
Security Analysis of the WhatsApp End-to-End
Encrypted Backup Protocol

Gareth T. Davies1 ID Sebastian Faller2,3 Kai Gellert1 ID

Tobias Handirk1 Julia Hesse2 Máté Horváth1 ID Tibor Jager1

1Bergische Universität Wuppertal, Wuppertal, Germany
2IBM Research Europe – Zurich, Switzerland

3ETH Zurich, Switzerland

June 6, 2023

Abstract

WhatsApp is an end-to-end encrypted (E2EE) messaging service used by billions of people. In late
2021, WhatsApp rolled out a new protocol for backing up chat histories. The E2EE WhatsApp backup
protocol (WBP) allows users to recover their chat history from passwords, leaving WhatsApp oblivious
of the actual encryption keys. The WBP builds upon the OPAQUE framework for password-based key
exchange, which is currently undergoing standardization.

While considerable efforts have gone into the design and auditing of the WBP, the complexity of the
protocol’s design and shortcomings in the existing security analyses of its building blocks make it hard
to understand the actual security guarantees that the WBP provides.

In this work, we provide the first formal security analysis of the WBP. Our analysis in the universal
composability (UC) framework confirms that the WBP provides strong protection of users’ chat history
and passwords. It also shows that a corrupted server can under certain conditions make more password
guesses than what previous analysis suggests.

1 Introduction

WhatsApp is the most popular instant messaging app in the world with over 100 billion messages sent per
day, containing personal and business communications. WhatsApp provides end-to-end encrypted (E2EE)
communications [34], where no party but sender and receiver should be able to read (or modify) mes-
sages. This specifically prevents the WhatsApp service provider from breaking security guarantees such as
confidentiality if the service gets compromised. E2EE is considered a default standard for modern secure
messaging protocols, and several formal analyses of the E2EE messaging protocol used by WhatsApp and
other messaging apps such as Signal exist [14, 4, 31, 2, 25, 13, 32, 5, 10].

Gareth T. Davies, Tobias Handirk, and Tibor Jager have been supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme, grant agreement 802823. Julia Hesse was supported by the
Swiss National Science Foundation (SNSF) under the AMBIZIONE grant “Cryptographic Protocols for Human Authentication and
the IoT”. Máté Horváth has been supported by the German Research Foundation (DFG), project JA2445/6-1.

1

https://orcid.org/0000-0002-5935-5725
https://orcid.org/0000-0003-0985-7265
https://orcid.org/0000-0003-0985-7265
https://orcid.org/0000-0001-9512-5196

Bypassing E2EE via Backups. Protecting the transmission of confidential data is necessary to enable
secure messaging, however, it is not sufficient. WhatsApp clients can back up the user’s chat history so that
they can recover it if the device is lost, for example by theft or switching to a new phone. Naturally, the
backup mechanism must offer strong protection as well, so as not to undermine the security of the E2EE
messaging protocol.

Before the end of 2021, whenever a user1 initiated the procedure for backing up their messages (to
be stored on iCloud or Google Drive), they would encrypt these messages using a key that was known to
WhatsApp. While this simple approach allowed WhatsApp to return the backup encryption key to the user
if the original device were to be lost, it allowed access to backed up messages beyond the control of the
user. For example, by US law, federal governments could have forced WhatsApp to reveal the backup key
(and the storage provider to reveal the encrypted contents) through a court order, and the previously well
protected private communication suddenly becomes evidence in a lawsuit [29]. More generally, the fact that
the E2EE security can be circumvented by accessing the backups harbors a great potential for abuse, for
instance by malfeasant governments, malicious employees, or in case of a compromise of both the storage
provider’s servers and WhatsApp’s servers.

WhatsApp E2EE Backups. In late 2021, WhatsApp rolled out an improved protocol for protecting back-
ups [33], with the aim to extend the E2EE security guarantees in a user-friendly way that enables users
to restore their backup keys from a password in case a device is lost. By early 2023, over 100 million
WhatsApp users have already switched to this option [12]. The underlying protocol, which we call the
WhatsApp backup protocol (WBP) in this work, makes use of hardware security modules (HSMs). Intu-
itively, an HSM can be programmed once with code and then “locked” in such a way that it is infeasible to
change its code afterwards. This enables even the protection of a protocol against corruption of the party
running the HSM (here, the WhatsApp servers). The challenge now lies in designing the code run by the
HSM in such a way that (1) users can retrieve their backup keys from a password, but (2) WhatsApp servers
not knowing the user password cannot retrieve the backup key.

The core idea of the WBP is to outsource all cryptographic computations to the client and the HSM,
while the WhatsApp “main server” essentially only relays messages (with some minor modifications) be-
tween client and HSM. The protocol is designed such that during the initialization phase2 both client and
HSM enter a secret value (a password pw for the client, and a “per-client-secret”3 for the HSM). Further-
more, the client chooses a symmetric backup key K and the HSM receives an encrypted version of the key,
without either of them learning the secret input of the counterparty. The client uses the backup key K to
encrypt the backup data. If a user loses their device, they can initiate a recovery protocol from a new client
device. To this end, the new client and the WhatsApp “main server” (which, again, relays messages to
the HSM) execute a protocol where the client recovers the backup key, with the password pw used during
initialization and the HSM contributing the same per-client-secret as during initialization.

The password-based nature of the WBP introduces several technical challenges. Firstly, being password-
based while aiming at keeping the stored key from a potentially compromised WhatsApp server implies that
the protocol must not leak user passwords to the server. To this end, the WBP deploys OPAQUE [24],
an asymmetric password-based key exchange protocol (aPAKE) [19] that allows a key exchange from a

1In this paper we will refer to the people using a device that runs the WhatsApp client software as users, to the device as a client,
and to the servers that provide the WhatsApp chat and backup service as servers.

2Note that WhatsApp refer to this phase as registration.
3It is actually a “per-backup-secret”, which is determined during initialization. If a client were to re-register, a new “per-backup-

secret” would be chosen.

2

password without disclosing the password itself to the server. Another essential feature the WBP aims
to provide is security against password guessing attacks, where a malicious client repeatedly executes the
recovery protocol with password guesses pw′. If the password guess pw′ equals the password pw used
during initialization, an adversary would gain access to the secret backup key. Note that this attack is
especially effective if the user password only has low entropy, which is often the case for human-memorable
passwords in practice. The deployed protocol limits the number of admissible incorrect guesses to ten [33,
17], after which the HSM destroys the encrypted version of the backup key (and thus makes the backup
irrecoverable). This guarantee should even hold if the WhatsApp server were to be compromised.

Contributions. The WBP protocol is a widely-used real-world cryptographic protocol that addresses the
fundamental problem of recovering data from encrypted backups based on human-memorizable secrets. It
aims to provide strong security properties that match the E2EE-security of the messaging protocol, even
against a corrupted service provider. This work presents the first rigorous security analysis of the WBP.
Concretely, our results can be summarized as follows.

• We formalize the security properties expected from the WBP protocol in terms of a password-protected
key retrieval (PPKR) scheme, where users store cryptographic keys on an untrusted server, retrievable
with a password. This formalization serves as a foundation for our work, and may also support future
analyses of alternative (potentially non-HSM-based) PPKR protocols and their comparison.

• We provide a full description of the cryptographic core of the WBP protocol. This description is based
on a whitepaper published by WhatsApp [33], a public security assessment of the backup system
conducted by the NCC Group [17], and personal correspondence with the WBP designers [1] to fill
subtle but essential technical gaps left in the protocol descriptions of [33, 17].

• We present the first formal security analysis of the WBP protocol. Our analysis is conducted in
the universal composibility (UC) framework [9], which is simulation-based and therefore facilitates
the consideration of low-entropy passwords. We formally confirm several prior statements about the
security guarantees of the WBP.

• We describe how a corrupted server could get more than ten password guesses per encrypted backup,
even though prior security analysis [17] claimed that after ten incorrect tries the account is irremedi-
ably locked by the HSM software, and the backup data cannot be retrieved in plaintext. Concretely,
we show that a corrupted server can get ten password guesses per backup initialization. For exam-
ple, a corrupted server could suppress protocol messages to simulate a failed initialization, such that
either the WhatsApp client app retries sending of initialization messages automatically, or the user
re-initializes a backup manually, in order to increase the number of password guesses against the
HSM.

• We give a formal analysis of the 2HashDH oblivious pseudorandom function [22] (that is used in
OPAQUE) in the multi-key setting, where the domains of the two hash functions used as a building
block are not assumed to be separated for different keys. For our work, this result is required since
the WBP does not apply hash domain separation. Beyond that, our findings provide the basis for
analyzing the about-to-be-standardized version of OPAQUE [6]4 and the 2HashDH protocol currently
in last call at the IRTF [16] even under the usage of multiple OPRF keys.

4The existing formal analysis of the OPAQUE protocol [24] assumes hash domain separation in 2HashDH and hence does not
apply to the version of OPAQUE in the most recent Internet Draft [6].

3

Paper Organization. The remainder of this work is structured as follows. Section 2 contains technical
preliminaries and Section 3 provides a full protocol description of the WBP. We then describe our model
for PPKR in Section 4 and give a proof intuition in Section 5 (the full proof can be found in Appendix E).
Our work concludes with a discussion in Section 6.

Responsible Disclosure. The research conducted for this work did not impact the entire WhatsApp system
or the privacy of WhatsApp users. In particular, there was no interaction with the WhatsApp servers, HSMs,
or any WhatsApp users. The protocol description was written with the help of WhatsApp employees [1],
and no reverse-engineering of any implemented code took place. The scenario in which a corrupt WhatsApp
server can increase the number of password guesses against a user was never demonstrated in practice, but
it was acknowledged by WhatsApp that this would indeed be possible. WhatsApp does not object to the
publication of this paper.

1.1 Related Work

Password-protected secret sharing (PPSS) [3, 22] allows a user to share a secret value among a number
of servers and later retrieve it using a partial set of the servers (in the event that one or more servers be-
come compromised or unavailable) if and only if the password used during retrieval is the same as the one
used during the sharing step. This primitive has been analyzed in the UC framework [8, 22], and several
constructions based on oblivious pseudorandom functions (OPRF) exist (an overview can be found in [11]).

The WhatsApp approach can be viewed as a one-out-of-one version of PPSS, where WhatsApp’s HSM
is the only server. This makes comparisons with work on PPSS difficult: we need to model corruption of
the WhatsApp communication server (but not the HSM) and assess security in this context, something that
prior models that do not split the server’s role cannot capture. Nonetheless, our formalization of PPKR in
the UC model takes great inspiration from existing functionalities for PPSS [22].

Beyond PPSS, there are several works that aim at bootstrapping encryption keys (or symmetric encryp-
tions directly) from user passwords with the assistance of a server. Updatable oblivious key management
[23] relies on server assistance to let a user derive file-specific encryption keys from a password, while re-
quiring strong user authentication. The distributed password-authenticated symmetric encryption scheme
DPaSE [15] aims for the same, while relying on the assistance of several servers but not requiring user au-
thentication. Like the WBP, all the above schemes rely on OPRFs to shield passwords from curious servers,
but none of them aims to provide a restriction in the number of guessing attempts after the compromise of
the server, which the WBP aims for.

Password-hardened encryption services [28, 7] let users outsource the encryption to a fully trusted fron-
tend server. The protocols do not require OPRFs and can hence provide better throughput, at the cost of
revealing the user’s password to the frontend server.

2 Preliminaries

Notation. We denote the security parameter as λ. For any λ ∈ N let 1λ be the unary representation of λ
and let [ℓ] = {1, . . . , ℓ}. We write x $←− S to indicate that we choose an element x uniformly at random
from set S. For a probabilistic polynomial-time algorithmA we define y $←− A(x1, . . . , xℓ) as the execution
of A (with fresh random coins) on input x1, . . . , xℓ and assigning the output to y.

We use records of form ⟨x1, x2, x3⟩ for bookkeeping in our formal arguments. For convenience, we in-
troduce a notation that combines retrieval and assignment of such records, i.e., when retrieving ⟨value, ∗, ∗⟩,

4

we retrieve a record that contains the value value in the first field and arbitrary values in the second and third
field (denoted by a wildcard symbol ∗). Additionally, we use brackets to indicate variable assignment after
retrieval, i.e., when retrieving ⟨value, [x2], [x3]⟩, we retrieve the record holding the value value in its first
entry and assign the second and third entry to the variables x2 and x3, respectively.

Cryptographic Building Blocks and Their Security. We defer standard definitions such as collision
resistance for hash functions, strong EUF-CMA security of digital signatures and message authentication
codes, IND-CPA security of public key encryption, and standard definitions for authenticated encryption to
Appendix A.

3 E2EE Backups in WhatsApp

In this section, we give a detailed description of the WBP. Our presentation is based on a whitepaper pub-
lished by WhatsApp [33], a public security assessment of the backup system conducted by NCC Group [17],
and personal correspondence with WhatsApp (Meta) staff [1].

We will start with a simplified explanation of the overall protocol layout in Section 3.1 to give a high-
level overview of its main idea. Then, to prepare the detailed protocol description, we will discuss the
creation of a communication channel between clients and the backup server via the WhatsApp client regis-
tration protocol in Section 3.2. In Section 3.3, we elaborate on how WhatsApp uses HSMs; in Section 3.4,
we outline how these HSMs outsource storage to servers that are considered untrusted. In Section 3.5, we
then provide a detailed description of the actual WBP. We conclude with Section 3.6, where we describe
how a malicious server can increase the admissible number of password guesses in certain settings.

3.1 High-level Protocol Overview

There are four entities in the system: the user, a WhatsApp client running on the user’s device, the WhatsApp
server, and the HSM that only the WhatsApp server can communicate with. We will now focus on the
latter three. In this high-level overview, we simplify by describing the WhatsApp server as merely relaying
messages between the HSM and the client. In the actual WBP protocol it additionally authenticates clients
and stores files encrypted by the HSM. As the encryption and outsourced storage of the data at a cloud
provider is done using symmetric encryption, we focus on the initialization and recovery of the encryption
key from a password.

Initialization. When activating WhatsApp’s E2EE backups for the first time, the client chooses a backup
key K to encrypt the chat history and the WBP key initialization phase is executed (see Figure 1). To this
end, the client first runs the OPAQUE protocol with the HSM, which takes a password pw from the client
and a key KOPRF from the HSM as inputs. It then outputs a key Kexport to the client5 and the “envelope”
env to the HSM. This envelope is encrypted under the key Kexport (which is derived using both pw and
KOPRF) and contains freshly chosen key material of the client that is used during recovery to perform, e.g.,
a Diffie–Hellman key exchange, among other things.

To conclude initialization, the client encrypts the backup key K first under the symmetric key Kexport

and then under the HSM’s public encryption key pkHSM, and sends the result E to the HSM. The HSM

5The option to derive this additional key was originally not part of OPAQUE [24]. However, it exists in the OPAQUE Internet
Draft version 03 [26], which is deployed by the WBP.

5

Client(pw, pkHSM) Server HSM(skHSM)

OPAQUE
Init

pw KOPRF

Kexport env

KOPRF
$←− {0, 1}λ

K $←− {0, 1}λ

e $←− Enc(Kexport,K)

E $←− Enc(pkHSM, e) E

e← Dec(skHSM,E)

ctr← 10
output K store (env, e,KOPRF, ctr)

Figure 1: The WBP key initialization, high-level layout. The value KOPRF is freshly chosen by the HSM
for each initialization request.

removes the outer encryption layer and stores the encrypted backup key e, the OPAQUE envelope env, the
key KOPRF, and a counter ctr initialized with 10 that tracks password guessing attempts.

Key Recovery. If the client has lost their client device (and thus lost their backup key K), they can re-
authenticate their new client device with WhatsApp (via a challenge-response protocol that takes place after
re-installing the WhatsApp application), and subsequently start the recovery part of the WBP depicted in
Figure 2.

The first step of the recovery phase is that client and HSM engage in the key exchange phase of the
OPAQUE protocol. To this end, the client uses a value pw′ as input and the HSM contributes the values
KOPRF and env as established during the initialization phase. If the password pw′ entered by the client is
equal to the password pw during initialization, the OPAQUE protocol guarantees that (1) the client recovers
the former export key K̄export = Kexport and (2) both client and HSM derive the same value shk′ = shk.
However, if pw′ ̸= pw, the client will have to abort instead.

The HSM decrements its counter for attempted password guesses each time a recovery procedure is
initiated. If the client can convince the HSM that it has computed the same value shk′ = shk (via a key
confirmation), the HSM will learn that the entered password pw′ was indeed correct and hence reset its
counter to ten and send the stored ciphertext c to the client. Lastly, the client can use the derived K̄export

to decrypt the ciphertext c and recover their backup key K. This concludes the high-level overview of the
cryptographic core of the WBP.

3.2 Client Registration

The WBP essentially relies on a communication channel between clients and the backup server, which is
realized in an indirect way. Upon installing the WhatsApp application, the main WhatsApp server sets up a
mutually authenticated channel with each new client. In the WhatsApp ecosystem this is done by a server
called ChatD, which is physically distinct form the WhatsApp server handling the WBP. We decided to view
all WhatsApp servers as a single WhatsApp server entity, since a distinction would make the already com-
plex protocol description and security analysis unnecessarily more complex without providing additional
insight.6

6For example, we want a corruption of the WhatsApp server to model a malicious WhatsApp service provider, and therefore we
want to consider the entire service as corrupted in this case, without a need to distinguish between the ChatD and the backup server.

6

Client(pw′, pkHSM) Server HSM(skHSM)

OPAQUE
KE

pw′ env,KOPRF

K̄export, shk
′

shk

shk key confirmation

c

retrieve (env, e,KOPRF, ctr)

lock client if ctr = 0
ctr← ctr − 1

ctr← 10

c $←− Enc(shk, e)

e← Dec(shk′, c)
K ← Dec(K̄export, e)

output K

Figure 2: The WBP key recovery, high-level layout.

Client with phone number no WhatsApp server

�Noise Pipe Setup-

-no via Noise Pipe choose IDC

� nSMS via SMS
nSMS

$←− {0, 1}λ

-n′
SMS via Noise Pipe

if n′
SMS ̸= nSMS return FAIL

return pkNoise
WA else return (pkNoise

IDC
, IDC)

Figure 3: The WhatsApp client registration that is independent from the WBP. Upon conclusion, the client
can be identified via a unique identifier IDC, and both client and server are mutually authenticated.

That is, at first, a secure channel is set up between the client and WhatsApp using the Noise framework
[30]. Then WhatsApp uses SMS authentication to verify that the phone number it received via the freshly set
up Noise channel belongs to the client. Upon conclusion, the client stores WhatsApp’s public key pkNoise

WA
and WhatsApp stores the freshly generated client’s public key pkNoise

IDC
together with a unique client identifier

IDC. Subsequently, the WhatsApp server handles all incoming client requests via the Noise channel and also
mediates the WBP messages between the client and the backup service.

3.3 Hardware Security Modules

The WBP deploys HSMs as a core component of their PPKR protocol. Intuitively, an HSM is a hard-
ware device that can be programmed once with code and then “locked” in such a way that it is infeasible
to change its code afterwards. After the HSMs are set up they hence serve as an incorruptible entity in
the backup ecosystem. In the WBP, the HSM performs most cryptographic relevant computations on the
“WhatsApp side” (with minor computations performed by a different, non-HSM WhatsApp “main server”)
and is responsible for coordinating the secure storage of backup keys.

Trusted Setup Ceremony. For the HSM to serve as an incorruptible entity in the system, it must be
ensured that (1) its secret key material is not leaked and that (2) its code cannot be modified after setup. This
is usually ensured via a process called trusted setup ceremony or key ceremony. During such a ceremony,
a ceremony leader essentially unpacks new modules, sets them up with program code, and generates fresh

7

key material for the HSM (where public keys are copied and secret keys remain secret). After setup, the
HSM’s “programming key” is destroyed, ensuring that it cannot be modified after the ceremony has taken
place. The public key material of the HSM is hard-coded into the WhatsApp application [17]. Naturally,
this procedure can only be trusted if it was executed faithfully. For the remainder of this work we assume
that the setup ceremony was conducted such that

• the following key material has been generated
– a symmetric encryption key KEnc

HSM
$←− {0, 1}λ,

– a signature key pair (skSigHSM, pkSigHSM) $←− Σ.KeyGen(1λ),
– a public-key encryption key pair (skEncHSM, pkEncHSM) $←− PKE.KeyGen(1λ),
– a static Diffie–Hellman key pair (skDH

HSM, pkDH
HSM) $←− DH.KeyGen(1λ);

• the HSM uses the secret key material to execute the WBP’s computations via predefined interfaces
for each protocol step;

• the HSM can only be queried by a WhatsApp server, and only via the specified interfaces. In particu-
lar, the HSM does not leak any of its secret key material.

We remark that the HSM solution deployed by WhatsApp consists of multiple HSMs, which ensures
that user cannot get locked out of their backup if an HSM breaks down. All HSMs are set up such that
they coordinate their state changes via a consensus protocol, ensuring that each HSM behaves in the same
manner towards a user [1]. Without loss of generality, we treat this set of HSMs as a single HSM entity. The
analysis of the HSM consensus protocol is beyond the scope of this work.

3.4 Secure Outsourced Storage

One might be tempted to store sensitive data along with key material in an HSM. However, storing data
in the internal memory of an HSM is very expensive and limited in capacity. Thus, the internal storage of
an HSM is not viable to store large quantities of sensitive data for millions or billions of users. Therefore
WhatsApp uses storage fully controlled by the WhatsApp server. The HSM uses a dedicated symmetric
encryption key KEnc

HSM
$←− {0, 1}λ which is used for authenticated encryption, and this essentially ensures

confidentiality and integrity of stored records. Whenever the HSM requests a stored record, it decrypts the
record and verifies its integrity before processing it. In addition, a Merkle tree based protocol is deployed
to “tie” the encrypted records together and to prevent a replay of old state records that were previously
deleted by the HSM. Whenever the WhatsApp server provides an encrypted record to the HSM, it also
has to provide a proof (using the Merkle tree) that this ciphertext is consistent with the current state of the
encrypted database. The HSM verifies this against a locally stored root of the Merkle tree. If this verification
fails, the HSM rejects the record. A formal analysis of this mechanism is beyond the scope of our work.
Therefore we model the interaction of the HSM with the outsourced storage mechanism via function calls,
which are defined as follows.

• sec store(id, data) takes as input a unique identifier id and to-be-stored data value data. It encrypts
the data using the approach described above. The record can be identified via id.

• sec retr(id) takes as input an identifier id and retrieves the record associated with identifier id. The
returned record is processed as described above.

• sec delete(id) takes as input an identifier id and “tombstones” the record associated with identifier id,
in that its existing data is overwritten with the information that is has been deleted.

8

• For brevity, we define one additional function call that allows the HSM to change counter values.
sec set ctr(id, ctr) takes as input an identifier id and an integer ctr with 0 ≤ ctr ≤ 10. It takes the
record associated with identifier id and sets the corresponding counter to the value ctr. Integrity and
authenticity is ensured via the process described above.

Should any of the function calls fail (e.g., due to a non-existing record or a failed integrity check), the
respective function call would return an error symbol ⊥. We assume that this mechanism provides secure
outsourced storage for the HSM, which is immutable for any entity but the HSM.

3.5 WhatsApp Backup Protocol (WBP) Description

The detailed descriptions of the WBP’s key initialization and recovery phases are depicted in Figure 4 and
Figure 5, respectively. As already discussed in Section 3.1, the WBP builds on the OPAQUE Internet Draft
v3 [26] the steps of which are highlighted in the figures. For a comparison of these OPAQUE steps with
[26], we refer to Appendix H. Note that the figures include events like return(INTERFACE, value). These
can bee seen as messages delivered to higher-level application processes, which, e.g., output a successfully
established symmetric backup key to be used for backing up the actual data. We make these calls explicit
since they will also appear in parts of our security model.

Participants. There are three participants in the protocol. Client refers to the WhatsApp client application
of a user with unique identifier IDC. The client is in possession of the HSM’s public key, which is composed
of a public key for a signature scheme pkSigHSM, an encryption public key pkEncHSM, and a static Diffie–Hellman
public key pkDH

HSM. Those keys are hard-coded into the WhatsApp client and thus authenticated.
The server is run by WhatsApp and it mostly relays messages between clients and the HSM. For this it

communicates with the client via the previously established IDC-authenticated channel (see Figure 3) and
with the HSM directly through a TLS channel. The server also maintains an array acc[·] of identifier pairs
(IDC, aid), which “tie” a so-called account identifier aid (described below) to the client identifier IDC. If
some IDC is not contained in acc, we let acc[IDC] = ⊥. As already described in Section 3.4, the server also
acts as an external (untrusted) storage medium for the HSM.

Finally the HSM is (a trusted entity that is) in possession of the secret keys skSigHSM, skEncHSM, skDH
HSM

corresponding to the respective public keys, as well as a key KEnc
HSM that is used to encrypt records stored on

the server (see Section 3.3).

Dealing with unexpected protocol messages. We assume that the client, the server, and the HSM ignore
messages that are sent out-of-order, i.e., messages that the party expects at a different point in the protocol
execution. The first messages of an initialization (i.e., a1) and recovery (i.e., (nC , p̄kC , a2)) can be sent any-
time, leading to the parties deleting all temporary data of the non-finished initialization/recovery and starting
with a new initialization/recovery. This implies that there is never more than one initialization/recovery run-
ning at a time.

Key Initialization. A user with password pw and IDC initializes the backup as follows. On input of pw,
the WhatsApp client app first chooses a uniformly random backup key K that can be used for encrypting the
backups and which is going to be preserved via WBP. Next, it samples a Diffie–Hellman key-pair (pkC , skC)
that will be used later in the OPAQUE key exchange step. Executing the 2HashDH OPRF protocol [21] with
the HSM, the client samples r1 $←− Zp uniformly at random. This is then used to blind the password pw by

9

Client with phone number IDC Server HSM
pw, pkHSM = {pkSigHSM, pkEncHSM, pkDH

HSM} acc[]← {} skHSM = {skSigHSM, skEncHSM, skDH
HSM,KEnc

HSM}

On input (INITC, pw):
K $←− {0, 1}λ
(pkC , skC)

$←− DH.KeyGen(1λ)
r1

$←− Zp

a1 ← H1(pw)
r1 sa1 return (INITC, IDC)

On input (INITS, IDC):
choose fresh aidnew ∈ {0, 1}∗
set aidold ← acc[IDC]
set acc[IDC]← aidnew -(INITS, aidnew, aidold,a1) sec delete(aidold)

if sec retr(aidnew) is successful
return �(INITRESULT, aidnew, FAIL)

(INITRESULT, IDC, FAIL) else :
KPRF

aidnew
$←− Zp

b1 ← a
KPRF

aidnew
1

n1
$←− {0, 1}λ

if Σ.Vfy(pkSigHSM; b1 ∥ n1;σ1) ̸= 1 � b1 , n1, σ1 �aidnew,b1 , n1, σ1 σ1
$←− Σ.Sign(skSigHSM, b1 ∥ n1)

return (INITRESULT, FAIL) trHSM ← H3(a1, b1, n1)

else :

y ← H2(pw, b
1/r1
1)

ne
$←− {0, 1}λ

(Kexport,Kmask,Kauth)← KDF1(y, ne)

e cred← skC ⊕Kmask

Te ← MAC.Tag(Kauth, pkDH
HSM ∥ ne ∥ e cred)

trC ← H3(a1, b1, n1)
e $←− AE.Enc(Kexport,K)
m← e ∥ trC∥ pkC ∥ e cred ∥ ne ∥ Te

E $←− PKE.Enc(pkEncHSM;m) sE -(FILE, aidnew,E) m← PKE.Dec(skEncHSM;E)
CleanUp parse
return (INITRESULT,K) m = e ∥ trC∥ pkC ∥ e cred ∥ ne ∥ Te

if trC ̸= trHSM : out← FAIL

else :
m′ ← e∥ pkC ∥ e cred ∥ ne ∥ Te

ctr← 10
sec store(aidnew, (K

PRF
aidnew

,m′, ctr))
�(INITRESULT, aidnew, out) out← SUCC

return
(INITRESULT, IDC, out)

Figure 4: The WBP initialization. Light blue boxes indicate 2HashDH instructions of OPAQUE;
dark gray boxes denote other OPAQUE instructions; non-colored parts were added by WhatsApp. sa

is the IDC-authenticated transmission of a.

