji,l} (without replacement),
– set j′ = (ji,1, . . . , ji,l−1, j′l, ji,l+1, . . . , ji,ℓ)
– compute (v′, i′) = M(j1, . . . , ji−1, j′, ji+1, . . . , jU),

until either k − 1 additional entries equal to (1, i) have been found or until all indices j′l
have been tried.

Figure 12: Abstract sampling game.

ℓ-dimensional subarray of M where the entire tuple of ji is not fixed. Having these two functions,
in the following lemma, we find two essential properties of this game: the probability of “success”
and the expected runtime (i.e., number of samples).

Lemma 8.1 (Abstract Sampling Game). Consider the game in Figure 12. Let J = (J1, ..., JU)
be uniformly distributed in

(
{1, . . . , N}ℓ

)U
, indicating the first entry sampled, and let (V, I) =

M(J1, . . . , JU). Further, for all 1 ≤ i ≤ U and 1 ≤ l ≤ ℓ, let Ai,l = ai,l(J) and Ai = ai(J).
Moreover, let X be the number of entries of the form (1, i) with i = I sampled (including the first
one), and let Λ be the total number of entries sampled in this game. Then,

E [Λ] ≤ 1 + ℓ(k − 1)P and

Pr [X = k] ≥ N

N − k + 1

(
Pr [V = 1]− P · ℓ(k − 1)

N

)
,

where P = ∑U
i=1 Pr [Ai > 0].

Proof (of Lemma 8.1). Expected Number of Samples. Let us first derive the upper bound on
the expected value of Λ. To this end, let X ′l be the number of sampled entries of the form (1, i)
with i = I in the lth iteration of the for loop. Similarly, let Y ′l denote the number of sampled entries
of the form (v, i) with v = 0 or i ̸= I, again in the lth iteration. Then Λ = 1 +∑ℓ

l=1 X ′l +∑ℓ
l=1 Y ′l

and for all 1 ≤ l ≤ ℓ
Pr
[
X ′l = 0

∣∣V = 0
]

= Pr
[
Y ′l = 0

∣∣V = 0
]

= 1 .

Hence, for all 1 ≤ l ≤ ℓ, E [X ′l |V = 0] = E [Y ′l |V = 0] = 0. Let us consider the expected value
E [Y ′l |V = 1] for any 1 ≤ l ≤ ℓ. Notice that, conditioned on the event V = 1 ∧ I = i ∧Ai,l = a with

75

a > 0, Y ′l follows a negative hypergeometric distribution with parameters N − 1, a− 1, and k − 1.
Hence, using Lemma 1 from [AFK22],

E
[
Y ′l
∣∣V = 1 ∧ I = i ∧Ai,l = a

]
≤ (k − 1)N − a

a
,

and thus, using that Pr [X ′l ≤ k − 1|V = 1] = 1,

E
[
X ′l + Y ′l

∣∣V = 1 ∧ I = i ∧Ai,l = a
]
≤ (k − 1) + (k − 1)N − a

a
= (k − 1)N

a
.

On the other hand,
Pr [V = 1 ∧ I = i |Ai,l = a] = a

N
,

and thus,
Pr [V = 1 ∧ I = i ∧Ai,l = a] = Pr [Ai,l = a] a

N
. (30)

Since Pr [V = 1 ∧ I = i ∧Ai,l = 0] = 0, we write

Pr [V = 1] · E
[
X ′l + Y ′l

∣∣V = 1
]

=
U∑

i=1

N∑
a=1

Pr [V = 1 ∧ I = i ∧Ai,l = a]

· E
[
X ′l + Y ′l

∣∣V = 1 ∧ I = i ∧Ai,l = a
]

≤
U∑

i=1

N∑
a=1

Pr [Ai,l = a] (k − 1)

= (k − 1)
U∑

i=1
Pr [Ai,l > 0] .

Consequently,

E [Λ] = E
[
1 +

ℓ∑
l=1

(X ′l + Y ′l)
]

= 1 +
ℓ∑

l=1

(
Pr [V = 0] · E

[
X ′l + Y ′l

∣∣V = 0
]

+ Pr [V = 1] · E
[
X ′l + Y ′l

∣∣V = 1
])

≤ 1 + (k − 1)
ℓ∑

l=1

U∑
i=1

Pr [Ai,l > 0]

≤ 1 + ℓ(k − 1)
U∑

i=1
Pr [Ai > 0]

≤ 1 + ℓ(k − 1)P ,

where we used the fact that for all 1 ≤ l ≤ ℓ, Pr [Ai,l > 0] ≤ Pr [Ai > 0]. Hence, the claimed upper
bound on E [Λ] is proven.

Success Probability. Success happens when for all 1 ≤ l ≤ ℓ, we have X ′l = k − 1. For all
1 ≤ l ≤ ℓ, let Xl be the number of sampled entries of the form (1, i) in the lth iteration of for loop
and the single sampled entry outside of the loop. Notice that if V = 1, for all 1 ≤ l ≤ ℓ, we have

76

Xl ≥ 1 even if we do not sample any other entries of the form (1, i) in the for loop. We are interested
in finding a lower bound for Pr

[∧ℓ
l=1 Xl = k

]
.

