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Abstract. Secure computation often benefits from the use of correlated randomness to
achieve fast, non-cryptographic online protocols. A recent paradigm put forth by Boyle et
al. (CCS 2018, Crypto 2019) showed how pseudorandom correlation generators (PCG) can
be used to generate large amounts of useful forms of correlated (pseudo)randomness, using
minimal interactions followed solely by local computations, yielding silent secure two-party
computation protocols (protocols where the preprocessing phase requires almost no commu-
nication). Furthermore, programmable PCG’s can be used similarly to generate multiparty
correlated randomness to be used in silent secure N-party protocols. Previous works con-
structed very efficient (non-programmable) PCG’s for correlations such as random oblivious
transfers. However, the situation is less satisfying for the case of random oblivious linear
evaluation (OLE), which generalises oblivious transfers over large fields, and are a core re-
source for secure computation of arithmetic circuits. The state-of-the-art work of Boyle et
al. (Crypto 2020) constructed programmable PCG’s for OLE, but their work suffers from
two important downsides: (1) it only generates OLE’s over large fields, and (2) it relies on a
relatively new “splittable” ring-LPN assumption, which lacks strong security foundations.
In this work, we construct new programmable PCG’s for the OLE correlation, that overcome
both limitations. To this end, we introduce the quasi-abelian syndrome decoding problem
(QA-SD), a family of assumptions which generalises the well-established quasi-cyclic syn-
drome decoding assumption. Building upon QA-SD, we construct new programmable PCG’s
for OLE’s over any field Fq with q > 2. Our analysis also sheds light on the security of the
ring-LPN assumption used in Boyle et al. (Crypto 2020). Using our new PCG’s, we obtain the
first efficient N-party silent secure computation protocols for computing general arithmetic
circuit over Fq for any q > 2.
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1 Introduction

Correlated randomness is a powerful resource in secure computation. Following the seminal work
of Beaver [Bea92], many lightweight, concretely efficient secure computation protocols have been
designed in a model where the parties have access to long trusted correlated random strings:
Ω(n)-length instances of a simple correlation enable securely computing circuits with n gates.
Depending on the setting, various correlations are used: for example, oblivious transfer (OT) corre-
lations are used for two-party (semi-honest) secure computation of Boolean circuits, and oblivious



linear evaluation (OLE) correlations, which generalize OT over arbitrary fields, enable 2-party
semi-honest secure computation of arithmetic circuits. Eventually, n-party Beaver triples enable
n-party semi-honest secure computation of arithmetic circuits, and authenticated Beaver triples
enable maliciously secure computation of arithmetic circuits.

Since protocols in the correlated randomness paradigm are lightweight and very efficient,
they gave rise to a popular, two-stage approach: first, the parties run an input-independent
preprocessing phase, which securely generates and distributes the correlated strings, and sec-
ond, these strings are consumed by an online protocol. Traditional approaches for implement-
ing the preprocessing phase had Ω(n) communication [IKNP03, DPSZ12, KPR18] and formed
the efficiency bottleneck of the overall protocol. The situation changed recently with a new ap-
proach, introduced in [BCG+17, BCGI18, BCG+19b] and further refined in many subsequent
works [BCG+19a, SGRR19, BCG+20b, BCG+20a, YWL+20, CRR21, BCG+22], with appealing
efficiency features such as a one-time, o(n)-communication phase followed solely by local computa-
tion. At the heart of this approach is the notion of pseudorandom correlation generators (PCG’s).
Informally, a PCG has two algorithms: Gen(1λ) outputs two short correlated keys (k0, k1), and
Rσ ← Expand(kσ) stretches kσ into a long string Rσ, such that (R0, R1) is a pseudorandom in-
stance of a target correlation. PCG’s enable an efficient, two-stage silent preprocessing phase:

1. First, the parties securely distribute the short PCG seeds, using a small amount of work and
communication (often independent of the circuit size).

2. Second, the parties locally stretch the PCG’s into long correlated pseudorandom strings: this
part is the bulk of the computation, but does not require any further communication among
the parties.

This is the model of secure computation with silent preprocessing (or silent secure computation in
short), where most of the preprocessing phase is pushed offline. Previous works gave efficient con-
structions of PCG’s for various correlations such as OT’s [BCG+19a, SGRR19, CRR21, BCG+22],
vector-OLE [BCGI18], OLE’s over large fields [BCG+20b], authenticated Beaver triples [BCG+20b]
and many more. These PCG’s all build upon a common template, which combines function se-
cret sharing (FSS) for simple function classes with suitable variants of the syndrome decoding
assumption.

1.1 PCG’s: State of the Art and Challenges

Very efficient constructions of PCG’s for the OT correlations have been proposed [BCG+19a,
SGRR19, CRR21, BCG+22]. The most recent constructions (see [CRR21, BCG+22]) allow to
generate millions of random OT’s per second on one core of a standard laptop. Combined with the
GMW protocol, they effectively enable extremely efficient two-party secure computation of Boolean
circuits in the semi-honest model, with minimal communication in the preprocessing phase (a few
dozen of kilobytes, independent of the circuit size), followed by cheap local computation, and a
fast online phase (exchanging four bits per AND gate).

The situation, however, is much less satisfactory in essentially all other standard settings of
secure computation, where the OT correlation is not the best choice of correlation5, and one of
the major open problems in this line of work is to improve this state of affair. Concretely, when
targeting any one of multiparty computation (with N > 2 parties), arithmetic computation (for
arithmetic circuits over a field F of size |F| > 2), or malicious security, the best-known PCG-based
solutions lag way behind the state of the art for 2-party, semi-honest secure computation of Boolean
circuits. At a high level, the problem is twofold:

– Secure computation of arithmetic circuits requires the OLE correlation rather than the OT
correlation, and the constructions of [BCG+19a, SGRR19, CRR21, BCG+22] are inherently
limited to the OT correlation. To handle OLE, a fundamentally different approach is required.

5 While the OT correlation is complete even for N -party malicious secure computation of arithmetic
circuits, its use induces large overheads in the online phase: an Ω(N2) communication overhead for
handling N parties, an Ω(log2 |F|) overhead for handling larger fields F, and an Ω(λ) overhead for
handling malicious parties. In contrast, other choices of correlated randomness can avoid each of these
overheads.
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– Additionally, handling N > 2 parties or achieving malicious security both require the under-
lying PCG for OLE (or OT) to satisfy a property known as programmability (at a high level,
programmability allows both to generateN -party correlations from O(N2) 2-party correlations,
which is required because all known PCG’s are inherently restricted to the 2-party setting, and
to authenticate 2-party correlations with a MAC, which is needed for malicious security). Un-
fortunately, the constructions of [BCG+19a, SGRR19, CRR21, BCG+22] cannot (by design)
achieve programmability.

These two limitations were addressed in the recent work of [BCG+20b], which introduced the
first (reasonably efficient) construction of programmable PCG for the OLE correlation. While not
as efficient as the best known PCG’s for OT, it can produce around 105 OLE’s per second on a
standard laptop. However, the result of [BCG+20b] suffers from two important downsides:

– it can only produce OLE’s over large enough fields (concretely, the field size must be larger
than the circuit size). This leaves open the question of designing efficient programmable PCG’s
for OLE over small fields.

– it relies on a relatively new ring-LPN with splittable polynomial assumption which states, in
essence, that (a, as + e) is hard to distinguish from (a, b), where a, b are random polynomi-
als from a ring R = Fp[X]/(P (X)) where P splits into deg(P ) linear factors, and s, e are
random sparse polynomials from R. The ring-LPN assumption was introduced a decade ago
in [HKL+12] to build efficient authentication protocols, and it has received some attention
from the cryptography community [BL12, DP12, LP15, GJL15, BCG+20b, BCD22]. However,
so far, we lack both a principled understanding of which choice of the underlying polynomial
P yield solid instances (beyond the observation that reducible polynomials seem to enable
more efficient attacks [GJL15, BCG+20b]), and a general methodology to argue the security
of ring-LPN assumptions.

At a high level, the construction of PCG for OLE from [BCG+20b] proceeds by generating a
single large pseudorandom OLE correlation over a polynomial ring R = Fp[X]/(P (X)), assuming
the hardness of the ring-LPN assumption over R. When P splits into N = deg(P ) linear factors,
the Chinese Remainder Theorem permits to convert this large OLE correlation over R into N OLE
correlations over Fp (by reducing it modulo each of the factors of P ). Note that the condition that
P splits requires |Fp| ⩾ N , hence the restriction to large fields. Because the ring-LPN assumption
with a splittable polynomial is relatively new, the authors also provided a broad overview of its
security against standard attacks and provided an ad-hoc analysis of the relation between the
choice of the polynomial P and the security strength of this assumption.

1.2 Our Contributions

In this work, we put forth and analyze a new general family of cryptographic assumptions related
to the hardness of decoding codes defined over group algebras. A problem called quasi-abelian
syndrome decoding (QA-SD). Our family of assumptions builds upon quasi-abelian codes, a well-
known family of codes in algebraic coding theory. It generalizes both the ring-LPN assumption
from [BCG+20b] under some conditions on the underlying choice of polynomial and the quasi-
cyclic syndrome decoding assumption. The latter assumption was in particular used in several
recent works [ABB+17, AMBD+18, MAB+18, BCG+19a], including prominent submissions to
the NIST post-quantum competition. We show that working over group algebras presents several
advantages:

1. a broad family of possible instantiations;
2. a rich structure that allows stronger security foundations;
3. a group algebra contains a canonical basis given by the group itself, providing a canonical

notion of sparsity.

Building on our new family of assumptions, we overcome both downsides of the recent work
of [BCG+20b] and obtain PCG’s for OLE’s over general fields with solid security foundations.
In more details:
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A Template for Building New PCG’s. We revisit and generalize the approach of [BCG+20b]
for building pseudorandom correlation generators for OLE from ring-LPN. We show that any choice
of quasi-abelian code yields a PCG for OLE over a group algebra R under the corresponding QA-SD
assumption. We identify natural instances of our framework such that the group algebra R:

1. supports fast operations via generalizations of the Fast Fourier Transform (which allows to
achieve efficiency comparable to that of [BCG+20b]), and

2. is isomorphic to a product Fq×· · ·×Fq of N copies of Fq for arbitrary small q > 2 and arbitrary
large N and therefore yields an efficient PCG for generating N copies of OLE over Fq for any
q > 2.

Therefore, we obtain new constructions of efficient programmable PCG over small fields, circum-
venting the main limitation of the work of [BCG+20b]. Our PCG’s enable for the first time secure
computation of arithmetic circuits over fields F of any size |F| > 2 in the silent preprocessing
model. This holds for two or more parties, in the semi-honest or in the malicious setting. The
concrete efficiency of our construction is comparable to that of [BCG+20b] (we refer the reader to
Table 1 for details on the seed size and stretch of our PCG’s). Concretely, our costs are essentially
identical, up to the fact that [BCG+20b] uses FFT’s over cyclotomic rings, while our generaliza-
tion to arbitrary field relies on a generic FFT. Because FFT’s over cyclotomic rings have been
thoroughly optimized in hundreds of papers, we expect that using generic FFT’s will be noticeably
slower. Still, we identify some concrete FFT-friendly choices of quasi-abelian codes where fast FFT
algorithms comparable to cyclotomic FFT’s could in principle be designed. We leave the concrete
optimization of these FFT algorithms to future work.

Strong Security Foundations. Building upon recent results on the minimum distance of quasi-
abelian codes, we give evidence that the assumptions from our family cannot be broken by any
attack from the linear test framework [BCG+20a, CRR21], a broad framework that encompasses
essentially all known attacks on LPN and syndrome decoding (including ISD, Gaussian elimination,
BKW, and many more). Our approach also sheds light on the security of the ring-LPN assumption.
In essence, a conceptual message from our new approach is that some choices of P in the ring
Fq[X]/(P (X)) yield an instance of QA-SD, and as such inherit our arguments of resistance against
linear attacks. In contrast, other (seemingly very similar) choices of P yield instances that are
completely broken by linear attacks. This suggests that choosing instantiations of the ring-LPN
assumption should be done with care, and our framework yields a way to do it with strong security
guarantees.

As a contribution of independent interest, we also complement our security analysis by showing,
for all concrete instantiations of our framework that we use in our new PCG constructions, a search-
to-decision reduction for the underlying assumption. Therefore, we reduce the security of all our
new PCG’s to (instances of) the search QA-SD assumption.

The Case of F2. Perhaps intriguingly, the most natural way to instantiate our framework goes
all the way to F3, but breaks down over F2. We prove a theorem that states that this is in fact
inherent to the approach. Basically, the reason why the construction is not adaptable to F2 is due
to the fact that the product ring FN2 = F2 × · · · × F2 has only one invertible element and hence
can never be realised as a group algebra but in the irrelevant case of N = 1. We then discuss a
general methodology toward circumventing this limitation over F2. While our approach falls short
of providing a full-fledged solution, it highlights a possible avenue towards the intriguing goal of
one day getting an efficient programmable PCG for OLE’s over F2.

Applications. Building upon our new programmable PCG’s, we obtain

– (via Beaver triples) secure N -party computation of arithmetic circuits over Fq, for any q > 2,
with silent preprocessing and communication N2 ·poly(λ) · log s bits (preprocessing phase) plus
2Ns field elements (online phase), where s is the number of multiplication gates. The silent
preprocessing phase involves O(Npoly(λ)s log s) work per party. For small numbers of parties,
the N2 · poly(λ) · log s is dominated by the 2Ns field elements for values of s as low as 225.
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– (via circuit-dependent correlated randomness) secure N -party computation of a batch of T
arithmetic circuits over Fq, for any q > 2, with silent preprocessing and communication N2 ·
poly(λ) · s log T bits (preprocessing phase) plus NTs field elements (online phase) , where s
is the number of multiplication gates in each circuit. The silent preprocessing phase involves
O(Npoly(λ)sT log T ) work per party.

As in [BCG+20b], our protocols extend to the malicious setting by generating authenticated
correlated randomness instead, which our PCG’s allow as well, and using a maliciously secure seed
distribution protocol. Since the extension to authenticated correlated randomness and the seed
distribution protocols in [BCG+20b] are oblivious to the concrete choice of underlying ring R,
they directly apply to our new PCG’s from QA-SD.

1.3 Related Works

Traditional constructions of OLE protocols require communication for each OLE produced. The
work of [Gil99] requires Ω(log |F|) string-OT’s per OLE6. OLE’s can also be produced using state-
of-the-art protocols based on homomorphic encryption [KPR18, HIMV19], e.g. producing 64MB
worth of OLE’s requires about 2GB of communication with Overdrive [KPR18]. A recent direct
construction of OLE from Ring-LWE has also been described in [BEPU+20]. Using their construc-
tion, generating a batch of OLE’s has an amortized communication of about 8 elements of F over
a large enough field.

PCG’s for OLE’s allow removing most of the communication overhead, by generating a large
number of pseudorandom OLE’s using sublinear communication. The work of [BCG+20b], which is
our starting point, has a computational cost comparable to that of recent OLE protocols [KPR18],
but a considerably lower communication ; however, it only works over large fields. There has been
several attempts to build PCG’s for OLE’s over small fields, but all suffer from severe downsides.
The work of [BCG+19b] describes a PCG construction that combines BGV-based somewhat ho-
momorphic encryption (under ring-LWE) and a new, ad-hoc variant of the multivariate quadratic
assumption with sparse secrets. Their PCG’s require very large seed sizes and are only efficient
when generating huge batches ([BCG+19b] estimates about 7.000 OLE’s per second using a 3GB
seed size when producing 17GB worth of triples).

In an appendix, the work of [BCG+20b] shows that the standard variant of syndrome decoding
with quasi-cyclic code yields a PCG for OLE’s over arbitrary fields (including small fields). At a
high level, the construction uses the fact that given two pseudorandom vectors x⊺ = H · e⊺x and
y = H · e⊺y , generating shares of their pointwise products (i.e. a batch of pseudorandom OLE
correlations) reduces to generating shares of the diagonal of x⊺ · y = H · (e⊺x · ey) ·H

⊺, and the
term (e⊺x · ey) can be shared efficiently with FSS for point functions. However, the computational
cost of generating n OLE’s this way scales as Ω(n2 log n) (ignoring poly(λ) factors), which makes
it entirely impractical in practice (the sublinearity in these protocols only “kicks in” for values of
n above about 230).

Eventually, two recent works on PCG’s [BCG+20a, BCG+22] have introduced new variants of
syndrome decoding called respectively variable-density and expand-accumulate LPN. Each of these
variants can actually be used to construct programmable PCG’s for OLE over small fields (though
that was not their primary purpose: VDLPN was introduced to construct pseudorandom correlation
functions, and EALPN to obtain more efficient “online-offline” PCG’s for OT). The intuition is that
both assumptions can be formulated as the hardness of distinguishing H · e⊺ from random, where
H is a sparse matrix, and the noise distribution is such that the term (e⊺x · ey) can still be shared
efficiently using some appropriate FSS. In this case, extracting the diagonal of H · (e⊺x · ey) ·H

⊺

does not require computing the full square matrix, and scales only as poly(λ) · Ω̃(n). However,
the hidden costs remain prohibitively large. Concretely, for both the EALPN assumption and the
VDLPN assumption, the row-weight of H must grow as λ · log n [BCG+20a, BCG+22, CD23] (for
some specific security parameter λ), hence the cost of generating n OLE’s boils down to λ2 · log2 n
invocations of an FSS scheme, where the concrete security parameter λ must be quite large: the
recent analysis of [CD23] estimates λ ≈ 350. For n = 230, this translates to around 108 invocation
of an FSS scheme for each OLE produced, which is nowhere near practical.
6 This approach crucially requires structured OT’s, hence we cannot remove the communication by using

pseudorandom OT’s.
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1.4 Organization

We provide a technical overview of our results in Section 2, and preliminaries in Section 3. Sec-
tion 4 is devoted to introducing group algebras, quasi-abelian codes, and our new QA-SD family
of assumptions. Section 5 uses our new QA-SD assumption to build programmable PCG’s, adapt-
ing and generalising the template of [BCG+20b]. Section 6 covers the concrete security analysis
of QA-SD against various known attacks, and in particular against folding attacks, which exploit
the structure of the assumption to reduce the dimension of the instances. Finally, in Section 7 we
elaborate on the applications of our new PCG’s to secure computation. Appendix A provides more
detailed preliminaries on FSS and PCG’s. Appendix B complements our study of QA-SD by provid-
ing a search-to-decision reduction for the subset of the QA-SD family used to construct our PCG’s.
Appendix C provides some background on function field theory, which is used in the analysis of
some of our results. Appendix C.3 adds background on the Carlitz module, which is at the heart
of our (ultimately unsuccessful) attempt to extend our framework to OLE’s over F2. Appendix D
covers our approach for building OLE’s over F2 and identifies the missing ingredient.

2 Technical Overview

2.1 Generating Pseudorandom Correlations: a Template

A general template to construct PCG’s was put forth in [BCGI18], and further refined in subsequent
works. At a high level, the template combines two ingredients: a method that uses function secret
sharing to generate a sparse version of the target correlation, and a carefully chosen linear code
for which the syndrome decoding problem is conjectured to be intractable. To give a concrete
example let us consider the task of generating an OLE correlation over a large polynomial ring
R = Fp[X]/(P ), where P is some degree-N split polynomial, and Fp is a field. In a ring-OLE
correlation, each party Pσ receives (xσ, yσ) ∈ R2 for σ = 0, 1, which are random conditioned on
x0 + x1 = y0 · y1.