10

Client with phone number IDC Server HSM
pw′, pkHSM = {pkSigHSM, pkEncHSM, pkDH

HSM} acc skHSM = {skSigHSM, skEncHSM, skDH
HSM,KEnc

HSM}

On input (RECC, pw′):
r2

$←− Zp, a2 ← H1(pw
′)r2

nC
$←− {0, 1}λ

(p̄kC , s̄kC)
$←− DH.KeyGen(1λ) snC , p̄kC ,a2 return (RECC, IDC)

On input (RECS, IDC):
if acc[IDC] unset:
return (RECRESULT, IDC, FAIL)

else :
set aid← acc[IDC] -(RECS, aid,nC , p̄kC ,a2) (KPRF

aid ,m′, ctr)← sec retr(aid)
if no record can be found:

return �(RECRESULT, aid, FAIL)

(RECRESULT, IDC, FAIL) else :
if ctr = 0: sec delete(aid)

return �(DELREC, aid)

(DELREC, IDC) else :
parse m′ = e∥pkC ∥ e cred ∥ ne ∥ Te

set ctr′ ← (ctr − 1)
sec set ctr(aid, ctr′)

b2 ← a
KPRF

aid
2 ,nS

$←− {0, 1}λ
(p̄kS , s̄kS)

$←− DH.KeyGen

ikm← (p̄k
s̄kS
C , p̄k

skDH
HSM

C , pkC
s̄kS)

pre← (a2, nc, p̄kC , pk
DH
HSM, e cred, ne, Te, b2, nS , p̄kS)

(KMAC
S ,KMAC

C , shk)← KDF2(ikm, pre)

TS ← MAC.Tag(KMAC
S ,H3(pre))

σ2
$←− Σ.Sign(skSigHSM, b2)if Σ.Vfy(pkSigHSM; b2;σ2) ̸= 1 �b2 ,e cred, ne, Te ,

nS , p̄kS , TS ,σ2
�aid,b2 ,e cred, ne, Te ,

nS , p̄kS , TS , σ2return (RECRESULT, FAIL)

else :

y ← H2(pw, b
1/r2
2)

(Kexport,Kmask,Kauth)← KDF1(y, ne)

T ′
e ← MAC.Tag(Kauth, pkDH

HSM ∥ ne ∥ e cred)
if T ′

e ̸= Te return (RECRESULT, FAIL)

else :
skC ← e cred⊕Kmask

pre← (a2, nc, p̄kC , pk
DH
HSM, e cred, ne, Te, b2, nS , p̄kS)

ikm← (p̄k
s̄kC
S , pkDH

HSM
s̄kC

, p̄k
skC
S)

(KMAC
S ,KMAC

C , shk)← KDF2(ikm, pre)

T ′
S ← MAC.Tag(KMAC

S ,H3(pre))
if T ′

S ̸= TS return (RECRESULT, FAIL)

else :
T ′
C ← MAC.Tag(KMAC

C ,H3(pre, T
′
S)) sT ′

C -(RECRESULT, aid,T ′
C)

TC ← MAC.Tag(KMAC
C ,H3(pre ∥ TS))

if T ′
C ̸= TC :

return �(RECRESULT, aid, FAIL)

(RECRESULT, IDC, FAIL) else :
sec set ctr (aid, 10)

e← AE.Dec(shk , c) �
c

� aid, c
c $←− AE.Enc(shk , e)

if e = ⊥: return
CleanUp, return (RECRESULT, FAIL) (RECRESULT, IDC, SUCC)

else :
K $←− AE.Dec(Kexport , e)
CleanUp, return (RECRESULT,K)

Figure 5: The WBP key recovery. Light blue boxes indicate 2HashDH instructions of OPAQUE;
light gray boxes mark 3DH of OPAQUE; dark gray boxes denote other OPAQUE instructions; non-colored
parts were added by WhatsApp. sa is the IDC-authenticated transmission of a.

11

computing a1 ← H1(pw)
r1 using a hash function H1 : {0, 1}∗ → G. The client sends a1 to the server over

the IDC-authenticated channel.
Upon receiving a1 from IDC, the server chooses a fresh aidnew ∈ {0, 1}∗ that is called “account iden-

tifier” by WhatsApp7 and checks if the client with IDC has ever initiated the protocol and thus has already
an aid in its array acc. If so, it sets aidold ← acc[IDC] and acc[IDC]← aidnew, otherwise it sets aidold = ⊥.
Finally, the server sends aidnew, aidold, a1 to the HSM. Observe that the HSM never receives any identifying
information (e.g., IDC) about the clients other than the value aid. That is, the HSM is not aware of the
concept of a client IDC.

Upon receiving the server’s message, the HSM “tombstones” all information associated with aidold
from its outsourced storage (with the instruction sec delete(aidold)). Then it checks whether aidnew has
ever been used before.8 If it was, then the HSM aborts and outputs aidnew, FAIL to the server. If the
HSM sees aidnew for the first time, it picks a random key KPRF

aidnew
$←− Zp for that specific aidnew to be used

in the 2HashDH OPRF. The HSM then uses the client’s blinded password a1 to compute b1 ← a
KPRF

aidnew
1 .

Furthermore, the HSM samples a nonce n1
$←− {0, 1}λ uniformly at random and signs b1 ∥ n1 under its

secret key skSigHSM. Finally, it computes a transcript hash trHSM of the values a1, b1, n1 with a hash function
H3 : {0, 1}∗ → {0, 1}λ, and sends back aidnew, b1, n1 together with the resulting signature σ1 to the server,
which relays b1, n1, σ1 to the client.

After receiving the HSM’s message from the server, the client first verifies σ1 using pkSigHSM and aborts
if the verification fails. Otherwise, it unblinds the server’s response b1 using the randomness r1 and de-
rives the OPRF output y ← H2(pw, b

1/r1
1) with hash function H2 : {0, 1}∗ → {0, 1}λ. Next, further

keys Kexport,Kmask,Kauth are derived from the OPRF output y with the help of a key derivation func-
tion KDF1. The obtained keys are used as follows. Kmask is used as an XOR mask to obtain e cred, hiding
the client’s Diffie-Hellman secret skC . Kauth is used to compute a MAC tag Te over pkDH

HSM ∥ ne ∥ e cred,
where ne is a randomly sampled nonce of length λ. Finally, Kexport is used to encrypt K to produce the
envelope9 e ← AE.Enc(Kexport,K). Similarly to the HSM, the client also computes a transcript hash
trC ← H3(a1, b1, n1) and compose a message m← e ∥ trC ∥ pkC ∥ e cred ∥ne ∥Te, which is then encrypted
under the HSM’s public key (E ← PKE.Enc(pkEncHSM,m)) to hide its content from the intermediary server.
The encrypted envelope E is sent to the server over the IDC-authenticated channel. The client runs CleanUp
to delete all assigned variables and received messages10 (including r1, skC) and outputs the backup key K.

Upon receiving E from a client with IDC, the server looks up acc[IDC]← aidnew and forwards aidnew,E
to the HSM. After receiving the message, the HSM decrypts E and checks whether the received transcript
hash trC matches its own view of the transcript (trHSM). If the transcripts do not match, it aborts sending
aidnew, FAIL to the server that outputs IDC, FAIL. In case of matching transcripts, the HSM initializes a
counter ctr that aims to track the unsuccessful key recovery attempts and stores in the secure storage the
tuple (aidnew,K

PRF
aidnew

, e ∥ pkC ∥ e cred ∥ ne ∥ Te, ctr). Finally, it informs the server about the successful
completion of the initialization phase by sending aidnew, SUCC that outputs IDC, SUCC concluding the key
initialization.

7We remark that this terminology is slightly misleading, as aid does not identify a client’s account but is rather a “backup
identifier”. If the same client initializes many backups, possibly with different passwords, then each backup will be assigned a new
aid and only the most recent backup is kept.

8To this end, the HSM tries to retrieve a backup associated with aidnew from the secure storage. If aidnew is currently in use,
this will succeed. If aidnew was previously used but corresponds to an already deleted backup, an empty “tombstoned” backup is
returned to the HSM, showing that aidnew is not fresh.

9Note that the WBP’s envelope is not equivalent to an OPAQUE envelope.
10We note that the abstract CleanUp instruction might be implemented without any explicit deletion, e.g., by keeping these

ephemeral values only in volatile memory and never storing them persistently.

12

Key Recovery. The goal of the WBP recovery phase is to enable users, who do not have access anymore
to their backup key K, to recover it using the password they entered during key initialization. On input of
pw′, the WhatsApp client app first prepares its input r2, a2 to the 2HashDH OPRF the same way as during
initialization, samples an ephemeral Diffie–Hellman key-pair (p̄kC , s̄kC) for the 3DH protocol, and also
samples a uniformly random nonce nC . Then nC , p̄kC , a2 are sent to the server over the IDC-authenticated
channel.

Upon receiving the client’s message, the server checks the array acc and if it does not contain IDC,
then it aborts because no user with the identifier IDC initialized any backup keys. Otherwise, it attaches the
account identifier aid← acc[IDC] to the client’s message and sends these to the HSM.

When receiving the server’s message, the HSM retrieves the record from the secure storage that is
indexed by aid. If no such record is found, it returns failure to the server. Otherwise the HSM retrieves
the record containing the per-client OPRF-key KPRF

aid , the current counter value ctr, and m′ that is parsed as
m′ = e∥pkC ∥e cred∥ne∥Te. If ctr = 0, then the HSM deletes the record indexed with aid from the storage
and informs the server of this. If ctr > 0, then its value is decreased by one and the stored record for aid is

updated with the new ctr value. Next, as in the key initialization phase, the HSM computes b2 ← a
KPRF

aid
2 as

a step of 2HsahDH. After sampling a uniformly random nonce nS , the execution of the 3DH protocol steps
follows. The HSM samples an ephemeral Diffie–Hellman key pair (p̄kS , s̄kS) and computes three shared

Diffie–Hellman secrets: p̄k
s̄kS
C , p̄k

skDH
HSM

C , pks̄kSC . Using these shared secrets and the preamble pre, which is
essentially a concatenation of the full protocol transcript (a2, nc, p̄kC , pk

DH
HSM, e cred, ne, Te, b2, nS , p̄kS),

it derives the keys KMAC
S ,KMAC

C , and shk from a key derivation function KDF2. Finally, with KMAC
S it

computes a MAC tag TS over the hashed preamble, signs b2 with skSigHSM to get signature σ2 and sends
its response composed of aid, b2, e cred, ne, Te, nS , p̄kS , TS , σ2 to the server, who removes aid from the
message and forwards the rest to the client.

After receiving the HSM’s response from the server, the client first verifies the signature σ2 and aborts if
the verification fails. It then again derives the keys Kexport,Kmask,Kauth and verifies the MAC Te that was
created during the initialization. If the verification failed, it aborts. Otherwise it continues to reconstruct
skC by unmasking e cred with Kmask and then to derive the keys KMAC

S ,KMAC
C , shk from the three shared

Diffie–Hellman secrets p̄ks̄kCS , skDH
HSM

s̄kC
, p̄k

skC
S and the preamble pre. Using KMAC

S it verifies the MAC TS

and aborts if this is not successful. Otherwise the client computes MAC T ′
C over a hash of pre ∥ TS with the

key KMAC
C , which it then sends to the server through the IDC-authenticated channel.

After attaching aid to T ′
C , the server forwards these values to the HSM. Since the HSM knows all

values for computing the MAC tag that it has just received, it can verify the MAC. Note that with the MAC
verification it essentially checks whether pw = pw′. If the MAC verification fails, it aborts, otherwise it
resets the counter ctr to 10. Finally, the HSM encrypts e using shk and sends the resulting ciphertext c and
aid to the server who forwards c to the client.

As the final steps of the recovery phase, the client first decrypts c to obtain e (it aborts if the AE de-
cryption fails) and then decrypts e using the key Kexport to obtain the backup key K. As in case of the
initialization, before returning any output, the client always deletes all assigned variables and received mes-
sages (including shk, skC s̄kC , r2).

3.6 Extending the Number of Password Guesses

As we already noted in the protocol description in Section 3.5, the WBP only authenticates the client towards
the server but not towards the HSM. The usage of the so-called “account identifier” aid aims to bridge this
gap. The way it is used ensures that the HSM always associates every recovery request from the same IDC

13

with the same unique aid that was assigned for this IDC during its last successful key initialization request.
Furthermore, the HSM only keeps records of the last key initialization of a user under the aid that was
assigned to the corresponding IDC during this last initialization. Recall that in order to limit the number of
password guesses against some account, each password guess has to be associated with the targeted account.
It turns out that this cannot be guaranteed in case of the WBP when the server is malicious. The reason for
this is that the server is in charge of assigning aids for IDCs, and neither the client nor the HSM can check
this because the former never sees their assigned aid, and the latter never learns the IDC of clients. This
allows the server to increase the number of password guesses in certain cases.

We demonstrate the attack with an example. Let us assume that some client with identity IDC has
already initialized a key and the HSM stored the corresponding record under aid. Now if the same client
runs key initialization again with the same password,11 the server is assumed to instruct the HSM to delete
the previous record by setting aidold ← aid. However, the execution of this step completely depends on
the server acting honestly. A malicious server might however proceed as if it has never seen IDC before
and make the HSM store qI records for IDC, if the client with IDC runs the key initialisation qI times. If
the client used the same password pw all qI times, the malicious server will have 10qI password guessing
opportunities, since it knows all the qI aids that are associated with IDC’s records.

Mitigating the attack. If the transcripts trHSM and trC contained information about the client identity
IDC, in a way that both the client and the HSM can verify this, then they would be able to notice if the server
is dishonest about the client identity. However, note that this countermeasure is very difficult to deploy
retroactively, since any changes in the programming of the HSM would require the setup ceremony to be
performed again.

4 Password-Protected Key Retrieval

In this section we give a formal definition of password-protected key retrieval (PPKR) in terms of an ideal
functionality. For the unfamiliar reader, we provide a short introduction to the basic UC framework in
Appendix B.

The Cryptographic Abstraction of the WBP. We introduce the concept of a password-protected key
retrieval (PPKR) protocol, which is a 2-party protocol executed by a client and a server. (Note that in the
WBP protocol, this client is the user’s WhatsApp client and this server is the combination of the WhatsApp
server and the HSM.) A PPKR protocol consists of two phases: (1) an initialization phase, where the client
generates a symmetric encryption key and, using a password, securely stores it with a server, and (2) a
recovery phase, where the client can recover their symmetric encryption key using a password.

The server may neither learn any information about the client’s password, nor their key from these
interactions, but only whether a recovery was successful. To provide a high-level intuition, we depict the
input-output behavior of the PPKR functionality in Figure 6. Besides this, we demand several properties
from a PPKR scheme that seem relevant for such a primitive in practice. These include protection against
online and offline dictionary attacks, and that it provides cryptographically strong encryption keys.

Remark 1. We note here that alternative modelings are possible. For example, one could case-tailor the
definition to the WhatsApp setting and formulate a variant of PPKR with three parties: the client, the

11WhatsApp is for mobile devices, connection loss may happen leading to a failure. After an unsuccessful attempt, the user
would most probably re-run initialization, likely with the same password.

14

Client Server

-INITC : pw � INITS

PPKR
initialization

�INITRESULT : K

-RECC : pw′
� RECS

PPKR
recovery

�RECRESULT : -RECRESULT :

K if pw = pw′, else FAIL SUCC if pw = pw′, else FAIL

Figure 6: Schematic overview of password-protected key retrieval with initialization on top and recovery
at the bottom, already using the interface names of our functionality FPPKR. In both phases, the server
does not provide any particular input but still has to participate in the protocol for the client to successfully
initialize and recover a key K, which is modeled in the ideal functionality by letting it provide the INITS
and RECS messages.

server, and the HSM. However, our notion with only two parties is more versatile: it can be used to analyze
protocols where the server relies on an HSM, as well as protocols where the server acts on its own, or relies
on arbitrarily many other entities, such as a cloud provider, offline storage, etc. The reason why this is
possible is that usage of such “helpers” is well integrated into the UC framework [9] through the notion
of so-called hybrid functionalities, which can be modularly “plugged” into protocol descriptions without
“spilling” into the definition of the underlying primitive.

Expected Security Properties. We now describe which security properties we intuitively expect from a
PPKR scheme, and thus want to formalize in an ideal PPKR functionality FPPKR. The key K that is
generated in a PPKR scheme should be usable without restrictions in any other application, thus we require
that K is indistinguishable from random. Note that in particular this implies that neither the server nor the
adversary can influence the generation of K in any way. Moreover, we expect K to remain secret from
everyone but the client that computed it throughout the lifetime of the PPKR protocol. Hence, FPPKR

should leak no information on the key, and any output given by FPPKR to the server or the adversary must
be independent from K, unless the server gets corrupted and correctly guesses the client’s password. In
order to limit the ability to guess passwords via dictionary attacks, we expect FPPKR to (1) not leak any
information about a password used by some client to any other party beyond whether a password used in
a recovery is the same as in the most recent initialization by that client, and (2) allow only a small number
of failed recovery attempts before K is deleted. We further expect that clients are authenticated towards
the server12 and cannot be impersonated by other clients or the adversary, to ensure that any client’s key
remains secret from all other clients even if they knew the correct password. However, note that a corrupt
server might be able to skip client authentication13 and execute the protocol on behalf of any client by itself,

12We leave the concrete means of authentication to the application. In the case of the WBP, SMS-based authentication is used,
creating a one-to-one correspondence between IDC and phone numbers of WhatsApp users. Other authentication methods such
as biometrics (where IDC would correspond to, e.g., a fingerprint) or even device-bound strong authentication using signatures are
possible as well.

13We opted for a general treatment here, i.e., allowing client impersonation by the server. In fact, we could strengthen this (see
Section 4.2 for more details) but this depends on which mechanisms on the server side are corruptible.

15

i.e., without interacting with any client. Further, we expect that the server is authenticated towards clients
and cannot be impersonated by the adversary.

We summarize the list of expected security properties below.

• Pseudorandomness of K: Honest clients compute pseudorandom keys K, even if the server acts
maliciously.

• Secrecy of K: Initialized and recovered keys of any honest client remain hidden from even a malicious
server as long as the server does not correctly guess the honest client’s password.

• Uniqueness of K: If the server is honest, initialization of a key K by user C buries any key that C
previously initialized.

• Oblivious passwords: The initialization phase does not leak any information about the password to
even a malicious server.

• No online dictionary attacks: The recovery phase does not leak any information (1) about the pass-
word used by the client to even a malicious server, and (2) about the initialized password to even a
malicious client, beyond whether the password used during recovery matches the one used to create
the backup.

• Limited number of recovery attempts with wrong passwords: Let K denote the key initialized by
honest client C, and assume that C later runs the recovery phase 10 times consecutively with a wrong
password. Then the server erases all K-dependent information, i.e., K cannot be recovered anymore.
This must hold even if the client becomes maliciously corrupted after initializing K.

• Limited number of offline guesses: The above guarantee extends to maliciously corrupted servers,
i.e., after 10 wrong password guesses to recover any honestly initialized key K, K is buried and
cannot be retrieved by anyone anymore.14

• Client authentication: Only the client who initialized K or a malicious server can attempt to recover
K. This must hold even if the password used during initialization becomes publicly known.

• Server authentication: There is only one server in the system and it cannot be impersonated by the
adversary, unless the server gets corrupted.

4.1 A PPKR Functionality

In Figures 7 and 8 we describe the ideal functionality FPPKR for password-protected key retrieval. On a
high level, FPPKR implements a password protected lookup table that contains clients’ keys. When some
client executes the initialization phase, an entry for that client is created in the lookup table or updated if
an entry already existed. By executing the recovery phase, clients can access their entry in the table and
recover their key, but only if they pass password authentication. If they fail password authentication 10
times in a row, FPPKR “buries the key” by erasing the corresponding table entry of that user. Note that
while FPPKR maintains the table entries using client identifiers, FPPKR does not enforce the initialization
and recovery processes to run on the same physical client machine. In our model, we understand the client’s

14Note that the phrasing “any initialized” here reflects that the adversary can extend the number of admissible password guesses,
as described in Section 3.6. This is necessary to model the security achieved by WhatsApp’s protocol. We will discuss in Section 4.2
how the functionality can be strengthened.

16

party identifier as the identity under which the client device can authenticate. This way, if multiple devices
can authenticate under the same identity (as is possible, e.g., for the SMS-based authentication in the WBP),
INITC and RECC can be called from different machines.

Next we will explain the interfaces and record keeping of FPPKR. In Figures 7 and 8 we labeled all
instructions for easy referencing. FPPKR interacts with arbitrary clients and a single server S, where S is
encoded in the session identifier sid (server authentication). The functionality internally maintains different
types of records to keep track of ongoing and finished initialization and recovery phases. If FPPKR ever tries
to retrieve a record that does not exist, it ignores the query causing this.

Initialization Phase. Whenever a client IDC starts a new initialization, it calls the INITC interface with
the password pw the user has chosen. FPPKR then (IC.1) generates a fresh key K $←− {0, 1}λ (ensuring
pseudorandomness of K) for IDC and records that IDC has started a new initialization by creating a record
⟨INITC, sid, IDC, pw,K⟩ (IC.2). This newly created record overwrites any existing record of type INITC for
IDC, which ensures that a client can only have one ongoing intialization session. Finally, the functionality
informs the server S and the adversary A that the client IDC has started a new initialization (IC.3).

If the server agrees to participate in the initialization with IDC, it calls the INITS interface, which takes
as input two (not necessarily distinct) client identities IDC and IDC

∗. The additional identity IDC
∗ is only

effective if the server is corrupt, and reflects that a malicious server can simply ignore client authentication
and claim a different identity has authenticated to him. FPPKR now retrieves the INITC record of IDC, which
ensures that the query only proceeds if IDC has started a new initialization (IS.1). Then it creates a FILE

record containing the password pw and key K from the retrieved INITC record and, depending on whether
the server is honest or corrupt, either the identity IDC or IDC

∗ (IS.2 and IS.3). Thus, a corrupt server can
freely choose for which identity the FILE record is created, while FILE records created for an honest server
always contain the same identity as the corresponding INITC record. A newly created record overwrites any
existing record of the same identity to ensure that any key K ′ that may have been generated in a previous
initialization by IDC cannot be recovered anymore (Uniqueness of the key). However, since a malicious
server can make FPPKR store files under different identities IDC

∗, this guarantee holds only as long as the
server is honest. Indeed, FPPKR allows a malicious server to make FPPKR store all the password-protected
key records that any honest client ever initialized (see Section 4.2 for a discussion of this weakness).

After the server agreed to participate in the initialization with IDC, the adversary may let FPPKR com-
pute the output of the initialization phase for the client with either the interface COMPLETEINITC or
COMPLETEINITC-DOS and for the server with either COMPLETEINITS or COMPLETEINITS-DOS. The
functionality does not enforce an order in which the parties receive their output and leaves this decision to
the adversary A. All these interfaces ensure that only one output can be generated towards client and server
for every ongoing initialization session, by retrieving (CIC.1,CICD.1) and deleting (CIS.1,CISD.1) the
corresponding session records (in the case of CIS.1, the record is not deleted but assigned a special marking
- see below for details). The adversary’s choices are as follows:

• COMPLETEINITC outputs K from the session record to the client (CIC.2)
• COMPLETEINITC-DOS outputs FAIL to the client (CICD.2)
• COMPLETEINITS outputs SUCC to the server (CIS.3)
• COMPLETEINITS-DOS outputs FAIL to the server (CISD.2)
Additionally to these outputs, the COMPLETEINITS interface ensures that FPPKR installs a password-

protected backup key file for IDC that contains K. This works as follows: instead of deleting it, FPPKR

marks the FILE record of IDC as STORED (CIS.1). Looking ahead, in the recovery phase clients can only
recover keys from FILE records that are marked STORED. FPPKR then initializes a counter txsid[IDC] to 10

17

FPPKR is parameterized with a security parameter λ. FPPKR talks to a server S where S is encoded in sid. FPPKR also talks to the
adversary A, and arbitrary clients IDC. If the functionality tries to “retrieve a record” that does not exist, it ignores the incoming
message. We write txsid[·] for a list of counters.

Offline attacks
On input (MALICIOUSINIT, sid, IDC, pw

∗,K∗) from A: // A corrupt server can impersonate an either honest or corrupt IDC and
initialize on his behalf.

MI.1 If S is honest ignore this input.
MI.2 Record ⟨FILE, sid, IDC, pw

∗,K∗⟩, overwriting any existing record ⟨FILE, sid, IDC, ∗, ∗⟩. Set txsid[IDC]← 10

On input (MALICIOUSREC, sid, IDC, pw
∗) from A: // Attacking an honest client’s stored key: bury the key after 10 subsequent

wrong password guesses.
MR.1 If S is honest ignore this input. // Server needs to be corrupt to mount an offline attack.
MR.2 Retrieve record ⟨FILE, sid, IDC, [pw], [K]⟩ marked STORED.
MR.3 If txsid[IDC] = 0, delete record ⟨FILE, sid, IDC, pw,K⟩ and output (DELREC, sid, IDC) toA // The key is buried if zero

guesses remain.
MR.4 If pw∗ = pw, set txsid[IDC] ← 10 and output (sid,K) to A. Otherwise, set txsid[IDC] ← txsid[IDC] − 1 an output

(sid, FAIL) to A

Initialization phase
On input (INITC, sid, IDC, pw) from IDC (or A if IDC is corrupt): // Client always starts initialization

IC.1 Choose K $←− {0, 1}λ
IC.2 Record ⟨INITC, sid, IDC, pw,K⟩, overwriting any existing record ⟨INITC, sid, IDC, ∗, ∗⟩ // Storing IDC’s current init

state; a client can only be in one initialization session
IC.3 Send (INITC, sid, IDC) to A and to S

On input (INITS, sid, IDC, IDC
∗) from S (or A if S is corrupt): // Server agrees to assist IDC in initialization. If S is corrupt, A

can reroute the initialization to a different IDC
∗. Note that IDC

∗ does not have to be the identity of an existing client and can be
an arbitrary identity

IS.1 Retrieve ⟨INITC, sid, IDC, [pw], [K]⟩ // Continue only if IDC started initialization already
IS.2 If S is honest, record ⟨FILE, sid, IDC, pw,K⟩, overwriting any existing record ⟨FILE, sid, IDC, ∗, ∗⟩, and send

(INITS, sid, IDC) to A // Storing S’s current init state; the server can only be in one initialization session. Invari-
ant: There is only one key stored

IS.3 Otherwise, record ⟨FILE, sid, IDC
∗, pw,K⟩, overwriting any existing record ⟨FILE, sid, IDC

∗, ∗, ∗⟩.
On input (COMPLETEINITC, sid, IDC) from A: // Client completes the protocol and outputs a key

CIC.1 Retrieve record ⟨INITC, sid, IDC, ∗, [K]⟩ and delete it
CIC.2 Output (INITRESULT, sid,K) to IDC (or A if IDC is corrupt)

On input (COMPLETEINITS, sid, IDC) from A: // Server concludes initialization with file storage
CIS.1 Retrieve record ⟨FILE, sid, IDC, ∗, ∗⟩ not marked STORED and mark it STORED // Note: there is only one such record

thanks to overwriting in INITS interface. This becomes the stored key now!
CIS.2 Set txsid[IDC]← 10
CIS.3 Send (INITRESULT, sid, IDC, SUCC) to S (or A if S is corrupt)

Attacks on Initialization Phase

On input (COMPLETEINITC-DOS, sid, IDC) from A: // DoS attack against IDC, who concludes the initialization session with
failure.

CICD.1 Retrieve record ⟨INITC, sid, IDC, ∗, ∗⟩ and delete it
CICD.2 Output (INITRESULT, sid, FAIL) to IDC (or A if IDC is corrupt)

On input (COMPLETEINITS-DOS, sid, IDC) from A: // DoS attack against the server, such that it cannot store a file
CISD.1 Delete any record ⟨FILE, sid, IDC, ∗, ∗⟩ // Server’s state in current initialization session no longer needed
CISD.2 Send (INITRESULT, sid, IDC, FAIL) to S (or A if S is corrupt)

Figure 7: Ideal functionality FPPKR for password-protected key retrieval, offline attacks and initialization
interfaces. For a stronger version of FPPKR, boxed code can be dropped (see Section 4.2).

18

Recovery Phase
On input (RECC, sid, IDC, pw

′) from IDC (or A if IDC is corrupt):
RC.1 Record ⟨RECC, sid, IDC, pw

′⟩, overwriting any existing record ⟨RECC, sid, IDC, ∗⟩ // Storing IDC’s current init state; a
client can only be in one recovery session.

RC.2 Send (RECC, sid, IDC) toA and S. // S learns which clients started recovery, with the guarantee that attempts by honest
clients cannot be faked.