For all 1 ≤ l ≤ ℓ, V = 0 implies Xl = 0. Therefore, using k > 0, for all 1 ≤ l ≤ ℓ, we write
Pr [Xl = k] = Pr [Xl = k ∧ V = 1] and Pr

[∧ℓ
l=1 Xl = k

]
= Pr

[∧ℓ
l=1 Xl = k ∧ V = 1

]
. Therefore,

we have

Pr
[

ℓ∧
l=1

Xl = k

∣∣∣∣∣V = 1
]

=
Pr
[∧ℓ

l=1 Xl = k
]

Pr [V = 1] and

Pr [Xl = k |V = 1] = Pr [Xl = k]
Pr [V = 1] . (31)

Furthermore, since we sample at most k − 1 entries of the form (1, i) in each iteration, we can write

Pr
[

ℓ∧
l=1

Xl = k

∣∣∣∣∣V = 1
]

=
(

1− Pr
[

ℓ∨
l=1

Xl < k

∣∣∣∣∣V = 1
])

≥
(

1−
ℓ∑

l=1
Pr [Xl < k |V = 1]

)

=
(

1−
ℓ∑

l=1
(1− Pr [Xl = k |V = 1])

)

=
(

1−
ℓ∑

l=1

(
1− Pr [Xl = k]

Pr [V = 1]

))
, (32)

where we obtain the first inequality by using a union bound. We need to find a lower bound on
Pr [Xl = k] for all 1 ≤ l ≤ ℓ. Since we have Equation (30), we can reuse the bound shown by Attema
et al. [AFK22]. Hence,

Pr [Xl = k] ≥ N

N − k + 1

(
Pr [V = 1]− Pl ·

k − 1
N

)
,

where Pl = ∑U
i=1 Pr [Ai,l > 0]. By putting this bound back into Equation (32), we obtain

Pr
[

ℓ∧
l=1

Xl = k

∣∣∣∣∣V = 1
]
≥
(

1−
ℓ∑

l=1

(
Pl · (k − 1)

Pr [V = 1] · (N − k + 1) −
k − 1

N − k + 1

))

≥
(

N + (ℓ− 1)(k − 1)
N − k + 1 − ℓ · P · (k − 1)

Pr [V = 1] · (N − k + 1)

)
≥
(

N

N − k + 1 −
ℓ · P · (k − 1)

Pr [V = 1] · (N − k + 1)

)
≥ N

N − k + 1

(
1− P

ℓ(k − 1)
Pr [V = 1] ·N

)
,

where P = ∑U
i=1 Pr [Ai > 0]. To get the second inequality, we use that for all 1 ≤ l ≤ ℓ,

Pr [Ai,l > 0] ≤ Pr [Ai > 0], and consequently, Pl ≤ P . Also, (ℓ − 1)(k − 1) ≥ 0 leads us to
the third inequality. Using Equation (31), we have

Pr
[

ℓ∧
l=1

Xl = k

]
≥ N

N − k + 1

(
Pr [V = 1]− P

ℓ(k − 1)
N

)
,

77

which completes the proof.

Lemma 8.1 states bounds that are sufficient for bounding the knowledge error and the runtime of
the knowledge extractor in the case of a Fiat-Shamir-transformed Σ-protocol. However, as noted by
Attema et al. [AFK22], to show the knowledge extractor of a Fiat-Shamir-transformed multi-round
protocol runs in expected polynomial time, we need a refined analysis of expected runtime of the
game. The sub-tree knowledge extractor may have an expensive runtime Γ or a cheap runtime γ.
We now prove a better bound on runtime for the weighted version of this game which models the
cost of sub-tree extractors.

Lemma 8.2 (Abstract Sampling Game - Weighted Version). Consider the game in Figure 12, as
well a cost function Γ :

(
{1, . . . , N}ℓ

)U
→ R≥0 and a constant cost γ ∈ R≥0. Let J = (J1, ..., JU) be

uniformly distributed in
(
{1, . . . , N}ℓ

)U
, indicating the first entry sampled, and let (V, I) = M(J).

Further, for all 1 ≤ i ≤ U , let Ai = ai(J), where the function ai is as defined in Equation (29).
We define the cost of sampling an entry M(j) = (v, i) with i = I to be Γ (j) and the cost of an

entry M(j) = (v, i) with i ̸= I to be γ. Let ∆ be the total cost of playing this game. Then

E [∆] ≤ (1 + ℓ(k − 1)) · E [Γ (J)] + ℓ(k − 1) · T · γ ,

where T = ∑U
i=1 Pr [I ̸= i ∧Ai > 0] ≤ P .

Proof. Let us break the cost ∆ down to ∆1, ∆2, and ∆3, defined as follows. ∆1 denotes cost of
sampling entries of the form (1, i) with i = I, and Xl denotes the number of such entries in the lth

iteration. Similarly, ∆2 denotes cost of sampling entries of the form (0, i) with i = I, and Yl denotes
the number of such entries in the lth iteration. Finally, ∆3 denotes cost of (v, i) where i ̸= I, and Zl

denotes the number of such entries in the lth iteration. We use ∆′1,l (resp. ∆′2,l) for denoting the
part of ∆1 (resp. ∆2) that is added during the lth iteration. Clearly, ∆ = ∆1 + ∆2 + ∆3.

For 1 ≤ i ≤ U and 1 ≤ l ≤ ℓ, let us write

J∗i = (J1, . . . , Ji−1, Ji+1, . . . , JU) and J†i,l = (Ji,1, . . . , Ji,l−1, Ji,l+1, . . . , Ji,ℓ) ,

which are respectively uniformly random with support {1, . . . , N}(U−1)ℓ and {1, . . . , N}ℓ−1. More-
over, for all 1 ≤ i ≤ U , 1 ≤ l ≤ ℓ,

j∗ = (j∗1 , . . . , j∗i−1, j∗i+1, . . . , j∗U) ∈ {1, . . . , N}(U−1)ℓ , and
j† = (j†1, . . . , j†l−1, j†l+1, . . . , j†ℓ) ∈ {1, . . . , N}ℓ−1 ,

let Λ(i, j∗) denote the event
Λ(i, j∗) = [I = i ∧ J∗i = j∗]

and Θ(i, j∗, j†) denote the event

Θ(i, j∗, j†) = [Λ(i, j∗) ∧ J†i,l = j†] .

Notice that conditioned on the event Λ(i, j∗), all samples are picked from subarray

M
(
j∗1 , . . . , j∗i−1, ·, j∗i+1, . . . , j∗U

)
;

78

the first one uniformly at random subject to the index I being i, and the remaining ones (if V = 1)
uniformly at random (without replacement) for each coordinate. Similarly, conditioned on the event
Θ(i, j∗, j†), the sampling process follows the same criteria, with samples drawn from subarray

M
(
j∗1 , . . . , j∗i−1,

(
j†1, . . . , j†l−1, ·, j†l+1, . . . , j†ℓ

)
, j∗i+1, . . . , j∗U

)
.

