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Abstract. Inspired by the advancements in (fully) homomorphic en-
cryption during the last decades and its practical applications, we con-
duct a preliminary study on the underlying mathematical structure of
the corresponding schemes. Hence, this paper focuses on investigating
the challenge of deducing bivariate polynomials constructed using ho-
momorphic operations, namely repetitive additions and multiplications.
To begin with, we introduce an approach for solving the previously
mentioned problem using Lagrange interpolation for the evaluation of
univariate polynomials. This method is well-established for determining
univariate polynomials that satisfy a specific set of points. Moreover, we
propose a second approach based on modular knapsack resolution algo-
rithms. These algorithms are designed to address optimization problems
where a set of objects with specific weights and values is involved. Fi-
nally, we give recommendations on how to run our algorithms in order
to obtain better results in terms of precision.

Keywords: bivariate polynomial, Lagrange interpolation, modular knapsack
problem, lattice reduction

1 Introduction

The concept of homomorphic encryption [19] has been an area of active research
and development since the introduction of the RSA cryptosystem in the late
1970s [48]. Homomorphic encryption is a cryptographic technique that enables
operations to be performed directly on encrypted data, without requiring de-
cryption first. This allows for calculations on sensitive data without revealing
information to the party performing the computation.

The development of the previously mentioned area has been driven by the
need for privacy-preserving computation in various fields such as healthcare, fi-
nance, and data analysis. Cloud computing has revived the interest of researchers
in homomorphic encryption (HE) given that it promises the potential to allow
organizations to perform analyses and calculations on sensitive data while main-
taining the privacy of the individuals’ whose data is being studied.
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Partially homomorphic cryptosystems, which allow for computation of only
specific operations on encrypted data, have been known for decades. However, a
fully homomorphic encryption scheme (FHE), which enables arbitrary compu-
tations to be performed, was only first detailed in 2009 by Gentry in [26]. This
breakthrough has opened up new possibilities for privacy-preserving processing
and has led to further research and development. Besides Gentry’s proposal, an-
other first generation FHE scheme was published in [21]. The second generation
FHE schemes were presented in [9–11,23], the third generation ones in [12,13,27]
and, last but not least, fourth generation FHE schemes were detailed in [16,38].
Various corresponding libraries were developed since 2009 [3].

Banking-related applications of HE may be found in [31,55]. To provide the
reader with a basic example, let us consider a banker Bob which maintains a ci-
phertext f(m) of Alice’s bank account balance m. In this scenario, homomorphic
encryption enables Bob to perform operations on Alice’s bank account balance
without ever having to decrypt the ciphertext and exposing the original value of
m. This means that Bob can perform operations such as crediting the account
with a certain amount f(m + a) or applying an interest rate f(m · a) without
ever having access to the actual value of m.

Another example of a HE application can be considered in healthcare, more
precisely for analyzing medical records [6, 8, 15, 28, 43, 56]. Medical records of-
ten contain sensitive and confidential information about patients, such as their
medical history, test results, and personal identifying information. By using ho-
momorphic encryption, medical researchers and healthcare providers can analyze
encrypted medical records without ever having to decrypt the data and expose
the patients’ private information. For example, HE could be used to analyze
medical records to identify patterns or trends in certain diseases or conditions.
This information could be used to improve patient outcomes, develop new treat-
ments, and advance medical research. Another healthcare scenario would be to
securely share medical records between providers, such as doctors and hospi-
tals, while still ensuring that the sensitive information remains confidential and
protected.

Other classical HE applications are discussed in [18, 20, 22, 39]: cloud com-
puting, multi-party computation, authenticated encryption, Internet of Things
and so on.

As we will see, in a number of interesting cases it is possible, given the
ciphertext, to infer the operations done on the cleartext.

Our Results. The paper proposes two types of algorithms for finding a polyno-
mial P such that P (a, b) = r, given the natural numbers a, b, r. The first algo-
rithm is based on modular Lagrange interpolation, which is a technique used for
finding a polynomial that passes through a given set of points [32]. The second
algorithm is inspired by (modular) knapsack resolution algorithms, which are
used for solving optimization problems involving a set of objects with certain
weights and values [7, 17,30,34–36,45,46,52].