On input (RECS, sid, IDC, IDC
∗) from S (or A if S is corrupt): // Server agrees to assist IDC in recovery. If S is corrupt, A can

reroute the recovery to a different IDC
∗. Note that IDC

∗ does not have to be the identity of an existing client and can be an arbitrary
identity

RS.1 If S is honest, set IDC
′ ← IDC, otherwise set IDC

′ ← IDC
∗

RS.2 Retrieve record ⟨RECC, sid, IDC, [pw
′]⟩ // Continue only if IDC started recovery already

RS.3 If there exists no record ⟨FILE, IDC
′, sid, [pw], [K]⟩ marked STORED, send (RECRESULT, aid, FAIL) to S (or A if S is

corrupt). Else retrieve the record. // The currently stored K and pw (for IDC
′) are used. If IDC

′ re-inits afterwards, it
has no effect on this recovery session.

RS.4 If txsid[IDC
′] = 0, delete record ⟨FILE, sid, IDC

′, pw,K⟩ marked STORED and send (DELREC, sid, IDC
′) to S and A

Else continue.
RS.5 Set txsid[IDC

′]← txsid[IDC
′]− 1

RS.6 Append pw and K to record ⟨RECC, sid, IDC, pw
′⟩, overwriting any existing record ⟨RECC, sid, IDC, ∗, ∗, ∗⟩ // The

recovery session of IDC is used
RS.7 Send (RECS, sid, IDC

′, pw
?
= pw′) to A // A ppKR protocol may not hide whether recovery was successful or not

On input (COMPLETERECC, sid, IDC) from A:
CRC.1 Retrieve record ⟨RECC, sid, IDC, [pw

′], [pw], [K]⟩. If record is marked RECOVERED, delete it. Otherwise, mark it
RECOVERED. // Ensures that record can be retrieved twice before deletion.

CRC.2 Determine the output as follows:
(1) If pw = pw′ then set K ′ ← K // Recovering the key!
(2) In all other cases, set K ′ ← FAIL

CRC.3 Send (RECRESULT, sid,K ′) to IDC (or A if IDC is corrupt).

On input (COMPLETERECS, sid, IDC) fromA// Server finishes recovery session by learning whether the password was correct or
not:

CRS.1 Retrieve record ⟨RECC, sid, IDC, [pw], [pw
′], [K]⟩. If record is marked RECOVERED, delete it. Otherwise, mark it

RECOVERED. // Ensures that record can be retrieved twice before deletion.
CRS.2 If pw = pw′, set txsid[IDC]← 10 and send (RECRESULT, sid, IDC, SUCC) to S.
CRS.3 If pw ̸= pw′, then send (RECRESULT, sid, IDC, FAIL) to S (or A if S is corrupt).

Attacks on Recovery Phase

On input (COMPLETERECC-DOS, sid, IDC) from A // Network attacker or malicious server can always make the client fail:
CRCD.1 Retrieve record ⟨RECC, sid, IDC, ∗, ∗, ∗⟩ and delete it.
CRCD.2 Send (RECRESULT, sid, FAIL) to IDC (or A if IDC is corrupt).

On input (COMPLETERECS-DOS, sid, IDC) fromA: // Server finishes with failure. In particular, it never learns if the password
was correct
CRSC.1 Retrieve record ⟨RECC, sid, IDC, ∗, ∗, ∗⟩ and delete it.
CRSD.2 Output (RECRESULT, sid, IDC, FAIL) to S (or A if S is corrupt).

Figure 8: Ideal functionality FPPKR, recovery interfaces.

19

(CIS.2), which indicates the remaining recovery attempts for the newly created FILE record, and sends the
output (INITRESULT, sid, IDC, SUCC) to the server (CIS.3).

This concludes the description of FPPKR’s initialization phase. The absence of any K- or pw-dependent
information in the outputs towards the server (IC.3,CIS.3,CISD.2) and the adversary (IS.2) ensures secrecy
of K and password obliviousness during initialization.

Recovery Phase. The general structure of record keeping and interfaces of the recovery phase are very
similar to the initialization phase. First, a client starts a recovery session with the RECC interface, then
the server has to agree in participating in the recovery with the RECS interface, and finally there are again
for each party two interfaces to let FPPKR output either success or failure to the parties. For the RECC
interface, IDC provides as input the password pw′ it chose for this recovery attempt. FPPKR then records
this in a RECC record (RC.1), again overwriting any existing RECC record, and outputs to S and A that
IDC started a recovery session (RC.2).

If the server agrees to participate in the recovery session with IDC it calls the RECS interface with
two (not necessarily distinct) client identities IDC and IDC

∗, where again the second identity IDC
∗ being

given by the server allows a malicious server to ignore client authentication and claim a different identity is
recovering. FPPKR now does three things:

• FPPKR checks whether IDC has started recovery in the first place by looking for a corresponding client
recovery session (RS.2) and drops the query otherwise.

• Then,FPPKR grabs password and key from the stored key record with identity IDC
′ (RS.3), and writes

them into the client’s recovery session record. With this, FPPKR lets a corrupt server, who can let IDC
′

be any IDC
∗ (RS.1), re-route the recovery attempt of any honest client to the password-protected key

record of any other honest client, which is again motivated by the fact that a malicious server can
simply skip client authentication. Conversely, if the server is honest, FPPKR ensures IDC

′ = IDC and
hence gives access to some FILE record containing an identity IDC only to a client with that identity
(Client authentication during recovery).

• After finding a file for a recovery attempt in the previous step, FPPKR checks if the recovery attempt
counter for IDC

′ has reached zero (RS.4). In that case, it deletes the FILE record of IDC
′ marked

STORED to ensure that the key contained in that record cannot be recovered anymore (limited number
of recovery attempts with wrong passwords) and outputs DELREC to S and A. Otherwise, the
recovery attempt counter for IDC

′ is decremented (RS.5) and the password pw and key K obtained
from the FILE record are appended to the RECC record (RS.6).

Extending the record again serves the purpose of recording that S agreed to participate in the recovery
with IDC. Note that this extended record is not deleted if IDC starts a new recovery session with another call
to the RECC interface. This reflects the fact that the server should still be able to finish a recovery session
until it agrees to participate in another recovery session with IDC. Finally, the functionality gives the output
(RECS, sid, IDC

′, pw
?
= pw′) to the adversary A (RS.7). We let FPPKR leak the latter bit to the adversary

because many protocols, including the WBP, leak via their communication pattern whether the client used
the correct password or not. For example, a server might only send its last message to the client if it has
previously learned that the client’s password was correct.

To complete the recovery session, the adversary calls either COMPLETERECC or COMPLETERECC-DOS
and either COMPLETERECS or COMPLETERECS-DOS, again with FPPKR enforcing no order in which the
interfaces are called. In COMPLETERECC the functionality retrieves the extended RECC record (CRC.1)
and compares the two password pw and pw′ contained in it (CRC.2). If they are the same, it outputs the key
K contained in the record to the client and otherwise outputs FAIL to the client. To ensure that both the client

20

and the server can finish the recovery in any order, the RECC record is marked as RECOVERED or deleted if
it already is marked as RECOVERED (CRC.1). Similarly, in the COMPLETERECS interface FPPKR retrieves
the extended RECC record (CRS.1) and outputs either SUCC or FAIL to the server depending on whether
the passwords pw and pw′ in the RECC record match (CRS.2 and CRS.3). Additionally, if the passwords
match, the recovery attempt counter txsid[IDC] is reset to 10 (CRS.2). To again enforce no order on which
party receives its outputs first, the RECC record is marked as RECOVERED or deleted if it already is marked
as RECOVERED. Using this mechanism both parties receive their output once, and the record is deleted after
both parties received their output.

The two interfaces COMPLETERECC-DOS and COMPLETERECS-DOS behave exactly the same. The
RECC record of IDC is deleted (CRCD.1 and CRSD.1) and FPPKR outputs FAIL to the corresponding
party (CRCD.2 and CRSD.2). In these interface we do not use the mechanism of marking the record
RECOVERED, since we assume that if either party produces the output FAIL the other party cannot success-
fully finish the recovery anymore.

It can be seen from the outputs towards the server (RC.2,CRS.2-3,CRSD.2) and the adversary (RS.7)
that only one bit of information about the password used by an honest client during recovery (i.e., match or
no match) is leaked, protecting the client from online dictionary attacks. Similarly, adversary and client
learn only the match bit about the password contained in the file that the server uses during a recovery
session (RS.7,CRC.3,CRCD.2).

Offline Attacks. The adversary has access to two interfaces MALICIOUSREC and MALICIOUSINIT to
mount offline attacks. In both interfaces the adversary impersonates some client IDC, however, as described
in the discussion of the expected security properties, a client can only be impersonated if the server is
corrupt. Therefore, both queries are ignored by FPPKR if S is honest (MR.1 and MI.1).

With the MALICIOUSINIT interface the adversary impersonates a client IDC and executes a new initial-
ization for IDC. For this, A can choose a new password pw∗ and a new key K∗, which are then stored in a
new FILE record marked STORED that overwrites any existing FILE record for IDC (MI.2). FPPKR resets
the counter txsid to 10 since with any new initialization the client gets 10 new recovery attempts.

With the interface MALICIOUSREC the adversary impersonates a client and tries to recover a client’s key
from a guessed password. To this end, A inputs the client identity IDC and a password guess pw∗. FPPKR

retrieves the FILE record of IDC marked STORED (MR.2) and checks if IDC has any recovery attempts left
by checking if txsid[IDC] = 0. If IDC has no recovery attempts left, it deletes the FILE record of IDC (limited
number of offline guesses) and outputs (DELREC, sid, IDC) to A to notify A that the record was deleted
(MR.3). Otherwise, the functionality proceeds to check whether the guessed password pw∗ matches the
password pw from the FILE record. If the passwords match, the adversary gets access to the key stored in
the FILE record, and otherwise FPPKR returns FAIL to the adversary (MR.4).

Differences between PPKR and 1-PPSS A password-protected secret sharing scheme [3] allows a user
to retrieve a password-protected secret from a set of servers. The servers cannot derive or offline-attack
the user’s data unless a certain subset of them colludes. A PPKR scheme could be interpreted as a 1-PPSS
scheme, i.e., where only one server is involved in storing and retrieving the password-protected secret. While
both primitives are very similar considering only honest parties, it is actually the server corruption model that
greatly differs for PPKR and 1-PPSS. Intuitively, the one server of a 1-PPSS scheme holds the only share of
a secret (or key, in the terminology of PPKR), i.e., the full secret. If such a server is compromised, unlimited
offline guesses on the shared user secret are unavoidable. PPKR is stronger: upon server compromise, only
a limited number of password guesses are allowed on user secrets. Hence, PPKR never falls back to 1-PPSS,

21

due to the stronger guarantees upon server compromise.

4.2 On Strengthening FPPKR

We discuss a potential strengthening of FPPKR regarding the limitation of offline guesses by a malicious
server. While FPPKR buries keys of honest users whenever a user re-initializes (e.g., when refreshing the
key, or when changing the password) as long as the server is honest, it does not guarantee uniqueness of
clients’ backup keys if the server is corrupted. Consequently, the limitation of offline guessing attempts
holds only per initialized key of a user, and not per user. The reason why we go with the weaker FPPKR

is that the WBP cannot guarantee the stronger version, and thus we have to reflect this weakness for the
security analysis of the actual protocol. However, for completeness, we state here the properties that we
would ideally like to demand from FPPKR, and the corresponding functionality can be read from Figure 7
by dropping the boxed code . Figure 8 does not change. A bit more detailed, we could strengthen FPPKR

by disallowing the adversary to reroute initializations of honest clients IDC to new identities IDC
∗, such that

upon honest re-initialization, FPPKR always buries the former key of that client. The security guarantees are
then strengthened as follows.

• Uniqueness of K: If the server is honest, initialization of a key K by user C buries any key that C
previously initialized, even if the server is malicious.

• Limited number of offline guesses: The above guarantee extends to maliciously corrupted servers,
i.e., after 10 wrong password guesses to recover any honestly initialized the latest honestly initialized
key K of any client, K is buried and cannot be retrieved by anyone anymore.

5 Security Analysis

The Difficulty of a Security Analysis. One might hope that the security of the WBP directly follows
from the security of its OPAQUE component. There are two main reasons why that does not hold true. First,
OPAQUE is a key exchange protocol that results in two parties sharing a key, while the goal of the WBP is
to hide the key from the server. Second, the WBP deploys version 03 of the OPAQUE Internet Draft [26] to
which the security analysis of the OPAQUE framework [24] does not apply, for a multitude of reasons that
we describe in Appendix G.

The main challenge when performing a security analysis of the WBP is to tame its complexity (cf. Fig-
ure 4 and Figure 5). Since we want to focus on the actual cryptographic protocol, we do not to include the
way in which the HSM outsources data storage in the security analysis. WhatsApp deploys a Merkle tree
based outsourced storage routine that lets the HSM put encrypted data onto the WhatsApp server’s storage,
which should guarantee integrity of the data and the ability of the HSM to detect malicious erasures by the
WhatsApp server. We leave the analysis of this scheme as a future task, and in this work simply make the ex-
act same assumptions about it that are claimed in the WBP whitepaper [33]. To further tame the complexity
of the proof of the WBP, we modularize the security proofs of the underlying OPRF and the authenticated
key exchange (AKE) scheme 3DH. Since previous security analyses did not apply to the protocol versions
deployed by the WBP, we first show their security separately, which may be of independent interest. Then
we use the resulting simulators as subcomponents of the WBP simulator. This proof technique, which was
already used for AKE in [24], avoids formulating the WBP in the AKE- and OPRF-hybrid model. The latter
is not even possible, due to the non-black-box use that the WBP makes of these components. Altogether,
our analysis (1) shows a lower bound on the security of the WBP, (2) shows the security of the multi-key

22

2HashDH OPRF and AKE building blocks as deployed by the OPAQUE internet draft version 3 [26], as
well as malicious client security of that OPAQUE version.15

Modeling the HSM. We model the HSM as a hybrid functionality FHSM that can be queried by the
server as in Figure 4 and Figure 5. That is, FHSM contains exactly the code that the HSM contains in
these figures. For completeness and clarity, FHSM is depicted in Figure 9. In addition, FHSM provides an
interface for clients to retrieve pkHSM, which models the setup process that ensures that clients have the
“right” WhatsApp public key hard-coded into their smartphones.16

In the UC framework, messages sent between some party and an ideal functionality are perfectly se-
cure, meaning no network adversary can intercept them or tamper with them. So modeling the HSM key
distribution as idealized communication expresses our assumptions

• that the user installs the correct WhatsApp client on her phone,
• that WhatsApp’s setup ceremony of the HSM leads to honestly generated keys being distributed to

the clients,
• and that only the HSM knows the secret key of the HSM.

However, analyzing the mechanisms to ensure the above assumptions is not in the scope of this work.

Treatment of Out-of-Order Messages. We assume that the protocol parties ignore messages that are
received out-of-order. That means that during an initialization or a recovery, the parties do nothing upon
receiving a message that is not formatted as expected. The only exception to this is the respective first
message of an initialization or recovery, i.e., a1 for initialization or (nC , p̄kC , a2) for recovery. If such
a message is received, the currently running initialization (or recovery, resp.) is discarded and the new
initialization (or recovery, resp.) is continued. This way, there is never more than one initialization (or
recovery, resp.) running per user.

Corruption Model. All corruptions are malicious, meaning that the adversary can fully control not only
the communication but also the behavior of a corrupted party. We consider adaptive corruptions of clients
and the server. However, we add the restriction that clients cannot be corrupted during an ongoing ini-
tialization or recovery session. More precisely, the environment is not allowed to corrupt some client IDC

if, following the most recent (INITC, ∗) input from the environment to IDC, IDC did not produce a cor-
responding output (INITRESULT, ∗) yet. Analogously, if following the most recent (RECC, ∗) input from
the environment to IDC, IDC did not produce a corresponding output (RECRESULT, ∗) yet, the environ-
ment is not allowed to corrupt IDC as well. We deem this reasonable, since the time it takes to execute the
initialization or recovery protocol is relatively short. Formally, this means that the effect of adaptive client
corruptions is that the adversary (1) learns all values that the client stores after completion of an initialization
or recovery phase, namely key K, and (2) controls the client behavior from that point on.

Let AE′ be the AE scheme that is implicitly used in Figures 4 and 5 to encrypt skC , that is:

• KeyGen′(1λ)→ (Kmask,Kauth), where Kmask,Kauth $←− {0, 1}λ

15Our proof considers the security of OPAQUE only against a malicious client, since the OPAQUE server is run on the incorrupt-
ible HSM.

16One might be tempted to model this by giving the HSM’s public key as input to the client instead. However, that would mean
that the UC environment machine can give public keys to clients for which the environment knows the corresponding secret key.
For WBP the clients have a hard-coded public key for which only the HSM knows the secret key, so this would not adequately
model WBP and make the already complex security analysis unreasonably more complex.

23

Ideal functionality FHSM

The functionality talks to a server S hardcoded in sid and to arbitrary other parties P.

Initially:
KEnc

HSM
$←− {0, 1}λ

(skSigHSM, pkSigHSM) $←− Σ.KeyGen(1λ) On input (RECS, aid, nc, p̄kC , a2) :

(skEncHSM, pkEncHSM) $←− PKE.KeyGen(1λ) (KPRF
aid ,m, ctr)← sec retr(aid)

(skDH
HSM, pkDH

HSM) $←− DH.KeyGen(1λ) if no record can be found:
pkHSM = {pkSigHSM, pkEncHSM, pkDH

HSM} return (RECRESULT, aid, FAIL)

skHSM = {skSigHSM, skEncHSM, skDH
HSM,KEnc

HSM} parse m = e ∥ pkC ∥ e cred ∥ ne ∥ Te

if ctr = 0 :
On input (GETPK) from P ∈ {IDC,S,A} return (DELREC, aid)
return pkHSM to P else :

set ctr′ ← ctr − 1
On input (INITS, aidnew, aidold, a1) from S : sec set ctr(aid, ctr′)

sec delete(aidold) b2 ← a
KPRF

aid
2

if sec retr(aidnew) is successful: nS
$←− {0, 1}λ

return (INITRESULT, aidnew, FAIL) (p̄kS , s̄kS)
$←− DH.KeyGen

else : pre← (a2, nc, p̄kC , pk
DH
HSM, e cred,

KPRF
aidnew

$←− Zp ne, Te, b2, nS , p̄kS)

b1 ← a
KPRF

aidnew
1 ikm← (p̄k

s̄kS
C , p̄k

skDH
HSM

C , pkC
s̄kS)

n1
$←− {0, 1}λ (KMAC

S ,KMAC
C , shk)← KDF2(ikm, pre)

σ1
$←− Σ.Sign(skSigHSM; b1 ∥ n1) TS ← MAC.Tag(KMAC

S ,H3(pre))

trHSM ← H3(a1, b1, n1) σ2
$←− Σ.Sign(skSigHSM; b2)

return (aidnew, b1, n1, σ1) to S return (aid, b2, e cred, ne, Te, nS , p̄kS , TS , σ2)

On input (FILE, aidnew,E) : On input (RECRESULT, aid, T ′
C) :

m← PKE.Dec(skEncHSM;E) TC ← MAC.Tag(KMAC
C ,H3(pre ∥ TS))

parse m = (e ∥ trC ∥ pkC ∥ e cred ∥ ne ∥ Te) if T ′
C ̸= TC :

if trC ̸= trHSM : return (RECRESULT, aid, FAIL) to S
return (INITRESULT, aidnew, FAIL) to S else :

else : c $←− AE.Enc(shk; e)
sec store(aidnew, (K

PRF
aidnew

, sec set ctr(aid, 10)

e ∥ pkC ∥ e cred ∥ ne ∥ Te, ctr← 10)) return (aid, c) to S
return (INITRESULT, aidnew, SUCC) to S

Figure 9: The ideal functionality FHSM.

24

• Enc′((Kmask,Kauth),m)→ (m⊕Kmask,MAC.Tag(Kauth,m⊕Kmask))

• Dec′((Kmask,Kauth), (e cred, Te))→

{
⊥ if MAC.Vfy(Kauth,m) = 0

e cred⊕Kmask else

Theorem 1. Let H1,H2,KDF1,KDF2 be random oracles such that 2HashDH UC-realizes the “multi-
key” functionality FOPRF of Figure 10 and 3DH UC-realizes the authenticated key exchange func-
tionality FAKE-KCI of Figure 15. Let Σ = (Σ.KeyGen,Σ.Sign,Σ.Vfy) be an sEUF-CMA-secure sig-
nature scheme. Let MAC = (MAC.Tag,MAC.Vfy) be an sEUF-CMA-secure MAC. Let PKE =
(PKE.KeyGen,PKE.Enc,PKE.Dec) be an IND-CPA-secure public key encryption scheme. Let AE =
(AE.KeyGen,AE.Enc,AE.Dec) be an authenticated encryption scheme. Let AE′ = (KeyGen′,Enc′,Dec′)
have random-key robustness. Let H3 : {0, 1}∗ → {0, 1}λ be a collision resistant hash function.

Then the WBP as described in Figure 4 and Figure 5 UC-realizes the PPKR functionality of Figure 7 and
Figure 8 in the FHSM-hybrid model, assuming malicious adaptive corruption of clients as defined above,
malicious adaptive corruption of the server, and a client-authenticated channel between clients and the
server. Concretely, for any efficient adversary against WBP (interacting with FHSM), there is an efficient
simulator SIM that interacts with FPPKR and produces a view such that for every efficient environment Z , it
holds that

Dist
WBP,{FPPKR,SIM}
Z (λ) ≤ Dist

2HashDH,{FOPRF,SIMOPRF}
Z∗ (λ)

+Dist
3DH,{FAKE-KCI,SIM3DH}
Z∗ (λ)

+AdvsEUF-CMA
B,Σ (λ) + 2QRECAdvsEUF-CMA

B,MAC (λ)

+ 2AdvCR
B,H3

(λ) +QINITAdvIND-CPA
B,PKE (λ)

+QRECAdvIND-CPA
B,AE (λ) +QRECAdvINT-CTXT

B,AE (λ)

+

(
QINIT

2

)
2−λ +

(
QREC

2

)
2−λ+1 +

(
QKDF1

2

)
AdvRKR

B,AE′(λ),

where QINIT ∈ N is an upper bound on the number of initializations, QREC ∈ N is an upper bound on the
number of recoveries, QKDF1 is an upper bound on the number of KDF1 queries, and B, resp. Z∗, is the
adversary in the corresponding security experiments, which are detailed in Appendix E.

PROOF. A proof sketch outlining the proof steps can be found in Appendix E, where we also give the full
proof and simulator.

Discussion on the proof of the Theorem. We focus on analyzing an interaction between an honest client and
a corrupt WhatsApp server, for which we use H-C (for Honest-Corrupt) as shorthand notation. Recall that
the protocol is executed between clients who can authenticate themselves to the WhatsApp server, who in
turn uses an HSM which is incorruptible and runs the code depicted in Figure 9. The interfaces of FHSM

can only be accessed by the WhatsApp server, except for the GETPK which makes the HSM’s public keys
available to all protocol participants.

We argue that we only need to consider an interaction between an honest client and a corrupt server, by
explaining why this captures already all the other cases. Note that there are four cases overall, since we have
two types of entities (clients, and a server), both of which can be either corrupt or honest.

• Interactions between honest clients and an honest WhatsApp server: security against a semi-honest
server is a sub-case of the H-C analysis, since the corrupted server in the H-C case can also honestly
follow the protocol.

25

• Interactions between corrupt clients and a corrupt WhatsApp server: normally, it is not necessary to
analyze a setting where all parties are corrupted. However, in this case there is still the incorruptible
HSM, and our analysis needs to make sure that clients and the server cannot “team up” to, e.g., extract
the HSM’s signing key. However, since the corrupt WhatsApp server can already impersonate any
honest client (since it is only the channel between the client and the WhatsApp server that is client-
authenticated), corrupt clients cannot “add” to the power of a corrupt server, and hence this case is
covered by the H-C analysis as well.

• Interactions between (a) statically or (b) adaptively corrupt clients and an honest WhatsApp server:
(a) the honest WhatsApp has no secret inputs and hence simulating the honest server is trivial (or, put
differently, there is nothing to protect the server from). (b) adaptive client corruptions reveal no values
that were not already known to the environment, so there is nothing to simulate upon corruption. The
ability to newly authenticate under a previously honest client identity is already captured by the H-
C case, since a corrupt WhatsApp server can claim towards the HSM that any honest client sent a
specific message.

We can hence focus on simulating an interaction between an honest client and a corrupt WhatsApp
server using an (incorruptible) FHSM.

6 Conclusion and Future Work

We have presented the first formal security analysis of the widely-used WhatsApp backup protocol and con-
firmed that the WBP indeed provides strong security guarantees such as online protection of the password,
and the strength and secrecy of the backup key. However, we also show how a compromised WhatsApp
server can increase the number of admissible password guesses from only ctr on the most recent password
of the user, to qpw ∗ ctr on any password pw ever entered by the user, where qpw is the number of initializa-
tions performed with pw by the WhatsApp client device. Our analysis and formal modeling further spans a
multitude of interesting research questions, that we divide into three categories.

Widening the Scope of the Analysis. In this work we have only focused on the cryptographic core of
the WBP. Potential avenues for future research include a formal analysis of the (Merkle tree based) proto-
col which the HSM uses to securely outsource storage to untrusted servers. Another interesting direction
would be to extend the corruption model to proactive corruptions, which allows to investigate whether WBP
participants can recover faithfully from corruptions, e.g., after having granted compelled access at border
control.

Direct Improvements of the WBP. The increased number of password guesses is only possible because
the HSM cannot authenticate the client but has to trust the WhatsApp server that it indeed only acts on
demand of honest clients. This can, e.g., be achieved if the client directly authenticates towards the HSM.
That way, the server cannot impersonate clients towards the HSM anymore. However, this approach also
requires WhatsApp to modify its authentication infrastructure, which is currently independent of the WBP.
An “easy” modification of WBP is to let the HSM sign all messages. This provides direct protection of
replay attacks by the adversary, against which the WBP protects implicitly using message authentication
codes (MACs). Such “full” signing would greatly simplify the analysis of the protocol. This raises also
the interesting question whether other potentially more costly protection mechanisms of the integrity of
messages could be dropped if signing ensures HSM-authenticated channels, ending up with a more efficient
protocol overall. Lastly, regarding efficiency improvements, one could look into whether a “less secure” (and

26

potentially more efficient) version of OPAQUE could be plugged into the WBP, where protection against
server compromise is dropped. Server compromise seems not a realistic attack scenario in this particular
application of OPAQUE, because the OPAQUE server part is run on an HSM, which needs to be trusted
anyway.

We note here that the above discussed efficiency improvements might not be of immediate interest to
WhatsApp, where the WBP is only seldomly executed per user. Improvements regarding the security must
be carefully analyzed and justified, since updating the HSM code of WBP requires WhatsApp to replace all
HSMs with new ones and to perform the setup ceremony again.

Constructing PPKR Differently. The WBP is built around the OPAQUE protocol, which in turn deploys
an oblivious pseudorandom function (OPRF) and an authenticated key exchange (AKE) protocol. The
authenticated key exchange part serves as a tool for convincing the HSM of correctness of the client’s
password, which is necessary to ensure that the guess attempt counter can be reset to 10 guesses. It is
an interesting open question whether this could be achieved from simpler primitives, such as symmetric
primitives, which are more efficient than the public-key-based AKE.

7 Acknowledgments

We wish to extend our gratitude to Kevin Lewi and other members of the Meta security team for their
patience in answering our questions about the WBP. We would like to thank Kristina Hostáková for helpful
discussions of the UC modeling aspects of HSMs.

This paper would not have been possible without the support of Anna, Camilla, Judit, and Nikolas.