Sparse correlations from FSS. Informally, FSS for a function class F allows to share functions
f : {0, 1}ℓ 7→ G (where G is some group) from F into (f0, f1)← Share(f) such that

(1) fσ hides f (computationally), and
(2) for any x ∈ {0, 1}ℓ, f0(x) + f1(x) = f(x).

Since FSS can always be achieved trivially by sharing the truth table of f , one typically wants the
shares to be compact (i.e. not much larger than the description of f). Efficient constructions of
FSS from a length-doubling pseudorandom generator are known for some simple function classes,
such as point functions (functions fα,β that evaluate to β on x = α, and to 0 otherwise). FSS for
point functions can be seen as a succinct way to privately share a long unit vector. More generally,
FSS for t-point functions yield a succinct protocol for privately sharing a long t-sparse vector.

An FSS for multipoint functions immediately gives a strategy to succinctly distribute a sparse
ring-OLE correlation: sample two random t-sparse polynomials y0, y1 (i.e. polynomials with t
nonzero coefficients in the standard basis), and define f to be the t2-point function whose truth
table are the coefficients of y0 · y1 (over Fp[X]). Each party Pσ receives kσ = (yσ, fσ), where
(f0, f1) = Share(f). With standard constructions of multipoint FSS, the size of kσ is O(t2 · logN)
(ignoring λ and log p terms): whenever t is small, this is an exponential improvement over directly
sharing y0 · y1 (which would yield keys of length O(N)).

From sparse to pseudorandom using syndrome decoding. It remains to convert the sparse correlation
into a pseudorandom correlation. This step is done non-interactively, by locally compressing the
sparse correlation using a suitable linear mapping. Viewing the compressed vector as the syndrome
of a linear code C (the compressive linear mapping is the parity-check matrix of C). The mapping
must satisfy two constraints: it should be efficient (linear or quasi-linear in its input size), and
its output on a sparse vector should be pseudorandom. Fortunately, decades of research on coding
theory have provided us with many linear mappings which are conjectured to satisfy the latter;
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the corresponding assumptions are usually referred to as (variants of) the syndrome decoding (SD)
assumption, or as (variants of) the learning parity with noise (LPN) assumption7.

Going back to our example, we will use two instances (x0σ, y
0
σ)σ∈{0,1} and (x1σ, y

1
σ)σ∈{0,1} of a

sparse ring-OLE correlation. Fix a random element a $← R. Each party Pσ defines

yσ ← (1,a) · (y0σ, y1σ)⊺ = y0σ + a · y1σ mod P (X).

The assumption that yσ is indistinguishable from random is known in the literature as the ring-
LPN assumption, and has been studied in several previous works [BCG+20b] (for an appropriate
choice of P , it is also equivalent to the quasi-cyclic syndrome decoding assumption, used in NIST
submissions such as BIKE [ABB+17] and HQC [MAB+18]). Furthermore, using FFT, the mapping
can be computed in time Õ(N). Then, observe that we have

y0y1 = (y00 + a · y10) · (y01 + a · y11) = y00 · y01 + a · (y01 · y10 + y10 · y11) + a2 · (y10 · y11),

where the polynomials y00 · y01 , y01 · y10 , y10 · y11 , and y10 · y11 are all t2-sparse. Hence, each of these four
polynomials can be succinctly shared using FSS for a t2-point function. Therefore, shares of y0y1
can be reconstructed using a local linear combination of shares of sparse polynomials, which can
be distributed succinctly using FSS for multipoint functions.

Wrapping up. The final PCG looks as follows: each party Pσ gets (y0σ, y
1
σ) together with four

FSS shares of t2-point functions whose domain correspond to these four terms. The PCG key size
scales as O(t2 logN) overall. Expanding the keys amounts to locally computing the shares of the
sparse polynomial products (four evaluations of the FSS on their entire domain, in time O(N))
and a few Õ(N)-time polynomial multiplications with a and a2 (which are public parameters).
Observe that when P splits into N linear factors over Fp[X], a single pseudorandom ring-OLE
correlation as above can be locally transformed into N instances of pseudorandom OLE’s over Fp:
this is essentially the construction of PCG for OLE of [BCG+20b]. However, this requires p to be
larger than N , restricting the construction to generating OLE’s over large fields. Furthermore, the
requirement of a splitting P makes the construction rely on a less-studied variant of ring-LPN.

2.2 Quasi-Abelian Codes to the Rescue

We start by abstracting out the requirement of the construction of [BCG+20b]. In coding theoretic
terms, the hardness of distinguishing (a, a ·e+f) with sparse (e, f) is an instance of the (decisional)
syndrome decoding problem with respect to a code with parity check matrix (1, a). At a high level,
and sticking to the coding-theoretic terminology, we need a ring R such that

1. the (decisional) syndrome decoding problem with respect to the matrix (1, a) is intractable
with high probability over the random choice of a $← R;

2. given sparse elements (e, f) of R, it is possible to succinctly share the element e · f ∈ R;
3. operations on R, such as products, can be computed efficiently (i.e. in time quasilinear in the

description length of elements of R);
4. eventually, R is isomorphic to F× · · · × F for some target field F of interest.

We identify quasi-abelian codes as a family of codes that simultaneously satisfy all the above
criteria. At a high level, a quasi-abelian code of index ℓ has codewords of the form

{(mΓ1, . . . ,mΓℓ) |m = (m1, . . . ,mℓ) ∈ (Fq[G])k},

7 The name LPN historically refers to the hardness of distinguishing oracle access to samples (a, ⟨a, s⟩+e)
(for a fixed secret s) from samples (a, b) where a, s are random vectors, e is a biased random bit, and
b is a uniform random bit. This becomes equivalent to the syndrome decoding assumption when the
number of calls to the oracle is a priori bounded, hence the slight abuse of terminology. Since we will
mostly use tools and results from coding theory in this work, we will use the standard coding theoretic
terminology “syndrome decoding” to refer to the variant with bounded oracle access, which is the one
used in all works on PCG’s.
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where each Γi is an element of Fq[G]k. Here, Fq[G] denotes the group algebra:

Fq[G]
def
=

∑
g∈G

agg | ag ∈ Fq

 ,

where G is a finite abelian group. Quasi-abelian codes generalise quasi-cyclic codes in a natural way:
a quasi-cyclic code is obtained by instantiating G with Z/nZ. We define the quasi-abelian syndrome
decoding problem (QA-SD) as the natural generalisation of the syndrome decoding problem to
quasi-abelian codes. This encompasses both quasi-cyclic syndrome decoding and plain syndrome
decoding. The properties of quasi-abelian codes have been thoroughly studied in algebraic coding
theory. We elaborate below on why quasi-abelian codes turn out to be precisely the right choice
given our constraints 1–4 above.

Security Against Linear Tests. The linear test framework from [BCG+20a, CRR21] provides a
unified way to study the resistance of LPN-style and syndrome decoding-style assumptions against
a wide family of linear attacks, which includes most known attacks on LPN and syndrome decoding.
We refer the reader to Section 3.2 for a detailed coverage. At a high level, in our setting, security
against linear attacks boils down to proving that (1, a) generates a code with large minimum
distance. On one hand, a recent result of Fan and Lin [FL15] proves that quasi-Abelian codes
asymptotically meet the Gilbert-Varshamov bound when the code length goes to infinity and the
underlying group is fixed. On the other hand, Gaborit and Zémor [GZ06] prove a similar result
when the size of the group goes to infinity but restricted to the case where the group is cyclic.
We conjecture an extension of Gaborit and Zémor result to arbitrary abelian groups. The latter
conjecture entails that the QA-SD problem cannot be broken by any attack from the linear test
framework, for any choice of the underlying group G. This is the key to circumvent the restrictions
of [BCG+20b].

Distribution of Products of Sparse Elements. Using quasi-abelian codes, the ring R is
therefore a group algebra Fq[G]. Now, given e =

∑
g∈G egg and f =

∑
g∈G fgg any two t-sparse

elements of R (that is, such that (eg)g∈G and (fg)g∈G have Hamming weight t), the product e · f
can be rewritten as

e · f =
∑

eg,fh ̸=0

egfh · gh,

which is a t2-sparse element of the group algebra. In other words, the product of two sparse elements
in a group algebra is always a sparse element. In the context of building PCG’s, this implies that
we can directly distribute elements ef ∈ R using Sum of Point Function Secret Sharing (SPFSS)
for t2-point functions. This allows us to generalise the template PCG construction of [BCG+20b]
to the setting of arbitrary quasi-abelian code, with essentially the same efficiency (in a sense, the
template is “black-box” in the ring: it only relies on the ability to distribute sparse elements via
FSS).

We note that our generalised template differs slightly from the approach of [BCG+20b]: in this
work, the authors work over rings of the form R = Fp[X]/(P (X)), where P is some polynomial.
However, in general, this ring is not a group algebra, and the product of sparse elements of R might
not be sparse. They circumvented this issue by sharing directly the product over Fp[X] (where the
product of sparse polynomials remains sparse) and letting the parties reduce locally modulo P .
Doing so, however, introduces a factor 2 overhead in the expansion (and a slight overhead in the
seed size). Our approach provides a cleaner solution, using a structure where sparsity is natively
preserved through products inside the ring.

Fast Operations on Group Algebras. We observe that, by folklore results, operations over a
group algebra Fq[G] admit an FFT algorithm (using a general form of the FFT which encompasses
both the original FFT of Cooley and Tuckey, and the Number Theoretic Transform). When using
this general FFT, setting G = Z/2tZ recovers the usual FFT from the literature. In full generality,
given any abelian group G of cardinality n with gcd(n, q) = 1 and exponent d, if Fq contains a
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primitive d-th root of unity, then the Discrete Fourier Transform and its inverse can be computed
in time O(n ·

∑
i pi), where the pi are the prime factors appearing in the Jordan-Hölder series of

G; we refer the reader to Section 4.3 for a more detailed coverage. For several groups of interest
in our context, this appears to yield very efficient FFT variants. For example, setting q = 3 and
G = (Z/2Z)d, the resulting FFT is a d-dimensional FFT over F3 and it can be computed in time
O(n · log n) (the group algebra F3[(Z/2Z)d] is the one that yields a PCG for n copies of OLE over
F3).

We note that FFT’s over cyclotomic rings, such as those used in [BCG+20b], have been heavily
optimised in hundreds of papers, due to their wide use (among other things) in prominent cryp-
tosystems. As such, it is likely that even over “FFT-friendly” choices of group algebras, such as
F3[(Z/2Z)d], the general FFT construction described above will be in practice significantly less
efficient than the best known FFT’s implementations over cyclotomic rings. Hence, computation-
ally, we expect that state-of-the-art implementations of the PCG of [BCG+20b] over large fields
F using a cyclotomic ring R for the ring-LPN assumption will be noticeably faster than state-of-
the-art implementations of our approach to generate OLE’s over a small field, such as F3. There
is however nothing inherent to this: the efficiency gap stems solely from the years of effort that
have been devoted to optimising FFT’s over cyclotomic rings, but we expect that FFT’s over other
FFT-friendly group algebra such as F3[(Z/2Z)d] could be significantly optimised in future works.
We hope that our applications to silent secure computation over general fields will motivate such
studies in the future.

From Quasi-Abelian Codes to OLE’s over Fq. Our general PCG template allows to generate a
pseudorandom OLE over an arbitrary group algebra Fq[G]. Then, when using G = (Z/(q−1)Z)d, we
have that Fq[G] ≃ Fnq (with n = (q−1)d). Therefore, a single pseudorandom OLE over Fq[G] can be
locally converted by the parties into (q− 1)d copies of a pseudorandom OLE over Fq. Furthermore,
for these concrete choices of G, we complement our security analysis by proving a search-to-decision
reduction, showing that the decision QA-SD problem over Fq[G] with G = (Z/(q−1)Z)d is as hard
as the search QA-SD problem. This provides further support for the security of our instantiations.

In addition, our framework provides a way to investigate different instantiations of the ring-
LPN problem through the lens of quasi-abelian codes. This turns out to play an important role
in understanding the basis for the security of ring-LPN: seemingly very similar choices of the
underlying polynomial can yield secure instances in one case, and completely broken instances in
the other case. While the work of [BCG+20b] gave a heuristic cryptanalysis of ring-LPN, it fails to
identify the influence of the choice of the polynomial.

Concretely, consider the ring R = Fq[X]/(P (X)) with either P (X) = Xq−1 − 1 or P (X) =
Xq−X. The latter is a natural choice, as it has the largest possible number of factors over Fq (which
controls the number of OLE’s produced over Fq). R = Fq[X]/(P (X)) with P (X) = Xq−1 − 1 is a
group algebra, and the ring-LPN assumption with ring R reduces to QA-SD(R). Hence, it is secure
against all attacks from the linear test framework (and admits a search-to-decision reduction) by our
analysis. On the other hand, ring-LPN over the ring R = Fq[X]/(P (X)) with P (X) = Xq−X does
not fit in our framework, and turns out to be completely broken by a simple linear attack: given (a, b)
where b is either random or equal to a·e+f mod Xq−X, it holds that e(0) = f(0) = 0 mod Xq−X
with high probability, because e(0) = f(0) = 0 over Fq[X] with high probability (since e, f are
sparse, their constant coefficient is likely to be zero), and reduction modulo Xq−X does not change
the constant coefficient. Hence, the adversary can distinguish b from random simply by computing
b(0) (since b(0) is nonzero with probability (q − 1)/q for a random b).

The above suggests that settling forR = Fq[X]/(Xq−1−1) is a conservative choice to instantiate
the PCG of [BCG+20b] with strong security guarantees. We note that [BCG+20b] recommended
instead R = Fp[X]/(Xn + 1) with n being a power of 2 and p a large prime for efficiency reasons
(since it is a cyclotomic ring, it admits fast FFT’s). We believe that a natural generalisation of
our framework should also encompass this ring, and allow proving that it also yields a flavor of
ring-LPN which is immune to linear attacks. However, this is beyond the scope of our paper, and
we leave it to future work.

Considerations on the Case of F2. Interestingly, the aforementioned instance allows generating
many OLE’s over Fq for any q > 2; for q = 2, however, the term n = (q − 1)d becomes equal to 1;
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that is, we only get a single OLE over F2 this way. This is in fact inherent to our approach: the
product ring Fn2 has only one invertible element, and therefore can never be realised as a group
algebra unless n = 1. Hence, somewhat surprisingly, our general approach circumvents the size
limitation of [BCG+20b] and gets us all the way to F3 or any larger field, but fails to provide a
construction in the (particularly interesting) case F2.

Motivated by this limitation of our framework, we devise a strategy to further generalise our
approach through the theory of algebraic function fields (in essence, our generalisation is to quasi-
abelian codes what quasi-negacyclic codes are to quasi-cyclic codes; we note that this is also close
in spirit to the instance chosen in [BCG+20b]: for their main candidate, they suggest using the ring
R = Fp[X]/(Xn + 1), which is a module over a group algebra and yields a quasi-negacyclic code).
Alas, we did not manage to get a fully working candidate. At a (very) high level, our generalised
framework produces pseudorandom elements x = a ⊙ ex + 1 ⊙ fx and y = a ⊙ ey + 1 ⊙ fy where
ex, ey, fx, fy are sparse. However, the product ⊙ is now not the same product as the group algebra
product x · y. Concretely, to share x · y, we need to share terms of the form (u⊙ e) · (v⊙ f) (where
u, v can be a or 1). However, unlike the case of our previous instantiation, this does not rewrite as a
term of the form uv ·ef (which we could then share by sharing the sparse term ef , as uv is public).
Still, we believe that our approach could serve as a baseline for future works attempting to tackle
the intriguing problem of building efficient programmable PCG’s for OLE over F2. In particular,
our unsuccessful attempts show that to get such a PCG, it suffices to find a way to succinctly share
terms of the form (u ⊙ e) · (v ⊙ f) where u, v are public, and e, f are sparse. While FSS do not
provide an immediate solution to this problem, this reduces the goal to a “pure MPC problem”
which could admit an efficient solution.

Concrete Cryptanalysis. Eventually, we complement our study by a concrete analysis of the
security of our assumptions. As in previous works, the bounds derived from the resistance to
linear attacks are quite loose, because they cover a worst-case choice of linear attack. We cover
standard attacks, such as information set decoding. A particularity of both ring-LPN with splittable
polynomial and our new family of QA-SD assumption is that it grants the adversary some additional
freedom: the adversary can, informally, transform a QA-SD instance into an instance with reduced
dimension (in the case of ring-LPN, by reducing modulo factors of P ; for QA-SD, by quotienting
by subgroups of G). This turns out to be equivalent to the concept of folding attacks, which
have been recently studied both in the context of code-based cryptography [CT19] and of lattice-
based cryptography [BCV20]. We analyse the effect of folding attacks on our instances and discuss
the impact on our parameter choices. In particular, the instances of QA-SD used in our PCG
construction closely resemble the Multivariate LWE assumption (with sparse noise instead of small-
magnitude noise), which was shown in [BCV20] to be broken by folding attacks. We note (but
this is well-known [CT19]) that folding attacks are much less devastating on LPN- and syndrome
decoding-style assumptions, essentially because folding yields a very slight increase of the noise
magnitude in the LWE setting (the sum of LWE error terms has small magnitude), but increases
the noise rate very quickly in the coding setting (the sum of sparse noises very quickly becomes
dense).

3 Preliminaries

Function Secret Sharing. Function secret sharing (FSS), introduced in [BGI15, BGI16], allows
to succinctly share functions. An FSS scheme splits a secret function f : I → G, where G is
some Abelian group, into two functions f0, f1, each represented by a key K0,K1, such that: (1)
f0(x) + f1(x) = f(x) for every input x ∈ I, and (2) each of K0,K1 individually hides f .

An SPFSS is an FSS scheme for the class of sums of point functions: functions of the form
f(x) =

∑
i fsi,yi(x) where each fsi,yi(·) evaluates to yi on si, and to 0 everywhere else. As in

previous works, we will use efficient constructions of SPFSS in our constructions of PCGs. Such
efficient constructions are known from any length-doubling pseudorandom generator [BGI16]. We
refer the reader to Appendix A for more details on FSS and SPFSS.

Pseudorandom Correlation Generators. A pseudorandom correlation generator (PCG) for
some target ideal correlation takes as input a pair of short, correlated seeds and outputs long cor-
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related pseudorandom strings, where the expansion procedure is deterministic and can be applied
locally. In slightly more details, a PCG is a pair (Gen,Expand) such that Gen(1λ) produces a pair of
short seeds (k0, k1) and Expand(σ, kσ) outputs a string Rσ. A PCG is correct if the distribution of
the pairs (R0, R1) output by Expand(σ, kσ) for σ = 0, 1 is indistinguishable from a random sample
of the target correlation. It is secure if the distribution of (k1−σ, Rσ) is indistinguishable from
the distribution obtained by first computing R1−σ from k1−σ, and sampling a uniformly random
Rσ conditioned on satisfying the target correlation with R1−σ (for both σ = 0 and σ = 1). In
this work, we will mostly consider the OLE correlation, where the parties P0, P1 receive random
vectors x0,x1 ∈ Fn respectively, together with random shares of x0 ∗ x1, where ∗ denotes the
component-wise (i.e. Schur) product.

Eventually, programmable PCG’s allow generating multiple PCG keys such that part of the cor-
relation generated remains the same across different instances. Programmable PCG’s are necessary
to construct n-party correlated randomness from the 2-party correlated randomness generated via
the PCG. Informally, this is because when expanding n-party shares (e.g. of Beaver triples) into
a sum of 2-party shares, the sum will involve many “cross terms”; using programmable PCG’s al-
lows maintaining consistent pseudorandom values across these cross terms. We refer the reader to
Appendix A for more details on PCG’s and programmable PCG’s.