Our work is a preliminary step in reverse engineering proprietary algorithms
which fall in the category of homomorphic encryption by analyzing the opera-
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tions done on data, even though the data is encrypted. Through the proposed
techniques, it is possible to identify the exact polynomial used by the system,
even if it is custom. Therefore, the algorithms should be better protected by
either limiting the amount of data being analyzed or by increasing the density
of the polynomial coefficients.

Related Work. To the authors’ knowledge this is the first paper to study the
problem of inferring polynomials resulted from repetitive use of homomorphic
encryption. Therefore, in this section we only address papers that are related to
polynomial interpolation and knapsack resolution algorithms.

Multivariate polynomial interpolation is a fundamental technique in many ar-
eas of applied mathematics, including cryptography. In the literature, there are
several methods for interpolating multivariate polynomials, each with their ad-
vantages and disadvantages. A review of these techniques can be found in [32].
One of the most important methods is the generalization of Newton’s tech-
nique [42], which allows for the automatic adjustment of the degree of a poly-
nomial when new points are added or removed. This is accomplished by adding
or removing terms that correspond to new points, without having to discard al-
ready existing terms. This is a significant advantage over Lagrange’s technique,
which is easier to implement but requires recomputing the entire polynomial
each time new points are added [51]. Overall, choosing which method to use de-
pends on the specific application and the trade-offs between efficiency and ease
of implementation.

The subset sum problem [17, 25, 36] and the knapsack problem [7, 30, 40, 46]
were studied in the past and continue to be interesting topics for applied mathe-
matics. The modular knapsack problem is a mathematical optimization problem
that has been extensively studied in cryptography due to its potential appli-
cations in creating secure cryptosystems. The hardness of this problem makes
it a good candidate for use in creating encryption schemes that rely on the
computational difficulty of solving the problem. Some well-known examples of
cryptosystems based on the modular knapsack problem include one of the ear-
liest public key encryption algorithm, published in [41]. Several methods have
been proposed for solving the (modular) knapsack problem, including lattice re-
duction techniques and the meet-in-the-middle attack. Cryptographic systems
based on the modular multiplicative knapsack problem were also proposed [44].
We provide the reader with more insight on the previously mentioned related
problems in Section 2.

Moreover, the modular knapsack problem has particularly caught the atten-
tion of various researchers since more than three decades ago [14, 50] and it is
of particular interest for the current work as we propose an algorithm based on
modular knapsack resolution algorithm.

Structure of the Paper. Section 2 recalls technical details regarding the modular
knapsack problem and methods of solving it, especially lattice reduction-based
resolution algorithms. In Section 3 we provide the reader with the mathematical
background necessary to better understand the problem that we aim to solve.
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We give a first type of solution for polynomial evaluation in Section 4. Moreover,
we propose a second kind of method for the discussed matter in Section 5. We
present the results of our implementations in Section 6. We conclude and tackle
future research directions in Section 7.

2 Preliminaries

Notations. Throughout the paper, the notation #S denotes the cardinality of a
set S. The assignment of value y to variable x is denoted by x← y. The subset
{0, . . . , s} ∈ N is denoted by [0, s]. A vector v of length n is denoted either
v = (v0, . . . , vn−1) or v = {vi}i∈[0,n−1].

2.1 Modular Knapsack Problems

The subset sum problem [25] is a well-known NP-complete computational prob-
lem in computer science that seeks to find a subset of a given set of integers whose
sum equals a given target value. The subset sum problem is considered to be
very important in computational complexity theory and has various applications
in cryptography.

The knapsack problem [40] is another widely-known computational problem
in computer science that involves selecting a subset of items with maximum value
while adhering to a weight constraint. The problem has various real-world appli-
cations including cryptography (as already stated in Section 1). The knapsack
problem is also NP-complete.

There are some key differences between the subset sum problem and the
knapsack problem. The first one focuses on finding a subset that adds up to
a specific value, while the second focuses on maximizing the value of a subset
subject to a weight constraint.