References

[1] Direct correspondences with Kevin Lewi and other members of the WhatsApp engineering team, 2022-
2023

[2] Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs, and modularization
for the Signal protocol. In: EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 129–158. Springer,
Heidelberg, 2019

[3] Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-protected secret sharing. In: ACM CCS
2011. pp. 433–444. ACM Press, 2011

[4] Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted encryption and key
exchange: The security of messaging. In: CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 619–650.
Springer, Heidelberg, 2017

[5] Bienstock, A., Fairoze, J., Garg, S., Mukherjee, P., Raghuraman, S.: A more complete analysis of the
Signal double ratchet algorithm. In: CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 784–813. Springer,
Heidelberg, 2022

[6] Bourdrez, D., Krawczyk, D.H., Lewi, K., Wood, C.A.: The OPAQUE Asymmetric PAKE Pro-
tocol. Internet-Draft draft-irtf-cfrg-opaque-09, Internet Engineering Task Force, 2022, https://
datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/09/, work in Progress

27

https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/09/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/09/

[7] Brost, J., Egger, C., Lai, R.W.F., Schmid, F., Schröder, D., Zoppelt, M.: Threshold password-hardened
encryption services. In: ACM CCS 2020. pp. 409–424. ACM Press, 2020

[8] Camenisch, J., Lysyanskaya, A., Neven, G.: Practical yet universally composable two-server
password-authenticated secret sharing. In: ACM CCS 2012. pp. 525–536. ACM Press, 2012

[9] Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd
FOCS. pp. 136–145. IEEE Computer Society Press, 2001

[10] Canetti, R., Jain, P., Swanberg, M., Varia, M.: Universally composable end-to-end secure messaging.
In: CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 3–33. Springer, Heidelberg, 2022

[11] Casacuberta, S., Hesse, J., Lehmann, A.: SoK: Oblivious pseudorandom functions. In: IEEE EuroS&P
2022. IEEE, 2022

[12] Cathcart, W.: https://twitter.com/wcathcart/status/1600603826477617152,
2022

[13] Chase, M., Perrin, T., Zaverucha, G.: The signal private group system and anonymous credentials
supporting efficient verifiable encryption. In: ACM CCS 2020. pp. 1445–1459. ACM Press, 2020

[14] Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal security analysis of the
signal messaging protocol. In: EuroS&P. pp. 451–466. IEEE, 2017

[15] Das, P., Hesse, J., Lehmann, A.: DPaSE: Distributed password-authenticated symmetric-key encryp-
tion, or how to get many keys from one password. In: ASIACCS 22. pp. 682–696. ACM Press, 2022

[16] Davidson, A., Faz-Hernandez, A., Sullivan, N., Wood, C.A.: Oblivious Pseudorandom Functions
(OPRFs) using Prime-Order Groups. Internet-Draft draft-irtf-cfrg-voprf-17, Internet Engineering Task
Force, 2023, https://datatracker.ietf.org/doc/draft-irtf-cfrg-voprf/17/,
work in Progress

[17] Doussot, G., Lacharité, M.S., Schorn, E.: End-to-End Encrypted Backups Security As-
sessment. https://research.nccgroup.com/wp-content/uploads/2021/10/NCC_
Group_WhatsApp_E001000M_Report_2021-10-27_v1.2.pdf, 2021

[18] Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: The case of the tls 1.3 handshake
candidates. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P). pp. 60–75. 2017

[19] Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based key exchange resilient
to server compromise. In: CRYPTO 2006. LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg, 2006

[20] Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: Asymmetric PAKE from key-hiding key exchange. In:
CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 701–730. Springer, Heidelberg, Virtual Event, 2021

[21] Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret sharing and T-PAKE
in the password-only model. In: ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 233–253. Springer,
Heidelberg, 2014

28

https://twitter.com/wcathcart/status/1600603826477617152
https://datatracker.ietf.org/doc/draft-irtf-cfrg-voprf/17/
https://research.nccgroup.com/wp-content/uploads/2021/10/NCC_Group_WhatsApp_E001000M_Report_2021-10-27_v1.2.pdf
https://research.nccgroup.com/wp-content/uploads/2021/10/NCC_Group_WhatsApp_E001000M_Report_2021-10-27_v1.2.pdf

[22] Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable password-protected
secret sharing (or: How to protect your bitcoin wallet online). In: IEEE European Symposium on
Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016. pp. 276–291. IEEE,
2016

[23] Jarecki, S., Krawczyk, H., Resch, J.K.: Updatable oblivious key management for storage systems. In:
ACM CCS 2019. pp. 379–393. ACM Press, 2019

[24] Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: An asymmetric PAKE protocol secure against pre-
computation attacks. In: EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 456–486. Springer,
Heidelberg, 2018

[25] Jost, D., Maurer, U., Mularczyk, M.: A unified and composable take on ratcheting. In: TCC 2019,
Part II. LNCS, vol. 11892, pp. 180–210. Springer, Heidelberg, 2019

[26] Krawczyk, D.H., Lewi, K., Wood, C.A.: The OPAQUE Asymmetric PAKE Protocol. Internet-
Draft draft-irtf-cfrg-opaque-03, Internet Engineering Task Force, 2021, https://datatracker.
ietf.org/doc/draft-irtf-cfrg-opaque/03/, work in Progress

[27] Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme. In: CRYPTO 2010.
LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg, 2010

[28] Lai, R.W.F., Egger, C., Reinert, M., Chow, S.S.M., Maffei, M., Schröder, D.: Simple password-
hardened encryption services. In: USENIX Security 2018. pp. 1405–1421. USENIX Association, 2018

[29] Novak, M.: Paul Manafort Learns That Encrypting Messages Doesn’t Matter If the
Feds Have a Warrant to Search Your iCloud Account. https://gizmodo.com/
paul-manafort-learns-that-encrypting-messages-doesnt-ma-1826561511,
2018

[30] Perrin, T.: The noise protocol framework, http://noiseprotocol.org/noise.html

[31] Rösler, P., Mainka, C., Schwenk, J.: More is less: On the end-to-end security of group chats in signal,
whatsapp, and threema. In: EuroS&P. pp. 415–429. IEEE, 2018

[32] Vatandas, N., Gennaro, R., Ithurburn, B., Krawczyk, H.: On the cryptographic deniability of the Signal
protocol. In: ACNS 20, Part II. LNCS, vol. 12147, pp. 188–209. Springer, Heidelberg, 2020

[33] WhatsApp: Security of End-to-End Encrypted Backups. https://www.whatsapp.com/
security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf, 2021

[34] WhatsApp: WhatsApp Encryption Overview. https://www.whatsapp.com/security/
WhatsApp-Security-Whitepaper.pdf, 2021

29

https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/03/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/03/
https://gizmodo.com/paul-manafort-learns-that-encrypting-messages-doesnt-ma-1826561511
https://gizmodo.com/paul-manafort-learns-that-encrypting-messages-doesnt-ma-1826561511
http://noiseprotocol.org/noise.html
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

Appendix

A Cryptographic Building Blocks and Their Security

Definition 1 (Collision Resistance of Hash Functions). The advantage of an adversary A against the colli-
sion resistance (CR) of a hash function H : {0, 1}∗ → {0, 1}λ is defined as

AdvCR
A,H(λ) := Pr[H(m) = H(m′) | (m,m′) $←− A(1λ)],

where m ̸= m′.

Definition 2 (Digital Signatures). A digital signature scheme is a tuple Σ = (KeyGen, Sign,Vfy) consisting
of the following three probabilistic polynomial-time algorithms.

• KeyGen takes as input the security parameter 1λ and outputs a key pair (pk, sk).

• Sign takes as input a secret key sk and a message m, and outputs a signature σ.

• Vfy takes as input a public key pk, a message m, and a signature σ. It outputs 1 (“accept”) or 0
(“reject”).

We call a signature scheme correct if Vfy(pk,m,Sign(sk,m)) = 1 holds for all (pk, sk) $←− KeyGen(1λ)
and all messages m.

Definition 3 (sEUF-CMA Security for Digital Signatures). The advantage of an adversary A against the
strong existential unforgeability under chosen message attacks (sEUF-CMA) of a signature scheme Σ =
(KeyGen,Sign,Vfy) is defined as

AdvsEUF-CMA
A,Σ (λ) := Pr[Vfy(pk,m∗, σ∗) = 1 | (m∗, σ∗) $←− ASign(sk,·)(pk)],

where (pk, sk) $←− KeyGen(1λ), and (m∗, σ∗) is fresh in the sense that m∗ was never queried to Sign(sk, ·)
resulting in σ∗ as output.

Definition 4 (Message Authentication Codes). A message authentication code (MAC) is a tuple MAC =
(KeyGen,Tag,Vfy) consisting of the following three probabilistic polynomial-time algorithms.

• KeyGen takes as input the security parameter 1λ and outputs a symmetric key K.

• Tag takes as input a key K and a message m, and outputs a tag T .

• Vfy takes as input a key K, a message m, and a tag T . It outputs 1 (“accept”) or 0 (“reject”).

We call a MAC correct if Vfy(K,m,Tag(K,m)) = 1 holds for all K $←− KeyGen(1λ) and all messages m.

Definition 5 (sEUF-CMA Security for MACs). The advantage of an adversary A against the strong exis-
tential unforgeability under chosen message attacks (sEUF-CMA) of a MAC MAC = (KeyGen,Tag,Vfy)
is defined as

AdvsEUF-CMA
A,MAC (λ) := Pr[Vfy(K,m∗, T ∗) = 1 | (m∗, T ∗) $←− ATag(K,·),Vfy(K,·,·)(1λ)],

where K $←− KeyGen(1λ), and (m∗, T ∗) is fresh in the sense that m∗ was never queried to MAC(K, ·)
resulting in σ∗ as output.

30

Definition 6 (Public Key Encryption). A public key encryption (PKE) scheme is a tuple PKE = (KeyGen,
Enc,Dec) consisting of the following three probabilistic polynomial-time algorithms.

• KeyGen takes as input the security parameter 1λ and outputs a key pair (pk, sk).

• Enc takes as input a public key pk and a message m, and outputs a ciphertext c.

• Dec takes as input a secret key sk and a ciphertext c, and outputs a message m.

We call a PKE scheme correct if Dec(sk,Enc(pk,m)) = m holds for all (pk, sk) $←− KeyGen(1λ) and all
messages m.

Definition 7 (IND-CPA Security for PKE). The advantage of an adversary A = (A0,A1) against the
indistinguishability of ciphertexts under chosen plaintext attacks (IND-CPA) of a PKE scheme PKE =
(KeyGen,Enc,Dec) is defined as

AdvIND-CPA
A,PKE (λ) :=

∣∣∣∣∣∣∣∣Pr
b = b∗

∣∣∣∣∣∣∣∣
(m0,m1, st)

$←− A0(pk),
b $←− {0, 1},

c∗ = Enc(pk,mb),
b∗ $←− A1(st, c

∗)

− 1

2

∣∣∣∣∣∣∣∣ ,
where (pk, sk) $←− KeyGen(1λ).

Definition 8 (Authenticated Encryption). An authenticated encryption (AE) scheme is a tuple AE =
(KeyGen,Enc,Dec) consisting of the following three probabilistic polynomial-time algorithms.

• KeyGen takes as input the security parameter 1λ and outputs a key K.

• Enc takes as input a key K and a message m, and outputs a ciphertext c.

• Dec takes as input a key K and a ciphertext c, and outputs a message m or an error symbol ⊥.

We call an AE scheme correct if Dec(K,Enc(K,m)) = m holds for all K $←− KeyGen(1λ) and all messages
m.

Definition 9 (IND-CPA Security for AE). The advantage of an adversary A = (A0,A1) against the
indistinguishability of ciphertexts under chosen plaintext attacks (IND-CPA) of an AE scheme AE =
(KeyGen,Enc,Dec) is defined as

AdvIND-CPA
A,AE (λ) :=

∣∣∣∣∣∣∣∣Pr
b = b∗

∣∣∣∣∣∣∣∣
(m0,m1, st)

$←− AEnc(K,·)
0 (1λ),

b $←− {0, 1},
c∗ = Enc(pk,mb),
b∗ $←− A1(st, c

∗)

− 1

2

∣∣∣∣∣∣∣∣ ,
where (pk, sk) $←− KeyGen(1λ).

Definition 10 (INT-CTXT Security for AE). The advantage of an adversary A against the integrity of ci-
phertexts (INT-CTXT) of an AE scheme AE = (KeyGen,Enc,Dec) is defined as

AdvINT-CTXT
A,AE (λ) := Pr[Dec(K, c∗) ̸= ⊥ | c∗ $←− AEnc(K,·)(1λ)],

where (pk, sk) $←− KeyGen(1λ) and c∗ is fresh in the sense that it has never been output by the encryption
oracle Enc(K, ·).

31

Definition 11 (Random Key Robustness). The advantage of an adversary A against the random-key robust-
ness (RKR) of an AE scheme AE = (KeyGen,Enc,Dec) with key space K is defined as

AdvRKR
A,AE(λ) := Pr[Dec(k1, c) ̸= ⊥,Dec(k2, c) ̸= ⊥ | k1, k2 $←− K, c← A(k1, k2)].

This property can be achieved, e.g., by using encrypt-then-MAC with a MAC that is collision resistant
with respect to the message and key [24]. In particular AE′ as defined in Section 5 follows this construction
principle as it can be seen as a one-time-pad combined with an HMAC.

B Modeling WBP in the Universal Composability Framework

The UC framework uses a simulation-based approach to state security guarantees of protocols π. That is,
proofs usually consist of a description of an efficient simulator that has access to an ideal functionality F
and “mimics” the behavior of the “real” protocol π to some distinguishing entity called the environment.
If the environment cannot efficiently distinguish a simulator “mimicking” the protocol behavior from the
behavior of the “real” protocol π, then the protocol is as secure as the ideal functionality. The functionality
F essentially defines the intended behavior of the protocol. Note that this means that the security of a
protocol π can only be related to the “security” provided by the ideal functionality F . That is, the protocol
can only be proven as secure as the ideal functionality, yielding a lower bound on the security guarantees of
π. In UC terminology we say that π UC-realizes F .

Let us illustrate this via a toy example. A toy functionality F for the WBP could work as follows:
It takes two inputs, a password pw from the client and a secret value s from the server, then it internally
executes the protocol (k,E) ← WBP(pw, s), and returns the symmetric backup key k to the client and
an encrypted version of the key E to the server. This ideal functionality essentially behaves like a trusted
third party, which executes the protocol π on behalf of the client and server, where all inputs and outputs are
distributed via secure channels. If we proved that the WBP “realizes” this toy functionality, the we would
prove that the WBP is as secure as if it would be when executed via a trusted third party. However, this is not
possible for the WBP since an adversary can, for example, re-arrange messages or try to guess passwords.
If this “adversarial influence” is not reflected in the description of the functionality F , it could be used by to
trivially distinguish the “real” protocol from the simulation: one would allow this influence, while the other
would not.

This means that our toy functionality is too strong and that we need to weaken it by introducing addi-
tional interfaces that “leak” the necessary information. A ridiculous option would be that the functionality
leaks all internal secret values to the simulator. Note that this intuitively corresponds to the behavior of a
trusted third party that leaks all of its secrets. While this makes it easy to simulate the behavior of the “real”
protocol, the security guarantees are not meaningful at all. This variant of our toy functionality is too weak.

The challenge of designing a meaningful ideal functionality is to find the sweet spot where the function-
ality provides the least amount of informational leakage, but such that the simulator can efficiently “mimic”
the behavior of the real protocol, computationally indistinguishable for any efficient distinguishing environ-
ment. Note that if a protocol π UC-realizes F , then there cannot exist substantially more leakage than what
is formalized in the functionality. For the WBP this would mean that there are no further attacks possible
but the ones that require the adversarial influence prescribed by the functionality.

32

C Preliminaries on Oblivious Pseudorandom Functions

In this Section we give the preliminaries on oblivious pseudorandom functions (OPRFs) in the UC model.
We first state a “multi-key” version of the OPRF functionality from [24] that allows evaluation of PRFs with
respect to many different keys, and where we drop the ability of the functionality to export a transcript prefix
to the application. The reasons for these changes are as follows:

• Multi-key setting: WhatsApp’s PPKR scheme in Figures 4 and 5 uses an OPRF called “2HashDH”
[22] (see Figure 11 for the protocol description) where hash functions H1 and KDF2 do not have
domains that are separated for different PRF keys. More concretely, if two users initialize or recover
using the same password pw, both compute the same value H1(pw) as a first step of the 2HashDH
protocol. Hence, the security analysis of the OPRF part of WhatsApp’s PPKR scheme cannot rely on
any domain separation occurring.17

• Dropping prefixes: As we do not use FOPRF to formulate WhatsApp’s PPKR scheme (i.e., we do not
formulate it in the FOPRF-hybrid model) but only rely on the existence of a simulator for 2HashDH in
the proof, we do not require the export of parts of the transcript in order to, e.g., sign or compare them.
The OPRF functionality used in the analysis of OPAQUE [24] had to introduce such exportation in
order to be able to state the OPAQUE protocol in the OPRF-hybrid setting.

We note that [24] proves the security of 2HashDH without reliance on authenticated channels between
the user and the server (previous works [22] still relied on such channels). This fits our setting, where the
OPRF is run between the user and the HSM holding all PRF keys. Neither is the user authenticated to
the HSM (it is only authenticated toward the server, but a malicious server can lie to the HSM about this
authentication), nor can the user determine which key was used by the HSM (the malicious server can let
the HSM use any of its PRF keys).

While WhatsApp’s implementation of 2HashDH is in a strong setting where servers/PRF key holders
are all played by the HSM and hence can be assumed incorruptible and uncompromisable (i.e., they will
always follow the protocol, and they will never leak their PRF keys), we opt for a general treatment of
OPRFs including server corruption and compromise in this section. While we do not require the analysis
of these settings within this work, we believe that a general treatment and analysis of 2HashDH without
domain separation has great relevance for other works [24, 6, 16].

Having summarized where we reuse results from, how we change them, and why, we now describe
the technical contents of this section. In Figure 10 we state a multi-key OPRF functionality adopted from
[24]. In Figure 11 we give the multi-key version of the 2HashDH OPRF of [24]. In Figure 12 we give the
simulator that demonstrates that 2HashDH UC-realizes FOPRF.

C.1 Multi-Key OPRF Model

Our functionality FOPRF closely follows the design from [24], but we extend the functionality to be able
to handle multiple servers and even multiple PRF keys per server. FOPRF is depicted in Figure 10 and we

17We note that the security analysis of OPAQUE [24] is carried out with respect to a single-key OPRF functionality and hence
proves the security of OPAQUE only when hash domains of the two hash functions of 2HashDH are separated, e.g., by hashing
unique session/key identifiers alongside the other inputs. However, OPAQUE in practice (e.g., [6]) does not deploy such domain
separation, since the negotiation and memorization of session identifiers is expensive and partly contradicts with the purpose of the
scheme being password-only. Hence, for a meaningful analysis of these deployed versions of OPAQUE, our multi-key version of
FOPRF should be used.

33

mark in gray the changes over [24] that enable our FOPRF to handle multiple PRF keys and servers. We now
explain the functionality’s interfaces and parameters in detail.

The functionality FOPRF implements oblivious access to a truly random function family Fsid,S,kid(·) :
{0, 1}∗ → {0, 1}ℓ. The functions are parameterized by a global session identifier sid and parameters S, kid
that can take arbitrary values and can be interpreted as taking the role of the PRF key. For each pair S, kid,
a truly random function table is maintained.

The INIT interface. Any server S can call this interface to initialize a new PRF key with identifier kid.
We let FOPRF ignore subsequent inputs of same key identifiers per server, which models that we expect key
identifiers to be unique per server (e.g., they correspond to account names of users where each user evaluates
their “own” PRF, or they describe the purpose of the PRF that is evaluated with this key). Key identifiers are
not kept secret (i.e., they are leaked to the adversary). For each newly initialized PRF key by server S with
identifier kid, FOPRF stores a record ⟨S, kid⟩ and sets a counter tx[S, kid] to 0.

The COMPROMISE interface. The effect of the compromise interface is that a record ⟨S, kid⟩ is marked
COMPROMISED. This corresponds to compromise of a PRF key, e.g., due to a breach at the server. We
model key-wise compromise by letting the adversary specify which kid it wants to compromise at what
server S, as it is possible that, e.g., a server only leaks keys that he recently has touched, while others remain
securely stored. If a server gets corrupted (i.e., fully controlled by the adversary), all its keys are considered
COMPROMISED. Looking ahead, a key being marked compromised allows the adversary to evaluate the
corresponding PRF an unbounded number of times (see the OFFLINEEVAL interface explanation below).

The OFFLINEEVAL interface. This interface can be used by the adversary to evaluate any of the random
functions Fsid,S,kid(·) (identified by the “PRF key” S, kid) on any input x. However, FOPRF will only return
the corresponding PRF value if the corresponding key is considered to be in the hands of the adversary. This
is the case if S is corrupt or S, kid was already compromised, or if S, kid was never honestly initialized. If
any of these checks pass, FOPRF returns Fsid,S,kid(x) to the adversary.

The EVAL interface. This interface is called by any user P who wants to evaluate a specific PRF identified by
S, kid on a secret input x. In order to allow for parallel evaluation sessions, the interface takes a subsession
identifier ssid. FOPRF stores the request and informs the adversary, keeping input x private.

The SNDRCOMPLETE interface. This interface allows a server to signal that it wants to assist in a specific
evaluation identified by ssid, using the PRF key of that server identified by kid′. Note that FOPRF does not
enforce the intended key identifier (specified in EVAL input by the user) and the used key identifier (specified
in SNDRCOMPLETE input by the server) to be the same. This allows for the analysis of OPRF protocols
that do not assume users to be authenticated, and hence messages by users can be modified. In particular
the method of users telling the server which key to use might not be tamper-proof. To proceed with the
interface explanation, FOPRF allows server participation only if the corresponding key exists at a server (or
the server is using a malicious key). FOPRF then increases the “evaluation ticket” counter tx[S, kid′] by 1.
Looking ahead, this counter will reflect the number of PRF evaluations that a server agreed to assist with,
on a per-key basis.

The RCVCOMPLETE interface. Finally, the RCVCOMPLETE interface can be called by the adversary at
any time to let a user P finalize an open evaluation session identified by ssid. FOPRF only continues the
request if P is expecting to receive an output for ssid. The adversary has the freedom to specify with respect
to which key S∗, kid∗ the user receives the evaluation for, with only one constraint: there needs to be an
evaluation ticket tx[S∗, kid∗]. This ensures that evaluation of the PRF with respect to honest keys held by
servers cannot happen more times than the corresponding server has agreed to assist in the evaluation. If

34

Functionality F ℓ
OPRF

The functionality is parametrized by a PRF output-length ℓ. For every kid , x, value Fsid,S,kid(x) is initially
undefined, and if an undefined value Fsid,S,kid(x) is referenced then FOPRF assigns Fsid,S,kid(x)

$←− {0, 1}ℓ.

Initialization:
On (INIT, sid,kid) from S, if this is the first INIT message for kid , set tx[S,kid] = 0, store ⟨S, kid⟩ and send

(INIT, sid,kid , S) to A. Ignore all subsequent INIT messages for kid from S. // Unique key identifiers per server.

Server Compromise:
On (COMPROMISE, sid,kid ,S) from A, mark ⟨S,kid⟩ as COMPROMISED. If S is cor-

rupted, all key identifiers kid with records ⟨S, kid⟩ are marked as COMPROMISED . Note: Message
(COMPROMISE, sid,kid ,S) requires permission from the environment. // Key-wise compromise is possi-
ble.

Offline Evaluation:
On (OFFLINEEVAL, sid,kid∗ , S, x) from A, send (OFFLINEEVAL, sid, kid∗ ,S, x,Fsid,S,kid(x)) to A if any of the

following hold: (i) ⟨S,kid∗ ⟩ is marked COMPROMISED, (ii) kid∗ = kid for a kid previously received via the INIT

interface from S (iii) kid∗ ̸= kid for all values kid previously received via the INIT interface from S.

Evaluation:
• On (EVAL, sid,kid , ssid, S, x) from P ∈ {U,A}, record ⟨kid , ssid,P, x⟩ and send
(EVAL, sid,kid , ssid,P, S) to A.

• On (SNDRCOMPLETE, sid,kid′ , ssid) from P ∈ {S′,A}:
– Ignore the message if P = S′ is honest and there is no record ⟨S′,kid′ ⟩. // Honest servers do not use

unknown keys.
– If P = A then record ⟨A,kid′ ⟩ (if it does not exist already) // Adversary can play server with its own

keys.
– Increment tx[S′,kid′].
– Send (SNDRCOMPLETE, sid,kid′ , ssid,S′) to A.

• On (RCVCOMPLETE, sid,kid∗ , ssid,P, S∗) from A:
– Ignore this message if there is no record ⟨∗, ssid,P, x⟩ or if tx[S∗,kid∗] = 0.
– Decrement tx[S∗,kid∗].
– Send (EVALOUT, sid, ssid,Fsid,S∗,kid∗(x)) to P.

Figure 10: A multi-key version of the ideal functionality FOPRF from [24] (without prefixes). The ability to
maintain multiple PRF keys is reflected in the addition of “key identifiers” kid, and we highlight the changes
using gray boxes.

35

an evaluation ticket for the specified key is found, it is taken away by decreasing the counter, and the PRF
output is sent to P. We note that the flexibility of the adversary in FOPRF that lets it decide at the very latest
point how to spend evaluation tickets is what has allowed to prove universal composability for efficient
protocols such as 2HashDH [22] in the past, as it allows for “late extraction” of adversarial PRF keys.

C.2 Security of Multi-Key 2HashDH

The multi-key version of 2HashDH can be found in Figure 11. The changes over single-key 2HashDH
are quite minimal: essentially all interfaces receive a key identifier kid as additional input. The user who
wants to evaluate a PRF with key identifier kid informs the server about it by sending kid alongside the first
message. The server who receives the first message takes the kid and looks up the PRF key according to this
identifier. There is no authenticity of key identifiers if channels are not user-authenticated, as in the setting
of the WhatsApp backup protocol.

We stress that the addition of key identifiers results in a subtle but crucial difference: in multi-key
2HashDH (Figure 11), hash function domains are not separated for each key identifier kid. That is, Alice’s
computation to evaluate her PRF identified by kidAlice at input x involves computation of H1(x), which is
the same value that Bob computes if he wants to evaluate his PRF identified by kidBob at the same input
x. Without user-authenticated channels, the adversary can hence maliciously “reroute” PRF evaluation to
different keys. More specifically, Alice computes H1(x)

r and sends (kidAlice, H1(x)
r) to her server. The

adversary rewrites this message to (kidBob, H1(x)
r) such that the server applies Bob’s key and sends back

to Alice the value (H1(x)
r)kBob . Alice removes the blinding factor r and outputs H2(x,H1(x)

kBob), which
is an evaluation of x of Bob’s PRF. Note that Alice cannot notice that she computed somebody else’s PRF.18

We prove the security of the multi-key 2HashDH OPRF in Figure 11 under the following assumption.

Definition 12 ((N,Q) one-more DH assumption [22]). We say that the (N,Q) one-more Diffie–Hellman
(DH) assumption holds in a cyclic group G = ⟨g⟩ if for any polynomial-time adversary A,

Adv
(N,Q)-OMDH
A,G (λ) := Pr

k $←−Zq ,gi
$←−G

[
A(·)k,DDH(·,·,·,·)(g, gk, g1, ..., gN) = S

]
is negligible, where S = {(gjs , gkjs) | s = 1, ..., Q+ 1} with js ∈ [N] for s ∈ [Q+ 1] and

• (·)k is an exponentiation oracle that A can query Q times and on input h ∈ G it returns hk;
• DDH(·, ·, ·, ·) is a Diffie–Hellman oracle that takes as input (g, gk, gx, gy) with g ∈ G and returns 1 if
y = kx and 0 otherwise.

Theorem 2. Let H1 : {0, 1}∗ → G be a hash function into a group of order q ∈ N, H2 : {0, 1}∗ × G →
{0, 1}ℓ with ℓ ∈ N be another hash function, and let k $←− Zq. Suppose the (N,Q) one-more DH assumption
holds for G, where Q := qE is the maximum number of (EVAL, ∗, kid, S, ∗) queries over all tuples (kid,S)
made by the environment Z , N := qE + qH , and qH is the total number of H1 queries made by Z . Then the
“multi-key” protocol 2HashDH of Figure 11 UC-realizes the “multi-key” functionality FOPRF of Figure 10,
with hash functions H1, H2 modeled as random oracles.

More precisely, for any adversary against 2HashDH, there is a simulator SIMOPRF that interacts with
FOPRF and produces a view that no environment Z can distinguish with advantage better than

Pr[FAIL] ≤ qIAdv
(qE+qH ,qE)-OMDH
A,G (λ) + (qE + qH)2/m,

18We note that the analysis of OPAQUE [24], which is carried out using multiple instances of single-key 2HashDH, does not
examine the effect of this attack since the parallel execution of many single-key 2HashDH instances introduces domain separation
into all random oracles.

36

2HashDH(H1, H2)

Components:
Hash functions H1 : {0, 1}∗ → G, H2 : {0, 1}∗ × G → {0, 1}ℓ with ℓ ∈ N and G = ⟨g⟩ a group of

order q. The two hash functions are specified for one particular sid, which has to be folded into the input.

Initialization:
On (INIT, sid,kid), the server S picks k $←− Zq and stores ⟨sid,kid , k⟩.

Server Compromise:
On (COMPROMISE, sid,kid), if there is a record ⟨sid,kid , k⟩, the server S reveals k to the adversary.

Offline Evaluation:
On (OFFLINEEVAL, sid,kid , x), the server retrieves record ⟨sid,kid , k⟩ and outputs

(OFFLINEEVAL, sid,kid , H2(x,H1(x)
k)).

Online Evaluation:
• On (EVAL, sid,kid , ssid,S′, x) the user U picks r $←− Zq, records ⟨sid, ssid, r⟩ sends
(sid,kid , ssid, H1(x)

r) to the server S′.
• On (SNDRCOMPLETE, sid,kid , ssid) and message (sid,kid , ssid, a) from U, s.t. a ∈ G, the server
S retrieves record ⟨sid,kid , k⟩ and sends (sid, ssid, ak) to U.