3.1 Syndrome Decoding Assumptions

The syndrome decoding assumption over a field F states, informally, that no adversary can dis-
tinguish (H,H · e⊺) from (H,b⊺), where H is sampled from the set of parity-check matrices of
some family of linear codes, and e is a noise vector sampled from some distribution over F-vectors
and typically sparse. The vector b is a uniform vector over Fn. More formally, we define the SD
assumption over a ring R with dimension k, code length n, w.r.t. a family F of linear codes, and
a noise distribution D:

Definition 1 (Syndrome Decoding). Let k, n ∈ N, and let F = Fn,k ⊂ R(n−k)×n be a family
of parity-check matrices of codes over some ring R. Let D be a noise distribution over Rn. The
(D,F,R)-SD(k, n) assumption states that

{(H,H · e⊺) | H $← F, e
$← D}

c
≈ {(H,b⊺) | H $← F,b

$← Rn},

where “
c
≈” denotes the computational indistiguishability.

Denoting t a parameter which governs the average density of nonzero entries in a random noise
vector, common choices of noise distribution are Bernoulli noise (each entry is sampled from a
Bernoulli distribution with parameter t/n), exact noise (the noise vector is uniformly random over
the set of vectors of Hamming weight t), and regular noise (the noise vector is a concatenation of
t random unit vectors). The latter is a very natural choice in the construction of pseudorandom
correlation generators as it significantly improves efficiency [BCGI18, BCG+19b, BCG+19a] with-
out harming security (to the best of our knowledge; the recent work [BØ23] being efficient for very
low code rates, which is not our setting).

Many codes are widely believed to yield secure instances of the syndrome decoding assump-
tion, such as setting H to be a uniformly random matrix over F2 (the standard SD assump-
tion), the parity-check matrix of an LDPC code [Ale03] (the “Alekhnovich assumption”), a quasi-
cyclic code (as used in several recent submissions to the NIST post-quantum competition, see
e.g. [ABB+17, AMBD+18, MAB+18] and in previous works on pseudorandom correlation genera-
tors, such as [BCG+19a]), Toeplitz matrices [GRS08, LM13] and more. All these variants generalize
naturally to larger fields (and are conjectured to remain secure over arbitrary fields).

In the context of PCG’s, different codes enable different applications: advanced PCG construc-
tions, such as PCGs for OLE, require codes with structure. When designing new PCGs, it is common
to rely on syndrome decoding for codes which have not been previously analyzed in the literature
– hence, unlike the ones listed above, they did not withstand years or decades of cryptanalysis.
To facilitate the systematic analysis of new proposals, recent works [BCG+20a, CRR21] have put
forth a framework to automatically establish the security of new variants of the syndrome decoding
assumption against a large class of standard attacks.
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3.2 The Linear Test Framework

The linear test framework provides a unified template to analyze the security of variants of the
LPN or syndrome decoding assumption against the most common attacks. It was first put forth
explicitly in [BCG+20a, CRR21] (but similar observations were implicit in many older works).
Concretely, an attack against syndrome decoding in the linear test framework proceeds in two
stages:

1. First, a matrix H is sampled from F, and fed to the (unbounded) adversary A. The adversary
returns a (nonzero) test vector v = A(H).

2. Second, a noise vector e is sampled. The advantage of the adversary A in the linear test game
is the bias of the induced distribution v ·H · e⊺.

To formalize this notion, we recall the definition of the bias of a distribution:

Definition 2 (Bias of a Distribution). Given a distribution D over Fn and a vector u ∈ Fn,
the bias of D with respect to u, denoted biasu(D), is equal to

biasu(D) = |Px∼D[u · x⊺ = 0]− Px∼Un [u · x⊺ = 0]| =
∣∣∣∣Px∼D[u · x⊺ = 0]− 1

|F|

∣∣∣∣ ,
where Un denotes the uniform distribution over Fn. The bias of D, denoted bias(D), is the maximum
bias of D with respect to any nonzero vector u.

We say that an instance of the syndrome decoding problem is secure against linear test if,
with very high probability over the sampling of H in step 1, for any possible adversarial choice of
v = A(H), the bias of v ·H · e⊺ induced by the random sampling of e is negligible. Intuitively,
the linear test framework captures any attack where the adversary is restricted to computing a
linear function of the syndrome b⊺ = H ·e⊺, but the choice of the linear function itself can depend
arbitrarily on the code. Hence, the adversary is restricted in one dimension (it has to be linear in
b⊺), but can run in unbounded time given H.

The core observation made in [BCG+20a, CRR21] (and also implicit in previous works) is that
almost all known attacks against syndrome decoding (including, but not limited to, attacks based
on Gaussian elimination and the BKW algorithm [BKW00, Lyu05, LF06, EKM17] and variants
based on covering codes [ZJW16, BV16, BTV16, GJL20], the ISD family of information set decod-
ing attacks [Pra62, Ste88, FS09, BLP11, MMT11, BJMM12, MO15, EKM17, BM18], statistical
decoding attacks [AJ01, FKI06, Ove06, DT17], generalized birthday attacks [Wag02, Kir11], lin-
earization attacks [BM97, Saa07], attacks based on finding low weight code vectors [Zic17], or on
finding correlations with low-degree polynomials [ABG+14, BR17]) fit in the above framework.
Therefore, provable resistance against linear test implies security against essentially all standard
attacks.

Security Against Linear Tests. Resistance against linear test is a property of both the code
distribution (this is the “with high probability over the choice of H” part of the statement) and of
the noise distribution (this is the “the bias of the distribution induced by the sampling of e is low”
part of the statement). It turns out to be relatively easy to give sufficient conditions for resistance
against linear tests. At a high level, it suffices that

1. the code generated by H has large minimum distance, and
2. for any large enough subset S of coordinates, with high probability over the choice of e, one

of the coordinates of e indexed by S will be nonzero.

The above characterization works for any noise distribution whose nonzero entries are uniformly
random over R \ {0}, which is the case for all standard choices of noise distributions. To see why
these conditions are sufficient, recall that the adversarial advantage is the bias of v ·H · e⊺. By
condition (2), if the subset S of nonzero entries of v ·H is sufficiently large, then e will “hit” one of
these entries with large probabilities, and the output will be uniformly random. But the condition
that S is sufficiently large translates precisely to the condition that v ·H has large Hamming weight
for any possible (nonzero) vector v, which is equivalent to saying that H generates a code with
large minimum distance. We recall the formalization below:
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Definition 3 (Security against Linear Tests). Let R be a ring, and let D denote a noise
distribution over Rn. Let F ⊂ R(n−k)×k be a family of (parity-check matrices of) linear codes.
Let ε, η : N 7→ [0, 1] be two functions. We say that the (D,F,R)-SD(k, n) problem is (ε, η)-secure
against linear tests if for any (possibly inefficient) adversary A which, on input H outputs a nonzero
v ∈ Rn, it holds that

Pr[H
$← F,v

$← A(H) : biasv(DH) ⩾ ε(λ)] ⩽ η(λ),

where λ denotes the security parameter and DH denotes the distribution which samples e← D and
outputs H · e⊺.

The minimum distance of a matrix H, denoted d(H), is the minimum weight of a nonzero
vector in its row-span. Then, we have the following straightforward lemma:

Lemma 4. Let D denote a noise distribution over Rn. Let F ⊂ R(n−k)×k be a family of parity-
check matrices of linear codes. Then for any integer d ∈ N, the (D,F,R)-SD(k, n) problem is
(εd, ηd)-secure against linear tests, where

εd = max
wt(v)>d

biasv(D), and ηd = Pr
H

$←F

[d(H) ⩾ d].

The proof is folklore, and can be found e.g. in [CRR21]. For example, using either Bernoulli,
exact, or regular noise distributions with expected weight t, for any v of weight at least d, the bias
against v is bounded by e−2td/n. Hence, if the code is a good code (i.e. d = Ω(n)), the bias is of
the form 2−Ω(t).

When security against linear attacks does not suffice. There are two important cases where security
against linear test does not yield security against all attacks.

1. When the code is strongly algebraic. For example, Reed-Solomon codes, which have a strong
algebraic structure, have high dual minimum distance, but can be decoded efficiently with the
Welch–Berlekamp algorithm, hence they do not lead to a secure syndrome decoding instance
(and indeed, Welch–Berlekamp does not fit in the linear test framework).

2. When the noise is structured (e.g. for regular noise) and the code length is at least quadratic
in the dimension. This opens the door to algebraic attacks such as the Arora-Ge attack [AG11]
or the recent attack from Briaud and Øygarden [BØ23]. However, when n = O(k) (which is
the case in all our instances), these attacks do not apply.

The above are, as of today, the only known cases where security against linear attacks is known
to be insufficient. Algebraic decoding techniques have a long history and are only known for very
restricted families of codes, and the aforementioned algebraic attacks typically never applies in the
n = O(k) regime which we usually consider for PCG’s. Therefore, a reasonable rule of thumb is
that a variant of syndrome decoding yields a plausible assumption if (1) it provably resists linear
attacks, and (2) finding an algebraic decoding algorithm is a longstanding open problem.

4 Group Algebras and Quasi-Abelian Codes

4.1 Quasi-Abelian Codes

Quasi-abelian codes have been first introduced in [Was77], and, since then, have been extensively
studied in coding theory.

Group Algebras. Let Fq denote the finite field with q elements, and let G be a finite abelian
group of cardinality n. The group algebra of G with coefficients in Fq is the free algebra with
generators G. More precisely, it is the set Fq[G] of formal linear combinations

Fq[G]
def
=

∑
g∈G

agg
∣∣∣ ag ∈ Fq

 ,
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endowed with an Fq−vector space structure in the natural way, and the multiplication is given by
the convolution: ∑

g∈G
agg

∑
g∈G

bgg

 def
=
∑
g∈G

(∑
h∈G

ahbh−1g

)
g.

It is readily seen that Fq[G] is commutative if and only if the group G is abelian, which will always
be the case in this article.

Once an ordering g0, . . . , gn−1 of the elements of G is chosen, the group algebra Fq[G] is iso-
morphic (as an Fq–linear space) to Fnq via φ :

∑n−1
i=0 aigi 7→ (a0, . . . , an−1). This isomorphism is

not canonical since it depends on the ordering, but changing it only leads to a permutation of the
coordinates, and many groups (especially abelian groups) come with a canonical ordering. This
isomorphism allows us to endow Fq[G] with the Hamming metric, making φ an isometry: The
weight wt(a)) of a ∈ Fq[G] is defined as the Hamming weight of φ(a) (Note that changing the
ordering of the group does not impact the weight of an element, which is thus well-defined).

Example 5. The simplest example to have in mind is the case of cyclic groups.

– Let G = {1} be the trivial group with one element. Then the group algebra Fq[G] is isomorphic
to the finite field Fq.

– Let G = Z/nZ be the cyclic group with n elements. Assuming that q is coprime to n, it
is easy to see that the group algebra Fq[G] is nothing else than the usual polynomial ring
Fq[X]/(Xn − 1). The isomorphism is given by k 7→ Xk extended by linearity.

Remark 6. The above example shows that our framework will only be a generalisation of known
constructions. This generality will be crucial though, because all the instances we introduce in the
present article and which will be proved to resist to linear attacks will arise from group algebras.

Example 5 shows that the group algebra of a cyclic group can be seen as a (quotient of a)
polynomial ring in one variable. For a general finite abelian group, this is not always so simple,
however there is also an explicit nice representation. This uses the following standard fact from
the theory of group algebras.

Proposition 7. Let G1, G2 be two finite groups. Then

Fq[G1 ×G2] ≃ Fq[G1]⊗Fq Fq[G2].

Example 8. Let G = Z/nZ× Z/mZ. Then, Proposition 7 entails that

Fq[G] = Fq[Z/nZ]⊗Fq Fq[Z/mZ] = Fq[X]/(Xn − 1)⊗Fq Fq[X]/(Xm − 1)

= Fq[X,Y ]/(Xn − 1, Y m − 1).

This isomorphism can actually be made explicit by (k, ℓ) 7→ XkY ℓ extended by linearity.

Remark 9. More generally, since it is well–known that any finite abelian group G is a product of
cyclic group Z/d1Z× · · · × Z/drZ, the previous statement asserts that the group algebra Fq[G] is
isomorphic to a quotient of a multivariate polynomial ring, namely:

Fq[G] = Fq[Z/d1Z× · · · × Z/drZ] ≃ Fq[X1, . . . , Xr]/(X
d1
1 − 1, . . . , Xdr

r − 1).

Quasi-Abelian Codes. Let ℓ > 0 be any positive integer, and consider the free Fq[G]−module
of rank ℓ:

(Fq[G])ℓ
def
= Fq[G]⊕ · · · ⊕ Fq[G] =

{
(a1, . . . , aℓ) | ai ∈ Fq[G]

}
.

Any Fq[G]−submodule of (Fq[G])ℓ is called a quasi-group code of index ℓ of G (or quasi-G code).
When the group G is abelian, a quasi-G code is called quasi-abelian. More precisely, given a matrix

Γ =

γ1,1 . . . γ1,ℓ...
. . .

...
γk,1 . . . γk,ℓ

 ∈ (Fq[G])k×ℓ,
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the quasi-G code defined by Γ is

C
def
= {mΓ = (mΓ1, . . . ,mΓℓ) |m = (m1, . . . ,mℓ) ∈ (Fq[G])k},

where Γi denotes the column

γ1,i...
γk,i

 and mΓi = m1γ1,i+· · ·+mkγk,i ∈ Fq[G]. The matrix Γ is said

to be systematic if it is of the form Γ =
(
Ik | Γ′

)
, where Γ′ ∈ (Fq[G])k×(ℓ−k) and Ik ∈ (Fq[G])k×k

is the diagonal matrix with values 1G.
Let a ∈ Fq[G] and choose an ordering g0, . . . , gn−1 of the elements of G. Through the afore-

mentioned isomorphism φ, the element a can be represented as a vector (a0, . . . , an−1) ∈ Fnq . Now,
consider the matrix

A =

 φ(a · g0)
...

φ(a · gn−1)

 ∈ Fn×nq ,

where each row is the vector representation of a shift of a by some element gi ∈ G. In short, the
matrix A is the matrix representing the multiplication–by–a map m 7→ am in Fq[G] in the basis
(g0, . . . , gn−1). An easy computation shows that for m, a ∈ Fq[G], the vector representation of the
product m · a is the vector-matrix product

φ(m)A = (m0, . . . ,mn−1)

 φ(a · g0)
...

φ(a · gn−1)

 .

In other words, any quasi-group code C of index ℓ can be seen as a linear code of length ℓ×n over
Fq. The Fq[G]−module structure endows C with an additional action of the group G on each block
of length n; and C (seen as a linear code over Fq), admits a generator matrix formed out by k × ℓ
square blocks of size n.

Example 10. Let us continue with Example 5.

– If G = {1}, then any linear code is a quasi-G code.
– If G = Z/nZ and q is coprime to n. An element of Fq[G] ≃ Fq[X]/(Xn − 1) is a polynomial of

degree at most n which can be represented by the vector of its coefficients, and any product
m(X) · a(X) ∈ Fq[G] can be represented by the circulant vector-matrix product

(
m0 m1 . . . mn−1

)


a0 a1 . . . an−1
an−1 a0 . . . an−2

...
...

a1 an−1 . . . a0

 ∈ Fnq .

For simplicity, assume that k = 1 and ℓ = 2. Then, a quasi-Z/nZ code of index 2 is defined
over Fq by a double-circulant generator matrix

a0 a1 . . . an−1
an−1 a0 . . . an−2

...
...

a1 an−1 . . . a0

b0 b1 . . . bn−1
bn−1 b0 . . . bn−2

...
...

b1 bn−1 . . . b0

 .

In other words, a quasi-Z/nZ code is nothing else than a usual quasi-cyclic code with block
length n.

4.2 Duality for Quasi-Abelian Codes

When dealing with codes, it may be easier to use the language of parity-check matrices, especially
when considering random codes. In this section, we show that this also extends naturally to quasi-
abelian codes.
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Let G be an abelian group. The algebra Fq[G] is naturally endowed with an inner product ⟨·, ·⟩
defined as follows: 〈∑

g∈G
agg,

∑
g∈G

bgg

〉
def
=
∑
g∈G

agbg,

which is simply the usual inner product over Fnq (this does not depend on the ordering of G). This
inner product can be naturally extended to (Fq[G])ℓ:

⟨(a1, . . . , aℓ), (b1, . . . , bℓ)⟩
def
=

ℓ∑
i=1

⟨ai, bi⟩,

and the notion of the dual C⊥ of a code C extends to quasi-abelian codes:

C⊥
def
=
{
x ∈ (Fq[G])ℓ | ⟨x, c⟩ = 0 ∀c ∈ C

}
.

Proposition 11. Let G be a finite abelian group and let C be a quasi-G code of index ℓ. Then C⊥

is also a quasi-G code of index ℓ.

Proof. There needs only to prove that C⊥ is kept invariant by the action of Fq[G].
For any a =

∑
g∈G agg ∈ Fq[G], define ā def

=
∑
g∈G agg

−1 ∈ Fq[G] and σ(a) def
= a1G ∈ Fq where

1G denotes the identity element of G. The map a 7→ ā is clearly an automorphism of Fq[G] of order
2, and σ : Fq[G] 7→ Fq is a linear form. Moreover, for a, b ∈ Fq[G], a simple computation shows
that ⟨a, b⟩ = σ(ab̄).

Now, let x = (x1, . . . , xℓ) ∈ C⊥. For any c = (c1, . . . , cℓ) ∈ C and any a ∈ Fq[G],

⟨x · a, c⟩ =
ℓ∑
i=1

σ((xia)c̄i) =

ℓ∑
i=1

σ(xi(ciā)) = ⟨x, c · ā⟩ = 0,

where in the last equality we used the fact that c· ā ∈ C since C is an Fq[G]−module. This concludes
the proof of the proposition. ⊓⊔

Example 12. Consider a quasi-abelian code C of index 2, with a systematic generator matrix Γ =
(1 | a). Then, C admits a parity-check matrix of the form H = (ā | −1).

4.3 Fast-Fourier Transform and Encoding

This Section recalls Fast Fourier Transform algorithms in a general setting. This encompasses the
usual FFT introduced by Cooley and Tuckey in 1965[CT65]8 or the Number Theoretic Transform
(NTT) algorithm with which the reader might be more familiar. For a detailed presentation in the
group algebra setting (see [Obe07]).

Let G be a finite abelian group9 of cardinality n, Fq a finite field with q elements, and consider
the group algebra Fq[G]. As explained above, encoding a quasi-G code amounts to computing mul-
tiplications in Fq[G] which can be done using Discrete Fourier Transform algorithms (DFT) when
gcd(n, q) = 1. Indeed, in this case Maschke theorem ensures that Fq[G] is semisimple, i.e. Fq[G]
is isomorphic to a direct product of finite fields10, where the product is now done componentwise.
DFT-based algorithms to compute the products of two elements of Fq[G] always follow the same
strategy:

1. Compute the forward map Fq[G]→ Fqℓ1 × · · · × Fqℓr 11.
2. Compute the componentwise products.
3. Compute the inverse map Fqℓ1 × · · · × Fqℓr → Fq[G].

8 Although such an algorithm was already probably known by Gauss.
9 Recall than in this work we restrict ourselves to the abelian setting, though a Fourier Transform theory

exists also for non-abelian group algebras, making use of the theory of characters.
10 This uses the abelianity of G, in general Fq[G] is a direct product of matrix algebras
11 This is what is usually called the Discrete Fourier Transform.
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Fast Fourier Transform (FFT) algorithms correspond to the case where steps 1 and 3 can be done
efficiently (typically in O(n log(n)) operations in Fq compared to a quadratic naive approach.) This
operation is all the more efficient when ℓi = 1 for all i. This happens when Fq contains a primitive
d-th root of unity, where d = exp(G) is the exponent of G, i.e. the lcm of the orders of all elements
of G. For our applications, this will always be the case.