Within the current paper we are particularly interested in the modular knap-
sack problem. The modular knapsack problem is an important variation of the
knapsack problem where items have a value, a weight, and a modular coeffi-
cient. The goal is to select a subset of items that maximizes the total value
while respecting a weight constraint and a modular constraint. The problem has
applications in cryptography, as already stated in Section 1.

Definition 1 (The 0 − 1 modular knapsack problem). Let a1, . . . , an be
positive integers and M,S ∈ Z. The modular knapsack problem consists of finding
e1, . . . , en ∈ {0, 1} such that

n∑
i=1

aiei ≡ S (mod M). (1)

Remark 1. The generic modular knapsack problem is mainly the same as the
problem in Definition 1, except that e1, . . . , en are not necessarily 0 or 1.
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Under some assumptions we have an equivalence between solving the classical
subset sum problem and the modular subset sum problem. When we are not
dealing with polynomial factors, basically, any algorithm that solves one of the
problems can be used to find solutions for the other. More precisely, given an
algorithm that solves a knapsack problem over the integers we have the following:

– Consider Equation (1) with ai ∈ [0,M − 1];
– It follows immediately that any sum of at most n numbers is in [0, nM − 1]

(e.g. ai);
– If S ∈ [0,M − 1], then solving n knapsacks over the integers with target

sums S, S+M, . . . , S+(n−1)M means solving the modular knapsack given
by Equation (1).

Definition 2 (The Density of Subset Sum Algorithms.). The density of
a set {a1, ..., an} of weights is defined as

d =
n

log2 max(ai)
. (2)

In order to solve low-density knapsacks, lattice reduction is a very useful tool.
According to e.g. [7], lattice reduction-based solutions are not an option when
the density of the knapsack is close to one.

2.2 Lattice Reduction: a Tool for Solving Modular Knapsacks

We refer the reader to [29] for basic definitions and properties of lattices as these
concepts exceed the scope of our paper.

Two of the fundamental computational problems associated with a lattice
are the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP).

Definition 3 (SVP). Find a shortest nonzero vector in a lattice L, i.e. find a
nonzero vector v ∈ L that minimizes the Euclidean norm ∥ v ∥.
Definition 4 (CVP). Given a vector w ∈ Rn that is not in L, find a vector
v ∈ L that is closest to w, i.e. find a vector v ∈ L that minimizes the Euclidean
norm ∥ w − v ∥.
Remark 2. If a lattice L has a basis consisting of vectors that are pairwise or-
thogonal it’s easy to solve both SVP and CVP.

As this is not the usual case, in order to solve SVP and CVP for L we must
find a basis in which the vectors are sufficiently orthogonal to one another. This
leads to lattice basis reduction (finding a basis with short, nearly orthogonal
vectors). Gauss’s lattice reduction [5] is efficient when dealing with a lattice of
dimension 2, but as the dimension increases, CVP and SVP become computa-
tionally difficult. When the dimension grows we can’t have a unique definition
of a reduced lattice. A widely known example of a polynomial-time algorithm
for finding a good basis in the high dimension case is LLL [37].

The first lattice algorithms developed for solving knapsacks considered reduc-
tions of the given problem to the SVP [17]. In [46] it was shown that a knapsack
problem can be reduced to the CVP. However, it was stated that in the case of
low-weight knapsacks CVP and SVP are not notably different.
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2.2.1 Lattice Reduction-Based Algorithms for Solving Modular
Knapsacks

In the case of random knapsack problems the attack in [36] can solve knapsacks
with density d < 0.64, given an oracle solving the SVP in lattices. For legacy
purposes, we recall the Lagarias-Odlyzko algorithm for solving modular knapsack
problems as presented in [36]. We further refer to Algorithm 1 as SV.

Algorithm 1: Algorithm SV.

Input: A vector a = (a1, . . . , an) of positive integers and an integer S.
Output: A feasible solution e = (e1, . . . , en, 0) to a knapsack in accordance

with Definition 1.