• On (sid, ssid, b) s.t. b ∈ G, the user U retrieves record ⟨sid, ssid, r⟩, aborts if the tuple is not found
and else outputs (EVAL, sid, ssid, H2(x, b

1/r)).

Figure 11: The multi-key version of protocol 2HashDH that realizes FOPRF. The changes introduced over
[24] due to the handling of multiple PRF keys are marked with gray boxes, and the exportation of prefixes
is dropped.

37

where qI is the number of honestly initialized keys in the system, and Adv
(x,y)-OMDH
A,G denotes the probability

of violating the (x, y) one-more DH assumption.

Proof intuition. There is already a proof of universal composability of single-key 2HashDH in [24], by
giving an algorithm that simulates the protocol run if there is only one honest PRF key. If there are several
honest PRF keys, the question to resolve in our proof is whether the individual simulators from [24] can be
orchestrated to run in parallel, without any clashes in programming the random oracles. The idea to avoid
clashes is the following: first, due to the high entropy in PRF keys, a clash in H2 programming is unlikely to
occur, since k is part of the H2 inputs. Inputs to H1 are the values at which a PRF should be evaluated, and
hence they can coincide (e.g., different users have the same passwords that they need to feed into their PRF).
However, the single-key simulator of [24] does not rely on programming H1 outputs to values specific to a
certain PRF key, but rather relies on knowledge of a trapdoor of the hash output. Our multi-key simulator
can thus apply the following strategy: it first chooses trapdoors itself and plants them into H1 outputs, and
then it runs the individual simulators on these joint trapdoors. The precise code of our simulator is given in
Figure 12 and the detailed proof follows below.

PROOF. We argue that SIMOPRF of Figure 12 generates a view to an arbitrary environment Z that is in-
distinguishable from Z’s interaction with the real world where parties run protocol 2HashDH of Figure
11. Without loss of generality, suppose A is the dummy adversary [9] who merely passes through all its
messages to and from Z . The interfaces and view of Z are as follows:

• Client: Z sends (EVAL, sid, kid, ssid,S, x) to a client and eventually receives back a PRF value
(EVALOUT, sid, ssid, y) under the key identified by kid, held by S.

• Server: Z sends (SNDRCOMPLETE, sid, kid, ssid) to a server in order to let that server finish session
ssid using key identifier kid. Z does not expect to see any output from the server upon sending this
input.

• Adversary: Z expects to receive both protocol messages from A in case client and server are honest.
Z sends (sid, kid, ssid, a) to A as any client’s message, and (sid, ssid, b) as any server’s message.
Observe that, since 2HashDH is run over unauthenticated channels, such messages can be introduced
by Z without corrupting anybody.

• Random oracles: Z can query both H1(x) and H2(y, z) to A for any values x, y, z.

We now describe the above view of Z in more detail and for both worlds. For any chosen kid, x,
Z receives transcript values a, b from A for corresponding honest clients and servers, and a PRF value
(EVALOUT, sid, ssid, y) in case the client is honest. In the real execution, we have a = H(x)r for a randomly
chosen r ∈ Zq, b = ak for a randomly chosen k ∈ Zq, y = H2(x,H1(x)

k), and queries to H1 and H2

answered consistently and uniformly at random. In the ideal execution, we have a = gJ a randomly chosen
group element, b = gk

′
J for a randomly chosen k′ $←− Zq, y $←− {0, 1}ℓ as chosen by FOPRF, and H1 and

H2 values answered with uniform values from the appropriate ranges. We now argue indistinguishability of
both worlds in detail.

• Message a (H(x)r vs. gJ): since the uniformly chosen r ∈ Zq is never revealed by an honest client,
H(x)r is uniformly random to Z and hence indistinguishable from gJ .

• Message b (ak vs. ak
′
): k is chosen at random by the honest server and not revealed to Z , while k′ is

chosen at random by SIMOPRF, and not revealed to Z . Hence both ak and ak
′

are indistinguishable
for Z .

38

• Output (EVALOUT, sid, ssid, y) (H2(x,H1(x)
k) vs. Fsid,i(x)): the only way to distinguish the real

world y from the ideal world is to query (x,H1(x)
k) to the H2 oracle. However, SIMOPRF is able

to detect this: if k is the key used by an honest server, then there is a record ⟨F, ∗, kid, k, u1/r⟩ for
the corresponding r from the H1 record of x (cf. first bullet of step 8 in Figure 12). Hence in this
case SIMOPRF learns the key identifier kid which this H2 query of Z is consistent with. If on the
other hand k is a key already used by a corrupt server/the network adversary, then SIMOPRF has a
record ⟨M,A, i,⊥, u1/r⟩ for the corresponding r from the H1 record of x (cf. second bullet of step
8 in Figure 12). Hence also in this case SIMOPRF learns the key identifier i. If any key identifier
is found, SIMOPRF obtains the correct PRF value Fsid,S,kid(x) (or Fsid,A,i(x)) from FOPRF via the
EVAL (or OFFLINEEVAL) interface (depending on whether the server holding the key identifier is
compromised/corrupt or honest), and sets it to be equal to H2(x, u). Hence, if FOPRF replies with a
value, the outputs are equal. If not, SIMOPRF aborts and we analyze the probability for that happening
below. Note that this also ensures that H2(x, u) equals an OFFLINEEVAL query of an honest server
for one of its own kid.

• Random oracle H1: since gJ in step 4 of SIMOPRF is chosen at random, the simulated responses are
indistinguishable from the ones chosen by the random oracle in the real protocol.

• Random oracle H2: SIMOPRF programs H2 to either a uniform value (cf. third bullet of step 8 in
Figure 12) or to an output of FOPRF, which is itself chosen by FOPRF uniformly at random. Hence,
the H2 outputs of SIMOPRF are equally distributed to the outputs of the random oracle H2 in the real
world.

It is left to analyze the probability that SIMOPRF queries FOPRF with either (EVAL, sid, kid, ssid, S, x)
and (RCVCOMPLETE, sid, kid, ssid,A,S), or with (OFFLINEEVAL, sid, i,S′, x) and does not receive a PRF
value as reply. This can happen for EVAL and RCVCOMPLETE queries in case their inputs do not correspond
to each other, or if no tickets are left (i.e., tx[S, kid] = 0). For OFFLINEEVAL, SIMOPRF only does not receive
a reply if S′ is honest and has previously initialized key identifier i.

For OFFLINEEVAL, SIMOPRF calls this interface with inputs S, i in three places in step 8, where in the
first occurrence S is COMPROMISED, and in the second and third occurrence S = A. Thus, OFFLINEEVAL

always outputs a PRF value y to SIMOPRF.
For EVAL and RCVCOMPLETE, SIM calls these interfaces in step 8, first bullet, second dash.

Since SIMOPRF uses corresponding inputs, FOPRF not replying is not due to mismatching inputs
but due to tx[S, kid] = 0 as checked by FOPRF in RCVCOMPLETE. Let FAIL(S, kid) denote the
event that a (RCVCOMPLETE, sid, kid, ssid,A,S) message is ignored. We have Pr[SIMOPRF aborts] ≤∑

S,kid Pr[FAIL(S, kid)].
We now upper bound Pr[FAIL(S, kid) by reducing to the one-more DH problem using the reduction in

Figure 13. The overall strategy of the reduction is the following: the challenge key k̄ is only implicitly
known as gk̄ and the reduction records the tuple (g, gk̄) as key of S̃, k̃id. The reduction puts the challenge
generators g1, ..., gN as H1 replies and first messages of EVAL queries for S̃, k̃id. It is now left to run the
rest of the execution without knowledge of k̄ and the exponents (trapdoors) of the generators. The strategy
is as follows:

• The reduction uses its (·)k̄ exponentiation oracle to produce messages on behalf of S̃ for key k̃id.

• The reduction uses its DDH oracle DDH(g, gk̄, X, Y) to recognize an adversarially-given tuple (X,Y)
that lets it win the one-more DH game.

• The reduction uses its DDH oracle DDH(gj , Y, gj′ , B) to recognize re-usage of adversarial keys k in
two evaluation transcripts (gj , Y), (gj′ , B).

39

From the reduction code in Figure 13 we can see the following.
• Every time the exponentiation oracle is used (step 6), a (SNDRCOMPLETE, sid, kid, ∗) query was

issued by S and hence tx[S, kid] was increased by 1.
• The counter tx[S, kid] is decreased whenever (RCVCOMPLETE, sid, kid, ssid, ∗,S) is sent to FOPRF,

which happens in the first bullets of steps 7 and 8. It can be seen from the DDH oracle inputs that in
both cases the adversary gave a tuple gj , gk̄j (with k̄ being the challenge key) and gj is from g1, ..., gN .

Thus, if FAIL(S, kid) occurs and the reduction has guessed the correct initialization query, the number of
such tuples is one more than the number of oracle queries made by the reduction (assuming there is no
collision in g1, ..., gN). That is, Pr[FAIL(S, kid) | no collision in g1, ..., gN] ≤ qIAdv

(N,qE)-OMDH
A,G with

N := qE + qH , where qI is the number of INIT queries (i.e., honestly initialized keys in the system), qE is
the maximum number of EVAL queries over all PRF keys, and qH is the number of H1 queries made by Z .

On the other hand, the probability that there is a collision in g1, ..., gN is upper bounded by N2/q. Thus
we have

Pr[FAIL] ≤ qIAdv
(qE+qH ,qE)-OMDH
A,G (λ) + (qE + qH)2/m.

D Preliminaries on Triple Diffie–Hellman Key Exchange

In this section we analyze the security of the 3DH protocol as used in the WBP and the OPAQUE draft [26].
In previous work [20] it was shown that a slightly different version of 3DH UC-realizes key-hiding AKE
(KH-AKE). Even though the two versions differ only in small details, the variant of 3DH used in WBP is
unfortunately not covered by the analysis of [20]. To close this gap, we reenact the previous analysis of [20]
for the 3DH variant as used in WBP and show that it UC-realizes AKE with security against key compromise
impersonation (KCI), which is a security notion related to KH-AKE but which is not known to be implied
by KH-AKE. AKE-KCI is used in [24] to prove security of OPAQUE and we use it in Appendix E to prove
that the WBP UC-realizes PPKR. The result shown in this section is of independent interest, as it further
justifies the decision to use 3DH as the AKE in the OPAQUE draft [26] instead of HMQV, as suggested by
[24].

We consider the 3DH variant described in Figure 14, as matches the use in WBP. The difference
from the variant considered in [20] lies in the computation of the key k. While in [20] it is computed
as H(sid,P,P′, X, Y, σ), in Figure 14 it is computed as H(aux, X, Y, σ), where aux is an arbitrary auxil-
iary input string. This reflects real-world scenarios, where often the session key is computed dependent on
additional context information. This is also the case in WBP, where shk depends on the transcript pre. Note
that we set aux to ⊥ when creating a new session, since in many applications the full context information
may not be available yet. This is also the case in WBP, where pre contains many values that are computed
by the server and therefore unknown to the client at the start of the recovery phase.

We introduce two small changes to the functionalityFAKE-KCI presented in [24] and display the modified
version of FAKE-KCI in Figure 15. First, we add an auxiliary input aux from the adversary to the NEWKEY

interface and ensure that NEWKEY only outputs the same session key for two sessions if they are provided
with the same auxiliary input. This reflects that in real-world scenarios, two parties only compute the same
key if they agree on the context. Second, we introduce the interface INIT, which reflects that in 3DH parties
generate a long-term secret key when they are initialized.

We prove the security of 3DH under the following assumption.

40

Simulator SIMOPRF(sid, H1, H2, N)

The simulator obtains as input a session identifier sid indicating which (multi-key) FOPRF instance it communicates
with, the description of two hash functions H2 : {0, 1}∗ ×G→ {0, 1}l, H1 : {0, 1}∗ → G with l ∈ N and G = ⟨g⟩ a
group of order q, and a number N ∈ N.

1. Pick and record N random numbers r1, ..., rN ∈ Zq and set g1 ← gr1 , ..., gN ← grN . Set counter J ← 1 and
I ← 1.

2. On (INIT, sid, kid,S) from FOPRF, record ⟨F,S, kid, k, z = gk⟩ for k $←− Zq and record ⟨S, kid⟩.

3. On (COMPROMISE, sid, kid,S) from A, retrieve ⟨S, kid⟩ and declare it COMPROMISED. Retrieve tuple
⟨F,S, ∗, kid, k, ∗⟩, send (COMPROMISE, sid, kid) to FOPRF, and send (sid, kid, k) to A.

4. Every time when there is a fresh query x to H1(·), answer it with gJ and record ⟨H1, x, rJ⟩. Set J ← J + 1.

5. Upon receiving (EVAL, sid, kid, ssid,C,S) from FOPRF, send (sid, kid, ssid, gJ) to A as C’s message to S and
record ⟨kid, ssid,C, rJ⟩. Set J ← J + 1.

6. Upon receiving (SNDRCOMPLETE, sid, kid, ssid) from FOPRF and (sid, kid, ssid, a) from A as some client’s C
message to some honest server S:

• If there is a record ⟨F,S, kid, k, ∗⟩, then send (sid, ssid, ak) as the response of S for client C to A.

7. Upon receiving (sid, ssid, b) with b ∈ G from A as some server’s S′ message to a client C, retrieve record
⟨∗, ssid,C, r⟩ and gj sent in step 5 for ssid,C.

• [A delivers honestly.] If there is a record ⟨F,S, kid, k, ∗⟩ with b = gkj and record ⟨S, kid⟩ is not marked
COMPROMISED, send (RCVCOMPLETE, sid, kid, ssid,C, S) to FOPRF.

• [A plays server using non-fresh adversarial key.] If there is a record ⟨M,A, i,⊥, b1/r⟩, send
(SNDRCOMPLETE, sid, i, ssid) and (RCVCOMPLETE, sid, i, ssid,C,A) to FOPRF.

• [A plays server with compromised key.] If there is a record ⟨F,S, kid, ∗, b1/r⟩ and record ⟨S, kid⟩ is
marked COMPROMISED, send (SNDRCOMPLETE, sid, kid, ssid) and (RCVCOMPLETE, sid, kid, ssid,C,S)
to FOPRF.

• [A uses fresh key.] If there is no such record ⟨T, ∗, ∗, ∗, b1/r⟩, set i← I , record ⟨M,A, i,⊥, b1/r⟩, and set
I++. Send (SNDRCOMPLETE, sid, i, ssid) and (RCVCOMPLETE, sid, i, ssid,C,A) toFOPRF. // b1/r = gk̄

serves as identifier of a malicious key k̄ not known to SIMOPRF.

8. Every time when there is a fresh query (x, u) to H2(·, ·), retrieve record ⟨H1, x, r⟩. If there is no such record,
then pick H2(x, u)

$←− {0, 1}l. Otherwise, do the following:

• [u = H(x)k for a server’s key.] If some record ⟨F,S, kid, k, z⟩ satisfies z = u1/r do:
– [Compute PRF value for k, x offline.] If S is COMPROMISED or corrupt, send

(OFFLINEEVAL, sid, kid,S, x) to FOPRF, and on response (OFFLINEEVAL, sid, kid, S, x, y), set
H2(x, u)← y.

– [Compute PRF value for k, x online, relying on a ticket tx[S, kid].] If S is not COMPROMISED, pick a
fresh identifier ssid∗ and send (EVAL, sid, kid, ssid∗,⊥, x) and (RCVCOMPLETE, sid, kid, ssid∗,A, S)
to FOPRF. If FOPRF ignores the last message then abort. Else, on FOPRF’s response
(EVAL, sid, ssid∗, y), set H2(x, u)← y.

• [u = H(x)k for an adversarial k.] Else, if there is a tuple ⟨M,A, i,⊥, u1/r⟩ then send
(OFFLINEEVAL, sid, i,A, x) to FOPRF, and on response (OFFLINEEVAL, sid, i,A, x, y) set H2(x, u)← y

• [Fresh adversarial key.] Else, record ⟨M,A, i,⊥, u1/r⟩ for i = I , send send (OFFLINEEVAL, sid, i,A, x)
to FOPRF, and on response (OFFLINEEVAL, sid, i,A, x, y) set H2(x, u)← y and I ++.

Figure 12: The simulator that demonstrates that “multi-key” 2HashDH UC-realizes our “multi-key“ FOPRF.
The simulator is adopted from [24], Figure 14. We add key identifiers and run one instance of their simulator
(without prefix simulation) per kid.

41

ReductionR(S̃, k̃id, g, y = gk̄, g1, ..., gN)

The reduction runs simulator SIMOPRF(sid, H1, H2,⊥, N) with the following modifications:

1. No change.

2. [Place the challenge key:] On (INIT, S̃, k̃id, sid) from FOPRF, record ⟨F, S̃, k̃id,⊥, y⟩ and ⟨S, k̃id⟩. From now on, use
k̃id to denote the guessed key identifier, and S̃ to denote the server who holds it. For all other Init queries, change the
recorded tuple to format ⟨F,S, kid, k, (g, gk)⟩.

3. No change.

4. [Put challenge generators in H1:] Every time when there is a fresh query x to H1(·), answer it with gJ and record
⟨H1, x, gJ⟩. Set J ← J + 1.

5. [Put challenge generators in EVAL queries for m-th key kidi:] Upon receiving (EVAL, sid, k̃id, ssid,C, S̃) from FOPRF,
send (sid, k̃id, ssid, gJ) to A as C’s message to S̃ and record ⟨k̃id, ssid,C,⊥⟩. Set J ← J + 1. (NB: for key identifiers
other than k̃id, there is no change in code here.)

6. Upon receiving (SNDRCOMPLETE, sid, kid, ssid,S) fromFOPRF and (sid, kid, ssid, a) fromA as some client’s C message
to some honest server S:

• If (S, kid) ̸= (S̃, k̃id) and there is a record ⟨F,S, kid, k, ∗⟩, then send (sid, ssid, ak) as the response of S for client C
to A.

• [Use exponentiation oracle to compute b for m-th key:] If (S, kid) = (S̃, k̃id) then send b to the exponentiation
oracle to receive back bk̄, and send (sid, ssid, bk̄) as the response of S for client C to A. Record (reftuple, a, bk̄) if
this was the first usage of the oracle.

7. [Use DDH oracle to compensate for not knowing H1 exponent r:] Upon receiving (sid, ssid, b) with b ∈ G from A as
some server’s S′ message to a client C, retrieve record ⟨∗, ssid,C, r⟩, gj sent in step 5 for ssid,C and (reftuple, A,B) from
step 6, and do:

• [A delivers b for challenge k̃id honestly.] If DDH(gj , b, A,B) = 1, send (RCVCOMPLETE, sid, k̃id, ssid,C, S̃) to
FOPRF.

• [A delivers b for non-challenge kid honestly.] If there is a record ⟨F,S, kid, k, ∗⟩ with b = gkj and record ⟨S, kid⟩ is
not marked COMPROMISED, send (RCVCOMPLETE, sid, kid, ssid,C,S) to FOPRF.

• [A plays server using non-fresh adversarial key.] If there is a record ⟨M,A, i,⊥, (G,H)⟩ with DDH(G,H, gj , b) =
1, send (SNDRCOMPLETE, sid, i, ssid) and (RCVCOMPLETE, sid, i, ssid,C,A) to FOPRF.

• [A plays server with compromised key.] If there is a record ⟨F,S, kid, k, (g, gk)⟩ with b = gkj and record ⟨S, kid⟩
is marked COMPROMISED, send (SNDRCOMPLETE, sid, kid, ssid) and (RCVCOMPLETE, sid, kid, ssid,C,S) to
FOPRF.

• [A uses fresh key.] If none of the above applies, set i ← I , record ⟨M,A, i,⊥, (gj , b)⟩, set I + + and send
(SNDRCOMPLETE, sid, i, ssid) and (RCVCOMPLETE, sid, i, ssid,C,A) to FOPRF.

8. Every time when there is a fresh query (x, u) to H2(·, ·), retrieve record ⟨H1, x, gj⟩. If there is no such record, then pick
H2(x, u)

$←− {0, 1}l. Otherwise, retrieve ⟨reftuple, A,B⟩ and do the following:

• [u = H(x)k for the challenge key.] If DDH(gj , u, A,B) then pick a fresh identifier ssid∗ and send
(EVAL, sid, k̃id, ssid∗,⊥, x) and (RCVCOMPLETE, sid, k̃id, ssid∗,A, S̃) to FOPRF. If FOPRF ignores the last mes-
sage then abort. Else, on FOPRF’s response (EVAL, sid, ssid∗, y), set H2(x, u)← y.

• [u = H(x)k for any other server’s key.] If some record ⟨F,S, kid, k, (g, gk)⟩ satisfies u = gkj then:
– [Compute PRF value for k, x offline.] If S is COMPROMISED or corrupt, send (OFFLINEEVAL, sid, kid,S, x)

to FOPRF, and on response (OFFLINEEVAL, sid, kid,S, x, y), set H2(x, u)← y.
– [Compute PRF value for k, x online, relying on a ticket tx[S, kid].] If S is not COMPROMISED, pick a fresh

identifier ssid∗ and send (EVAL, sid, kid, ssid∗,⊥, x) and (RCVCOMPLETE, sid, kid, ssid∗,A,S) to FOPRF. If
FOPRF ignores the last message then abort. Else, on FOPRF’s response (EVAL, sid, ssid∗, y), set H2(x, u)← y.

• [u = H(x)k for an adversarial k.] Else, if there is a tuple ⟨M,A, i,⊥, (G,H)⟩ with DDH(G,H, gj , u) = 1 then
send (OFFLINEEVAL, sid, i,A, x) to FOPRF, and on response (OFFLINEEVAL, sid, i,A, x, y) set H2(x, u)← y

• [Fresh adversarial key.] Else, record ⟨M,A, i,⊥, (gj , u)⟩ for i = I , send send (OFFLINEEVAL, sid, i,A, x) to
FOPRF, and on response (OFFLINEEVAL, sid, i,A, x, y) set H2(x, u)← y and I ++.

Figure 13: Reduction to the one-more DH problem.

42

3DH
P on INIT P on Y,B, aux from P′

a $←− Zp, A← ga retrieve (sk, pk) = (a,A) for P
store (sk, pk) = (sid, a, A) for P if P <lex P′

σ ← Bx ∥ Y a ∥ Y x

P on (NEWSESSION,P′) k ← H(aux, X, Y, σ)

x $←− Zp, X ← gx else
retrieve pk = A for P and sid σ ← Y a ∥Bx ∥ Y x

send X,A,⊥ to P′ k ← H(aux, Y,X, σ)

Figure 14: Triple Diffie–Hellman Key Exchange 3DH as used in the WBP.

In the description below, we assume P,P′ ∈ {U, S}.
• On (INIT, sid) from P, send (INIT, sid,P) to A.
• On (NEWSESSION, sid, ssid,P′) from P, send (NEWSESSION, sid, ssid,P,P′) toA. If ssid

was not used before by P, record ⟨ssid,P,P′⟩ and mark it FRESH.
• On (COMPROMISE, sid,P) from A, mark P COMPROMISED.
• On (IMPERSONATE, sid, ssid,P) from A, if P is marked COMPROMISED and there is a

record ⟨ssid,P, ∗⟩ marked FRESH, mark this record COMPROMISED.
• On (NEWKEY, sid, ssid,P, aux , shk∗) from A, where |shk∗| = λ, if there is a record
⟨ssid,P, [P′]⟩ not marked COMPLETED, do:

– If the record is marked COMPROMISED, or P or P′ is corrupted, set shk← shk∗.
– If the record is marked FRESH, an output (sid, ssid, aux’ , shk′) was sent to P′ from
FAKE-KCI while record ⟨ssid,P′,P⟩ was marked FRESH, and aux = aux′ , set shk ←
shk′.

– Else pick shk $←− {0, 1}λ.
Finally, mark ⟨ssid,P,P′⟩ COMPLETED and send (sid, ssid, aux , shk) to P.

Figure 15: Ideal functionality FAKE-KCI. The changes over [24] are marked with gray boxes.

43

Simulator SIM3DH

1. On (INIT, sid,P) from FAKE-KCI: choose a $←− Zp, A $←− ga. Store ⟨P, sid, a, A⟩

2. On (NEWSESSION, sid, ssid,P,P′) from FAKE-KCI:

• if P <lex P′, set r ← 0, else set r ← 1.
• choose x $←− Zp, set X = gx

• retrieve ⟨P, sid, ∗, [A]⟩
• store ⟨sid, ssid,P,P′, r, x,X⟩ and send X,A,⊥ to P′.

3. On adversarial message Y,B, aux to P on behalf of P′: if there is a record
⟨[sid], [ssid],P,P′, [r], [x], X⟩:

• if there is no record ⟨sid, ssid,P′,P, ∗, [y], Y ⟩ and P′ is compromised in session sid,
send (IMPERSONATE, sid, ssid,P′) to FAKE-KCI and do:

– if r = 0, set h← H(aux, Bx ∥ Y a ∥ Y x)
– else, set h← H(aux, Y a ∥Bx ∥ Y x)

• Otherwise, set h← ⊥
• send (NEWKEY, sid, ssid,P, h) to FAKE-KCI.

4. On (COMPROMISE, sid,P) from Z: Send (COMPROMISE, sid,P) to FAKE-KCI, retrieve
record ⟨P, sid, [a], ∗⟩ and output a to Z .

5. On query (aux, σ) to random oracle H from Z:

• if there exists a record ⟨H, (aux, σ), [k]⟩, output k.
• Else pick k $←− {0, 1}λ and store record ⟨H, (aux, σ), k⟩. Output k.

Figure 16: Simulator SIM3DH showing that 3DH UC-realizes FAKE-KCI.

44

Definition 13 (Gap Computational DH Assumption [20]). Let G = ⟨g⟩ be a cyclic group of prime order p.
The Gap Computational Diffie–Hellman (GapCDH) assumption holds in G if for any efficient adversary A,

AdvGapCDH
A,G := Pr

x $←−Z∗
p,y

$←−Z∗
p

[
ADDH(·,·,·)(gx, gy) = gxy

]
is negligible, where DDH(·, ·, ·) is a Diffie–Hellman oracle that takes as input (gx, gy, gz) and returns 1 if
z = xy and 0 otherwise.

Theorem 3. Let G = ⟨g⟩ be a cyclic group of prime order p and H : {0, 1}∗ × G3 → {0, 1}λ be a hash
function. Suppose the GapCDH Assumption holds in G and let H be a random oracle.

Then the 3DH protocol of Figure 14 UC-realizesFAKE-KCI of Figure 15. More precisely, for any efficient
adversary against 3DH, there is an efficient simulator SIM3DH that interacts with FAKE-KCI and produces a
view such that for any efficient environment Z it holds that

Dist
3DH,{FAKE-KCI,SIM3DH}
Z (λ) ≤ AdvGapCDH

B1,G (λ) + 2qI ·AdvGapCDH
B2,G (λ) +

q2S
p
,

where qI denotes the number of INIT queries to FAKE-KCI and qS the number of NEWSESSION queries to
FAKE-KCI.

PROOF. We describe the simulator SIM3DH in Figure 16. We now show a sequence of hybrid experi-
ments G0, . . . ,G6, where starting from the real-world execution EXEC3DH,A,Z and make small incremental
changes until we reach the ideal-world execution IDEALFAKE-KCI with SIM3DH. While some steps are similar
to the proof in [20], we cannot fully adapt their proof due to the different functionalities. We write Pr[Gi]
as shorthand for the probability that the environment outputs 1 in Gi. Let qH ∈ N denote the number of H
queries and qI ∈ N the number of INIT queries to FAKE-KCI.

Game G0: This is the real world execution EXEC3DH,A,Z .

Game G1: In this game we move everything the protocol parties do to the simulator who internally exe-
cutes all parties. We also add an ideal functionality that does nothing but forwarding every input it
gets to the simulator. To make the changes oblivious to the environment we also add dummy parties
that forward the input they get from Z to the functionality. Finally, we equip the functionality with
dummy interfaces that allow the simulator to let any party produce any output chosen by the simulator.
As these are only syntactical changes, we have

Pr[G1] = Pr[G0].

Game G2: Whenever an honest party P sends a message X,A,⊥ for X = gx such that X was already
sent by another honest party P′ ̸= P, i.e., the simulator stored a record ⟨∗, ∗,P′, ∗, ∗, x,X⟩, the
experiment aborts. Since x $←− Zp was sampled uniformly at random and there are at most qS queries
to NEWSESSION, due to the birthday bound we have

|Pr[G2]− Pr[G1]| ≤
q2S
p
.