Recall that any finite group G has a Jordan-Hölder composition series:

{1G} = G0 ◁G1 ◁ · · ·◁Gr = G

such that the quotients Gi+1/Gi (called the factors of the series) are simple groups (i.e. in the
abelian setting they are isomorphic to some Z/piZ where pi is a prime.), and this composition
series is uniquely defined, up to equivalence (i.e. all Jordan-Hölder series have same length and the
factors are the same up to permutation).

Proposition 13 ([Obe07, Section 5]). Consider a finite abelian group G of cardinality n with
gcd(n, q) = 1, and exponent d. Assume that Fq contains a primitive d-th root of unity. Let p1, . . . , pr
denote all the primes (possibly non distinct) appearing in the Jordan-Hölder series of G (in particu-
lar n = p1 · · · pr). Then the Discrete Fourier Transform (and its inverse) in Fq[G] can be computed
in O(n× (p1 + · · ·+ pr)) operations in Fq.

Example 14. Proposition 13 encompasses well-known FFT’s from the literature.

– The usual FFT corresponds to G = Z/2tZ. In this case, a composition series is given by

G0 = {0} ⊂ · · · ⊂ Gi = 2t−iZ/2tZ ⊂ · · · ⊂ Gt = G = Z/2tZ,

and each factor Gi+1/Gi is isomorphic to Z/2Z, and with the above proposition we recover the
usual complexity in O(2t × t) = O(n log(n)). However, Fq needs to be large enough to contain
a primitive 2t−th root of unity12.

– Consider the finite field F3 and the group G = (Z/2Z)t. Example 8 entails that

F3[G] ≃ F3[X1, . . . , Xt]/(X
2
1 − 1, . . . , X2

t − 1).

A composition series of G is given by

G0 = {0}t ⊂ · · · ⊂ Gi = (Z/2Z)i × {0}t−i ⊂ · · · ⊂ Gt = G = (Z/2Z)t,

and the FFT can also be computed in time O(2t × t) = O(n log(n)). This is nothing else than
a t-dimensional FFT in F3.

Remark 15. Proposition 13 is asymptotic, although efficient implementations exist for several groups
and fields. They are particularly efficient when G admits a Jordan-Hölder composition series with
groups of index 2, such as in the above two examples, which allows a simple divide-and-conquer
approach. For a more precise description of Multivariate FFT algorithms (see [vdHLS13, Section
2.2]).

4.4 The Quasi-Abelian Decoding Problem

In this section, we introduce computationally hard problems related to random quasi-abelian codes.
They are variants of the Syndrome Decoding Problem, restricted to this class of codes.

Let G be a finite abelian group and Fq a finite field with q elements. Given an integer t ∈ N,
we denote by Dt(Fq[G]) a noise distribution over Fq[G] such that E[wt(x)] = t when x $← Dt, and
Dt,n(Fq[G])

def
= Dt(Fq[G])⊗n will denote its n-fold tensorization, i.e. e $← Dt,n(Fq[G]) is e ∈ Fq[G]n

and its coordinates are drawn independently according to Dt(Fq[G]). A random quasi-G code of
index 2, in systematic form, will be a quasi-G code whose parity-check matrix H ∈ (Fq[G])2 is
of the form H = (1 | a), where a is uniformly distributed over Fq[G]. Equivalently, it is the dual
of the code generated by H. The search Quasi-Abelian Syndrome Decoding problem is defined as
follows:
12 When the characteristic of Fq is not too large, an approach based on the Frobenius Fast Fourier Transform

can also be exploited to remove this fact.
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Definition 16 ((Search) QA-SD problem). Given H = (1 | a) a parity-check matrix of a
random systematic quasi-abelian code, a target weight t ∈ N and a syndrome s ∈ Fq[G], the goal is
to recover an error e = (e1 | e2) with ei

$← Dt(Fq[G]) such that HeT = s, i.e. e1 + a · e2 = s.

The problem also has a decisional version.

Definition 17 ((Decisional) QA-SD problem). Given a target weight t, the goal of this deci-
sional QA-SD problem is to distinguish, with a non-negligible advantage, between the distributions

D0 : (a, s) where a, s
$← Fq[G]

D1 : (a,a · e1 + e2) where a
$← Fq[G] and ei

$← Dt(Fq[G]).

Both assumptions above generalize immediately to the case of parity-check matrices with more
columns and/or rows of blocks. When H = (1 | a1 | · · · | ac−1), for some parameter c, this
corresponds to what has been called Module-LPN in the literature. This corresponds to the hardness
of syndrome decoding for a quasi-abelian code of larger rate (c− 1)/c. We call (search, decisional)
QA-SD(c,R) this natural generalization of QA-SD.

The QA-SD assumption states that the above decisional problem should be hard (for appropriate
parameters). When the group G is the trivial group, this is the usual plain SD-assumption, while
when the groupG is cyclic13, this is the QC-SD assumption at the core of Round 4 NIST submissions
BIKE and HQC. Those problems, especially their search version, have been studied for over 50
years by the coding theory community and to this day, no efficient algorithm is known to decode
a random quasi-abelian code. This is even listed as an open research problem in the most recent
Encyclopedia of Coding Theory (from 2021) [Wil21, Problem 16.10.5].

Remark 18. In Definition 17, we consider quasi-abelian codes with a parity-check matrix in sys-
tematic form. Indeed, assume H = (a1 | a2) ∈ Fq[G]1×2. A syndrome of H will be of the form
s = a1e1 + a2e2, and therefore is contained in the ideal I = (a1,a2) of Fq[G] generated by a1 and
a2

14. Therefore, when this ideal is not the full ring, there is an obvious bias. When working over
a large field Fq, elements of Fq[G] are invertible with high probability, and therefore I = Fq[G]
with overwhelming probability. On the other hand, this is not true anymore when working over
small fields. Using parity-check matrices in systematic form ensures that 1G ∈ I, which removes
the bias. This is a standard definition (see for instance [AAB+22a, AAB+22b]), though not always
formulated like that in the literature.

4.5 Security Analysis

In this paragraph, we provide evidence for the QA-SD-assumption. Note first that for G = {1} it
is nothing but the SD-assumption, which is well established. Moreover, we argue for security of
QA-SD against linear tests (Definition 3). With Lemma 4 in hand, it suffices to show that given
the parity-check matrix H of a quasi-G code C, the minimum distance of the code generated by H,
i.e. the dual of C, is large with high probability (over the choice of H). Note that when G = {1},
it is well–known that random codes are good, i.e. meet the Gilbert-Varshamov (GV) bound (see
for instance [Pie67, BF02, Deb23]).

Proposition 19 (Gilbert-Varshamov). Let 0 < δ < 1 − 1
q . Let ε > 0, and let C be a random

code of rate k
n ⩽ (1− hq(δ)− ε). Then,

P (dmin(C) > δn) ⩾ 1− q−εn,

where the probability is taken over the uniform choice of a generator matrix of C, and hq denotes
the q-ary entropy function

hq(x)
def
= −x logq

(
x

q − 1

)
− (1− x) logq(1− x).

13 and gcd(q, |G|) = 1
14 Beware that Fq[G] is not necessarily principal.
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For the past 50 years, it has been a long trend of research in coding theory to extend such a result
for more general quasi-abelian codes. For the class of quasi-cyclic codes which are, by far, the most
used quasi-abelian codes in cryptography, a GV-like bound was introduced by Kasami in [Kas74].
Gaborit and Zémor even showed in [GZ06] that various families of random double-circulant codes
asymptotically satisfied a logarithmic improvement on this bound. More recently, this state of
affairs was extended by Fan and Lin in [FL15] to any quasi-abelian code, even in the modular
case where char(Fq) is not coprime to |G|. The proof of this result makes use of the theory of
representations of finite abelian groups in Fq.

Theorem 20 ([FL15, Theorem 2.1]). Let G be a finite abelian group, and let (Cℓ)ℓ be a sequence
of random quasi-G codes of length ℓ ∈ N and rate r ∈ (0, 1). Let δ ∈ (0, 1− 1

q ). Then,

lim
ℓ→∞

P
(
dmin(Cℓ)

|G|
> δℓ

)
=

{
1 if r < 1− hq(δ);
0 if r > 1− hq(δ);

and both limits converge exponentially fast. The above probability is taken over the uniform choice
of a generator matrix Gℓ ∈ Fq[G]k×ℓ of Cℓ.

As it is often the case in coding theory, this result is stated asymptotically, but the convergence
speed could be made more precise, the exponent depends on |G|: the larger the group G, the
higher this probability. Actually, to assert the resistance of QA-SD against linear attacks, it would
be more relevant to consider the regime where k, ℓ are constant and |G| goes to infinity as it is done
in [GZ06] but such a development is out of reach of this article and we leave it as a conjecture.
There is a caveat though. Indeed, as it was noticed in Remark 18, in the case of constant k, ℓ and
growing |G| there is a bias in the QA-SD distribution when the ideal generated by the blocks in
the input parity-check matrix is not the full ring. This corresponds to the parity-check matrix not
being full-rank when seen as a matrix over Fq[G]. In this case, the minimum distance could drop,
but heuristically a random quasi-G code will have a minimum distance linear in its length as long
as this bias is removed, which is the case in our setting since we enforce the systematic form.

Example 21. In order to produce OLE’s over the field Fp, [BCG+20b] proposed to use a ring R of
the form Fp[X]/(F (X)) where F (X) is totally split in Fp.

– The choice of polynomial F that maximizes the number of OLE would be the polynomial
F (X) = Xp −X which has precisely all its roots in Fp (This is not the choice recommended
by the authors, but is still allowed in their framework). However, this ring does not fit in
our setting, and in fact the SD-problem in this ring is vulnerable to a very simple linear
attack: given (a, b) where b is either random or equal to a · e + f mod Xp −X, it holds that
e(0) = f(0) = 0 mod Xq − X with high probability, because e(0) = f(0) = 0 over Fp[X]
with high probability (since e, f are sparse, their constant coefficient is likely to be zero), and
reduction modulo Xp −X does not change the constant coefficient. Hence, the adversary can
distinguish b from random simply by computing b(0) (since b(0) is nonzero with probability
(p− 1)/p for a random b).

– However, by simply removing the X factor and setting F (X) = Xp−1 − 1, which would yield
p− 1 copies of Fp instead of p, the ring R = Fp[X]/(Xp−1 − 1) is nothing else than the group
ring Fp[F×p ] and totally fits in our framework. In particular, it resists linear attacks. Note that
the previous evaluation at 0 does no longer make sense.

5 Pseudorandom Correlation Generators from QA-SD

In the following we always consider R = Fq[G] =
{∑

g∈G agg | ag ∈ Fq
}
, with G an abelian group.

We refer to Rt as the set of ring elements of R of maximum weight t.

5.1 A Template for Programmable PCG for OLE from QA-SD

Theorem 22. Let R = Fq[G]. Assume that SPFSS is a secure FSS scheme for sums of point
functions, and that the QA-SD(c,R) assumption holds. Then there exists a generic construction
scheme to construct a PCG to produce one OLE correlation (described on Fig. 3). If the SPFSS is
based on a PRG : {0, 1}λ → {0, 1}2λ+2 via the PRG-based construction from [BGI16], we obtain:
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• Each party’s seed has maximum size around : (ct)2 · ((log |G| − log t+1) · (λ+2)+λ+ log q)+
ct(log |G|+ log q) bits

• The computation of Expand can be done with at most (2 + ⌊(log q)/λ⌋)|G|c2t PRG operations,
and O(c2|G| log |G|) operations in Fq.

The protocol, adapted from the work of Boyle et al. [BCG+20b], is described on Fig. 3. We first
present an overview. Remind that an instance of the OLE correlation consists in giving a random
value xσ ∈ R to party Pσ as well as an additive secret sharing of x0 · x1 ∈ R to both. Formally:{

((x0, z0), (x1, z1))|x0, x1, z0
$← R, z1 + z0 = x0 · x1

}
.

The core idea of the protocol is to give the two parties a random vector e0 or e1 ∈ Rct , where
each element of the vector is sparse. In addition, parties have access to a vector a = (1, ȧ), with
ȧ = (a1, · · · , ac−1), a vector of random elements of R. We see the vector eσ of party Pσ as an error
vector. Using the vector a, parties can locally extend their error vector and construct xσ = ⟨a, eσ⟩,
which is pseudorandom under QA-SD.

We want to give the parties shares of x0 · x1. Note that x0 · x1 is a degree 2 function in
(e0, e1); therefore, it suffices to share e0 ⊗ e1. We underline a property of the sparse elements
in Rt. Let e, f be sparse elements. This means that there exist sets Se, Sf ⊂ G, such that e =∑
g∈Se

egg, f =
∑
g∈Sf

fgg with eg, fg ∈ Fq and |Se| = |Sf | = t ⩽ |G|. It follows that the product

of e · f can be expressed using only Se · Sf
def
= {gh | g ∈ Se, h ∈ Sf} as basis. We conclude with

|Se · Sf | < |Se| · |Sf | = t2, to deduce that the product of sparse vectors in R also gives us sparse
vectors (with sparsity t2 instead of t). We note that here, we deviate from the original construction
of [BCG+20b]: over a ring of the form Fq[X]/P (X) where P is some polynomial, it is not generally
true that the product of sparse elements remains sparse. This is circumvented in [BCG+20b] by
sharing the product over Fq[X] instead, and reducing locally. When using group algebras as we
do, the product preserves sparsity and we can share the product directly within Fq[G], which is
slightly more efficient.

This result enables us to express each element of e0 ⊗ e1 as a sum of t2 point functions. Then,
we rely on SPFSS (Definition 36). Recall that an SPFSS takes as input a sequence of points as
well as a vector of values, and produces two keys that can be use to find shares of the sum of the
implicit point functions. When a party evaluates its key at each point in the domain, it obtains a
pseudorandom secret sharing of the coefficients of the sparse element in Rt. The protocol uses c2
elements of Rt as a result of the tensor product. This means that we need c2 instances of SPFSS
for t2 point functions. This gives us a seed size of O(λ(ct)2 log |G|) = O(λ3 log |G|).

Proof (of Theorem 22). First, we argue the correctness of the protocol. The coefficient vectors
bi
σ,A

i
σ define a random element in Rt. We can rewrite the product of two of these elements as

follows:
ei0 · e

j
1 =

∑
k,l∈[0..t)

bi
0[k] · b

j
1[l]A

i
0[k]A

j
1[l].

This can indeed be described by a sum of point functions. From this point, u = u0 + u1, then
u = e0⊗ e1, each entry being equal to one of those ei0 · e

j
1. The party obtains zσ as an output, and

we can verify:

z0 + z1 = ⟨a⊗ a,u0 + u1⟩ = ⟨a⊗ a, e0 ⊗ e1⟩ = ⟨a⊗ e0⟩ · ⟨a⊗ e1⟩ = x0 · x1.

The next-to-last equality is straightforward to check. Note that here, ⟨a, eσ⟩ is a QA-SD sample,
with fixed random a and independent secret eσ. We now briefly show sketch security (the analysis is
essentially identical to [BCG+20b] since the construction is “black-box” in the ring R, we sketch it
for completeness). As the two cases are symmetrical, we assume σ = 1. Let (k0, k1)

$← PCG.Gen(1λ)
with associated expanded outputs (x0, z0) and (x1, z1), we need to show that

{(k1, x0, z0)} ≡
{
(k1, x̃0, z̃0) | x̃0

$← R, z̃0 = x̃0 · x1 − z1
}
.

To show this, we use a sequence of hybrid distributions.

21



– Replace z0 by x0 · x1 − z1.
– Step by step replace each the FSS key Ki,j

1 in k1 by a simulated key generated only with the
range and the domain of the function. Due of the correctness and the security properties of
the FSS scheme, this distribution is indistinguishable from the original distribution.

– Replace x0 by a fresh x̃0. It is also impossible to distinguish this distribution from the previous
one, since the Ki,j

1 are now completely independent of x0, and we can rely on the QA-SD
assumption.

– Reverse step 2 by using the FSS security property once again. ⊓⊔

Regarding the size of the different parameters, we use the optimization suggested in [BCG+20b],
such as assuming that the QA-SD assumption holds also for regular error distributions (we note
that our proof of resistance against linear tests holds for very general noise distributions, and in
particular for the regular noise distribution). We can thus reduce the seeds size to (ct)2 · ((log |G|−
log t + 1) · (λ + 2) + λ + log q) + ct(logN + log q) bits ; and the number of PRG calls in Expand
down to (2 + ⌊(log q)/λ⌋)|G|c2t. Note that to achieve security, choosing ct = O(λ) is sufficient.
The number of PRG calls can be further reduced to O(|G|c2) using batch codes to implement the
SPFSS.

Theorem 23. The PCG construction for OLE from Fig. 3 is programmable.

Proof. In order to show that our PCG is programmable we have to transform it a little, as the Gen
functionality takes additional inputs (ρ0, ρ1) in the programmability definition. In our case, we can
choose ρσ =

{
Ai

σ,b
i
σ

}
. In this way, as explained in the description of the protocol, the additional

input of the players can be seen as a vector of elements in Rt, eσ = (e0σ, · · · , ec−1
σ ). Because

xσ = ⟨a, eσ⟩, the players can compute their first input locally, after expanding their ρσ into eσ.
This defines functions ϕσ, and proves the programmability property. The proof of the correctness
property is the same as in the proof of the Theorem 22. The programmable security property can
be proven with s sequence of hybrid distribution as in the proof of Theorem 22, using the reduction
to FSS scheme and the QA-SD assumption. ⊓⊔

Distributed Seed Generation The protocol described in Fig. 3 assumes that a trusted dealer
has given the parties their seed. What we want to do in practice is to achieve the Gen phase via a
distributive setup protocol.

Functionality QA-SDOLE−Setup

Parameters: Security parameter 1λ, PCGOLE = (PCGOLE.Gen,PCGOLE.Expand) as per Fig. 3
Functionality:

1. Sample (k0, k1)← PCGOLE.Gen(1
λ).

2. Output kσ to party Pσ for σ ∈ {0, 1}

Fig. 1. Generic functionality for the distributed setup of OLE PCG seeds

Theorem 24 (From [BCG+20b]). There exists a protocol securely realizing the functionality
QA-SDOLE−Setup of Fig. 1 against malicious adversaries, with complexity:

• Communication costs per party dominated by (ct)2 · ((2λ+ 3) log 2|G|+ (9t+ 2) log(q − 1)).
• Computation is dominated by 2|G| PRG evaluations.

Taking ct = O(λ) is enough to achieve exponential security. With this we can conclude a general
result:

Theorem 25. Let G be a group, and R = Fq[G]. Suppose that SPFSS is a secure FSS scheme for
sums of point functions, and the QA-SD(c,R) assumption. Then there exists a protocol securely
realizing the QA-SDOLE−All functionality over the ring R with the following parameters

• Communication costs and size of the seed : O(λ3 log |G|).
• Computation costs : O(λ|G|) PRG evaluations and O(c2|G| log |G|) operations in Fq.
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Functionality QA-SDOLE−All

Parameters: Security parameter, a group G, and a ring R = Fq[G].
Functionality:
If both parties are honest:

– Sample x0, x1 ← R
– Sample z0

$←R and let z1 = x0 · x1 − z0.
– Output (xσ, zσ) to party Pσ for σ ∈ {0, 1}.