1 Take the following vectors as a basis [b1, ..., bn+2] for an n+ 2-dimensional
integer lattice L:

b1 = (1, 0, . . . , 0,−a1)

b2 = (0, 1, . . . , 0,−a2)

. . .

bn = (0, . . . , 1, 0,−an)

bn+1 = (0, . . . , 0, 1, S)

Find a reduced basis [b∗1, ..., b
∗
n+2] of L using the LLL algorithm.

2 Check if any b∗i = (b∗i,1, ..., b
∗
i,n+2) has all b

∗
i,j = 0 or λ for some fixed λ for

1 ≤ j ≤ n. For any such b∗i check whether ej = λ−1b∗i,j for 1 ≤ j ≤ n gives a
solution to the knapsack, and if so, stop. Otherwise, continue.

3 Repeat steps 1-3 with S replaced by S′ =
∑n

i=1 ai − S, then stop.

The previously mentioned attack was improved in [17] for densities up to d <
0.94. This can be achieved by a simple modification on SV. The main difference
between the algorithm in [36] and the method in [17] consists of the lattice L for
which a reduced basis must be found: the vector bn+1 = (0, . . . , 0, S) is replaced
by b

′

n+1 =
(
1
2 , . . . ,

1
2 , S

)
. In SV, the solution vector of the knapsack problem was

in L but in this case it is not. Instead of the solution vector −→e = (e1, ..., en, 0)

we have the vector
−→
e′ = (e1 − 1

2 , ..., en −
1
2 , 0).

In order to modify the SV algorithm and its version presented in [17] to solve
modular knapsack problems, only a straightforward modification is required:
having the modulus M as an input and adding a vector bn+2 = (0, . . . ,M) in
the lattice basis.

Another type of algorithm for solving knapsacks with density almost 1 was
presented in [54]. Given that this algorithm is less practical and does not meet
the needs of our proposed ideas, we do not recall it. A more practical version of
the previously mentioned algorithm was given in [30]. Its structure is particu-
larly simple and clear (see Algorithm 2). The techniques developed before were
extended in [7].
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Algorithm 2: Howgrave-Joux Algorithm for Solving Modular Knap-
sacks.
Input: The knapsack elements a1, . . . , an, the knapsack sum S and the

parameter β.
Output: A feasible solution e = (e1, . . . , en) to a knapsack in accordance with

Definition 1.

1 Let M be a random prime close to 2βn.
2 Let R1, R2 and R3 be random values modulo M .
3 Solve the 1/8-unbalanced knapsack modulo M with elements a and target R1.
4 Solve the 1/8-unbalanced modular knapsack with target R2.
5 Solve the 1/8-unbalanced modular knapsack with target R3.
6 Solve the 1/8-unbalanced modular knapsack with target

S −R1 −R2 −R3 mod M. Create the 4 sets of non-modular sums
corresponding to the above solutions.

7 Do a 4-way merge (with early abort and consistency checks) on these 4 sets.
8 Rewrite the obtained solution as a knapsack solution.

As stated in [7], in practice, the shortest vector oracle is replaced by a lattice
reduction algorithm, e.g. LLL or BKZ [53]. We turn our attention to LLL-based
algorithms especially for implementating our proposed algorithm. Hence, we
further mention the latest developments regarding LLL variations whose purpose
is mainly speeding up the previous versions.

Further developments were made and, until recently, the state-of-the-art lat-
tice reduction algorithm used in practice was the L2 algorithm [45] implemented
in fpLLL [2]. Other approaches have been presented in [33–35, 52]. The newest
breakthrough in terms of lattice reduction is presented in [49]. However, note
that the main concern of the researchers was to create faster algorithms rather
than improving their precision (which is our main interest in the current paper).

3 A New Look at Homomorphic Encryption

3.1 Constructing Polynomials based on Homomorphic Operations

Let a and b be two symbolic variables. We define the sets of arithmetic expres-
sions Gk obtained by combining a and b as follows

G0 = {a, b}

Gk = {a+ b, a, b ∈ Gk−1}
⋃
{a · b, a, b ∈ Gk−1} (3)
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An automated construction of such sets yields

G1 = {2a, a2, 2b, ab, b2, a+ b}
G2 = {4a, 4a2, 2a+ a2, 2a3, b+ 3a, 2ab+ 2a2, 2a+ ab, 2a2b, 2a+ 2b,

4ab, 2a+ b2, 2ab2, 2a2, a4, a+ a2 + b, a2b+ a3, ab+ a2, a3b,

2b+ a2, a2 + b2, a2b2, a2 + b2 + 2ab, a+ b+ ab, ab2 + a2b, 3b+ a,

2b2 + 2ab, a+ a2 + b, b3 + ab, 2ab, 2b+ ab, b2 + ab, ab3, 4b, 4b2,

2b+ b2, 2b3, 2b2, b4}
#G3 = 1124

. . .