Game G3: In this game, we abort if the environment queries H on input aux, σ where σ = L ∥ M ∥
N corresponds to the output of two honest parties. More precisely, if the simulator stored records

45

⟨P, sid, a, A⟩, ⟨P′, sid, b, B⟩, ⟨sid, ssid,P,P′, 0, x⟩, and ⟨sid, ssid,P′,P, 1, y⟩, s.t. L = Bx,M = Y a,
N = gxy, we abort the game. Now, we can construct an adversary B1 that wins the GapCDH game if
Z ever makes a query of this form. The reduction works as follows.

At the start of the game, it receives a CDH challenge (X̄, Ȳ). Then, for every message (NEWSESSION,
sid, ssid,P,P′) from FAKE-KCI, where P is honest, it simulates the message of P by choosing s $←− Zp

and setting X ← X̄s if r = 0, or t $←− Zp, Y ← Ȳ t if r = 1. Instead of storing ⟨ssid,P,P′, ∗, x,X⟩, as
x = dlogg(X) is not known to the reduction, it stores ⟨sid, ssid,P,P′, ∗, s,X⟩, resp. ⟨sid, ssid,P,P′, ∗,
t, Y ⟩. Now, on a query aux, L ∥ M ∥ N to H , the reduction can check with its DDH oracle if
N = CDH(X̄, Y s) and N = CDH(Ȳ , Xt) for any of the recorded pairs s,X and t, Y . If the check
is successful, the reduction returns N1/st as result to its challenger. It is easy to see that the reduction
wins iff the abort happens. Thus, we have

|Pr[G3]− Pr[G2]| ≤ AdvGapCDH
B1,G (λ).

Game G4: In this game, for honest parties that receive a message from an honest party, we let the function-
ality compute the session key instead of the simulator. That is, on an adversarial message Y,B, aux
from P′ to P, the simulator checks if there is a record ⟨[sid], [ssid],P′,P, ∗, ∗, Y ⟩ and a record ⟨P′, sid,
∗, B⟩. If such records exists, this means that P′ is honest and that Y and B were generated by the
simulator. It then makes the functionality output a key shk $←− {0, 1}λ or shk′, if the functionality
already output a key shk′ to P′ in the same subsession ssid of session sid. In G4, P therefore always
outputs a uniformly random key. Conversely, in G3 the key for P was computed by the simulator
as H(aux, Bx ∥ Y a ∥ Y x). However, due to the abort condition introduced in G3 the environment
cannot query the random oracle for this exact input. Therefore, the output of P in G4 and G3 is
indistinguishable and we have

Pr[G4] = Pr[G3].

Game G5: In this game, we change the way honest parties receive their output if the received message
Y,B, aux was sent maliciously, i.e., there is no record ⟨[sid], [ssid],P′,P, ∗, y, Y ⟩ or ⟨P′, sid, ∗, B⟩.
We distinguish three cases here:

• P′ is corrupt: We continue to let the functionality output a key shk∗ to P that was provided by
the simulator. In G3 the key of any such session was computed as H(aux, Bx ∥ Y a ∥ Y x) or
H(aux, Y a ∥Bx ∥ Y x), depending on the role of P. In G5 the simulator gives exactly that value
to the functionality.

• P′ is compromised: The simulator first sends (IMPERSONATE, sid, ssid,P′) to FPPKR to mark
this session as COMPROMISED. Afterwards, we continue as in the case above.

• P′ is honest and not compromised: In G3, P outputs a key that was computed as H(aux, Bx ∥
Y a ∥ Y x) or H(aux, Y a ∥ Bx ∥ Y x), depending on its role. In G5, we let the functionality
output a uniformly random key shk∗ $←− {0, 1}λ. Z can only notice the difference by querying
aux, Bx ∥ Y a ∥ Y x to H , where B is the public key of P′. If Z makes such a query, we abort
the game. Since P′ is honest and not compromised, b s.t. B = gb is unknown to Z . We
can thus create an adversary B2 that wins the GapCDH game if the environment ever queries
H(aux, Bx ∥ Y a ∥ Y x), if P has role r = 0.
The reduction works as follows: On a challenge (X̄, B̄) the reduction guesses an index i ∈
{1, ...qI} and on the i-th (INIT, ∗, ∗) output fromFAKE-KCI it outputs B̄. On every NEWSESSION

message from FAKE-KCI, the reduction chooses s $←− Zp and computes X ← X̄s. It outputs X

46

as message for that party and, similarly as the reduction in game G3, stores s instead of x.
When the reduction receives a query H(aux, L ∥ M ∥ N) it uses its DDH oracle to check if
L = CDH(B̄,X) for any recorded X . If that is the case, it retrieves the s stored alongside X
and outputs L1/s as to its challenger. It is easy to see that the reduction succeeds if the guessed
index i is correct. If P has role r = 1 and Z queries H(aux, Y a ∥ Bx ∥Xy), then we construct
an analogous reduction that solves the GapCDH problem in essentially the same way.

Overall we get
|Pr[G5]− Pr[G4]| ≤ 2qI ·AdvGapCDH

B2,G (λ).

Game G6: In this step we replace the simulator and the functionality described in G5 with the simulator
and the functionality from Figure 16 and Figure 15. One can verify that this does not change the
distribution of the experiment, that is,

Pr[G6] = Pr[G5].

Combining all probabilities yields the bound claimed in the theorem.

E Proof of Theorem 1

We start by explaining our proof steps. As explained in Section 5, we can focus on simulating an interaction
between an honest client and a corrupt server. We start with the real execution of the protocol as depicted in
Figures 4 and 5, using FHSM for the HSM part. Then, we gradually change this execution until we end up
in the ideal execution with FPPKR and the simulator described in Appendices E.1 and E.2. The first step is
that we pull the whole protocol execution into one box called the simulator SIM, which allows us to modify
the protocol code of parties using instructions as “If message X is adversarial” (since the simulator is aware
of the actions of the real-world adversary in the UC model). First, we make some “easy” changes, i.e.,
we change parts where there are no dependencies within the protocol. For example, we can drop signature
verification and instead let clients abort upon adversarial messages b1 or b2. The environment cannot notice
due to the unforgeability of the signature scheme. The reduction is possible because the signing key is used
only for signing b1 and b2, i.e., there are no other protocol parts depending on it. Below we list all these
“easy” changes and their underlying assumptions.

• G2: Let the client output FAIL upon adversarial σ1 or σ2 [sEUF-CMA security of signature scheme]
• G3: Abort the simulation if one of the nonces ne, nS , nC is the same for two independent protocol

executions.
• G4: Switch E to an encryption of 0 [IND-CPA of PKE]
• G5: In an initialization between client and FHSM (we call this event [Ea1] as it corresponds to honest

delivery of the a1 message from the client to FHSM), let FHSM output FAIL upon receipt of E if any
of the values a1, b1, n1 are not delivered honestly [collision resistance of H3]

• G6: Abort the whole simulation if, in any recovery session between a client and FHSM (we call this
event [Ea2], as it corresponds to honest delivery of the a2 message from the client to FHSM), pre of
FHSM is not equal to pre′ of the honest client, but H3(pre) = H3(pre

′) [collision resistance of H3]
• G7: Draw e cred at random instead of computing it from skC . SIM records pairs skC , e cred,Kmask

to let parties ”decrypt“ skC correctly from e cred and Kmask. This step ensures that e cred leaks no
information about skC [information-theoretic security of the one-time-pad]

47

Next, in game G8 we replace the 2HashDH part by FOPRF and SIMOPRF. We can do this because we
show, in Appendix C, that the 2HashDH protocol of the WBP, which we extract in Figure 11, UC-realizes
functionality FOPRF (Figure 10), with simulator SIMOPRF of Figure 12 (we prove this result in Theorem 2).
We hence can generate all PRF values by FOPRF and transcripts a1, b1, a2, b2 from simulator SIMOPRF. We
then relax the simulated FOPRF to always answer to the simulator in game G9.

We next do the same for the 3DH part of the WBP in game G10, which we extract in Figure 14, and
show it to UC-emulate functionality FAKE-KCI of Figure 15 with simulator SIM3DH (Figure 16), in Theo-
rem 3. Hence, we let FAKE-KCI generate all 3DH keys, and use the simulator SIM3DH to generate keys and
transcripts. A subtlety here is that this step only works after making e cred independent of skC , which is a
value kept secret by honest parties in the 3DH protocol.

With PRF values and AKE session keys freshly chosen by the corresponding functionalities, we can
now make the following changes to the protocol execution.

• G11: Abort the whole simulation if an adversarial e cred, ne, Te decrypts with AE′.Dec under any two
Kauth known to A [RKR security of AE′ scheme]

• G12: Randomize KMAC
S ,KMAC

C , shk following honest AKE sessions [syntactical since FAKE-KCI
chooses them uniformly at random]

• G13: Skip computation of T ′
S and instead let the client output FAIL upon adversary modifying any

elements of pre or TS during transmission [sEUF-CMA security of MAC scheme]
• G14: In honest recovery sessions ([Ea2]), skip computation of TC and instead let FHSM output FAIL

upon adversary modifying the transmitted T ′
C , TS , or any value of pre [sEUF-CMA security of the

MAC scheme]
• G15: Client outputs FAIL upon adversarial c [Ciphertext integrity of AE]
• G16: Client does not verify the MAC Te anymore.
• G17: In honest recovery sessions, we let FHSM encrypt 0 instead of e to generate ciphertext c [IND-

CPA security of AE]
We depict the resulting protocol execution of game G17 in Figures 17 and 18. It can be seen from the

figure that the key K chosen by the client upon initialization does not enter any computation and hence the
whole protocol transcript is independent of it. This facilitates the introduction ofFPPKR, which can now just
sample K on behalf of honest clients. The introduction of the functionality next to the simulated execution
of game G17 is detailed in games G18 - G23 below.

In Appendices E.1 to E.2 we describe the simulator for the honest client corrupt server case. In the
following we describe a sequence of hybrid experiments and argue for each hop why it is (at least) com-
putationally indistinguishable from the previous. Let π denote the WhatsApp encrypted backups protocol
from Figures 4 to 5. We start with EXECπ,A,Z , that means the first game is the real-world experiment. The
goal is to construct the sequence of games to eventually reach IDEALFPPKR

, the ideal-world experiment.
We argue step by step why each hop between two experiments is indistinguishable from the previous. We
write Dist

π,{F ,SIM}
Z (λ) for the distinguishing advantage of environment Z between the real execution of π

and the simulation by SIM interacting with F . Further, we write Pr[Gi] as shorthand for the probability that
the environment outputs 1 in hybrid Gi.

Game G0: The real execution.

Game G1: Create simulator and functionality. In this game we move everything the protocol parties
do to the simulator who internally executes all parties. Note that the corrupt server does not actually
execute the protocol but does whatever the environment tells it (through SIM) to do. We also add an
ideal functionality F that does nothing but forwarding every input it gets to the simulator. To make

48

Client with phone number IDC Server HSM
pw′, pkHSM = {pkSigHSM, pkEncHSM, (∗, pkDH

HSM, ∗)← SIM3DH (G10) } acc skHSM = {skSigHSM, skEncHSM,KEnc
HSM}

On input (INITC, pw):
K $←− {0, 1}λ
pw→ FOPRF, a1 ← SIMOPRF (G8) sa1 ... -(INITS, aidnew, aidold,a1)

...
(G8) KPRF

aidnew
$←− SIMOPRF

b1 ← a
KPRF

aidnew
1 , n1

$←− {0, 1}λ

FAIL if b1 or σ1 adversarial (G2) � b1, n1, σ1 �aidnew, b1, n1, σ1 σ1 ← Σ.Sign(skSigHSM, b1 ∥ n1)
y ← FOPRF (G8)
ne

$←− {0, 1}λ
(Kexport,Kmask,Kauth)← KDF1(y, ne)
e cred $←− {0, 1}λ
Te

$←− MAC.Tag(Kauth, pkDH
HSM ∥ ne ∥ e cred)

m← 0 ∥ trC ∥ pkC ∥ e cred ∥ ne ∥ Te

E $←− PKE.Enc(pkEncHSM;m) (G4)
record (E, pkC ∥ e cred ∥ ne ∥ Te) (G4) sE -(FILE, aidnew,E)

record (Kexport,K) (G4) (G5) If [Ea1]: if any of a1, b1, n1 adversarial output FAIL

... (G5) Retrieve (E,m′), otherwise set
m← PKE.Dec(skEncHSM;E)

parse m = e ∥ trC∥ pkC ∥ e cred ∥ ne ∥ Te

and then
m′ ← e∥ pkC ∥ e cred ∥ ne ∥ Te

...

Figure 17: The simulated execution of WBP initialization in game G17, particularly marking replaced
2HashDH (G8) instructions with their idealized versions. We use ... for skipping over unchanged parts.
Red boxes mark instructions executed by the simulator who can access all values. The event [Ea1] corre-
sponds to the server forwarding a client’s a1 to FHSM.

49

Client with phone number IDC Server HSM
pw′, pkHSM = {pkSigHSM, pkEncHSM, (∗, pkDH

HSM, ∗)← SIM3DH (G10) } acc skHSM = {skSigHSM, skEncHSM,KEnc
HSM}

On input (RECC, pw′):
a2 ← SIMOPRF, pw′ into FOPRF (G8)
nC

$←− {0, 1}λ
(p̄kC , ∗, ∗) $←− SIM3DH (G10) snC , p̄kC , a2 ... -(RECS, aid, nC , p̄kC , a2) ...

b2 ← a
KPRF

aid
2 , nS

$←− {0, 1}λ
(G10) (p̄kS , ∗, ∗) $←− SIM3DH

pre← (a2, nc, p̄kC , pk
DH
HSM, e cred, ne, Te, b2, nS , p̄kS)

(G10) s← FAKE-KCI[aux = pre]

(G12) If [Ea2]: K
MAC
S ,KMAC

C , shk $←− {0, 1}λ

(G12) If not [Ea2]: (K
MAC
S ,KMAC

C , shk)← s

(G12) record (s,KMAC
S ,KMAC

C , shk)
TS

$←− MAC.Tag(KMAC
S ,H3(pre))

σ2
$←− Σ.Sign(skSigHSM, b2)FAIL if b2 or σ2 adversarial (G2) �b2, e cred, ne, Te,

nS , p̄kS , TS , σ2
�b2, e cred, ne, Te,

nS , p̄kS , TS , σ2Abort if e cred, ne, Te (G11)
decrypts under Kmask, K̄mask both known to A (G11)
...
y ← FOPRF (G8)
(Kexport,Kmask,Kauth)← KDF1(y, ne)

T ′
e

$←− MAC.Tag(Kauth, pkDH
HSM ∥ ne ∥ e cred) (G16)

if T ′
e ̸= Te return (RECRESULT, FAIL) (G16)

pre′ ← (a2, nc, p̄kC , pk
DH
HSM, e cred, ne, Te, b2, nS , p̄kS)

Abort if pre ̸= pre′ and H3(pre) = H3(pre
′) (G6)

s← FAKE-KCI[aux = pre′] (G10)
retrieve record (s,KMAC

S ,KMAC
C , shk), otherwise do: G12)

if [Ea2]: set KMAC
S ,KMAC

C , shk $←− {0, 1}λ (G12)
if ¬[Ea2]: set KMAC

S ,KMAC
C , shk = s (G12)

FAIL if pre ̸= pre′ or TS adversarial (G6)

T ′
S

$←− MAC.Tag(KMAC
S ,H3(pre

′))
if T ′

S ̸= TS return (RECRESULT, FAIL)
T ′
C

$←− MAC.Tag(KMAC
C ,H3(pre, T

′
S)) sT ′

C -(RECRESULT, aid, T ′′
C) (G14) If [Ea2]: FAIL if T ′

C ̸= T ′′
C

or pre ̸= pre′, or TS adversarial
T ′
C

$←− MAC.Tag(KMAC
C ,H3(pre, T

′
S))

...
If [Ea2]: FAIL if c adversarial (G15) �

c ... � aid, c (G17) If [Ea2]: c
$←− AE.Enc(shk, 0)

Retrieve (Kexport,K) (G15) otherwise: c← AE.Enc(shk, e)
otherwise K ← AE.Dec(Kexport, e), e← AE.Dec(shk, c)
output K

Figure 18: The simulated execution of WBP recovery in game G17, particularly marking replaced 2HashDH
(G8) and 3DH (G10) instructions with their idealized versions. We use ... for skipping over unchanged
parts. Red boxes mark instructions executed by the simulator who can access all values. The event [Ea2]
corresponds to the server forwarding a client’s a2 to FHSM.

50

the changes oblivious to the environment we also add dummy parties that forward the input they get
from Z to the functionality. Finally, we equip the functionality with dummy interfaces that allow the
simulator to make any party output anything that the simulator wants to.

This is merely a syntactical change as still every message is produced as in the real-world. Thus, both
hybrids are identically distributed, i.e.,

Pr[G1] = Pr[G0]

Game G2: Abort upon signature forgery. In this game hop we let the simulator track every signature σ1
or σ2 that is issued by the HSM. If the simulator receives a signature that is not issued by the HSM,
the simulator uses its verification key pkSigHSM to check if the signature verifies. If it does, the simulator
aborts the simulation.

G2 and G1 only deviate if a signature is sent to SIM that was not issued by the HSM before. If this
happens for signature σ1 we denote it by E1

Sig and if it happens for σ2 we denote it by E2
Sig. If E1

Sig

or E2
Sig occur with non-negligible probability, we can construct an adversary against the sEUF-CMA

security of the signature scheme.

The reduction works as follows: Assume there is an environment Z∗ that leads to event E1
Sig or E2

Sig

when interacting with the functionality and the simulator. Then the reduction machine B internally
runs the whole experiment including the functionality, the simulator and Z∗. Instead of letting the
simulator compute pkSigHSM itself, B uses the public key that it gets from the challenger. Whenever the
simulator’s internal HSM would issue a signature, B asks the signing oracle to produce the signature.
When the simulator detects E1

Sig or E2
Sig, B outputs the signature and the message that led to this

event as a forgery and halts. It is easy to see that B wins the sEUF-CMA game whenever E1
Sig or E2

Sig

occurs. Thus, we have
|Pr[G2]− Pr[G1]| ≤ AdvsEUF-CMA

B,Σ (λ).

Game G3: Abort upon nonce collision. In this hybrid the simulator tracks all nonces ne, nS , nC produced
by an honest party during execution of the protocol. If it ever occurs that one of the nonces collides
with the respective nonce from an independent execution of the protocol, i.e., ne = n′

e, nS = n′
S ,

or nC = n′
C for independently chosen ne, n

′
e, nS , n

′
S , nC , n

′
C

$←− {0, 1}λ, then the simulator aborts
the simulation. Note that a nonce ne is chosen for each initialization and nonces nC , nS are chosen
for each recovery. Let QINIT ∈ N an upper bound on the number of initializations, and QREC ∈ N an
upper bound on the number of recoveries. We have

|Pr[G3]− Pr[G2]| ≤
(
QINIT

2

)
2−λ +

(
QREC

2

)
2−λ+1.

Game G4: Client encrypts 0 instead of e. In this game we change the computation of the cipher-
text E. Whenever an honest client computes E, the honest client sets e ← 0 instead of e ←
AE.Enc(Kexport;K). The simulator stores K and whenever the client successfully finishes a recovery,
the simulator gives K as actual output to the client instead of AE.Dec(Kexport;K).

Assume there is an environment Z∗ that can distinguish G4 and G3. We construct an adversary D
against the IND-CPA security of PKE as follows:

We construct QINIT hybrid games G3 = G0
3,G1

3, ...,GQINIT
3 = G4, where we replace in Gi

3 the en-
cryption of the actual e by an encryption of 0 in the i-th initialization. If there is a distinguisher D

51

between G3 and G4 then there is an index i such that Gi
3 and Gi+1

3 are distinguishable. A reduction
from the IND-CPA security of PKE can now use its public key to produce all ciphertexts except for
E in the i-th initialization. We define the challenge message m0 ← e ∥ trC ∥ pkC ∥ e cred ∥ ne ∥ Te

as in G3 and the challenge message m1 ← 0 ∥ trC ∥ pkC ∥ e cred ∥ ne ∥ Te as in G4. The ciphertext
E is replaced by the challenge ciphertext. The reduction then wins the IND-CPA game with the same
probability that the environment has in telling the hybrids apart.

|Pr[G4]− Pr[G3]| ≤ QINITAdvIND-CPA
D,PKE (λ).

Game G5: Abort upon transcript collision. In this game, the simulator tracks all (honest or adver-
sarial) messages a1 and b1, n1. Whenever there is (a1, b1, n1) ̸= (a′1, b

′
1, n

′
1) but H3(a1, b1, n1) =

H3(a
′
1, b

′
1, n

′
1) it aborts the simulation.

We denote the event that the simulator sees (a1, b1, n1) ̸= (a′1, b
′
1, n

′
1) with H3(a1, b1, n1) = H3(a

′
1,

b′1, n
′
1) as EColl. If there is an environmentZ∗ such that EColl happens with non-negligible probability,

we can construct an adversary B against the collision resistance of H3. This adversary just runs the
experiment with Z∗ internally and outputs (a1, b1, n1), (a

′
1, b

′
1, n

′
1) as collision. We therefore have

|Pr[G5]− Pr[G4]| ≤ AdvCR
B,H3

(λ).

Game G6: Abort upon preamble collision. In this game, the simulator tracks all messages that oc-
cur during a recovery, i.e., either simulated or sent adversarially. It stores these messages as pre =
(a2, nc, p̄kC , pk

DH
HSM, e cred, ne, Te, b2, nS , p̄kS). If there are pre ̸= pre′ but H3(pre) = H3(pre

′) it
aborts the simulation.

If there is an environment Z∗ such that a collision happens with non-negligible probability, we can
construct an adversaryB against the collision resistance of H3. This adversary just runs the experiment
with Z∗ internally and outputs pre, pre′ as a collision as above. We therefore have

|Pr[G6]− Pr[G5]| ≤ AdvCR
B,H3

(λ).

Game G7: Randomize skC encryption. In this game we change the computation of the ciphertext e cred.
Whenever an honest client computes E, the honest client chooses e cred $←− {0, 1}λ. The simulator
stores skC and whenever the client recomputes Kmask in recovery, the simulator provides it with skC
for the key exchange. Note that as of G3 the nonce ne is different for every initialization. Therefore,
Kmask is a fresh uniformly random value in every initialization.

From the information-theoretic security of the one-time-pad it follows that

Pr[G7] = Pr[G6].

Game G8: Replace the 2HashDH protocol. In this game we change the simulators behavior concerning
the messages of the 2HashDH protocol. Instead of computing the messages of the 2HashDH protocol
as in the real-world, the simulator uses its internal ideal OPRF functionality FOPRF and its internal
OPRF simulator SIMOPRF to simulate the messages and outputs. In particular, this affects the mes-
sages (or parts of messages) a1, a2, b1, b2 and queries to H1 and H2. In Appendices E.1 and E.2 the
respective parts are enclosed by [OPRFsim:] and [endOPRFsim].
Assume there is an environment Z∗ that can distinguish between games G7 and G8. We can con-
struct an environment Ẑ that can distinguish between the real 2HashDH protocol and the simulated

52

execution with SIMOPRF and FOPRF. The environment Ẑ internally runs the whole experiment in-
cluding the functionality and SIM with Z∗, but whenever SIM would execute a operation of 2HashDH
it instead generates the corresponding output from the OPRF experiment. If Ẑ interacts with the real
2HashDH protocol, it perfectly simulates G7 for Z∗, and if it interacts with FOPRF and SIMOPRF, it
perfectly simulates G8 for Z∗.

It follows that we have

|Pr[G8]− Pr[G7]| ≤ Dist
2HashDH,{FOPRF,SIMOPRF}
Z∗ (λ).

Game G9: Weaken the FOPRF functionality. In this game, we exchange the OPRF-functionality FOPRF

that the simulator is executing in its head by a weaker functionality F ′
OPRF that does not check the

ticket counter. F ′
OPRF works as Figure 10 but on a (RCVCOMPLETE, sid, kid, ssid,P,S∗) message it

still returns (EVALOUT, sid, ssid, Fsid,S∗,kid∗(x)) even if tx[S∗, kid∗] ≤ 0.

UC-security gives a lower bound on the security of a protocol. If a protocol π UC-emulates a func-
tionality F it means intuitively that every attack that is possible against π is also possible against F .
In other words, π is at least as secure as F . If we make F weaker but keep the same π, then π is still at
least as secure as the weaker F . In particular, the same simulator can be used to show UC-emulation
(if the interfaces of F did not change). As we remove in G9 a condition under which FOPRF aborted,
we make F ′

OPRF weaker, which means that 2HashDH still UC-realizes F ′
OPRF. Therefore, we have

Pr[G9] = Pr[G8].

Game G10: Replace the 3DH protocol. In this game we change the simulators behavior concerning the
messages of the 3DH protocol. Instead of computing the messages of the 3DH protocol as in the real-
world, the simulator uses its internal ideal AKE functionalityFAKE-KCI and its internal AKE simulator
SIM3DH to simulate the messages and outputs. In particular, this affects the messages p̄kC , p̄kS , the
public and private keys skDH

HSM, pkDH
HSM, pkC , skC , and queries to KDF2. In Appendices E.1 and E.2

the respective parts are enclosed by [AKEsim:] and [endAKEsim].

Assume there is an environmentZ∗ that can distinguish between games G9 and G10. We can construct
an environment Ẑ that can distinguish between the real 3DH protocol and the simulated execution
with SIM3DH and FAKE-KCI. The environment Ẑ internally runs the whole experiment including
the functionality and SIM with Z∗, but whenever SIM would execute a operation of 3DH it instead
generates the corresponding output from the AKE experiment. If Ẑ interacts with the real 3DH
protocol, it perfectly simulates G9 for Z∗, and if it interacts with FAKE-KCI and SIM3DH, it perfectly
simulates G10 for Z∗.

It follows that we have

|Pr[G10]− Pr[G9]| ≤ Dist
3DH,{FAKE-KCI,SIM3DH}
Z∗ (λ).

Game G11: Rule out ambiguous OPAQUE envelopes e cred, ne, Te. In this game the simulator tracks
all KDF1 outputs (Kexport,Kmask,Kauth) that it computes (regardless of them being output to Z or
just used internally by SIM to simulate honest users). Further, SIM checks for every (e cred, Te) from
decrypting E or from message b2, e cred, ne, Te, ... if (e cred, Te) decrypts using AE′.Dec for two of
the previously recorded (Kmask,Kauth) and (Kmask′,Kauth′). If it does then the simulator aborts the
simulation.

53

Suppose SIM sees a tuple (e cred, Te) that decrypts using AE′.Dec for two of the recorded (Kmask,
Kauth) and (Kmask′,Kauth′). We reduce the random-key robustness of AE′ on this event as follows:

Let QKDF1 ∈ N be an upper bound on the number of outputs requested from KDF1. The re-
duction internally executes the experiment. At the beginning it guesses two distinct indices i, j ∈
{1, ..., QKDF1}. It receives two random keys k1 and k2 from the challenger. On the i-th KDF1 query
the reduction programs the output of KDF1 to be Kexport∥k1 for some uniformly random Kexport, and
on the j-th query it programs the output to be Kexport′∥k2 for some uniformly random Kexport′. When
it receives a ciphertext (e cred, Te) that decrypts under k1 and under k2 then it outputs (e cred, Te) to
the challenger. We have

|Pr[G11]− Pr[G10]| ≤
(
QKDF1

2

)
AdvRKR

R,AE′(λ).

Game G12: Randomize MACs T ′
S , TC . In this game we replace the values KMAC

C and KMAC
S that are used

after an AKE execution between two honest parties by uniformly random values.

This is only a syntactical change as (KMAC
C ,KMAC

S , shk) is already output by FAKE-KCI as uniformly
random values. Hence, we have

Pr[G12] = Pr[G11].

Game G13: Skip MAC verification of T ′
S . In this game we do not check the MACs T ′

S for validity any-
more. Instead the simulator makes the client output FAIL if the client receives TS in a recovery
session with preamble pre′ ̸= pre, where pre is the preamble that SIM used to produce TS and pre′

is the preamble that an honest client sees of the session. SIM also makes the client fail when the
adversary gives a new TS to the honest client that was not produced by SIM, which we call event
E1

Mac.

Let QREC be an upper bound on the number of honest recoveries. The reduction guesses an index i ∈
{1, ..., QREC} and runs the experiment internally. In the i-th recovery, the reduction does not compute
TS itself but instead lets TS be computed by the MAC oracle that is provided by the challenger, which
implicitly sets KMAC

S to the key of the challenger. This is possible as the client and the HSM are
both honest parties and thus KMAC

S is a random value as of G12. If the event E1
Mac occurs in the

i-th recovery, the reduction gives the TS that the client received as output to its challenger. One can
see that the reduction wins the sEUF-CMA game if it guessed i correctly and TS verifies in E1

Mac.
Therefore, we have

|Pr[G13]− Pr[G12]| ≤ QRECAdvsEUF-CMA
A,MAC (λ).