If party Pσ is corrupted:

– Wait for input (xσ, zσ) ∈ R2 from the adversary.
– Sample x1−σ ←R and set z1−σ = x0 · x1 − zσ
– Output (x1−σ, z1−σ) to the honest party.

Fig. 2. OLE Functionality with Corruption

Construction QA-SDOLE

Parameters: Security parameter λ, noise weight t = t(λ), compression factor c ⩾ 2, G a finite abelian
group, R = Fq[G]. An FSS scheme (SPFSS.Gen,SPFSS.FullEval) for sums of t2 point functions, with
domain [0..|G|) and range Fq.
Public Input: c− 1 random ring elements a1, · · · , ac−1 ∈ R.
Correlation: After expansion, outputs (x0, z0) ∈ R2 and (x1, z1) ∈ R2 where z0 + z1 = x0 · x1

Gen : On input 1λ :

1. For σ ∈ {0, 1} and i ∈ [0..c), sample random vectors Ai
σ ← (g1, · · · , gt)gi∈G and bi

σ ← (F∗
q)

t.

2. For each i, j ∈ [0..c), sample FSS keys
(Ki,j

0 ,Ki,j
1 )

$← SPFSS.Gen(1λ,Ai
0 ⊗Aj

1,b
i
0 ⊗ bj

1).

3. Let kσ = ((Ki,j
σ )i,j∈[0..c), ((Aσ

i,bi
σ)i∈[0..c)).

4. Output (k0, k1).

Expand : On input (σ, kσ) :

1. Parse kσ as ((Ki,j
σ )i,j∈[0..c), ((A

i
σ,b

i
σ)i∈[0..c))

2. For i ∈ [0..c), define the element of Rt

eiσ =
∑

j∈[0..t)

bi
σ[j] ·Ai

σ[j].

3. Compute xσ = ⟨a, eσ⟩, where a = (1, a1, ·, ac−1), eσ = (e0σ, · · · , ec−1
σ ).

4. For i, j ∈ [0..c), compute uσ,i+cj ← SPFSS.FullEval(σ,Ki,j
σ ) and view it as a c2 vector of element

in Rt2 .

5. Compute zσ = ⟨a⊗ a,uσ⟩.

6. Output xσ, zσ .

Fig. 3. PCG for OLE over R, based on QA-SD

5.2 Instantiating the Group Algebra

In this section we instantiate our general result with a concrete construction of a PCG for OLE
correlation over Fq. Remind that G =

∏n
i=1 Z/qiZ, qi ⩾ 2 . Using Proposition 7 from previous
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section:

Fq[G] = Fq

[
n∏
i=1

Z/qiZ

]
≃ Fq[Z/q1Z]⊗Fq · · · ⊗Fq Fq[Z/qnZ]

≃
n⊗
i=1

Fq[Xi]/(X
qi
1 − 1) ≃ Fq[X1, .., Xn]/(X

q1
1 − 1, .., Xqn

n − 1).

Batch-OLE over Fq. In the following we let all the qi be all equal to q − 1. We therefore use
R = Fq[G] ≃ Fq[X1, .., Xn]/(X

q−1
1 − 1, .., Xq−1

n − 1). Remark that the elements of F∗q are the roots
of the polynomial Xq−1

i − 1. Therefore, we can write Xq−1
i − 1 =

∏
a∈F∗

p
(Xi − a), for all 1 ⩽ i ⩽ n

and, by the Chinese Remainder Theorem, we get

Fq[X1, .., Xn]/(X
q−1
1 − 1, .., Xq−1

n − 1) ≃
T∏
i=1

Fq.

where T = (q−1)n is the number of elements in the group. We can apply our protocol to construct
a PCG for the OLE correlation in R. This single OLE over R can be transformed in T different
instances of OLE over Fq. We get:

Theorem 26. Suppose that SPFSS is a secure FSS scheme for sums of point functions and that
the QA-SD assumption holds. Let R = Fq[X1, .., Xn]/(X

q−1
1 − 1, .., Xq−1

n − 1), and T = (q − 1)n.
We can construct a PCG producing T instances for OLE over Fp, using the QA-SDOLE construction.
The parameters we obtain are the following.

• Each party’s seed has size at most: (ct)2 · ((n log(q − 1) − log t + 1) · (λ + 2) + λ + log q) +
ct(n log(q − 1) + log q) bits

• The computation of Expand can be done with at most (2 + ⌊(log q)/λ⌋)n log(q − 1)c2t PRG
operations, and O(c2(q − 1)nn log(q − 1)) operations in Fq.

Concrete Parameters. We report on Table 1 a set of concrete parameters for our new pro-
grammable PCGs from QA-SD, when generating T instances of a pseudorandom OLE over Fq,
chosen according to the analysis of of Section 6. We note that our concrete security parameters are
very close to the parameters of [BCG+20b]. This stems from two points:

First, [BCG+20b] conservatively chose security bounds based on existing attacks over F2, even
though their instantiation is over Fp with log p ≈ 128 (and known attacks on syndrome decoding
are less efficient over larger fields). One of the reason for this was to get conservative estimates
(syndrome decoding over large fields was less investigated, and attacks could improve in the future);
another motivation is that over F2, tools have been implemented to automatically evaluate the
resistance against various flavors of ISD (whose exact cost can be quite tedious to analyze). Because
our PCGs can handle fields as low as F3, and to avoid having to pick different parameters for each
field size, we also based our analysis on known bounds for F2.

Second, the main difference between our analysis and that of [BCG+20b] is that we must
consider folding attacks, which are considerably more diverse in our setting (since an attacker can
construct a reduced instance by quotienting with any subgroup G′, of which there are many). Yet,
the effect of folding on security does not depend on the fine details of the subgroup G′, but only
on the size of G′, which allows to compute the new dimension and the reduced noise weight (via
a generalized piling-up lemma). This does not differ significantly from the case of ring-LPN over
cyclotomic rings considered in [BCG+20b], since there the adversary could reduce the dimension
to any power of two of their choice: our setting allows the adversary to be slightly more fine grained
in its dimension reduction (i.e. the adversary is not restricted to a power of two), but this does
not make a significant difference on the concrete attack cost (essentially because close dimensions
yield near-identical noise reduction via the piling-up lemma, and do not have significantly different
impact on the concrete attack cost beyond that).

As our table illustrates, our PCG’s offer a non-trivial stretch (computed as the ratio between
the seed size and the size of storing the output OLE’s) from a target number T = 225 of OLE’s.
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Table 1. Concrete parameters and seed sizes (per party, counted in bits) for our PCG for OLE over Fq

from QA-SD(R), using R = Fq[(Z/(q − 1)Z)n], λ = 128, target number T = (q − 1)n of OLE’s, syndrome
compression factor c ∈ {2, 4}, and number of noisy coordinates t. ‘Stretch’, computed as 2T/(seed size),
is the ratio between storing a full random OLE (i.e., 2T field elements) and the smaller PCG seed. The
parameter k denotes the dimension of the SD instance after folding, and t′ the (expected) noise weight of
the folded instance (when heuristically choosing the best possible folding for the adversary). #PRG calls is
computed as 4 · Tct. Parameters are chosen to achieve λ-bits of security against known attacks, according
to the analysis of Section 6.

T c t (k, t′) Seed size Stretch # R-mults #PRG calls

225 2 152 (28, 121) 226.0/ log q log q 4 228.2 · log q
225 4 64 (3 · 28, 60) 223.6/ log q 5.3 log q 16 228.0 · log q

230 2 152 (28, 121) 226.3/ log q 26 log q 4 233.2 · log q
230 4 64 (3 · 28, 60) 224.0/ log q 128 log q 16 233.0 · log q

235 2 152 (28, 121) 226.6/ log q 676 log q 4 238.2 · log q
235 4 64 (3 · 28, 60) 224.3/ log q 3327 log q 16 238.0 · log q

Discussions on Efficient FFTs. Operations over the group algebra can be accelerated using
the generalized FFT. Here, we briefly remark that some specific values of q yield “FFT-friendly”
instances, where the generalized FFT algorithm is extremely efficient (and could even be compet-
itive with the more well-known FFT over cyclotomic rings, with proper optimizations): this is the
case whenever q − 1 is a power of 2, since it enables a very efficient divide and conquer algorithm.
For example, this is the case over F3[(Z/2Z)2

n

], where the FFT reduces to a 2n-dimensional FFT
over F3.

From Decision-QA-SD to Search-QA-SD. In Appendix B, we give a reduction from the search
version of QA-SD to the decision version for all instances over R = Fq[G] where G = (Z/(q−1)Z)n,
which is the group which we use to obtain PCG’s for OLE’s over F(q−1)n

q . This provides further
support for the security of our PCG schemes, by showing that their security reduces to the search
QA-SD assumption. More precisely, we prove the following theorem:

Theorem 27. Let q, t be two integers, and let G def
= (Z/(q − 1)Z)t. Let n def

= |G| = (q − 1)t and
w ∈ {0, . . . , n} be an admissible weight, and let ψ be an error distribution over R def

= Fq[G] such
that E[wt(x)] = w when x is sampled according to ψ. Let s ∈ Fq[G] be a fixed secret.

Suppose that there exists a distinguisher A between (a,yunif) and (a,a·s+e) where a,yunif ← R
and e← ψ. Denote by τ its running time and ε its distinguishing advantage. Then, there exists an
algorithm that recovers s ∈ R (with an overwhelming probability in n) in time

O

(
n4 × 1

ε2
× q × τ

)
.

6 Concrete Cryptanalysis

In this section, we discuss the concrete security of QA-SD. Most of the attacks we discuss in
this section fit in the framework of linear tests, and are therefore asymptotically ruled out by
our proof of resistance against linear tests. However, while the concrete bounds of the proof are
reasonable (in the sense that choosing parameters from these bounds would yield instances that
can be reasonably used in practice), they are overly pessimistic. This stems from the fact that the
linear test framework rules out all linear attacks (even inefficient ones); equivalently, it considers
that the adversary can always find a vector v that minimizes wt(v·H). However, in practice, finding
the vector v that minimizes wt(v ·H) is a hard problem. Indeed, this problem, when instantiated
with arbitrary codes is known to be NP–complete [Var97] and is commonly assumed to be hard in
average and the best know algorithm to solve this search problem are nothing but the algorithms
solving SD, i.e. all the known variants of ISD.
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When choosing concrete parameters, all previous works that rely on LPN or SD choose instead to
use parameters derived using the best possible v which can be obtained using existing linear attacks,
such as ISD. For all known concrete linear attacks, two codes whose duals have the same minimum
distance will yield the same resistance (measured as wt(v·H)) against these attacks. In other words,
these attacks, which are combinatorial in nature, only rely at their core on the distance properties
of the code and not on its general structure. To get an apple-to-apple efficiency comparison with the
state of the art, the natural rule of thumb is therefore to choose parameters similar to those chosen
for variants of syndrome decoding with the same minimum distance property: this heuristic was
explicitely advocated in [CRR21, Section 1.4]. In our setting, since quasi-abelian codes meet the
GV bound (i.e. have typically the same minimum distance as random linear codes), this translates
to choosing parameters comparable to those of the standard syndrome decoding problem with
random codes.

In our context, this would however be too aggressive, since there are known ways in which an
attacker can exploit the structure of the code. First, because our codes are quasi-abelian codes
and hence, according to Remark 9, they can be regarded as codes over a quotient of a multivariate
polynomial ring. Therefore, an attacker can reduce the word modulo some ideal of the ring, in
order to generate an instance of a “smaller” decoding problem. This approach has been considered
in [CT19] in the code–based setting and in [BCV20] in the lattice setting. This point of view has
been considered in [BCG+20b] when studying the security of OLE’s generated using instances of
Ring-LPN.

The parameters should therefore be chosen such that any such “reduced instance” remains
intractable. Second, due to the quasi-abelian structure of our codes, one can apply the DOOM
attack from [Sen11] to obtain a speedup by a factor

√
|G|, where G denotes the underlying abelian

group of the group algebra.

Our setting. In the following, we focus on linear attacks against the QA-SD(n, k) assumption
instantiated over a ring R = Fq[X1, . . . , Xd]/(X

q−1
1 − 1, . . . , Xq−1

d − 1). Our point is to distinguish
pairs ((a1, . . . , ac), a1s1 + · · ·+ acsc + e) (with possibly c = 1), where a $← R and s1, . . . , sc, e ∈ R
are sparse with respect to the basis of monomials. As already mentioned in Section 4.4, the search
version of the problem is equivalent to solving the QA-SD problem. That is to say solving a decoding
problem of the form

( A1 | · · · | Ac | 1 )


s1
...
sc
e

 = 0,

where the Ai’s are the matrix representations in the basis of monomials of the multiplication–by–ai
maps in R and the si’s and e are the unknown vector representations of the si’s and e in this basis,
i.e. are unknown sparse vectors.

In terms of code parameters, the group codes have length n = (c + 1) dimFq R and dimension
k = cdimFq

R. Therefore, we always have k ⩾ n
2 with equality when c = 1. In this setting, attacks

such as Arora-Ge [AG11] (which require n = Ω(k2)) or BKW (which require n to be subexponential
in k, or n = Ω(k1+ε) using the sample-efficient variant of [Lyu05]) do not apply. Furthermore, our
codes have rate c/(c+1) with c ⩾ 1. In particular, this implies that the recent results on Statistical
Decoding 2.0 [CDMT23], which improves over ISD when the code rate is sufficiently small, will
not yield an efficient attack on our setting (for rates above 1/2, SD 2.0 is always outperformed by
ISD).

6.1 Instance Projection via Quotient

As previously mentioned, a manner to solve the problem is to solve the search QA-SD(R) problem,
where R = Fq[X1, . . . , Xd]/(X

q−1
1 − 1, . . . , Xq−1

d − 1). Given an instance (a, b) of QA-SD(R),
an attacker may construct a new decoding instance with smaller length and dimension. In full
generality, the attacker can pick any ideal I ⊆ Fq[X1, . . . , Xd] containing (Xq−1

1 − 1, . . . , Xq−1
d −d)

and represented by a Gröbner basis, and construct a new instance (a′, b′)← (a, b) mod I, where the
mod operation is the reduction modulo I with respect to the chosen Gröbner basis. For instance,
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one can choose a sequence (F1(X1), . . . , Fd(Xd)) of factors of Xq−1
1 − 1, . . . , Xq−1

d − 1 and reduce
modulo them.

However, in general, the projection modulo an arbitrary ideal I can significantly increase the
noise. The way the noise increases is highly dependent from the density of the generators of I.
For example, if R = Fq[X1, X2]/(X

q−1
1 − 1, Xq−1

2 − 1) and the attacker reduces modulo I =

(F1(X1), F2(X2)) where F1, F2 are respective factors of Xq−1
1 − 1 and Xq−1

2 − 1 of respective
Hamming weight, say, 3 and 5, the noise rate can increase by a factor up to (3− 1) · (5− 1) = 8.
Therefore, we expect this approach to be useful (to the attacker) only when the noise increase is
very small.

Heuristically the best possible projections of R regarded as the group algebra Fq[G] seem to be
the projections arising from quotients of G. Namely, given a subgroup H of G the canonical map
G→ G/H induces a morphism of algebras

πH :

{
Fq[G] −→ Fq[G/H]∑
g∈G ag g 7−→

∑
ḡ∈G/H(

∑
h∈H agh)ḡ.

From a coding theoretic point of view, this operation is nothing but summing up the entries of a
codeword whose index are in a same orbit under the action of H. This operation sends a code of
length (c + 1)|G| and dimension c|G| onto a code of length (c + 1)|G/H| and dimension c|G/H|.
Moreover, a noisy codeword c+ e is sent onto πH(c) + πH(e) and the weight of πH(e) is bounded
from above by the weight of e. In summary, the length and dimensions of the code are divided by
|H| while the weight of the error is preserved or slightly reduced since some entries of e may sum
up to 0.

Such projections seem optimal in terms of limiting the growth of the noise.

Remark 28. From the ring theoretic point of view, the map πH can be regarded as a quotient map
of R = Fq[G] modulo the ideal generated by all the elements (h−eG) where h ∈ H and eG denotes
the unit element of the group G.

Example 29. Following the spirit of [BCG+20b] consider the case

R = Fq[X]/(Xq−1 − 1) ≃ Fq[Z/(q − 1)Z].

In this situation, for any ℓ|(q − 1), one can consider the subgroup H = ℓZ/(q − 1)Z. The corre-
sponding projection can be made explicit as

πH :

{
Fq[X]/(Xq−1 − 1) −→ Fq[X]/(X

q−1
ℓ − 1)∑q−2

i=0 aiX
i 7−→

∑ q−1
ℓ −1

i=0

(∑
j≡i mod ℓ aj

)
Xi.

In short, we sum up the entries of the codeword whose indexes are congruent modulo ℓ.

Example 30. This example is in the spirit of the attacks on multivariate Ring-LWE [BCV20]. Con-
sider the ring R = Fq[Z/nZ× Z/nZ] ≃ Fq[X,Y ]/(Xn − 1, Y n − 1) and consider the subgroup

H
def
= {(x, x) | x ∈ Z/nZ} ⊆ G = Z/nZ× Z/nZ.

Here the projection map can be made explicit as

πH :

{
Fq[X,Y ]/(Xn − 1, Y n − 1) −→ Fq[X]/(Xn − 1)∑n−1

i,j=0 aijX
iY j 7−→

∑n−1
i=0

(∑
u+v≡i mod n auv

)
Xi.

(1)

This approach is considered in [BCV20] to provide an attack on multivariate Ring-LWE. In the
coding theoretic context, this approach is analysed in depth in [CT19] where the projection map
is called folding.
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Computing the new noise weight. Following [BCG+20b], we consider an instance (a, ae+ f)
where each sparse vector e, f has been sampled as a sum of t/2 random monomials. This distribution
is very close to the original distribution, and its choice significantly simplifies the analysis. It also
slightly favor the attacker (since the expected number of noisy entries will now be slightly below t
due to possible collisions). In this setting, the expected noise rate t′ can be computed fairly simply.
Let Rm,ℓ be the random variable counting the number of nonzero coefficients in a polynomial with
m coefficients over Fq computed as the sum of ℓ random monomials. Note that t′ = E[Rn,t], where
n is the code length. Then, we have

E[Rm,ℓ+1] =

(
1− E[Rm,ℓ]

m

)
· (E[Rm,ℓ] + 1) +

E[Rm,ℓ]
m

·
(
E[Rm,ℓ]−

1

q − 1

)
,

since adding a new random monomial increases the number of nonzero coefficients by 1 if it falls
in a position with a zero coefficient, and decreases the expected number of nonzero coefficients by
1/(q − 1) otherwise (since this is the probability, when summing two random elements of F∗q , to
get 0). Solving the recurrence relation gives

t′ =
n · (q − 1)

q
·

(
1−

(
1− q

n · (q − 1)

)ℓ)
.

In the rest of the analysis, we will cover standard attacks on syndrome decoding on instances of
a given noise rate and dimension. Then, when choosing concrete parameters, we will estimate the
attacker cost as the minimum cost of solving any instance obtained by reducing Fq[G] to Fq[G/H],
estimating the reduced noise parameter t′ using the formula above. We note that this approach
ignores the possibility that for a given instance, t′ ends up being much smaller than its expected
value, which would yield some weak instances of the problem. As in [BCG+20b], we observe that
this can be avoided by changing the structure of the noise using rejection sampling: one can re-
sample the noise vectors until the weight t′ of the reduced instance over Fq[G/H] (using the best
possible choice of |H| for the attacker with the attacks covered below) is at least its expected value
(on average, since the probability of having E[t′] ⩽ t′ is 1/2, this reduces by at most a single bit
the entropy of the noise vector).