Let us first look into E [∆1 |Λ(i, j∗)]. We notice that for all i, and j∗ with Pr [Λ(i, j∗)] > 0,

E [∆1 |Λ(i, j∗)] = Pr [V = 1 |Λ(i, j∗)] · E [∆1 |Λ(i, j∗) ∧ V = 1]
+ Pr [V = 0 |Λ(i, j∗)] · E [∆1 |Λ(i, j∗) ∧ V = 0]

= Pr [V = 1 |Λ(i, j∗)] · E [∆1 |Λ(i, j∗) ∧ V = 1]

= Pr [V = 1 |Λ(i, j∗)] · E
[∑

l

∆′1,l

∣∣∣∣∣Λ(i, j∗) ∧ V = 1
]

+ Pr [V = 1 |Λ(i, j∗)] · E [Γ (J) |Λ(i, j∗) ∧ V = 1]

=
∑

l

(
Pr [V = 1 |Λ(i, j∗)] · E

[
∆′1,l

∣∣∣Λ(i, j∗) ∧ V = 1
])

+ Pr [V = 1 |Λ(i, j∗)] · E [Γ (J) |Λ(i, j∗) ∧ V = 1]

=
∑

l

E
[
∆′1,l

∣∣∣Λ(i, j∗)
]

+ Pr [V = 1 |Λ(i, j∗)] · E [Γ (J) |Λ(i, j∗) ∧ V = 1] . (33)

In the above, we use linearity of expectation and E
[
∆′1,l

∣∣∣Λ(i, j∗) ∧ V = 0
]

= 0. Moreover, by
conditioning on the value of Xl, we have

E
[
∆′1,l

∣∣∣Λ(i, j∗)
]

=
N−1∑
xl=0

Pr [Xl = xl |Λ(i, j∗)] · E
[
∆′1,l

∣∣∣Λ(i, j∗) ∧Xl = xl

]
. (34)

Also,

E
[
∆′1,l

∣∣∣Λ(i, j∗) ∧Xl = xl

]
=∑

j†

Pr
[
J†i,l = j†

∣∣∣Λ(i, j∗) ∧Xl = xl

]
· E
[
∆′1,l

∣∣∣Θ(i, j∗, j†) ∧Xl = xl

]
. (35)

Let us try to understand E
[
∆′1,l

∣∣∣Θ(i, j∗, j†) ∧Xl = xl

]
. The condition means that we are sampling

only on coordinate l, the rest of the tuple is fixed on j†, and we sample xl entries of the form
(1, i). In other words, we are looking for a subset of entries of the form (1, i) with size xl, and
also, since J is not fixed, the sampling process is uniform among such entries. Notice that the
probability of choosing any of them is xl times bigger than the probability of choosing the same
entry when the size of subset was one. Therefore, the expected total cost is xl times the expected
cost of sampling only one such entry. We can write the expected cost of only one such entry as
E
[
Γ (J)

∣∣∣Θ(i, j∗, j†) ∧ V = 1
]
. So, we have

E
[
∆′1,l

∣∣∣Θ(i, j∗, j†) ∧Xl = xl

]
= E

[
Γ (J)

∣∣∣Θ(i, j∗, j†) ∧ V = 1
]
· xl .

79

Putting this expression back into Equation (35) and Equation (34), we get

E
[
∆′1,l

∣∣∣Λ(i, j∗)
]

= E [Xl |Λ(i, j∗)] · E [Γ (J) |Λ(i, j∗) ∧ V = 1] . (36)

Similarly, for ∆2, we have

E [∆2 |Λ(i, j∗)] =
∑

l

E
[
∆′2,l

∣∣∣Λ(i, j∗)
]

+

Pr [V = 0 |Λ(i, j∗)] · E [Γ (J) |Λ(i, j∗) ∧ V = 0] and (37)

E
[
∆′2,l

∣∣∣Λ(i, j∗)
]

= E [Yl |Λ(i, j∗)] · E [Γ (J) |Λ(i, j∗) ∧ V = 0] . (38)

Now, our goal is to upper bound E [Xl |Λ(i, j∗)] and E [Yl |Λ(i, j∗)]. Knowing that V = 0 implies
Xl = 0 and V = 1 implies Xl ≤ k, we write

E [Xl |Λ(i, j∗)] = Pr [V = 0 |Λ(i, j∗)] · E [Xl |Λ(i, j∗) ∧ V = 0]
+ Pr [V = 1 |Λ(i, j∗)] · E [Xl |Λ(i, j∗) ∧ V = 1]
≤ (k − 1) · Pr [V = 1 |Λ(i, j∗)] .

Hence, and using Equation (33) and Equation (36), we have

E [∆1 |Λ(i, j∗)] ≤
∑

l

(k − 1) · Pr [V = 1 |Λ(i, j∗)] · E [Γ (J) |Λ(i, j∗) ∧ V = 1]

+ Pr [V = 1 |Λ(i, j∗)] · E [Γ (J) |Λ(i, j∗) ∧ V = 1]
≤ (1 + ℓ(k − 1)) · Pr [V = 1 |Λ(i, j∗)] · E [Γ (J) |Λ(i, j∗) ∧ V = 1] . (39)

Bounding E [Yl |Λ(i, j∗)] is more involved and we need to leverage the functions defined in
Equation (28) and Equation (29). For the fixed choice of the index 1 ≤ i ≤ U and of j∗ =
(j∗1 , . . . , j∗i−1, j∗i+1, . . . , j∗U) ∈ {1, . . . , N}ℓ(U−1), and for all 1 ≤ l ≤ ℓ and j† ∈ {1, . . . , N}ℓ−1, we
define new parameters

a :=
∣∣{j : (vj , ij) = M(j∗1 , . . . , j∗i−1, j, j∗i+1, . . . , j∗U) = (1, i)