Ignoring collisions we can derive an upper bound for #Gk. More precisely,
starting from Gk−1 and using additions we can construct #Gk−1(#Gk−1+1)/2
new elements. The same number of elements are obtained using multiplication.
Therefore, we have

#Gk ≤ #Gk−1(#Gk−1 + 1).

We define the following recurrence

V0 = #G0 = 2,

Vk = Vk−1(Vk−1 + 1). (4)

Using the methods developed in [4], Knuth computed [1] that Vk ≤ θ2
k+1 −

1/2, where θ ≈ 1.597910218. Thus, we obtain

#Gk ≤ θ2
k+1

. (5)

Lemma 1. Let k ≥ 1. If

P (a, b) =
∑
i,j

ci,ja
ui,j bvi,j ∈ Gk,

then

ui,j + vi,j ≤ 2k and ci,j ≤ 22
k−1

.

Proof. We will prove this lemma using induction. Let maxk(ui,j + vi,j) be the
maximum degree of monomials in a and b for any P (a, b) ∈ Gk. Also, let
maxk(ci,j) be the largest coefficient of any P (a.b). When k = 1 we have that

max1(ui,j + vi,j) = 21 and max1(ci,j) = 22
0

. When k = 2 we obtain that

max2(ui,j + vi,j) = 22 and max2(ci,j) = 22
1

. We assume that the lemma is
true for k and we prove it for k + 1. The only strategy that maximizes the de-
gree of a monomial from Gk+1 is to choose a maximal monomial from Gk and

multiply it by itself. For example, we can choose 22
k−1

a2
k ∈ Gk. Therefore, we

have maxk+1(ui,j + vi,j) = 2k + 2k = 2k+1. We can also see that multiplying

22
k−1

a2
k

to itself leads to maxk+1(ci,j) = 22
k−1 · 22k−1

= 22
k

. ⊓⊔
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3.2 Defining the Problem

In this subsection we describe a high level description of the protocol used to infer
the polynomial P (x, y). More precisely, for a given k ∈ N, Alice (the malicious
user) and Bob (the victim) exchange information that can be used by Alice
(without Bob’s consent) to compute the polynomial P :

1. Bob chooses a polynomial P ∈ Gk.
2. Alice chooses two numbers a, b ∈ N∗ and sends them to Bob.
3. Bob computes r = P (a, b) using the values received from Alice and then

sends the result to Alice.
4. Given r Alice tries to infer P from r.
5. If Alice is not successful, then she repeats steps 2 and 3, until she accumulates

enough data to guess P .

We provide the reader with a graphical representation of the overall process
in Figure 1. The objective of our paper is to propose a series of algorithms that
solve the problem of inferring P in the aforementioned scenario.

Alice chooses a, b

Bob responds with r = P (a, b)

Alice infers P

Stop

Alice sends (a, b)

Bob replies with r

F
a
il

Success

Fig. 1. The overall process.
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4 Interpolating Bivariate Polynomials

The intuition behind our proposed algorithm (see Algorithm 3) is the following:
Alice starts by considering r modulo a. This makes all the P (a, b) terms ci,ja

ibj

for which i > 0 vanish. Hence, the positive integer r can be regarded as the
evaluation modulo a of a univariate polynomial:∑

c0,jb
j mod a.

Remark 3 (Parameter selection). Note that in the first iteration of the while
loop of Algorithm 3, after computing L0, we have that

Rt =
∑
i,j

ci,ja
ibjt =

∑
j

c0,jb
j
t +

∑
i ̸=0,j

ci,ja
ibjt = L0(bt) + ad · P ′(a, bt).