6.2 Information Set Decoding

In this section, we cover standard linear attacks against syndrome decoding. The most advanced
attacks in this category are the information set decoding (ISD) attacks, initially introduced by
Prange [Pra62] and subsequently refined in a long sequence of works [Ste88, FS09, BLP11, MMT11,
BJMM12, MO15]. Evaluating precisely the effect of each attack on a given instance is complex and
tedious, but a general lower bound on the attack cost was derived in [HOSS18], based on similar
analysis given in [FS09, Sen11, HS13, TS16]. These lower bounds build upon the common structure
of most ISD variants. In general, the cost of modern ISD algorithms for a code with parity-check
matrix H over F2, with dimension k, code length n, and t noisy coordinates, is lower bounded by

min
p1,p2

{
min

{
2k,
(
n
t

)}(
k−p2
t−p1

) ·

(
K1 +K2(
k+p2
p1

) +
t · (k − p2)

2p2

)}
,

where (p1, p2) satisfy 0 ⩽ p2 ⩽ k/2 and 0 ⩽ p1 ⩽ k + p2, K1 denotes the cost of Gaussian
elimination on a submatrix of H with n−p2 columns, and K2 denotes the running time of a specific
sub-algorithm, which varies accross different attacks. As in [BCG+20b], we assume that performing
Gaussian elimination on the submatrix of H can be done in time K1 ≈ (k−p2)2 log(k−p2), because
H is a structured matrix. According to the analysis of [HOSS18], K2 can be lower bounded by
K2 ⩾

(
(k+p2)/2
p1/8

)
for algorithm of [BJMM12]. As in [BCG+20b], [BJMM12] seems to provide the

best efficiency in our setting (more recent algorithms have large hidden constants that render them
less practical, or improve over [BJMM12] only for very high noise rates).

The above analysis is restricted to the case of F2, which is the easiest to attack using ISD. Over
larger fields, one can use the above costs as a lower bound for the true cost of the attack, but as
the field size grows, this lower bound becomes quite loose. Indeed, this bound was used to pick
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concrete parameters in [BCG+20b], but a recent preprint [LWYY22] estimates that the parameters
recommended in [BCG+20b] for 80 bits of security actually achieve 92-112 bits of security, while
the parameters recommended for 128 bits of security actually achieve 133-171 bits of security. In
our setting, however, our PCG’s can be instantiated over fields as small as F3, in which the costs
should be much closer to the lower bounds used in [BCG+20b].

We note that a detailed analysis of ISD over larger fields was given in a recent paper [BCDL19].
However, for the sake of avoiding to compute different QA-SD parameters for each possible field
size Fq, we stick in this paper to the conservative lower bound that stems from the analysis over
F2.

In [CT19] a study of the combination of ISD with the folding operation is studied and precises
how the use of folding improves the complexity of the decoder. It turns out that for small errors
rates, which is precisely our setting, the use of folding does not represent a significant improvement.

6.3 Prange and statistical decoding (Low-Weight Parity-Check)

We also consider other standard linear attacks, such as Prange decoding algorithm [Pra62] and
low-weight parity checks [Zic17, AJ01, FKI06, Ove06, DT17] which leads to the so-called statistical
decoding. The former, which is just the original ISD algorithm, consists in guessing k noise-free
equations and solving the resulting system. It has the advantage over more recent ISD algorithms
that it does not depend on the field size. The latter is also often more efficient than ISD in our
setting. This is because ISD is a search attack, and executing the attack involves solving a linear
system in each iteration of the attack. Since typical PCG applications have huge dimensions (e.g.
k ≈ 230), this polynomial cost turns out to have a significant impact on the overall runtime of the
attack (even though ISDs have the lowest exponent in the exponential part of the attack). Low-
weight parity checks, however, work by directly finding many v such that v ·H has low weight,
and declare b to be a syndrome decoding instance if the set {v · b⊺} contains too many zeroes.
In other words, these attacks directly target the decision variant of syndrome decoding (on which
our PCG’s rely) and require computing only an inner product per iteration, rather than solving a
large linear system. Concretely, the cost of Prange (when H is a structured matrix) is given by
O
(
1/(1− t

n )
k · k2 log k

)
arithmetic operations, and the cost of the low-weight parity check attack

is O (n/(k − 1)t · k) arithmetic operations (see [BCGI18, BCG+20b]).

6.4 Algebraic Decoding Attacks

An important line of work in code–based cryptography consists in recovering a hidden algebraic
structure of a code which permits to decode. See for instance [Wie10, CGG+14, COT17, CMP17,
CLT19]. In general such attacks rest on the fact that the public code C or some of its subcodes has
a peculiar behaviour with respect to the component wise product. Namely that the “square of C”,
i.e. the span of the component wise products of any two words of C has small dimension compared
to the square of a random code.

Note that codes sharing this feature of having a “small square” benefit from an efficient decoding
algorithm usually referred to as Error Locating Pairs decoder [Pel92]. See [Cou21, Section 4] for
further details. Therefore, if a random quasi–group code had a small square compared to random
codes, then one could deduce an algebraic decoder for quasi–group codes which is a longstanding
open question: even when restricting to the case of cyclic codes!

Algebraic attacks exploit the structure of the underlying code to decode it efficiently. Many
such algebraic decoding attacks have been devised in the literature, and fall in a unified framework
developed in [Pel92, Kot92] based on componentwise product of codes. Examples of such attacks
include [PMMM11, MP12, FGO+13, CGGU+13, MMP14] (and many more), and were often used
to break some variants of the McEliece cryptosystem. In our context, though, algebraic decoding
of quasi-group codes is a well-known and long-standing open problem: it has been studied for
over 50 years in the coding theory community, and to this day no efficient algorithm is known to
decode a random quasi-abelian code. This is listed as an open research problem in the most recent
Encyclopedia of Coding Theory (from 2021) [Wil21, Problem 16.10.5].
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6.5 Attacks on Multivariate LWE

As already mentioned in Example 30, an attack on multivariate Ring-LWE is presented in [BCV20].
This attack is based on a projection of the form Fq[G]→ Fq[G/H] as described in Section 6.1. The
attack is particularly efficient since applying a map of the form (1) has a very limited impact on the
Euclidean norm and hence has a limited impact on the noise term. In the coding theoretic setting,
the situation is very different since the Hamming weight of the error is more or less preserved
but then the relative weight, i.e. the ratio t

n is more or less multiplied by a term |H|. Therefore,
reducing with respect to a too large subgroup H leads to shorter codes but provides intractable
instances of the decoding problem.

6.6 Decoding One-Out-Of Many

For a code equipped with a non trivial permutation group, which is an obvious feature of quasi-
abelian codes, the decoding problem can be made easier using Sendrier’s Decoding One Out of
Many (DOOM) paradigm [Sen11]. Indeed, consider a quasi–abelian code C ⊆ Fq[G]ℓ and a noisy
codeword y = c+ e with c ∈ C and e ∈ Fq[G]ℓ of low weight. Then, for any g ∈ G, we get another
instance of the decoding problem with an error term of the same weight:

g · y = g · c+ g · e.

Here g · c ∈ C and wt(g · e)) = wt(e)). Therefore, given a single instance of QA-SD we naturally
deduce |G| instances and solving one of them immediately solves the other ones. Thus, from [Sen11],
solving one out of |G| instances of SD permits to divide the work factor of any decoder by

√
|G|.

Therefore the cost of ISD should be divided by
√
|G| and the cost of the composition of a projection

Fq[G]→ Fq[G/H] with ISD should be divided by
√
|G/H|.

7 Applications to Secure Computation

In this part, we explain some of the main applications of our new PCG’s to secure compu-
tation. To provide bounds, we will use the following restatement of Theorem 25 in the case
R = Fq[X1, .., Xn]/(X

q−1
1 − 1, .., Xq−1

n − 1).

Theorem 31. Suppose that SPFSS is a secure FSS scheme for sums of point functions and that
the QA-SD assumption holds. Let R = Fq[X1, .., Xn]/(X

q−1
1 − 1, .., Xq−1

n − 1), and T = (q − 1)n.
We can construct a PCG producing T instances for OLE over Fp, using the QA-SDOLE construction
with the following parameters

• Communication costs and size of the seed : O(λ3 log T ).
• Computation costs : O(λT ) PRG evaluations and O(c2T log T ) operations in Fq.

First, as explained in [BCG+20b], a PCG generating N multiplication triples can be derived
from a PCG generating 2N OLE.

Extension to multiplication triples. The OLE correlation gives a secret to each party P0 and P1

and an additive secret-sharing of the product of the two secrets. The OLE correlation is interesting
in its own right and can be used directly in some applications, but in general, the multiplication
triple correlation is used. A (2-party) multiplication triple, gives the parties additive shares of
random elements a and b, and shares of the product a · b. The main advantage of multiplication
triples is their usefulness in the setting of 2-party computation of arithmetic circuits over Fq.

In this setting, each multiplication gate can be evaluated by consuming a single multiplication
triple, and with communication costs of two Fq elements per party - the additions are free in this
setting. Using two instances of an OLE correlation we can obtain an instance of a multiplication
triple correlation. Let a = a0 + a1, b = b0 + b1 and c = ab = a0b0 + a0b1 + a1b0 + a1b1, we can
distribute aσ, bσ to party Pσ and run two independent OLE instances to obtain the secret share
of the cross terms a0b1 and a1b0. As the party Pσ can locally compute aσbσ it gets a correct
sharing of ab. Note that we obtain the correlation in a black-box way. Thus, a PCG generating N
multiplication triples can be derived from a PCG generating 2N OLE.
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7.1 Application : (N-party) multiplication triples generation for arithmetic circuit

Theorem 32. Assume the existence of oblivious transfers and QA-SD(R) assumption, where R =
Fq[X1, · · · , Xn]/(X

q−1
1 − 1, · · · , Xq−1

n − 1) ≃ Fq × · · · × Fq, with q ⩾ 3. Let T = (q − 1)n. There
exists a semi-honest N -party protocol for securely evaluating an arithmetic circuit C over Fq with
T multiplication gates, in the preprocessing model, such that:

– The preprocessing phase has communication cost c̃(N,λ, T ) = O(λ3 ·N2 · log(2T )), and com-
putation cost ċ(N,λ, T ) = O(N2 · λ · 2T ) PRG calls; O(N2 · 2T log(2T )) operations in Fq.

– The online phase is non-cryptographic and communication cost 2 ·N · T elements of Fq.

Proof. Consider the parties P1, · · · , PN . First, remark that programmability enables parties to gen-
erate “correlated” (2-party) multiplication triples, which can used to obtain N -party multiplication
triples in the following way.

– The party Pi gets two random values (xi, yi). We define X =
∑
i xi and Y =

∑
j yj .

– Each pair of parties (Pi, Pj)1⩽i,j⩽N,i̸=j performs the programmable protocol for (2-party) mul-
tiplication triples with programmable inputs (xi, yj), and obtains shares of xi · yj . We indicate
the share of Pi as ⟨xi · yj⟩i.

– Let Ki =
∑N
j=1⟨xi · yj⟩i + ⟨xi · yj⟩i + xi · yi. The Ki are shares of the product

X · Y =
∑

1⩽i,j⩽N

xi · yj =
N∑
i=1

Ki

The parties use the QA-SDOLE to generate short seeds of each of the N · (N − 1) (2-party)
multiplication triples they need. In the online phase, they locally expand the seeds to obtain T
instances of (N -party) multiplication triples. The parties can execute the (N -party) GMW protocol
using the multiplication triples, and evaluate the circuit.

Using Theorem 31 we obtain the cost of preprocessing for generating the 2T OLE over Fp, namely
O(λ3 · log(2T )) in communication cost, and ċ(N,λ, T ) = O(N2λ2T ) PRG calls ; O(λ2 · 2T log(2T ))
operations in Fq in computation cost.

The cost of communication in the online phase is simply derived from the GMW algorithm using
the multiplication triples. For each multiplication gate, each party must send two field elements,
resulting in a cost of 2 ·N · T .

7.2 Secure Computation with Circuit-Dependent Preprocessing

Circuit-dependent preprocessing is a variation of the standard Beaver’s circuit randomization tech-
nique with multiplication triples. It has been investigated in recent works, such as [DNNR17,
Cou19]. The idea is to preprocess multiplications in a way that depends on the structure of the
circuit and leads to an online phase that requires just one opening per multiplication gate, instead
of two when using multiplication triples. PCG’s for OLE’s do not directly enable reducing the pre-
processing phase of secure computation with circuit-dependent correlated randomness: at a high
level, this stems from the fact that since the correlated randomness depends on the topology of the
circuit, it cannot be compressed beyond the description size of this topology. Nevertheless, PCG’s
enable batch secure computation (i.e. securely computing many copies of the same circuit on dif-
ferent input) with silent preprocessing in the circuit-dependent correlated randomness setting, by
using PCG’s to compress a batch of correlations for a given gate accross all circuits.

Theorem 33. Assume the existence of oblivious transfer and the QA-SD(R) assumption, where
R = Fq[X1, · · · , Xn]/(X

q−1
1 −1, · · · , Xq−1

n −1) ≃ Fq×· · ·×Fq, with q ⩾ 3. Let T = (q−1)n. There
exists a semi-honest 2-party protocol for securely evaluating T copies of an arithmetic circuit C
over F with S multiplication gates, in the preprocessing model, such that:

– The preprocessing phase has communication cost c(T, λ, S) = O(λ3 · S · log(2T )) and a compu-
tation cost ċ(T, λ, S) = O(λ · S · 2T ) PRG calls ; O(S · 2T log(2T )) operations in Fq.

– The onTine phase is non-cryptographic and communication costs 2 · S · T elements of F.
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Proof. Let C be an arithmetic circuit over F consisting of fan-in two addition and multiplication
gates. Each wire w is assigned a mask rw during the offline phase. The masks are designed as
follows.

• if w is an input wire, rw is chosen at random.
• if w is the output wire of a multiplication gate, rw ← F is chosen at random
• if w is the output wire of an addition gate with input wires u and v, then rw = ru + rv.
• for each multiplication gate, we assigned a value su,v, such that on input wires u and v,
su,v = ru · rv.

The masks are not known by the parties, but they obtain random additive shares of each rw
for any input and output wire of multiplication gates, as well as su,v for the multiplication gates.

When the online phase begins, both parties hide their secret values with random masks. The
party that is not the one giving the input for a given wire w gives to the other one his shares ⟨rw⟩.
The invariant of the online phase is that through the protocol, for each wire, parties know exactly
the value x + rx where rx is the mask of this wire (for which parties have additive sharing), and
x is the real value that is computed by the circuit passing through the wire w. The invariant is
preserved through each gate because of the following:

• For an addition gate, parties know x+ rx and y+ ry. Then the parties add locally those values
to obtain x+ y + rx + ry , with rx + ry being indeed the output mask for the addition gate.

• For a multiplication gate with rw denoting its output wire’s mask, parties know x + rx and
y + ry. The parties can locally compute their share ⟨(x+ rx) · ry + (y + ry) · rx + rx · ry + rw⟩
(the formula can be a little bit different if we are not in F2). By both exchanging one bit of
information, they reconstitute that value. Adding up (x + rx) · (y + ry), they obtain in clear
x · y + rw where rw is the mask of the output wire of this multiplication gate.

In the end, we have to perform 2S different calls to our PCG to create the (2-party) multiplica-
tion triples seeds. Again we use Theorem 31 to get the estimation of the costs in communication
and space, per instances, and we multiply it by S. In the online phase, we gain a factor 2 in com-
munication because each party only has to send a bit of information for each of the multiplication
gates. As there are S · T multiplication gates in total, the communication cost in the online phase
is 2 · S · T . ⊓⊔
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Appendices

A Additional Preliminaries

A.1 Function Secret Sharing

Function secret sharing (FSS), introduced in [BGI15, BGI16], allows to succinctly share functions.
In this section, we largely follow the presentation from the preliminaries of [BCG+20b] (in partic-
ular, the definitions are reproduced almost verbatim from [BCG+20b]). An FSS scheme splits a
secret function f : I → G, where G is some Abelian group, into two functions f0, f1, each repre-
sented by a key K0,K1, such that: (1) f0(x) + f1(x) = f(x) for every input x ∈ I, and (2) each of
K0,K1 individually hides f .

Definition 34 (Function Secret Sharing). Let C = {f : I → G} be a class of function descrip-
tions, where the description of each f specifies the input domain I and an Abelian group (G,+) as
the output domain. A (2-party) function secret sharing (FSS) scheme for C is a pair of algorithms
FSS = (FSS.Gen,FSS.Eval) with the following syntax:

– FSS.Gen(1λ, f) is a Probabilistic Polynomial Time (PPT) algorithm that given security param-
eter λ and description of f ∈ C outputs a pair of keys (K0,K1). We assume that the keys
specify I and G.

– FSS.Eval(b,Kb, x) is a polynomial-time algorithm that, given a key Kb for party b ∈ {0, 1}, and
an input x ∈ I, outputs a group element yb ∈ G.

The scheme should satisfy the following requirements:

– Correctness: For any f ∈ C and x ∈ I, we have

Pr

(K0,K1)
$← FSS.Gen(1λ, f)

∣∣∣∣ ∑
b∈{0,1}

FSS.Eval(b,Kb, x) = f(x)

 = 1.

– Security: For any b ∈ {0, 1}, there exists a PPT simulator Sim such that for any polynomial-
size function sequence fλ ∈ C, the distributions {(K0,K1)

$← FSS.Gen(1λ, fλ) | Kb} and {Kb
$←

Sim(1λ, Leak(fλ))} are computationally indistinguishable.

In the constructions we use, the leakage function Leak : {0, 1}∗ → {0, 1}∗ is given by Leak(fλ) =
(I,G), namely it outputs a description of the input and output domains of f .

We also define a full-domain evaluation algorithm, FSS.FullEval(b,Kb), which outputs a vector
of |I| group elements, corresponding to running Eval on every element x in the domain I. For the
type of FSS we consider, FSS.FullEval is significantly faster than the generic solution of running
|I| instances of Eval. We will use FSS for point functions and sums of point functions, as defined
below.

Definition 35 (Distributed Point Function (DPF) [GI14, BGI15]). Denote by [n] the set
of integers {0, . . . , n − 1}. For an Abelian group G, α ∈ [n], and β ∈ G, the point function fα,β
is the function fα,β : [n] → G defined by fα,β(x) = 0 whenever x ̸= α, and fα,β(x) = β if
x = α. A distributed point function (DPF) is an FSS scheme for the class of point functions
{fα,β : [n]→ G | α ∈ [n], β ∈ G}.

The best known DPF construction [BGI16] can use any pseudorandom generator (PRG) G :

{0, 1}λ → {0, 1}2λ+2 and has the following efficiency features. For m = ⌈ log |G|λ+2 ⌉, the key generation
algorithm Gen invokes G at most 2(⌈log n⌉ +m) times, the evaluation algorithm Eval invokes G
at most ⌈log n⌉ +m times, and the full-domain evaluation algorithm FullEval invokes G at most
n · (1 +m) times. The size of each key is at most ⌈log n⌉ · (λ+2)+ λ+ ⌈log2 |G|⌉ bits. We will use
a simple and generic extension of DPF to sums of point functions.



Definition 36 (FSS for sum of point functions (SPFSS)). For S = (s1, . . . , st) ∈ [n]t and
y = (y1, . . . , yt) ∈ Gt, define the sum of point functions fS,y : [n]→ G by

fS,y(x) =

t∑
i=1

fsi,yi(x).