}∣∣ ,

b :=
∣∣{j : (vj , ij) = M(j∗1 , . . . , j∗i−1, j, j∗i+1, . . . , j∗U) = (0, i)

}∣∣ ,

al,j† :=

∣∣∣∣∣∣∣∣∣∣∣

j : (vj , ij) = M

j∗1 , . . . , j∗i−1, j†1, . . . , j†l−1,

j,

j†l+1, . . . , j†ℓ

, j∗i+1, . . . , j∗U

 = (1, i)

∣∣∣∣∣∣∣∣∣∣∣
, and

bl,j† :=

∣∣∣∣∣∣∣∣∣∣∣

j : (vj , ij) = M

j∗1 , . . . , j∗i−1, j†1, . . . , j†l−1,

j,

j†l+1, . . . , j†ℓ

, j∗i+1, . . . , j∗U

 = (0, i)

∣∣∣∣∣∣∣∣∣∣∣
. (40)

Notice that Pr [V = 1 |Λ(i, j∗)] = a
a+b and Pr [V = 0 |Λ(i, j∗)] = b

a+b for all i and j∗ with Pr [Λ(i, j∗)] >

0. Observe that if we condition on the event V = 1 ∧ Λ(i, j∗) (resp. V = 1 ∧ Θ(i, j∗, j†)), we

80

implicitly assume that a > 0 (resp. al,j† > 0). Moreover, ∑j† al,j† = a and ∑j† bl,j† = b. Using the
fact that E [Yl |V = 0 ∧ Λ(i, j∗)] = 0, we have

E [Yl |Λ(i, j∗)] = a

a + b
· E [Yl |V = 1 ∧ Λ(i, j∗)] .

Conditioned on V = 1∧Θ(i, j∗, j†), Yl follows a negative hypergeometric distribution with parameters
a + b− 1, a− 1, and k − 1. We write

E [Yl |V = 1 ∧ Λ(i, j∗)] =
∑
j†

Pr
[
J†i,l = j†

∣∣∣V = 1 ∧ Λ(i, j∗)
]
· E
[
Yl

∣∣∣V = 1 ∧Θ(i, j∗, j†)
]

=
∑
j†

al,j†

a
· E
[
Yl

∣∣∣V = 1 ∧Θ(i, j∗, j†)
]

≤
∑
j†

al,j†

a
· (k − 1)

bl,j†

al,j†
(by [AFK22, Lemma 1])

= (k − 1) b

a
.

This implies that
E [Yl |Λ(i, j∗)] ≤ (k − 1) · Pr [V = 0 |Λ(i, j∗)] .

Using Equation (37) and Equation (38), we have

E [∆2 |Λ(i, j∗)] ≤
∑

l

(k − 1) · Pr [V = 0 |Λ(i, j∗)] · E [Γ (J) |Λ(i, j∗) ∧ V = 0]

+ Pr [V = 0 |Λ(i, j∗)] · E [Γ (J) |Λ(i, j∗) ∧ V = 0]
≤ (1 + ℓ(k − 1)) · Pr [V = 0 |Λ(i, j∗)] · E [Γ (J) |Λ(i, j∗) ∧ V = 0] .

Combining with Equation (39), we have

E [∆1 + ∆2 |Λ(i, j∗)] ≤ (1 + ℓ(k − 1)) · E [Γ (J) |Λ(i, j∗)] .

We can remove the condition Λ(i, j∗) since this inequality holds for all i and j∗ with Pr [Λ(i, j∗)] > 0.
Therefore,

E [∆1 + ∆2] ≤ (1 + ℓ(k − 1)) · E [Γ (J)] .

The final step is to show E [∆3] ≤ ℓ(k−1)Tγ, or equivalently, E [Z] ≤ ℓ(k−1)T , where Z = ∑
l Zl.

Again, we follow the approach we used previously. We fix a choice of i and j∗ and set the parameters
a, b, al,j† , and bl,j† as defined in Equation (40). Consequently, we observe that conditioning on
the event V = 1 ∧Θ(i, j∗, j†), Zl follows a negative hypergeometric distribution with parameters
N − b− 1, a− 1, and k − 1. Therefore, using the bound in Lemma 1 from [AFK22], we have

E [Zl |V = 1 ∧ Λ(i, j∗)] =∑
j†

Pr
[
J†i,l = j†

∣∣∣V = 1 ∧ Λ(i, j∗)
]
· E
[
Zl

∣∣∣V = 1 ∧Θ(i, j∗, j†)
]

=
∑
j†

al,j†

a
· E
[
Yl

∣∣∣V = 1 ∧Θ(i, j∗, j†)
]

81

≤
∑
j†

al,j†

a
· (k − 1)

N − al,j† − bl,j†

al,j†

= (k − 1)N − a− b

a
.

Also, since E [Zl |V = 0 ∧ Λ(i, j∗)] = 0, we write

E [Zl |Λ(i, j∗)] ≤ a

a + b
· E [Zl |V = 1 ∧ Λ(i, j∗)] = (k − 1)N − a− b

a + b
.

Using Pr [I = i | J∗i = j∗] = a+b
N , we have

E [Zl |Λ(i, j∗)] ≤ (k − 1) ·
(Pr [I ̸= i ∧ J∗i = j∗]

Pr [Λ(i, j∗)]

)
,

and since Z = ∑
l Zl,

E [∆3 |Λ(i, j∗)] ≤ ℓ(k − 1)γ ·
(Pr [I ̸= i ∧ J∗i = j∗]

Pr [Λ(i, j∗)]

)
.

From this point, using the exact same argument by Attema et al. [AFK22, Lemma 5], we have
E [∆3] ≤ ℓ(k − 1) · γ · T, and the proof is complete.

Now, the analysis of the game is complete, and we move forward to knowledge extraction.