When we extract the largest power of a (denoted by ds), there is a case when
ds is larger than the correct exponent d. That happens when a|P ′(a, bt) for all
t. This automatically implies that we must have a ≤ P ′(a, bt) for all t due to
the construction of Gk. Hence, the probability of a not to divide P ′(a, bt) for a
given t is

1−
⌊P

′(a,bt)
a ⌋

P ′(a, bt)
≥ 1− P ′(a, bt)

aP ′(a, bt)
= 1− 1

a
,

and is non-negligible if a is large enough.

Let degb(P ) represent the degree of P (x) with respect to the variable b. When
running Algorithm 3 we encounter the following possible cases

Case 1: When a is larger than all of P ’s coefficients and the number of pairs
n is equal to degb(P ) + 1, then the algorithm will always output the correct
polynomial.

Case 2: When a is less than all of P ’s coefficients and the number of pairs n is
equal to degb(P ) + 1, then the algorithm will output a polynomial P , but it
will not be the correct one.

Case 3: When n is less than degb(P )+1 it is possible that some of the Ri values
(see Algorithm 3) become negative, and thus the algorithm will return ⊥
since it is clear that the computed polynomial is not the right one.

Since Alice does not know the exact degree4 of P , she uses Algorithm 4 to
compute the exact P . Therefore, she avoids Case 3. More precisely, Alice queries
Bob until Algorithm 3 returns a polynomial that maps j points into rj and also
satisfies the supplementary condition P (a, j + 1) = rj . This condition is used
to avoid the case in which n ≤ degb(P ) and all the Ri values become 0. Note
that on line 7 we have an additional check in order to avoid the case when a
divides any of P ’s coefficients. More precisely, if j = a+ k then j− k will not be
invertible when computing the ℓj(y) polynomial.

4 We do not consider the case degb(P ) = 1 as it is trivial.
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Algorithm 3: Tries to compute a polynomial P such that r = P (a, b).

Input: A prime a and n positive integer pairs {bi, ri}i∈[0,n].
Output: A bivariate polynomial P (x, y) such that ri = P (a, bi).

1 j ← 0
2 {Ri}i∈[0,n] ← {ri}i∈[0,n]

3 while 1 do
4 Compute using Lagrange interpolation

Lj(y) =

n∑
i=1

Ri · ℓi(y) mod a,

where

ℓi(y) =

n∏
t=0
t̸=i

y − bt
bi − bt

mod a.

5 Compute {Ri}i∈[0,n] ← {Ri − Lj(Ri)}i∈[0,n].
6 if all Ri = 0 then
7 break
8 if any Ri < 0 then
9 return ⊥

10 Compute the largest dj such that adj divides all Ri

11 Compute {Ri}i∈[0,n] ← {Ri/a
dj}i∈[0,n]

12 j ← j + 1

13 P (x, y)← Lj(y)
14 for t← j − 1 downto 0 do
15 Compute the polynomial

P (x, y)← P (x, y) · xdt + Lt(y)

16 return P (x, y)

Example 1. Let a = 17 and

P (x, y) = x5y + 3x3y + x2y3 + 17xy5 + 15x+ y2 + 58.

Note that we are in Case 2. Then, Algorithm 4 will return the following polyno-
mial

P ′(x, y) = x5y + 3x3y + x2y5 + x2y3 + x2 + x+ y2 + 7.

To avoid Case 2, we must query Bob on a point (a′, 1), where a′ ̸= a, and
check if Bob’s answer coincides with the evaluation of the computed polynomial.
If the two values do not coincide, then we must run Algorithm 4 with a larger a.

Remark 4. When working with polynomials from a set Gk, if Alice knows the

value of k ≥ 1, then she can choose a > 22
k−1

such that is a prime number.
Otherwise, she chooses a large enough k, and if Algorithm 4 fails, she increases
k and tries again until finding the correct P .
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Algorithm 4: Probes Bob until it finds the correct P .

Input: A prime a.
Output: A bivariate polynomial P (x, y).