An SPFSS scheme is an FSS scheme for the class of sums of point functions.

Note that for S = (s1, . . . , st), the function fS,y is non-zero on at most t points. If the elements
of S are distinct, fS,y coincides with a multi-point function for the set of points in S. A simple real-
ization of SPFSS is by summing t independent instances of DPF. This will typically be good enough
for our purposes. To simplify notation, when generating keys for a scheme SPFSS = (SPFSS.Gen,
SPFSS.Eval), we write SPFSS.Gen(1λ, S,y), instead of explicitly writing fS,y.

A.2 Pseudorandom Correlation Generators

We recall the notion of pseudorandom correlation generator (PCG) from [BCG+19b]. At a high
level, a PCG for some target ideal correlation takes as input a pair of short, correlated seeds and
outputs long correlated pseudorandom strings, where the expansion procedure is deterministic and
can be applied locally. The definitions below are taken almost verbatim from [BCG+20b].

Definition 37 (Correlation generator). A PPT algorithm C is called a correlation generator,
if C on input 1λ outputs a pair of elements in {0, 1}n × {0, 1}n for n ∈ poly(λ).

The security definition of PCG’s requires the target correlation to satisfy a technical requirement,
which roughly says that it is possible to efficiently sample from the conditional distribution of R0

given R1 = r1 and vice versa. It is easy to see that this is true for the correlations considered in
this paper.

Definition 38 (Reverse-sampleable correlation generator). Let C be a correlation genera-
tor. We say C is reverse sampleable if there exists a PPT algorithm RSample such that for σ ∈ {0, 1}
the correlation obtained via:

{(R′0, R′1) |(R0, R1)
$← C(1λ), R′σ := Rσ, R

′
1−σ

$← RSample(σ,Rσ)}

is computationally indistinguishable from C(1λ).
Definition 39 (Pseudorandom Correlation Generator (PCG)). Let C be a reverse-sam-
pleable correlation generator. A pseudorandom correlation generator (PCG) for C is a pair of
algorithms (PCG.Gen,PCG.Expand) with the following syntax:

– PCG.Gen(1λ) is a PPT algorithm that given a security parameter λ, outputs a pair of seeds
(k0, k1);

– PCG.Expand(σ, kσ) is a polynomial-time algorithm that given a party index σ ∈ {0, 1} and a
seed kσ, outputs a bit string Rσ ∈ {0, 1}n.

The algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

– Correctness. The correlation obtained via:

{(R0, R1) | (k0, k1) $← PCG.Gen(1λ), Rσ ← PCG.Expand(σ, kσ) for σ ∈ {0, 1}}

is computationally indistinguishable from C(1λ).
– Security. For any σ ∈ {0, 1}, the following two distributions are computationally indistin-

guishable:

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),Rσ ← PCG.Expand(σ, kσ)} and

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),R1−σ ← PCG.Expand(σ, k1−σ),

Rσ
$← RSample(σ,R1−σ)}

where RSample is the reverse sampling algorithm for correlation C.
Note that PCG.Gen could simply output a sample from C. To avoid this trivial construction,

we also require that the seed size is significantly shorter than the output size.
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Programmable PCG’s. At a high level, a programmable PCG allows generating multiple PCG
keys such that part of the correlation generated remains the same accross different instances.
Programmable PCG’s are necessary to construct n-party correlated randomness from the 2-party
correlated randomness generated via the PCG. Informally, this is because when expanding n-party
shares (e.g. of Beaver triples) into a sum of 2-party shares, the sum will involve many “cross terms”;
using programmable PCG’s allows maintaining consistent pseudorandom values accross these cross
terms. We recall the formal definition below.

Definition 40 (Programmable PCG). A tuple of algorithms
PCG = (PCG.Gen,PCG.Expand) following the syntax of a standard PCG, but where PCG.Gen(1λ)
takes additional random inputs ρ0, ρ1 ∈ {0, 1}κ, for a fixed parameter κ of size poly(λ), is a
programmable PCG for a simple bilinear 2-party correlation Cne (specified by a bilinear pairing
e : G1 ×G2 → GT for some groups G1,G2 and GT ) if the following holds:

• Correctness. The correlation obtained via:{
((R0, S0), (R1, S1))

∣∣∣∣∣ρ0, ρ1 $← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ0, ρ1),
(Rσ, Sσ)←PCG.Expand(σ, kσ) for σ ∈ {0, 1}

}

is computationally indistinguishable from Cne (1
λ).

• Programmability There exist public efficiently computable functions ϕ0 : {0, 1}∗ → Gn1 , ϕ1 :
{0, 1}∗ → Gn2 such that

Pr

ρ0, ρ1 $← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ0, ρ1)
(R0, S0)← PCG.Expand(0, k0),
(R1, S1)← PCG.Expand(1, k1)

:
R0 = ϕ0(ρ0)
R1 = ϕ1(ρ1)

 ⩾ 1− negl(λ),

where e : Gn1 ×Gn2 → GnT is the bilinear map obtained by applying e componentwise.
• Programmable security The following pair of distributions are computationally indistin-

guishable {
(k1, (ρ0, ρ1))

∣∣∣∣∣ ρ0, ρ1 $← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ0, ρ1)

}
and{

(k1, (ρ0, ρ1))

∣∣∣∣∣ ρ0, ρ1, ρ̃0 $← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ̃0, ρ1)

}
as well as the pair of distributions:{

(k0, (ρ0, ρ1))

∣∣∣∣∣ ρ0, ρ1 $← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ0, ρ1)

}
and{

(k0, (ρ0, ρ1))

∣∣∣∣∣ ρ0, ρ1, ρ̃1 $← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ0, ρ̃1)

}
.

B From Decision-QA-SD to Search-QA-SD

In this section, we describe a reduction from the search version of QA-SD to the decision version, in
the concrete chosen instantiations (all instances over R = Fq[G] where G = (Z/(q − 1)Z)n, which
is the group we use to obtain PCG’s for OLE’s over F(q−1)n

q ). This reduction is actually a natural
extension to that of [BCD22] to the multivariate setting, and essentially applies in extreme regime
of low rate, i.e. more in the LPN regime. In [BCD22], the authors introduced a new problem they
called Function Field Decoding Problem (FF-DP) that we recall below, which is the analogue of
Ring-LWE with function fields instead of number fields (See Section C for a quick reminder on the
theory of algebraic function fields).

Let K/Fq(T ) be a function field with constant field Fq and ring of integers OK , and let Q(T ) ∈
Fq[T ] be irreducible. Let P

def
= QOK be the ideal of OK generated by Q. FF-DP is parametrized

by a secret element s ∈ OK/P, and a noise distribution ψ over OK/P which is a finite set.
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Definition 41 (FF-DP distribution). A sample (a,b) ∈ OK/P×OK/P is distributed according
to the FF-DP distribution modulo P, with secret s and noise distribution ψ if

– a is uniformly distributed over OK/P;
– b = a · s+ e where e is distributed according to ψ.

A sample drawn according to this distribution will be denoted by (a,b)
$← Fs,ψ.

In its search version, the goal of FF-DP is to recover the secret s given access to enough samples.

Definition 42 (FF-DP (search version)). Let s ∈ OK/P, and let ψ be a probability distribution
over OK/P. An instance of FF-DP consists in an oracle giving access to independent samples
(a,b)

$← Fs,ψ. The goal is to recover s.

In its decision version, the goal is to distinguish between the FF-DP distribution and the uniform
over OK/P×OK/P.

Definition 43 (FF-DP (decision version)). Let s be drawn uniformly at random in OK/P, and
let ψ be a noise distribution over OK/P. Define the following two distributions:

– D0 : (a,b) uniformly distributed over OK/P×OK/P.
– D1 : (a,a · s+ e) distributed according to the FF-DP distribution Fs,ψ.

Let b ∈ {0, 1}. Given access to an oracle Ob providing independent samples from distribution Db,
the goal of the decision FF-DP is to recover b.

Recall that a distinguisher between two distributions D0 and D1 is a PPT algorithm A that
takes as input an oracle Ob corresponding to distribution Db with b ∈ {0, 1} and outputs a bit
A(Ob) ∈ {0, 1}. The distinguisher wins when A(Ob) = b. Its distinguishing advantage is defined as:

AdvA(D0,D1)
def
=

1

2

(
P(A(Ob) = 1 | b = 1)− P(A(Ob) = 1 | b = 0)

)
and satisfies

P(A(Ob) = b) =
1

2
+AdvA(D0,D1).

The crucial remark of [BCD22] was to notice that some structured variants of the decoding
problem could be somehow lifted to the function field setting, and could be directly seen as instances
of FF-DP.

Example 44. Let n ∈ N and consider the polynomial

F (T,X)
def
= Xn + T − 1 ∈ Fq(T )[X].

Eisenstein criterion proves that F is irreducible over Fq[T ]. Define the function field

K
def
= Fq(T )[X]/(F (T,X)).

Computing partial derivatives shows that the curve defined by F (T,X) is non-singular, and there-
fore Fq[T,X]/(F (T,X)) is the full ring of integers OK of K (see for instance [Lor21, Chapter VII]).
Now, let Q(T )

def
= T ∈ Fq[T ]. Then,

OK/TOK = Fq[T,X]/(Xn + T − 1, T ) = Fq[X]/(Xn − 1) = Fq[Z/nZ].

Therefore, QA-SD with the group Z/nZ can be seen as an instanciation of FF-DP with the function
field K = Fq(T )[X]/(Xn + T − 1), and modulus Q(T ) = T .

A general search-to-decision reduction for FF-DP would therefore immediately provide a search-
to-decision reduction for many variants of QA-SD. However, adapting the reduction of [LPR10] the
authors of [BCD22] were only able to give such a reduction with addition algebraic constraints on
K and P. More precisely, they gave the following theorem
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Theorem 45 (Search to decision reduction for FF-DP). Let K/Fq(T ) be a Galois function
field of degree n with field of constants Fq, and denote by OK its ring of integers. Let Q(T ) ∈ Fq[T ]
be an irreducible polynomial. Consider the ideal P def

= QOK . Assume that P does not ramify in
OK , and denote by f its inertia degree. Let ψ be a probability distribution over OK/P, closed under
the action of Gal(K/Fq(T )), meaning that if e ← ψ, then for any σ ∈ Gal(K/Fq(T )), we have
σ(e)← ψ. Let s ∈ OK/P.

Suppose that we have an access to Fs,ψ and there exists a distinguisher between the uniform
distribution over OK/P and the FF-DP distribution with uniform secret and error distribution
ψ, running in time t and having an advantage ε. Then there exists an algorithm that recovers
s ∈ OK/P (with an overwhelming probability in n) in time

O

(
n4

f3
× 1

ε2
× qf deg(Q) × t

)
.

Unfortunately, not all group algebras arise from Galois extensions of function fields. Nonetheless,
based on the analogy between cyclotomic number fields and the Carlitz modules, they proposed
to instantiate their reduction with K = Fq(T )[ΛT ] = Fq(T )[X]/(Xq−1 + T ), and modulus Q(T ) =
T + 1. The theory of Carlitz extensions ensures that OK = Fq[T ][X]/(Xq−1 + T ), and therefore

OK/(T + 1)OK = Fq[T,X]/(T + 1, Xq−1 + T ) = Fq[X]/(Xq−1 − 1) = Fq[Z/(q − 1)Z].

The key point is the fact that Gal(K/Fq(T )) = F×q and an element ζ ∈ F×q acts on P (X) ∈
Fq[X]/(Xq−1−1) by ζ ·P (X)

def
= P (ζX). In particular, the Galois group keeps invariant the support

of any element, and therefore any distribution that only depends on the weight is Galois invariant.
Theorem 45 immediately yields a search-to-decision reduction for QA-SD instantiated with the
group G = Z/(q − 1)Z.

Extension to the multivariate setting. Consider the group G = (Z/(q − 1)Z)t, and let
R def

= Fq[G] = Fq[X1, . . . , Xt]/(X
q−1
1 − 1, . . . , Xq−1

t − 1). Using the heavy machinery of inverse
Galois theory, it is possible to find a Galois extension of Fq(T ) with Galois group G. However, this
would induce a large overhead in the complexity of the reduction. Instead, in this case, building
on the case of Fq[Z/(q − 1)Z], we can directly describe the reduction and get Theorem 27 from
Section 5.2.

The reduction works as follows. Recall that by the Chinese Remainder Theorem,

R =
∏

(ζ1,...,ζt)∈(F×
q )t

Fq[X1, . . . , Xt]/(Xi − ζi),

and fix an ordering of (F×q )t, which yields an ordering I1, . . . ,Ir of the ideals in the above decom-
position (where r = (q − 1)t):

R =

r∏
i=1

Fq[X1, . . . , Xt]/Ii.

Let w ∈ {0, . . . , (q − 1)t} and s ∈ R. Consider a noise distribution ψ = ψw over R such that
E[wt(x)] = w when x is sampled according to ψ. A sample (a,b) is distributed according to Fs,ψ

if a is uniformly distributed in R, and b = a · s+ e where e
$← ψ.

The idea of the reduction is to recover the secret modulo one of the factors, and then using the
action of some group recover the full secret. We keep a high level, the first steps of the reduction
following exactly the same path as that of [BCD22]. The only difference resides in the last step and
the considered group action.

Step 1: Randomizing the secret. In the decision version, the secret s is supposed to be uni-
formly distributed over R, while in the search version, the secret is fixed. In other words, the
decision version is an average-case problem, while the search version is worst-case. Fortunately,
the secret can be easily randomized by sampling some s′ uniformly at random in R. Now, for
each sample (a,b) ← Fs,ψ with a fixed secret s, we can build the sample (a,b+ a · s′) which
is distributed according to Fs+s′,ψ, and the secret is now uniformly distributed. Feeding the
latter sample to a distinguisher, allows to creates a distinguisher for a fixed secret, with exactly
the same advantage.
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Step 2: Hybrid argument. A sample (a,b) is said to follow the hybrid distribution Hi if it is of
the form (a′,b′ +h) where h is uniformly distributed modulo Ij for j ⩽ i, and is 0 modulo Ij
for j > i. Such an h is easily constructed using the Chinese Remainder Theorem. In particular,
H0 = Fs,ψ and Hr is the uniform distribution over R. A simple hybrid argument proves that a
distinguisher between H0 and Hr with advantage ε can be turned into a distinguisher between
Hi0 and Hi0+1 for some i0, with advantage at least ε

r .
Step 3: Guess and search. Given i0, the idea is to make a guess gi0 for s modulo Ii0 and to use

the previous distinguisher to tell whether this guess is correct, or not. Define g,h and v ∈ R
such that:

g =

{
gi0 mod Ii0
0 elsewhere v =

{
random mod Ii0
0 elsewhere

and h is uniformly distributed modulo Ij for j ⩽ i0+1 and 0 elsewhere. Then, for each sample
(a,b), we can build the sample (a′,b′) where{

a′ = a+ v
b′ = b+ h+ v · g = a′ · s+ e+ h+ v(g − s).

Using the fact that all the factors Fq[X1, . . . , Xt]/Ij are finite fields (isomorphic to Fq), it
is easily seen that (a′,b′) is distributed according to Hi0 when the guess is correct, and ac-
cording to Hi0+1 otherwise. Therefore, by the Chernoff-Hoeffding bound, using our distin-
guisher Θ(n(r/ε)2) times, one can detect if the guess is correct or not with probability at least
1− 2−Θ(n). An exhaustive search on Fq yields the value of s mod Ii0 .

Step 4: A group action This is the only step that changes from the reduction of [BCD22]. We
need to find a group Ĝ that will replace the Galois group of their reduction in permuting the
factors.
Inspired by the univariate example, let Ĝ def

= (F×q )t. It acts on R by:

(ζ1, . . . , ζt) · P (X1, . . . , Xt)
def
= P (ζ1X1, . . . , ζtXt).

The key observation here is that
1. This action keeps invariant the support of elements in R. In particular, the distribution ψ

is invariant under the action of Ĝ.
2. Ĝ acts transitively on the factors:

The action of (ζ1, . . . , ζt) maps the ideal (X1−γ1, . . . , Xt−γt) onto (X1− ζ−11 γ1, . . . , Xt−
ζ−1t γt).

Now, in order to recover s mod Ij for j ̸= i0, it suffices to take the (unique) element z ∈ Ĝ such
that z ·Ij = Ii0 , and for any sample (a,b = as+e) we can build (z ·a, z ·b = (z ·a)(z ·s)+z ·e).
Note that a′ (resp. z · e) is still uniformly distributed over R (resp. distributed according
to ψ since it is Ĝ-invariant). In other words, (a′,b′) is distributed according to Fz·s,ψ, and
repeating the first three steps of the reduction will yield z · s mod Ii0 , which is equal to s
mod z−1 · Ii0 = s mod Ij , which concludes the reduction.

C Algebraic number theory in function fields

There is a well-known analogy between the theory of finite extensions of Q, the so-called number
fields, and that of finite separable extensions of Fq(T ), the field of rational functions with coefficients
in a finite field Fq. The latter algebraic extensions are called function fields, because they can be
realized as fields of rational functions on curves over finite fields. In this section, we recall the
minimal requirements about the arithmetic of function fields that are needed in the sequel. A
dictionnary summarizing the analogies between function fields and number fields is represented in
Table 2 below.

C.1 Algebraic function fields.

Starting from a finite field Fq, a function field is a finite extension K of Fq(T ) of the form

K = Fq(T )[X]/(P (T,X)),

44



Number fields Function fields
Q Fq(T )
Z Fq[T ]

Prime numbers q ∈ Z Irreducible polynomials Q ∈ Fq[T ]

K = Q[X]/(f(X)) K = Fq(T )[X]/(f(T,X))

OK

= Integral closure of Z
Dedekind domain

OK

= Integral closure of Fq[T ]
Dedekind domain

characteristic 0 characteristic > 0

Table 2. A Number-Function fields analogy

where P (T,X) ∈ Fq(T )[X] is irreducible. The field K ∩ Fq is referred to as the field of constants
of K. In general, this is a (finite) extension of Fq, but when Fq is the full field of constants of K,
the extension K/Fq(T ) is said to be geometric. This is equivalent for the modulus P (T,X) to be
irreducible, even regarded as a polynomial in Fq(T )[X] ([Sti09, Cor, 3.6.8]). This will always be
assumed in our setting.

Similarly to the number field setting, the integral closure of Fq[T ] in K is called the ring of
integers of K, and denoted by OK . This is a Dedeking domain. In particular, for any ideal P of OK ,
there exist unique prime ideals Pi and integers ei such that P = Pe1

1 . . .Per
r , and the quotients

OK/Pi are finite extensions of Fq. When the ideal P is of the form POK where P (T ) ∈ Fq[T ]
is an irreducible polynomial, the primes Pi are said to be lying above P 15. The extension degrees
fi

def
= [OK/Pi : Fq[T ]/(P (T ))] = [OK/Pi : Fqdeg P ] are called the inertia degrees of P , and ei are

known as its ramification indexes. When the ei’s are all equal to 1, the extension is said to be
unramified at P . In that case, the Chinese Remainder Theorem entails that OK/P is isomorphic
to
∏r
i=1OK/Pi which is a product of finite fields. All those quantities are related through the

well-known formula

n
def
= [K : Fq(T )] =

r∑
i=1

eifi. (2)

C.2 Galois extensions.