Game G14: Skip MAC verification of TC in honest recoveries. In this game, the simulator does not verify
the MAC TC anymore in recoveries that are started by the honest client (not for recoveries where the
corrupt server sent nC , p̄kC , a2 without the client, i.e., MALREC). SIM makes the HSM output FAIL

if it receives T ′
C for an honest recovery session that was not produced by the simulator before, when

SIM simulated the honest client. We call this event E2
Mac.

The reduction works similar as above. Let QREC be an upper bound on the number recoveries (and
thus also of honest recovery sessions). The reduction guesses an index i ∈ {1, ..., QREC} and runs the
experiment internally. In the i-th recovery where the reduction simulates the behavior of an honest
client, the reduction does not compute T ′

C itself but instead lets T ′
C be computed by the MAC oracle

that is provided by the challenger, which implicitly sets KMAC
C to the key of the challenger. This again

54

is possible as the client and the HSM are both honest parties and thus KMAC
C is a random value as of

G12. If the event E2
Mac occurs in the i-th recovery, the reduction gives the T ′

C that the HSM received
as output to its challenger. One can see that the reduction wins the sEUF-CMA game if it guessed i
correctly and T ′

C verifies in E2
Mac. Therefore, we have

|Pr[G14]− Pr[G13]| ≤ QRECAdvsEUF-CMA
A,MAC (λ).

Game G15: Rule out forged c ciphertexts. In this game the simulator tracks all ciphertexts c and aborts
the simulation if the client receives a c that was not computed by the HSM.

If the simulator computed a value c on behalf of the HSM but the corrupt server provides a different
c′ to the client, where c′ decrypts without error we can construct an adversary against the ciphertext
integrity of AE. First note that shk is uniformly random as it is chosen by FAKE-KCI and is not used
for anything but the encryption and decryption of c. Furthermore, as the HSM and the client are
honest, FAKE-KCI does not output shk to anyone else. Let QREC be an upper bound on the number
of recoveries. The reduction starts by choosing i $←− {1, ..., QREC}. Now the reduction executes
the whole experiment internally. In the i-th recovery the reduction implicitly lets shk be the key of its
challenger instead of using the shk that was output byFAKE-KCI. To this end, the reduction computes c
using its encryption oracle when the reduction needs to simulate the HSM’s response to a RECRESULT

message. If the reduction gets an adversarial c′ for this recovery session, it outputs c′ as forgery to its
challenger. One can see that we have

|Pr[G15]− Pr[G14]| ≤ QRECAdvINT-CTXT
A,AE (λ).

Game G16: Client does not verify Te anymore. In this game the simulator does not check if the MAC Te

verifies when the client receives a message b2, e cred, ne, Te, nS , p̄kS , TS , σ2.

The distribution of the game would change if there was a situation where Te is not valid but TS is valid,
as in that case the client would not fail in G16 but it would fail in G15. Assume by way of contradiction
that this happens. As TS verifies, the preamble pre used by the client is not altered by the adversary.
Else the game would have aborted, see G6 and G13. Further, the OPRF response b2 cannot be altered
by the adversary as the game would also abort in that case, see G2. Hence, the only way in which
the adversary can influence the verification of Te with MAC.Tag(Kauth, pkDH

HSM ∥ ne ∥ e cred) is by
running the client on a password pw′ ̸= pw, where pw is the password that was used to produce Te.
If pw′ ̸= pw, then we have with overwhelming probability that Kauth ̸= Kauth′, where Kauth is the
key that was used to generate Te and Kauth′ is the key that is used to verify Te. By the correctness of
the MAC, Te verifies under Kauth. If Te also verifies under a second key Kauth′ then the simulation
already aborts as of G11. But then, the adversary cannot influence the execution in a way that leads
to Te failing while TS verifies. Hence, the distribution of the game does not change by dropping the
check of Te and we have

Pr[G16] = Pr[G15].

Game G17: Server encrypts 0 with AE. In this game the the simulator computes c as AE.Enc(shk, 0) when
it receives an honest T ′

C in a recovery session. If an environment can tell G17 and G16 apart with non-
negligible probability, we construct a reduction that breaks the IND-CPA security of AE as follows.
We define a sequence of hybrids G16 = G0

16,G1
16, ...,GQREC

16 = G17. In the i-th game we replace the
encryption of c in an honest recovery by the zero-encryption. If the environment distinguish G16 and
G17 then there must be an index i such that the environment can distinguish Gi

16 and Gi+1
16 . Now in

55

the i-th recovery the reduction does not produce c itself but uses e and 0 as challenge messages. The
challenger will answer with a ciphertext c∗ that the reduction uses as c in the experiment. Finally, the
reduction outputs whatever the environment outputs. One can see that we get

|Pr[G17]− Pr[G16]| ≤ QRECAdvIND-CPA
R,AE (λ).

Game G18: Add adversarial interfaces to F .

In this game we add all adversarial interfaces, i.e. MALRECS, MALINITS, COMPLETEINITC,
COMPLETEINITC-DOS, COMPLETERECC, COMPLETERECC-DOS, COMPLETEINITS,
COMPLETERECS to the functionality F . But the simulator does not make use of them so
far.

As the simulator does not use any of the added interfaces (yet) the distribution of the hybrid does not
changed and we get

Pr[G18] = Pr[G17].

Game G19: Add INITC and RECC interfaces. In this game we introduce slightly modified interfaces
INITC and RECC to the functionality and add the interfaces INITS and RECS. This means that the
functionality now does not just forward messages to the simulator but it actually does something when
receiving messages. However, in comparison to the functionality from Figures 7 to 8 we still give all
information about the input to the simulator. More precisely, we change IC.3 “Send (INITC, sid, IDC)
to A and to S” to “Send (INITC, sid, IDC, pw) to A and (INITC, sid, IDC) to S”, and we change RC.2
“Send (RECC, sid, IDC) toA and S” to “Send (RECC, sid, IDC, pw

′) toA and (RECC, sid, IDC) to S”.
We also leave out the counter txsid for now. In particular this also means that the functionality now
creates FILE records and records INITC and RECC.

We argue separately for each interface that is introduced in the new experiment.

• INITC interface: Instead of just forwarding the password pw to the simulator, the functionality
now also chooses a key K and creates a record ⟨INITC, sid, IDC, pw,K⟩. However, as the output
of the user in this experiment is not produced by the functionality but still from the simulator
executing the real protocol party on pw, the record is never used and thus, the distribution of the
experiment does not change.

• RECC interface: Instead of just forwarding the password guess pw′ to the simulator, the func-
tionality also creates a record ⟨RECC, sid, IDC, pw

′⟩. However, as the output of the user in this
experiment is not produced by the functionality but still from the simulator executing the real
protocol party on pw′, the record is never used and thus, the distribution of the experiment does
not change.

• INITS and RECS interfaces: As the server is corrupt these interfaces are not used.

Overall we have
Pr[G19] = Pr[G18].

Game G20: Output of parties comes from FPPKR in initialization. In this game hop we change the be-
havior of the simulator as follows. Instead of executing the real client and forwarding messages from
the environment to the corrupt server for the initialization phase of the protocol, the simulator acts as
described in Appendix E.1 on (INITC, sid, IDC) messages from FPPKR and on adversarial messages
b1, n1, σ1 and on adversarial allowance of delivering E. Additionally, we change the behavior of the

56

simulator on calls to the HSM interfaces (GETPK), (INITS, aidnew, aidold, a∗1), (FILE, aidnew,E). In-
stead of internally executing the code of the real HSM, SIM simulates the messages as described in
Appendix E.1. However, the simulator still maintains the counter txsid.

• (INITC, sid, IDC) fromFPPKR to SIM: Additionally to executing SIMOPRF to generate a1, which
is already done by SIM in G8, SIM only creates a record, which does not change the distribution.

• Adversarial b1, n1, σ1: First the simulator checks if there is a REPLAY record indicating that
the values b1, n1, σ1 were computed by the HSM. Note that the simulator stores values for cur-
rently running sessions with INIT records that get deleted after the session completed, while
REPLAY records are not deleted and are used by SIM to check if some adversarial values
are replayed from an old session. If no such record is found, in G20 the simulator gives
(COMPLETEINITC-DOS, sid, IDC) to FPPKR which leads to IDC outputting (INITRESULT,
FAIL). G20 would deviate here from G19 if the client receives a forged signature (event E1

Sig).
But as of G2, the experiment aborts in this case.
If there is a REPLAY record containing b1, n1, σ1, then the values b1, n1, σ1 were computed
by the HSM. Either the HSM computed them for this initialization session or the adversary is
replaying the values from some old session. In the former case, a client in G19 outputs a key
and sends a ciphertext E to the server. Thus, SIM provides input (COMPLETEINITC, sid, IDC) to
FPPKR to make the client output a key. Note that the key is generated by FPPKR as a uniformly
random string in {0, 1}λ, just as in G19 by SIM. Further, SIM needs to produce a ciphertext
E. This ciphertext is computed the same way independent of whether the received message was
benign or replayed. The simulator first obtains the value y that FOPRF outputs as the result of
2HashDH. The simulator then uses y to compute Te. It then computes E but instead of using e
the simulator encrypts e′ = 0, as it already did in G4.
Note that a replay of b1, n1, σ1 from some old session does not make IDC abort, as since G2

the client only checks whether the message is adversarial. Thus, in this case SIM provides input
(COMPLETEINITC, sid, IDC) to FPPKR to make the client output a key and computes E just as
in the benign case above. However, a replayed b1, n1 will lead to the server failing later. As
introduced in G5, the server aborts if any of a1, b1, σ1 were not delivered honestly. Therefore
SIM proceeds as with a benign message. SIM’s internal HSM will later make the the server fail
as the transcript will mismatch.

• (GETPK) to FHSM: The simulator from Appendix E.1 behaves exactly as the functionality
FHSM on (GETPK) queries, i.e., it chooses public and private keys for the signature scheme, for
the PKE scheme, and for the key exchange and stores them for later use. Thus, the distribution
of the experiment does not change.

• (INITS, aidnew, aidold, a∗1) to FHSM: The simulator runs the HSM code on aidnew, aidold, a
∗
1. If

the HSM fails on these inputs, the simulator forwards this to the corrupt server. This corre-
sponds exactly to the behavior of the HSM in G19, which checks in every initialization if the
provided aidnew is really new. Note that we discard the output of the HSM if it does not out-
put FAIL. Instead, SIM uses its internal OPRF simulator to get the output b1, which computes
b1 ← (a∗1)

KPRF
aid , just as the HSM would do. Next, SIM distinguishes whether this initialization

was started by an honest IDC or whether it was started by the corrupt server without any client
interaction. In the first case, a record ⟨INIT, IDC

∗, a∗1⟩ exists, since SIM simulated the message
a∗1 previously for the honest IDC. Then SIM appends aidnew and the computed output to the
record. However, if no record ⟨INIT, IDC

∗, a∗1⟩ exists, it means that the simulator is just commu-
nicating with the corrupt server and not with an honest IDC that solicited the initialization. In

57

that case SIM creates a record ⟨MALINIT,⊥, a∗1, aid∗new, b1, n1, σ1⟩.
Note that SIM treats the OPRF functionality slightly different in the two above cases. If the
initialization was initiated by an honest client, SIM already chose a key identifier kid for FOPRF

when simulating the first message a1. So it must continue using that identifier. If the interaction
is started by the corrupt server, SIM can freshly choose a kid and we use aidnew for the sake of
simplicity. However, the kid are only internal to SIM and Z does not see them.
Next, SIM removes all currently stored records that belong to aidold. This directly corresponds to
the behavior of the HSM in G19 that deletes its record of aidold when it receives (INITS, aidnew,
aidold, a

∗
1). Deleting the record means that the corresponding initializations cannot be completed

anymore.
• (FILE, aidnew,E) to FHSM: If no such message is expected at the moment, SIM ignores the

message, just as the HSM in G19. Then the simulator executes the same code as the HSM to
check if E contains a valid transcript. SIM makes the server output FAIL when the HSM in the
real-world does this as well. Note in particular that if E was simulated for the honest client,
it contains a transcript that was computed just as in the real-world. That means, if the corrupt
server replayed some old b1, n1, σ1 to an honest client, the transcript does not match (we don’t
have hash collisions EColl as of G5).
The simulator distinguishes whether the current initialization is adversarially started or simulated
by SIM for an honest client. In the first case the simulator checks for a record ⟨MALINIT,⊥, a1,
aidnew, b1, n1, σ1⟩. SIM created such a record if the corrupt server acted towards the HSM as
if a client wanted to start an initialization, but there was no corresponding initialization attempt
from a client. If the simulator is able to decrypt E it can check if the contained values would be
stored in G19 by the HSM. Concretely, if the corrupt server followed the protocol description
of an honest client to produce E, it queried H2, which SIM is able to detect. In that case,
the HSM in G19 would store these values as if an honest client initialized. Thus, SIM uses
(MALICIOUSINIT, sid, aidnew, pw,K) to make FPPKR store a file for this initialization. Note
that SIM uses aidnew as the client identity towards FPPKR, since the corrupt server claimed that
the key should be stored under this identity. If there is no matching query H2 however, then
SIM just continues this simulation by creating a file record in its internal HSM. This case can
happen e.g. when the corrupt server impersonates the client without querying H2. Instead,
the corrupt server can just choose a uniformly random y and store it for later use. However,
the probability that the environment later starts a recovery for an honest client with a previously
unused password pw, such thatFOPRF outputs y as PRF value for pw is negligible by the security
of the 2HashDH protocol.
It remains the case that E was simulated by SIM for an honest client. Again we distinguish
two cases. First, if the whole initialization was performed without interference from the corrupt
server, a successful record is stored. SIM gives input COMPLETEINITS to FPPKR to ensure
that a file is stored that can later be recovered. If the corrupt server sent an adversarial E after
acting honestly for the first two messages of the session, the HSM in G19 outputs FAIL due to
transcripting mismatching. Thus, in G20 SIM gives COMPLETEINITS-DOS to FPPKR.

Overall we have
Pr[G20] = Pr[G19].

Game G21: Output of parties comes from FPPKR in recovery. In this game hop we change the be-
havior of the simulator as follows. Instead of executing the real client and forwarding messages

58

from the environment to the corrupt server for the recovery phase of the protocol, the simulator
acts as in Appendix E.2 on (RECCsid, IDC) messages from FPPKR and on adversarial messages
b2, e cred, ne, Te, nS , p̄kS , TS , σ2 and c and on adversarial allowance of delivering T ′

C . Addition-
ally, we change the behavior of the simulator on calls to the HSM interfaces (RECS, aid, n∗

C , p̄k
∗
C , a

∗
2)

and (RECRESULT, IDC, T
′
C). Instead of internally executing the code of the real HSM, SIM simulates

the messages as described in Appendix E.2. However, the simulator still maintains a ticket counter.

• (RECC, sid, IDC) from FHSM to SIM: First, the simulator runs SIMOPRF to get a message a2
as in G8. Note that it retrieves the kid used in the initialization phase. If no kid was recorded
for IDC then there was no initialization for that client before and the message can be ignored.
Then it chooses a nonce nC at random. It then uses its internal AKE simulator and its internal
FAKE-KCI to produce an ephemeral public key for the key exchange as in G10. Therefore the
distribution does not change.

• Adversarial b2, e cred, ne, Te, nS , p̄kS , TS , σ2: First, the simulator checks if there is a record
⟨REC, IDC, [nC], [p̄kC], [a2], [b], b2, e cred, ne, Te, nS , p̄kS , TS , σ2⟩. The existence of such a
record indicates that the simulator itself created this message when simulating the HSM. That
means it can behave like an honest client on a benign message. The behavior of the client de-
pends on whether the provided password matches or not. Note that in this game the simulator
still knows the password pw that Z provided as input but in later games that won’t be the case
anymore. Therefore, SIM uses the password bit b that was provided to SIM by the functionality
and that SIM stored in the REC record. If the bit b indicates matching passwords, i.e., b = 1,
a client in G20 outputs a MAC T ′

C . SIM runs its internal AKE simulator to get the MAC key
KMAC

C and uses it to compute T ′
C , which is the same behaviour as introduced in G10. So the

distribution doesn’t change in this case.
If the password does not match, i.e., b = 0, a client would output FAIL. Therefore, SIM gives
input (COMPLETERECC-DOS, sid, IDC) to FPPKR to reach the same behavior. This means G20

and G21 deviate here if the passwords do not match but AE′ decrypts without an error. In that
case the simulation aborts as of G11, so the distribution does not change.
If no such record exists, the simulator next checks whether a record ⟨REC, IDC, ∗, ∗, ∗⟩ exists.
If neither of those record exists, this means that IDC did not start a recovery and thus does not
expect the message b2, . . . , σ2. Hence, the simulator ignores the message and the distribution
does not change.
If a record ⟨REC, IDC, ∗, ∗, ∗⟩ exists, but no record ⟨REC, IDC, [nC], [p̄kC], [a2], [b], b2, e cred,
ne, Te, nS , p̄kS , TS , σ2⟩ exists, then either the message nC , p̄kC , a2 or the message b2, . . . , σ2
was not delivered honestly by the environment. In that case, we either have pre ̸= pre′, or TS

or σ2 was not output by the simulator. In any of those cases, the client outputs FAILas of G2

or G13. Therefore, in this case the simulator gives input (COMPLETERECC-DOS, sid, IDC) to
FPPKR.

• Adversarial c: The simulator checks for a record ⟨x, IDC, nC , p̄kC , a2, 1, shk, b2, e cred, ne, Te,
nS , p̄kS , TS , σ2, T

′
C , c

′⟩ with x = {REC, MALREC}. If x = MALREC, we argue below (on
(RECRESULT, IDC, T

′
C)) that the simulator will not produce c with overwhelming probability.

So it does not change the distribution of the game if SIM ignores the message when such a record
is found. Next, if the simulator computes a value c on behalf of the HSM but the corrupt server
provides a different c′ to the client, a real-world client outputs FAIL as the decryption fails and
thus SIM gives input (COMPLETERECC-DOS, sid, IDC) to FPPKR in that case. If c′ decrypts
without error, the simulator aborts as of G15 (event E1

AE). Finally, if the received ciphertext is

59

benign, SIM gives input (COMPLETERECC, sid, IDC) to FPPKR in order to make IDC output a
key. Note that FPPKR makes IDC output a key K $←− {0, 1}λ. This key is distributed identically
as the real-world output of an honest client. If the password of the initialization matched the
password of recovery, the same key is output to the client.

• (RECS, aid, n∗
C , p̄k

∗
C , a

∗
2): As the real-world HSM does, the simulator starts by checking for a

previously stored record and makes the server output FAIL if no such record is found for aid.
Then SIM uses its internal SIMOPRF to simulate the OPRF response b2 and its internal SIM3DH

and FAKE-KCI to simulate the key exchange messages. This leads to FAKE-KCI outputting a
session key s = (KMAC

S ,KMAC
C , shk).

Then the simulator checks if there is a record ⟨REC, IDC
∗, n∗

C , p̄k
∗
C , a

∗
2⟩. This record is produced

by SIM when it simulated the first message for an honest client. If no such record is found it
means that the corrupt server sent the RECS message to the HSM without receiving a corre-
sponding message from a client. In that case, it stores a record ⟨MALREC, n∗

C , p̄k
∗
C , a

∗
2, aid

∗, e,
shk, b2, e cred, ne, Te, nS , p̄kS , TS , σ2⟩ that allows to distinguish this interaction later from a
completely honest recovery.
If such a record is found, SIM sends (RECS, sid, IDC

∗, aid∗) to FPPKR. This makes the func-
tionality answer with a bit indicating whether the passwords in initialization and recovery did
match. Note that in this game G21, FPPKR always responds, as we did not introduce the counter
yet. Also in this game, SIM could still check if the passwords match without FPPKR but in
later game hops we remove the inputs pw from the simulator and it will only rely on this bit.
SIM stores this bit along with the other produced messages for later use. The simulator sends
aid∗, b2, e cred, ne, Te, nS , p̄kS , TS , σ2 to the corrupt S as reply from FHSM, as the real-world
HSM would do. Finally, the simulator removes old records to ensure that new recovery sessions
can be made.

• (RECRESULT, aid, T ′
C): SIM first checks for ⟨x, nC , p̄kC , a2, aid, b, e, shk, b2, e cred, ne, Te,

nS , p̄kS , TS , σ2, T
′
C⟩ with x ∈ {REC, MALREC}, and optional IDC, b, T

′
C . If such a record

exists with x = REC and T ′
C set, it means that the simulator computed T ′

C before to simulate an
honest client. By construction, the simulator only does this, when the password guess bit was
set to b = 1, indicating a successful recovery. In G20, if T ′

C was output by SIM, it outputs the
ciphertext c. Thus, here SIM simulates c as an encryption of 0 under shk. This does not change
the distribution as it is already done in G17.
If T ′

C was not computed by SIM, the above record exists without T ′
C set. Hence, in this case SIM

gives input (COMPLETERECC-DOS, sid, IDC) to FPPKR, as it would in G14.
If the record exists with x = MALREC and without IDC, T

′
C and b set, it means that the corrupt

server played the role of the client in this whole interaction. In that case, SIM has to check if
T ′
C is a valid MAC. If it is not valid, SIM outputs (RECRESULT, aid, FAIL), which is the same

behavior as in G20. Otherwise, SIM checks whether a record ⟨prog, aid, [y′], [K]⟩ exists, which
indicates that the corrupt server has queried H2 with the correct password. SIM then uses the
prog record to compute c as it would in G20. Even if the corrupt server never queried H2 with
the correct password, it may still be able to compute a valid T ′

C by reusing the same y′ it used
in the corresponding initialization. If that is the case, there is a record e ∥ pkC ∥ e cred ∥ ne ∥ Te

stored in the HSM that is marked BROKEN. Then, SIM encrypts the e from that record under
shk, which ensures that the corrupt server recovers the correct key K.
If the corrupt server never queried H2 on the password of this recovery attempt and did not reuse
the same y from the corresponding initialization, then y is uniformly random and thus Kauth

60

as well. Consequently, the key exchange key skC is information-theoretically hidden from the
adversary. By the AKE security, this means that the key KMAC

C is uniformly random to the
adversary. If that is the case, the MAC T ′

C will not verify with overwhelming probability by the
sEUF-CMA security of the MAC. With a similar argument one can see that skC remains hidden
from the environment and thus T ′

C will not verify if the adversary only queried H2 on a wrong
password.

Overall we get
|Pr[G21]− Pr[G20]| ≤ QRECAdvsEUF-CMA

A,MAC (λ).

Game G22: Introduce counter to F . In this game we introduce the counter txsid to the functionality.

As of this game hop the counter is not only maintained by the simulator (using its internal HSM)
anymore but additionally by the functionality. In the real-world a counter for a file record is initially
set to 10 and on every computed OPRF exponentiation (·)KPRF

aid in a retrieval phase the counter is
decremented. If the counter is zero, the HSM outputs DELREC. If a recovery attempt is successful,
the counter is reset to 10. In the ideal world, the functionality initializes the counter to 10 when it
receives a COMPLETEINITS message from the ideal-world adversary, i.e., the simulator. On a RECS
message, FPPKR checks if the counter reached 0 and outputs DELREC. If the counter is not 0 in a
RECS call, the counter is decremented. On a COMPLETERECS message the functionality checks if
the passwords match and resets the counter to 10 if they do. Further the functionality also maintains
the counter in MALICIOUSREC calls, i.e., it checks if the counter is 0, decrements the counter by one
and resets it if the password guess was correct. Similarly, FPPKR initializes the counter to 10 on a
MALICIOUSINIT message. The main difference is that the functionality keeps a counter per IDC (and
sid) while the real-world HSM keeps the counters per aid.

We must argue that FPPKR never refuses to respond to a MALICIOUSREC or a RECS input because
of the counter being 0. First, we note that FPPKR’s counter and SIM’s internal HSM counter are set
and reset to 10 under the exact same conditions. The HSM initializes a record with counter 10 when it
receives a (FILE, aidnew,E) message where the decryption of E contains a matching transcript. In this
situation, SIM gives input COMPLETEINITS to FPPKR. SIM only does this for honest clients where it
is clear that transcripts trHSM and trC match. But the initialization could also be finished successfully
by a corrupt server without involving an honest client. SIM also checks if it made a MALINIT record.
Remember that SIM makes these records when there was an initialization started without involving an
honest client. If such a record exists and the corrupt server queried H2 on a corresponding password,
SIM gives input MALICIOUSINIT to the functionality, which leads to the counter being initialized as
well.

Whenever SIM’s internal HSM has a RECS query with counter 0, it outputs DELREC. Now assume
that FPPKR’s counter reaches 0 before the HSM’s counter reaches 0. Then there was at least one
MALICIOUSREC input or one RECS input to FPPKR for which the HSM did not decrease its counter.
MALICIOUSREC is an adversarial interface and, as we assume a corrupted server, RECS is also given
to FPPKR by the simulator.

SIM sends RECS to FPPKR when it receives a query (RECS, aid∗, n∗
C , p̄k

∗
C , a

∗
2) to FHSM for a client-

initiated recovery. The first thing that SIM does when receiving such a query is running its internal
HSM on (RECS, aid∗, n∗

C , p̄k
∗
C , a

∗
2), which will decrement the counter of the HSM.

SIM sends MALICIOUSREC in only one case and that is if there is a H2 query with a corresponding
MALREC record. Such a record is created by SIM when the corrupt server started a recovery with the

61

HSM but without an honest client interaction. Note here that the HSM’s counter was decremented
already when the HSM received a query (RECS, aid∗, n∗

C , p̄k
∗
C , a

∗
2) to FHSM for an adversarial recov-

ery. That means the HSM counter got decremented beforeFPPKR’s counter. It can even happen thatZ
never queries H2 on the corresponding password. In that case only the HSM’s counter gets decreased
but not FPPKR’s counter. Overall, it can never happen that FPPKR’s counter gets decreased without
HSM’s counter being decreased. Hence, we have

Pr[G22] = Pr[G21].

Game G23: Remove password forwarding. In this game we take away the additional information about
input that our simulator still gets from the functionality. More precisely we change IC.3 “Send
(INITC, sid, IDC, pw) toA and to S” to “Send (INITC, sid, IDC) toA and to S”, and we change “RC.2
Send (RECC, sid, IDC, pw

′) to A and S” to “RC.2 Send (RECC, sid, IDC) to A and S”. Finally, we
take away the dummy interfaces from the functionality that allowed the simulator to make any party
output whatever the simulator wanted.

As the simulator did not use the password-inputs anymore in G17, the distribution of the experiment
does not change when the simulator does not get the information and we have

Pr[G23] = Pr[G22].

We now have F = FPPKR from Figures 7 to 8.

E.1 Simulating (honest IDC, corrupt S) – initialization phase

Because clients are authenticated, in the (honest IDC, corrupt S) case there are no ad-
versarial messages from the client towards the server. The simulator receives outputs of
FPPKR intended towards the server, because the server is corrupt. The adversarial in-
terfaces at FPPKR that are available for simulation are: MALICIOUSINIT, MALICIOUSREC,
INITS, COMPLETEINITC, COMPLETEINITS, COMPLETEINITC-DOS, COMPLETEINITS-DOS, RECS,
COMPLETERECC, COMPLETERECS, COMPLETERECC-DOS, COMPLETERECS-DOS.

SIM maintains records INIT,MALINIT for each IDC containing the state of an ongoing initialization
session that has still the potential of terminating. Such session was either started by the honest IDC with
honest a1 (SIM records this in INIT) or by the adversary with adversarial a1 (SIM uses MALINIT). SIM

only extends these records with either HSM-generated values, or values generated by the honest IDC. For
example, if b2 appears in any record, b2 was output by FHSM, and if T ′

C appears in the record, it was
generated by IDC.

[OPRFsim:] The simulator runs an instance of the OPRF simulator SIMOPRF(H1, H2, N) of Figure 12,
where N is the total number of INITC and RECC queries with respect to this key, and an instance of FOPRF

of Figure 10 that interacts with SIMOPRF, and which never checks evaluation tickets in case of SIMOPRF

evaluating for honest key identifiers. Execute step 1 of SIMOPRF. [endOPRFsim][AKEsim:] Similarly, the
simulator runs an instance of the AKE simulator SIM3DH of fig. 16 and an instance of FAKE-KCI of fig. 15
that interacts with SIM3DH.[endAKEsim]

Calls to FHSM On anybody querying (GETPK) to FHSM:
• If no record ⟨PublicKey, ∗, ∗⟩ exists, [AKEsim:] send INIT to FAKE-KCI from FHSM, which triggers

step 1 of SIM3DH, and obtain pkDH
HSM.[endAKEsim]

62

Compute (skEncHSM, pkEncHSM) ← PKE.KeyGen(1λ) and (skSigHSM, pkSigHSM) ← Σ.KeyGen(1λ) and set
skHSM = {skSigHSM, skEncHSM,⊥,KEnc

HSM} and pkHSM = {pkSigHSM, pkEncHSM, pkDH
HSM}. Store ⟨PublicKey,

pkHSM, skHSM⟩. Else retrieve ⟨PublicKey, pkHSM, ∗⟩
• Reply with pkHSM.