8.2 The Knowledge Extractor

This section introduces our knowledge extractor for a Fiat-Shamir-transformed ℓ-coordinate-wise
k-special-sound Σ-protocol. One can generalize this extractor for multi-round protocols as done by
Attema et al. [AFK22, Section 6]. In the following, we use the notation of Section 4 from [AFK22].
Figure 13 demonstrates our knowledge extractor E . Instead of, for example, answering the query on
the first message with a fresh random value in C := Sℓ, E uses new values coordinate by coordinate.
Notice that this manner of answering query on the first message is analogous to our abstract
sampling game in Figure 12.

Having Lemmata 8.1 and 8.2 along with [AFK22, Lemmata 3 and 6] at hand, and using the
bounds in Section 7, we deduce that the knowledge error and the expected runtime of the extractor
for a ℓ-coordinate-wise k-special-sound multi-round protocol degrades by a factor of Q + 1 after
applying Fiat-Shmair transformation, and it is independent from the number of rounds.

We note that one can easily generalize this conclusion for a (ℓ1, . . . , ℓµ)-coordinate-wise (k1, . . . , kµ)-
special-sound (2µ + 1)-move protocol and the corresponding Fiat-Shamir-transformed protocol. We
omit the details here because they do not contain any novel aspects.

References
[ACK21] Thomas Attema, Ronald Cramer, and Lisa Kohl. “A Compressed Σ-Protocol Theory for

Lattices”. In: CRYPTO (2). Vol. 12826. Lecture Notes in Computer Science. Springer, 2021,
pp. 549–579.

82

Extractor E

Parameters: ℓ, k, Q ∈ N
Black-box access to: A

• Run A to get (I, y1, v) in the following manner: answer all (distinct) random oracle queries
with uniformly random values in C := Sℓ. Set i := I, let ci be the response to query i.

• If v = 0, abort.

• Else, for 1 ≤ l ≤ ℓ, repeat

– sample c′i,l ∈ S \ {ci,l} (without replacement),

– set c′i =
(
ci,1, . . . , ci,l−1, c′i,l, ci,l+1, . . . , ci,ℓ

)
– run A to get (I ′, y′, v′) in the following manner: answer the query to i with c′i, while

answering all other queries consistently if the query was performed by A already on a
previous run, and otherwise, with a fresh random value in C.

until either k − 1 additional challenges with v′ = 1 and I ′ = I have been found or until all
challenges c′i,l ∈ S have been tried.

• If the former happens for all 1 ≤ l ≤ ℓ, output the ℓ(k − 1) + 1 accepting transcripts
y1, . . . , yℓ(k−1)+1.

Figure 13: Knowledge Extractor E .

[ACLMT22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda
Krishnan Thyagarajan. “Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and
Recursively Composable - (Extended Abstract)”. In: CRYPTO (2). Vol. 13508. Lecture
Notes in Computer Science. Springer, 2022, pp. 102–132.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. “Post-quantum Key
Exchange - A New Hope”. In: USENIX Security Symposium. USENIX Association, 2016,
pp. 327–343.

[AF22] Thomas Attema and Serge Fehr. “Parallel Repetition of (k1, . . . , kµ)-Special-Sound Multi-
Round Interactive Proofs”. In: CRYPTO (1). Vol. 13507. Lecture Notes in Computer
Science. Springer, 2022, pp. 415–443.

[AFK22] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-Shamir Transformation of Multi-
round Interactive Proofs. 2022.

[AFLN23] Martin R. Albrecht, Giacomo Fenzi, Oleksandra Lapiha, and Ngoc Khanh Nguyen. SLAP:
Succinct Lattice-Based Polynomial Commitments from Standard Assumptions. Cryptology
ePrint Archive, Paper 2023/1469. https://eprint.iacr.org/2023/1469. 2023. url:
https://eprint.iacr.org/2023/1469.

[AFR23] Thomas Attema, Serge Fehr, and Nicolas Resch. A Generalized Special-Soundness Notion
and its Knowledge Extractors. Cryptology ePrint Archive, Paper 2023/818. https://eprint.
iacr.org/2023/818. 2023. url: https://eprint.iacr.org/2023/818.

83

https://eprint.iacr.org/2023/1469
https://eprint.iacr.org/2023/1469
https://eprint.iacr.org/2023/818
https://eprint.iacr.org/2023/818
https://eprint.iacr.org/2023/818

[AKSY22] Shweta Agrawal, Elena Kirshanova, Damien Stehlé, and Anshu Yadav. “Practical, Round-
Optimal Lattice-Based Blind Signatures”. In: CCS. ACM, 2022, pp. 39–53.

[AL21] Martin R. Albrecht and Russell W. F. Lai. “Subtractive Sets over Cyclotomic Rings - Limits
of Schnorr-Like Arguments over Lattices”. In: CRYPTO (2). Vol. 12826. Lecture Notes in
Computer Science. Springer, 2021, pp. 519–548.

[ALS20] Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. “Practical Product Proofs for
Lattice Commitments”. In: CRYPTO (2). Vol. 12171. Lecture Notes in Computer Science.
Springer, 2020, pp. 470–499.

[Ajt96] Miklós Ajtai. “Generating hard instances of lattice problems”. In: Proceedings of the 28th
Annual ACM Symposium on the Theory of Computing. STOC ’96. 1996, pp. 99–108.

[Att23] Thomas Attema. Compressed Sigma-protocol theory. PhD Thesis. 2023. url: https://
scholarlypublications.universiteitleiden.nl/access/item%3A3619598/view.

[BBBPWM18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Gregory
Maxwell. “Bulletproofs: Short Proofs for Confidential Transactions and More”. In: IEEE
Symposium on Security and Privacy. 2018, pp. 315–334.

[BBCPGL18] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth, and Vadim
Lyubashevsky. “Sub-linear Lattice-Based Zero-Knowledge Arguments for Arithmetic Cir-
cuits”. In: CRYPTO. 2018, pp. 669–699.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scalable Zero Knowledge
with No Trusted Setup”. In: Proceedings of the 39th Annual International Cryptology
Conference. CRYPTO ’19. 2019, pp. 733–764.