1 L ← ∅, j ← 3
2 Interrogate Bob on points {(a, i+ 1)}i∈[0,j] and receive {ri}i∈[0,j]

3 Use Algorithm 3 with input (a, {i+ 1, ri}i∈[0,j−1]) and receive an answer P
4 if P ̸= ⊥ and P (a, j + 1) = rj then
5 return P
6 while 1 do
7 if j > a then
8 return ⊥
9 j ← j + 1

10 Interrogate Bob on points (a, j + 1) and receive rj
11 Use Algorithm 3 with input (a, {i+1, ri}i∈[0,j−1]) and receive an answer P
12 if P ̸= ⊥ and P (a, j + 1) = rj then
13 return P

5 Other Approaches for Reconstructing Bivariate
Polynomials

We consider again P mod a, and thus the positive integer r can be regarded as
the evaluation modulo a of a univariate polynomial:∑

ci,jb
ui,j . (6)

It can easily be observed that we are tackling a modular knapsack problem
that can be solved provided that specific conditions are met (see Section 2).
Hence, Alice can use Algorithm 5 to infer P .

If, in addition, we restrict k to a value such that a > 22
k−1

then we are assured
that the ci,j values found by solving the modular knapsack are also valid in Z.
Hence, the integer value from Equation (6) can be subtracted from r to reveal
a polynomial that can be divided by a proper power of a before applying the
above process iteratively. When the value zero is reached the algorithm is run
backwards to reconstruct the polynomial P .

Note that we use the first if of Algorithm 5 for efficiency purposes given that
the modular knapsack resolution algorithm is not needed when the polynomial
P (x, y) does not have monomials only in y.

Remark 5 (Parameter selection). Let us further assume that we are using a
lattice reduction-based algorithm for solving the modular knapsack problem. As
already discussed in Section 2, lattice reduction-based algorithms applied for
such purposes are suitable in the low-density case (smaller than 1). It is easy
to observe that in some particular cases our Algorithm 5 does not fulfill this
requirement. To be more specific, we consider the case in which d ≥ 1. Thus, we
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Algorithm 5: Tries to compute a polynomial P such that r = P (a, b).

Input: A prime a and a positive integer pair {b, r}.
Output: A bivariate polynomial P (x, y) such that r = P (a, b).

1 if r mod a = 0 then

2 Compute the largest dk ∈ N such that adk divides r

3 Compute r′ ← r/adk

4 j ← 0
5 r0 ← r′

6 while rj ̸= 0 do
7 Solve

rj =

n∑
i=1

tj,i · bi mod a for {tj,i}

using a modular knapsack resolution algorithm
8 Compute rj+1 ← rj −

∑n
i=1 tj,i · b

i

9 Compute the largest dj ∈ N such that adj divides rj+1

10 Compute rj+1 ← rj+1/a
dj

11 j ← j + 1

12 P (x, y)← 1
13 for ℓ← j − 1 downto 0 do
14 Compute the polynomial

P (x, y)← P (x, y) · xdℓ +

n∑
i=1

tℓ,iy
i

15 P (x, y)← xdk · P (x, y)
16 return P (x, y)

have that 2k

log2 max(bi)
≥ 1. Using Lemma 1 we obtain

2k ≥ log2 max(bi)⇔ 2k ≥ log2 2
2k−1

degb(P )⇔

2k ≥ log2 2
2k−1

+ log2 degb(P )⇔ 2 ≥ log2 2 +
log2 degb(P )

2k−1
⇔

1 ≥ log2 degb(P )

2k−1
⇔ 2k−1 ≥ log2 degb(P ) (7)

It follows from Equation (7) that d ≥ 1 when the number of bits in b is smaller

than 2k−1

degb(P ) .

Note that in the case of Algorithm 5, the probabilistic argument presented
in Remark 3 still holds if a is large enough such that 1/a is negligible.
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Example 2. Let a = 913 and b = 2

P (x, y) = 2xy + y2.