On corrupt server querying (INITS, aid∗new, aid
∗
old, a

∗
1) to FHSM:

• Run HSM code on the input (INITS, aid∗new, aid
∗
old, a

∗
1). If the HSM outputs (INITRESULT,

aid∗new, FAIL) give this to S as output of FHSM, otherwise discard the output.
// Just for aid treatment.

• [Initialization started by client] If there exists a record ⟨INIT, [IDC
∗], a∗1⟩, [OPRFsim:] Retrieve

⟨IDC
∗, kid,⊥⟩ and replace ⊥ by aid∗new. Run FOPRF on the input (INIT, sid, kid) from FHSM, which

triggers step 2 of SIMOPRF and thus results in records ⟨F,FHSM, aid∗new,K
PRF
aidnew

, gK
PRF
aidnew ⟩ and ⟨FHSM,

aid∗new⟩ for KPRF
aidnew

$←− Zq. Compute b1 ← (a∗1)
KPRF

aidnew as in step 6 of SIMOPRF. [endOPRF-
sim]// Equivalent to how FHSM would compute b1. Choose n1

$←− {0, 1}λ and compute σ1 ←
Sign(skSigHSM, b1 ∥n1). Append aid∗new, b1, n1, σ1 to it. Give input (INITS, sid, IDC

∗, aid∗new) to FPPKR.
• [Adversarial initialization] If no record with a∗1 exists so far, [OPRFsim:] Run FOPRF on the input
(INIT, sid, aid∗) from FHSM, which triggers step 2 of SIMOPRF and thus results in records ⟨F,FHSM,

aid∗new,K
PRF
aidnew

, gK
PRF
aidnew ⟩ and ⟨FHSM, aid∗new⟩ for KPRF

aidnew
$←− Zq. Compute b1 ← (a∗1)

KPRF
aidnew as in step

6 of SIMOPRF. [endOPRFsim]// Equivalent to how FHSM would compute b1. Choose n1
$←− {0, 1}λ

and compute σ1 ← Sign(skSigHSM, b1 ∥n1). Create a new record ⟨MALINIT,⊥, a∗1, aid∗new, b1, n1, σ1⟩ //
Corrupt server can initialize on behalf of any aid∗new.

• Create record ⟨REPLAY, a∗1, b1, n1, σ1⟩ and remove all records ⟨x, ∗, ∗, aid∗old, ...⟩ with x ∈ {INIT,
MALINIT} and ⟨∗, ∗, aid∗old⟩ that have not been modified or newly created by the above. // HSM
discards older init sessions of aid∗old

• Give aid∗new, b1, n1, σ1 as output of FHSM to the corrupt server.

On corrupt server querying (FILE, aidnew,E) to FHSM:
• [HSM does not expect E] Look for a record ⟨x, [IDC], [a1], aidnew, [b1], [n1], ∗, [E′]⟩ with x ∈ {INIT,

MALINIT} and optional E′. If no such record exists, ignore the query
• Run HSM code on the input (FILE, aidnew,E). If the HSM outputs (INITRESULT, aidnew, FAIL), give

this to S as output of FHSM and give input (COMPLETEINITS-DOS, sid, IDC) to FPPKR.
// Transcript mismatch.

• [Adversary initializes] If a record was found with x = MALINIT, do:
– Decrypt E with skEncHSM to obtain m← e ∥ pkC ∥ trC ∥ e cred ∥ ne ∥ Te

– Find a record ⟨H2, pw, u, aidnew, y⟩ which was used to compute E, i.e., for (Kexport,Kmask,
Kauth) ← KDF1(y, ne) it holds that (1) FAIL ̸= K ← AE.Dec(Kexport; e), (2) e cred ⊕
Kmask = skC corresponds to pkC , (3) Te = MAC.Tag(Kauth, pkDH

HSM ∥ ne ∥ e cred), and (4)
trC ← H3(a1, b1, n1). If such a record is found, send (MALICIOUSINIT, sid, aidnew, pw,K) to
FPPKR. // Valid password file!

– If no such record is found, append e, pkC , e cred, ne, Te to record
⟨MALINIT,⊥, a1, aidnew, b1, n1, σ1⟩. Store m ← e ∥ pkC ∥ e cred ∥ ne ∥ Te in the inter-
nal HSM and mark this file as BROKEN.
// We cannot find a password matching E. This could be due to (1) Z never queried H2 and must
have used some own y or (2) it modified some part of m. But it could memorize whatever it
used and do the same in recovery which we need to be able to simulate.

• [Client initializes] If a record was found with x = INIT, do:

63

– [E generated by honest client] If a record ⟨REPLAY, [a′1], [b
′
1], [n

′
1], ∗,E⟩ exists, do:

* [Honest initialization by IDC] If E′ = E, give input (COMPLETEINITS, sid, IDC) to FPPKR

* [Replay with high probability] If E′ ̸= E, do:
· If a1 ̸= a′1, b1 ̸= b′1, or n1 ̸= n′

1, abort the simulation. // event E1
Coll

· Otherwise, give input (COMPLETEINITS, sid, IDC) to FPPKR

– [Adversarial E] Give input (MALICIOUSINIT, sid, IDC,⊥,⊥) to FPPKR. // Tampered E such
that key will be unrecoverable

Calls to random oracles // This part is the simulator of [22, Figure 3], working together with an emulated
FOPRF of Figure 10.
On A querying H1(x):

• If this query happened before, give the same answer.
• [OPRFsim:] Otherwise, run step 4 of SIMOPRF. [endOPRFsim]

On A querying H2(x, u):
• If this query happened before, give the same answer.
• [OPRFsim:] Otherwise, run step 8 of SIMOPRF and let y denote its output and, if applicable, kid the

key identifier corresponding to y [endOPRFsim]
• [H2 call belongs to init session] If there is a record ⟨MALINIT, ..., aid, ...⟩ with aid = kid, then create

record ⟨H2, x, u, kid, y⟩ and reply with y.
• [H2 call belongs to recovery session] If there is a record ⟨MALREC, ..., aid, ...⟩ with aid = kid, see

Appendix E.2.
• [H2 call wrt honest key that was not generated with the help of FHSM] If none of the two cases above

apply, if kid = aid for any aid that FHSM has received an input (INITS, aid, ∗, ∗) for, then SIM aborts.
• [H2 call with malicious key] Create record ⟨H2, x, u, kid, y⟩ and reply with y.

Adversarial messages
On message b1, n1, σ1 towards IDC:

• [IDC does not expect b1, n1, σ1] Look for record ⟨INIT, IDC, ∗⟩ or ⟨INIT, IDC, ∗, ∗, ∗, ∗, ∗⟩. If no such
record exists, ignore the query.

• [HSM-generated message] If a record ⟨REPLAY, ∗, b1, n1, σ1⟩ exists, do:
– Look for record ⟨INIT, IDC, [a1], [aid], b1, n1, σ1⟩. If no such record exists, look for records
⟨INIT, IDC, [a1]⟩ and ⟨IDC, [kid], ∗⟩ and set aid ← kid. // If message is not replayed, first case
will occur. If message is replayed, second case will occur

– [OPRFsim:] Receive y as output from FOPRF [endOPRFsim]and create record ⟨PROG, aid, y⟩
[AKEsim:] Send INIT to FAKE-KCI from IDC, which triggers step 1 of SIM3DH, to obtain pkC .
Run the simulated client using y as output of H2, e← 0, e cred $←− {0, 1}λ, and pkC to produce
E. Provide input (COMPLETEINITC, sid, IDC) to FPPKR. // Let client output key, independent
of replay or non-replay

– [Replayed message] If no record ⟨INIT, IDC, a1, aid, b1, n1, σ1⟩ exists, append ⊥, b1, n1σ1 to
record ⟨INIT, IDC, a1⟩. // Internal HSM will later fail because of transcript mismatch.

– Append E to records ⟨INIT, IDC, a1, ∗, b1, n1, σ1⟩ and ⟨REPLAY, ∗, b1, n1, σ1⟩, and send IDC,E
to A as message from IDC to S

• [Adversarial message] If no such record exists, provide input
(COMPLETEINITC-DOS, sid, IDC) to FPPKR. // event E1

Sig

Messages from FPPKR Below we list all messages from FPPKR that are not replies to adversarial queries.
See other parts of the simulation on how SIM reacts to responses from FPPKR to its own queries, such as

64

(RECS, sid, IDC, b), ”wrong/correct guess“, ”success“, etc.

On message (INITC, sid, IDC) from FPPKR:
• [OPRFsim:] Choose fresh ssid, kid and a dummy password pwD and give input (EVAL, sid, kid, ssid,
FHSM, pwD) to FOPRF from simulated IDC. FOPRF sends (EVAL, sid, kid, ssid, IDC,FHSM) to
SIMOPRF, which will execute step 5 and return a message (sid, kid, ssid, a1). [endOPRFsim]

• Create a new record ⟨INIT, IDC, a1⟩. Also create a record ⟨IDC, kid,⊥⟩. Send a1 to S.

E.2 Simulating (honest IDC, corrupt S) – recovery phase

The adversarial interfaces at FPPKR that are available for simulation are: MALICIOUSREC,
MALICIOUSINIT, COMPLETEINITC, COMPLETEINITS, RECS, COMPLETEINITC-DOS,
COMPLETEINITS-DOS, CHANGEUSER, COMPLETERECC, COMPLETERECC-DOS, COMPLETERECS,
COMPLETERECS-DOS.

SIM maintains records REC,MALREC for each IDC containing the state of an ongoing initialization or
recovery session that has still the potential of terminating. Such session was either started by the honest
IDC with honest a1 (SIM records this in REC) or by the adversary with adversarial a1 (SIM uses MALREC).
SIM only extends these records with either HSM-generated values, or values generated by the honest IDC.
For example, if b2 appears in any record, b2 was output by FHSM, and if T ′

C appears in the record, it was
generated by IDC.

Calls to FHSM

On anybody querying (GETPK) to FHSM: as in Appendix E.1.

On corrupt server querying (RECS, aid∗, n∗
C , p̄k

∗
C , a

∗
2) to FHSM:

• Run HSM code on input (RECS, aid∗, n∗
C , p̄k

∗
C , a

∗
2) to obtain e, pkC ,K

MAC
C , shk, b2, e cred, ne, Te,

nS , p̄kS , TS , σ2, but with the following modifications:
– Replace the computation of b2 with the following: [OPRFsim:] Compute b2 ← (a∗2)

KPRF
aid as

in step 6 of SIMOPRF [endOPRFsim]. Here aid is either kid from record ⟨∗, [kid], aid∗⟩ if the
OPRF key was generated upon an honest client initiating, and otherwise aid← aid∗.

– Replace the computation of (KMAC
S ,KMAC

C , shk) with the following: Set aux← pre. If a record
⟨[IDC], ∗, n∗

C , p̄k
∗
C , a

∗
2⟩ exists, set P ← IDC, otherwise, set P ← pkC . [AKEsim:] Give input

(NEWSESSION, sid, ssid,P) as input toFAKE-KCI fromFHSM for a fresh ssid, which triggers step
2 of SIM3DH. Receive p̄kS , pk

DH
HSM,⊥ as response from SIM3DH. Give message p̄k

∗
C , pkC , aux

to SIM3DH as adversarial message on behalf of P to FHSM, which triggers step 3 of SIM3DH.
Receive an output s from FAKE-KCI that we interpret as (KMAC

S ,KMAC
C , shk). [endAKEsim]

If the HSM outputs (RECRESULT, aid, FAIL) or (DELREC, aid∗) give this to S as output of FHSM .
• [Adversarial recovery] If there exists no record ⟨REC, ∗, n∗

C , p̄k
∗
C , a

∗
2⟩, create a record ⟨MALREC,

n∗
C , p̄k

∗
C , a

∗
2, aid

∗, e,KMAC
C , shk, b2, e cred, ne, Te, nS , p̄kS , TS , σ2⟩. //FPPKR counter is not decreased

here, which is okay since FHSM maintains the counter
• [Client initiated recovery] Else if there exists such a record ⟨REC, [IDC

∗], n∗
C , p̄k

∗
C , a

∗
2⟩, give input

(RECS, sid, IDC
∗, aid∗) to FPPKR.

– [aid∗ has exceeded his attempts] Else if FPPKR sends (DELREC, sid, aid∗) to S, send (DELREC,
aid∗) to the corrupt S as reply from FHSM. // this case never happens, HSM would have already
failed.

– [There is a file for aid∗, counter ok] On FPPKR replying with (RECS, sid, aid∗, b), append
aid∗, b,e,KMAC

C ,shk, b2,e cred, ne, Te, nS , p̄kS , TS , σ2 to record ⟨REC, IDC
∗, nC , p̄kC , a2⟩.

65

• Output aid∗, b2, e cred, ne, Te, nS , p̄kS , TS , σ2 to the corrupt S as reply from FHSM and remove all
records ⟨x, ..., aid∗, ...⟩ with x ∈ {REC,MALREC} that have not been modified or newly created by
the above. // HSM discards older recovery sessions of aid∗

On corrupt server querying (RECRESULT, aid, T ′
C) to FHSM:

• Look for a record ⟨x, [IDC], [nC], [p̄kC], [a2], aid, [b], [e], [K
MAC
C], [shk], [b2], [e cred], [ne], [Te], [nS],

[p̄kS], [TS], [σ2], T
′
C⟩ with x ∈ {REC, MALREC}, and optional IDC, b, T

′
C .

– [HSM does not expect T ′
C] If no such record exists, ignore the query

– [Server acts honestly, matching passwords] If this record exists with x = REC and T ′
C set, SIM

computes c ← AE.Enc(shk; 0), appends c to the record and gives aid, c to S as output from
FHSM.

– [IDC started recovery but T ′
C adversarial] If this record exists with x = REC but without T ′

C set,
give (COMPLETERECS-DOS, sid, IDC) to FPPKR

– [Adversarial recovery without client involvement] If this record exists with x = MALREC, and
without IDC, T

′
C and b, do:

* If T ′
C ̸= MAC.Tag(KMAC

C ,H3(pre ∥ TS)), output (RECRESULT, aid, FAIL) to S as output
from FHSM.

* Otherwise, look for a record ⟨PROG, aid, [y′], [K]⟩. If it exists, set (Kexport,Kmask,
Kauth) ← KDF1(y

′, ne). e ← AE.Enc(Kexport;K), c ← AE.Enc(shk; e), append T ′
C , c

to the MALREC record and send aid, c to S as output of FHSM.
// Make sure A recovers the key chosen by FPPKR for aid.

* If the record ⟨PROG, aid, y′,K⟩ does not exist, then check if the HSM’s record e ∥ pkC ∥
e cred ∥ ne ∥ Te is marked as BROKEN. If this is the case, set c← AE.Enc(shk, e), append
T ′
C , c to the MALREC record, and send aid, c to S. Otherwise, abort the simulation.

Calls to random oracles
On A querying H1(x): As in Appendix E.1.

On A querying H2(x, u): As in Appendix E.1, filled with the following, denoting with kid, y the output of
SIMOPRF.

• [H2 call belongs to recovery session] If there is a record ⟨MALREC, nC , p̄kC , a
∗
2,

aid, e, ∗, shk, b2, e cred, ne, Te, nS , p̄kS , TS , σ2⟩ with aid = kid, send (MALICIOUSREC, sid, aid, x)
to FPPKR.

– On FPPKR’s reply ”wrong guess“, create record ⟨H2, x, u, kid, y⟩ and reply to A with y.
– OnFPPKR’s reply (”correct guess“, K), retrieve record ⟨PROG, aid, y′⟩, append K to it and reply

to A with y′.. Give input (COMPROMISE, sid, aid) to SIM3DH and receive skC as answer. Then
program KDF2(y

′, ne) ← K1 ∥K2 ∥K3 where K2 = skC ⊕ e cred and K1,K2 ← {0, 1}λ.//
leaks AKE sk to env.

Adversarial messages
On message b2, e cred, ne, Te, nS , p̄kS , TS , σ2 towards IDC:

• [Server acts honestly] If a record ⟨REC, IDC, [nC], [p̄kC], [a2], [b], ∗, ∗, b2, e cred, ne, Te, nS , p̄kS , TS ,
σ2⟩ with x ∈ {REC, MALREC} exists, do: // All values in the record are simulated, either for client
or HSM

– [Passwords match] If b = 1,
* [AKEsim:] Set aux ← pre. Give p̄kS , pk

DH
HSM, aux as adversarial message to SIM3DH

from IDC to FHSM, which triggers step 3 of SIM3DH. Receive s as output from FAKE-KCI.
[endAKEsim]

66

* Interpret s as (KMAC
S ,KMAC

C , shk) and compute the tag T ′
C ←

MAC.Tag(KMAC
C ,H3(pre, T

′
S)). Append T ′

C to record ⟨REC, IDC,
nC , p̄kC , a2, b, ∗, ∗, b2, e cred, ne, Te, nS , p̄kS , TS , σ2⟩ and send (IDC, T

′
C) to S.

– [Passwords do not match] Otherwise, the client uses a mismatching password (b = 0), and SIM

provides input (COMPLETERECC-DOS, sid, IDC) to FPPKR.
• [Adversarial message] If no such record exists, but a record ⟨REC, IDC, ∗, ∗, ∗⟩ exists, give input
(COMPLETERECC-DOS, sid, IDC) to FPPKR.

• [IDC does not expect this message] Otherwise, ignore this message.

On message c towards IDC:
• Look for record ⟨x, IDC, ∗, ∗, ∗, [b], ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, c′⟩ with x = {REC, MALREC} and op-

tional IDC, b.
– [IDC is not expecting c.] If this record exists with x = MALREC, or it does not exist at all, SIM

ignores the query.
– [IDC started recovery, but c′ adversarial] If this record exists with x = REC and c ̸= c′, give

input (COMPLETERECC-DOS, sid, IDC) to FPPKR.// (event E1
AE)

– [IDC started recovery, S acts honestly] If this record exists with x = REC and c = c′, send
(COMPLETERECC, sid, IDC) to FPPKR.

Messages from FPPKR Below we list all messages from FPPKR that are not replies to adversarial queries.
See other parts of the simulation on how SIM reacts to responses from FPPKR to its own queries, such as
(RECS, sid, IDC, b), ”wrong/correct guess“, ”success“, etc.

On message (RECC, sid, IDC) from FPPKR:
• [OPRFsim:] Retrieve ⟨IDC, kid, ∗⟩. If no such record exists, ignores this message. Choose a fresh ssid

and a dummy password pwD and give input (EVAL, kid, ssid,FHSM, pwD) to FOPRF from simulated
IDC. FOPRF sends (EVAL, kid, ssid, IDC,FHSM) to SIMOPRF, which will execute step 5 and return a
message (kid, ssid, a1). [endOPRFsim]

• [AKEsim:] Give (NEWSESSION, sid, ssid, pkDH
HSM) as input to FAKE-KCI from IDC, which triggers

step 2 of SIM3DH. Receive p̄kC , pkC ,⊥ as response from SIM3DH. [endAKEsim]
• nC ← {0, 1}λ.
• Record ⟨REC, IDC, nC , p̄kC , a2⟩ and send IDC, nC , p̄kC , a2 to S

F On unrestricted adaptive client corruptions

We introduce the restriction on client corruptions in Theorem 1 due to the following reason. Imagine that
the environment instructs some honest client IDC to first initialize with some password pw and afterwards
instructs IDC to start a recovery phase, again using pw. Then, after the server produced its final message c,
but before the environment allows c to be delivered to IDC, it instructs the adversary to corrupt IDC. It now
learns the entire state of IDC, and in particular the keys Kexport and shk that IDC would use to obtain K.
Thus, it can now check whether the ciphertext c was produced according to the protocol description, namely
by computing e← AE.Dec(shk; c), K ← AE.Dec(Kexport; e), and checking whether K ?

= K ′, where K ′ is
the key that was output by IDC in the initialization phase.

However, in the ideal world, the simulator could not produce c according to the protocol description, as
it knows neither shk,Kexport, nor K. Instead it can only output a simulated ciphertext c′ ← AE.Enc(shk′, 0)
with uniformly random shk′. Therefore, upon corrupting IDC the environment would be able to efficiently
distinguish between the real and ideal world. In order to avoid this, we disallow the corruption of clients

67

during ongoing initialization or recovery sessions, which prevents the environment from learning shk and
checking whether c was produced according to the protocol description since IDC deletes shk before out-
putting K at the end of the recovery phase.

We believe that even with the added restriction, this still provides a reasonably realistic modeling of
corruptions. In practice we expect a full intialization or recovery session to take only a few seconds and
thus we expect it to be very difficult for an adversary to corrupt a client in this short timeframe. Note that
an adversary could theoretically extend this “corruption timeframe” by e.g. recording c and dropping the
message from the network. However, we assume that in practice all protocol participants implement some
timeout mechanism, which terminates the session if no response arrived within a short timeframe, as is
standard in any networked application.

An alternative solution to the problem outlined above could be to require the authenticated encryption
scheme AE to be equivocable. Then, the simulator can output an equivocal ciphertext c and, upon learning
e due to the corruption of IDC, compute shk such that e = AE.Dec(shk; c) holds. Note that this task is still
made more difficult for the simulator by the fact that shk also has to be consistent with all prior messages the
simulator produced in this recovery session, such as the Diffie–Hellman shares p̄kC and p̄kS . As described
by Jarecki et al.[24], it is easy to show that GCM, which is deployed in the WBP, is equivocable in the ideal
cipher model.

G On not Using any Proven OPAQUE Guarantees

The WBP relies on the strong asymmetric password-authenticated key exchange (saPAKE) protocol
OPAQUE [24], which comes with a security analysis in the UC framework. This immediately raises the
question whether one could modularize the analysis and leverage the UC composition theorem to obtain our
main result. The approach would be as follows:

1. Prove that OPAQUE UC-emulates functionality FsaPAKE (proven already in [24]).

2. Prove that the WBP using FsaPAKE instead of OPAQUE UC-emulates FPPKR (presumably a simpler
proof than proving security using OPAQUE).

3. Invoke the UC composition theorem: it yields that from 1. and 2. above it directly follows that WBP
using OPAQUE UC-emulates FPPKR.

However, this is not the road that we were able to take in this paper. Instead, we had to prove the
statement in item 3 above from scratch because of the following reason: The OPAQUE version that is
proven secure in [24, Fig. 8], differs from Internet Draft v03 [26] that the WBP is using.

In order to modularly use an saPAKE functionality, we would need to formally prove which exact
functionality Internet Draft v03 [26] (or, more specific, the OPAQUE protocol as implemented in Figures 4
and 5) UC-emulates. This however seems overkill, because a) the list of differences is quite extensive, and
b) we do not even rely on the “full” OPAQUE security: we only rely on OPAQUE being secure against a
malicious client, because the OPAQUE server code is run on an incorruptible HSM.

For completeness, we list below the differences between the proven OPAQUE protocol and the one
deployed in WBP.

• OPAQUE from Internet Draft v03 [26] does not separate hash domains of the different 2HashDH
PRFs with domain separators. [24] only analyzes the security of OPAQUE where the hash domains
are separate on a per-PRF-key basis.

68

• OPAQUE from Internet Draft v03 [26] has a long-term public key pair of the server
(server private key, server public key), which is used for the generation of every pass-
word file. The paper version of OPAQUE [24, Fig. 8] lets the server choose a fresh key pair (pS , PS)
for every password file.

• OPAQUE from Internet Draft v03 [26] has an interactive registration phase where the server does not
learn the password. The paper version of OPAQUE [24, Fig. 8] has a registration phase where the
server gets the cleartext password as input. This difference was already pointed out in [6], where it is
claimed that (1) interactive registration only adds to the security proven in [24], and (2) an upcoming
paper analyzes the interactive phase. .

• OPAQUE from Internet Draft v03 [26] puts the client secret key skC in the password file in form of
e cred ← skC ⊕ Kmask. In the paper version of OPAQUE [24, Fig. 8], a password file contains
password-encrypted credentials AuthEncrw(pu, Pu, PS), where rw is the PRF value for pw. A user
can retrieve their key pair pu, Pu from the file by decrypting it with rw. Draft v09 [6] motivates this
change by (1) smaller password files and (2) no need for applications to provide AKE key material
to the client, but instead deal with key generation within OPAQUE. (2) is actually only a difference
between v09 and older versions of the draft, because in [24] OPAQUE (more specific: the server)
is generating the client’s AKE key pairs. Draft v09 [6] also says that this change is analyzed in an
upcoming paper.

• OPAQUE from Internet Draft v03 [26] lets the client output an additional export key export key
that is not present in [24].

• OPAQUE from Internet Draft v03 [26] uses 3DH as AKE while [24] only shows that HMQV can be
used.

• OPAQUE from Internet Draft v03 [26] uses a superset of transcripts used in [24].

H Comparison to the OPAQUE Internet Draft Notation

In Table 1 we list naming differences between our description of the WBP and the notation used in the
OPAQUE draft. In the following we summarize where our protocol description in the Figures 4 and 5
differs from the OPAQUE draft [26], and justify these changes.

• In the OPAQUE draft the server sends its public key in its first message in both phases (see Sections
3.3.2 and 4.1.2.2 in [26]). This public key is already hardcoded into the WhatsApp client and thus is
not sent by the HSM.

• In the OPAQUE draft Kexport,Kmask,Kauth are derived via a memory-hard function and an HKDF
(see Section 3.3.3 in [26]). These steps are simplified into one computation via KDF1 in Figures 4
and 5. It is well-known that both HKDF.Extract and HKDF.Expand are PRFs [27]. We therefore can
treat KDF1 as a PRF.

• According to the OPAQUE draft, pre contains either the identities of the client and the server, or
their respective public keys (see Section 6.2 in [26]). In the WBP, pre contains only the public key
of the HSM and neither the client’s identity nor its public key. However, pre contains e cred, which
is an encryption of skC . Since Te ensures the integrity and authenticty of e cred, e cred uniquely
determines the client’s public key, which means that it still is implicitly contained in pre.

• In the OPAQUE draft KMAC
S ,KMAC

C , shk are derived via a series of HKDF computations (see Section

69

4.2.2.2 in [26]). These steps are simplified into one computation via KDF2 in Figure 5. We can treat
KDF2 as a PRF if the HMAC(0, $)-$ assumption [18] holds.

70

Table 1: Names and variables as they are referred to in our protocol description and in the OPAQUE Internet
Draft [26].

Our notation OPAQUE Internet Draft notation

S Server
IDC Client
Kexport export key
r1 and r2 blind
a1 and a2 request and M
(pkC , skC) creds
(skDH

HSM, pkDH
HSM) (server private key, server public key)

skDH
HSM secret creds

pkDH
HSM cleartext creds

pw password
KPRF

aid oprf key
ne envelope nonce
Kmask pseudorandom pad
Kauth auth key
e cred encrypted creds
Te auth tag
(ne, e cred, Te) envelope
(KPRF

aid , pkC , (ne, e cred, Te)) credential file
T ′
e expected tag

nC client nonce
p̄kC client keyshare and epkU
p̄kS server keyshare and epkS
s̄kC eskU
s̄kS eskS
nS server nonce
TS or T ′

C mac
KMAC

S server mac key
KMAC

C client mac key
ikm IKM
shk session key

71

	Introduction
	Related Work

	Preliminaries
	E2EE Backups in WhatsApp
	High-level Protocol Overview
	Client Registration
	Hardware Security Modules
	Secure Outsourced Storage
	WhatsApp Backup Protocol (WBP) Description
	Extending the Number of Password Guesses

	Password-Protected Key Retrieval
	A PPKR Functionality
	On Strengthening FPPKR

	Security Analysis
	Conclusion and Future Work
	Acknowledgments
	Cryptographic Building Blocks and Their Security
	Modeling WBP in the Universal Composability Framework
	Preliminaries on Oblivious Pseudorandom Functions
	Multi-Key OPRF Model
	Security of Multi-Key 2HashDH

	Preliminaries on Triple Diffie–Hellman Key Exchange
	Proof of Theorem 1
	Simulating (honest IDC, corrupt S) – initialization phase
	Simulating (honest IDC, corrupt S) – recovery phase

	On unrestricted adaptive client corruptions
	On not Using any Proven OPAQUE Guarantees
	Comparison to the OPAQUE Internet Draft Notation