[BCCGP16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.
“Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting”.
In: EUROCRYPT. 2016, pp. 327–357.

[BCFL22] David Balbás, Dario Catalano, Dario Fiore, and Russell W. F. Lai. Functional Commitments
for Circuits from Falsifiable Assumptions. Cryptology ePrint Archive, Paper 2022/1365.
https://eprint.iacr.org/2022/1365. 2022. url: https://eprint.iacr.org/2022/
1365.

[BCHO22] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. “Gemini: Elastic
SNARKs for Diverse Environments”. In: Proceedings of the 41st Annual International
Conference on the Theory and Applications of Cryptographic Techniques. EUROCRYPT ’22.
2022, pp. 427–457.

[BCIOP13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. “Succinct
Non-Interactive Arguments via Linear Interactive Proofs”. In: Proceedings of the 10th Theory
of Cryptography Conference. TCC ’13. 2013, pp. 315–333.

[BCKLN14] Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky, and Gregory
Neven. “Better Zero-Knowledge Proofs for Lattice Encryption and Their Application to
Group Signatures”. In: ASIACRYPT. 2014, pp. 551–572.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In:
Proceedings of the 14th Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

[BCS21] Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. “Sumcheck Arguments and
Their Applications”. In: CRYPTO (1). Vol. 12825. Lecture Notes in Computer Science.
Springer, 2021, pp. 742–773.

84

https://scholarlypublications.universiteitleiden.nl/access/item%3A3619598/view
https://scholarlypublications.universiteitleiden.nl/access/item%3A3619598/view
https://eprint.iacr.org/2022/1365
https://eprint.iacr.org/2022/1365
https://eprint.iacr.org/2022/1365

[BCS23] Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. “Lattice-Based Succinct Ar-
guments for NP with Polylogarithmic-Time Verification”. In: Advances in Cryptology -
CRYPTO 2023. Ed. by Helena Handschuh and Anna Lysyanskaya. Vol. 14082. Lecture Notes
in Computer Science. Springer, 2023, pp. 227–251. doi: 10.1007/978-3-031-38545-2_8.
url: https://doi.org/10.1007/978-3-031-38545-2_8.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. “New directions in nearest
neighbor searching with applications to lattice sieving”. In: SODA. SIAM, 2016, pp. 10–24.

[BDLOP18] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and Chris Peikert.
“More Efficient Commitments from Structured Lattice Assumptions”. In: SCN. 2018, pp. 368–
385.

[BF22] Benedikt Bünz and Ben Fisch. Multilinear Schwartz-Zippel mod N with Applications to
Succinct Arguments. Cryptology ePrint Archive, Paper 2022/458. https://eprint.iacr.
org/2022/458. 2022. url: https://eprint.iacr.org/2022/458.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. “Transparent SNARKs from DARK
Compilers”. In: EUROCRYPT (1). Vol. 12105. Lecture Notes in Computer Science. Springer,
2020, pp. 677–706.

[BLNS20] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. “A Non-
PCP Approach to Succinct Quantum-Safe Zero-Knowledge”. In: CRYPTO (2). Vol. 12171.
Lecture Notes in Computer Science. Springer, 2020, pp. 441–469.

[BLNS23] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Alessandro Sorniotti. A
Framework for Practical Anonymous Credentials from Lattices. To appear at CRYPTO 2023.
https://eprint.iacr.org/2023/560. 2023. url: https://eprint.iacr.org/2023/560.

[BS23] Ward Beullens and Gregor Seiler. “LaBRADOR: Compact Proofs for R1CS from Module-
SIS”. In: CRYPTO (5). Vol. 14085. Lecture Notes in Computer Science. Springer, 2023,
pp. 518–548.

[BTT22] Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi. “MuSig-L: Lattice-Based Multi-
Signature With Single-Round Online Phase”. In: https://eprint.iacr.org/2022/1036.
2022. url: https://eprint.iacr.org/2022/1036.

[Bos+18] Joppe W. Bos et al. “CRYSTALS - Kyber: A CCA-Secure Module-Lattice-Based KEM”. In:
2018 IEEE European Symposium on Security and Privacy, EuroS&P. 2018, pp. 353–367.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. “The random oracle methodology, revisited”.
In: J. ACM 51.4 (2004), pp. 557–594.

[CHMMVW20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas
Ward. “Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS”. In: Pro-
ceedings of the 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 738–768.

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. “SNARGs for \mathcal{P}
from LWE”. In: FOCS. IEEE, 2021, pp. 68–79.

[CLM23] Valerio Cini, Russell W. F. Lai, and Giulio Malavolta. “Lattice-Based Succinct Arguments
from Vanishing Polynomials”. In: Advances in Cryptology – CRYPTO 2023. Ed. by Helena
Handschuh and Anna Lysyanskaya. Cham: Springer Nature Switzerland, 2023, pp. 72–105.

[CN11] Yuanmi Chen and Phong Q. Nguyen. “BKZ 2.0: Better Lattice Security Estimates”. In:
ASIACRYPT. Vol. 7073. Lecture Notes in Computer Science. Springer, 2011, pp. 1–20.

[CP22] Leo de Castro and Chris Peikert. “Functional Commitments for All Functions, with Trans-
parent Setup”. In: IACR Cryptol. ePrint Arch. (2022), p. 1368.

85

https://doi.org/10.1007/978-3-031-38545-2_8
https://doi.org/10.1007/978-3-031-38545-2_8
https://eprint.iacr.org/2022/458
https://eprint.iacr.org/2022/458
https://eprint.iacr.org/2022/458
https://eprint.iacr.org/2023/560
https://eprint.iacr.org/2023/560
https://eprint.iacr.org/2022/1036
https://eprint.iacr.org/2022/1036

[Can+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. “Fiat-Shamir: from practice to theory”. In: STOC. ACM,
2019, pp. 1082–1090.