Note that we are in Case 2. Then, Algorithm 5 will return the following polyno-
mial

P ′(x, y) = y2 + xy2

6 Implementation

In order to validate our hypotheses and algorithms we developed a set of refer-
ence implementations (unoptimized versions). We ran the code for Algorithm 4
on a standard Desktop using Ubuntu 20.04.5 LTS OS, with the following spec-
ifications: CPU Intel i7-4790 4.00 GHz and 16 Gigabytes of RAM. The pro-
gramming language we used for implementing our Lagrange interpolation-based
algorithms was Python. We used Mathematica 13.2 online for implementing our
lattice reduction-based Algorithm 5. Given that our scope was to provide the
reader proof of concept algorithms for inferring bivariate polynomials of certain
form, we implemented the attack in [7]. Again, we stress that we wish to use
modular knapsack resolution algorithms with density as close to 1 as possible.
The newest developments in the field of lattice reduction [49] are less important
for our current work than this aspect given that researchers’ main struggle is to
make algorithms more efficient in terms of complexity.

6.1 Performance Analysis

In Table 1 we present the number of queries needed to recover the polynomial P
and the corresponding computational complexity. Note that deg(P ) represents
the highest degree of the polynomial P (x), while dega(P ) and degb(P ) represent
the degree of P (x) with respect to the variables a and b, respectively.

In the case of classical bivariate interpolation, the number of queries differs
from the one given in [32, 51] since we need an extra point to verify that we
deduced the correct P . Note that the extra query is performed to check if the
degree of P is bigger than anticipated. Regarding Algorithm 4, if a is larger than
the biggest coefficient of P , then we need degb(P )+1 points to recover P and an

Table 1. Performance analysis for inferring P

Algorithm Number of Querries Complexity

Classical bivariate (deg(P )+1)(deg(P )+2)
2

+ 1 O(deg(P )4)
interpolation [32,51]

Algorithm 4 degb(P ) + 2 O
(
dega(P )degb(P )

(
dega(P )

2
+ degb(P )

))
Algorithm 5 2 O

(
dega(P )

(
dega(P )

2
+O

))
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extra verification point. Lastly, Algorithm 5 only needs a point to infer P and
an extra verification point.

To compute the complexity of Algorithm 3, we used the fact that the com-
plexity of the Lagrange interpolation is O(degb(P )2) (according to [47]). For our
knapsack based solution Algorithm 5, we denoted by O = O(A), where A is a
modular knapsack resolution algorithm.

6.2 Recommendations

For reducing the number of queries to Bob, we recommend first running Algo-
rithm 5 and, if it fails, Algorithm 4. In the improbable case of obtaining the
wrong polynomial, there are two strategies to be used by Alice: either change a
and try again or use a classical bivariate interpolation algorithm (e.g. [51]). A
graphical representation of the recommended process is given in Figure 2, where
CBI denotes a classical bivariate interpolation algorithm.

Alice runs
Algorithm 5

Alice infers P

Stop

Alice runs
Algorithm 4

Alice infers P

Stop

Alice runs CBI

Alice infers P

Stop

Fa
il

Su
cc
es
s

Fa
il

Su
cc
es
s

Su
cc
es
s

Fig. 2. The recommended process.

7 Conclusions

The main focus of this paper is to address the problem of inferring bivariate
polynomials with a specific form required for homomorphic encryption. To solve
this problem, the paper proposes two methods. The first method is based on
Lagrange interpolation, which is a well-known technique for polynomial evalua-
tion. The second method is based on modular knapsack resolution algorithms,
which are commonly used in cryptography to solve similar problems. Addition-
ally, the paper offers guidance on how to use these algorithms to obtain better
accuracy. This guidance may be useful for practitioners who wish to apply these
algorithms in real-world scenarios.
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Future Work. An interesting research direction would be to extend our proposed
methods to multivariate polynomials and to look into other ways of solving the
problem of inferring polynomials. For example, the PSLQ algorithm introduced
in [24] is a method for finding integer relations. In certain cases, PSLQ might
be significantly better than some of the algorithms based on lattice reduction in
terms of implementation performance and precision.

Using artificial intelligence techniques for obtaining better solutions is a gen-
eral direction nowadays. However, such ideas are beyond the scope of our paper
and we leave them as future work.

Acknowledgement. The authors would like to thank David Naccache for the very
useful comments on their paper.
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