Recall that the extension K/Fq(T ) is said to be Galois when the automorphism group

Aut(K/Fq(T ))
def
= {σ : K 7→ K | σ is an isomorphism with σ(a) = a ∀a ∈ Fq(T )}

has cardinality [K : Fq(T )]. In that case, this group is usually denoted by Gal(K/Fq(T )) and
known as the Galois group of K. Galois extensions whose Galois group is abelian are called abelian
extensions. This Galois group adds more symmetry to the function field. More specifically, G keeps
OK globally invariant and given an irreducible polynomial Q(T ) ∈ Fq[T ], it acts transitively on the
prime ideals lying above Q (i.e. it permutes the factors). In particular, all the ramification indexes
ei (resp. the inertia degrees fi) are equal, and denoted by e (resp. f):

QOK = (P1 . . .Pr)
e,

15 Rigourously, there exists another prime element in Fq(T ), which is 1/T . This element does not belong to
Fq[T ], and corresponds to the point at infinity on the projective line. To take into account this additional
point, we could consider the ring Fq[1/T ] (or its localization (Fq[1/T ])1/T to avoid redundancy), and its
integral closure OK,∞ in K. It is also a Dedekind domain, and the primes of OK,∞ lying above (1/T ) are
known as the places at infinity. The main difference with the number field setting being that this place
at infinity plays a similar role as the other primes (which are called finite places in opposition), while
in number fields the places at infinity are called archimedean places would correspond to the complex
embeddings of K in C.
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and Equation (2) simply becomes n = efr. In this work, we sometimes need to work with different
extensions. When the context is not clear, we will put the irreducible polynomial in index, and the
considered function field in brackets: eQ(K) and fQ(K). Another consequence is that the action
of G on OK is well defined on the quotient OK/QOK and simply permutes the factors OK/Pe

i .
The decomposition group DPi/Q of Pi over Q is the subgroup of Galois automorphisms keeping
Pi globally invariant

DPi/Q
def
= {σ ∈ G | σ(Pi) = Pi}.

It has cardinality e × f . When K is unramified at Q, the ring OK/Pi is the finite field Fqf deg(Q)

and the action of DPi/Q is that of the Frobenius endomorphism: the reduction modulo Pi yields
an isomorphism

DPi/Q ≃ Gal(Fqf deg(Q)/Fqdeg(Q)).

The decomposition groups of all the primes above Q are conjugate in Gal(K/Fq(T )): For any i ̸= j
there exists σ ∈ G such that DPi/Q = σDPj/Qσ

−1. In particular, when the extension is abelian,
they are all equal and referred to as the decomposition group of Q, and denoted by DQ. The subfield

L
def
= KDQ = {x ∈ K | σ(x) = x ∀σ ∈ DQ}

of all elements of K fixed pointwise by DQ is called the decomposition field of Q. It is an algebraic
function field, with ring of integers OL = ODQ

K consisting in all the elements of OK pointwise fixed
by DQ. Moreover, it is a Galois extension with Galois group G/DQ. This is the largest subextension
of K in which Q totally splits16 (i.e. fQ(KDQ) = eQ(K

DQ) = 1 and rQ(KDQ) = rQ(K) = r).

OK K

ODQ

K KDQ

Fq[T ] Fq(T )(Q) ⊂

(Q) = p1 . . . pr ⊂

(Q) = P1 . . .Pr ⊂ OK/Pi = Fqf deg(Q)

OK/pi = Fqdeg(Q)

Fq[T ]/Q = Fqdeg(Q)

C.3 The Carlitz module

In classical algebraic number theory, the cyclotomic number fields play a major role. For instance,
all abelian extensions of Q can be realized as subfields of some cyclotomic number fields. This is
known as the Kronecker-Webber Theorem, and is the cornerstone of the very important class field
theory.

In the theory of algebraic function fields, the analogues of the cyclotomic extensions of Q are
known as the Carlitz extensions. They were discovered by Carlitz in the late 1930’s and the analogy
with the cyclotomic number fields was made explicit by his student Hayes about 40 years later in
[Hay74] to give an analogue of the Kronecker-Webber Theorem for the rational function field Fq(T ).
This result was later generalized by Drinfeld and Goss to yield a complete solution to Kronecker’s
Jugendtraum17 for function fields, i.e. an explicit class field theory. In the number field setting, such
an explicit construction is only known for Q, via the cyclotomic number fields, and for imaginary
quadratic number fields, via the theory of elliptic curves with complex multiplication.

In this section, we just give a quick presentation of the Carlitz modules, keeping the same
notations as [BCD22]. We refer to [BCD22, § V] paper for a self-contained presentation (without
proofs). For an in-depth exposition, the interested reader can refer to [Ros02, Chapter 12], [Vil06,
Chapter 12], or the survey [Con].

A dictionnary summarizing the analogies between cyclotomic number fields and Carlitz exten-
sions is given in Table 3.
16 Hence the name decomposition field
17 “childhood dream” in German.
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Q Fq(T )
Z Fq[T ]

Prime numbers q ∈ Z Irreducible polynomials Q ∈ Fq[T ]

µm = ⟨ζ⟩ ≃ Z/mZ (groups) ΛM = ⟨λ⟩ ≃ Fq[T ]/(M) (modules)

d | m⇔ µd ⊂ µm (subgroups) D |M ⇔ ΛD ⊂ ΛM (submodules)

a ≡ b mod m⇒ ζa = ζb A ≡ B mod M ⇒ [A](λ) = [B](λ)

K = Q[ζ] K = Fq(T )[λ]
OK = Z[ζ] OK = Fq[T ][λ]

Gal(K/Q) ≃ (Z/mZ)× Gal(K/Fq(T )) ≃ (Fq[T ]/(M))×

Cyclotomic Carlitz

Table 3. Analogies between cyclotomic and Carlitz

If one wants to build cyclotomic extensions of Fq(T ), the most natural idea is to mimic the
construction of cyclotomic number fields and to add roots of unity to Fq(T ). However, the crucial
difference with Q is that roots of unity are already algebraic over Fq, and adjoining them to Fq(T )
only yields a function field of the form Fqm(T ), i.e. an extension of the constants.

Instead, one needs to look deeper into the algebraic structure adjoined to Q. Notice that roots
of unity form an abelian group, that is to say a Z-module. More precisely, consider the action of
Z on Q× by exponentiation: m · z def

= zm. Then, the m-th roots of unity are nothing else than the
torsion elements of the action of m ∈ Z:

µm = {z ∈ Q× | m · z = 1}.

At a high level, the philosophy behind the construction of Carlitz extension is to replace Z by Fq[T ]
when that makes sense, and therefore abelian groups by Fq[T ]-modules. In particular, the analogue
of the exponentiation will be a new action of Fq[T ] on Fq(T ), called the Carlitz action. This yields
another structure of Fq[T ]-module on Fq(T ), which is called the Carlitz module. If M ∈ Fq[T ],
the elements of M–torsion are denoted ΛM

def
= {λ ∈ Fq(T ) | M · λ = 0}, and form a cyclic Fq[T ]-

module, generated by some element denoted λ0, which is an analogue of a primitive root of unity.
The Carlitz extension by M will then be Fq(T )[ΛM ] = Fq(T )[λ0]. It is a Galois extension of Fq(T )
of Galois group isomorphic to (Fq[T ]/(M))×.

One key fact about Carlitz extensions is that their ring of integers is simply Fq[T ][λ0] and the
decomposition of primes is well understood:

Theorem 46 ([Ros02, Th. 12.10]). Let M ∈ Fq[T ], M ̸= 0, and let Q ∈ Fq[T ] be a monic,
irreducible polynomial. Consider the Carlitz extension KM and let OM denote its ring of integers.
Then,

• If Q divides M , then QOM is totally ramified.
• Otherwise, let f be the smallest integer f such that Qf ≡ 1 mod M . Then QOM is unramified

and has inertia degree f . In particular, Q splits completely if and only if Q ≡ 1 mod M .

Those results are completely analogue to the cyclotomic case.

D The Curious Case of F2

In Section 5, we showed how to produce batch OLE’s over all finite fields Fq for q ⩾ 3. However,
this approach cannot be applied as is to build OLE’s over F2. The most natural approach to mimic
previous construction is to consider the ring Bn

def
= F2[X1, . . . , Xn]/(X

2
i −Xi) of Boolean functions,
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for which efficient algorithmics exist and which is isomorphic to a direct product of n copies of
F2. However, there is a strong bias which is very similar to the one mentioned in Example 21.
Indeed suppose we are given a pair (a, as+e) where a $← Bn and s, e are sparse with respect to the
basis of monomials. Then, the constant term of both s, e is very likely to be zero and the constant
term is nothing but their evaluation at 0. Moreover, the evaluation at 0 map commutes with the
reduction modulo ((X2

i −Xi))i. Consequently one can evaluate our sample at 0 and the result is
highly biased since (as + e)(0) = a(0)s(0) + e(0) and hence is 0 whenever s, e both vanish at 0
which is highly probable. Here again, we have a distinguisher on codes from a multivariate ring
which is not a group algebra.

More generally, we have the following simple, but powerful, impossibility result.

Theorem 47 (Impossibility result). Let G be a finite group and let R = F[G] be its group
algebra with coefficients in a finite field F. Assume that R is isomorphic, as algebra, to FN2 for
N ⩾ 1. Then, N = 1 and G = {1}.

Proof. Note that G can be embedded in the invertible elements R× of R. Indeed, any g ∈ G, when
regarded as an element of R is invertible, with inverse g−1. In particular, |G| ⩽ |R×|. But the
algebra isomorphism R ≃ FN2 induces a group isomorphism R× ≃ F×2 × · · · × F×2 = {(1, . . . , 1)}.
In particular, |R×| = 1, and |G| = 1, i.e. G = {1}, which concludes the proof.

Theorem 47 shows that we cannot adapt directly our approach based on QA-SD to efficiently build
OLE’s over F2. In this Section though, we propose a way to overcome this limitation. In a nutshell,
our approach is to consider the group algebra F2[G] of some well-chosen finite abelian group G,
as was done previously, such that there is an isomorphism of modules between F2[G] and FN2 , but
not of algebras. It turns out that this approach is not so different from the proposal of [BCG+20b]
which uses the ring Fp[X]/(P (X)) where P (X) = X2ℓ + 1 is a cyclotomic polynomial and p is a
prime such that p ≡ 1 mod 2ℓ+1. Indeed, our proposal uses the theory of Carlitz extensions (see
Section C.3) which are function fields analogues of cyclotomic number fields.

D.1 An attempt based on the Carlitz module.

In [BCG+20b], the authors propose to use a cyclotomic ring modulo some prime p. The natural
idea to mimic their construction would be to make use of Carlitz extensions.

Consider the rational function field F2(T ), endowed with the Carlitz action, and let

Kℓ
def
= F2(T )[ΛT ℓ+1 ]

for some positive integer ℓ to be detailed later. The theory of Carlitz modules asserts that Kℓ is a
Galois extension of F2(T ) of degree 2ℓ, and of Galois group

G
def
=
(
F2[T ]/(T

ℓ+1)
)×
.

The first idea that comes to mind is to find an irreducible modulus Q(T ) ∈ F2[T ] that splits
completely in OK so that

OK/QOK ≃ F2deg(Q) × · · · × F2deg(Q) ≃ F2 × · · · × F2.

On the one hand, this shows that a necessary condition is deg(Q) = 1. On the other hand, by
Theorem 46, the ideal QOKℓ

splits completely if and only if Q ≡ 1 mod T ℓ+1. In particular,
deg(Q) needs to be large enough, and both conditions are incompatible.

Therefore, one needs to relax some of the hypotheses above in order to make this idea some-
how work. Clearly, the first condition (deg(Q) = 1) cannot be released, because all factors of
OK/(QOK) are extension fields of F2deg(Q) , of dimension the inertia degree of the ideal generated
by Q. Therefore, the only condition that can be relaxed is the second one.

Let Q ∈ F2[T ] be an irreducible polynomial of degree 1. There are only two possibilities, namely
Q = T or Q = T + 1. However, by Theorem 46, T ramifies in OK , and therefore the only possible
choice for Q is T +1. Now, we need to compute the inertia degree. By the aformentionned theorem,
it is characterized by the multiplicative order of T + 1 modulo T ℓ+1. It is not hard to see that it
is the least power of 2 greater (or equal) than ℓ+ 1.
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In the sequel, we make a concrete choice for the parameter ℓ. Assume that we want to produce
220 OLE’s correlations. This is an estimation of the order of magnitude of the number of multi-
plicative gates in a concrete arithmetic circuit. The number of OLE’s produced being the number
of factors, we need to set ℓ > 20. As we will see, setting ℓ = 25 is enough.

Indeed, the least power of 2 greater than 26 is 32 = 25. Therefore, (T + 1) has inertia degree
32 in OK . Theorem 46 and Equation 2 entail that

OK/(T + 1)OK ≡ F232 × · · · × F232︸ ︷︷ ︸
220 times

.

With only Carlitz extensions, this is the best that we can produce18. However, we are not required
to use the full Carlitz extension: We could consider an intermediate one, that would cancel the
inertia. This is precisely the decomposition field:

Proposition 48. Let ℓ = 25, and let K be the Carlitz extension by T ℓ+1 def
= T 26. Let DT+1 be the

decomposition group of T + 1, and let L def
= KDT+1 denote the fixed field by DT+1. Then we have:

OL/(T + 1)OL = F2 × . . .F2︸ ︷︷ ︸
220 times

.

Although we will not provide it here because it would only obfuscate the speech, OK has an explicit
description of the form

OK = F2[X]/(1 + P (X))

where P is a linearized polynomial of degree 225, i.e. the only monomials that appear in P are
powers of 2. In particular, P has a very sparse description. On the other hand, the ring OL does not
seem to inherit this property. It is only defined as the subring of OK fixed by DT+1, and we need
to understand how DT+1 acts on OK . Recall that by definition, DT+1 acts as the Frobenius of each
of the factors of OK/(T + 1)OK . In other words, OL/(T + 1)OL is the subring of OK/(T + 1)OK
fixed by the Frobenius on each factor (after applying the Chinese Remainder Theorem). Note that
the action of DT+1 can be directly understood on OK (before CRT): Indeed, it is isomorphic to the
cyclic group (of order 32) generated by (T +1) ∈

(
F2[T ]/T

26
)×, where T +1 acts on F (T,X) ∈ OK

by F (T, (T +1) ·X) via the Carlitz action on the second variable. In other words, OL is the subring
of OK fixed by this Carlitz action.

D.2 Building OLE’s.

It suffices to build one OLE over OL/(T + 1)OL to generate 220 OLE’s over F2. Let

R def
= OL/(T + 1)OL.

Following [BCG+20b], in order to build an OLE over R, we could generate U, V ∈ R pseudorandom
such that they admit a sparse description of the form U = a · e1+ f1 and V = a · e2+ f2 with ei, fi
somehow sparse. However, there are two issues here:

– How to assert pseudorandomness here ?
– What does it mean to have a sparse description in R ?

If in [BCG+20b] the sparsity is well defined in the canonical basis, it is not clear what basis to
choose in R. Note that OK/(T +1)OK admits a monomial basis (this is a consequence of the fact
that K being a Carlitz extension, OK is generated over Fq[T ] by a unique element λ0), but it is
no longer true for R.

However, as it was recalled in [BCD22], since T + 1 is not ramified in OL, a result of Noether
(see [Noe32] for the original paper (in German)) entails that OL admits a local normal basis, i.e.
there exists a ∈ R such that (σ(a))σ∈Γ forms an F2-basis of R, where

Γ = Gal(L/F2(T )) =
(
F2[T ]/(T

26)
)×
/(T + 1)

18 With finite places
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is the Galois group of L. In fact, here, the normal basis is easy to find: Indeed, Γ acts transitively
on the factors of R. This means that starting from e1 = (1, 0, . . . , 0), σ(e1) is another element of
the canonical basis of F220

2 for all σ ∈ Γ . In particular, e1 generates a normal basis of F220

2 , and
therefore its inverse through the CRT generates a normal basis of R. Let us call this polynomial
ε(X).

It is tantalizing to define the sparsity with respect to this basis. Moreover, the existence of this
normal basis has a powerful consequence. Indeed, let a ∈ R. Written in the normal basis, we have
that

a =
∑
σ∈Γ

aσσ(ε) =

(∑
σ∈Γ

aσσ

)
︸ ︷︷ ︸

def
=A

(ε(X)).

In other words, we can write a ∈ R as A(ε(X)) where A now belongs to the group algebra F2[Γ ].
This exactly means that R = F2[Γ ] · ε, i.e. that R is a free module of rank one over F2[Γ ], i.e.
that R is isomorphic to the group algebra F2[Γ ] as modules.

D.3 QA-SD to the rescue.

With this result in hand, it is very appealing to define our OLE over F2[Γ ], and then only map it
to R, since hardness of QA-SD would provide security.

Proposition 49. Let a be uniformly distributed over F2[Γ ] and e, f ∈ F2[G] of Hamming weight
t. Then, a · e+ f is pseudorandom assuming the hardness of QA-SD over F2[Γ ].

Remark 50. Note that Theorem 20 also holds in the modular setting, and therefore it holds for
F2[Γ ]. In particular, according to our analysis, QA-SD with this instantiation is secure against
linear tests.

Now, since R is isomorphic (as a module) to F2[G], if U ∈ F2[Γ ] is pseudorandom, then U(ε) ∈ R
is pseudorandom. Everything seems to be there for building an OLE over R: Let U, V ∈ R be such
that U = (a · e1 + f1)(ε(X)) and V = (a · e2 + f2)(ε(X)) with a uniformly distributed over F2[G],
and ei, fi sparse (as elements of F2[G]). Proposition 49 entails that U and V are pseudorandom in
R. Following [BCG+20b], if we can distribute additive shares of the product U · V ∈ R, we would
win. However, here the operations do not commute, and we cannot use FSS for point functions to
distribute shares of the cross products. Indeed,

U × V = (a · e1 + f1)(ε)× (a · e2 + f2)(ε)

= (a · e1)(ε)× (a · e2)(ε) + (a · e1)(ε)× (f2)(ε) + (a · e2)(ε)× (f1)(ε)

+ (f1)(ε) · (f2)(ε),

and if every term admits a sparse presentation, it is not clear to us how to distribute additive
shares of them.

D.4 A note on efficiency.

Even if the previous problem is solved, there remains the question of efficiency. Indeed, fast encoding
of quasi-abelian codes, i.e. fast multiplication in the group algebra, is usually done through the Fast
Fourier Transform, which does not extend a priori to the modular setting since it is not semisimple.
However, a recent work of Hong, Viterbo and Belfiore ([HVB16]) developped a modular FFT over
F2 for the specific group (Z/2Z)s. Their algorithm is particularly efficient because it only involves
additions, and could be optimized on hardware.

Our group Γ is a little bit more complicated (see [CL17, Proposition 2.4]):

Γ
def
=
(
F2[T ]/T

26
)×
/(T + 1)

def
= (Z/2Z)6 × (Z/4Z)3 × (Z/8Z)× (Z/16Z).

However, note that F2[Z/2kZ] ≃ F2[X]/(X2k). In other words, multiplication in this group
algebra can be thought as a truncated multiplication in F2[X]. Now, many algorithms have been
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developped as analogues of FFT in characteristics 2. They are known as additive fast Fourier
transform, and even benefit from very efficient implementation [Cox21, LHW18]. If they actually
work over extensions of F2, recent works such as [LCK+18] suggest that multiplying polynomials
over F2 could be made very efficient.

Finally, as the group algebra of a direct product, F2[Γ ] is a tensor product, i.e. isomorphic to
a multivariate ring, where the degrees of the variables are bounded by the corresponding power of
2. The existence of multivariate FFT also suggests the existence of efficient multivariate additive
FFT in characteristics 2.

Moreover, this description is very naive, and further work may actually directly design efficient
algorithms for multiplication in modular group algebras over F2 in the spirit of what has been done
for (Z/2Z)s.
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