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. “The Measure-and-Reprogram Technique
2.0: Multi-round Fiat-Shamir and More”. In: CRYPTO (3). Vol. 12172. Lecture Notes in
Computer Science. Springer, 2020, pp. 602–631.

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. “Rate-1 Non-
Interactive Arguments for Batch-NP and Applications”. In: FOCS. IEEE, 2022, pp. 1057–
1068.

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. “Efficient Identity-Based Encryption
over NTRU Lattices”. In: ASIACRYPT. 2014, pp. 22–41.

[Duc+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. “CRYSTALS-Dilithium: A Lattice-Based Digital Signature
Scheme”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018.1 (2018), pp. 238–268.

[ENS20] Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. “Practical Exact Proofs
from Lattices: New Techniques to Exploit Fully-Splitting Rings”. In: ASIACRYPT (2).
2020, pp. 259–288.

[EZSLL19] Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu.
“MatRiCT: Efficient, Scalable and Post-Quantum Blockchain Confidential Transactions
Protocol”. In: CCS. ACM, 2019, pp. 567–584.

[FLV23] Ben Fisch, Zeyu Liu, and Psi Vesely. “Orbweaver: Succinct Linear Functional Commitments
from Lattices”. In: Advances in Cryptology – CRYPTO 2023. Ed. by Helena Handschuh
and Anna Lysyanskaya. Cham: Springer Nature Switzerland, 2023, pp. 106–131.

[FS86] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to Identification
and Signature Problems”. In: CRYPTO. 1986, pp. 186–194.

[Fou+20] Pierre-Alain Fouque et al. Falcon: Fast-Fourier Lattice-based Compact Signatures over
NTRU. Tech. rep. https:/https://falcon-sign.info/falcon.pdf. 2020.

[GLSTW21] Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby.
“Brakedown: Linear-time and post-quantum SNARKs for R1CS”. In: IACR Cryptol. ePrint
Arch. (2021), p. 1043.

[GMNO18] Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù. “Lattice-Based zk-
SNARKs from Square Span Programs”. In: Proceedings of the 25th ACM Conference on
Computer and Communications Security. CCS ’18. 2018, pp. 556–573.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for hard lattices and
new cryptographic constructions”. In: STOC. 2008, pp. 197–206.

[HHGPSW03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and William
Whyte. “NTRUSIGN: Digital Signatures Using the NTRU Lattice”. In: CT-RSA. 2003,
pp. 122–140.

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. “SNARGs for
P from Sub-exponential DDH and QR”. In: EUROCRYPT (2). Vol. 13276. Lecture Notes
in Computer Science. Springer, 2022, pp. 520–549.

[HLR21] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. “Fiat-Shamir via list-recoverable
codes (or: parallel repetition of GMW is not zero-knowledge)”. In: STOC. ACM, 2021,
pp. 750–760.

[ISW21] Yuval Ishai, Hang Su, and David J. Wu. “Shorter and Faster Post-Quantum Designated-
Verifier zkSNARKs from Lattices”. In: CCS. ACM, 2021, pp. 212–234.

86

[JRLS22] Corentin Jeudy, Adeline Roux-Langlois, and Olivier Sanders. Lattice Signature with Effi-
cient Protocols, Application to Anonymous Credentials. Cryptology ePrint Archive, Paper
2022/509. https://eprint.iacr.org/2022/509. 2022. url: https://eprint.iacr.org/
2022/509.

[KLVW23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. “Boosting Batch
Arguments and RAM Delegation”. In: STOC. ACM, 2023, pp. 1545–1552.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. “Constant-Size Commitments
to Polynomials and Their Applications”. In: ASIACRYPT. Vol. 6477. Lecture Notes in
Computer Science. Springer, 2010, pp. 177–194.

[Kat21] Shuichi Katsumata. “A New Simple Technique to Bootstrap Various Lattice Zero-Knowledge
Proofs to QROM Secure NIZKs”. In: CRYPTO (2). Vol. 12826. Lecture Notes in Computer
Science. Springer, 2021, pp. 580–610.

[LLL82] Arjen Lenstra, Hendrik Lenstra Jr., and Laszlo Lovasz. “Factoring polynomials with rational
coefficients”. In: Mathematische Annalen 261 (1982), pp. 513–534.

[LMS22] Russell W. F. Lai, Giulio Malavolta, and Nicholas Spooner. “Quantum Rewinding for
Many-Round Protocols”. In: TCC (1). Vol. 13747. Lecture Notes in Computer Science.
Springer, 2022, pp. 80–109.

[LN22] Vadim Lyubashevsky and Ngoc Khanh Nguyen. “BLOOM: Bimodal Lattice One-out-
of-Many Proofs and Applications”. In: ASIACRYPT (4). Vol. 13794. Lecture Notes in
Computer Science. Springer, 2022, pp. 95–125.

[LNP22] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. “Lattice-Based Zero-
Knowledge Proofs and Applications: Shorter, Simpler, and More General”. In: CRYPTO
(2). Vol. 13508. Lecture Notes in Computer Science. Springer, 2022, pp. 71–101.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “A Toolkit for Ring-LWE Cryptog-
raphy”. In: EUROCRYPT. 2013, pp. 35–54.

[LRY16] Benoît Libert, Somindu C. Ramanna, and Moti Yung. “Functional Commitment Schemes:
From Polynomial Commitments to Pairing-Based Accumulators from Simple Assumptions”.
In: ICALP. Vol. 55. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016,
30:1–30:14.

[LS15] Adeline Langlois and Damien Stehlé. “Worst-case to average-case reductions for module
lattices”. In: Des. Codes Cryptogr. 75.3 (2015), pp. 565–599.

[LS18] Vadim Lyubashevsky and Gregor Seiler. “Short, Invertible Elements in Partially Split-
ting Cyclotomic Rings and Applications to Lattice-Based Zero-Knowledge Proofs”. In:
EUROCRYPT (1). Springer, 2018, pp. 204–224.

[LS19] Vadim Lyubashevsky and Gregor Seiler. “NTTRU: Truly Fast NTRU Using NTT”. In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019.3 (2019), pp. 180–201.

[Lee21] Jonathan Lee. “Dory: Efficient, Transparent Arguments for Generalised Inner Products and
Polynomial Commitments”. In: TCC (2). Vol. 13043. Lecture Notes in Computer Science.
Springer, 2021, pp. 1–34.

[Lyu09] Vadim Lyubashevsky. “Fiat-Shamir with Aborts: Applications to Lattice and Factoring-
Based Signatures”. In: ASIACRYPT. 2009, pp. 598–616.

[Lyu12] Vadim Lyubashevsky. “Lattice Signatures Without Trapdoors”. In: EUROCRYPT. 2012,
pp. 738–755.

[MP12] Daniele Micciancio and Chris Peikert. “Trapdoors for Lattices: Simpler, Tighter, Faster,
Smaller”. In: EUROCRYPT. 2012, pp. 700–718.

87

https://eprint.iacr.org/2022/509
https://eprint.iacr.org/2022/509
https://eprint.iacr.org/2022/509

[MR07] Daniele Micciancio and Oded Regev. “Worst-Case to Average-Case Reductions Based on
Gaussian Measures”. In: SIAM Journal on Computing 37 (1 2007), pp. 267–302.

[MR09] Daniele Micciancio and Oded Regev. “Lattice-based Cryptography”. In: Post-Quantum
Cryptography. Ed. by Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 147–191. isbn: 978-3-540-88702-7. doi:
10.1007/978-3-540-88702-7_5. url: https://doi.org/10.1007/978-3-540-88702-
7_5.

[NS22] Ngoc Khanh Nguyen and Gregor Seiler. “Practical Sublinear Proofs for R1CS from Lattices”.
In: CRYPTO (2). Vol. 13508. Lecture Notes in Computer Science. Springer, 2022, pp. 133–
162.

[PPS21] Chris Peikert, Zachary Pepin, and Chad Sharp. “Vector and Functional Commitments from
Lattices”. In: TCC (3). Vol. 13044. Lecture Notes in Computer Science. Springer, 2021,
pp. 480–511.

[SE94] Claus-Peter Schnorr and M. Euchner. “Lattice basis reduction: Improved practical algorithms
and solving subset sum problems”. In: Math. Program. 66 (1994), pp. 181–199.

[SS13] Damien Stehlé and Ron Steinfeld. “Making NTRUEncrypt and NTRUSign as Secure as
Standard Worst-Case Problems over Ideal Lattices”. In: IACR Cryptol. ePrint Arch. (2013),
p. 4.

[SSEK22] Ron Steinfeld, Amin Sakzad, Muhammed F. Esgin, and Veronika Kuchta. Private Re-
Randomization for Module LWE and Applications to Quasi-Optimal ZK-SNARKs. Cryptol-
ogy ePrint Archive, Paper 2022/1690. https://eprint.iacr.org/2022/1690. 2022. url:
https://eprint.iacr.org/2022/1690.

[Sei18] Gregor Seiler. “Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptog-
raphy”. In: IACR Cryptology ePrint Archive 2018 (2018). http://eprint.iacr.org/2018/039,
p. 39.

[Set20] Srinath Setty. “Spartan: Efficient and general-purpose zkSNARKs without trusted setup”.
In: Proceedings of the 40th Annual International Cryptology Conference. CRYPTO ’20.
Referencing Cryptology ePrint Archive, Report 2019/550, revision from 2020.02.28. 2020,
pp. 704–737.

[WW23a] Hoeteck Wee and David J. Wu. “Lattice-Based Functional Commitments: Fast Verification
and Cryptanalysis”. In: Springer-Verlag, 2023.

[WW23b] Hoeteck Wee and David J. Wu. “Succinct Vector, Polynomial, and Functional Commitments
from Lattices”. In: EUROCRYPT (3). Vol. 14006. Lecture Notes in Computer Science. Full
version: https://eprint.iacr.org/2022/1515. Springer, 2023, pp. 385–416.

88

https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://eprint.iacr.org/2022/1690
https://eprint.iacr.org/2022/1690
https://eprint.iacr.org/2022/1515

	Abstract
	Contents
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 BASIS Commitment Scheme
	1.4 Framework for Proving Polynomial Evaluations
	1.5 Polynomial Commitments over Finite Fields
	1.6 Related Works
	1.7 Concurrent and Subsequent Works

	2 Preliminaries
	2.1 Lattices
	2.2 Power-of-Two Cyclotomic Rings
	2.3 Discrete Gaussian Distributions
	2.4 NTRU Lattices
	2.5 Gadget Trapdoors
	2.6 Commitment Scheme
	2.7 Polynomial Commitment Scheme
	2.8 Interactive Proofs
	2.9 Coordinate-Wise Special Soundness

	3 Power-BASIS Assumption
	3.1 Hardness of BASIS for Low Dimensions
	3.2 Higher Dimensions

	4 Power-BASIS Commitment Scheme
	4.1 Security Analysis

	5 Efficient Proofs of Polynomial Evaluation
	5.1 Framework for Proving Evaluations
	5.2 Monomial Protocol
	5.3 Large Sampling Set
	5.4 Batching Evaluations
	5.4.1 Multiple Evaluations at a Single Point
	5.4.2 Multiple Evaluations at Distinct Points

	5.5 Honest-Verifier Zero-Knowledge
	5.6 Polynomial Commitments over Finite Fields

	6 Concrete Instantiation and Applications to Marlin
	7 Coordinate-Wise Special Soundness Implies Knowledge Soundness
	7.1 -Protocols
	7.2 Multi-Round Protocols
	7.3 Comparison with the Generic Extractor

	8 Knowledge Soundness of a Fiat-Shamir-transformed Coordinate-Wise Special-Sound Multi-Round Protocol
	8.1 Analysis of the Abstract Sampling Game
	8.2 The Knowledge Extractor

	References

